
Conlangtionary: Prototyping a Language-Agnostic Dictionary for the Web

by

Christopher Waldon

Honors Thesis

Appalachian State University

Submitted to the Department of Computer Science

in partial fulfillment of the requirements for the degree of

Bachelor of Science

May 2016

APPROVED BY:

E. Frank Barry, Thesis Project Director

Donna Lillian, Ph.D., Second Reader

Dee Parks, Ph.D., Departmental Honors Director

Ted Zerucha, Ph.D., Interim Director, Honors College

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/345083036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c� Christopher Waldon 2016
All Rights Reserved

ii

ABSTRACT

Conlangtionary: Prototyping a Language-Agnostic Dictionary for the Web.

(May 2016)

Christopher Waldon, Appalachian State University

Appalachian State University

Thesis Chairperson: E. Frank Barry

This project documents a prototype system that represents spoken languages of arbitrary struc-

ture or complexity for use by field linguists and conlangers. The prototype is capable of rep-

resenting complex languages, but serves only as a foundation for future work, as it lacks many

generative features that would make it appealing to its target audience.

iii

Contents

1 Introduction 1

2 Description 3

2.1 Language Representation . 3
2.2 Language Generation . 6
2.3 Access Control . 7

3 Implementation 9

3.1 Database . 9
3.2 Permissions . 10
3.3 Aesthetics . 11
3.4 Morphological Generation . 11
3.5 Hosting . 12

4 Usage 13

4.1 Accessing Conlangtionary . 13
4.2 Exploring Conlangs . 13
4.3 Account Registration . 15
4.4 Logging In . 16
4.5 Creating a Language . 16
4.6 Defining a Word . 17
4.7 Creating a Definition . 18
4.8 Creating a Tag . 19
4.9 Editing the Description . 20
4.10 Using the Morphological Generator . 21

5 Future Research 24

5.1 Access Control Refactor . 24
5.2 Tag Refactor . 25
5.3 Definition Augmentation . 25
5.4 Description Removal . 26
5.5 Dictionary View . 26
5.6 User Interface . 27
5.7 Application Programmer Interface . 27
5.8 Language Assumptions . 28
5.9 Stored Transformations . 28
5.10 Summary . 29

iv

6 Conclusion 30

Bibliography 31

Appendices 32

A Code Information and Access 33

v

List of Tables

2.1 English Regular Verb Conjugation in the Past, Present, and Future Tense 7

vi

List of Figures

3.1 An overview of the structure of Conlangtionary’s Database as an EER Diagram. 10

4.1 The Conlangtionary Home Page (not logged in). 14
4.2 The Keebouuzhodee Language Page (not logged in). 15
4.3 The registration form. 16
4.4 The login form. 17
4.5 The language creation form. 17
4.6 An empty language. 18
4.7 The word definition form. 19
4.8 An example language with its first word and definition. 20
4.9 The tag creation form. 21
4.10 The description editing form. 21
4.11 The morphological generator. 23

vii

Chapter 1

Introduction

Conlangtionary exists to solve a very specific problem: storing a language in a web platform

(as a dictionary and grammar) in such a way that you could theoretically represent any spo-

ken language. Why does this problem matter? Many existing online dictionary services (e.g.

Wiktionary [11]) make assumptions about the language that you are working on. Namely, they

assume that the language already exists or that it is relevant to the entire online community.

While these may seem like good assumptions, they actually hinder the platform’s usefulness to

two audiences: field linguists and “conlangers”.

Field linguists are simply researchers working to profile and preserve obscure spoken

languages [12], but conlangers require more explanation. Conlanging is the hobby of inventing

languages. To put it in more eloquent terms:

Conlanging is to linguistics what painting is to art history, or hacking to computer

science. Its a way of directly playing with language sometimes just for fun, and

sometimes to test out a new theory about how language works with the mind. [4]

People conlang for many reasons. Authors often create languages for fictional worlds.

TV shows and movie productions have recently started to hire conlangers to create the fictional

languages for their worlds. Marc Okrand is best known for creating the Klingon language, but

he has also created other languages commercially such as the Atlantean language for Disney’s

Atlantis. His success, and the success of others like him, has inspired many people to dabble

in language creation. These cells of conlangers find one another through the internet, often via

1

2

reddit’s /r/conlangs or the Language Creation Society’s listserv, and they build communities

dedicated to sharing languages and techniques for their creation. At the time of this writing,

reddit’s conlanging community numbers 9,098 members. These communities share their lan-

guages online with platforms like Wikipedia that, while free and open-source, ultimately hinder

their e↵orts by forcing users to create a page for each word and to manually enter a lot of

information. Entering data in this way is tedious, and the results of such e↵ort only serve to

demonstrate how such a page-per-word format is ill-suited to the task of representing language.

To be clear, there are software tools such as PolyGlot for developing conlangs, but

none of them are accessible as web applications. They force users to develop in a desktop

environment, which makes it much harder for conlangers to share their languages with others

or to collaborate on a common set of files. Conlangtionary is an e↵ort to change that.

Chapter 2 describes the design and intentions of the model that the project uses to store

and manage user-created languages.

Chapter 3 discusses the technologies and frameworks used to create Conglangtionary

and explains why they were chosen.

Chapter 4 walks through using the Conlangtionary platform to create a language.

Chapter 5 suggests improvements for future researchers to make the platform more

useful.

Chapter 6 summarizes the project.

Chapter 2

Description

There are many design considerations when one is creating a web application with maximum

flexibility. It is easy to make an assumption about how users will want to structure their data,

and that assumption may unintentionally limit the capabilities of the software as a whole.

Originally, Conlangtionary’s design included features that tracked a definition’s part-of-speech,

but further consideration revealed that this design would limit conlangers to using parts of

speech as a fundamental lexical category in their languages. This original design was refined

for several months before arriving at the structure that the platform currently uses to store

languages. Ultimately, the structure of Conlangtionary’s data model can be broken down into

three subsections: Language Representation, Language Generation, and Access Control.

2.1 Language Representation

Representing the internal structure of a language as data is di�cult. It might be intuitive to

break a language into words and to make each world have attributes like parts of speech and

tense, but it is also extremely restrictive. By doing so, you limit the ways in which a word can

be categorized. The concept of a “part of speech” is simply a role that grammarians assign to a

word, rather than an absolute law of linguistics. To allow adequate flexibility for the conlanging

user, a di↵erent structure is necessary.

3

4

Words

In languages that have a written form, a word is a sequence or “string” of characters convey-

ing a pronunciation and meaning. However, a single word can have more than one definition.

Consider the English word “cleave.” Cleave means both “to adhere firmly and closely or loy-

ally and unwaveringly” and “to separate into distinct parts and especially into groups having

divergent views,” and it is thus the only English word to be its own antonym [2]. Clearly, any

flexible language design needs to accommodate the overloading of a word by allowing multiple

definitions. Since words can also have definitions with di↵ering parts of speech (e.g. “to go on

a walk” where “walk” is a noun, and “I walk” where “walk” is a verb), a reasonably flexible

design must store data about the usage of a word at the definition level as well. This leaves

little more than the string of characters that form a word to be stored at the word level, and

instead puts most information into definitions.

Definitions

A word’s definition needs to have several components: a fragment of text explaining that word’s

meaning, a pronunciation guide of some sort, an association with the word that it defines, and

information about how to use this definition in context. The fragment explaining its meaning

can be as simple as “this word means tree” or as complex as “[the] continuous surface of the

body ... that begins with the inside flesh of the fingers and continues over the palm of the

hand and up the inner side of the arm to the bend of the elbow” [5]. Pronunciation guides vary

between languages, but often a string in the International Phonetic Alphabet su�ces.

The most challenging element of designing a definition is storing information about its

grammatical role. The most naive way would be to allow a paragraph explaining proper usage to

readers, but this is both cumbersome and di�cult to parse. Searching by such information would

require users to be perfectly consistent in formatting or messy keyword searches. However, the

obvious alternative of hard-coding a part of speech, tense, declension, aspect, or any other

obscure lexical category leaves the conlanger unable to invent meaningful categories for their

definitions that can then be expressed by the application. To solve this problem, Conlangtionary

uses tags on definitions to store data.

5

Tags

Readers will no doubt be familiar with the kinds of tags that are used to categorize blog posts

or tweets. Conlangtionary employs a similar system to organize definitions according to how

they function within a language. Since a given definition can have any number of tags, it follows

that those tags are capable of placing that definition into any number of sets of words with the

same tag. This means that tags can be used for every level of meaningful di↵erentiation within

a language.

For instance, if a user were defining the English language in Conlangtionary, they might

create a word “walk” with multiple definitions. Walk could be tagged as a “Noun” if the user

were simply tagging by English parts of speech, but that fails to leverage the full power of

the tagging system. Walk could also be tagged as “Singular,” “Regularly Pluralized,” and

“Quantitative.” These could mean, respectively, that the word is currently in a singular form,

that it follows the usual English pluralization rule (namely, adding an “s” su�x) and that it

can be used grammatically with a quantity. The last is important because words that refer to

substances often cannot be used in this way. For instance, one cannot say “I have two rice and

eighteen water” without context.

Tags are also extremely useful when it comes to Conlangtionary’s generative features

(see section 2.2).

Descriptions

A language description is by far the simplest component of a Conlangtionary language. A

Description is a markdown description of the language and its use [3]. It has no length limit,

and it is intended to describe the culture, origin, pronunciation, and grammar of the language.

Since it is in the markdown format, it can easily hyperlink to external resources on the language,

which is the preferred way to include reference materials.

Structure Summary

To put all of the components together, a Conlangtionary language is a markdown description,

a collection of words, and a collection of tags. Each word in the language has many definitions

6

and each of those definitions has many tags. This loose structure allows the language creator to

define arbitrarily complex categories for their language without encountering limits mistakenly

imposed by the application developer. Ultimately though, representing a language doesn’t

make Conlangtionary any more useful than a digital notebook. The generative features of the

platform are what allow it to actually surpass its pen-and-paper counterparts.

2.2 Language Generation

Asking a digital system to understand a completely arbitrary grammar is a hard problem, which

is why Conlangtionary–in its current incarnation–makes no attempt whatsoever to comprehend

language grammar. However, Conlangtionary does understand regular expressions, and it is

able to use these regular expressions to generate new vocabulary based on certain inputs.

This feature was key in di↵erentiating a platform like Conlangtionary from something

like Wiktionary. Wiktionary tries to include all conjugations/declensions/pluralizations of a

given word on that word’s page, but these entries must always be entered by hand. This

process is tedious, time-consuming, and error-prone. It seems like a platform with the data-

manipulation capabilities of a modern computer should be able to handle such transformations

automatically, provided that they follow rules. This is what Conlangtionary o↵ers in its Mor-

phological Generator feature.

Tag-based Generation

As a simple example of how to leverage the Morphological Generator, consider the English verb

“walk.” An assidious conlanger profiling English could have tagged it with the following: “Verb,”

“First-Person Singular,” “Present-Tense,” and “Regular-Conjugation.” With this knowledge, we

should be able to conjugate this verb into many other tenses, as the conjugation follows the

regular English verb conjugation (see Table 2.1).

The transformation from the First-Person Singular in the Present Tense to the First-

Person Plural in the Present Tense is trivial. The word does not change, but simply acquires

more definitions. The transformation to the other tenses is also trivial. Appending an “-ed”

7

Table 2.1: English Regular Verb Conjugation in the Past, Present, and Future Tense

Past Singular Plural

First-Person -ed (I walked) -ed (We walked)
Second-Person -ed (You walked) -ed (You all walked)
Third-Person -ed (He/She walked) -ed (They walked)

Present Singular Plural

First-Person no change (I walk) no change (We walk)
Second-Person no change (You walk) no change (You all walk)
Third-Person -s (He/She walks) no change (They walk)

Future Singular Plural

First-Person will - (I will walk) will - (We will walk)
Second-Person will - (You will walk) will - (You all will walk)
Third-Person will - (He/She will walk) will - (They will walk)

su�x or prepending the word “will” isn’t very hard either (the specifics of how this is achieved

are discussed in section 3.4).

Since these transformations are trivial, Conlangtionary has an easy interface for selecting

definitions with a given set of tags and transforming them into other definitions with di↵erent

tags based upon simple regular-expression rules. This allows conlangers to define many words

in a single context and then generate their other forms (provided that they follow consistent

rules). Of course, most languages have irregular transformations, but the user can easily define

those special words’ other forms.

Section 4.10 contains a step-by-step walkthrough of using the Morphological Generator

to contextualize its usage.

2.3 Access Control

The final design issue within Conlangtionary is how to handle user permissions. Ideally, a

platform like Conlangtionary would allow collaboration with peers in the conlanging community

via invitation and would optionally allow a language to be developed by the general public.

Unfortunately, Conlangtionary doesn’t have a sophisticated system for managing which users

can perform what actions on which content. Instead, any authenticated user can edit anything

and create anything. The only real restriction is that only someone with an administrator

8

account can delete content. This helps to protect against a user having their work erased by

other users, but fails to protect users from having their content overwritten. Conlangtionary

uses this system purely for its simplicity.

Chapter 3

Implementation

Conlangtionary is a web application that processes highly structured data. With that in mind,

it is built on top of several popular technologies for modern web development.

The logic that processes the data and handles user requests is in PHP and is built atop

the Laravel framework [8]. Laravel handles the majority of modern web security behind the

scenes, which allowed for more time to develop Conlangtionary’s other features. Laravel also

abstracts away much of the database interaction necessary to store and retrieve data through its

Eloquent ORM (Object-Relational Mapping). This allows Conlangtionary’s code to be deployed

on platforms with MySQL or PostgreSQL as the database implementation with minimal (or

no) code changes. The site’s look and feel are built atop Bootstrap CSS (version 3) [1].

3.1 Database

As Section 2.1 shows, it is the structure of Conlangtionary’s data that allows languages to be

built flexibly. Translating Section 2.1’s text description into a database schema is surprisingly

easy. The rough relationships between tables in the database can be described as follows:

Conlangtionary has many languages. A language has many words, many tags, and a single

description. A word has many definitions. A definition has many tags. This structure can be

seen in Figure 3.1.

Conlangtionary’s running instance uses PostgreSQL because that is the only free database

option on Heroku hosting (see Section 3.5).

9

10

Figure 3.1: An overview of the structure of Conlangtionary’s Database as an EER Diagram.

3.2 Permissions

Just as Conlangtionary development commenced, Laravel released an update in which they

added an Authorization layer called Gate into the default framework. Gate allows an application

developer to specify user permissions as a function of the attempted action, the user performing

the action, and the object that is being acted upon. For instance, if a user wanted to edit a

word, the Gate logic would check whether that particular user has the permissions necessary

to edit that particular word. This o↵ers excellent granularity of permissions, but results in

a rule for every single action upon every single kind of entity stored in the database. The

primary motivation behind Conlangtionary’s existing permissions was keeping this section of

the application simple. To achieve simplicity, authenticated users were given the ability to

perform any action except deleting content. An administrator account can perform any action.

This logic was easy to write and to enforce, but has considerable drawbacks (see Section 5.1).

11

3.3 Aesthetics

The appearance and layout of Conlangtionary are, by and large, simply the defaults of the

Bootstrap CSS Framework [1]. No user interface was planned before beginning development,

which resulted in an awkward and somewhat counterintuitive user interface that grew new

features without rhyme or reason.

In the beginning, most content was managed through global management menus (a

menu for all languages on the site, a menu for all words on the site, a menu for all definitions,

etc.), but as the quantity of content grew, this strategy rapidly became untenable. Instead

of global menus, each language gained a page from which a user could edit any part of that

language. Unfortunately, the old global menus were left in the user interface, which served as

a source of confusion for several users.

The final structure of language managers di↵erentiates di↵erent types of content with

colored panels. This can be seen in Figure 4.2.

3.4 Morphological Generation

The most complex component of Conlangtionary’s subsystem is the morphological generation

feature that allows users to specify transformations between di↵erent forms of a word. To use

this feature, a user selects a set of definition tags that match definitions that are a↵ected by

some morphological rule (for instance, verb conjugation or noun declination). After selecting

these “source tags,” the user can define a regular expression that will be matched against the

word strings of each definition bearing all of the source tags. The regular expression can have

parenthetical sections that capture a section of the word’s text for later reuse. Similarly, to

specify the results of the transformation, a user selects a set of definition tags and writes a

string that uses the captured sections in a new context. This behavior is common among

programmatic uses of regular languages. In this case, the PHP preg replace() function is used

[9].

12

3.5 Hosting

The instance of Conlangtionary that actually saw use ran on the Heroku hosting platform [6].

Heroku o↵ers a free tier of hosting that has a limited database size, relatively slow response

time, and is required to sleep for 6 hours a day. While these constraints would cripple many

serious applications, Conlangtionary’s database didn’t grow larger than the database allowed

and no one ever actually used the application for 18 hours in a single day, so Heroku proved an

excellent choice for prototyping the system.

Chapter 4

Usage

Conlangtionary is, fundamentally, a tool for language development. As such, there are specific

actions that a user can take within the platform to develop a language. This chapter serves as

a walkthrough for the basic operations of using Conlangtionary.

4.1 Accessing Conlangtionary

At the time of writing, there was a running instance of Conlangtionary on Heroku cloud hosting

(see Section 3.5) available at conlangtionary.herokuapp.com. The server is slow, so it

could take up to 30 seconds for the page to load. This latency is a result of the server being

asleep. After a user establishes a connection, it should be significantly more responsive. When

the page does load, the view should be similar to Figure 4.1. Conlangtionary allows any user

to view content, which is demonstrated in Section 4.2, but only authenticated users can create

or edit content (see Section 4.3).

4.2 Exploring Conlangs

To explore a conlang, a user simply needs to click on its name on the home page (the page in Fig-

ure 4.1). To return to the home page, a user can just click the site’s title (the Conlangtionaryalpha

in the upper-left of every page).

13

14

Figure 4.1: The Conlangtionary Home Page (not logged in).

Every conlang has a page similar to the one depicted in Figure 4.2. The page is divided

into four colored content areas. It is important to note that the color of the area does not have

any significance other than distinguishing sections easily. The green section hosts the language’s

name along with a sentence-length description and any language-level user notes. The yellow

area houses all of the language’s tags (see Section 2.1). The blue is the language’s description

(see Section 2.1). Finally, the red area houses each word with all of that word’s definitions

listed beneath the word (see Sections 2.1 and 2.1).

Generally, the description of a language will include a rough summary of the language’s

grammar and usage. It might also include external links to resources on the language hosted

elsewhere. To get a feel for a language, it is best to look at the grammar and usage examples,

and then to play around with the vocabulary.

The words in the red area are formatted in deliberate imitation of a dictionary. Each

word has definitions listed below it, and those definitions begin with the abbreviations for every

tag present on that definition. This means that if a language tags words by part of speech,

words will appear with their part of speech before their definition (much like English dictionaries

currently do). Every tag shows its abbreviation after its name in the yellow area, so it should

be easy for users to figure out what the tags on a definition mean from this page.

15

Figure 4.2: The Keebouuzhodee Language Page (not logged in).

4.3 Account Registration

Signing up for Conlangtionary is easy. When a user is not logged in, all they have to do is click

on the “Create an Account” link on the top right of the screen. This takes them to the page

depicted in Figure 4.3.

Filling out this form creates a user account that can log in with the given username and

password combination. There isn’t currently any email validation, which does leave the site

vulnerable to spam accounts. Once a user has an account, they can just click the “Log In” link

16

Figure 4.3: The registration form.

in the future to access the protected features of the site.

4.4 Logging In

Logging into Conlangtionary is simple. Clicking the “Log In” button in the menu takes a user

to the form shown in Figure 4.4. Filling out a valid email and password combination allows a

user into the site.

4.5 Creating a Language

Getting started in Conlangtionary requires a language to work on. There is a button on the

home screen labeled “Create a Language” that begins the process of building a conlang. If

a user is not logged in, the button will redirect to a login screen before allowing the user to

proceed. The form for creating a language is simple, and can be seen in Figure 4.5.

To create a language, a user must provide some name for that language and a sentence-

length description of that language. They can optionally provide notes about that language,

though the usage of the notes section varies widely by user.

17

Figure 4.4: The login form.

Figure 4.5: The language creation form.

Once a user submits that form, they are taken to a very empty version of Figure 4.2,

but with controls to manipulate the language. These controls appear because the user is logged

in. The empty language with controls can be see in Figure 4.6.

4.6 Defining a Word

Languages are built of words, and every word in a language has at least one meaning. To create

a word with its first definition, a user can click the red “Define New Word” button in Figure

4.6. This will take a user to the form for creating words, which can be seen in Figure 4.7.

The di↵erent form fields are fairly simple. The field labeled “Word” is looking for the

unicode string that this language uses to write down that word. The “Language” dropdown

18

Figure 4.6: An empty language.

menu allows a user to change which langauge that they are editing from this form, although

this use case has become less and less common as the site has developed. “Word Notes” can be

any text regarding this word. These notes are intended to be a place for conlangers to discuss

this word with one another.

The Definition section of the form is used to create this word’s first definition. “Def-

inition Text” is the actual phrase or sentence describing the meaning of the word in a given

context. “Definition Tags” is an input for adding multiple tags to a word. If a user clicks within

the “Definition Tags” form field, it will bring up a dropdown menu of every tag in the language.

The user can select as many or as few tags as they wish to. Additionally, typing the name of

a new tag and pressing the Enter (or Return) key will create a new Tag in the language that

will be attached to this definition. “Definition Notes” serve the same role as Word Notes, but

regarding a specific definition instead of a word.

When the user submits this form, they will be returned to the language’s page, but it

will now contain their word and definition (see Figure 4.8).

4.7 Creating a Definition

Once you have a word, adding a definition is straightforward. The “Add Definition” button in

Figure 4.8 takes a user to the definition creation form. The definition creation form has the

19

Figure 4.7: The word definition form.

exact same components as the definition section of Figure 4.7, and it can be filled out in the

same way.

Editing a definition uses this same form. To edit a definition, use the “Edit Definition”

button next to the definition in question in Figure 4.8.

4.8 Creating a Tag

Creating a tag works much the same way as creating a definition. Using the yellow “Add Tag”

button in Figure 4.6, a user can access the tag creation form (Figure 4.9).

The tag needs a name. Since tags can be used to encode any kind of information about

a definition, it is di�cult to suggest what to use. If a user is encoding parts of speech, the name

of that part of speech will su�ce.

Tags also ask for an abbreviation. This will be displayed before the definition text of

any definition with that tag. For parts of speech, this makes it very easy to display (n.) before

20

Figure 4.8: An example language with its first word and definition.

nouns and so forth.

The tag description is a text description of what it means for a word to bear that tag.

For parts of speech this can be a description of the role of that part of speech, but for other kinds

of tag this can become quite complex. For instance, if a user were to tag by verb conjugation

type, the description would need to explain how that type conjugates, or at least the di↵erence

between words in that class of conjugation and other words in the language.

As with every data entity in Conlangtionary, tags can also have notes, which ought to

be used for internal reference and collaboration on the part of conlangers working with the

language.

4.9 Editing the Description

The language description is simply a text area that supports the Markdown text format [3].

Users can write any content related to the language that they desire. Because it uses Markdown,

users can even provide links to external resources about their languages if they desire.

The form looks like Figure 4.10, and it provides a link to resources on Markdown for

users who might be unfamiliar with the format.

21

Figure 4.9: The tag creation form.

Figure 4.10: The description editing form.

4.10 Using the Morphological Generator

The Morphological Generator is the real power tool at the heart of Conlangtionary. Without

it, Conlangtionary as a platform is just a descriptive tool. With it, Conlangtionary becomes a

generative tool in its own right.

Morphological Generation is all about transforming a word from one form to another. To

start with, Conlangtionary assumes that the word (or, more accurately, the word’s definition)

is tagged with all of the necessary information to distinguish between words that should be

transformed and words that should not be a↵ected. If definitions are not tagged with su�cient

22

granularity, the generator will be useless for that language.

For example, if a user has tagged all of the Adjectives in a language simply as Adjectives,

they could easily transform adjectives into a noun form if all adjectives morph into nouns

following a single, consistent rule. For the sake of a simple example, assume that the language

in question is called SIMPLE and has the rule that any adjective can be made into a noun

by adding the su�x “ack.” To turn the made-up SIMPLE adjective “yasson” into a noun, one

simply makes it “yassonack.” To perform this change, a user can simply tell Conlangtionary to

take all definitions in SIMPLE with the tag “Adjective” and add “-ack” to the end of their word

forms to create new words with the same definition as the Adjectives but tagged as “Noun”.

If that rule has exceptions, then the generator cannot be applied unless all of the words that

follow the rule share an additional tag that the words that do not follow the rule lack. If all

of the adjectives that follow the rule share the tag “Regularly-Nominalized,” the generator can

still perform the transformation. The only di↵erence would be that it must select definitions

bearing both the “Adjective” tag and the “Regularly-Nominalized” tag.

To specify this transformation through the user interface, a user must click the gray

“Morphological Generator” button seen in Figure 4.6. This will bring a user to the page shown

in Figure 4.11.

There is an explanation of the use of the generator on the page, but another is included

here for the sake of completeness.

First, a user should select the tags that they want to operate on from the “Source Tags”

multi-select form element on the left. To select more than one, hold down the control key when

clicking. Once the source tags have been chosen, the user should insert a PHP regular expression

into the “Source Pattern” input. This pattern is used to recognize and capture parts of the

words that are needed in the result of the transformation. In the case of the above example, the

user would select Adjective as a source tag and would use the pattern /ˆ([[:alpha:]]+)$/

to capture the entire word as an adjective.

After configuring the source information, the user follows a similar procedure to specify

the output of the transformation. “Target Tags” are the tags that the definitions created by

the generator will bear, and “Target Pattern” specifies the structure of the words that those

definitions will define. To continue with the same example, the target tag would be “Noun”

23

Figure 4.11: The morphological generator.

and the target pattern would be $1ack. The “$1” is replaced with the first item from the

source pattern that was surrounded by parenthesis. Since the source pattern surrounds the

whole word with parenthesis, the target pattern will append “ack” to the source words and

define them tagged as nouns instead of adjectives. The definitions may need to be rephrased

to reflect that the words have changed parts of speech, but such changes are too subtle to be

automated.

Once a user clicks “Generate,” Conlangtionary will transform all matching words and

insert them with the same definitions text that they had before. The di↵erence will be that the

definitions will bear di↵erent tags. While this may not seem exceedingly useful in the above

instance because the user might need to rewrite dozens of definitions, it can very easily be

used to generate alternative conjugations of a verb or declensions of a noun without needing to

change any definition text.

Chapter 5

Future Research

Conlangtionary is a prototype system. Though it does surpass a platform like a wiki for

representing a language, the awkward design of its user interface and access control system

hold it back from being an immediate replacement for current online conlanging platforms. At

its core, though, Conlangtionary does have a solid model for representing spoken languages. To

make it ready for the conlanging community at large, it needs a number of substantial refactors.

This chapter details each major area that could benefit from change.

5.1 Access Control Refactor

As discussed in Section 2.3, Conlangtionary implements a very simple policy for which users

can perform which tasks. Admins can do all actions to all content, authenticated users can

do anything but delete content, and nonauthenticated users can only read content. While

this simplicity made Conlangtionary’s code simpler, it made users unable to destroy erroneous

data. While users still had the option to edit an incorrect word or definition to make it valid,

it would be simpler to just allow them to delete the content. A more developed system could

be implemented as follows:

Content can be marked as public or private. Content belongs to a single “creator” user,

a single “owner” user, and many (or only one) “contributor” users. The creator of a piece of

content controls who else can own it. This includes removing themself from the owners of the

24

25

content, after which time they lose the ability to modify who owns the content. Any owner of

a piece of content can edit or delete it.

5.2 Tag Refactor

Tags are a great, flexible, expressive way to cluster vocabulary into arbitrary categories with

user-defined meaning, but the current implementation has one flaw: tags cannot form internal

hierarchies. Currently, if your language operated with multiple types of pronoun, you would

need a tag for each type of pronoun. If your language also operated on pronouns as a whole, each

definition that defined a pronoun would need both the “pronoun” tag and the “demonstrative

pronoun” tag (for example).

At first glance, this system seems fine, and it is adequate to group words. However,

the experience of adding multiple necessarily-related tags to a word rapidly becomes tedious.

If a user has already placed a definition into a subcategory of “pronoun” (by tagging it as a

“demonstrative pronoun”), why should they need to tag it as a “pronoun” as well?

This problem can easily be solved by allowing tags to form a tree, much like biological

taxonomy. Give each tag a reference to another “parent” tag at the database level. If a word

is tagged, it inherits all of the parent tags of its tags. This would require relatively little work

on the database side of the application, but significant refactoring of the User Interface and of

the logic that creates definitions and tags.

5.3 Definition Augmentation

Currently, definitions are some text that defines the word, a set of tags that apply to that

definition, and some notes about that definition that can be used for essentially any purpose.

These features su�ce, but there are two major areas in which definitions can be improved.

Firstly, definitions could include a field for a pronunciation guide. This string could

be written in the International Phonetic Alphabet or in phonetic English; the only important

thing is that it helps the user discern the correct way to pronounce the word [7]. This refactor

requires small changes to the database, creation logic, and user interface, but does not introduce

any serious overhead to the system.

26

The second augmentation is related. Conlangtionary could store a pronunciation audio

clip so that users could record a correct pronunciation of a term when they defined it. This

method is less ambiguous (especially if the pronunciation string is in IPA, which few laypeople

know), but requires more systemic changes to the platform. Storing audio clips requires sig-

nificantly more storage space than storing text, and playing them through the user interface

would mean adding controls and appropriate libraries of Javascript to handle audio playback.

5.4 Description Removal

Descriptions in Conlangtionary were intended to provide a place for conlangers to add any

miscellanous information about their language that didn’t easily translate into the structure

of a Conlangtionary language. Information such as grammatical usage, example texts, and

the history of the people or culture to whom the conlang belongs. While this is a necessary

component of a conlang (cultural context), structuring it as a single blob of text was a mistake.

This design forces a conlanger to maintain an enormous single document containing essentially

all prose information about their language. They also are forced to do that maintenance through

Conlangtionary’s markdown editor which, although useful, is not full-featured enough to make

for a pleasant editing experience.

As an alternative to this single-blob-of-text approach, a future version of Conlangtionary

ought to allow multiple pages of reference material to be attached to a language. On the

database level, this is simply a refactor from a one-to-one to a one-to-many relationship between

languages and descriptions, though the data that descriptions need to store would change to

include titles and perhaps other resources like embedded images.

This would allow the user to define a reference manual for grammar separately from

reference material about a conlang’s culture. These separate documents of information could

also be included as chapters in the proposed Dictionary View (see Section 5.5).

5.5 Dictionary View

As Conlangtionary’s name suggests, it is a dictionary for conlangs. It stores information about

the words that make up a conlang and their meanings. In several places, user-interface decisions

27

were influenced by conventions from physical dictionaries (the formatting of definitions on a

language view, for instance), but Conlangtionary itself doesn’t currently generate an actual

dictionary document for a given conlang. The system has all of the requisite data. Generating

a PDF of the language with all of the reference materials at the beginning followed by an

alphabetical listing of all of the language’s words is a decent-sized addition to the code, but a

very powerful one.

To do this, Conlangtionary would need to incorporate a package for writing PDF files

and then define the structure that the dictionary would take as a view.

5.6 User Interface

Conlangtionary’s user interface is usable, and that is all. It doesn’t look good, nor is it intuitive.

It was designed by a programmer, and as such, is only intuitive to its designer. This paper does

not set out to propose an alternative user interface, but merely to acknowledge the need. This

goal would be easier to accomplish in conjunction with Section 5.7.

5.7 Application Programmer Interface

This is the most ambitious of the proposed refactors: rewrite essentially the entire application

around a more modern paradigm. When Conlangtionary was initially designed, Laravel was

chosen as the framework because it was familiar to the designer [8]. While Laravel has many

features that are modern, Conlangtionary is written in such a way that it handles both the

logic that processes data and the logic that renders that data to the user. The two cannot be

easily separated. Modern web development separates these two sets of logic into the front-end

(display the data) and back-end (store, manipulate, and retrieve the data). This abstraction

allows the two sides of an application to be developed separately.

If this change were adopted, some of the existing Laravel code could be reused. Namely,

the Controller logic that creates, reads, updates, and deletes Models would only need to be

altered to return data instead of HTML. The front end would need to be completely rewritten.

Technologies like Backbone and React would be good choices for making the front end a powerful

application.

28

Ideally, the front end of the site could be written as a single page that allows users to

act on each part of a language (definitions, words, descriptive text, and even grammatical rules)

without navigating away from that page. This would be significantly more e�cient in terms of

the number of clicks that it takes for a user to perform a given action on a language.

5.8 Language Assumptions

In a platform designed to represent languages of unlimited variety, the fact that the web ap-

plication itself is fundamentally English-oriented is nearly inexcusable. Technically, since Con-

langtionary supports Unicode, a user can define words in any left-to-right language within the

Unicode character scheme, but this doesn’t change the text on the controls of the site or the

paragraphs of explanatory text on the Morphological Generator. This makes the application

considerably less useful for non-English-speaking users.

Additionally, the structure of a Definition within Conlangtionary assumes that the user

is defining the term in the Conlang in a single other language. This prevents any possiblility

of defining a conlang on the site in terms of another conlang. A better system would define

definitions as a transformation of a term from a target language into a destination language

(which could be itself). For instance, defining the English term “walk” as “to move with

your legs at a speed that is slower than running” transforms an English term into alternative

English terms, but defining Spanish “caminar” as English “to walk” is a transformation between

languages [10]. Both of these transformations are expressible in terms of a target and destination

(alternatively, they could be called source and destination languages). Such a structure would

allow an unparalleled level of interplay between conlangs that a platform like Conlangtionary

ought to o↵er.

5.9 Stored Transformations

The Morphological Generator is a powerful feature that gives Conlangtionary a major advantage

over other ways of representing a spoken language, but it falls far short of how useful or powerful

such a feature could be if carefully implemented. When you specify a transformation on a

language, that transformation acts on the language only once. If you later add a definition that

29

conforms to the source tags of the transformation, it will not automatically be transformed.

This means that the user must re-run the Morphological Generator will the same rule in order

to have consistent alternative forms for their language’s entire vocabulary. This is tedious, and

the purpose of the generator was to help remove tedium from developing a conlang.

To fix this, a new data member needs to be added to Conlangtionary languages: Rules.

A rule specifies a set of source tags, a set of target tags, and two strings that use PHP regular

expressions to transform one into the other (see Section 4.10). Whenever a word is added to

a conlang, all of that language’s rules need to be checked against the word to see whether any

alternative forms can be generated. This feature needs to be implemented carefully to guard

against recursive transformations that infinitely change a word between forms. It is more than

possible to implement an infinite loop by defining a series of transformations that ends where

it begins.

Once Conlangtionary tracks rules as entities, words that were generated could track

the rule that created them. This means that a user could edit rules to change how the words

created by those rules work. This allows the grammar of a language to develop organically

(without requiring the user to delete vast swathes of their vocabulary that have been rendered

obsolete by a change in conjugation).

5.10 Summary

Conlangtionary was built to prototype what a modern web application for conlanging should

be. While it is usable, it served to demonstrate what such an application ought to have more

by its deficits than by its features. Hopefully, Conlangtionary’s example will be a template of

how to start constructing a truly functional conlanging web platform, even if it is (in many

instances) an example of what not to do.

Chapter 6

Conclusion

Conlangtionary’s goal was to explore how modern web technologies could meet the needs of

conlangers and field linguists across the world. In this respect, the project succeeded. The

site demonstrates that such a platform can be constructed on the web. A class of Appalachian

State University Honors Students used Conlangtionary to build a language as part of a class.

While they consistently commented upon the clunkiness of the site’s user interface, they did

create the Keebouuzhodee language with hundreds of defined words using the site.

As Chapter 5 demonstrates, there is much more work that can be done with online

platforms for spoken language development. Conlangtionary is only a starting point for future

web developers to build from.

30

Bibliography

[1] Bootstrap. http://getbootstrap.com/.

[2] Cleave — Definition of Cleave. http://www.merriam-webster.com/dictionary/
cleave.

[3] CommonMark. http://commonmark.org/.

[4] Conlanging 101. http://conlang.org/26c3.pdf.

[5] Elgin. Native Tongue. The Feminist Press, 1984.

[6] Heroku. https://www.heroku.com/.

[7] International Phonetic Alphabet. http://www.internationalphoneticalphabet.
org/ipa-sounds/ipa-chart-with-sounds/.

[8] Laravel. http://laravel.com/.

[9] PHP preg replace() function. https://secure.php.net/manual/en/function.

preg-replace.php.

[10] Walk — Definition of Walk. http://www.merriam-webster.com/dictionary/

walk.

[11] Wiktionary:Welcome,newcomers. https://en.wiktionary.org/wiki/

Wiktionary:Welcome,_newcomers.

[12] William J. Samarin. Field linguistics: A guide to linguistic field work. Holt, Rinehart and
Winston, 1967.

31

Appendices

32

Appendix A

Code Information and Access

The code for Conlangtionary is available at https://github.com/whereswaldon/conlangtionary.
Conlangtionary contains an estimated 8,709 lines of original code on top of the Laravel frame-
work.

33

