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G-quadruplexes (G-QPX) have been the subject of intense research due to their 

unique structural configuration and potential applications, particularly their functionality 

in biological process as a novel type of nano–switch. They have been found in critical 

regions of the human genome such as telomeres, promoter regions, and untranslated 

regions of RNA. About 50% of human DNA in promoters has G-rich regions with the 

potential to form G-QPX structures. A G-QPX might act mechanistically as an ON/OFF 

switch, regulating gene expression, meaning that the formation of G-QPX in a single 

strand of DNA disrupts double stranded DNA, prevents the binding of transcription 

factors (TF) to their recognition sites, resulting in gene down-regulation. Although there 

are numerous studies on biological roles of G-QPXs in oncogenes, their potential 

formation in neuronal cells, in particular upstream of transcription start sites, is poorly 

investigated. The main focus of this research is to identify stable G-QPXs in the 97bp 

active promoter region of the choline acetyltransferase (ChAT) gene, the terminal 

enzyme involved in synthesis of the neurotransmitter acetylcholine, and to clarify ionic 

modulation of G-QPX nanostructures through the mechanism of neural action potentials. 

Different bioinformatics analyses (in silico), including the QGRS, quadparser and G4-

Calculator programs, have been used to predict stable G-QPX in the active promoter 

region of the human ChAT gene, located 1000bp upstream from the TATA box. The 

results of computational studies (using those three different algorithms) led to the 



 
     

identification of three consecutive intramolecular G-QPX structures in the negative strand 

(ChAT G17-2, ChAT G17, and ChAT G29) and one intramolecular G-QPX structure in 

the positive strand (ChAT G30). Also, the results suggest the possibility that nearby G-

runs in opposed DNA strands with a short distance of each other may be able to form a 

stable intermolecular G-QPX involving two DNA complementary strands (ds ChAT 

G21). 

Formation of G-QPX structures, by blocking the availability of the transcription 

factor binding site (TFBS) on double stranded DNA, can interfere with transcriptional 

activation. This suggests that there is competition between TFBS binding to dsDNA and 

the conversion to high order non-B form secondary structures (G-QPXs) in the active 

promoter region. TFBS mapping analysis of the active promoter region of the human 

ChAT gene revealed that it contains multiple consensus AP-2α and Sp1 binding sites and 

consensus sites for other TF, including multiple sites for GR-alpha, Pax-5, p53 and GC 

box proteins.   

To get a better understanding of how modulation of G-QPX structures might 

affect the ChAT promoter activity, an artificial GFP reporter vector (modified GFP) was 

constructed, synthesized and used for reporter gene measurement. As known human 

ChAT promoter activators, nerve growth factors (HNGF and TGB) and cytokines (IL-β 

and TNF-α) were used for activation of the artificial promoter driving GFP. Also, the G-

QPX stabilizing drug TMPYP4 and aconitine, a Na+ channel opening drug, were used as 

G-QPX stability modulating factors. It was observed that aconitine potentiated the action 

of the transcriptional activator NGF, suggesting that the effect of sodium is contrary to 



 
     

that of TMPYP4, i.e., that an increase in promoter activity may be due to instability of G-

QPX structures in a high Na+ environment, which results in melting these structures, 

enabling dsDNA formation required for the binding of TF to their recognition sites for 

initiation of transcription. The results were confirmed in several independent sets of 

experiments, using GFP reporter gene measurement by plate reader, by flow cytometry 

and using fluorescent microscopy.    

Moreover, quantitative RT-PCR was conducted to evaluate the effect of the same 

factors under similar conditions on the actual ChAT mRNA expression. It was observed 

that TMPY4 knocked down the ChAT mRNA expression by 87%, suggesting that G-

QPX stabilization inhibits promoter activity as expected and that aconitine along with 

HNGF increases ChAT mRNA expression up to 2.8 fold. Aconitine-mediated influx of 

Na+ ions, possibly by inhibiting the formation of stable G-QPX structures, resulted in an  

Unique G-QPX structures can be stabilized with certain metal cations or small 

cationic molecule ligands such as TMPYP4, through occupying the space between the 

layers of G-tetrads. Although G-QPX are reported to have high stability in potassium 

solution, the diversity of G-QPX structures (due to diversity in sequence and size of G-

runs, sequence and size of loops) will lead to diversity in physical behavior of G-QPX 

structures. Therefore, to get a clear image of folding topology and stability of identified 

G-QPX structures, physical studies including CD spectroscopy and AFM imaging were 

conducted. CD results showed that the identified ChAT G-QPX structures formed a 

hybrid, stable configuration in potassium environment (10mM) while being instable in 

sodium solution (100mM). AFM imaging demonstrated star-shaped structures (involving 



 
     

clusters of DNA strands) due to incubation with TMPYP4, where a greater number of 

these G-rich sequences have converted to G-QPX structures. 

The results of both an artificial engineered reporter gene system and actual ChAT 

mRNA expression (in vitro), plus physical characterization studies, strongly support the 

novel hypothesis that a neural action potential ionic mechanism regulates G-QPX 

formation/ deformation in the promoter region, due to movement of monovalent cations 

across the membrane, which is consistent with gene silencing and expression during 

neuronal resting and firing. 
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CHAPTER I 

INTRODUCTION TO G-QUADRUPLEX STRUCTURES 

This dissertation is focused on identification of G-quadruplex (G-QPX) 

nanoswitches on the promoter region of the human ChAT gene, and the assessment of 

their effect on regulating cellular process, in particular transcriptional activity under 

varied conditions. This chapter provides some background of G-QPX motifs formation, 

stability and their diversity in the whole genome, and explains neural communication and 

neural signaling. 

1. 1 G-QPX Structures, Formation, Stability and Diversity

The G-QPX structure is nucleic acid DNA/ RNA non B form secondary structure, 

containing guanines self-associate (G-tetrad). The building blocks of G-QPX are two or 

more planar tetrad which stacks by hydrogen binding. The planar tetrad is formed by 

association of four guanine bases through Hoogsteen binding and their arrangements 

create a central cavity. Since the central cavity of tetrad has onionic charge due to 

existence of four oxygen atoms (O6), cationic charge is essential for stabilizing the 

structure (Fig.1). It has been suggested that cationic molecules and metal cations such as 

K+ and Na+ acts as strong molecules in stabilizing G-QPX structures. However, in most
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G-QPX studies it has been observed that K+ solution is highly favor G-QPX formation 

and stability in compare to other metal cations such as Na+ and Li+ [1]. Depending on the 

orientation of the strands in G-QPX structures, they can be described as parallel, 

antiparallel, and hybrid (Fig.1) [2, 3]. G-runs are connecting through the loops which 

could be varied in length and sequence. Typically, the loops length is between 1-9 base 

pairs but they could be long up to 26 base pairs [4]. 

 
 
 

 

 

 

 

 

 

 

 

 
 

Figure 1. Structure of G-QPXs and their Folding Topologies [5]. 
 

  
G-QPX structures are polymorphic which can form various topologies as a 

combination of different number of nucleic acid strands. They can form intermolecular or 

intramolecular structures. Intramolecular G-QPX requires one single strand containing 

four or more runs of guanine which linked by loops (Fig.2-A), whereas intermolecular G-
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QPX structures can arise from involvement of G-runs from multiple strands, two or four 

strands (Fig. 2-B). It has been observed that most of the G-QPXs of genome fold into 

intramolecular structures within double stranded (ds) DNA (Fig. 2-C) [2]. However, 

recently it has been reported hybrid G-QPX structure can form between DNA and RNA 

strands (Figure2.D) [6].  

 

 

Figure 2. Different Examples of G-QPX Structures. A) An intramolecular G-QPX with 
three loops and three tetrad layers. B) Intermolecular G-QPX composed of different 
number of nucleic acids strands (two, three and four). C) An intramolecular G-QPX 
within double stranded DNA (ds DNA). D) Intermolecular DNA: RNA hybrid G-QPX in 
double stranded DNA (ds DNA) [6]. 
 
 

The structural diversity of G-QPX with different folding topology is extended into 

the following parameters: variation in the sequence of G-runs and G-run length, variation 

in the number of oligonucleotide strands involved and their orientations, variation in the 

length and sequence of the loops, and finally environmental factors such as presence of 

small cationic ligands molecules or metal cations. The combination of these parameters 

brings out the behavior complexity of distinct G-QPX structure towards its ligands 

binding affinity, stability and its functionality in biological process. Several biophysical 
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methods have been used to characterize G-QPX structures such as X- ray diffraction 

(XRD), circular dichroism (CD), and nuclear magnetic resonance (NMR). One of the 

common techniques is CD spectroscopy, which directly monitor molecules with chiral 

structures like G-QPX under various environmental conditions such as presence of metal 

cations, small binding molecules, different temperature and pH. Generally, CD spectra 

demonstrates the conformations of DNA, for instance a CD spectrum with a negative 

peak of 265nm and a positive peak of 295nm described as antiparallel structure, whereas 

a negative and positive peak at 240 and 260, respectively described as parallel structure 

[7]. Small DNA binding molecules and metal cations have a critical impact on 

conformational transition of G-QPX. Indeed, the type of monovalent cations and their 

concentration has a large effect on stabilization/destabilization of G-QPXs. 

1.2 Potential G-QPX in the Human Genome 

G-QPX structures have been shown to exist in the critical region of the human 

genome. Different computational methods (in silico analysis) support existence of G-rich 

regions in the human genome.  Attention in study of G-QPX motifs is rising due to their 

important role in cellular functions [8-10]. It has been extensively suggested that these 

unique nanostructures are located in promoter regions, telometric region, and 5` 

untranslated regions [11]. Some of these sites may lead to genome stability due to 

altering DNA/RNA architecture, resulting interference in the normal physiological and 

pathological processes like replication, transcription and translation.  They also have 

potential to cause genomic instability which lead to aging, and various genetic diseases.  
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Recently, it has been reported that about G-QPX structures exist in about 90% of 

human DNA replication and frequently near the origin of replication (Fig. 3 A-C). DNA 

analysis of different cancer types have shown that G-QPX has high potential formation in 

telomerase as being a novel target for anti-aging [12]. Moreover, G-QPX has been 

observed in the 5` UTR of mRNAs which repress the translation activity (Fig.3-D) [11, 

13]. 

 

 

Figure 3. Possible Locations of Formation of G-QPX Motifs in Cells. Genome 
sequencing analysis revealed that G-QPX forms in the critical regions of the genome, 
distributed to promoters, 5`untranslated regions and telomeres. In the nucleus, G-QPXs 
can form in G-rich sequences when double stranded DNA separated and single stranded 
become free to form unique conformation, during A) transcription, C) replication and B) 
in telemetric regions. In cytoplasm, outside of nucleus, G-QPXs can form at the mRNA 
level D) and regulate translation activity [14]. 

 
 

1.2.1 G-QPX in transcription regulation 

About 50% of the human genes have G-rich regions in their promoter to form G-

QPX motifs, resulting in gene expression regulation (Fig.4) [14].  The first G-QPX in the 

promoter region, has been found on promoter of C-MYC oncogenes and it has been 
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demonstrated that addition of G-QPX stabilizing ligands such as TMPYP4 significantly 

affect transcription, in vivo system [15]. Interestingly, G-QPX structures mostly observed 

on the promoter of regulatory genes or oncogenes rather than tumor repressor gene [16]. 

 

 
 
Figure 4. G-QPXs in Transcription. G-QPX exists in approximately in about 50% of the 
human genes in promoter regions. Formation of G-QPXs prevents paring of RNA 
polymerase and disrupt transcription initiation [14].  
 
 
1.2.2 Targeting DNA G-QPX scaffolds with small ligands molecules 

As mentioned before, the planner G-tetrad creates a negatively polarized central 

cavity which can be occupied by metal cations or small cationic ligand molecules. Hence, 

cationic charge is essential in G-QPX stabilization.  Among metal cations used to study 

G-QPX stability, K+ ion is known to be one of the most effective ones. Additionally, 

interaction of cationic small ligand molecules with the planner tetrad via π-π stacking and 

electrostatic interactions, can lead to form a highly stabilize G-QPX structures [17].  The 

structural feature and the side chains of the ligand allow the molecule to bind to G-QPX 

with high affinity. For instance, porphyrin (TMPYP4) highly binds to the human 

telomeric G-QPX or the human MET promoter, resulting an enhancement of  the stability 

of G-QPX formation [18, 19]. Although TMPYP4 is known as a typical small ligand 
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molecule in stabilizing of various G-QPX structures in different region of human 

genome, there are other ligands that have been identified as a G-QPX stabilizing 

compound such as the perylenes PIPER, BRACO-19, RHSP4 and several tetrasubstituted 

naphthalene diimide [20-24]. In addition, ligands can intercalate between the G-tetrads 

through bindings to the grooves of the G-QPXs and forming a class of G-QPX stabilizing 

agents with high selectivity to G-QPX structures. For instance, SYUIQ-FM05 as a 

derivative of quindoline has been used to stabilize the specific G-QPX in the promoter 

region of BCL2, regulating transcriptional activity through blocking the binding of wt1 

protein (Wilms’ tumor suppressor gene) to a G-rich region in the promoter [25].  In 

another word, ligands that recognize and bind to G-QPXs are promising new strategies in 

anti-cancer drug development. Importantly, the topology and loop length of G-QPX are 

varying from one to another so the binding of small molecule ligands to G-QPX motifs 

should vary. Therefore, considering the ligand interactions with different types of loops, 

grooves and structural folding is important in utilizing G-QPX role in drug design. 

 
1.3 Introduction to Neurons and Neurotransmitters 

1.3.1 Neuronal communications 

The neuron or nerve cell is the key component in the structure and function of the 

nervous system. It transfers information through electrochemical signals. The neuron is 

composed of three components which are the dendrites, the cell body and the axon. 

Dendrites are thin fibers that extend from the cell body in tree like branches, which 

receive information from other neurons. The cell body carries out the neuron’s cellular 

functioning. Finally, the axon is a long, thin fiber that transmits information from the cell 
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body to other neurons, forming part of the nerve signaling communication system. Nerve 

signals often travel over long distances in the body to rapidly convey signals between 

cells, through a complex communication system in which dozens of neurons can be 

involved in a single circuit. There are two mechanism involved in transmission of the 

nerve signals: first, an electrical signal that conveys the information within cells; second, 

chemical signals for communication between cells, through conversion of electrical 

signals to chemical signals the action of small molecules called neurotransmitters. 

 
1.3.2 Signal transmission within nerve cells 

The mechanism of transmission within the neuron is based on differences in 

membrane potential that exist between inside and outside of the cell (Fig.5). It is created 

by uneven distribution of ions such as K+ (higher inside the cell under resting conditions) 

vs. Cl- and Na+ (higher outside the cell). At rest, the cell membrane potential is always 

electrically negative on the inside relative to the outside. This is called the resting 

potential in non-excitable cells and is also the resting state in excitable cells like neurons 

when they are not exited. Movement of ions is mediated by trans membrane proteins that 

function as ion channels in the cell membrane, which open or close in response to 

changes in the trans membrane potential or via their response to activation by 

neurotransmitters. When the electrical potential across the cell membrane is depolarized 

during excitation, it triggers the opening of additional nearby ion channels, which 

propagates the depolarization down the axon, as an action potential. During this event, 

when the ion channels are open, sodium is flooding into the cells and potassium is 

moving out, down their chemical gradients. 
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The action-potential mechanism is based on movement of ions, changing in 

permeability of sodium and potassium across the cell membrane, due to the 

opening/closing of membrane ion channels (Fig. 5). When the membrane potential 

reaches threshold potential, sodium channel opens, allowing influx of sodium ions into 

the cells which this cause depolarization, resulting opening more sodium channels. Flow 

of sodium ions into cells across membrane creates high positive voltage around (+60mV), 

so to get equilibrium potential for sodium, potassium channels begin to open at the peak 

of depolarization to reach the equilibrium. When repolarization occurs, both potassium 

and sodium channels close but sodium channels return to their activated states. 

 
1.3.3 Signal transmission between cells 

Communication between neurons occurs at the synaptic cleft, which is a site 

where one neuron communicates with another, called the pre- and postsynaptic neurons, 

respectively. In this signal transmission event, the presynaptic cell’s electrical signal is 

converted to a chemical signal via neurotransmitter release into the synaptic cleft, which 

occurs when an action potential reaches the axon tip at the synapse. Intercellular 

communication is thus chemical, not electrical, and is achieved through the binding of 

neurotransmitters to their receptors located on the postsynaptic neuronal cell. This may 

activate or inhibit the triggering of an action potential in the postsynaptic cell, depending 

on how the receptors are coupled to ion channels in that cell.    
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Figure 5.  Changes in Movement of Sodium and Potassium Ions across the Membrane 
during Neuronal Action Potential. 1) both Na+ and K+ channels are closed, membrane`s 
resting potential. 2) Stimulations open some of Na+ channels, Na+ flow into the cell and 
membrane depolarized. The action-potential happens if the depolarization reaches the 
threshold. 3) Most of the Na+ channels open (activation gates) due to depolarization, but 
K+ channels remain closed. Inside membrane is more positive to the outside due to influx 
of Na+ ions. 4) Most of Na+ channels close (inactivation gates), Na+ influx blocking, 
whereas K+ channels open leading to efflux of K+ ions outside of cells which makes the 
inside negative again. 5) Both gates are closed again and membrane returns to resting 
state. [https://dundeemedstudentnotes.wordpress.com] 
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1.3.4 Acetylcholine (ACh) as a neurotransmitter 

ACh is an important neurotransmitter in both the mammalian brain and the 

peripheral nervous system. It is the terminal neurotransmitter in the parasympathetic 

division of the autonomic nervous system, which makes synaptic connections to multiple 

organs, glands   and smooth muscles, e.g., acting to slow the heart in opposition to the 

action of adrenaline. It is also released at the neuromuscular junction, where efferent 

nerves release ACh to induce the contraction of skeletal muscle fibers. It also has 

multiple roles in the brain, and is implicated in various CNS pathologies such as 

Alzheimer's disease and Parkinson's.  

The biosynthesis of ACh from choline and acetate involves a single enzyme, 

choline acetyl transferase, or ChAT. This makes ACh particularly appropriate for 

investigations pertaining to the regulation of neurotransmitter biosynthesis. 

 
1.3.5 Neurotransmitter depletion and the regulation of neurotransmitter 

biosynthesis 

Under normal conditions, neuronal firing leads to the release of ACh, enabling its 

action at ACH receptors on the postsynaptic neuron or muscle cell (Fig. 6). In order to 

distinguish this signal from the resting state, excess ACH in the synaptic cleft is removed 

by the enzyme acetyl cholinesterase, which splits ACH back into acetate and choline. 

Biochemical efficiency is achieved by recycling the choline by means of reuptake into 

the presynaptic neuron, which involves active transport via a transporter protein, also 

known as a “reuptake pump”. Because of limitations of biological efficiency, and the fact 

that energy is required, it remains necessary for the presynaptic neuron to synthesize 
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additional neurotransmitter molecules. The question of how this neurotransmitter 

biosynthesis is regulated is the focus of this research proposal. Particularly when neurons 

are stimulated at a very high firing rate - e.g., during extreme physical exertion such as 

running, one would expect that neurotransmitter depletion would require activation of 

ChAT gene expression in the nucleus of the affected neurons, in order to replenish the 

depleted ACh.   
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Figure 6.  Synthesis and Recycling of Acetylcholine (ACh) at the Synapse. 1) Ach 
synthesis from choline and acetyl CoA. 2) Ach break down at the synaptic cleft by 
enzyme called acetyl cholinesterase. 3) To make more Ach, choline transport back to the 
axon terminal. 
 
 
1.4 A Novel Hypothesis for the Regulation of ACh Synthesis by G-QPX 

The basis of our hypothesis is the idea is that there is a genetic switch in neurons, 

so that when a nerve fires excessively, the sodium let into the cell during action potentials 

could accumulate in the nucleus, where it could act to destabilize G-QPX in gene 

promoter regions. Because the presence of such G-QPX would normally prohibit 

transcriptional activation (Fig. 7), their destabilization in the presence of excess sodium 

ions would be expected to activate transcription of the genes for the enzymes required to 

make more neurotransmitters. Thus, using acetylcholine synthesis as a paradigm, this 
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proposal will focus on the stabilization versus destabilization of G-quadruplexes in the 

promoter region of the ChAT gene as a potential regulatory mechanism for ChAT gene 

expression.   

 

 
 

Figure 7. Schematic Representation of G-QPX Formation, upstream of Transcription 
Start Site and its Effects on Cellular Function. The duplex DNA unwinds upstream from 
the transcription start site, which makes the G-rich single strand available to fold into a 
G-QPX, which leads to down-regulation of transcription because the transcription factors 
(DNA-binding proteins) that normally activate gene expression are unable to bind  [26]. 
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CHAPTER II 
 

BIOINFORMATICS STUDIES TO PREDICT G-QPX IN THE ACTIVE 
PROMOTER REGION OF THE ChAT GENE 

 
 

2.1 Abstract 

G-QPX nanostructures are found in critical regions of that human genome such as 

telomeres, promoter regions and 5’UTR of mRNA. In the promoter regions, they have 

functionality in up or down regulation of transcriptional activity.  The mechanism of 

regulation could occur through disruption of dsDNA in which individual single strands 

contain G-runs, which when separated can form G-QPX structure, and thereby prevent 

binding of TBFS to their recognition sites for transcription initiation. Thus, they have 

become the focus of intensive interest due to their biological significant. Most G-QPX 

formation has been observed in the promoters of oncogenes. Different computational 

tools (various algorithms) have been developed to analyse DNA sequences and predict 

the potential to form stable G-QPX. Although the roles of G-QPX as regulatory elements 

have been studied in various human genes, their regulatory roles have not been 

investigated in the human nervous system to date. Thus, the focus of this work is 

identification of stable G-QPX structures in the promoter region of the choline 

acetyltransferase (ChAT) gene; it’s protein product is involved in neurotransmitter 
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synthesis (the terminal enzyme for the synthesis of acetylcholine). A long fragment (97 

nucleotides) with high CG content in the human ChAt gene promoter, 1000bp upstream 

of the TSS, has been chosen as an active promoter region. Bioinformatics studies using 

three different computational tools (QGRS, quadparser, and G4 calculator) found 

multiple intramolecular G-QPX structures in the active promoter region of the human 

ChAT gene, three consecutive G-runs in the negative strand (ChAT G17, ChAT G17-2, 

and ChAT G30) and one set of G-runs in the positive strand (ChAT G29). Here, for the 

first time we propose that G-QPX can form in approximately the same location in 

opposite strands. Also, we propose that intermolecular G-QPX could be formed between 

the two strands of duplex DNA (two DNA complementary strands) due to the short 

distance between G-runs in both DNA strands. Bioinformatic analysis to identify the 

TBFS on the active promoter region of the human ChAT gene showed that AP2-α and 

Sp1 have multiple recognition sites, in positions close to the identified G-QPXs. 

Transcription binding analysis further support the hypothesis of a significant function for 

G-QPX nanoswitches in cellular process. 

 
2.2 Introduction 

The common image of DNA is a B-form double helix, stabilized by a series of 

hydrogen bonds between two complementary strands of DNA as Watson and Crick 

proposed while definitive evidence has revealed that a unique non-Watson-Crick form of 

DNA base pairing interaction may form in certain sequences, giving a structure called a 

G-tetrad. Stacking of 2 or more G-tetrads gives rise to what is known as a G-quadruplex 

(G-QPX). These G-QPX structures are formed in guanine–rich regions through non-
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covalent interactions and can be described as parallel or antiparallel [27]. If all of the 

strands contributing runs of G bases to the structure have the same 5`-3` orientation, the 

G-QPX is termed parallel, while if one or more strands contributing runs of guanine 

bases has a 5`-3` orientation opposite to the other runs of guanine bases, the structure is 

called antiparallel. Many investigators have reported that G-QPX can adopt various 

folding topologies; in some cases, even a single DNA sequence can form different 

alternative conformations of G-QPX [28].  

In general, G-QPX consist of multiple G-tetrads (also called G quartets) stacked 

vertically. Each tetrad is formed by association of four guanine bases. The planar tetrad is 

a square shape and is stabilized by Hoogsteen base pairing, yielding hydrogen bonds 

between guanine residues (for a total of eight hydrogen bonds per tetrad). The unique 

tetrad structure creates a central cavity which can be occupied by monovalent cations 

such as (K+, Na+, Li+) but only when two tetrads sandwiching the metal in between the 

tetrad layers . The presence of metal cations strongly influences the stability and folding 

topology of the quadruplexes [29]. In particularlys, K+ is known to stabilize QPX, 

whereas at least in some cases, Na+ plays a role in destabilizing the structure. Although it 

has been shown that stability of G-QPX is linked to the radii of the metal cations 

(increasing radii up to a point leads to increasing stability of G-QPX) other 

physiochemical conditions may also need to be favorable for the formation of G-QPX 

[26]. 

After sequencing the entire human genome, it has been found that G-QPX can 

form in critical regions such as telomeres, promoter regions, introns and untranslated 
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(UTR) regions of mRNAs [30]. Formation of G-QPX in these regions plays an important 

role in many cellular functions.  G-QPX in telomeres inhibit the activity of telomerase 

which up–regulates the proliferation of most cancers cells [31]. In promoter regions of 

oncogenes, it has been observed that their formation regulates transcriptional activity 

(increasing or decreasing activity in various systems) [32, 33]. G-QPX formation in UTR 

regions has been found to control gene expression through decreasing translational 

activity [34, 35]. Therefore, G-QPXs have been the focus of intensive interest as an 

important class of targets for drug design and development, due to their biological 

significance and anticancer potential. 

The first putative G-QPX sequence was discovered in the chicken beta - globin 

promoter [36], followed by the discovery of many sequences able to form intramolecular 

G-QPX, which were found in various genes including c-MYC [37, 38], VEGF [39, 40], 

HIF-1α [41], Ret [42], K& H RAS [43, 44],  Bcl-2 [45, 46], c-Kit [47-50], PDGF-A [51] 

and c-Myb [52], hTERT [53, 54] and Rb [55]. Obviously, the diversity in the sequence of 

G-runs leads to diversity of folding G-QPX structures, where not only parallel and anti-

parallel topology occurs, but also mixed parallel and anti-parallel folding is possible, as 

has been shown by NMR and CD spectroscopy. The structural diversity of G-QPX within 

promoter regions also is extended into the variation in G-run length, the length and 

sequence of the loops and finally the G-pairing arrangements. It has been proven that the 

type of monovalent cations and their concentration has a large effect on 

stabilization/destabilization of G-QPX. Circular Dichroism (CD) spectroscopy has been 

used to show that K+ has a higher effect on stabilizing G-QPX compared to Na+ [18, 56]. 
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Moreover, several G-QPX stabilizing compounds have been identified to date. Examples 

include the porphyrin TMPyP4 [21], the perylenes PIPER [24], BRACO-19 [57], and 

several tetrasubstituted naphthalene diimide compounds [22].  

In parallel with experimental studies, various computational tools have been 

developed to predict which sequences will form G-QPX in DNA [58-60]. There are a 

variety of algorithmic rules that can be used to predict the existence of G-QPX [61, 62]. 

Bagga and coworkers designed a site called QGRS mapper [63] which has adjustable 

parameters for looking at sequences for predicting the G-QPX. Quad finder [64], Quad 

Base [65] and other sites are also offered using essentially the same algorithm as QGRS. 

Lastly in this category, a new tool has been developed to identify G-QPX in a specific 

sequence (quadparser), which also offers a database of predicted G-QPX in the human 

and other genomes (Quad DB [66]). This tool has provided a QuadPredict server which 

can predict thermal stability of G-QPX in a sequence.  Thermal stability of G-QPX can 

vary in the presence of monovalent cations. Finally, Maizel’s lab [67, 68] has used a 

different approach to predict G-QPX in which a G4 calculator is built that looks at the 

propensity for G-QPX formation within a sequence region, rather than the prediction of 

individual G-QPX structure. 

Although the role of G-QPX as regulatory elements has been studied in various 

human genes, their regulatory roles have not been investigated in human nervous system 

to date. We hypothesize that there is a genetic switch in neurons for the activation of 

genes involved in the synthesis of neurotransmitters, which could be depleted from the 

nerve endings when a nerve fires excessively. Under such conditions, the sodium let into 
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the cell during action potentials could accumulate in the nucleus, where it could act to 

destabilize G-QPX in gene promoter regions. Because the presence of such G-QPX 

would normally prohibit transcriptional activation, their destabilization in the presence of 

excess sodium ions would be expected to activate transcription of the genes for the 

enzymes required to make more neurotransmitters. 

 Thus, here we will focus on studying the role of G-QPX in the promoter region 

of a specific enzyme involved in neurotransmitter synthesis, choline acetyltransferase 

(ChAT), the terminal enzyme for the synthesis of acetylcholine. The aim is to assess the 

possibility of a regulatory mechanism for ChAT gene expression involvingthe 

stabilization versus destabilization of G-QPXs in the promoter region of the ChAT gene. 

 
2.3 Materials and Methods 

2.3.1 Comparative sequence analysis to select functional gene promoter region 

Genetic information was explored by investigating well-cited literature with 

precise, clear and trustable results, available from the National Center for Biotechnology 

Information website, which allows the analysis of the promoter sequence to obtain a 

specific region of interest. Candidate gene has been used for initial sequencing analysis 

which only express in human neuronal cells with their enzymatic activity presented in 

Table1. 
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Table 1. Candidate Genes Involved in Neurotransmitter Synthesis with their Activities. 
 
Gene terminology Enzymatic activity 
DOPA decarboxylase Monoamine NT synthesis 
Monoamine oxidase (both A & B isoforms) NT degradation  
Choline acetyltransferase (ChAT) Monoamine NT synthesis 

Serotonin Transporter (SERT) NT reuptake (ie: recycling) 
 
 
2.3.2 Bioinformatics analysis to predict G-QPX 

After selecting a DNA region of interest (an active promoter region containing G-

rich sequences), analysis is performed using different open access online tools to predict 

G-QPXs formation and their stability. QGRS mapper, Quadparser and G4 calculator are 

typical algorithms (three independent software tools) that have been used in this study, a 

summary of these methods are presented in Table 2. 

 
Table 2. Methods used for Predicting Specific G-QPXs. 
 

Terminology G-runs length Specificity Year 

Quadruplex G-rich 
sequences (QGRS) 

2,3,or 4 Length restriction, scoring 
system 

2004 

Putative quadruplex 
sequences (PQS) 

3+ Adjustable parameters in 
quadparser 

2005 

G4 potential( G4P) 2-5 Density of G- runs in a region 2006 

 
 
2.3.2.1 QGRS Mapper (http://bioinformatics.ramapo.edu/QGRS/analyziz.php) 

QGRS mapper is one of the few freely available web based programs which 

facilitate the study of G-QPX by prediction of their formation and stability in DNA and 

mRNA.  It has been used to find the putative G-rich sequences in untranslated regions of 

the human genome as well as in translated regions [69]. The program is designed in such 



 
 

 

22 
 

a way that it identifies sets of potential candidates within the nucleotide sequences that 

have the capability of forming G-QPX. For instance, a motif composed of four guanine 

and three loops can be identified by searching GxNy1GxNy2GxNy3Gx motif through the 

sequence. Once the candidates are identified (G-rich sequences), the algorithm used in 

the program calculates a factor called a G-score [60, 63]. Moreover, the algorithm behind 

QPXs recognition is efficient enough to not only identify the conserved G-QPXs across  

nucleotide sequences but also offer strategies to include overlapping G-QPXs [69]. 

Sequences with higher G-scores are predicted to be more stable and their formation is 

more probable compare to low G-score sequences. The two main parameters influencing 

the G-score predicted for a sequence are G-tetrads and loop characteristics. The loop size 

between G-tracts is variable, although it is allowed to be zero - base length [60]. A 

greater number of G-tetrads with shorter loop length will increase the G-score. Another 

factor which increases the G-score is evenly sized loops, due to improve stability of the 

GQPX. 

Although introducing the concept of scoring for each sequence seems interesting 

to predict the most likely stable sequence, while there has not been any experimental data 

to verify the attributes based on the scoring system. Importantly, the scoring process is 

not clear to know how its produce, how the ranking list related to stability/ disability of 

predicted structure [61, 70]. Therefore, it is clear that the QGRS program should be used 

for GPXs prediction and the scoring values should be considered with caution. 
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2.3.2.2 Quadparser 

The putative quadruplex sequence (PQS) approach offered by Huppert and 

Balasubramanian as a free online downloadable QPX-prediction tool, which was 

accessed at http://www.quadruplex.org . It has been provided a core database, adjustable 

quadparser setting and prediction stability server to identify the specific G-QPX motifs 

on either strand. The program designed to be used for different searching pattern like 

considering various loop and G-runs lengths to extract all possible QPXs which fitted 

desired context. Similar to QGRS, same algorithms has been applied in this approach to 

identify the G-QPX motifs without the scoring judgment.  

 
2.3.2.3 G4 Calculator 

 Eddy and Maizels [68] they discovered a computational program called “G4 

potential” (G4P) to predict which sequence has a potential to form G-QPXs based on the 

density of guanine runs in sequence.  They took different approach and looking for four 

or more runs of three or more guanine within a fixed length sequence in a sliding window 

instead of looking for individual QPX formation [62, 71]. Therefore, the big flaw of the 

program is that it does not locate the precise position of G4 motifs. On the other hand, it 

get round of any problems arising from choosing between multiple potential QPXs 

structures within sequences. 
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2.3.3 Prediction of transcription factor binding motifs 

Generally, QPXs upstream of promoter regions results in transcriptional changes 

due to the equilibrium effect between a folded and unfolded form of these sequences. 

One possible mechanism could be the QPX formation blocking the transcription 

machinery. This could involve preventing transcription factor binding sites (TFBS) binds 

to the regulatory elements and start transcription, OFF state transcription machinery 

(Fig.8). Proteins and drugs interacting – QPX might effects expression level. It is 

important to note that QPX sequences neighboring TFBS results in either decrease or 

increase in gene expression.  

We used the TRANSFAC system, which is linked to the Transcription Element 

Search System (TESS) and PROMO database to scan our active promoter sequence for 

reported transcription factor binding sites (TFBS). 
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Figure 8. Effects of QPXs on Transcription Activity as Genetic Switch. There is a 
competition between a DNA double helix that can bind to TFBS (in this case NF-KB ) 
OR formation of G-QPXs after separation of two complementary strands into DNA 
single strands. ON state meaning activation of gene expression and OFF state meaning 
inhabitation of gene expression which can be further “locked” off by QPX stabilizing 
drugs like TMPYP4. 
 
 
2.4 Results  

2.4.1 Identification of conserved sequences upstream the ChAT promoter region 

with high effect on gene expression from experimental literature 

Choline acetyltransferase (ChAT) was chosen as a paradigm, because information 

about the functional portion of its promoter region has been well studied, and it is the 

single key enzyme required for Ach synthesis from precursors in the mammalian cell. 

From previous publications, genomic information about the promoter region of 

ChAT was localized and discovered by Hersh, et.al. [72],was chosen as a candidate for 

further analysis (Fig. 9). The Hersh group observed a significant increase in basal 
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expression of the gene when nucleotides -925 to -1007 were cloned into the pGuP.PA8 

vector. Increased expression was more than 30 fold and approximately five fold when 

this region cloned in the positive and reverse orientation, respectively, in the pGuP.PA8 

vector. This observation indicates the presence of an important regulatory element in this 

region, which they emphasize, reflects the necessity of the enhancer elements for efficient 

gene transcription. Potentially active ChAT promoter match were identified via 

nucleotide BLAST searches in the NCBI website.  

 

2.4.1.1 Reference sequences used in computational studies and oligonucleotide 

design 

 Genbank accession numbers (NC_000010.11;  Homo sapiens chromosome 10, 

Homo sapiens choline O-acetyltransferase (ChAT)). The relevant sequence range is 

shown below. 

 
Selected positive orientation of ChAT gene (plus/plus, 100% identity from NCBI). 
 
 
  1 ggctgtcacccacggtcaccaaggagcaccatgctcccctcagcccaggatagaccctct 
 61 tttccaggcctagcgcagagcccggggatgccgcccgggggagcctgaggacccgctcca 
121 gctaggcacgccaggccccgccctttgaggacacgccccacaccagcctcagagctctga 
181 ggtgcctgggctgagcttcccttcagaccagaatcccgccccgttgaggctttgagaaag 
241 gagtaggagc c 
 
      
 In the upper panel, blue and red highlights show the positions of -980 and -906, 

respectively, as presented in the Hersh paper. Yellow highlighting indicates the 

boundaries of a region spanning ~80 bases that showed a significant impact on promoter 
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activity (numbered between -925 to -1007). The CG nucleotide pairs, which may be 

involved in gene regulation based on Hersh group suggestion, are shown in pink italics. 

 

 
 
Figure 9. Promoter Region of ChAT Gene from Hersh, 1992 (Comparison of the 
Nucleotide Sequence of the 5' Flanking Sequences of the Human and Porcine ChAT 
Gene). Upper and lower sequences given in lowercase letters are presented as the human 
and porcine sequence, respectively. The red box is the region covered between positions -
925 to -1007 shown by Hersh et.al as an active promoter of the human ChAt gene which 
increase transcriptional activity significantly [72].  

 
 
2.4.2 Conserved G-rich region regulates ChAT promoter activity 

From a bioinformatics study, the active promoter region of the ChAT gene shown 

above has strong potential to form multiple putative G-quadruplexes. These unique 

guanine rich sequences were identified by several independent computational methods as 

detailed below. Quadruplex prediction carried out on both single strands (positive and 

negative orientation) individually. Various different input parameters considered based 
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on each program but only results presented which met the criteria. Unmatched results 

(considering various input parameters) are not presented. 

 
2.4.2.1 QGRS  Mapper 

The program found one and multiple non – overlapping conserved G-rich 

sequence on the positive (5`→3`) and negative (3`→5`) orientations of the active 

promoter region of the ChAT neurotransmitter gene, respectively (Table 3, 4). In the 

negative strand, six different non - overlapping QPXs with various topologies, length, 

position and G-score were predicted by QGRS mapper. Out of six different sequences, 

the sequence structure and position of three consecutive G-QPXs was most promising for 

further study, their positions are highlighted in color in Table 4. 

 
Table 3. G-QPX Prediction Result for ChAT Gene on the Positive Strand from QGRS. 
One G-QPX with 25 nucleotides was identified in the promoter region. The number in 
the left column corresponds to the position of the first base of the potential G-QPX 
detected by this computational tool. 
 
 Position Length QGRS G-Score 

86 25 GGATGCCGCCCGGGGGAGCCTGAGG 13 
 
 

Sequence of the positive orientation of ChAT promoter gene with labeled guanine 

bases of G-QPX predicted is shown below. 

 
5’GGCTGTCACCCACGGTCACCAAGGAGCACCATGCTCCCCTCAGCCCAGGATAGACCC
TCTTTTCCAGGCCTAGCGCAGAGCCCGGGGATGCCGCCCGGGGGAGCCTGAGGACCCGC
TCCAGCTAGGCACGCCAGGCCCCGCCCTTTGAGGACACGCCCCACACCAGCCTCAGAGC
TCTGAGGTGCCTGGGCTGAGCTTCCCTTCAGACCAGAATCCCGCCCCGTTGAGGCTTTG
AGAAAGGAGTAGGAGCC 3’ 
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Table 4.  G-QPX Prediction Results for ChAT Gene on the Negative Strand from QGRS. 
Three different colored positions (84, 110, 133) are the selected G-QPX sequences. The 
numbers in the left column correspond to the position (in the promoter sequence) of the 
first base of the potential G-QPX detected by this computational tool. 
 
Position Length QGRS G-Score 

30 23 GGGGCGGGATTCTGGTCTGAAGG 19 
84 13 GGCTGGTGTGGGG 18 
110 13 GGGCGGGGCCTGG 18 
133 25 GGAGCGGGTCCTCAGGCTCCCCCGG 18 
182 26 GGCCTGGAAAAGAGGGTCTATCCTGG 16 
213 30 GGGGAGCATGGTGCTCCTTGGTGACCGTGG 20 

 
 

Sequence of the negative orientation of ChAT promoter gene with three different 

sets of labeled guanine bases of G-QPX predicted is shown below. 

 
3’GGCTCCTACTCCTTTCTCAAAGCCTCAACGGGGCGGGATTCTGGTCTGAAGGGAAGC
TCAGCCCAGGCACCTCAGAGCTCTGAGGCTGGTGTGGGGCGTGTCCTCAAAGGGCGGGG
CCTGGCGTGCCTAGCTGGAGCGGGTCCTCAGGCTCCCCCGGGCGGCATCCCCGGGCTCT
GCGCTAGGCCTGGAAAAGAGGGTCTATCCTGGGCTGAGGGGAGCATGGTGCTCCTTGGT
GACCGTGGGTGACAGCC 5’ 
 
 
2.4.2.2 Quadpaerser 

Similar results were obtained using Quadparser for both strands, which validate 

the QGRS results. Since the program has various adjustable settings, varied inputs 

parameters can be used to extract all possible QPXs, some of which did not meet the 

criteria and importantly, were not verified by the other programs used.  Unmatched 

results have not been shown. Adjustable input parameters are: type of base, number of 

bases in repeats, repeats in sequence, minimum gap size, and maximum gap size.   
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OUTPUT: ChAT promoter(positive strand)                                 

0-26     4:1:1      GGGGATGCCGCCCGGGGGAGCCTGAGG 
 
Found    1:1:1  overlapping:sequences:lines 
0-26     4:1:1      GGGGATGCCGCCCGGGGGAGCCTGAGG 
 
 
 
OUTPUT: ChAT promoter(negative strand) 

7-19      3:2:1 GGCTGGTGTGGGG 
32-44 3:2:1 GGGCGGGGCCTGG 
56-84 5:4:2 GGAGCGGGTCCTCAGGCTCCCCCGGGCGG 
 
Found     8:4:3 overlapping:sequences:lines 
7-19      3:2:1     GGCTGGTGTGGGG 
32-44 3:2:1 GGGCGGGGCCTGG 
56-84 5:4:2 GGAGCGGGTCCTCAGGCTCCCCCGGGCGG 
 
 
2.4.2.3 G4 Calculator 

The program evaluates runs of guanines in a sliding window and calculates the 

percentage of windows searched that meet the desired criteria. For both strands, various 

criteria have been studied. Only on the negative strand the program found potential 

regions with sufficient density of guanine runs to form G-quadruplex structures (Fig.10). 

The calculator could not identify any region where G-QPX motifs may lie on the plus 

strand. 
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Figure 10. Result from G4 Calculator of the Active Promoter Region of the Negative 
Strand of the ChAT Gene. First column contains the file name (ChAT promoter). 
Following columns with this header information contains: the number of G-runs that met 
criteria (4), the number of C-runs that met criteria (3), the total number of windows 
searched (4), the percentage of windows containing G- runs that met criteria (100), the 
percentage of windows containing C- runs that met criteria (75),  the sum of two 
percentages, both C and G runs (175), if the sequence contained a block of unknown 
sequence (Ns) (False means no significant runs of Ns). 
 
 
2.5 Predicted TFBS on the Active Selected Promoter Region of ChAT Gene  

From the open access TFBS prediction tools and database Sp1 and AP2-α has 

been chosen as enhancer elements. From PROMO database various TFBS were found in 

the selected active promoter region of ChAT gene. However, among them, Sp1 and AP2-

α in agreement with the results of TRANSFAC analysis (Fig. 11 and 12) has been 

nominated for efficient transcription of the ChAT gene (Table. 5 and 6). Sp1 (zinc finger 

TFBS) and AP2-α bind to the consensus DNA-binding sequences which are 5'(G/T) 

GGGCGG (G/A) (G/A) (C/T)3', (GC box element) and 5'GCCNNNGGC3', respectively. 
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Table 5. Predicted TFBS in the Active Promoter Region of the ChAT Gene on the 
Positive Strand, Identified using the PROMO Database. The locations of Sp1 and AP2-α 
are presented in separate colors, pink and blue, respectively. 
 
Sequence  10 20 30 40 50 60 70 80 90 100

TFBS  0, 1, 2, 
3, 4, 18 

8 1, 5, 
6 

5, 7, 
8 

2, 3, 5, 
8, 9, 17 

1, 2, 3, 4, 5, 
11, 12, 14, 

15, 16 

2, 3, 5, 7 
9, 10, 13 

 5,8  

Each number represent the beginning of a TFBS, 0: XBP-1, 1: E2F-1, 2:Pax-5, 3: p53, 4: 
Sp1, 5: GR-alpha, 6: RXR-alpha, 7:TFII-I, 8: AP2-α, 9: AhR/Arnt, 10: C/EBPbeta, 11: 
LEF-1, 12:TCF-4, 13: AR, 14: SRY, 15: TCF-4E, 16: GR, 17: ENKTF-1, 18: PEA3. 
 
 
Table 6. Predicted TFBS in the Active Promoter Region of the ChAT Gene on the 
Negative Strand, Identified using the PROMO Database. Sp1 and AP2-α are presented in 
separate colors, pink and blue, respectively  
 
Sequence  10 20 30 40 50 60 70 80 90 100

TFBS  0, 1 2, 11, 
12, 15 

0, 3, 4, 5, 
6, 16, 17, 

18 

5,1, 10, 
11, 12, 

13 

0, 1, 
7, 15 

 3, 10 0, 1, 
14 

11, 
12, 13 

8, 9, 
10 

 

Each number represent the beginning of TFBS,  0: GR-alpha, 1: AP2-α, 2: AR, 3: TFII-I, 
4: SRY, 5: TCF-4E, 6: GR, 7: ENKTF-1, 8: PEA3, 9: XBP-1, 10: E2F-1, 11: Pax-5, 12: 
p53, 13: Sp1, 14: RXR-alpha, 15: AhR/Arnt, 16: C/EBPbeta, 17: LEF-1, 18: TCF-4.  
 
 

 
 
Figure 11. TRANSFAC Analysis Result of Active Promoter Region of ChAT Gene on 
the Positive Strand. 
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Figure 12. TRANSFAC Analysis Results for the Negative Strand of the Active Promoter 
Region of the ChAT Gene. 
 
 
2.6 Conclusion and Discussion 

Computational methods have been used extensively to better understand the role 

of G-QPXs in biological systems, e.g., their functions in telometric, UTR and promoter 

regions. In this study, we have evaluated computationally the possibility that G-QPX may 

be present in the active promoter region of the ChAT gene, where they could act as nano-

switches to control the expression of the ChAT enzyme for neurotransmitter synthesis. 

The active promoter region of ChAT gene was discovered by Hersh, et.al [72]. They 

observed that there are a high number of CG dinucleotides in the promoter regions of the 

human ChAT gene which might play an important role in the regulation of ChAT gene 

expression via methylation. Indeed, Schlissel and Brown have noted that susceptibility of 

CG dinucleotide pairs to methylation has a crucial impact on transcriptional regulation 

[73]. 

To get a better sense of G-QPX significance and stability, quite a long fragment 

of promoter sequence has been chosen to strongly confirm the hypothesis. To date, 
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different numbers of algorithms have been used to identify the particular sequences with 

the capability to form G-QPX structures. Broadly they have been classified into specific 

and general algorithms [61]. Specific algorithms predict individual G-QPX structures 

while general algorithms identify regions which are likely to have high potential to form 

G-QPX structures. Although some of these motifs are accepted and widely used but there 

is no sufficient experimental evidence of their formation. It has been suggested that QPX 

motifs with two tetrads are expected to be more common than three, four or more tetrads. 

Using several open access G-QPX prediction online tools, we performed a 

bioinformatics analysis of the active promoter region of ChAT gene. This analysis 

identified multiple G-QPXs in the close proximity to TFBS, where they could modulate 

gene expression via control of G-QPX stability (e.g., by flux of Na+ vs. K+ ions). The 

overall selected active promoter fragment of the human ChAT gene was 97 nucleotides 

which contain three consecutive G-runs in the negative strand and one set of G-runs in 

positive strand [Fig.13- bottom, Table.7].  A schematic for multiple G-QPX that can form 

upstream of the TSS of the human ChAT gene is presented in (Fig 13- bottom). To 

ensure that G-rich sequences have a potential to form QPX structures and their precise 

location in the selected active promoter fragment of the human ChAT gene, only non - 

overlapping predicted G-QPXs have been chosen. Potential overlapping G-QPXs were 

predicted in the both positive and negative orientations of the active promoter fragment 

of human ChAT gene (data not shown). 

Moreover, from the literature, it has been described that the enhancer/ silencer 

regulatory elements are required for efficient transcription of the gene/ turning off the 
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gene expression in cells, respectively. Therefore, to further validate the discovery of G - 

QPXs in both strands, different bioinformatic studies performed to evaluate the TFBS 

positions on the active promoter region of the human ChAT gene. It was concluded that 

Sp1 and AP2-α transcription factors bind to their recognition sites which are close or 

same position of selected G-QPXs. It was demonstrated that the transcriptional activity of 

the rat ChAT gene increases in NGF-dependent (Nerve Growth Factor) fashion [74, 75]. 

In 1991, Ibanez and Persson suggested that enhancement of the rat ChAT gene 

expression by NGF occurs through AP-1 signaling [75].A similar outcomes was 

presented by Hersh, et.al, where a significant increase in transcriptional activity of the 

human ChAT gene in PC12 cells was seen in the presence of  NGF [72]. CG-rich DNA 

consensus recognition sites for AP-2 showed notable homology to TGF-inducible 

(Transforming Growth Factor) transcription binding complex [76]. Additionally, it has 

been observed that Sp1- binding complex formation, function as crucial complex in 

accurate transcription initiation [77]. They have observed that 5’ Sp1 consensus binding 

site containing CG-rich regions plays a critical role in maximal transcription.                                         

The CG pairs in the active promoter region of ChAT gene, have been suggested  

involve in transcription regulation [72] which they are positioned close to the G-QPX 

predicted results (Fig.13- top, pink highlight) and further confirm important function of 

G-QPX nanostructures in cellular process. 

In conclusion, in this study we have shown that the 97 nucleotide long active 

promoter region of ChAT unique within the human genome has a potential to fold into 
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multiple G-QPX structures featuring various loop lengths. Based on predicted G-QPX 

sequences, it can be suggested that ChAT G17 and ChAT G 17-2 should each have one 

zero loop (the end and middle loop, respectively). Therefore, assuming the idea of both 

structures adopting a novel zero loop conformation is valid, it can be concluded that they 

exhibit antiparallel or hybrid folding topology. 

 Here, for the first time, we present evidence for formation of consecutive G-

QPXs upstream of the TSS in the promoter region of an enzyme involved in 

neurotransmitter synthesis. Also, we propose, for the first time, that G-QPXs might be 

formed in opposed strands of a natural DNA duplex at approximately the same location 

(Fig.12-bottom). Interestingly, visualizing G-runs in both DNA strands with a short 

distance brought up a new approach that G-QPX can form an intermolecular structure 

within two DNA complementary strands (Fig.14) 

 Although, the conclusion (predict and locate potential G-QPX motifs upstream of 

TSS) is supported by various bioinformatics analysis, experimental evidence is required 

to determine whether these unique structures fold into actual QPX structures, and how 

they may function in a biological system. 

 
Table 7. Selected G-QPX Predicted Structures in the Active Promoter Region of the 
Human ChAT Gene. 
 

Name Strand Sequence (5`→3`) 
ChAT G17 Negative GAGGCTGGTGTGGGGCG 

ChAT G17-2 Negative AAGGGCGGGGCCTGGCG 
ChAT G30 Negative CTGGAGCGGGTCCTCAGGCTCCCCCGGGCG
ChAT G29 Positive GGGGATGCCGCCCGGGGGAGCCTGAGGAC 
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5’TCAGAGCTCTGAGGCTGGTGTGGGGCGTGTCCTCAAAGGGCGGGGCCTGGCGTGCCT
AGCTGGAGCGGGTCCTCAGGCTCCCCCGGGCGGCATCCCC3’  

 

 

Figure 13. Schematic of Predicted Potential G-QPX in the Active Promoter Region of the 
Human ChAT Gene. Top) overall selected active promoter sequence of the human ChAT 
gene, shown as - strand 5’→ 3’(97 nucleotides), G-runs in colored fonts show the  
positions of potential G-QPX formed in both strands (green, pink, brown represent G-
QPX structures in the negative strand, the blue C bases represent  a potential G-QPX 
structure in the positive strand), locations which showed high promoter activity are 
highlighted in yellow (sequence match with location -925 to -1007, from Hersh, 1992), 
pink highlights are CG nucleotide pairs, which may be involved in gene regulation  via 
methylation (Hersh suggestion, 1992). Bottom) proposed model of multiple G-QPX 
formation upstream of the TSS of the human ChAT gene.  

 
5`GGGTCCTCAGGCTCCCCCGGG3`
3`CCCAGGAGTCCGAGGGGGCCC5`
 

Figure 14. G-QPX Sequences Forming Intermolecular Structures within DNA Duplex. 
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CHAPTER III 
 

IN VITRO ASSESSMENT OF G-QPX MODULATING PROMOTER ACTIVITY 
 
 

3.1 Abstract 

The active promoter region of the human ChAT gene (97 cases long), is 1000 bp 

upstream of TSS, with a high CG base content with a high potential to form multiple G-

QPX. Formation / deformation of G-QPX nanostructures play important roles in 

influencing transcriptional activity. G-QPX structure contain cavities between G-tetrads 

which can be occupied by alkali metal ions such as K+ and Na+. It has been observed that 

G-QPX structures showed the highest stability in K+ solution. Also, small molecule 

ligands like TMPYP4 can stabilize G-QPX formation and further keep the gene in an off 

state, and inhibit gene expression due to formation of G-QPX structures in promoter 

regions. In silico analysis showed the first evidence of regulatory G-QPXs in the active 

promoter region of the human ChAT gene. Precisely, the active region encompasses 

AP2-α and Sp1 sites contain G-runs which involved in formation of multiple putative G-

QPX structures. Wild type GFP reporter gene plasmid (AcGFP1-N3) was used to design 

and construct an artificial system (GFP reporter gene containing only active ChAT 

promoter region- AcGFP1-N3-modified). SP1 and Ap2-α are TFBS on the active 

promoter of the human ChAT gene which upregulate ChAT gene transcription 
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activity. Therefore, in general, formation of G-QPX in the same location or neighboring 

the TFBS recognition sites is expected to lead to downregulation of the transcription 

activity. NGFs (HNGF and TGF) and cytokines (TNF-α and IL-β) have been used as 

activators, facilitating signaling pathways terminating in the TFs AP2- α and Sp1. 

Aconitine as a Na+ - dependent ion channel opening drug and TMPYP4 have been used 

as G-QPX destabilizing and stabilizing compounds, respectively. The results of modified 

reporter gene measurement showed highest GFP expression after 24 h treatment of 

transfected cells (neuroblastoma cell line, IMR-32) with HNGF in the presence of 

aconitine. In contrast, the GFP measurement using plate reader showed the lowest 

intensity following treatment with TMPYP4 (pre-DNA and post-transfection treatment). 

The obtained results were further supported using flow cytometry and EVOS 

fluorescence microscopic imaging. In vitro analysis using qRT-PCR, along with use of 

the same treatments to modulate ChAT mRNA expression, confirmed that HNGF and 

aconitine enhance the ChAT mRNA expression 2.4 fold and that TMPYP4 knocked 

down the ChAT mRNA expression by 87%.  The results support the hypothesis that 

formation of G-QPX (with TMPYP4 treatment as G-QPX stabilizer) blocks binding of 

TFs (AP2-α and Sp1) to their binding sites, resulting in an inhibition of transcriptional 

activity of the ChAT gene, whereas an influx of Na+ ions (as alkali metal ion G-QPX 

destabilizer) into the cells through aconitine treatment melts the G-QPX structures and 

increases ChAT gene expression. No cytotoxicity was observed after exposing the cells 

to various conditions used in the experiments. 
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3.2 Introduction 

Human ChAT (choline acetyltransferase) gene located on chromosome 10, with 

NCBI reference sequence number of NC_000010.11, and is linked in the synthesis of 

neurotransmitter acetylcholine. The active promoter region of the human ChAT gene is 

located in the untranslated region (-1007 to -925), upstream of the TSS. It has been 

suggested that this region is a TATA-less, with highly CG - rich sequences which 

implying the importance of these sequences in transcription activity [72]. The DNA in 

such CG - rich regions capable of forming non-B form secondary structures called G-

QPX. G-QPX forms from runs of guanine through Hoogsteen hydrogen bonds between 

four guanines in a planner fashion. The planner tetrad has a square shape structure with a 

central cavity which can be occupied by monovalent cations. Multiple planner G-tetrads 

are stacked vertically to form G-QPX structure. G-tetrads interaction could be occurs 

with one strand folding upon itself or involvement of multiple strands which these 

folding topologies are relevant to intramolecular or intermolecular isoform, respectively. 

G-runs are connecting through the loops which could be varied in length and sequence 

with either parallel, antiparallel or hybrid configuration. Typically, the loops length is 

between 1-9 base pairs but they could be long up to 26 base pairs [4]. Occupying the 

central cavity, between G-tetrad stacks, with metal cations such as (K+, Na+, Li+) showed 

significant impact on stability of G-QPX structures. Particularly, G-QPX structures 

showed the highest stability in K+ environment [49].  As mentioned before, CG - rich 

regions forming G-QPXs play an important role in human genome. These regions were 

clustered around 5`untranslated regions, telomerase and in promoter region upstream of 
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TSS. It has been shown that usually in promoter regions they formed in nuclease 

hypersensitivity elements [15, 78, 79]. Unwinding of these CG rich regions neighboring 

transcription binding factors (TFBS) can promote formation of G-QPX secondary 

structures and repress transcription activity. Onel et.al in their G-QPX studie`s, have 

reported that G-QPX structure in the P1 promoter of the human BCL2 gene were 

positioned in proximity to several TFBS and has been suggested that Sp1 and AP2- α 

binds to this region [80].  

Study of promoter activity of the 5` flanking region of human ChAT gene in 

PC12 cells by hersh et.al showed that  the transcription activity was enhanced in both 

strands orientation in presence of NGF [72]. In expression of ChAT gene in rat, it has 

been suggested by Ibanez and Persson, 1991 that NGF acted through an AP-1 TFBS [75]. 

Previous publication has been reported that Sp1 TFBS upstream of TSS acts as a 

determination of Transcription initiation site. Sp1 has been functioned as crucial protein 

in initiation of transcription form the TATA-less promoter sequences contain CG-rich 

regions. Moreover, TGF-α protein showed exclusive homology to CG-rich DNA 

recognition site of AP2 [76]. This means that the protein (TGF-α) remarkably recognized 

by AP2 (transcriptional regulator which controls gene expression). Figure 15 shows the 

signaling path of Sp1 and AP2-α synthesis.  
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Figure 15. Signaling Path of Sp1 and AP2-α Synthesis. NGF, TGF, IL-beta and inflammatory cytokines like TNF-α are cell signaling proteins that 
facilitate synthesis of activator proteins (Sp1 and AP2-α) which are proteins that promote expression of the genes through regulating transcription 
machinery.
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It is possible that G-QPX in the ChAT promoter involved in ChAT transcription 

activity just as the G-QPXs in BCL2, c-myc, c-kit, and k-RAS, and VEGF promoter of 

many other oncogenes [39, 80, 81]. Increase investigation of G-QPX sequences within a 

promoter region of oncogenes has led to offer the role of these sequences as regulatory 

regions and potent targets for anticancer drug discovery [3, 16]. There is no data available 

on the presence of G- QPXs in the promoter of neuron cells; in particular genes involve 

neuron signaling/ communications. Here we show the first evidence of regulatory G-

QPXs in the active promoter region of the human ChAT gene. Precisely, the active region 

encompasses AP2-α and Sp1 sites contain G-runs which involved in formation of 

multiple putative G-QPX structures. These new G-QPX structures function as a 

transcription repressor. Ligands stabilizing the G-QPX conformation greatly fold and 

stabilize these high order structures (G-QPXs). In general, ligands deplete promoter 

activity which indicates a regulatory role ChAT G-QPXs in neurotransmitter synthesis. 

The development of specific G-QPX stabilizing compounds could have great potential as 

therapeutics targets. 

 
3.3 Materials and Methods 

3.3.1 DNA oligonucleotides 

DNA oligonucleotides, HPLC purified, were purchased from IDT (Table1), which 

were stored at−20 °C. DNA concentration was measured by using nanodrop ND - 1000 

ultramicro UV–Vis spectrophotometer (Thermo Fisher Scientific). 
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3.3.2 Cell culture  

IMR-32 (Human neuroblastoma) cells (ATCC, cat#: CCL-127) were grown at 

37°C,  under 5% CO
2 
in Eagle's Minimum Essential Medium, EMEM, 1X (low glucose 

and 2.2 g/L sodium bicarbonate with L-glutamine and  phenol red) (Thermo Fisher 

Scientific). This media was supplemented with 10% Fetal Bovine Serum. Cells used in 

the assays were at a passage number less than 10 (Appendix A). 

 
3.3.3 Plasmid construction  

To construct the plasmid, the DNA sequence of active promoter region of ChAT 

gene, ds ChAT 137 sequence (from -960 to -980), containing consecutive runs of 

guanine,  TATA box and  flanked with restriction sites for enzymes PciI and Hind III 

(NEB) were synthesis from IDT, and amplified by using PCR (Appendix B). The total 

volume of PCR reaction mixture contained 2 μL PCR buffer (10X), 500 μmol/L dNTP 

mix, 0.15 μM each primer (shown in Table 1(p-ChAT S & p-ChAT A), 1 μL DNA 

template, 1 U Taq DNA polymerase, and nuclease-free water. The protocol used for PCR 

includes a denaturing cycle of 2 min at 95 °C, 35 cycles of PCR (95 °C for 30 s, 54 °C for 

30 s, 72 °C for 1 min), and then 72°C  for 10 min, followed by holding at 4 °C. The PCR 

then loaded in 1% agarose gel. After electrophoresis, the gel was imaged by using UV-

shadowing. 

 In order to insert the DNA sequence (active promoter region) into the vector,  

plasmid (pAcGFP1-N3) was incubated in 37 °C water bath for 2 h to ensure that all of the 

vectors were cut by the enzyme PciI and HindIII. Then the native cut plasmids and DNA 
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sequences were ligated T4 DNA ligase (NEB) at 16 °C for 1 h. pAcGFP1-N3- modified 

plasmids were obtained by transformed plasmids into MJ109 cells. The plasmid has been 

further validated by DNA sequencing. 

 
3.3.4 Transfection and reporter GFP-gene expression 

  The potential effects of G-QPX formation up stream of TSS, against the ChAT 

promoter activity was studied by transfections of IMR-32 (human neuroblastoma) cell 

line. IMR-32 cells were maintained in EMEM medium with 10% FBS (Thermo Fisher 

Scientific) at 37 °C, under 5% CO2.  Transfection were carried out on 96-well tissue 

culture plates when cells were 70-80% confluent. Then IMR-32 cells were tryptinized at 

37°C, under 5% CO2 for 5-7 minutes, followed by seeding onto 96 well plates at a 

density of 3 x 104 cells /well. After 24 h incubation at 37°C, under 5% CO2 (See appendix 

B), the transfections were operated according to the manufacturer's protocol, both 

Transfast transfection reagent (Promega) & Lipofectamine 3000 reagent (Invitrogen). For 

lipofectamine 3000, cells were transfected using 100 ng of DNA (AcGFP1-N3-modified 

reporter plasmid) and 0.3 μl lipofactamine 3000 for each well, at a ratio of 1:1 plasmid 

DNA and lipofectamine3000, in OptiMEM medium. Before adding the mixture to the 

micro-plates, the DNA mixed reagents were incubated at room temperature for 5 minutes.  

For Transfast transfection reagent, cells were transfected using 100 & 200ng of DNA 

(pAcGFP1-N3-modified reporter plasmid) and 0.3 & 0.6μl transfact reagent for each well 

respectively, at a ratio of 1:1 plasmid DNA and transfast reagent, in complete medium. 

After 1h of transfection, different conditions were added to the cells, varied transcription 

activators (TNF-α: 10 ng/ml , HNGF: 10 ng/ml , IL-β: 1nM , TGF: 10ng/ml ), drug 
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dependent – Na+ channels (Aconotine: 0.15 μM ), incubated at 37 °C,  under 5% CO2 .   

To study the effect of G-QPX stabilizing drug (TMPYP4: 10 μM), DND was incubated 

with drug at room temperature for 2h before addition of transfection reagents. The GFP 

expression of pAcGFP1-N3-modified plasmid in IMR- 32 cells under varied conditions 

in compare to wild type pAcGFP1-N3 were assayed by using plate reader and 

fluorescence imaging. Experiments were repeated at least three times in six replicates. 

 
Table 8. Oligonucleotide Sequences have been used for Amplifying Inserted Fragment to 
Construction pAcGFP1-N3- Modified Plasmid and In vitro qPCR Studies. 
 

Name Sequence (5` →3`) 
p-ChAT  S AAAAACATGTGCTTGTCGACTCAGAGCTCTGAG 
p-ChAT  A GGTCAAGCTTAGCATTGCTTATATAGACCTGGG 
qChAT  S TGTGGTCCCAAATGGGTATG 
qChAT  A TGCAGCTGTGAAAGCTAGAG 
 USB1(h.g) Ref seq: NM-000181(IDT) 
ds ChAT 137 GCTTGTCGACTCAGAGCTCTGAGGCTGGTGTGGGGCGTGTCCT

CAAAGGGCGGGGCCTGGCGTGCCTAGCTGGAGCGGGTCCTCA
GGCTCCCCCGGGCGGCATCCCCAGGTCTATATAAGCAATGCT 
AAGCTTGACC 

 

3.3.5 Cell cytotoxicity  

Cytotoxicity of IMR- 32 cells transfection followed by various conditions 

(individual or mixed) as mentioned before was tested using MTT and MTS proliferation 

assays (Appendix A). MTT cell proliferation assay kit (Invitrogen) involves the 

conversion of yellow soluble tetrazole (3-(4,5-dimethylthiazol-2-yl)-2,5-ditetrazolium 

bromide) to insoluble purple product in living cells. Adding the second solution DMSO 

dissolves the insoluble purple product into a colored solution. The colored solution can be 

detected using spectrometer at an absorbance of 570 nm. MTS cell proliferation assay, 
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CellTiter 96® AQ
ueous 

one solution kit (Promega) contains a solutions of a novel 

tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium] and  the electron coupling reagent, phenazine ethosulfate; 

(PES). Similar to MTT assay, MTS produce a soluble product by only sue of one solution 

and eliminating the DMSO solubilizing step. It a one-step solution assay and the colored 

solution can be detected using a spectrometer at an absorbance 490nm. 

Cells were seeded at a density of 3.5 x 10
4 
cells/ well in a 96 well plate and 

incubated for 24 hours at 37°C, under 5% CO
2 .  On day 2, Cells were transfected to 

pAcGFP1-N3-modified plasmid and treated with various concentrations (TNF-α: 10 

ng/ml, TGF: 10 ng/ml, HNGF: 10 ng/ml, IL-β: 1 nM, AC:  0.15 μM, (HNGF: 10 ng/ml + 

AC: 0.15 μM)) for both the MTT and MTS assays. Untransfected cells and same volume 

of DMSO were used as a control. 

 
3.3.6   Quantitative real-time RT-PCR  

The IMR-32 cells were seeded onto 6 well plates at a density of 18x 104 cells 

/well on day one. After 24 h incubation at 37°C, under 5% CO2, the cells were treated (on 

day two) with following conditions: Aconitine (0.15 μM) in the presence of HNGF(10 

ng/ml), TGF(10 ng/ml), TMPYP4 (10 μM). Control sample include IMR-32 cells, which 

did not give any treatment, only expose to the normal complete media (90% EMEM, 10% 

FBS). After 4 h of treatment, cells were lysed for RNA isolation.  For each experiment 

the total RNA was isolated using promega total isolation kit (Promega). RNA 

concentration was measured by using nanodrop ND -1000 ultramicro UV–Vis 
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spectrophotometer (Thermo Fisher Scientific). Power SYBR Green RNA-to-CT 1-Step 

Kit (Applied bioscience) was used to perform one- step RT-PCR with SYBR Green 

reagent for quantification analysis on a real-time PCR (Appendix B). qRT-PCR was run 

on ABI 7500 fast equipment (software version 2.3) with conditions as manufacturer`s 

protocol, 480 C for 30 min (reverse transcription step), 950 C for 10 min (Activation of 

AmpliTaq polymerase), 950 C for 15 seconds (Denature) and 600C for 60 seconds 

(Anneal/ extension).Primers used for real time RT-PCR were: ChAT primers (qChAT s 

& qChAT A), USB1 primers (NM-000181).  The mRNA expression of ChAT gene in 

each sample was normalized relative to expression of internal housekeeping gene (USB1) 

and ChAT gene in untreated cells to obtain the fold change. Data analysis for calculating 

the relative expression was done by using Paffl's method [82]. Experiments were run in 

triplicate with internal technical and one-way ANOVA analysis was used to determine 

statistical significance. 

3.3.7 Flow cytometer analysis 

IMR-32 Cells were seeded in 6-well plates (0.4×106 cells/well) the day before 

transfection (Day1). Next day (day2), the cells were transfected with the pAcGFP1-N3-

modified construct and AcGFP1-N3 parent plasmid using Transfast transfection reagent 

(Promega). One hour after transfection, wells were replaced with pre-heated fresh 

complete media with various additives including TNF-α: 10 ng/ml, HNGF: 10 ng/ml, IL-

β: 1 nM, TGF: 10 ng/ml, Aconotine: 0.15 μM, and Kcl: 10nM. TMPYP4 (G-QPX 

stabilizing drug): 10 μM was pre-treated with DNA at room temperature, 2hr before 

adding transfection reagent. For analysis of transfected cells, after 24hr, cells were 
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trypsinized, washed with 1% PBS, followed by re - suspension in 400 µl of 0.1% BSA in 

PBS. Total of 10,000 gated events were collected for each sample. Data were analyzed 

using FACS DIVA version 6.1.3 software.  

 
3.4 Results 

3.4.1 Synthetic substitute active ChAT promoter region to GFP- reporter gene 

The close neighboring of identified TFBS and predicted G-QPXs forming 

position compelled us to explore the relationship between selected TFBS (Sp1 and AP2-

α) and multiple G-QPX forming sequences in the active promoter region of the human 

ChAT gene. As shown in Hersh study, the CG- rich regions should be the key DNA 

recognition element of TFBS that bind to the ChAT active promoter sequence and 

effectively regulate transcription activity. These regions are located in the same position 

or near of selected TFBS, in particular Sp1 and AP2-α (Fig.13-Top, pink highlights). 

Thus, we cloned the engineered ChAT promoter in to pAcGFP1-N3 and create a novel 

reporter vector, pAcGFP1-N3 modified (Fig. 16 -B & C). To generate the practical ChAT 

promoter composition, specific sequences such as TATA box and restriction enzymes 

recognition sites have attached to the active ChAT promoter sequence which are required 

for beginning of the transcriptional machinery (Fig. 16-A).  
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Figure 16.  Schematic Representation of Engineered ChAT Promoter and pAcGFP1-N3-
Modified Plasmid. A) Engineered ChAT promoter (147 bp) containing overhangs, Res, 
active promoter sequence of ChAT gene (97 bp), and designed TATA box (20 bp). B) 
Schematic of wild type pAcGFP1-N3 (4722 bp) containing enhancer elements (CMV-E) 
an promoter sequence (CMV-P) up stream of Multi cloning sites (MCS). C) pAcGFP1-
N3-modified (4189 bp) containing engineered ChAT promoter inserted between Hind III 
and PciI. 
 
 
 

 Insert - 97 bp  TATA 
BOX  AAGCTT ACATGT

PciI
Overhang Overhang

Hind III 

5`TCAGAGCTCTGAGGCTGGTGTGGGGCGTGTCCTCAAAGGGCGGGGCCTG
GCGTGCCTAGCTGGAGCGGGTCCTCAGGCTCCCCCGGGCGGCATCCC3` 

AGGTCTATATAAGCAATGCT 

5` 3`

  

5`AAAAACATGTGCTTGTCGACTCAGAGCTCTGAGG
CTGGTGTGGGGCGTGTCCTCAAAGGGCGGGGCCTG
GCGTGCCTAGCTGGAGCGGGTCCTCAGGCTCCCCC
GGGCGGCATCCCCAGGTCTATATAAGCAATGCTAA
GCTTGACC3` 

  
Overhangs + REs + Human ChAT active promoter sequence + TATA Box:  147 bp,  (147-p)

GFPMCSCMV- PCMV- E 
AFIII-Pcil 

4500 
1500 4664 

4449

Hind III

622

GFP147-p
Pcil 

4500 1500 4664 4449

Hind III

A 

B 
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3.4.2 Measuring reporter expression using activators and aconitine  

Our reporter system is a modified GFP reporter that is used to examine the 

regulatory role of the active promoter of ChAT gene with a high potential of forming G-

QPXs which needs to be analyzed. To determine the reporter gene transcription 

efficiency two different transfection reagents has been used in presence of different 

additives. Thus, for both reagents, maximum of expression level observed after 24 h 

treatment but the Transfast transfection showed more dominant promoter activity through 

GFP expression (Fig.17). There was a recognizable difference in transfection efficiency, 

using transfast reagent. 

To study the effect of TFBS, we directly compare the GFP reporter system 

containing the same backbone but in the presence of varied transcription activators, were 

transfected into the neuroblastoma cell line (IMR-32). Expression was measured in cells 

after several exposure times to get the highest level. Background activity, was measured 

and subtracted from GFP expression level of each transfected sample. Untransfacted cells 

and transfected cells with wild type GFP vector (pAcGFP1-N3) used as negative and 

positive controls, respectively. As shown in Figure. 18, all samples have highest 

expression level after 24h treatment. Cells showed the highest GFP expression level in 

presence of aconitine with HNGF compares to base GFP expression level, M condition 

(exposure to normal complete medium without additives). The GFP expression level 

followed by transfected cells exposed to medium containing transcription activators 

(HNGF, TGF, TNF-α, IL-β), and dug – dependent Na+ channel (aconitine: 0.015 μM). 
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Figure 17. Selection of Transfection Reagents and Optimization of the Transfection Efficiency.  
IMR-32 cells were transfected with pAcGFP1-N3-modified construct using two different 
transfection reagent kits: Top) Transfast, Bottom) Lipofectamine. Un-transfected and 
transfected cells with parent plasmid used as negative and positive (P) controls, respectively. . M 
condition is base expression level which cells expose to normal complete medium without any 
additives. The GFP protein was detected at emission (474nm) and excitation (515nm) 
using a spectrometer. The fluorescent values represent the mean of two separate 
experiments of four readings and the corresponding standard errors of the means (s.e.m.). 
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Figure 18. The GFP Expression Level of the pAcGFP1-N3-Modified Construct in the 
Presence of Varied Environmental Conditions. IMR-32 cells were transfected with 
pAcGFP1-N3-modified construct using following conditions as an expression activator and 
repressor: AC, (AC+HNGF), HNGF, TGF, TNF-α, IL-β. M condition is base expression level 
which cells expose to normal complete medium without any additives. Un-transfected and 
transfected cells with parent plasmid (pAcGFP1-N3) used as negative and positive (P) controls, 
respectively. The GFP protein was detected at emission (474nm) and excitation (515nm) 
using a spectrometer. The fluorescent values represent the mean of three separate 
experiments of four readings and the corresponding standard errors of the means (s.e.m.).  
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3.4.3 Block the TFBS binding and stabilizing G-QPX structures with small stabilizer 

molecule, TMPYP4  

To verify the relationship between the small ligand binding molecules and G-

QPX structures, TMPYP4 has been used, which was identified as G-QPX stabilizer. The 

interaction between G-tetrad planner and TMPYp4 could block transcription machinery 

through stable QPX structure formation or blocking the binding position of TFBS. Based 

on the results, transfection was conducted with modified vector pretreated with TMPYP4 

to identify the binding ability of small ligand (TMPYP4) with G-QPX structures up 

stream of TSS. As shown in figure.19, THE GFP expression level decreased significantly 

not only compares high expression level in presence of aconitine with HNGF but also in 

compression with the base level of GFP expression. 

To further show that first, G-QPX structures are strongly stabilize with TMPYP4, 

seconds, aconitine with HNGF significantly increase the expression level due to influx of 

ions and their effect on G-QPX formation, and third, the effect of transcription activator 

on the level of expression, the fluorescence GFP expression was directly visualized using 

the EVOS. As is shown in figure 20, similar level of expression was observed in IMR-32 

cells transfect with pAcGFP1-N3-modified construct compare to wild type. While, 

significant decrease in the GFP expression was detected in cells, when DNA was pre-

incubated with TMPYP4. TGF exposure treatment after transfection leads to increase the 

GFP expression level more than base level (only complete medium without any additive). 
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Figure 19. The Effect of Ligand Stabilizing G-QPX (TMPYP4) on the GFP Expression Level of 
the pAcGFP1-N3-Modified Construct. IMR-32 cells were transfected with 2h pre-treated 
pAcGFP1-N3-modified construct with TMPYP4.Un-transfected cells as negative control and 
transfected cells with parent plasmid (pAcGFP1-N3) and pAcGFP1-N3-modified construct 
(exposure to HNGF+Aconitine), both used as positive controls. M condition is base 
expression level which cells expose to normal complete medium without any additives. The GFP 
protein was detected at emission (474nm) and excitation (515nm) using a spectrometer. 
The fluorescent values represent the mean of three separate experiments of four readings 
and the corresponding standard errors of the means (s.e.m.). There was a significant 
difference between the means of TMPYP4 treatment and positive controls.  
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Figure 20.  Visualization of the Fluorescence GFP Expression in Transfected Cells using 
the EVOS FL Microscope.  Cells were transfected and visualized after 24h incubations. 
Top-left) cells transfected with wild type GFP vector, Top-right) cells transfected with 
modified GFP vector and exposed to aconitine with HNGF, Bottom-left) cells transfected 
with modified GFP vector and exposed to TGF, Bottom-right) cells transfected with 
modified GFP vector and pre- incubation with TMPYP4 G-QPX stabilizer. All the 
images were taken at 20× magnification. 
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3.4.4 Cytotoxicity analysis 

Our cytotoxicity analysis showed there was no cytotoxic effect using either the 

MTT or MTS cell proliferation assays using Transfast reagent (Fig.21). There was no 

inhibition of cell growth compared to the untreated cells (Data not shown). 

 
3.4.5 Flow cytometry analysis 

Reporter expression was further studied using flow cytometry considering all 

previous conditions. The results were the same as expression level using plate reader 

(Fig. 22 and 23). Therefore, it has been observed that TMPYP4 as G-QPX stabilizing 

compound and aconitine as Na+ - dependent channel have high influence on stabilizing 

and melting G-QPX structures, respectively, also, it could be suggested that they lead to a 

significant reduction and enhancement in transcription activity. In each treatment, the P3 

population shows the maximum GFP expression of modified plasmid relative to wild 

type GFP vector under specific condition, presented in figures 24, 25. 

Figure.26 shows the percentage of mean GFP fluorescence intensity using flow 

cytometerty which the promoter activity was affected by presence or absence of G-QPX 

stabilizing/ destabilizing molecules or metal cations. Thus, there is a clear evidence for 

competition of TFBS and G-QPX formations upstream of TSS which directly related to 

distribution of the GFP fluorescence intensity in the transfected population. 
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Figure 21. The Colorimetric MTT and MTS Proliferation Assays were used to Test the 
Viability of Transfected Cells Exposed to Varied Environmental Conditions. IMR-32  
transfected cells (with GFP vectors, modified and wild type)  were incubated for further 
24 hours at the absence (control) or presence of following additives: AC, (AC+HNGF), 
HNGF, TGF, TNF-α, IL-β, TMPYP4. M condition is cells expose to normal complete 
medium without any additives. Control and P are Un-transfected and transfected cells 
with parent plasmid (pAcGFP1-N3) used as negative and positive controls, respectively. 
The resulted colored solution was detected at 490 and 570 nm using a spectrometer. The 
absorbance values represent the mean of two separate experiments of four readings and 
the corresponding standard errors of the means (s.e.m.).  
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Figure 22.  Flow Cytometry Analysis of the Human Active Promoter Sequence, part 1. 
IMR-32 cells were transfected with pAcGFP1-N- modified vector, followed by exposing 
to various environmental conditions (presence of Aconitine, HNGF, AConitine + HNGF, 
and normal complete media: M) for 24 h incubation. In each panel, histogram of 
fluorescence value of individual experiment is reported in black line. The horizontal bar 
indicates the cells reaching these fluorescence values out of total cells. The inset 
histograms represent the mean fluorescence of cells in each experiment in compare to 
positive control (GFP wild type). GFP expression in cells exposed to AC + HNGF is 
approximately similar to positive control. 
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Figure 23. Flow Cytometry Analysis of the Human Active Promoter Sequence, part 2. 
IMR-32 cells were transfected with pAcGFP1-N- modified vector, followed by exposing 
to various environmental conditions (presence of IL-β, TGF, TNF-α, and TMPYP4) for 
24 h incubation. In each panel, histogram of fluorescence value of individual experiment 
is reported in black line. The horizontal bar indicates the cells reaching these fluorescence 
values out of total cells. The inset histograms represent the mean fluorescence of cells in 
each experiment in compare to positive control (GFP wild type).GFP expression of cells 
exposed to TMPYP4, G-QPX stabilizer, is significantly lower than positive control. 
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Figure 24.  Quantitation of FITC-A using Flow Cytometry for P3 Population, part 1. IMR-32 cells were transfected with 
pAcGFP1-N- modified vector, followed by exposing to various environmental conditions for 24 h incubation. In each panel, 
plot dot of fluorescence modified GFP is reported. The P3 gate is represent in green dots. The inset lines represent the mean of 
GFP in the P3 population in each experiment relative to positive control. The percentage value indicates the cells reaching 
these fluorescence values out of total cells in P3 population. P3 population of cells showed the maximum GFP expression 
(2217) in presence of aconitine with existence of HNGF.  
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Figure 25.  Quantitation of FITC-A using Flow Cytometry of P3 Population, part 2. IMR-32 cells were transfected with 
pAcGFP1-N- modified vector, followed by exposing to various environmental for 24 h incubation. In each panel, plot dot of 
fluorescence modified GFP is reported. The P3 gate is represent in green dots. The inset lines represent the mean of GFP in the 
P3 population in each experiment relative to positive control. The percentage value indicates the cells reaching these 
fluorescence values out of total cells in P3 population. P3 population of cells showed the minimum GFP expression (243) in 
presence of TMPYP4. 
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Figure 26. The Percentage of Mean GFP Fluorescence Intensity using Flow Cytometerty. 
IMR-32  transfected cells (with GFP vectors, modified and wild type)  were incubated for 
further 24 hours in the presence of following additives: AC, (AC+HNGF), HNGF, TGF, 
TNF-α, IL-β, KCl:10mM, TMPYP4. M condition is cells expose to normal complete 
medium without any additives. P is represents cells transfected with parent plasmid 
(pAcGFP1-N3) used as positive controls. The bar chart shows that the percentage of GFP 
expression in cells exposed to AC+HNGF is close to positive control while the TMPYP4 
shows the lowest mean GFP intensity percentage. 
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3.4.6 Quantitating the ChAT mRNA expression using RT-PCR 

mRNA expression of the human ChAT gene in neuroblastoma (IMR-32) cell line 

was measured using q RT-PCR after 4hrs of treatment. The half-life of ChAT mRNA is 7 

hr so to get the maximum amount of ChAT mRNA, extraction and purification was done 

after 4 hr. 

To obtain ΔΔCt values for all the samples, the data were analyzed using user 

defined threshold. The threshold definition is one of the most important steps in qPCR 

analysis; therefore, extra care was taken in order to use a suitable threshold value. One of 

the challenges in defining threshold came from the huge difference in amplification plot 

of TMPYP4 compared with the rest of samples. Figure 27 shows such plot for one AC 

sample and one TMPYP4 sample where no significant change in reaction can be detected 

for TMPYP4 (the TMPYP4 specimen line does not cross the threshold line). 

Similar expression (mRNA amplification) rates were observed (Fig. 28 - Top), 

demonstrating that mRNA expression of the ChAT gene significantly increase when cells 

exposed to medium containing aconitine with the presence of HNGF and a dramatic 

knockdown was observed in mRNA expression of cells treated with TMPYP4. Therefore, 

it could be interpreted that TMPYP4 should have notable impact on the human ChAT 

gene expression, verifying the stabilizing function of TMPYP4 on G-QPX formations in 

promoter regions. Indeed, Na+ as a destabilizing ions melt the G-QPX structures in the 

promoter through movement of the Na+ into the cells (ion channels opening), resulting in 

elevation of ChAT gene mRNA production. 
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Figure 27. Amplification Plot of RT-qPCR for a Typical AC and TMPYP4 Specimens. 
Blue line indicates the threshold line and the two green line indicate the AC (top) and TMPYP4 
(bottom) specimens. 
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Figure 28. Quantitative Comparison of ChAT Gene Expression using Real Time RT-
PCR. Human neuroblastoma cell line (IMR-32) exposed to the complete medium in 
presence of different additives:  Aconitine in combination with HNGF, TGF, and 
TMPYP4. After 4 hr exposing to different environmental conditions, ChAT mRNA 
extracted, purified for qRT-PCR. Cells exposed to normal complete medium used as a 
control. USB1 gene has been used as a reference gene for Q-PCR analysis. Top) ΔΔCt 

results, Bottom) Folding measurement. Compared to untreated cells, an approximate 87% 
ChAT gene knockdown was observed in the sample treated with TMPYP4.  
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3.5 Conclusion and Discussion  

Computational studies have suggested that promoter of human genes have a great 

potential to form G-QPX motifs. However, a few in vitro studies have shown the 

functional role of G-QPX structures. For instance, G-QPX formation upstream the P1 

promoter of C-MYC has shown acting as a repressor [15].The G-QPX interaction with 

TFBS leads to proposing the regulatory function of G-QPX cellular activity. Generally, 

most of TFBS bind to promoter sequence upstream of the TSS up - regulate the 

transcription activity so formation of G-QPX in the TFBS recognition sites will lead to 

down-regulation the transcription activity. However, there are some TFBS that exhibited 

the binding tendency to G-QPX structures in promoter [83] which in this scenario, they 

could be important factors for specific TFBS binding. Under this circumstance, down-

regulating transcriptional activity required inhabitation of G-QPX formations. To 

conclude, since G-QPX structures are behaving differently in biological systems due to 

diversity in their sizes, topology, loop size and importantly their interactions with other 

molecules or essential factors, it is important that study these unique structures 

individually and not draw a precise conclusion about their formation, structures, stability 

and their cellular functions. 

Here, we develop a novel construct (pAcGFP1-N- modified), derivative from wild 

type pAcGFP1-N, which the whole promoter regions (approximately 600 bp) substituted 

with the active promoter region of human ChAT gene (174 bp). The modified GFP vector 

contains the G-rich regions in its promoter with great potential to form G-QPX structures.  

Formation of nano-switch G-QPX structure in promoter have been suggested regulates 
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transcription machinery. Therefore, to validate formation, stability and functional effects 

of these unique structures we did in vitro reporter gene measurement using 

neuroblastoma cell line (IMR-32). IMR-32 cell line is a type of cell line that they are not 

easy to transfect with foreign DNA unlike other type of cell lines such as HEK, A549, 

and PC12. To get the high efficient transfection, transfast reagent kit has been used to 

effectively transfect the cells with Modified GFP vector. HNGF, TGF, IL-β and TNF-α 

has been individually used as essential factors that facilitate binding the TFBS, in 

particular Sp1 and AP2-α, to the active promoter and up-regulate the GFP expression. In 

vitro fluorescence GFP intensity measurement showed enhancement compare to the basic 

level of expression (medium exposure without any additives). Aconitine as a Na+ -

channel dependent drug in the presence of HNGF led to significant increase in GFP 

expression similar to GFP expression of wild type plasmid. This result supports the fact 

that monovalent cations have obvious impact on stability / instability of G-QPX motifs. 

The mechanism of drug – dependent channel is that aconitine opens the Na+ channels 

which lead to influx of Na+ ions into the cell, and subsequently melt the G-QPX 

structures, followed by induction of GFP reporter genre. More importantly, it confirm our 

novel hypothesis, claiming that neural action - potential mechanism regulate G-QPX 

formation/ deformation due to movement of monovalent cations across the membrane, 

which also consist with gene silencing and expression during the neuron resting and 

firing. Flow cytometry analysis and fluorescence microscopic imaging have been used 

and both analysis further confirm the results (Fig. 20, 24 and 25).    
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TMPYP4 as G-QPX stabilizer compound has been used in literature in most of 

cases while the G-QPX structural and sequential diversities have found other small 

selective ligands molecules as stabilizer. Therefore, to get a better understanding of our 

identified multiple G-QPX, a separate transfection experiment followed by treatment 

with TMPyP4 was conducted. The result clearly showed that the G-QPX formation 

significantly diminish the fluorescence GFP expression in IMR-32 cells.  

Similarly, the quantitative real time RT-PCR assay was operated, and a significant 

inhabitation of the human ChAT gene was observed, 87% ChAT gene knockdown when 

cells exposed to TMPYP4 and significant increase in ChAT gene expression when cells 

treated with aconitine in presence of HNGF. Figure 28 (bottom) summarizes the analyzed 

data where 2.8 fold increase in expression was observed for AC while TG samples 

demonstrated only 1.4 fold increase.  

The result demonstrates that formation of G-QPX affect binding of TFBS (AP2-

αand Sp1) to their binding site which makes an influence on transcriptional activity of 

ChAT gene. No cytotoxicity observed after exposing cells to various conditions. 
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CHAPTER IV 
 

PHYSICAL STUDIES OF G-QPX MOTIFs FORMATION AND THEIR 
STABILITIES 

 
 

4.1 Introduction 

Nucleic acids are polymorphic molecules which can adopt different types of 

conformations classified as B-form and non B-form structures. The non B-form 

arrangements are usually formed on specific sequence motifs which associate with 

various molecular interactions. To date, variety of non-B nucleic acids conformations 

have been identified such as B-DNA, Z-DNA, H-DNA, holiday junction and i-motifs. 

Among these secondary structures, intensive studies focused on G-QPX formations and 

their properties in various genomic functional regions. In gene promoters, DNA sequence 

analysis showed the existence of guanine-rich regions [59, 84].   

G-QPX structure can form in guanine-rich sequence consists of planer 

arrangement of four guanine residues via Hoogsteen pairing [85]. It is guanines ability to 

generate self-associate hydrogen-bounds in aqueous environment, the G-quartets. The G-

quartets stacking creates a core by holding intervene sequences together and arrange 

single-strand loops on exterior of the core [86]. These sequences usually consist of at 

least four guanine residues with variable length. Several biophysical methods have been 

used to characterize G-QPX structures such as X- ray diffraction (XRD), circular 
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dichroism (CD), and nuclear magnetic resonance (NMR). XRD and NMR are two major 

methods to reveal atomistic details of macromolecules structures. However, these 

superior techniques have some limitations. For instance, samples used for these analyses 

must contain high concentration of nucleic acid, and short or single dominant DNA 

fragments in order to determine the atomic structure [84]. The third common technique is 

CD spectroscopy, which works based on the differential absorption of left‐handed 

circularly polarized light (L‐CPL) and right‐handed circularly polarized light (R‐CPL) 

and it occurs when a molecule contains one or more chiral chromophores (light‐absorbing 

groups).  

Circular dichroism = ΔA(λ) = A(λ)LCPL ‐ A(λ)RCPL, where λ is the wavelength 

Although CD does not provide information regarding atomic resolution structure 

of macromolecules but it has distinctive advantages. First, it’s a fast, simple and 

extremely sensitive technique which requires small amount of nucleic acids 

concentrations. Second, both long and short DNA molecules can be effectively evaluated 

under various environmental conditions such as presence of various salts, different 

temperature and pH. Change in environmental condition has a critical impact on 

conformational transition of DNA molecule [87]. DNA conformational properties are 

important as basics in gene expression regulation [88]. CD spectra demonstrates the 

conformations of DNA but for analyzing the data, one must consider the whole spectrum 

since the presence and intensity of a single peak can be influenced by changes in the 

guanine tetrad staking interactions as result of different coordination of monovalent 
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cations [89]. G-QPX structures can be stabilized by monovalent cations (e.g., Na+, K+), 

resulting in formation of a parallel or antiparallel orientation of four DNA strands. In fact, 

occupation of the central cavity by monovalent cations neutralizes the electrostatic 

repulsion of guanine oxygens and forming stable structure [90]. It has been suggested that 

potassium ions stabilize the G-QPXs better than sodium ions since they are placed in the 

middle of tetrad planes. Although the CD spectra is a powerful tool to study 

macromolecules conformational properties but interpretation of spectra for structural 

conclusion needs to be obtained with caution. As mentioned before, it is important to note 

that an accurate interpretation only can be achieved by tracing the whole spectrum region, 

and not following a single band (eg. the band at 260 or 290nm) [84]. In most be noted, 

while the interaction between G-tetrad stacks, and their coordination with cations and/or 

ligands (as stabilizing / destabilizing molecules) have been previously studied using 

biophysical methods (XRD, CD, NMR); interaction of G-QPX formation at the single - 

molecule level has not been investigated.  

Atomic force microscopy (AFM) has been used extensively to visualize DNA at 

the single-molecule level with only minimal sample preparation [91, 92].  In fact, 

minimal sample preparation involved in AFM imaging allows visualizing G-QPXs in the 

context of a more physiologically relevant DNA molecule (ex: visualizing ability of G-

rich sequence in a single strand to form a condense structure and the loops can be 

symmetric or asymmetric) [93]. One of the key steps in imaging biological molecules 

using AFM is sample immobilization due to the inherent negative charge of nucleic acids  

(DNA or RNA) [94]. A number of surface modification techniques has been developed to 
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form a positively charge substrate to electrostatically hold the nucleic acids. Mica is the 

most widely used substrate for deposition of various biological objects (nucleic acids in 

particular) [95, 96] followed by gold films [97, 98] and glass [99]. Mica (primarily 

muscovite mica) is a layered mineral with the smooth surface which makes it appealing 

substrate for biological AFM imaging [100]. Moreover, in the process of preparing 

sample for AFM imaging, the pretreatment of specimen with Mg2+ cations is another 

important step [101-103]. 

Moreover, small compound molecules such as pyridostatin [104], TAP1 [105], 

TMPYP4 [21], PIPER [24], BRACO-19 [23], have been used to bind to G-QPXs with 

high affinity and affecting stabilizing or destabilizing. Here we used TMPYP4 as a 

common compound to confirm the formation of G-QPX structures in an active promoter 

region of ChAT gene. The structure of this compound is shown in figure 29. 

 

                                  
 

Figure 29. Structure of TMPYP4. 
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4.2 Materials and Methods  

4.2.1 DNA sample 

DNA oligonucleotides were HPLC-purified purchased from IDT (Table 9), which 

were stored at −20 °C. DNA concentration was measured by nano-drop ND-2000c 

spectrophotometer (Thermo Fisher Scientific Inc.,Waltham,MA). 

4.2.2 DNA substrate for AFM imaging 

The recombinant plasmid used in AFM experiments, named as pAcGFP1-N3- 

modified (bp), designed and provided by our lab (Appendix C, Fig.1), is derivative of 

pAcGFP1-N3 (4722 bp). The pAcGFP1-N3- modified plasmid ( 4189 bp) has a 147 bp 

inserted sequence of the active promoter region of ChAT gene, which contains multiple 

QPXs structures just upstream of TSS (Appendix C, Fig.2). To get a better G-QPX 

visualization, modified plasmid digested using restriction enzyme ApaLI and AFIII 

(Appendix C, Table1). The digested DNA fragment from 4350 bp to 1153 bp of modified 

plasmid (cut- pAcGFP1-N3- modified plasmid, 1508bp), containing active promoter 

region of ChAT gene, was amplified using PCR. The total volume of PCR reaction 

mixture contained 2 μL PCR buffer (10X), 500 μmol/L dNTP mix, 0.15 μM each primer 

(shown in Table 1(AF-ChAT S & AF-ChAT A), 1 μL DNA template, 1 U Taq DNA 

polymerase, and nuclease-free water. The protocol used for PCR includes a denaturing 

cycle of 2 min at 95 °C, 35 cycles of PCR (95 °C for 1min, 58 °C for 1min, 72 °C for 2 

min), and then 72°C  for 10 min, followed by holding at 4 °C. The PCR then loaded in 
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1% agarose gel. After electrophoresis, the gel was imaged using UV-shadowing 

(Appendix C, Fig.3).  

4.2.3 Circular dichroism (CD) 

CD spectra were recorded at 20 °C on Olis DSM 17 spectropolarimeter; figure 24 

(Jasco, Easton, MD) using a quartz cell of 1 mm path length. The instrument scanning 

speed was set at 100 nm/min with a response time of 1 s and bandwidth of 2 nm, over a 

wavelength range of 220 - 320 nm. The DNA oligonucleotides were prepared in 5 μM 

solution in buffer containing Tris–HCl (10mM, pH7.5) and different concentrations of 

KCl and/or NaCl. The DNA samples were heated at 95 °C for 5 min, and then slowly 

cooled to room temperature overnight. Data were baseline-corrected for signal 

contributions due to the buffer. Figure 30 shows the schematic of CD instrument. 

 

 
 

Figure 30. Schematic of an Olis CD Instrument. 
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Table 9. Oligonucleotide Sequences have been used in Present Study. 
 

Name Sequence (5`→3`) 
ChAT G17 GAGGCTGGTGTGGGGCG 
ChAT G17-2 AAGGGCGGGGCCTGGCG 
ChAT G30 CTGGAGCGGGTCCTCAGGCTCCCCCGGGCG 
ChAT G29 GGGGATGCCGCCCGGGGGAGCCTGAGGAC 
ChAT G21 S CCCGGGGGAGCCTGAGGACCC 
ChAT G21 A GGGTCCTCAGGCTCCCCCGGG 
AF- ChAT  S TTGGAGCGAACGACCTACA 
AF- ChAT  A CGCTCACTTGTACAGCTCAT 

 
 
4.2.3 AFM imaging 

Mica disks (Ted Pella, CA, USA) glued to 13-mm steel pucks were used as 

substrates for AFM imaging. Prior to DNA deposition, the top layer of the mica cleaved 

using Scotch tape to reveal an atomically flat surface. Purified DNA was diluted to a 

concentration of ∼0.5 × 10−14 mol/μL in buffer containing [10 mM Tris–HCl (pH 7.5)] in 

the presence of KCl, 100 mM or TMPYP4, 500mM, and was heated to 95°C for 5 min 

followed by slow overnight cool down to the room temperature (in addition to 95°C, 

37°C for 24hr and 37°C for one week is also used). Immediately prior to deposition, 10 

mM MgCl2 was added to the imaging buffer containing DNA. Finally, 25 μL of DNA 

solution was deposited onto freshly cleaved mica disks and incubated at room 

temperature for 5 min. Excess solution was gently rinsed off with MilliQ water (Millipore 

System, MA, USA) and the water wicked from the surface using tissue paper. The disks 

were then dried under a stream of nitrogen gas. 

 



 
 

 

77 
 

AFM imaging was performed with a large stage 5600LS AFM (Keysight 

Technologies) in tapping mode with TAP-300 silicon cantilever tips (Budget Sensors, 40 

N/m nominal spring constant, 300 kHz nominal frequency). Images were processed and 

analyzed with Gwyddion and ImageJ open-source software. Figure 31 shows the 

schematic of bimodal AFM instrument. 

 

 
 

Figure 31. Schematic Setup of Bimodal AFM. 
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4.3 Results 

4.3.1 Circular dichrosim  

Difference in G-QPX sequences and their loop configuration lead into different 

conformational properties which in terns results in changes in position and amplitude of 

their CD bands. Figures 32 & 33 shows the CD spectra of ChAT G17-2 after 24h in 

solution (Tris-HCl: 10mM, pH: 7.5) containing various monovalent cations. Figure 34 

showed the stability formation of ChAT G17 G-QPX in KCl solution. ChAT G 17 

nucleic acid did not form reliable spectra in NaCl and LiCl solutions (data are not 

shown). Figures (35 & 36) and (37 & 38) show the ChAT G30 and ChAT G29 G-QPX 

structures, respectively, in different concentration of monovalent cations with Tris-HCl: 

10 mM, pH:7.5 solution. 

Figures 39 and 40 demonstrate that the intermolecular G-QPX could be formed 

within two complementary DNA double strands. This structure was observed upon 

formation of higher order structure within ChAT G-21S & ChAT G21A (called ChAT 

G21-ds) in Tris –HCl: 10mM, pH:7.5 solution containing different cations. 

Generally, it is observed that unique G-QPX structures of the active ChAT 

promoter region show higher stability at K+ solution.  
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 Figure 32. The CD Spectra of the ChAT G17-2 G-QPX.  The spectra of 5 μM  ChAT G17-2 in 10mMTris–HCl buffer solution 
(pH 7.5) with KCl (10, 50 & 100mM) (left) and with NaCl (10, 50 & 100mM) (Right). Data were baseline-corrected for signal 
contributions due to the buffer. The horizontal line represents the molar explicitly and vertical line represents wavelength.  
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 Figure 33. The CD Spectra of the ChAT G17-2 G-QPX.  The spectra of 5 μM  ChAT G17-2 in 10mMTris–HCl buffer 
solution (pH 7.5) with LiCl (2, 10, 50 & 100mM) (left) and with nerve firing condition (KCl : 10mM & NaCl: 100mM) 
(Right). Data were baseline-corrected for signal contributions due to the buffer. The horizontal line represents the molar 
explicitly and vertical line represents wavelength. 
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 Figure 34. The CD Spectra of the ChAT G17 G-QPX.  The spectra of 5 μM  ChAT G17 in 10mMTris–HCl buffer solution  
(pH 7.5) with KCl (10 & 100mM). Data were baseline-corrected for signal contributions due to the buffer. The horizontal line 
represents the molar explicitly and vertical line represents wavelength. 
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 Figure 35. The CD Spectra of the ChAT G30 G-QPX.  The spectra of 5 μM  ChAT G30 in 10mMTris–HCl buffer solution 
(pH 7.5) with KCl (10, 50 & 100mM) (left) and with NaCl (10, 50 & 100mM) (Right).  All spectra were measured after 24 h 
in buffer solution. Data were baseline-corrected for signal contributions due to the buffer. The horizontal line represents the 
molar explicitly and vertical line represents wavelength.  
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Figure 36. The CD Spectra of the ChAT G30 G-QPX.  The spectra of 5 μM  ChAT G30 in 10mMTris–HCl buffer solution (pH 
7.5) with LiCl (2, 10, 50 & 100mM) (left) and with nerve firing condition (KCl : 10mM & NaCl: 100mM) (Right). All spectra 
were measured after 24 h in buffer solution. Data were baseline-corrected for signal contributions due to the buffer. The 
horizontal line represents the molar explicitly and vertical line represents wavelength.  
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 Figure 37. The CD Spectra of the ChAT G29 G-QPX.  The spectra of 5 μM  ChAT G29 in 10mMTris–HCl buffer solution 
(pH 7.5) with KCl (10, 50 & 100mM) (left) and with NaCl (10, 50 & 100mM) (Right). All spectra were measured after 24 h in 
buffer solution. Data were baseline-corrected for signal contributions due to the buffer. The horizontal line represents the 
molar explicitly and vertical line represents wavelength.  
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Figure 38. The CD Spectra of the ChAT G29 G-QPX.  The spectra of 5 μM  ChAT G29 in 10mMTris–HCl buffer solution (pH 
7.5) with LiCl (2, 10, 50 & 100mM) (left) and with nerve firing condition (KCl : 10mM & NaCl: 100mM) (Right). All spectra 
were measured after 24 h in buffer solution. Data were baseline-corrected for signal contributions due to the buffer. The 
horizontal line represents the molar explicitly and vertical line represents wavelength.  
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 Figure 39. The CD Spectra of the ChAT G21- ds G-QPX.  The spectra of 5 μM  ChAT G21-ds in 10mMTris–HCl buffer 
solution (pH 7.5) with KCl (10, 50 & 100mM) (left) and with NaCl (10, 50 & 100mM) (Right). All spectra were measured 
after 24 h in buffer solution. Data were baseline-corrected for signal contributions due to the buffer. The horizontal line 
represents the molar explicitly and vertical line represents wavelength. 
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Figure 40. The CD Spectra of the ChAT G21-ds G-QPX.  The spectra of 5 μM  ChAT G21-ds in 10mMTris–HCl buffer 
solution (pH 7.5) with LiCl (2, 10, 50 & 100mM) (left) and with nerve firing condition (KCl : 10mM & NaCl: 100mM) Right). 
All spectra were measured after 24 h in buffer solution. Data were baseline-corrected for signal contributions due to the buffer. 
The horizontal line represents the molar explicitly and vertical line represents wavelength. 
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4.3.2 AFM imaging  

The preparation for AFM imaging was performed with 5 min incubation on the 

mica surface followed by two times gently wash. The attempt to study cut- pAcGFP1-

N3- modified plasmid, 1508 bp DNA fragment (cut-plasmid) in the solution containing 

K+ ions did not lead into conclusive AFM image (Fig. 41-A). On the other hand, in 

presence of only stabilizing compound (TMPYP4, 500 mM) in the solution, stabilized G-

QPX structures were observed (Fig. 41-B, Fig. 42). Figure 41-C shows the frequency 

distribution of cut-plasmid length in solution containing K+. The processing of the image 

was done using image analysis software (ImageJ) where average length of 502 nm was 

measured. Similar effort for measuring the average length of cut-plasmid in solution 

containing TMPYP did not lead into fruitful data due to the fact that the structures in Fig. 

41-B and 42 are clustered strands and it is not possible to differentiate an individual 

strand, even in ImageJ software. 
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Figure 41. AFM Images of G-wires. A) G-wires on cut- pAcGFP1-N3- modified plasmid 
(1508 bp DNA fragment) incubated in buffer containing 100mM Kcl. B) G-wires on cut- 
pAcGFP1-N3- modified plasmid (1508 bp DNA fragment) incubated in buffer containing 
500 mM TMPYP4. The white line arrows indicated the position of G-wires. The image of 
G- wires is 2x2 μm2 at 1.2-nm height scale. C) The curve indicates the fitted Gaussian 
function. 
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Figure 42. AFM Images of G-wires on Cut- pAcGFP1-N3- Modified Plasmid (1508 bp 
DNA Fragment). DNA substrate were incubated in a buffer containing 500mM TMPYP4 
and deposited at 5 nM concentration (see under “Materials and Methods”). The white line 
arrows indicated the position of G-wires. The image of G- wires is 5x5 μm2 at 1.2-nm 
height scale. 
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  4.4 Conclusion and Discussion 

Circular dichroism has been used regularly as a powerful tool to estimate the G-

QPXs formation in macromolecules (such as DNA, RNA and proteins) and monitor their 

conformational [106]. Increased investigation of G-QPX sequences within a promoter 

region of oncogenes has led to proposing these sequences as regulatory regions and 

potent targets for anticancer drug delivery [3, 16]. For instance, several studies have 

reported G-QPX structure in a promoter region of c-MYC gene serving as silencer 

elements, and its binding to the small stabilizing molecules, TMPYP4, resulting in 

repression of c-MYC gene [15, 81, 107]. 

 The overall picture emerging from CD study is that G-QPX structures 

(intramolecular and / or intermolecular) are able to interact with monovalent cations 

(individual or mixed like nerve firing condition). G-QPX structures are categorized as 

parallel, antiparallel and mixed – type or hybrid (parallel /antiparallel mixed topology) 

according to their sequence and loop configurations. Parallel topology exhibits the 

minimum ellipticity at a range of 238-244 nm and maximum at a range of 260-266 nm, 

whereas antiparallel structure shows the minimum ellipticity at a range of 280-295 nm 

and maximum at a range of 260-266 nm. For instance, Kange et.al, has reported a parallel 

G-QPX structure with a minimum of 240 and maximum of 263 nm ellipticity [37], 

whereas Bugaut et.al reported an antiparallel structure showing the minimum ellipticity at 

295 nm and maximum at 260 nm [108]. Structures that have both conformations are 

called hybrid [105], which have the minimum ellipticity at 240 (typically range of 238-
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244) and two maximum ellipticity at 263 and 295nm (typically at a range of 260-266 and 

280-295, respectively).  

Nucleic acid sequences (ChAT G17 and ChAT G17-2) showed an increase in 

absorbance at 260 nm and 280nm, upon formation of higher order structures, G-QPX, at 

lower K+ concentration (Fig. 32 & 34 , both left image). As noted in previous 

publications, a stable hybrid structure appears with two positive spectral at 260 and >280 

nm in the presence of KCl. Similarly, for ChAT G30, high order stable hybrid structure 

was observed in KCl solution in concentration – dependent fashion meaning increase 

stability at lower K+ concentration. As presented in figure 35 - left the CD spectra 

showed a slit shoulder at 264 nm and a clear positive pick at 280 nm. ChAT G29 nucleic 

acids showed a decrease in absorbance at 260 and 280 nm, due to formation of G-QPX 

structure at lower K+ concentration compared to higher concentrations (Fig. 37 – left). 

The folding topology of G-QPX structures could be changed in different salt solutions. 

Generally, it was demonstrated by CD spectroscopy that all of intamolecular G - QPX 

structures (ChAT G17-2, ChAT G17, ChAT G30, & ChAT G 29) are more stable in 

potassium environments than sodium environments and the stability enhanced in dose – 

dependence fashion except for ChAT G 30. Formation of G-QPX in Li+ solution showed 

the highest stability in 2 mM concentrations  for both ChAT G17-2 and ChAT G29 (Fig. 

33 & 38 - both left image). As it has been suggested in previous publications, the 

maximum Li+ dosage in living cells without any toxic effects is 2mM.   
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ChAT G21-ds nucleic acid sequence have potential G - runs in double stranded 

DNA within small loop distance, which could form intermolecular G-QPX between two 

complementary strands. CD results showed that a highly stable structure at low 

concentrations of KCl solution (10 & 50 mM) in compare to NaCl solutions (Fig. 39). In 

Li+ solution the structure showed the best stability at 100 mM concentration. Although 

the CD spectra in various monavalants cations demonstrated a parallel topology 

configuration of nucleic acids but it cannot be claimed with certainty that these spectral 

features form due to folding of intermolecular G-QPX or DNA double strands. Therefore, 

further analytical studies required to confirm out hypothesis. 

Moreover, the folding topology of unique G-QPX structures could be changed in 

the presence of solution with different salt concentrations. Figure 37 – left  showed that 

ChAT G29 forms a parallel structure in solution containing KCl 50 and 100 mM while it 

formed a stable hybrid structure in KCl 10mM solution. Kuryavyi. et.al conducted NMR 

study of G-QPX in the promoter of C-Kit2, and demonstrated that G-QPX forms an 

intramolecular monomeric and dimeric parallel structure in the solution containing KCl 

20mM and 100mM, respectively [50].  Therefore, for the future work, NMR analysis is 

important to get a better understanding of the actual folding topology of our G-QPX 

structures in various monovalent solutions (individual or mixed).  

Firing condition which is mixed ionic environment (K+:10mM and Na+:100mM) 

was further support the CD results of G-QPX stability formation in compare to individual 

monovalent cations. Figures. 33, 36, 38, and 40 – all right images, showed that the high 
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order G - QPX stability formation was more and less dominant in presence of K+ and Na+ 

ions, respectively in compare to mixed ionic environment (nerve firing). Therefore, a new 

hypothesis could be concluded that neural action/ potential ionic condition which is nerve 

firing and resting may control G-QPX formation / deformation.  

Importantly, the above results showed that G-QPX binding affinity in solution 

containing KCl was higher than other cationic environment (individual or mixed) but the 

thermal stability of the binding complex needs to be studied. For instance, it has been 

reported that ligands (TMPYP4) binding affinity to G-QPX in buffer containing NaCl 

was stronger than in buffer containing KCl at low temperature, but the thermal stability 

of binding complex were showing opposite behavior [109]. Therefore, to further analysis 

the predicted ChAT G-QPXs, it is important to investigate ligands binding to these high 

order secondary structures in solution with and without monovalent cations, studying 

their binding affinity and their thermal stability of the complex. 

In conclusion, it should be considered that the interpretation of CD results 

requires caution. Although the CD spectra of G-QPXs showed monavalaent cations could 

stabilized the high order unique structures formed by multiple ChAT G-runs but their 

stabilities are a little different which needs to be further studied. Moreover, to get a better 

image of folding topology, the whole spectrum should be taken into account and not 

relying only on the presence of a single band (eg., 260 or 280). This study shows that CD 

spectroscopy is a powerful method in study of G-QPXs but it is important to use 
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complementary methods such as NMR and XRD to get a better view of these novel 

structures as a novel future anti-cancer therapy approach. 

AFM as a single molecule approach allows direct visualization of nucleic acids 

structures and their distribution has been used to further support CD results. Previous 

studies have demonstrated the effectiveness of AFM in visualization of single G-QPX 

units [58-60]. It is shown that G-QPX structures could be categorized into three major 

groups (depending on their shapes): loop, blob and spur (Fig. 43) [93, 110]. Moreover, 

these groups can have different characteristics; for instance, G-loops could be symmetric 

or asymmetric with short or long length. Blobs could be single or multiple and form by 

aggregation of small number of G-runs with tight space (Fig. 43 A and D). When the 

loophole is invisible, spur structures could be formed due to bonding of both sides of loop 

to the mica surface. Recent advances in this area include demonstration of G-QPX in 

response to ionic conditions, where the G-QPX formation is allowed to be stabilized in 

K+ environment. From biology point of view, it is suggested that formation of G-QPXs in 

DNA mostly works as a transcriptional off-switch and abolish transcription activity 

[110]. These structures could be stabilized by the presence of; hybridized mRNA/ 

aptamers on the opposing strand and/or diverse environmental conditions.  
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A B C D 

 
Figure 43. Different Shapes of G-QPX Structures in Zoomed AFM Image. 300x300 nm2 
areas of samples of transcribed plasmid showing (A), a blob (B), a loop (C), a spur and 
(D), double blob (2X). Shaded bar shows the height scale from 0–1 nm [110]. 
 
 

In the human ChAT promoter model (home lab - designed) G-rich sequences have 

the potential to form multiple G-QPXs within significantly close space (with distance less 

than 10 nucleotides). Condensation of consecutive G-QPXs is the main challenge 

blocking any attempt to separate and visualize an individual G-QPX structure. 

  
Fig.41-A shows the AFM image of 1508 plasmid fragment in presence of K+. 

Compared with the image of fragment in solution with no additive salt (only Tris - Hcl, 

pH=7)(data not shown), number of bright spots are identified in this image which can be 

caused by interaction of salt with either G-QPXs or ds DNA. Therefore, it can be 

concluded that the addition of K+ to the solution, triggers some interaction. The DNA 

assemblies appear to be stable because even after the solution was allowed to sit at room 

temperature for a week no significant difference was observed between 24hr incubated 

sample and 1 week incubated one (data not shown). 
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Significant increase in amount of bright spots identified in the AFM image shown 

in Fig. 42 as well as the increased clustering of DNA strands indicates the presence of 

TMPYP4 acting as stabilizing component for the consecutive G-QPXs in the active 

promoter region of the human ChAT gene. Interestingly, the G-QPXs shown in Fig. 42 

demonstrate formation of star shape structures (clusters of strands) as many G-QPXs 

aggregate into large, individual clusters that bind together multiple strands. 

Unfortunately, it is almost impossible to identify individual G-QPX in such structures 

due to its complexity. This type of structures (Fig. 42) can be categorized as multiple 

blobs (similar to Fig. 43-D) as suggested by Mela et al [110]. 
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CHAPTER V 
 

CONCLUSIONS AND FUTURE STUDIES 
 
 

5.1 Conclusions 

The identification, formation and function of G-QPX nanoswitch structures 

upstream of the transcription start side (TSS) in the active promoter region of an enzyme 

involved in neurotransmitter synthesis, specifically choline acetyltransferase (ChAT), 

have been investigated for the first time using computational and experimental 

techniques. A G-rich region with high potential for the formation of G-QPX has been 

identified as the active promoter region of the human ChAT gene, extending out 1000 bp 

upstream of the TSS. Within this region, there is a potential for four distinct G-QPXsto 

form in both DNA complementary strands, identified using several independent G-QPX 

prediction tools (bioinformatics analysis). Three consecutive intramolecular G-QPX 

structures in the negative strand and one of intramolecular G-QPX structure in the 

positive strand were identified (relative to the sense of the encoded ChAT gene). The  

results also suggest the possibility that nearby G-runs in opposed DNA strands that are 

too short to form an intrastrand G-QPX may be able to form a stable intermolecular G-

QPX (i.e., by interstrand H-bonding within a separated region of a DNA duplex).  
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The active promoter region of ChAT is highly CG-rich (74%) and thus has high 

potnetila to be aG-QPX forming region. This relatively short region has demonstrated 

remarkable effects on the control of gene expression [72]. While exploring literature no 

TFBS mapping information showing the physical binding of transcription factors to the 

active promoter region of human ChAT was found. Without the presence of TFBS 

mapping information, the assessment of importance of potential transcription factor 

binding sites on formation of novel G-QPXs is difficult task. As a result, performing a 

TFBS mapping analysis was a necessity initial step. The TFBS analysis presented in this 

work revealed that the active promoter (-1007 to -925) contains multiple consensus AP-

2α and Sp1 binding sites and consensus sites for other TF including multiple sites for 

GR-alpha, Pax-5, p53 and GC box. Disrupting the TFBS within this region could help us 

to get a better estimation of the silencing potential of identified G-QPX structures, where 

dramatic decrease in promoter activity due to formation of G-QPX structures leading to 

loss of the binding affinity of TF to their recognition sites is expected. Considering the 

possibility of G-QPX formation along with the observed effect of the QPX stabilizing 

drug TMPYP4 using our modified GFP plasmid with the ChAT promoter region showed 

that the likelihood of a silencing effect of these unique structures is significantly high. 

This result was confirmed in the transfected neuronal cells in which influx of Na+ ions 

was achieved via use of the Na+ ion-channel opening drug aconitine. Aconitine 

potentiated the action of the transcriptional activator NGF, suggesting that the effect of 

sodium is contrary to that of TMPYP4, i.e., that an increase in promoter activity may be 

due to instability of G-QPX structures in a high Na+ environment, which results in 
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melting these structures, enabling dsDNA formation required for the binding 

transcription factors to their recognition sites for initiation of transcription. The obtained 

results were confirmed in several independent sets of experiments, using GFP reporter 

gene measurement by plate reader and by flow cytometry. Also, further verification was 

reported by visualizing the fluorescence intensity using EVOS-microscopy.                                                

As final validation of the results obtained using the synthetic ChAT promoter-

reporter gene construct, quantitative RT-PCR was conducted to examine the regulation   

of the human ChAT gene expression in a neuroblastoma cell line by the same factors 

used in the reporter gene experimentss. The outcome indicated that the presence of 

TMPYP4 lead to a significant knockdown in ChAT mRNA expression (87%), suggesting 

that G-QPX stabilization inhibits promoter activity as expected. Results also showed that 

aconitine-mediated influx of Na+ ions has an opposite effect, presumably by inhibiting 

the formation of stable G-QPX structures, resulting in an increase in ChAT mRNA 

expression. 

Physical studies including CD spectroscopy and AFM imaging were conducted to 

analyze the folding topology and stability of identified consecutive G-QPX structures. 

CD results showed G-QPX structures with hybrid folding topology and high stability in 

K+ solutions. The hybrid configuration of ChAT G17-2 and ChAT G17 were in line with 

their arrangements of G-runs, suggesting the presence of a zero loop for both unique 

structures. The three intramolecular G-QPX structures (ChAT G17-2, ChAT G17, and 

ChAT G29) demonstrated enhanced stability inas potassium concentration was increased; 

G-QPX ChAT G 30 was an exception. Also, a proposed unique intermolecular G-QPX 
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that could form between the separated strands of the DNA duplex showed a highly stable 

parallel G-QPX formation in high K+ solution.  

In Li+ solution (2mM), ChAT G17-2 and ChAT G29 showed high stability, which 

opens new possibilities for the pharmacological mechanism of action of lithium salts as 

effective therapeutics for CNS diseases such as biopolar disorders. Lithium is known to 

somehow stabilize neurotransmitter levels and functions, so the possibility that this is 

mediated in part via the action of Li+ ions on G-QPX structures in the promoters of genes 

for neutrotransmitter synthesis merits further investigation. 

More importantly, the CD spectra of G-QPX motifs support the proposed novel 

hypothesis, regulating G-QPX formation and deformation through the influx and efflux 

of Na+ and K+ ions during the neuronal action–potential mechanism. Specifically, in the 

light of the entire body of results presented here, it can explain the gene silencing during 

nerve resting (stability of G-QPX due to high K+ inside the cell) and gene expression 

during prolonged nerve firing (melting the G-QPX through sustained influx of Na+ ions 

allowing Na+ accumulation in the nucleus). 

AFM imaging demonstrated star-shaped structures (involving clusters of DNA 

strands) due to stabilization of G-QPX structures with TMPYP4, resulting in their 

aggregation into large cluster of binding multiple strands. 

 As mentioned before, the AFM images suggest that upon incubation with 

TMPYP4, a greater number of these G-rich sequences have converted to G-QPX 

structures. Unfortunately, it is not possible to determine how many molecules of 
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TMPYP4 are bound within the loops. For instance, it has been reported that a 

parallel/antiparallel G-QPX hybrid structure binds externally with two TMPYP4 

molecules, interacting with two external loops [111]. Also, the binding of small 

molecules to G-QPXs may not change their stability and conformation but it may change 

the molecular recognition and binding of TFBS upstream of TSS which subsequently 

alter the gene transcription activity [112]. 

Overall, this body of work contributes to identification of G-rich sequence in the 

active promoter region of the human ChAT gene with great potential to form multiple G-

QPXs, stabilization of which results in down-regulation of ChAT gene transcription. The 

selected runs of guanine are close to binding sites for Sp1 and AP2-α transcription 

factors; their conversion to high order non-B form secondary structures (G-QPXs) would 

result in preventing access of Sp1 and AP2-α to their binding sites. The binding of Sp1 

and AP2-α is believed to up-regulate human ChAT gene transcription. Binding of 

TMPYP4 (meso-tetra (N-methyl-4-pyridyl)porphine) as a stabilizing compound to these 

G-QPXs result in down regulation of the human ChAT gene. 

The G-rich region of the active promoter of the human ChAT gene represents a 

new molecular target in development of small therapeutic molecules. It will be important 

to obtain more precise information about the actual secondary and 3D structures of 

naturally occurring G-QPXs and their structural complexes with drugs. An improved 

understanding of the structural details of these G-QPXs, and how they are influenced by 
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changes in the concentrations of alkali metal ions, will be required for this potential to be 

realized.  

 
5.2 Future Studies 

This study improves our current understanding of the mechanisms involved in the 

regulation of neurotransmitter synthesis during neural signaling. In a larger picture, it 

contributes to increasing our knowledge of human brain functionality and provides a 

blueprint for collecting data and computational model design of nerve system for building 

artificial structures, i.e., synthetic biology approaches. This could include the 

development of improved probes and devices (higher order structures) for the regulation 

of genes (neurogenesis, proto-oncogenes, and oncogenes) as nanostructured ON/OFF 

switches, which could result in activating or inhibiting transcriptional machinery, or other 

systems of interest. This work highlights the need to perform both experimental and 

computational modeling studies to confirm the obtained results and improve 

understanding of the G-QPX structures, stabilities, formation and importantly their 

biological function as novel small targets for small drug-like molecules. This can be 

achieved by conducting NMR analysis which is critical to understanding the folding 

topology of G-QPXs in different ionic solutions (individual or mixed ionic solutions). 

Additionally, although we have inferred effects upon the binding affinity of G-QPX 

motifs as a way to explain the observed effects of TMPYP4 and altered Na+ and K+ 

environments on our model system (ChAT gene expression), a more precise 

understanding of the thermodynamic stability of these structures and their interactions 
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with small molecule ligands and/or metal ions binding between the tetrad layers will 

require further in depth investigation by more direct physicochemical methods. 
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APPENDIX A 
 

CELL CULTURE AND CYTOTOXICITY OF TRANSFAST TRANSFECTION 
 
 

 IMR-32 Cell culture and passaging  
Human neuroblastoma, IMR-32 cells were purchased from American Type Cell 

Culture ATCC (Catalog No. CCL-127). IMR-32 cells are fibroblast or neuroblast type of 
cells which obtained from human brain tissue or derived from human metastatic site: 
abdominal mass (13 monts male). The cultural property of IMR-32 cells as adherent cell is 
that they are suitable for transfection, so they should be useful for expression measurement 
with exogenous genes. However, there has been in consist reports about their transfection 
efficiency, some literature studies  reported that these cells are not easy to transfect and 
exhibit a high transfection efficiency while others suggesting that with using proper 
transfection reagent they can be easily transfect.  

IMR-32 cells were grown in Minimum Essential Medium (MEM), 1X (low glucose, 
and 2.2 g/L sodium bicarbonate with L-glutamine & phenol red, no sodium pyruvate) 
(catalogue no. 11095080, Thermofisher), the media was mixed with 10% Fetal Bovine Serum 
to make the complete medium. Cell culture was maintained without the use of any 
antibiotics, incubation at 37 °C and 5% CO

2 
in a humidified environment.  

For passaging, Cells routinely were passaged when they reach 75% confluent, sub - 

cultured every 3-4 days at a seeding density of 2 x 10
4 

in 25 cm
2 

vent cap T- flasks (Corning) 
in a total volume of 5 mL media per flask. Cells were split at a ratio of 1:50 due to their fast 
rate growth. Incubation condition for cells was 37 °C and 5% CO

2 
in a humidified 

environment. Cell counting was performed using TC10 automated cell counter (Bio-Rad) and 
hemocytometer, for both techniques cell dilution was 1:1 in 0. 04% Trypan Blue.  

The medium was removed and cells were washed with 2-4 ml of pre-warmed 37 °C 
complete medium (which was placed in the incubator for at least 15 minutes) to remove the 
residual old medium. For passaging, Cells were then incubated with pre-warmed Trypsin 
EDTA solution (Catalog no. NC0043665)at 37 °C for 5-7 minutes. After detaching almost all 
of the cells, 2 ml of pre-warmed complete medium was added to stop trypsinization,   
pipetting was conducted to detach all cells. Next, cell suspension was transferred to 15 ml 
falcon tube (Falcon™ 15mL conical centrifuge tube) and centrifuged for 7 minutes. The 
supernatant discarded and the pellet was suspended with 1 ml of pre-warmed complete 
medium. Cells were diluted, counted and seeded as described previously.  

Different cell batches of the IMR-32 cell line were frozen and kept in liquid nitrogen. 
For cryopreservation; cells were diluted with a cold mixture of 90% compete medium (MEM 
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+ FBS) and 10% of DMSO to get a concentration of 1.0 x 10
6 

cells/. Cells were kept in 
freezing container and transferred to refrigerator for 2-3 hours followed by -80 °C incubation 
overnight and eventually stored in liquid nitrogen.  

Recovery of frozen cells was conducted through an immediate placing them in 37 °C 
water bath to rapidly thaw the cells (2 minutes). Followed by spraying with 70% ethanol and 
wiping with Kim wipe paper. Next, the vial content was transferred to 15 ml falcon tube 
(Falcon™ 15mL conical centrifuge tube) containing 9ml of 37 °C complete medium (which 
was placed in the incubator for at least 15 minutes) and centrifuged at 2000 g (125 xg) for 7 
minutes. The supernatant was discarded and the pellet was suspended in 1 ml of pre-warmed 
37 °C complete medium (Pipetting was done to mix the cells well with fresh media and 
separation). Next, cells were diluted and transferred to a 25 cm

2 

flask, and the total volume is 
brought to 5 ml by adding pre-warmed 37 °C complete medium. Finally, cells were observed 
under the microscope, followed by incubation at 37 °C and 5% CO

2
. 

 
 
Cytotoxicity Assays (MTT and MTS) 
 

MTT and MTS are tetrazoles and are used for proliferation assay; the reduction of 
tetrazolium salt indicates cells metabolic activity. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide, is a common proliferation assay and is used for measuring 
the reactivity of oxi-reductase enzymes (water soluble yellow tetrazole). MTS a novel 
tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium] in the presence of electron coupling reagent, phenazine 
methosulfate (PMS) is the same as MTT assay but it is a one-step assay (using one 
solution instead of two). It does not need the solubilization step which is required for 
MTT, and can produce the soluble formazan through the reduction with specific 
intercellular enzymes. They can be detected at absorbance arrange of 490-570 nm. 
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Figure 44. MTT Contains a Comment Tetrazole [the diphenyl-tertrazolium bromide 
(Water Soluble Yellow Tetrazole)] which upon the Reduction Mechanism, it turns into 
Insoluble Purple Formazan.  
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APPENDIX B 
 

PROTOCOLS OF PLASMID TRANSFECTION AND qRT-PCR 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
Figure 45. The pACGFP1-N3 Wild Type Plasmid Manipulation. It contains the CMV and 
CMV enhancer to highly express in mammalian cells. It was digested with HindIII and 
PciI  restriction enzymes, the whole promoter regions (around 600 bp) replaced with 
active promoter region of thehuman ChAT gene (174 bp). The plasmid was extracted 
from bacterial cells (JM109) using PureYield™ Plasmid Midiprep System from Promega 
(Catalog #: A2492). 
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4600 - 4700 Sequence: (PciI- 4662)     5’ACATGT3’ 

4601 TATGGAAAAA CGCCAGCAAC GCGGCCTTTT TACGGTTCCT GGCCTTTTGC 4650

4651 TGGCCTTTTG CTCACATGTT CTTTCCTGCG TTATCCCCTG ATTCTGTGGA 4700

 

600-750 sequence:  (HindIII-622)      5’AAGCTT3’ 

601 CCGGACTCAG ATCTCGAGCT CAAGCTTCGA ATTCTGCAGT CGACGGTACC 650
651 GCGGGCCCGG GATCCATCAT GGTGAGCAAG GGCGCCGAGC TGTTCACCGG 700

701 CATCGTGCCC ATCCTGATCG AGCTGAATGG CGATGTGAAT GGCCACAAGT 750

 

Active human ChAT promoter sequence + RE + overhang: 

              
5’GCTTGTCGACTCAGAGCTCTGAGGCTGGTGTGGGGCGTGTCCTCAAAGGGCGGGGC
CTGGCGTGCCTAGCTGGAGCGGGTCCTCAGGCTCCCCCGGGCGGCATCCCCAGGTCT
ATATAAGCAATGCT AAGCTTGACC3’-137    (137+10) =147       10= PciI and A overhang 

 

Primers: 

 
             F:   
 

                            
     5'- AAA AAC ATG TGCTT G TCG ACT CAG AGC TCT GAG GCT G -3' 
 

             R:     5'- GGT C AA GCT T AG CAT TGC TTA TAT AGA CCT GGG GAT G -3' 
 

4600F primer, Pcil (AC ATG T), Insert, Hind III (AAGCTTGACC),plus Actual 
GFP sequence:  

 
CTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTT
TTGCTCACATGTGCTTGTCGACTCAGAGCTCTGAGGCTGGTGTGGGGCGTGTCCTCA
AAGGGCGGGGCCTGGCGTGCCTAGCTGGAGCGGGTCCTCAGGCTCCCCCGGGCGGC
ATCCCCAGGTCTATATAAGCAATGCTAAGCTTGACCCGAATTCTGCAGTCGACGGT
ACCGCGGGCCCGGGATCCATCATGGTGAGCAAGGGCGCCGAGCTGTTCACCGGCATC
GTGCCCATCCTGATCGAGCTGAATGGCGATGTGAATGGCCACAAGT 
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qRT-PCR 

Primers designed for the human ChAT gene mRNA: 

Ref#: NM_001142933.1 

>gi|218931223:510-2528 Homo sapiens choline O-acetyltransferase (CHAT), 
transcript variant S, mRNA 
GTCCACACCTCTGCATCCCTGCACCAGGACTCACCAAGACGCCCATCCTGGAAAAGGTCCCCCGTAAGAT 
GGCAGCAAAAACTCCCAGCAGTGAGGAGTCTGGGCTGCCCAAACTGCCCGTGCCCCCGCTGCAGCAGACC 
CTGGCCACGTACCTGCAGTGCATGCGACACTTGGTGTCTGAGGAGCAGTTCAGGAAGAGCCAGGCCATTG 
TGCAGCAGTTTGGGGCCCCTGGTGGCCTCGGCGAGACCCTGCAGCAGAAACTCCTGGAGCGGCAGGAGAA 
GACAGCCAACTGGGTGTCTGAGTACTGGCTGAATGACATGTATCTCAACAACCGCCTGGCCCTGCCTGTC 
AACTCCAGCCCTGCCGTGATCTTTGCTCGGCAGCACTTCCCTGGCACCGATGACCAGCTGAGGTTTGCAG 
CCAGCCTCATCTCTGGTGTACTCAGCTACAAGGCCCTGCTGGACAGCCACTCCATTCCCACTGACTGTGC 
CAAAGGCCAGCTGTCAGGGCAGCCCCTTTGCATGAAGCAATACTATGGGCTCTTCTCCTCCTACCGGCTC 
CCCGGCCATACCCAGGACACGCTGGTGGCTCAGAACAGCAGCATCATGCCGGAGCCTGAGCACGTCATCG 
TAGCCTGCTGCAATCAGTTCTTTGTCTTGGATGTTGTCATTAATTTCCGCCGTCTCAGTGAGGGGGATCT 
GTTCACTCAGTTGAGAAAGATAGTCAAAATGGCTTCCAACGAGGACGAGCGTTTGCCTCCAATTGGCCTG 
CTGACGTCTGACGGGAGGAGCGAGTGGGCCGAGGCCAGGACGGTCCTCGTGAAAGACTCCACCAACCGGG 
ACTCGCTGGACATGATTGAGCGCTGCATCTGCCTTGTATGCCTGGACGCGCCAGGAGGCGTGGAGCTCAG 
CGACACCCACAGGGCACTCCAGCTCCTTCACGGCGGAGGCTACAGCAAGAACGGGGCCAATCGCTGGTAC 
GACAAGTCCCTGCAGTTTGTGGTGGGCCGAGACGGCACCTGCGGTGTGGTGTGCGAACACTCCCCATTCG 
ATGGCATCGTCCTGGTGCAGTGCACTGAGCATCTGCTCAAGCACATGACGCAGAGCAGCAGGAAGCTGAT 
CCGAGCAGACTCCGTCAGCGAGCTCCCCGCCCCCCGGAGGCTGCGGTGGAAATGCTCCCCGGAAATTCAA 
GGCCACTTAGCCTCCTCGGCAGAAAAACTTCAACGAATAGTAAAGAACCTTGACTTCATTGTCTATAAGT 
TTGACAACTATGGGAAAACATTCATTAAGAAGCAGAAATGCAGCCCTGATGCCTTCATCCAGGTGGCCCT 
CCAGCTGGCCTTCTACAGGCTCCATCGAAGACTGGTGCCCACCTACGAGAGCGCGTCCATCCGCCGATTC 
CAGGAGGGACGCGTGGACAACATCAGATCGGCCACTCCAGAGGCACTGGCTTTTGTGAGAGCCGTGACTG 
ACCACAAGGCTGCTGTGCCAGCTTCTGAGAAGCTTCTGCTCCTGAAGGATGCCATCCGTGCCCAGACTGC 
ATACACAGTCATGGCCATAACAGGGATGGCCATTGACAACCACCTGCTGGCACTGCGGGAGCTGGCCCGG 
GCCATGTGCAAGGAGCTGCCCGAGATGTTCATGGATGAAACCTACCTGATGAGCAACCGGTTTGTCCTCT 
CCACTAGCCAGGTGCCCACAACCACGGAGATGTTCTGCTGCTATGGTCCTGTGGTCCCAAATGGGTATGG 
TGCCTGCTACAACCCCCAGCCAGAGACCATCCTTTTCTGCATCTCTAGCTTTCACAGCTGCAAAGAGACT 
TCTTCTAGCAAGTTTGCAAAAGCTGTGGAAGAAAGCCTCATTGACATGAGAGACCTCTGCAGTCTGCTGC 
CGCCTACTGAGAGCAAGCCATTGGCAACAAAGGAAAAAGCCACGAGGCCCAGCCAGGGACACCAACCTTG 
ACTCCTGCCACTAGGTTTCACCTCCCAAACCCAGCCTCTAGAACAGCCAGACCCTGCAG 
Primer design                                                           

Amplicon length:  83 

F: TGTGGTCCCAAATGGGTATG  (sense)       Length:  20    TM: 62     GC%: 50  

R: TGCAGCTGTGAAAGCTAGAG (antisense) Length:  20    TM: 62     GC%: 50 
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APPENDIX C 
 

AFM DNA SAMPLE PREPERATION AND INITIAL IMAGING 
 

  

 

 

 

 

 
 
Figure 46. AFM Plasmid Constuction. A) pAcGFP1-N3- modified plasmid (4189 bp)with 
active promoter region of the human ChAt gene sequence, 147bp (wild type CMV 
promoter cut out). B) Cut- pAcGFP1-N3- modified plasmid (1508 bp), double digested 
fragment between ApLa and AfIII restriction enzymes. 

pAcGFP1-N3- modified plasmid 

Cut- pAcGFP1-N3- modified plasmid 
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B 

              
 
Figure 47. AFM Images of G-wires on pAcGFP1-N3- Modified Plasmid (1508 bp DNA 
Fragment).  The image of G- wires is 5x5 μm2 at 2-nm height scale (A), and 600x600 
nm2 at 2-nm height scale. DNA substrate were incubated in a buffer containing 100mM 
KCl and deposited at 500 nM concentration. The white line arrows indicated the position 
of G-wires. 
 
 
Table 10. Single - Temprature Digestion Protocol. Single and double digestion of  
pAcGFP1-N3- modified plasmid reaction mixture using ApLa and AfIII restriction 
enzymes, incubation at 37 °C for 1-2 h. 
 

Reaction mixture Double Single single 

DNA template 5μL 2.5μL 2.5μL 

NEB 2.1 butter (10x) 5μL 2.5μL 2.5μL 

ApLa  1μL 1μL - 

AfIII 1μL - 1μL 

dH2O Up to 50μL Up to 25μL Up to 25μL 
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Figure 48. Digestion Image of pAcGFP1-N3- Modified Plasmid. Both single and double 
digestions performed at 37 °C incubation for 1-2 hr, then samples run on a 1% agarose 
gel and imaged by UV-shadowing. Lanes 1 & 2 are for single digestion (ApLa & AfIII, 
respectively). Laneis for un-cut plasmid an dlanes 3 &4 are for double digestion (ApLa & 
AFIII) & Marker, respectively.   
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