
Archived version from NCDOCKS Institutional Repository http://libres.uncg.edu/ir/asu/

Abstract
Dependently typed programming languages allow sophisticated properties of data to be
expressed within the type system. Of par-ticular use in dependently typed programming are
indexed types that refine data by computationally useful information. For example, the N-
indexed type of vectors refines lists by their lengths. Other data types may be refined in similar
ways, but programmers must produce purpose-specific refinements on an ad hoc basis,
developers must anticipate which refinements to include in libraries, and implementations
often store redundant information about data and their refinements. This paper shows how to
generically derive inductive characterisations of refinements of inductive types, and argues
that these characterisations can alleviate some of the aforementioned difficulties associated
with ad hoc refinements. These characterisations also ensure that standard techniques for pro-
gramming with and reasoning about inductive types are applicable to refinements, and that
refinements can themselves be further refined.

By: Robert Atkey, Patricia Johann and Neil Ghani

When Is A Type Refinement An Inductive Type?

Robert Atkey, Patricia Johann, and Neil Ghani. (2011) "When is a Type Refinement an
Inductive Type?" Proceedings, Foundations of Software Science and Computation Structures
(FoSSaCS'11), pp. 72 - 87. Version Of Record Available From www.springer.com

1 Introduction

One of the key aims of current research in functional programming is to reduce
the semantic gap between what programmers know about computational entities
and what the types of those entities can express about them. One particularly
promising approach is to parameterise, or index, types by extra information that
can be used to express properties of data having those types. For example, most
functional languages support a standard list data type parameterised over the
type of the data the lists contain, but for some applications it is also crucial
to know the length of a list. We may wish, for instance, to ensure that the list
argument to the tail function has non-zero length — i.e., is non-empty — or
that the lengths of the two list arguments to zip are the same.

A data type that equips each list with its length can be defined in the de-
pendently typed language Agda [25] by

data Vector (B : Set) : Nat -> Set where

VNil : Vector B Z

VCons : (n : Nat) -> B -> Vector B n -> Vector B (S n)

This declaration inductively defines a data type Vector which, for each choice of
element type B, is indexed by natural numbers and has two constructors: VNil,
which constructs a vector of B-data of length zero (i.e., Z), and VCons, which

? This work was funded by EPSRC grant EP/G068917/1.

constructs from an index n, an element of B, and a vector of B-data of length n, a
new vector of B-data of length n+1 (i.e., S n). The inductive type Vector can be
used to define functions on lists which are “length-aware” in a way that functions
which process data of standard list types cannot be. For example, length-aware
tail and zip functions can be given via the following types and definitions:

tail : (n : Nat) -> Vector B (S n) -> Vector B n

tail (VCons b bs) = bs

zip : (n : Nat) -> Vector B n -> Vector C n -> Vector (B x C) n

zip VNil VNil = VNil

zip (VCons b bs) (VCons c cs) = VCons (b , c) (zip bs cs)

Examples such as those above suggest that indexing types by computation-
ally relevant information has great potential. However, for this potential to be
realised, we must better understand how indexed types can be constructed. More-
over, since we want to ensure that all of the techniques developed for structured
programming with and principled reasoning about inductive types — such as
those championed in the Algebra of Programming [6] literature — are applica-
ble to the resulting indexed types, we also want these types to be inductive. This
paper therefore asks the following fundamental question:

Can elements of inductive types be systematically augmented with computa-
tionally relevant information to give indexed inductive types that store com-
putationally relevant information in their indices? If so, how?

That is, how can we refine a given inductive type to get a new such type, called
a refinement, that associates with each element of the given type its index?

One straightforward way to refine an inductive type is to use a refinement
function to compute the index for each of its elements, and then to associate
these indices to their corresponding elements. To refine lists by their lengths, for
example, we would start with the standard list data type

data List (B : Set) : Set where

Nil : List B

Cons : B -> List B -> List B

and its length function

length : List B -> Nat

length Nil = Z

length (Cons _ l) = S (length l)

and construct the following refinement type of indexed lists:

IdxList B n ∼= {x : List B | length x = n} (1)

This construction is global in that both the data type and the collection of
indices exist a priori, and the refinement is obtained by assigning, post facto, an

appropriate index to each data type element. But the construction suffers from
a serious drawback: the resulting refinement — IdxList here — need not be
inductive, and so is not a solution to the fundamental question posed above.

We propose an alternative construction of refinements that provides a com-
prehensive answer to the fundamental question raised above in the case when
the given refinement function is computed by structural recursion over the data
type to be refined. This is often the case in practice. More specifically, we con-
struct, for each inductive type µF and each F -algebra α whose fold computes
the desired refinement function, a functor Fα whose least fixed point µFα is the
desired refinement. The characterisation of the refinement of µF by α as the
inductive type µFα allows the entire arsenal of structured programming tech-
niques to be brought to bear on them. This construction is also local in that the
indices of recursive substructures are readily available at the time a structurally
recursive program is written, rather than needing to be computed by inversion
from the index of the input data structure.

The functor Fα that we construct is intimately connected with the generic
structural induction rule for the inductive type µF [15,17]. This is perhaps not
surprising: structural induction proves properties of functions defined by struc-
tural recursion on elements of inductive types. If the values of those functions are
abstracted into the indices of associated indexed inductive types, then the com-
putation of those values need no longer be performed during inductive proofs. In
essence, we have shifted work away from computation and onto data. Refinement
thus supports reasoning by structural induction “up to” the index of a term.

In this paper, we use the language of category theory to state and develop
our results because it allows a high degree of precision and economy. Although
we have developed our theory in the abstract setting of fibrations [19], in this
paper we specialise to the families fibration over the category of sets to improve
accessibility and give useful concrete intuitions. The remainder of this paper
is structured as follows. In Section 2 we recall basic categorical preliminaries.
In Section 3 we introduce a framework within which refinement may be de-
veloped [15,17]. We describe our basic refinement technique in Section 4 and
illustrate it with several examples. In Section 5 we show how to refine inductive
types which are themselves indexed. In Section 6 we further extend our basic
refinement technique to allow partial refinement, in which indexed types are
constructed from inductive types not all of whose elements have indices. Finally,
Section 7 discusses applications and future and related work.

2 Inductive Types and F -algebras

A data type is inductive (in a category C) if it is the least fixed point µF of an
endofunctor on C. For example, if Set denotes the category of sets and functions,
Z is the set of integers, and + and × denote coproduct and product, respectively,
then the following data type of binary trees with integer leaves is µFTree for the
endofunctor FTreeX = Z+X ×X on Set:

data Tree : Set where

Leaf : Integer -> Tree

Node : (Tree x Tree) -> Tree

Inductive types can also be understood in terms of the categorical notion
of an F -algebra. If C is a category and F : C → C is a functor, then an F -
algebra is a pair (A,α : FA→ A) comprising an object A of C and a morphism
α : FA → A in C. The object A is called the carrier of the F -algebra, and the
morphism α is called its structure map. We usually refer to an F -algebra solely
by its structure map, since the carrier is present in the type of this map.

An F -algebra homomorphism from (α : FA → A) to (α′ : FB → B) is a
morphism f : A→ B of C such that f ◦α = α′◦Ff . An F -algebra (α : FA→ A)
is initial if, for any F -algebra (α′ : FB → B), there exists a unique F -algebra
morphism from α to α′. The initial F -algebra is unique up to isomorphism, and
Lambek’s Lemma further ensures that it is itself an isomorphism. Its carrier is
thus the least fixed point µF of F . We write (inF : F (µF) → µF) for the initial
F -algebra, and LαMF : µF → A for the unique morphism from (inF : F (µF) →
µF) to any F -algebra (α : FA → A). We write L−M for L−MF when F is clear
from context. Of course, not all functors have least fixed points. For instance,
the functor FX = (X → 2) → 2 on Set does not have any fixed point at all.

In light of the above, the data type Tree can be interpreted as the carrier of
the initial FTree-algebra. In functional programming terms, if (α : Z+A×A→
A) is an FTree-algebra, then LαM : Tree → A is exactly the application of the
standard iteration function fold for trees to α (actually, to an “unbundling” of α
into replacement functions, one for each of FTree’s constructors). More generally,
for each functor F , the map L−MF : (FA → A) → µF → A is the iteration
function for µF .

If F is a functor on C, we write AlgF for the category of all F -algebras
and F -algebra homomorphisms between them. Identities and composition in
AlgF are taken directly from C. The existence of initial F -algebras is equivalent
to the existence of initial objects in AlgF . Recall that an adjunction between
two categories C and D consists of a left adjoint functor L and a right adjoint
functor R and an isomorphism natural in A and X between the set C(LA,X) of
morphisms in C from LA to X and the set D(A,RX) of morphisms in D from
A to RX. We say that the functor L is left adjoint to R, and that the functor R
is right adjoint to L, and write L a R.

We will make much use of the following theorem from [17]:

Theorem 1. If F : C → C and G : D → D are functors, L a R, and FL ∼= LG

is a natural isomorphism, then C
R

66⊥ D
L

vv
lifts to AlgF

R′
22⊥ AlgG

L′
rr

.

Theorem 1 will be useful in conjunction with the fact that left adjoints preserve
colimits, and thus preserve initial objects. In the setting of the theorem, if G has
an initial algebra, then so does F . To compute the initial F -algebra in concrete
situations we need to know that L′(k : GA→ A) = Lk ◦ pA where p is (one half
of) the natural isomorphism between FL and LG. Then the initial F -algebra is
given by applying L′ to the initial G-algebra, and so µF = L(µG).

3 A Framework for Refinement

An object of Fam(Set) is a pair (A,P) comprising a set A and a function P : A→
Set; such a pair is called a family of sets. A morphism (f, f∼) : (A,P) → (B,Q)
of Fam(Set) is a pair of functions f : A → B and f∼ : ∀a. Pa → Q(fa). From
a programming perspective, a family (A,P) is an A-indexed type P , with Pa
representing the collection of data with index a. An alternative, logical view is
that (A,P) is a predicate representing a property P of data of type A, and that
Pa represents the collection of proofs that P holds for a. When Pa is inhabited,
P is said to hold for a. When Pa is empty, P is said not to hold for a.

The families fibration U : Fam(Set) → Set is the functor mapping each
family (A,P) to A and each morphism (f, f∼) to f . For each set A, the category
Fam(Set)A consists of families (A,P) and morphisms (f, f∼) between them such
that f = idA. We call Fam(Set)A the fibre of the families fibration over A.
A function f : A → B contravariantly generates a re-indexing functor f∗ :
Fam(Set)B → Fam(Set)A which maps (B,Q) to (A,Q ◦ f).

3.1 Truth and Comprehension

Each fibre Fam(Set)A has a terminal object (A, λa : A. 1), where 1 is the canon-
ical singleton set. This object is called the truth predicate for A. The mapping
of objects to their truth predicates extends to a functor K1 : Set → Fam(Set),
called the truth functor. In addition, for each family (A,P) we can define the
comprehension of (A,P), denoted {(A,P)}, to be the set {(a, p) | a ∈ A, p ∈
Pa}. The mapping of families to their comprehensions extends to a functor
{−} : Fam(Set) → Set, called the comprehension functor, and we end up with
the following pleasing collection of adjoint relationships:

Fam(Set)

a aU

��
{−}

tt
Set

K1

[[
(2)

The families fibration U is thus a comprehension category with unit [18,19]. Like
every comprehension category with unit, U supports a natural transformation
π : {−} → U such that π(A,P)(a, p) = a for all (a, p) in {(A,P)}. In fact, U is
full, i.e., the functor from Fam(Set) to Set→ induced by π is full and faithful.

3.2 Indexed Coproducts and Indexed Products

For each function f : A → B and family (A,P), we can form the family
(B, λb. Σa∈A. (b = fa) × Pa), called the indexed coproduct of (A,P) along
f . The mapping of each family to its indexed coproduct along f extends to a
functor Σf : Fam(Set)A → Fam(Set)B which is left adjoint to the re-indexing
functor f∗. In the abstract setting of fibrations, a fibration with the property
that each re-indexing functor f∗ has a left adjoint Σf is called a bifibration, and
the functors Σf are called op-re-indexing functors. These functors are often sub-
ject to the Beck-Chevalley condition for coproducts, which is well-known to hold

for the families fibration. This condition ensures that in certain circumstances
op-re-indexing commutes with re-indexing [19]. A bifibration which is also a full
comprehension category with unit is called a full cartesian Lawvere category [18].

For each function f : A → B and family (A,P) we can also form the family
(B, λb. Πa∈A.(b = fa) → Pa), called the indexed product of (A,P) along f .
The mapping of each family to its indexed product along f extends to a functor
Πf : Fam(Set)A → Fam(Set)B which is right adjoint to f∗. This gives the
following collection of relationships for each function f : A→ B:

Fam(Set)B
⊥
⊥
f∗ // Fam(Set)A

Σf

ww

Πf

ii

Like its counterpart for coproducts, the Beck-Chevalley condition for products
is often required. However, we do not make use of this condition in this paper.

At several places below we make essential use of the fact that the families
fibration has strong coproducts, i.e., that in the diagram

{(A,P)}
{ψ} //

π(A,P)

��

{(B,Σf (A,P))}
πΣf (A,P)

��
A

f // B

(3)

where ψ is the obvious map of families of sets over f , {ψ} is an isomorphism.
This definition of strong coproducts naturally generalises the usual one [19], and
imposes a condition which is standard in models of type theory.

3.3 Liftings

A lifting of a functor F : Set → Set is a functor F̂ : Fam(Set) → Fam(Set)
such that FU = UF̂ . A lifting is truth-preserving if it satisfies K1F ∼= F̂K1.
Truth-preserving liftings for all polynomial functors — i.e., for all functors built
from identity functors, constant functors, coproducts, and products — are given
in [17]. Truth-preserving liftings were established for arbitrary functors in [15].
The truth-preserving lifting F̂ is defined on objects by

F̂ (A,P) = (FA, λa. {x : F{(A,P)} | Fπ(A,P)x = a}) = ΣFπ(A,P)
K1(F{(A,P)})

(4)
The final expression is written point-free using the constructions of Sections 3.1
and 3.2. A similar construction is given in a different setting by [22].

Since F̂ is an endofunctor on Fam(Set), the category AlgF̂ of F̂ -algebras
exists. The families fibration U : Fam(Set) → Set extends to a fibration UAlg :

AlgF̂ → AlgF , called the algebras fibration induced by U . Moreover, writingKAlg
1

and {−}Alg for the truth and comprehension functors, respectively, for UAlg, the

adjoint relationships from Diagram 2 all lift to give UAlg a KAlg
1 a {−}Alg. The

two adjunctions here follow from Theorem 1 using the fact that F̂ is a lifting
and therefore preserves truth. That left adjoints preserve initial objects can now
be used to establish the following fundamental result from [15,17]:

Theorem 2. K1(µF) is the carrier µF̂ of the initial F̂ -algebra.

4 From Liftings to Refinements

In this section we show that the refinement of an inductive type µF by an
F -algebra (α : FA→ A), i.e., the family

(A, λa : A. {x : µF | LαMx = a}) (5)

is inductively characterised as µFα where Fα : Fam(Set)A → Fam(Set)A is

Fα = ΣαF̂ (6)

An alternative, set-theoretic presentation of Fα is:

Fα(A,P) = (A, λa. {x : F{(A,P)} | α(Fπ(A,P)x) = a}) (7)

That is, Fα(A,P) is obtained by first building the FA-indexed type F̂ (A,P)
(cf. Equation 4), and then restricting membership to those elements whose α-
values are correctly computed from those of their immediate subterms. The proof
consists of the following three theorems, which are, as far as we are aware, new.

Theorem 3. For each F -algebra (α : FA→ A), (AlgF̂)α
∼= AlgFα .

Proof. First note that (AlgF̂)α is isomorphic to the category (F̂ ↓ α∗) whose

objects are morphisms from F̂ (A,P) to α∗(A,P) in Fam(Set)FA and whose
morphisms are commuting squares. Then (F̂ ↓ α∗) ∼= AlgFα because Σα a α∗.

Theorem 3 can be used to prove the following key result:

Theorem 4. UAlg : AlgF̂ → AlgF is a bifibration.

Proof. That UAlg is a fibration, indeed a comprehension category with unit, is
proved in [17]. Next, let f be an F -algebra morphism from α : FA → A to
β : FB → B. We must show that the reindexing functor f∗Alg in UAlg has a left
adjoint ΣAlg

f . Such an adjoint can be defined using Theorem 1, Theorem 3, and

F βΣf ∼= ΣfF
α. By Equation 6, the latter is equivalent to ΣβF̂Σf ∼= ΣfΣαF̂ .

From the definition of F̂ , we must show that for all (A,P) in Fam(Set)A,

ΣβΣFπΣf (A,P)
K1F{Σf (A,P)} ∼= ΣfΣαΣFπ(A,P)

K1F{(A,P)} (8)

To see that this is the case, consider the following diagram:

F{(A,P)}
Fπ(A,P) //

F{ψ}
��

FA
α //

Ff

��

A

f

��
F{Σf (A,P)}

FπΣf (A,P)

// FB
β

// B

The left-hand square commutes because it is obtained by applying F to the
naturality square for π, and the right-hand square commutes because f is an
F -algebra morphism. Then ΣβΣFπΣf (A,P)

ΣF{ψ} ∼= ΣfΣαΣFπ(A,P)
because op-

re-indexing preserves composition. Equation 8 now follows by applying both of
these functors toK1F{(A,P)}, and then observing that F{ψ} is an isomorphism
since {ψ} is one by assumption (cf. Diagram 3), so that ΣF{ψ} is a right adjoint
(as well as a left adjoint) and thus preserves terminal objects.

We can now give an explicit characterisation for µFα. We have

Theorem 5. The functor Fα has an initial algebra with carrier ΣLαMK1(µF).

Proof. The category AlgF̂ has initial object whose carrier isK1(µF) by Theorem
2. Since UAlg is a left adjoint and hence preserves initial objects, Proposition 9.2.2
of [19] ensures that the fibre (AlgF̂)α — and so, by Theorem 3, that AlgFα —
has an initial object whose carrier is ΣLαMK1(µF).

Instantiating Theorem 5 for Fam(Set) gives exactly the inductive characterisa-
tion of refinements we set out to find, namely that in Equation 5.

4.1 Some Specific Refinements

The following explicit formulas are used to compute refinements in the examples
below. In the expression Bα, B is the constantly B-valued functor.

Idα(A,P) = (A, λa.{x : {(A,P)} | α (π(A,P)x) = a})
Bα(A,P) = (A, λa.{x : B | α x = a})
(G+H)α(A,P) = (A, λa.{x : G {(A,P)} | α(inl(Gπ(A,P)x)) = a}

+ {x : H {(A,P)} | α(inr(Hπ(A,P)x)) = a})
= (A, λa. Gα◦inlPa+Hα◦inrPa)

(G×H)α(A,P) = (A, λa. {x1 : G {(A,P)}, x2 : H {(A,P)} |
α(Gπ(A,P)x1,Hπ(A,P)x2) = a}

Refinements of the identity and constant functors are as expected. Refinement
splits coproducts of functors into two cases, one specialising the refining algebra
for each summand. It is not possible to decompose the refinement of a product
of functors G×H into refinements of G and H (possibly by algebras other than
α). This is because α may need to relate multiple elements to the overall index.

Example 1 The inductive type of lists of elements of type B can be specified
by the functor FListX = 1 + B ×X. Writing Nil for the left injection and Cons
for the right injection into the coproduct FListX, the FList-algebra lengthalg :
FListN → N that computes the lengths of lists is

lengthalg Nil = 0
lengthalg (Cons(b, n)) = n+ 1

The refinement of µFList by the algebra lengthalg is the least fixed point of

F lengthalg
List (N, P) = (N, λn.(n = 0) + {n1 : N, x1 : B, x2 : Pn1 | n = n1 + 1})

This formulation of µF lengthalg
List is essentially the declaration Vector from the

introduction with the implicit equality constraints in that definition made explicit.

Example 2 We can similarly refine µFTree by the FTree-algebra

sum : FTreeZ → Z
sum (Leaf z) = z
sum (Node (x1, x2)) = x1 + x2

which sums the values in a tree. This gives the refinement µF sum
Tree , where

F sum
Tree (Z, P) = (Z, λn. {z : Z | z = n}+ {n1, n2 : Z, x1 : Pn1, x2 : Pn2 | n = n1 + n2 })

This corresponds to the Agda declaration

data IdxTree : Integer -> Set where

IdxLeaf : (z : Integer) -> IdxTree z

IdxNode : (l r : Integer) ->

IdxTree l -> IdxTree r -> IdxTree (l + r)

Refinement by the initial algebra (inF : F (µF) → µF) gives a µF -indexed
type inductively characterised by F in = Σin F̂ . Since in is an isomorphism, Σin

is as well. Thus F in ∼= F̂ , so that µF in = µF̂ = K1(µF), and each term is its
own index. By contrast, refinement by the final algebra (! : F1 → 1) (which
always exists because 1 is the terminal object of Set) gives a 1-indexed type
inductively characterised by F !. Since F ! ∼= F , we have µF ! = µF , and all terms
have index 1. Refining by the initial algebra thus has maximal discriminatory
power, while refining by the terminal algebra has no discriminatory power.

5 Starting with Already Indexed Types

The development in Section 4 assumes the type being refined is the initial algebra
of an endofunctor F on Set. This seems to preclude refining an inductive type
that is already indexed. But since we carefully identified the abstract structure
of Fam(Set) we needed, our results can be extended to any fibration having that
structure. In particular, we can refine indexed types using a change-of-base [19]:

Fam(Set)A ×Set Fam(Set) //

UA

��

_� Fam(Set)

U

��
Fam(Set)A

{−} // Set

This diagram, which is a pullback in Cat, the (large) category of categories
and functors, generates a new fibration UA from the functors U and {−}. The
objects of Fam(Set)A×SetFam(Set) are (dependent) pairs ((A,P), ({(A,P)}, Y))
of predicates. Thus, Y is “double indexed” by both a ∈ A and x ∈ Pa.

The following theorem states that all the structure we require for our con-
structions is preserved by the change-of-base construction. It also generalises to
any full cartesian Lawvere category with strong coproducts, so the change-of-
base construction may be iterated.

Theorem 6. UA is a full cartesian Lawvere category with strong coproducts.

Proof. First, UA is a fibration by construction. The truth functor is defined
by KA

1 (A,P) = ((A,P),K1{(A,P)}) and the comprehension functor is defined
by {((A,P), ({(A,P)}, Y))}A = Σπ(A,P)

({(A,P)}, Y). Coproducts are defined
directly using the coproducts of U .

Example 3 To demonstrate the refinement of an already indexed inductive type
we consider a small expression language of well-typed terms. Letting T = {int, bool}
be the set of possible base types, this language is µFwtexp for the functor Fwtexp :
Fam(Set)T → Fam(Set)T given by

Fwtexp(T, P) = (T, λt : T. {z : Z | t = int}+ {b : B | t = bool}
+ {t1, t2 : T, x1 : Pt1, x2 : Pt2 | t1 = t2 = t = int}
+ {t1, t2, t3 : T, x1 : Pt1, x2 : Pt2, x3 : Pt3 |

t1 = bool, t2 = t3 = t})

For any t, write IntConst, BoolConst, Add, and If for the four injections into
(snd (Fwtexp(T, P)) t. Letting B = {true, false} denoting the set of booleans, and
assuming there exist a T-indexed family T such that T int = Z and T bool = B,
we have a semantic interpretation of the extended language’s types. This can be
used to specify a “tagless” interpreter by giving an Fwtexp-algebra:

eval : Fwtexp(T, T) → (T, T)
eval = (id , λx : T. λt : snd (Fwtexp(T, T))x. case t of

IntConst z ⇒ z
BoolConst b ⇒ b
Add (int, int, z1, z2) ⇒ z1 + z2
If (bool, t, t, b, x1, x2) ⇒ if b then x1 else x2)

Refining µFwtexp by eval yields a type indexed by Σt : T. T t, i.e., by {(T, T)}.
This type associates to every well-typed expression that expression’s semantics.

6 Partial Refinement

In Sections 4 and 5 we assumed that every element of an inductive type has an
index that can be assigned to it. Every list has a length, every tree has a number
of leaves, every well-typed expression has a semantic meaning, and so on. But
how can an inductive type be refined if only some data have values by which we
want to index? For example, how can the inductive type of well-typed expressions
of Example 3 be obtained by refining a data type of untyped expressions by an
algebra for type assignment? And how can the inductive type of red-black trees
be obtained by refining a data type of coloured trees by an algebra enforcing
the well-colouring properties? As these examples show, the problem of refining
subsets of inductive types is a common and naturally occurring one. Partial
refinement is a technique for solving this problem.

The key idea underlying the required generalisation of our theory is to move
from algebras to partial algebras. If F is a functor, then a partial F -algebra
is a pair (A,α : FA → (1 + A)) comprising a carrier A and a structure map

α : FA→ (1+A). We write ok : A→ 1+A and fail : 1 → 1+A for the injections
into 1 +A, and often refer to a partial algebra solely by its structure map. The
functor MA = 1 +A is (the functor part of) the error monad.

Example 4 The inductive type of expressions is µFexp for the functor FexpX =
Z+B+(X×X)+(X×X×X). Letting T = {int, bool} as in Example 3 and using
the obvious convention for naming the injections into FexpX, such expressions
can be type-checked using the following partial Fexp-algebra:

tyCheck : FexpT → 1 + T
tyCheck (IntConst z) = ok int
tyCheck (BoolConst b) = ok bool

tyCheck (Add (t1, t2)) =

{
ok int if t1 = int and t2 = int
fail otherwise

tyCheck (If (t1, t2, t3)) =

{
ok t2 if t1 = bool and t2 = t3
fail otherwise

Example 5 Let S = {R,B} be a set of colours. The inductive type of coloured
trees is µFctree for the functor FctreeX = 1+ S×X ×X. We write Leaf and Br
for injections into FctreeX. Red-black trees [10] are coloured trees satisfying the
following constraints:

1. Every leaf is black;
2. Both children of a red node are black;
3. For every node, all paths to leaves contain the same number of black nodes.

We can check whether or not a coloured tree is a red-black tree using the following
partial Fctree-algebra. Its carrier S×N records the colour of the tree in the first
component and the number of black nodes to any leaf, assuming this number is
the same for every leaf, in the second.

checkRB : Fctree(S× N) → 1 + (S× N)
checkRB Leaf = ok (B, 1)

checkRB (Br (R, (s1, n1), (s2, n2))) =

{
ok (R, n1) if s1 = s2 = B and n1 = n2
fail otherwise

checkRB (Br (B, (s1, n1), (s2, n2))) =

{
ok (B, n1 + 1) if n1 = n2
fail otherwise

The process of (total) refinement described in Section 4 constructs, from a
functor F with initial algebra (inF : F (µF) → µF) and an F -algebra α : FA→
A, a functor Fα such that µFα associates to each x : µF its index LαMx. If we
can compute an index for each element of µF from a partial F -algebra, then we
can apply the same technique to partially refine µF . The key to doing this is to
turn every partial F -algebra into a (total) F -algebra. Let λ be any distributive
law for the error monad M over the functor F . Then λ respects the unit and
multiplication of M (see [4] for details), and

Lemma 1. Every partial F -algebra κ : FA → 1 + A generates an F -algebra
κ : F (1 +A) → (1 +A) defined by κ = [fail, κ] ◦ λA.

Here, [fail, κ] is the cotuple of the functions fail and κ. Refining µF by the F -
algebra κ using the techniques of Section 4 would result in an inductive type
indexed by 1 + A. But, as our examples show, what we actually want is an A-
indexed type that inductively describes only those terms having values of the
form ok a for some a ∈ A. Partial refinement constructs, from a functor F with
initial algebra (inF : F (µF) → µF) and a partial F -algebra κ : FA → 1 + A, a
functor F ?κ such that µF ?κ is the A-indexed type

(A, λa. {x : µF | LκMx = ok a}) = ok∗ΣLκMK1(µF) = ok∗µFκ (9)

As we will see in Theorem 7, if

F ?κ = ok∗ΣκF̂ (10)

then µF ?κ = (A, λa. {x : µF | LκMx = ok a}). Indeed, since left adjoints preserve
initial objects, we can prove µF ?κ ∼= ok∗µFκ by lifting the following adjunction
to an adjunction between AlgF ?κ and AlgFκ via Theorem 1:

Fam(Set)A
Πok

00⊥ Fam(Set)1+A

ok∗qq

To satisfy the precondition of Theorem 1, we prove that ok∗Fκ ∼= F ?κok∗ by
first observing that if F preserves pullbacks, then F̂ preserves re-indexing, i.e.,
for every function f , F̂ f∗ ∼= (Ff)∗F̂ . This is proved by direct calculation. Thus
if F preserves pullbacks, and if

ok∗Σκ ∼= ok∗Σκ(Fok)
∗ (11)

then ok∗Fκ = ok∗ΣκF̂ ∼= ok∗Σκ(Fok)
∗F̂ ∼= ok∗ΣκF̂ok

∗ = F ?κok∗. The first
equality is by Equation 6, the first isomorphism is by Equation 11, the second
isomorphism is by the preceding observation assuming that F preserves pull-
backs, and the final equality is by Equation 10. All container functors [1], and
hence all polynomial functors, preserve pullbacks. Finally, to verify Equation 11,
we require that the distributive law λ for M over F satisfies the following prop-
erty, which we call non-introduction of failure: for all x : F (1 + A) and y : FA,
λA x = ok y if and only if x = F ok y. This property strengthens the usual unit
axiom for λ in which the implication holds only from right to left. It ensures that
if applying λ does not result in failure, then no failures were present in the data
to which it was applied. In an arbitrary category, this property is formulated as
requiring the following square (i.e., the unit axiom for λ) to be a pullback:

FA
Fok //

id

��

F (1 +A)

λA

��
FA

ok // 1 + FA

Every container functor has a distributive law forM satisfying the non-introduction
of failure property. We now have

Lemma 2. If the distributive law λ satisfies non-introduction of failure, then
Equation 11 holds.

Proof. Given (F (1 +A), P : F (1 +A) → Set), we have

(ok∗ ◦Σκ)(F (1 +A), P)

= (A, λa : A. {(x1 : F (1 +A), x2 : Px1) | [fail, κ](λAx1) = ok a})
∼= (A, λa : A. {x1 : FA, x2 : P (F okx1) | κx1 = ok a})
∼= (A, ok∗ ◦Σκ ◦ (F ok)∗(F (1 +A), P))

And, putting everything together, we get the correctness of partial refinement:

Theorem 7. If λ is a distributive law forM over F satisfying the non-introduction
of failure property, and if F preserves pullbacks, then F ?κ has an initial algebra
whose carrier is given by Equation 9.

In fact, Theorem 7 holds in the more general setting of full cartesian Lawvere
category whose coproducts satisfy the Beck-Chevalley condition and whose base
categories satisfy extensivity [8]. Moreover, Theorem 6 extends to show that
these properties are also preserved by the change-of-base construction provided
all fibres of the original fibration satisfy extensivity.

7 Conclusions, Applications, Related and Future Work

We have given a clean semantic framework for deriving refinements of inductive
types which store computationally relevant information within the indices of
refined types. We have also shown how indexed types can be refined further, and
how refined types can be derived even when some elements of the original type
do not have indices. In addition to its theoretical clarity, the theory of refinement
we have developed has potential applications in the following areas:

Dependently Typed Programming: Often a user is faced with a choice between
building properties of elements of types into more sophisticated types, or stating
these properties externally as, say, pre- and post-conditions. While the former
is clearly preferable because properties can then be statically type checked, it
also incurs an overhead which can deter its adoption. Supplying the programmer
with infrastructure to produce refined types as needed can reduce this overhead.

Libraries: Library implementors need no longer provide a comprehensive collec-
tion of data types, but rather methods for defining new data types. Similarly, our
results suggest that library implementors need not guess which refinements of
data types will prove useful to programmers, and can instead focus on providing
useful abstractions for creating more sophisticated data types from simpler ones.

Implementation: Current implementations of types such as Vector store all index
information. For example, a vector of length 3 will store the lengths 3, 2, and
1 of its subvectors. Brady [7] seeks to determine when this information can be
generated “on the fly” rather than stored. Our work suggests that the refinement
µFα can be implemented by simply implementing the underlying type µF , since
programs requiring indices can reconstruct these as needed. We thus provide a
user-controllable tradeoff between space and time efficiency.

Related Work: The work closest to that reported here is McBride’s work on
ornaments [21]. McBride defines a type of descriptions of inductive data types

along with a notion of one description “ornamenting” another. Despite the dif-
ferences between our fibrational approach and his type theoretic approach, the
notion of refinement presented in Sections 4 and 5 is very similar to his notion
of an algebraic ornament. However, McBride’s ornaments have no counterpart
to partial refinement. It will interesting to see to what extent his work can be
seen as an implementation of our results.

A line of research allowing the programmer to give refined types to construc-
tors of inductive data types was initiated by Freeman and Pfenning [14] and
later developed by Xi [26], Davies [11] and Dunfield [13] for ML-like languages,
and by Pfenning [23] and Lovas and Pfenning [20] for LF. This research begins
with an existing type system and aims to provide the programmer with a means
of expressing richer properties of values that are well-typeable in that type sys-
tem. It is thus similar to the work reported here, although we instead use a
Martin-Löf-style type theory as a programming language and seek techniques
for designing invariant-capturing types up-front. Lovas and Pfenning [20] trans-
late LF with refinement into LF with proof irrelevance. Such a translation may
extend to richer type theories, thereby allowing our refinement techniques to
act as a target for the refinement-type systems presented in the literature, and
facilitating precise comparisons of the expressive power of the two approaches.

Refinement types have also been used elsewhere to give more precise types to
programs in existing programming languages (but not specifically to inductive
types). For example, Denney [12] and Gordon and Fournet [16] use subset types
to refine the type systems of ML-like languages. Subset types are also used
heavily in the PVS theorem prover [24]. Our results extend the systematic code
reuse delivered by generic programming [2,3,5]: in addition to generating new
programs we can also generate new types from existing types. This area is being
explored in Epigram [9], in which codes for data types can be represented within
a predicative intensional system so that programs can generate new data types. It
should be possible to implement our refinement process using similar techniques.

Aside from the specific differences between our work and that discussed
above, a distinguishing feature of our work is the semantic methodology we use
to develop refinement. We believe that this methodology is new. We also believe
that a semantic approach is important: it can serve as a principled foundation
for refinement, as well as provide a framework in which to compare different im-
plementations. It may also lead to new algebraic insights into refinement which
complement the logical perspective of previous work.

Finally, we are interested in a number of extensions to the work reported
here. Many readers will wonder about the possibility of a more general monadic
refinement using, for example, Kleisli categories. We are working on this, but
due to space limitations have chosen to concentrate in this paper on partial
refinement, which is already sufficient to show that refinement is applicable to
sophisticated programming problems. In addition, many more indexed inductive
data types exist than can be produced by the refinement process described in
this paper. We leave it to future work to discover to what extent this developing
world of dependently typed data structures can be organised and characterised
by processes like refinement and its extensions.

References

1. M. Abbott, T. Altenkirch, and N. Ghani. Containers - constructing strictly positive
types. Theoretical Computer Science, 342:3–27, 2005.

2. T. Altenkirch, C. McBride, and P. Morris. Generic programming with dependent
types. In Proc., Spring School on Datatype-Generic Programming, volume 4719 of
LNCS, pages 209–257. Springer, 2007.

3. R. Backhouse, J. Gibbons, R. Hinze, and J. Jeuring, editors. Datatype-Generic
Programming, volume 4719 of LNCS. Springer, 2007.

4. M. Barr and C. Wells. Toposes, Triples and Theories. Springer, 1983.
5. M. Benke, P. Dybjer, and P. Jansson. Universes for generic programs and proofs

in dependent type theory. Nordic Journal of Computing, 10(4):265–289, 2003.
6. R. S. Bird and O. de Moor. Algebra of Programming. Prentice Hall, 1997.
7. E. Brady, C. McBride, and J. McKinna. Inductive families need not store their

indices. In Proc., TYPES, volume 3085 of LNCS, pages 115–129. Springer, 2004.
8. A. Carboni, S. Lack, and R. F. C. Walters. Introduction to extensive and distribu-

tive categories. Journal of Pure and Applied Algebra, 84:145–158, 1993.
9. J. Chapman, P.-E. Dagand, C. McBride, and P. Morris. The gentle art of levitation.

In Proc., ICFP, 2010. To appear.
10. T. H. Cormen, C. E. Leiserson, R.L̃. Rivest, and C. Stein. Introduction to Algo-

rithms. MIT Press and McGraw-Hill, 2nd edition, 2001.
11. R. Davies. Practical Refinement-Type Checking. PhD thesis, Carnegie Mellon

University, 2005. Available as Technical Report CMU-CS-05-110.
12. E. Denney. Refinement types for specification. In Proc., PROCOMET, pages

148–166. Chapman and Hall, 1998.
13. J. Dunfield. A Unified System of Type Refinements. PhD thesis, Carnegie Mellon

University, 2007. Available as Technical Report CMU-CS-07-129.
14. T. Freeman and F. Pfenning. Refinement types for ML. In Proc., Symposium on

Language Design and Implementation, pages 268–277, June 1991.
15. N. Ghani, P. Johann, and C. Fumex. Fibrational induction rules for initial algebras.

In Proc., CSL, pages 336–350, 2010.
16. A. D. Gordon and C. Fournet. Principles and applications of refinement types.

Technical Report MSR-TR-2009-147, Microsoft Research, October 2009.
17. C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational

setting. Information and Computation, 145(2):107–152, 1998.
18. B. Jacobs. Comprehension categories and the semantics of type dependency. The-

oretical Computer Science, 107:169–207, 1993.
19. B. Jacobs. Categorical Logic and Type Theory. Number 141 in Studies in Logic

and the Foundations of Mathematics. North Holland, 1999.
20. W. Lovas and F. Pfenning. Refinement types for logical frameworks and their

interpretation as proof irrelevance. Logical Methods in Computer Science, 2010.
To appear.

21. C. McBride. Ornamental algebras, algebraic ornaments. Unpublished note, 2010.
22. N. P. Mendler. Predicative type universes and primitive recursion. In Proc., LICS,

pages 173–184. IEEE Computer Society, 1991.
23. F. Pfenning. Refinement types for logical frameworks. In Proc., Types for Proofs

and Programs, pages 285–299, 1993.
24. J. Rushby, S. Owre, and N. Shankar. Subtypes for specifications: Predicate sub-

typing in pvs. IEEE Transactions on Software Engineering, 24(9):709–720, 1998.
25. The Agda Team, 2010. http://wiki.portal.chalmers.se/agda.
26. H. Xi. Dependently typed data structures. Revision after WAAAPL ’99, 2000.

http://wiki.portal.chalmers.se/agda

	When is a Type Refinement an Inductive Type?*-0.1in
	Robert Atkey, Patricia Johann and Neil Ghani

