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ABSTRACT

LOW TOTAL HARMONIC DISTORTION (THD) RESONANT CONVERTER FOR COOKER MAG-
NETRON POWER SUPPLY

Yang Zhou, M.S.T.

Western Carolina University (June 2016)

Director: Dr. Robert Adams

The traditional cooker magnetron power supply consists industrial frequency transformer, which

is bulky, inefficient and with high harmonics distortion. There are numerous researchers who

investigates magnetron power supply design with soft switching converter, in order to reduce

weight and improve efficiency [7–10]. However, no investigation currently exists on harmonic

distortion of traditional magnetron power supply, and very little research or analysis is done on

harmonic distortion of new type of magnetron power supply. This project aims to investigate

harmonic distortion of traditional magnetron power supply in the first phase. In the second

phase, a novel design of high frequency and low harmonic distortion magnetron power supply is

targeted.
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CHAPTER 1: INTRODUCTION

1.1 Traditional Microwave Oven

In 1945, an engineer in Raytheon Percy Spencer discovered that the magnetron built in the war

period can be a promising application for heating food [11], and then Raytheon invented the first

commercially available microwave oven [12]. The most important component in microwave oven

is the magnetron which works as the source of microwave power. The advent of the microwave

oven makes the magnetron well-known and popular

1.1.1 Magnetron Characteristics

Figure 1.1 is a picture taken from a 2008 Emerson microwave oven, which shows the structure

of the magnetron for microwave oven. The internal construction of the magnetron includes

a cylindrical cathode and an anode on a larger concentric circle, permanent magnet axially

produces the magnetic field to accelerate electrons [13]. At start-up stage, the cathode filament

is heated until the filament temperature rises up to the critical value, then the filament begins

to emit electrons. Within the magnetic fluxes produced by two ring magnets, the accelerated

electrons make the anode cavities resonate and radiate microwaves [14].

Figure 1.2 represents the voltage vs. current characteristics of the magnetron. The

magnetron has very high resistance when operates in non-oscillating range, and low resistance

when operating in the oscillating range which is shown in Figure 1.2. When the voltage applied

between the anode and the cathode exceeds 3.6 kV, the magnetron anode current starts to

increase rapidly. However, when the voltage is lower than 3.6 kV [15], the resistance between

anode and cathode is very high which is considered as ’OFF’ state.

1



Figure 1.1: Magnetron Structure
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Figure 1.2: Magnetron Voltage and Current

1.1.2 Traditional Power Supply of the Magnetron in Microwave Oven

The mainstream microwave ovens on the market are supplied by a traditional power supply

which is shown in Figure 1.3 and Figure 1.4. The picture in Figure 1.3 is a traditional magnetron

power supply taken from a 2008 made Galanz microwave oven. The circuit diagram of the

traditional power supply is shown in Figure 1.4.
2



As shown in Figure 1.4, the magnetron power supply is fabricated by a line-frequency

transformer, a capacitor and a diode. The 120V-60Hz line voltage is boosted by a line-frequency

transformer. The output voltage of the transformer is rectified by a half-wave rectifier which is

composed of a capacitor and a diode.

Figure 1.3: The Picture of Traditional Magnetron Power Supply
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Figure 1.4: A Circuit Diagram of Traditional Magnetron Power Supply
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1.1.3 Advantages and Disadvantages of the Traditional Power Supply

The traditional magnetron power supply has many advantages. The circuit of the power supply

is very simple as shown in Figure 1.4, which means the power supply can be cheap and reliable.

Therefore this kind microwave oven lasts for decades and can keeps its popular.

However, there are also several significant drawbacks with traditional microwave ovens:

First, the current distortion is significant [16]. The lab test was performed on a 2008 made

Emerson microwave oven as shown in the Table 1.1 and Figure 1.5. The total harmonic distortion

(THD) can be calculated using:

T HD =
√

I 2
2 + I 2

3 + I 2
4 + I 2

5 +K

I1
(1.1)

where In is the nth harmonic of the power supply current. K is a sum of all the other higher

order harmonics. In this experiment, THD was shown to be 42.92% with K set to zero. In

this experiment K was not zero and increased the THD to approximately 45%. That means

the MW oven wastes 45% of the consumed energy. This level of THD in current can result in

undesired effects in the power grid. At the same time, when the oven is turned on, creating many

harmonics, it will make the current through the grid dirty, which will have deleterious effects on

other equipment connected within the same power grid.

Table 1.1: Harmonic Results from Lab Test

PPPPPPPPPValue
Order

I1 I2 I3 I4 I5

Decibels (dBA) 57.5 33.0 50.0 24.0 35.0

Scaled Current (A) 749.0 44.0 316.0 16.0 36.0
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Figure 1.5: Input Current of MW (Microwave) Oven and Its Fast Fourier Transform

Secondly, when the user adjusts the output power, the power supply repeatedly turns on

and off to control the total amount of output energy [8]. Continuous adjustment of power is not

possible. Since the adjustment is not continuous, there will be numerous current shocks on the

magnetron and transformer.

Thirdly, the traditional power supply system is very bulky. The weight of the transformer

and capacitor in the Figure 1.3 is about 3kg.

Fourthly, the traditional power supply system creats significant audible noise. Since the

current has a fundamental frequency of 60 Hz, it produces a physical resonance which is in the

human-audible sound range.

1.2 A New Magnetron Power Supply

To improve the efficiency and reduce the weight and volume of the magnetron power supply,

switching mode magnetron power supplies are introduced. The output voltage of the power

supply is up to 4kV. For hard-switching converters, the current and voltage spikes cause much

switching noise and high switching loss. To solve the problem of noise and reduce the switching
5



loss, soft-switching resonant converters are developed [17].

1.2.1 LLC (Inductor-Inductor-Capacitor) Resonant Converter

The LLC resonant converter is a type of series-parallel converter. LLC resonant converters

combine characteristics from series converters and parallel converters. When the load or input

voltage have wide variations, it is easy to adjust the output power by changing the switching

frequency. It can achieve zero voltage switching (ZVS) across the operational range. Figure 1.6

shows the LLC resonant network. Another advantage of the LLC topology is that the two inductors

in the resonant network shown in Figure 1.6 can be integrated into the transformer, including

the leakage inductance Lr and magnetizing inductance Lm [2].
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1.2.2 A New Magnetron Power Supply Based on LLC Resonant Converter

Figure 1.7 is the simplified main circuit of the proposed power supply system with resonant

circuit. This design is a modification from LLC converters which often are used to increase

power efficiency in many appliances [10, 15]. In this study, the LLC network will be used to boost

the voltage rather than being used as a voltage step-down application. In this figure, a high

frequency resonant circuit will be applied before the transformer in the power supply system.

This resonant power supply is composed of an input rectifier bridge, switching bridge, resonant

6



circuit, transformer and output rectifier.
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Figure 1.7: Simplified Main Circuit

The power supply system with resonant circuit in this research will have some main

advantages as compared to traditional power supply.

Firstly, the resonant frequency can be up to 150 kHz which is much higher than 60 Hz

in the traditional power supply system. Also, the output voltage can be adjusted to keep steady

when the input sinusoidal voltage goes down periodically. Therefore the large capacitor can be

replaced by a much smaller one. The smaller capacitor will result in a much smaller phase shift

between voltage and current.

Secondly, the output power can be adjusted continuously, as opposed to a pulse output,

because the voltage gain of the resonant circuit can be changed by changing the frequency of the

switching signal on the IGBT (Insulated-gate Bipolar Transistor) device. [18, 19]

Thirdly, the IGBT devices in the switching bridge chop up the input line frequency voltage

to be a much higher frequency voltage. Higher frequency voltages require a small-volume

transformer if the same power is needed to be transferred. The output voltage filter capacitor

can be much smaller too. So, the weight of the power supply system with resonant circuit may

be significantly reduced.

Fourthly, as noted above, the frequency of the current is larger than 20 kHz which is

beyond the range of human hearing. The noise of the traditional MW oven should disappear.
7



1.3 Other Studies on LLC Resonant Based Magnetron Power Supplies

The LLC resonant based magnetron power supply has been studied in one published paper [15].

The math derivations for the LLC converter with a voltage doubling rectifier is not completely

correct in this paper. The IGBTs are adopted as switches in the LLC resonant converter, therefore

the operation frequency range is around 30 kHz. The switching mode power supply with 1000

Watts output, the total harmonic distortion (THD) is not discussed in this paper or compared

with the traditional Microwave oven. No investigations on the power efficiency and closed loop

control methods are discussed in this paper.

In this thesis, switching devices will be replaced by MOSFETs with higher switching

frequency which can help LLC resonant converters reach to a higher efficiency [2]. The total

harmonic distortion (THD) will be investigated deeply and compared with traditional power

supply, as well as the power efficiency and closed loop control methods.

8



CHAPTER 2: LLC BASED MAIN CIRCUIT ANALYSIS

2.1 Topology Selection

As analyzed in the last chapter, to reduce the weight of the transformer, improving the switching

frequency decreases the size of passive components. However, a high switching frequency

on power devices results in a large switching loss. Therefore the resonant and soft switching

technique is a good choice. The soft switching technique improves the power density and

efficiency.

Resonant converters, which have been investigated in-depth in the 1980s [20, 21], can

achieve very low loss even when the resonant converter operates at a very high switching fre-

quency. There are three typical resonant topologies, Series Resonant Converter (SRC), Parallel

Resonant Converter (PRC) and Series-Parallel Resonant Converter (SPRC).

2.1.1 Series Resonant Converter (SRC)

The circuit diagram of the SRC network is shown in Figure 2.1. The SRC network is a series

combination of an inductor and a capacitor. The load is a voltage dividing part connected in

series with the SRC network. Changing the input frequency will change the impedance of the

SRC network, and then consequentially change the load voltage. Since the load is connected in

series with the network, the output voltage gain is always less than or equal to 1.

The AC voltage gain characteristic plot is shown in Figure 2.2. The SRC has three main

weaknesses. Firstly, the range of output voltage is limited. The output voltage of the power

supply used to power the magnetron needs to have a broad range in order to change the output

microwave power. Secondly, it can be seen from the Figure 2.2 that at light load, the switching

frequency needs to be very high to keep the output voltage regulated. Theoretically, the switching

frequency has to be infinite at zero load. Thirdly, in this topology, the SRC network stores a lot of

9



energy, especially with a light load. The large inrush turn-off current on the switch is also a big

challenge.
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Figure 2.2: SRC Voltage Gain [1]
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2.1.2 Parallel Resonant Converter (PRC)

The circuit diagram of the PRC network is shown in Figure 2.3.For the PRC, the resonant tank is

in series, similar to the SRC. The difference from the SRC is that the load is in parallel with the

resonant capacitor. The voltage gain characteristic plot is shown in Figure 2.4. The operation

area is much smaller comparing with the SRC. Similar to the SRC, the operation area of Zero

Voltage Switching is also on the right side of the resonant frequency (The ZVS operation area will

be discussed later).

The load is in parallel with the capacitor. Since the impedance of the resonant tank is

small [22], a big challenge is that the circulating current is very large at light load. Due to the

PC board trace resistance, the efficiency of the converter is too low to be used on a high power

application like the Microwave Oven. Similar to the SRC, the turn-off current through the switch

is also very large at light load. Since the SRC and PRC both only have one resonance, they require

a wide frequency shift in order to accommodate input and load variations.
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Figure 2.4: PRC Voltage Gain [1]

2.1.3 Series-Parallel Resonant Converter (SPRC)

The typical Series-Parallel Resonant network is shown in Figure 2.5, and is also known as the LCC

resonant converter. It combines advantages from both the SRC and PRC. In the normal operation

region, the circulating energy is much smaller compared with the SRC and PRC [19]. As shown in

Figure 2.6, the operation region is still to the right side of the resonant frequency. Similarly to

the SRC and PRC, it has a big problem dealing with input voltage variation. The conduction and

switching losses will increase at high input voltage, which is fairly similar to PWM converter.

Changing the LCC resonant network to an LLC resonant network will shift the resonant

frequency and will solve the problem of circulating energy [2]. The LLC network is shown in

Figure 2.7. There are many advantages of the LLC resonant converter. For example, comparing

with the LCC topology which needs two independent capacitors that are expensive and increasing

the size of the system, the two inductors of the LLC topology can be integrated into a transformer

12



[2]. This creates a very desirable result in which the ZVS operation can be completed over the

entire operating range. As shown in Figure 2.8, the LLC can regulate the output voltage under

wide variations of input voltage and load without changing the range of frequency. The LLC

converter is a suitable topology for power adapters with high efficiency, providing a high and

nearly constant efficiency throughout the complete load and input voltage range [23].

From the above discussion, the LLC topology will be adopted for this research as the

topology of the magnetron power supply, since it can achieve soft-switching, while maintaining

great efficiency.

Figure 2.5: LCC Series-Parallel Resonant Converter

Figure 2.6: LCC Resonant Converter Voltage Gain [1]
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2.2 Mathematical Derivation of Main Circuit Voltage Gain

The main circuit of the power supply is derived from the normal LLC topology. A voltage doubler

is adopted as the output network, in order to get a higher output voltage. Normally the LLC

topology is used on the voltage step-down application, but the power supply needs to boost the

voltage in the proposed approach.
14



C1

Q1

D2

T

D1

Lm

Cr

VIN

Q2

D4

D3

Lr

R_Load

C2

Vsq

Figure 2.9: LLC Based Main Circuit

In the Figure 2.9, the DC (Direct Current) rail voltage Vin is the input voltage applied

on the switching bridge. Q1 and Q2 are both high speed MOSFETs. In this application, they

conduct alternately on a 50% duty cycle. Lr and Cr are part of the resonant network. In the actual

circuit, Lr and Lm are integrated into the transformer as the leakage inductance and magnetizing

inductance to reduce space and cost of extra components. A step-up transformer is connected to

the resonant network. On the secondary side of the transformer, a rectifier doubles the voltage to

satisfy the requirement of 4000V delivered to the magnetron. RLoad represents the magnetron’s

impedance. As shown in Figure 2.15, Vsq is the switching node voltage which alternates between

zero and Vin. The math derivation of the main circuit model is based on the First Harmonics

Analysis (FHA) [24]. The following mathmatical analysis does not consider any loss elements.

The FHA method extracts the fundamental harmonic of the square wave as an approximation.

Io1
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Vo
+

-

D4

Res

D3

R_Load
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T Vo1

Figure 2.10: Secondary Side Equivalent
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The equivalent resistance referred to the transformer secondary side Res is shown in the

Figure 2.10. Res can be calculated using the Ohm’s law as follows:

Vo = 1

2
Vo1 (2.1)

Io = 2∗ Io1 (2.2)

Res = Vo

Io
(2.3)

RLoad = Vo1

Io1
(2.4)

Res =
1
2Vo1

2Io1
= 1

4
RLoad (2.5)

The LLC resonant network has two resonant frequencies:

fo = 1

2π
p

Lr Cr
(2.6)

fp = 1

2π
p

(Lr +Lm)Cr
(2.7)

From the LLC based main circuit which is shown in Figure 2.9, by replacing the switching node

with a square wave voltage source Vg e , and referring the secondary side resistance Res to the

primary side resistance Re , the equivalent main circuit is obtained as Figure 2.11.
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Figure 2.11: Equivalent Main Circuit

The switching bridge divides the DC input voltage into a square wave voltage, the Fourier

transform of the periodic square wave is:

x(t ) = 4

π
(cos(ωt )− 1

3
cos(3ωt )+ 1

5
cos(5ωt )−|...|) (2.8)
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The DC input voltage VI N is applied on the resonant network for each half cycle. Therefore

the voltage source Vg e is a square wave which can be decomposed as:

Vg e (t ) = 1

2

4

π
VI N si n(ωt ) (2.9)

Vg e = RMS(Vg e (t )) =
p

2

π
VI N (2.10)

The fundamental harmonic of the output voltage Voe :

Voe (t ) = 4

π
nVo si n(ωt −φ1) (2.11)

Voe = RMS(Voe (t )) = 2
p

2

π
nVo (2.12)

The equivalent output current Ioe is derived as:

Voe Ioe =Vo Io (2.13)

Ioe = π

2
p

2

1

n
Io (2.14)

The equivalent load resistance Re is derived as:

Re = Voe

Ioe
= 8n2

π2
Res (2.15)

Res = 1

4
RLoad (2.16)

Re = 2n2

π2
Rl oad (2.17)

Reactances of Lr , Lm and Cr :

XCr =
1

ωCr
, XLr =ωLr , XLm =ωLm (2.18)

The resonant frequency fo is determined by:

2π foLr = 1

2π foCr
(2.19)

The magnetizing current Im :

Im = Voe

ωLm
= 2

p
2

π

nVo

ωLm
(2.20)
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The circulating current in the resonant network Ir :

Ir =
√

I 2
m + I 2

oe (2.21)

The Voltage gain of this main circuit Mg is calculated by using the voltage division method:

Mg = Voe

Vg e
= j XLm ||Re

( j XLm ||Re )+ j (XLr −XCr )
(2.22)

The voltage gain Mg can be normalized as:

Ln = Lm/Lr , Qe =
√

Lr /Cr /Re (2.23)

Mg = Ln f 2
n

[(Ln +1) f 2
n −1]+ j [( f 2

n −1) fnQe Ln]
(2.24)

The relationship between the input and output voltage can be expressed as:

Vo = Mg ( fn ,Ln ,Qe )
1

n

VI N

2
(2.25)

2.3 Analysis of Main Circuit

In this section, the characteristics of the main circuit are discussed, including the utilization of

the voltage gain, the resonant converter operation and the zero-voltage switching (ZVS).

2.3.1 Voltage Gain Analysis

The expression of voltage gain Mg has been derived. After the normalization, there are three

elements involved, Qe ,Ln and fn . As suggested from the a TI handbook [2], the inductance ratio,

Ln = Lm/Lr is normally in the range from 3 to 7. In this application, Ln is set as 6.5; the reason

will be explained later. Fixing the parameter Ln makes the voltage gain vs. frequency plot to be

much more straightforward. The plot of Mg vs. normalized frequency fn is shown in Figure 2.12.
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With a given Ln and Qe , Mg presents a convex curve shape, and the operation region is

recommended to be in the vicinity of the network’s resonant frequency. As shown in Figure 2.12
19



and Figure 2.13, Ln has been given as 6.5 and 3.5. Qe is a function of the load and the parameters

of network. Mg presents a family of curves regarding to the change of Ln and Qe . Every curve

goes through a same point (Ln , Mg =1). The voltage drop across Lr and Cr is zero at fn=1, since

XLr -XCr =0 at the resonant frequency point. Therefore the input voltage is applied directly on

the load with a unity voltage gain.

When the Qe is fixed, such as Qe =0.5 shown in Figure 2.12 and Figure 2.13, decreasing Ln

lifts the voltage gain and shrinks the curve. Since the voltage gain is lifted, this results in a better

operation frequency band. In other words, it is easier to get an output voltage without shifting

the operation frequency too much. For example, in Figure 2.12, the operating frequency range is

widest for Mg between 1.1 and 1.4. However, a larger Ln results in a overall higher voltage gain

and a higher start-current through the resonant network which might be beyond the current

limitation of power devices.

The quality factor of the resonant network Qe is described in Equation 2.23. In the real

design, both Lr and Cr are fixed, and Qe is only decided by the load. Increasing the load Re

will increase the effect of Lm , since Re and Lm are parallel, and the distance between the two

resonant frequency points will be increased. As observed in Figure 2.12, changing the load Re

from 0 to ∞, the corresponding peak voltage gain moves from unity to ∞.

From the above analysis, there are many considerations during the design process. The

combination of fn , Qe and the shifting operation frequency makes the parameter selection full

of compromises.

2.3.2 Operation at the Resonant Point ( fn = 1)

The typical waveforms on different parts of an LLC resonant converter at the resonant frequency

( fn = 1) are illustrated in Figure 2.15. In Figure 2.14, a capacitor CT is added to be parallel with

Q2 comparing to Figure 2.9(There is also a capacitor CT is parallel with Q1). CT is an equivalent

capacitor which contains the switch’s output capacitance (Coss) and stray capacitance(Cstray).
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CT needs to be considered during the transition between two switches.

CT =Coss +C str ay (2.26)

Figure 2.14: Main Circuit with Stray Capacitance

Figure 2.15: Operation of LLC Resonant Converter at f0 [2]
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When the LLC resonant converter operates at the resonant point ( fn = 1), a whole opera-

tion cycle contains four stages which is shown in Figure 2.15. Vsq is the switching node voltage.

The analysis of one whole operation cycle is stated as below:

t0 ∼ t1: At t0, the switch Q1 turns on. CT has been fully charged, and the switch node

voltage is equal to the input voltage. Ir =Im<0 at t=t0. Both Ir and Im increase after t0, from

negative to positive. Ir is always larger than Im during this stage, a positive current presents on

the transformer’s primary side. The diode D4 is forward biased, and charges C2. At this stage,

the voltage on the magnetizing inductor Lm is clamped by the output voltage, thus Lm doesn’t

resonate with Lr and Cr .

t1 ∼ t2: At t1, the switch Q1 turns off. CT starts to discharge at t1 until the voltage on CT

decreases to zero. In other words, the switch node voltage equals to zero. Ir = Im > 0 at t = t1. Ir

is still positive after Q1 is turned off. Ir can’t flow back to input voltage source, instead circulating

in the resonant network. A positive current flows through the diode D2, the voltage on Q2 is

zero and Q2 is ready for ZVS conduction. At t1, (Ir − Im) is zero which means there is no current

flowing through the transformer’s primary side. Lm participates into the resonant network. The

resonant period becomes much larger, so that Ir and Im decrease very slow during t1 ∼ t2.

t2 ∼ t3: At t2, the switch Q2 is softly turned on. CT has been fully discharged, the switch

node voltage is zero. Ir = Im > 0 at t = t2, and then both Ir and Im begin to decrease from

positive to negative along the resonant sinusoidal current wave. Im is always larger than Ir , thus

a negative current presents on the transformer’s primary side. The diode D3 is forward biased,

and charges C1 during this stage. The same as in the first stage t0 ∼ t1, the voltage on Lm is

clamped by the output voltage, and the resonant network only contains Lr and Cr .

t3 ∼ t4: At t3, the switch Q2 turns off. Ir is negative and starts to charge CT . The switch

node voltage rises from zero to input voltage. The negative current Ir can’t circulate in the

resonant network, instead flowing back to the input voltage source through the switch Q1. The

negative current flows through the diode D1, the voltage on Q1 is zero and Q1 is ready for ZVS

conduction. The same as in t1 ∼ t2, Lm resonating with Lr and Cr results in a much longer
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resonant period.

2.3.3 Zero-Voltage Switching (ZVS)

Soft-switching is a major benefit of the LLC converter topology which significantly reduces

switching loss. ZVS occurs when a switch device, such as a MOSFET,which turns on only when

the drain-source voltage VDS is reduced to zero [25]. In this research, the way to achieve zero

VDS is to force a reversal current flowing through the MOSFET’s body diode when a positive gate

signal is applied.

As analyzed before, such as in t1 ∼ t2 stage shown in Figure 2.15, because the switch

Q1 turns off, the positive current keeps flowing, and makes the diode D2 forward biased and

prepares conditions needed for achieving ZVS. After Q1 turns off, the current Ir remains positive

for a while and then decreases to be negative. In other words, the current Ir lags the voltage

applied on the resonant network which can be observed in Figure 2.15. The condition required

to achieve lagging current is to make sure the input impedance, Zi n (shown in Figure 2.15) is

inductive.

L1Cr

L2ZIN

Figure 2.16: LLC Network Input Impedance
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Zin can be expressed in a polar form:

ZI N = |ZI N |e jθ (2.27)

θ is the phase angle between Ir and the input voltage. When θ > 0, the input impedance ZI N

is inductive. As discussed before, the angle between Ir and VI N is a function of switching

frequency. As shown in Figure 2.12, each gain peak point corresponds to θ = 0. These peak

points are connected by a red line in the Figure 2.12. A higher frequency results in a larger

impedance presented on Lr , but a smaller impedance on Cr . Therefore the right side of the

red line represents the inductive region. To achieve ZVS, the operation region has to be in the

inductive region.

The equivalent capacitor CT which is parallel to the switch Q2 cannot be ignored. The

energy stored in this capacitor determines the achievement of ZVS. Such as in the stage t3 ∼ t4,

after Q2 turns off, the negative Ir starts to charge CT . Only when CT is fully charged, Ir begins to

flow through the diode D1. Therefore the negative flowing energy in the resonant network needs

to be large enough to make sure CT can be fully charged during t3 ∼ t4.

2.4 Design Implementation

The converter’s electrical specifications in this thesis are given as follows:

• Input voltage: 97 to 118 VDC

• Rated output power: 1000 W

• Output voltage: 4000 VDC

• Rated output current: 0.25 A

• Output voltage line regulation: <= 5%

• Efficiency ( VI N =108 V and I=0.25 A ) >= 90%

• Switching frequency (normal operation): 60 to 140 kH z
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The input voltage is a 10% fluctuation from the nominal 108 V rectified grid voltage.

Design Steps:

1. Determine the Transformer Turns Ratio (n)

The theoretical turns ratio is computed as:

n = (V I N /2)/(Vo/2) = (108/2)/(4000/2) = 0.027 ≈ 0.025(1 : 40) (2.28)

From the reference [26], the industry adjusted turns ratio is computed as:

n1 = n
√

Lm/(Lm +Lr ) = 0.027
√

6.5/(6.5+1) = 0.025 (2.29)

2. Determine the voltage gain from the DC rail to the normalized secondary voltage (Mg _mi n

and Mg _max):

Mg _mi n = nV o_mi n/V i n_max = n[4000(1−5%)]/[108(1+10%)] = 0.80 (2.30)

Mg _max = nV o_max/V i n_mi n = n[4000(1+5%)]/[108(1−10%)] = 1.08 (2.31)

To implement a 10% safety margin for an overload current capability of 110%, Mg _max is

adjusted from 1.08 to 1.08*110% = 1.19.

3. Calculate the equivalent load resistance (Re )

Re = 2∗n2/(π2)∗RL = 2∗0.0272/(π2)∗16000 = 2.36Ω (2.32)

4. Select the Ln and Qe

Based on the Spice simulation in Chapter 4, Ln and Qe are selected as 6.5 and 0.4. From Fig-

ure 2.12, the corresponding peak of the voltage gain Mg is 1.25, which satifies the required Mg

maximum of 1.19.

5. Calculate Resonant Circuit Parameters

The resonant parameters, Cr , Lr and Lm , are determined by Equations 2.19 and 2.23. A switching

frequency of 80 kH z is selected as the series resonant frequency fo .

Cr = 1

2∗2π∗Qe ∗ fo ∗Re
= 1

2∗2π∗0.4∗80kH z ∗2.36
= 2.1µF (2.33)

Lr = 1

(2π∗ fo)2 ∗Cr
= 1

(2π∗80kH z)2 ∗2.1µF
= 1.88µH (2.34)

Lm = Ln ∗Lr = 1.88µH ∗6.5 = 12.27µH (2.35)
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CHAPTER 3: HARDWARE DESIGN

In this Chapter, transformer design, component selection, MOSFET driver IC and protec-

tion circuit will be discussed in detail. The signal processor is selected as TI 2000 DSP controller.

3.1 Integration Transformer Design

As discussed in Chapter 2.3, the LLC resonant topology has many advantages. One of these

advantages is that the LLC contains two inductors which can be integrated into the transformer.

Therefore this study will use the existing inductors in the transformer as part of LLC implemen-

tation. Thus the leakage inductance and magnetizing inductance of the transformer can be

effectively utilized.

The transformer is a device which can provide energy storage and delivery, current filter-

ing and electrical isolation. To achieve high power density of the power supply, the transformer

design is one of the most key elements. There are many ways to reduce the loss and improve the

power density. Magnetic integration is one of the methods that has been studied recently, and

applied into real products [27]. The transformer design will be shown as following step by step.

3.1.1 The List of Transformer Parameters

Input : 54V ,20A

Out put1 : 2000V ,0.5A

Out put2 : 7V ,0.5A

Topolog y : H al f −Br i d g e

Swi tchi ng F r eq : 80kH z

M ax Cor e Loss(Pcl i m) : 2.0W
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3.1.2 Core Selection

Ferrite cores are the most often used in switched mode power supply design. The relative

permeability µr of ferrite is between 1500-3000. Ferrite materials are popular because of their

lower cost and lower loss as compared with powdered metal materials; Ferrite materials have the

disadvantage of a lower saturation flux, however in high frequency applications, the required

saturation flux density is usually very low. In this thesis, Mn-Zn ferrites are chosen as the core

material. TDK Corporation provides a list of large size Mn-Zn ferrites for high power [3]. Ferrite

PC40 from TDK is selected as the core material. Figure 3.1 gives the key characteristics of PC40,

and core loss vs. temperature characteristics is shown Figure 3.1.

F E R R I T E S
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Figure 3.1: PC40 Material Characteristics [3].

F E R R I T E S

(22/24)

20141203 / ferrite_mn-zn_material_characteristics_en.fm

Please be sure to request delivery specifications that provide further details on the features and specifications of the products for proper and safe use.
Please note that the contents may change without any prior notice due to reasons such as upgrading.

Mn-Zn  Large Size Ferrite  for High Power  Material List of PC40

Core loss vs. temperature characteristics

1

10

100

1000

10000

10 100 1000 10000

300mT
250mT
200mT
150mT
100mT
50mT

Frequency (kHz)

P
cv

 (
kW

/m
3 )

Temp.23°C

1

10

100

1000

10000

10 100 1000 10000

300mT
250mT
200mT
150mT
100mT
50mT

Frequency (kHz)

P
cv

 (
kW

/m
3 )

Temp.40°C

1

10

100

1000

10000

10 100 1000 10000

300mT
250mT
200mT
150mT
100mT
50mT

Frequency (kHz)

P
cv

 (
kW

/m
3 )

Temp.60°C

1

10

100

1000

10000

10 100 1000 10000

300mT
250mT
200mT
150mT
100mT
50mT

Frequency (kHz)

P
cv

 (
kW

/m
3 )

Temp.40°C

1

10

100

1000

10000

10 100 1000 10000

300mT
250mT
200mT
150mT
100mT
50mT

Frequency (kHz)

P
cv

 (
kW

/m
3 )

Temp.90°C

1

10

100

1000

10000

10 100 1000 10000
Frequency (kHz)

P
cv

 (
kW

/m
3 )

300mT
250mT
200mT
150mT
100mT
50mT

Temp.100°C

1

10

100

1000

10000

10 100 1000 10000

300mT
250mT
200mT
150mT
100mT
50mT

Frequency (kHz)

P
cv

 (
kW

/m
3 )

Temp.120°C

Figure 3.2: PC40 Core Loss vs. Freq at 60 H z [3].
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There are many ways to estimate the size of the core. The Area Product (’AP’) method is

adopted in this transformer design [26]. The following formula gives an estimation of the area

product required:

AP = AW AE = PO

K 4B f0
(3.1)

where:

Po = Power Out put i n W at t s

∆B = F lux Densi t y Swi ng (Per C ycle),Tesl a

f0 = M ai n Oper ati ng F r equenc y i n H z

K = 0.014(For w ar d conver ter )

= 0.017(Br i d g e, H al f Br i d g e)

A diagram of the EE core is shown below in Figure 3.3. EE cores are less expensive, and

have the advantage of a simple bobbin winding. In this thesis, the EE shape will be adopted as

the core shape.

Product Specifications (Mn-Zn Ferrite)90

Type : EE/EEL Cores

■ DIMENSIONS AND EFFECTIVE PARAMETERS

CORES A B C D E F C1(mm-1) Le(mm) Ae(mm2) Ve(mm3) Wt(g/set)
EE4.2 4.35 ± 0.10 1.35 ± 0.05 1.35 ± 0.10 1.20 ± 0.10 3.15 ± 0.10 0.85 ± 0.05 4.71 7.04 1.49 10.49 0.11

EE5.0 5.25 ± 0.10 2.66 ± 0.07 1.95 ± 0.05 1.35 ± 0.05 3.80min 1.98 ± 0.07 4.70 12.50 2.66 33.30 0.24

EE6.3 6.30 ± 0.25 2.82 . 2.00 ± 0.15 1.32 . 3.60 . 1.92 . 3.64 12.13 3.33 40.39 0.28

EE8.0/5.0 8.00 ± 0.15 5.00 ± 0.08 5.00 ± 0.15 2.90 ± 0.10 5.31 ± 0.15 3.50 ± 0.08 1.48 20.93 14.16 296.37 1.50

EE8.1 8.10 ± 0.20 7.00 ± 0.15 3.70 ± 0.15 1.85 ± 0.15 6.10 ± 0.20 5.75 ± 0.15 4.12 30.45 7.39 225.03 1.16

EE8.3A 8.30 ± 0.20 4.00 ± 0.10 3.90 ± 0.10 2.15 ± 0.15 6.30 ± 0.20 3.00 ± 0.10 2.41 19.33 7.98 154.42 0.76

EE8.3A-1 8.30 ± 0.20 4.00 ± 0.10 3.90 ± 0.10 2.15 ± 0.15 6.30 ± 0.20 3.00 ± 0.10 2.41 19.33 7.98 154.42 0.76

EE8.3B 8.30 ± 0.30 4.15 ± 0.10 1.85 ± 0.15 1.85 ± 0.15 6.00min 3.13 ± 0.10 4.53 19.95 3.67 73.22 0.36

EE8.3B-1 8.30 ± 0.30 4.00 ± 0.10 1.85 ± 0.15 1.85 ± 0.15 6.00min 3.00 ± 0.10 5.32 19.42 3.65 70.89 0.35

EE8.3D 8.30 ± 0.20 4.00 ± 0.10 3.90 ± 0.10 1.85 ± 0.15 6.15 ± 0.20 3.00 ± 0.10 2.50 19.37 7.74 149.92 0.76

EE8.6 8.60 ± 0.30 4.65 ± 0.10 3.65 ± 0.15 1.85 ± 0.20 6.30min 3.55min 2.99 22.02 7.37 162.29 0.87

EE8.8 8.80 ± 0.20 6.00 ± 0.20 2.80 ± 0.10 2.80 ± 0.10 6.00 ± 0.15 4.50 ± 0.10 3.23 25.74 7.95 204.60 1.32

EE8.8A 9.00 ± 0.40 4.00 ± 0.10 1.90 ± 0.10 1.90 ± 0.10 5.20 ± 0.15 2.19 ± 0.16 3.13 15.58 4.98 77.65 0.52

EEL8.8 8.80 ± 0.20 8.50 ± 0.10 2.80 ± 0.10 2.80 ± 0.10 6.00 ± 0.15 7.20 ± 0.10 4.67 36.22 7.75 280.70 1.41

EE9.0 9.00 ± 0.20 6.15 ± 0.20 2.80 ± 0.10 2.80 ± 0.10 6.30 ± 0.15 4.65 ± 0.10 3.39 26.58 7.83 208.23 1.06

EE9.3 9.30 ± 0.20 6.20 . 2.80 ± 0.10 2.80 ± 0.10 6.60 ± 0.10 4.70 . 3.47 27.16 7.84 212.87 1.04

EE10 10.20 ± 0.20 5.70 ± 0.10 4.75 ± 0.15 2.45 ± 0.15 7.70min 4.20 ± 0.15 2.13 26.00 12.00 323.00 1.60

EE10/10 10.20 ± 0.20 5.50 ± 0.10 9.85 ± 0.15 2.40 ± 0.15 7.80 ± 0.20 4.30 ± 0.10 1.11 26.36 23.64 623.10 3.32

EE10A 10.00 ± 0.20 6.60 ± 0.20 2.70 ± 0.10 2.80 ± 0.10 7.30 ± 0.15 5.00 ± 0.15 3.80 29.08 7.66 222.75 1.12

EE12 12.00 ± 0.15 3.20 ± 0.10 6.50 ± 0.10 3.10 ± 0.10 8.90 ± 0.15 1.80 ± 0.10 0.92 17.60 19.18 337.57 1.70

EE12.8-1 12.80 ± 0.25 12.00 ± 0.15 3.50 ± 0.13 3.65 ± 0.10 8.80 ± 0.25 10.00 ± 0.15 3.81 51.20 13.43 687.80 3.38

EE12.9/10 12.95 ± 0.30 6.50 . 9.80 ± 0.20 3.55 ± 0.15 9.15 ± 0.25 4.50 . 0.80 29.57 36.80 1088.00 5.34

EE12.9A 12.90 ± 0.30 6.85 ± 0.15 1.80 ± 0.20 6.00 ± 0.10 9.40 ± 0.25 4.50 ± 0.30 3.54 27.43 7.75 212.58 1.28

EE13 13.00 ± 0.30 6.00 ± 0.20 6.15 ± 0.15 2.95 . 10.50 ± 0.30 4.65 ± 0.15 1.64 28.00 17.00 480.00 2.38

EEL14 14.05 ± 0.25 15.75 ± 0.15 3.50 ± 0.15 4.55 ± 0.15 9.25 ± 0.20 12.25 ± 0.15 3.64 62.06 17.06 1058.68 5.42

DIMENSIONS (mm) EFFECTIVE  PARAMETERS

Ordering Code: Shape:
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- 0.15
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Figure 3.3: EE Core Diagram [4]
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According to the Equation 3.1, the minimum required area product can be calculated by

specifying the required output power:

AP = 1000

0.017∗0.26∗80
= 39,993.0 cm4 (3.2)

The core size is selected as EE42/21/15, which has an area product as 49484 cm4 and satisfies

the area product requirement [4].

3.1.3 Loss Limited Flux Swing

The core loss is mainly determined by the frequency and the flux swing. The operation frequency

is 80 kH z. The core loss per cm3 is required to find the maximum flux swing. The core loss per

cm3 is calculated as:
Pcl i m

V e
= 2 W

17.3 cm3
= 115.6 mw/cm3 (3.3)

At the operating frequency, the peak flux density is found in the core loss curve. Doubling the

peak to obtain the peak flux density swing 4B(At 115.6 mw/cm3 and 80 kH z):

4B = 2∗130 mT = 0.26 Tesl a (3.4)

3.1.4 Primary and Secondary Turns Calculation

Using Faraday’s Law, the number of primary turns N 1 is calculated as:

N 1 =
∫

E d t/4 φ=V i n ∗Ts (3.5)

N 1 = naV ′
o

f s 4B Ae
= 0.025∗2000

80k ∗0.26∗178∗10−6
= 6.75 (3.6)

Rounding N 1 to an integer, thus N 1 = 7. Recalculate the flux swing and core loss at 7 turns:

4 B(7tur ns) = 0.26T ∗ 6.75

7
= 0.25 Tesl a (3.7)

From the core loss curve, the core loss at the amplitude of 0.25T/2 is 110mW /cm3 ∗V e:

Cor e Loss(r eal ) = 110∗17.3 mW = 1.9 W at t s (3.8)
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The numbers of secondary turns N 2 and N 3:

N 2 = N 1

na
= 7

0.025
= 280 (3.9)

N 3 = 1 (3.10)

3.1.5 Define the Winding Structure

The skin depth, Dpen , is the distance from the conductor surface to where the current density is

37% of the surface current density. The nominal depth of penetration for a conductor can be

calculated using page 58 of [28]:

Dpen =
√

ρ

πµ0µr f
= 7.6p

80k
= 0.269mm (3.11)

Where:

ρ i s the r esi st i vi t y at 100◦C i n Ω−m

ρ = 2.3∗10−8 Ω−m f or copper

f i s the f r equenc y i n H z

µ i s the absolute mag neti c per meabi l i t y o f the conductor

T he absol ute mag neti c per meabi l i t y µ=µ0 ∗µr

µ0 = 4πx10−7H/m

According to US wire gauge table, a radius of 0.21mm is selected as Dpen, In order to reduce the

AC resistance, the wire radius must be less than the calculated skin depth Dpen . According to US

wire size table, a value of 0.21 mm is selected as the wire radius. The cross-sectional area Aw of

the conductor is:

Aw =π∗Dpen2 =π∗0.212 = 0.138 mm2 (3.12)

The cross-sectional area of AWG 26 wire is 0.138 mm2 which satisfies the penetration require-

ment. Therefore AWG 26 wire is selected as the winding wire on both sides of the transformer.

The recommendation of the maximum RMS current operated in copper wire Idc is 450A/cm2
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limited by heat dissipation. The RMS current flows in the primary side Ip and in the secondary

side Is are:

I p = 1000W ∗110%/54V = 20.4A (3.13)

I s = 1000W ∗110%/2000V = 0.55A (3.14)

For the primary side and secondary side, the required total cross-sectional areas Ap _Tot al and

As_Tot al are calculated as:

Ap _Tot al =
Ip

Idc
= 4.8 mm2 (3.15)

As_Tot al =
Is

Idc
= 0.129 mm2 (3.16)

To avoid the high AC resistance while handling large currents, many wires will be twisted in

parallel for each turn. The required parallel numbers in each turn of N 1,N 2,N 3 are calculated

by dividing the total cross-sectional area by the cross-sectional area of AWG 26 wire. Therefore

the N 1, N 2 and N 3 windings will have 40,1 and 6 individually wires, respectively within each

winding. The resulting winding structure is shown in Figure 3.4:

Gap

N1

7 turns

4+3

N2

280 turns

20*14

1 turn

Figure 3.4: The Transformer Winding Structure.
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3.1.6 The Real Designed Transformer

The transformer is custom made in Xingchuangli,Ltd in GuangDong, China. The pictures are

followed as in Figure 3.5:

Figure 3.5: The Real Transformer.

The leakage inductance Lr and the magnetizing inductance Lm of the transformer is

tested on a bench LCR meter. By applying signals with different frequencies, the following table

is obtained:

Table 3.1: Lr and Lm Test Results

Freq(kHz) 0.1 1 10 100 200
Lr (µH) 28.6 3.2 2.7 2.6 2.7
Lm (µH) 9,400 5,700 99.5 14.7 -24.3

As seen from Table 3.1, the Lr and Lm at 100 kHz are 2.6µH and 14.7µH ,respectively. The

ratio Ln = Lm/Lr = 5.65

3.2 EMI Filter, Input Rectifier and Output Rectifier Design

In this section, the input and output configurations will be discussed in detail.
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3.2.1 EMI Filter

The function of the EMI (Electromagnetic Interference) filter that will be installed at the AC

input is to reduce high frequency noise that may cause interference with other devices. There

are two main sources of noise that need to be eliminated. These are common mode noise and

differential mode noise. An EMI filter normally consists of capacitors and inductors, therefore

the EMI filter is bi-directional and passive. The EMI filter is shown in Figure 3.6. The EMI filter

includes a protection fuse, common mode choke, and filtering capacitor.

Figure 3.6: EMI Filter

Since the circuit must accommodate a 10 ampere line current, a 20 ampere fuse is

selected to provide short circuit protection. Two inductors with the same number of turns and

the opposite direction are wound on the same ferrite core. These two inductors and the core

form a common mode choke. The common mode choke can reduce the common mode noise.

Because the common mode signal has the same direction, this builds two identical magnetic

fields in the ferrite core that will be added together to form a large magnetic field. The magnetic

field increases the impedance in the path of common mode noise. For the normal line current

flow through the common mode choke, there is no effect because two magnetic fields with the

opposite direction cancel each other.

The capacitors including Cx , CY 1 and CY 2 can provide a low impedance path to divert

the high frequency input noise, either into the ground, or into the power source. The capacitor

Cx installed between two input lines can absorb the noise between two lines which is known as
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differential mode noise. CY 1 and CY 2, which are both connected to the ground, can be used to

eliminate the noise between line and the ground.

3.2.2 Input Rectifier

The power source of the resonant converter is the general-purpose alternating-current (AC)

power supply, which is 120 volts AC in United States. The 120 volts will be rectified by a four-

diode bridge, and followed by an L-C filter in order to smooth the sinusoidal waves especially at

the case of a light load. As shown in the Figure 3.7, the inductor L and the capacitor C form a

low pass filter which sets a cut-off frequency point, and only allows low frequencies to pass. The

values of the inductor and the capacitor are selected as 2 mH and 5uF . The cut-off frequency

fc can be calculated as:

fc = 1

2π
p

LC
= 1

2∗π∗√
2mH ∗5µF

= 1591.5H z (3.17)

Figure 3.7: Input Filter

3.2.3 Output Rectifier

The circuit is designed to provide an output voltage as high as 4000 Volts. The high voltage is a

big challenge for designing the transformer with the concern of electricity isolation. A voltage

doubler is adopted as the output rectifier which is shown in Figure 3.8, in order to reduce the

output voltage of the secondary side of the transformer. A high voltage, fast recovery diode is

required as the rectifier diode. In this design, the low loss diode UX-F5B with a peak reverse
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voltage of 8 kV is chosen. The value of the output filter capacitor can be estimated assuming a

10% voltage drop is allowed. The average output voltage is 4000 V, and the current is equal to

P/Vout =0.25 A. The equation of the capacitor charging balance is:

4V ∗C = I ∗ t (3.18)

4V = 4000/2∗ 10% = 200V . t is the half switching cycle( fo = 80kH z),t = 6.25µs. Then the

capacitance is calculated as:

C = 6.25µs ∗0.25A

200V
= 7.8nF (3.19)

A 10nF film capacitor with a 3000 volt rating is selected as the output filter capacitor.
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Figure 3.8: Output Rectifier

3.3 Main Circuit Design

The main circuit design includes the design of MOSFET bridge, resonant network and their

component selection.

3.3.1 MOSFET Bridge Selection, Loss Calculation, Heat Sink Selection

a).MOSFET Bridge selection:

The most important parameters for MOSFET selection include Drain-Source Breakdown Voltage

(VDS), Continuous Drain Current (ID ), Drain-Source On-State Resistance (RDS(on)), Total Gate

Charge (Qg ) and Rise time (tr ). The MOSFET bridge and LLC network is shown in Figure 3.9.
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The maximum voltage applied across Q1 is Vr ec when Q2 is on. Vr ec is the RMS value

of the rectified grid voltage which is around 108 V. The current, IDS(on), flowing through the

MOSFET (Q1 or Q2) is equal to the circulating current, Ir , in the resonant network. Ir is derived

as the Equation 2.21. Referring back to the equivalent main circuit in Figure 2.11, based upon the

calculation of Lm , Lr in Equations 2.35 and 2.34. Im and Ioe can be calculated using Equations

3.21 and 3.22:

Im = 2
p

2∗n ∗Vo

π∗ω∗Lm
= 2

p
2∗0.025∗2000V

π∗2π∗80kH z ∗12.27µF
= 7.3A (3.20)

Ioe = π∗ Io

(2
p

2∗n)
= π∗0.25A

(2
p

2∗0.025)
= 22.2A (3.21)

Thus,

Ir = IDS(on) =
√

I 2
m + I 2

oe =
√

7.3A2 +22.2A2 = 23.4A (3.22)

The peak value of Ir is:

Ir _peak = Ir ∗
p

2 = 33.0A (3.23)
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Table [ref from datasheet]. Key Performance Parameters of IPW60R041P6 

Parameter Value Unit 

VDS @ Tj,max(Drain-Source voltage) 650 V 

RDS(on)@ Tj,125OC (Drain-Source on-state resistance) 85 mΩ 

Qg(Gate charge total) 170 nC 

VDF(Diode forward voltage) 0.9 V 

ID (Continuous drain current)@150 49.0 A 

IDSS(Zero gate voltage drain current) 10 μA 

Eoss@100V (Coss stored energy) 7.2 μJ 

Ptot (Maximum power dissipation) 481 W 

tr(Switching rise time) 27 ns 

tf(Switching fall time) 5 ns 

td(off)( Turn-off delay time) 90 ns 

 

3.1.2 MOSFET loss calculation 

 

The calculation of power loss in the MOSFET is critical for choosing or designing a heat sink, and also 

for evaluating the power efficiency of the power supply. There are many factors contributing to the 

power loss on MOSFET. The power loss can be categorized into three types of loss, quiescent loss, 

switching loss, diode loss.  

   

Quiescent loss includes the conduction loss (Pon) during the on-state and the cut-off loss (Poff) during 

the off-state. Pon is dissipated by the resistive element RDS(on). The conduction loss Pon at 125 Celsius 

junction temperature is calculated as: 

Pon = IDS(on)^2* (RDS(on) )@ Tj,125^(o)) /2 = 23.4^2*(0.085)/2=23.27 Watts 

The reason for dividing 2 in the formula of Pon is the two MOSFETs conduct alternatively with a 50% 

duty cycle. The cut-off loss Poff is caused by the leakage current when the MOSFET is off.  

Poff=VDS(off)*IDSS*/2=108*10*10-6/2=0.00 Watts  

Vds(off) is the voltage applied to the MOSFET when it is off. VDS(off) is equals to Vrec shown in 

Fig.[ MOSFET  Bridge and LLC  network]. Poff is negligible comparing to Pon. 

 

The contributions to switching loss include the energy lost during turn-on transition Poff_on, the 

energy lost during turn-off transition Pon_off, and the energy PDS used to charge drain-source 

capacitance (also referred to as output capacitance, Coss). As discussed in Chapter 2.3, the body diode 

is forward biased when the switch is turning on. Therefore there is no crossover loss due to the fact that 

the voltage drop between source and drain is 0 during the turn-on transition.  

Poff_on=0 

Turn-off transition Pon_off is still existing. The turn-off transition waveform in the worst case is shown 

as Fig.[] The lost energy is the total crossover product area which can is calculated as: 

Pon_off=1/2* VDS* IDS(on) *(td(off)+tf)*fs = 

1/2*108*23.4*(90+5)*10-9*80000 = 9.60 Watts 

 

 

Table 3.2: Key Performance Parameters of the IPW60R041P6

The model IPW60R041P6 MOSFET which is from Infineon Cool MOST M P6 series is

selected. Table 3.2 lists some key performance parameters of this MOSFET model. b).MOSFET

loss calculation:

The calculation of power loss in the MOSFET is critical for choosing or designing a heat sink, and

also for evaluating the power efficiency of the power supply. There are many factors contributing

to the power loss in the MOSFET. The power loss can be categorized into three types of loss,

quiescent loss, switching loss, diode loss.

Quiescent loss includes the conduction loss (Pon) during the on-state and the cut-off loss

(Po f f ) during the off-state. Pon is dissipated by the resistive element RDS(on). The conduction

loss Pon at 125◦C junction temperature is calculated as:

Pon = I 2
DS(on) ∗RDS(on)/2 = 23.42 ∗ (0.085Ω)/2 = 23.27 W at t s (3.24)

The reason for dividing by 2 in the formula for Pon is that the two MOSFETs conduct alternatively

with a 50% duty cycle. The cut-off loss Po f f is caused by the leakage current when the MOSFET

is off.

Po f f =VDS(o f f ) ∗ IDSS/2 = 108∗10∗10−6/2 = 0.00 W at t s (3.25)

VDS(o f f ) is the voltage applied to the MOSFET when it is off. VDS(o f f ) is equals to Vr ec shown in

Figure 3.9. Po f f is negligible comparing to Pon.
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The contributions to switching loss include the energy lost during turn-on transition

Po f f _on, the energy lost during turn-off transition Pon_o f f , and the energy PDS used to

charge drain-source capacitance (also referred to as output capacitance, Coss). As discussed in

Chapter 2.3.2, the body diode is forward biased when the switch is turning on. Therefore there is

no crossover loss due to the fact that the voltage drop between source and drain is 0V during the

turn-on transition. Thus,

Po f f _on = 0 (3.26)

IDS

VDS

td(off) tf

Figure 3.10: Turn-off Transition Waveform

Turn-off transition Pono f f is still existing. The turn-off transition waveform in the worst

case is shown as Figure 3.10 The lost energy is the total crossover product area which can be

calculated as:

Pon_o f f = 1/2∗VDS ∗ IDS(on) ∗ [td(o f f )+ t f ]∗ f s (3.27)

= 1/2∗108V ∗23.4A∗ (90+5)ns ∗80kH z = 9.60 W at t s (3.28)

The energy for one charging of Coss under a specific VDS (400V) value is given in IPW60R041P6

datasheet as Eoss, and is shown in Table 3.2. PDS is calculated as:

PDS = Eoss ∗ f s = 7.2∗10−6 j ∗80kH z/s = 0.58 W at t s (3.29)
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Diode loss includes the forward conduction loss Pd_f and the reverse recovery loss Pd_re. Pd_f is

calculated as:

Pd_ f = 1/2∗ IF ∗VDF ∗ tx ∗ f s = 1/2∗23.4∗0.9∗0.01 = 0.11 W at t s (3.30)

As discussed in Chapter 2.3.2, the diode conducts only during the transition between

two MOSFETS. IF is the resonant current flowing through the diode during the transition time.

The transition time (deadband time) is less than 1% of the switching cycle. In the transition

period, the resonant current is approximately set as 1
2 Ir . The conduction time tx in one duty

cycle multiplied with the frequency fs is the total conduction time in one switching cycle. Pd_re

is zero. As discussed in Chapter 3.2, the body diode D2 of MOSFET Q2 starts to conduct after Q1

is off at t1, then Q2 turns on at t2, the current flowing through D2 diverts into Q2 because of the

low on-resistance in Q2. Since Q2 already conducted before D2 is reversed, the reversed voltage

applied on D2 is zero. Therefore there is no reverse recovery loss on D2. The analysis is the same

on the body diode D1.

The summation of losses analyzed above will give the total dissipation, PD , in the MOS-

FET:

PD = Pon +Po f f +Po f f _on +Pono f f +PDS +Pd_ f +Pd_r e (3.31)

= 23.27+0.00+0+9.60+0.58+0.11+0.00 = 33.56 W at t s

c).MOSFET Heating Sink Selection:

The typical equation used for calculation of the MOSFET dissipation is shown as below:

θJ A = (TJ −TA)/PD (3.32)

Where:

θJ A=thermal resistance

TJ = junction temperature

TA = ambient temperature
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PD = power dissipation

θJ A consists of three separate thermal resistances in series. One is the thermal resistance

inside the device, between the junction and the its case, called θJC . Another is the resistance of

the silicon grease used between the MOSFET case and the heat sink, called θC S . The last one is

the thermal resistance of the heat sink, called θS A [29]. The total thermal resistance is:

θJ A = θJC +θC S +θS A (3.33)

Rearranging two Equations 3.32 and 3.33:

θS A = (TJ −TA)/PD −θJC −θC S (3.34)

Based on the datasheet specifications of the device and the actual operation conditions,

the maximum junction temperature TJ = 150oC . The ambient temperature TA is set as 50oC . PD

has been already calculated as 33.56 Watts. From the datasheet, the thermal resistance of silicon

grease θC S is 0.1oC /Watt, and the junction-case thermal resistance is 0.26 oC /Watt. Thus the

thermal resistance θS A should be at most:

θS A = (150oC −50oC )/33.56W −0.1oC /W −0.26oC /W = 2.62oC /W (3.35)

The heat sink is selected as 52980X model provided by Aavid Thermalloy. The dissipation

features are shown in Figure 3.11 [30]. Based on the Figure 3.11, to acquire a low enough thermal

resistance, a cooling fan will be added in the practical design. Because a high air velocity results

in a lower thermal resistance.
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5297, 5298, 5299, 5300 Extruded heat sink with large radial fins

Extruded heat sink with large radial
fins features equal channel widths on
both sides for single or dual device
mounting. Includes two solderable
mounting pins which permit vertical
mounting and eliminate stress on
device leads. Available in four heights
for TO-220, TO-218, and TO-247 devices.
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Material: Aluminum
Finish: Black Anodize

ORDERING INFORMATION
Part Number Device “A” Dim “B” Dim “C” Dim

529701B02500G TO-218, TO-247 25.40 (1.000) 21.59 (0.850) 3.66 (0.144) 2.67 (0.105)

529702B02500G TO-220 25.40 (1.000) 18.29 (0.720) 3.17 (0.125) 2.67 (0.105)

529801B02500G TO-218, TO-247 38.10 (1.500) 21.59 (0.850) 3.66 (0.144) 2.67 (0.105)

529802B02500G TO-220 38.10 (1.500) 18.29 (0.720) 3.17 (0.125) 2.67 (0.105)

529901B02500G TO-218, TO-247 50.80 (2.000) 21.59 (0.850) 3.66 (0.144) 2.67 (0.105)

529902B02500G TO-220 50.80 (2.000) 18.29 (0.720) 3.17 (0.125) 2.67 (0.105)

530001B02500G TO-218, TO-247 63.50 (2.500) 21.59 (0.850) 3.66 (0.144) 2.67 (0.105)

530002B02500G TO-220 63.50 (2.500) 18.29 (0.720) 3.17 (0.125) 2.67 (0.105)
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For additional options see page 83

TO-220 & TO-218 & TO-247 Heat Sinks

SW25, SW38, SW50, SW63 Extruded heat sink with unequal channel widths 

Extruded heat sink with unequal 
channel widths front and back 
can accommodate a TO-220, TO-218,
or TO-247 devices. Includes two solder-
able mounting pins which permit verti-
cal mounting and eliminate stress on
device leads. Available in three heights.
Version without hole uses clip 5901
(sold separately) to attach device.
See page 97 for clip information.
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Material: Aluminum
Finish: Black Anodize

ORDERING INFORMATION

Part Number Description “A” Dim Holes

SW25-2G Extruded heat sink with unequal channel widths front and back 25.00 (0.984) No 3.00 (0.118)

SW25-4G With device mounting holes 25.00 (0.984) Yes 3.00 (0.118)

SW38-2G Extruded heat sink with unequal channel widths front and back 38.00 (1.496) No 3.00 (0.118)

SW38-4G With device mounting holes 38.00 (1.496) Yes 3.00 (0.118)

SW50-2G Extruded heat sink with unequal channel widths front and back 50.00 (1.968) No 3.00 (0.118)

SW50-4G With device mounting holes 50.00 (1.968) Yes 3.00 (0.118)

SW63-2G Extruded heat sink with unequal channel widths front and back 63.00 (2.480) No 3.00 (0.118)

SW63-4G With device mounting holes 63.00 (2.480) Yes 3.00 (0.118)
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NOTE 1: This hole not present in SW25 model

Figure 3.11: Heating Sink Dissipation Features

3.4 Resonant Network

The resonant network contains three components as shown in Figure 3.12. The leakage inductor

Lr and the magnetizing inductor Lm are both discussed in Chapter 2.4. Lr and Lm are integrated

into the transformer when it’s designed. As shown in the Table 3.1, the values of Lr and Lm

produced favorable test results.

Figure 3.12: Resonant Network
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The selection of the resonant capacitor (2.2µF ) consists of determining the voltage

applied across the capacitor and the capacitance value. A power film capacitor is selected,

since it has a high power rating. The voltage on the resonant capacitor is obtained from the

PSpice simulation, which is shown in Figure 3.13. The voltage is a DC voltage with sinusoidal

fluctuations. The RMS value of the voltage is around 55 V. B32523 Model from EPCOS is designed

for automotive industry use. B32523 Model has a permissible 250 V DC voltage which satisfies

the requirement.

Date/Time run: 05/30/16 15:42:40
** Profile: "SCHEMATIC1-correct3fo06"  [ C:\Cadence\Practice\...

Temperature: 27.0

Date: May 30, 2016 Page 1 Time: 15:49:18

(A) correct3fo06 (active)

           Time

19.14ms 19.18ms 19.22ms 19.26ms
V(CR1:2,CR1:1)

0V

50.00V

100.00V

-15.25V

128.17V

Figure 3.13: Voltage on the Resonant Capacitor Cr

3.5 Driver Circuit Design

The driver circuit for the MOSFET is critical for the success of the circuit design. In this section,

the driver IC selection and the detailed turning on and off process will be discussed.

3.5.1 Driver IC Selection

The goal of the driver circuit design is to turn on and turn off the MOSFET fast and accurately.

The equivalent circuit of the MOSFET is shown in Figure 3.14. The MOSFET contains a body

diode and three parasitic capacitors, Cgs, Cgd and Cds.
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Where:

Cgs = capacitance between gate and source

Cgd = capacitance between drain and gate

Cds = capacitance between drain and source

Figure 3.14: Parasite Capacitance in the MOSFET

During the turn on process, the capacitance Cgs first begins to charge until arriving at

the plateau of the curve shown in Figure 3.15. The MOSFET starts to turns on at the gate plateau

voltage which is around 6.1 V. Technically the rise time tr of the turn-on process is the period

from the starting point to the plateau voltage (Miller Plateau). However, to turn on the MOSFET

completely, the gate current has to fill the total charge Qg shown in Table 3.1.
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Figure 3.15: Typical Gate Charge Diagram [5]

The rise time tr of the turn on transition is 27 ns. From the datasheet, tr is tested under a

very large gate charging current which is around 7.6 A. During the rise time, the total gate charge

equals to 27*7.6 = 205 nC. The total charge given in Table 3.1 is 170 nC. It is hard to get a driver IC

with a 7.6 A charging current. Finally the model 2EDL23N06PJ from Infineon is selected, which

has a maximum charging current of 2.3 A,is selected as the driver IC. The charging time tr (rise

time) can be approximately calculated as:

tr =Qg /2.3A = 170nc/2.3A = 74ns (3.36)

3.5.2 Charging and Discharging Path

The charging and discharging paths for both MOSFETs are the same, and are highlighted in the

red box as shown in Figure 3.16 below. The internal gate resistance of the MOSFET is 1Ω. The

resistance RLIN1 for the charging path is calculated as:

RLI N 1 =V g /2.3A−1Ω= 5.5Ω. (3.37)

Where Vg is the voltage supply for the driver IC which is equal to 15 V, and Vg is applied directly

on the gate charging path. RLIN1 is selected as a 6Ω resistor.
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Figure 3.16: MOSFET Driver Circuit

As for the discharging path, the resistance along the path should be as small as possible to

reduce the turn-off loss. Therefore a zero resistance will be ideal. Because of the 1Ω internal gate

resistance, the total discharging resistance is 1Ω. Vgs is fully charged to be Vg here. The peak

discharging current will be Vgs/1Ω =15 A. A 15 A repetitive surge current is a huge challenge for

the discharging diode. A high performance Schottky rectifier diode 10BQ100PBF from VISHAY is

selected. 10BQ100PBF is compatible with the high frequency operation. It can take a continuous

current of 1A, and a 38 A surge current.

3.5.3 Bootstrap Capacitor Calculation

The driver for the low side MOSFET (Q2) is fairly straightforward, only a 15 V voltage applied

on the gate charge path is required. However the high side MOSFET (Q1) needs some special

techniques to guarantee a +15 V difference. The bootstrap circuit is utilized in the high side gate

driver to provide the +15 V difference. The MOSFET driver with bootstrap circuit is shown in

Figure 3.17 [6]. When the low side MOSFET is turned on and the high side MOSFET is turned

off, the Vs is pulled down to the ground. The bootstrap capacitor, CBOOT , is charged through the

bootstrap resistor, RBOOT , and bootstrap diode, DBOOT . When the low side MOSFET is turned

off, the VBS floats and the bootstrap diode is reversely biased.

45



© 2008 Fairchild Semiconductor Corporation   www.fairchildsemi.com

AN-6076
Design and Application Guide of Bootstrap Circuit for 
High-Voltage Gate-Drive IC

Rev. 1.4  •  12/18/14 

 

www.fairchildsemi.com

1. Introduction
The purpose of this paper is to demonstrate a systematic
approach to design high-performance bootstrap gate drive
circuits for high-frequency, high-power, and high-efficiency
switching applications using a power MOSFET and IGBT.
It should be of interest to power electronics engineers at all
levels of experience. In the most of switching applications,
efficiency focuses on switching losses that are mainly depen-
dent on switching speed. Therefore, the switching character-
istics are very important in most of the high-power switching
applications presented in this paper. One of the most widely
used methods to supply power to the high-side gate drive cir-
cuitry of the high-voltage gate-drive IC is the bootstrap
power supply. This bootstrap power supply technique has the
advantage of being simple and low cost. However, it has
some limitations, on time of duty-cycle is limited by the
requirement to refresh the charge in the bootstrap capacitor
and serious problems occur when the negative voltage is pre-
sented at the source of the switching device. The most popu-
lar bootstrap circuit solutions are analyzed; including the
effects of parasitic elements, the bootstrap resistor, and
capacitor; on the charge of the floating supply application.

2. High-Speed Gate-Driver Circuitry

2.1 Bootstrap Gate-Drive Technique

The focus of this topic is the bootstrap gate-drive circuit
requirements of the power MOSFET and IGBT in various
switching-mode power-conversion applications. Where
input voltage levels prohibit the use of direct-gate drive cir-
cuits for high-side N-channel power MOSFET or IGBT, the
principle of bootstrap gate-drive technique can be consid-
ered. This method is utilized as a gate drive and accompany-
ing bias circuit, both referenced to the source of the main
switching device. Both the driver and bias circuit swing
between the two input voltage rails together with the source
of the device. However, the driver and its floating bias can
be implemented by low-voltage circuit elements since the
input voltage is never applied across their components. The
driver and the ground referenced control signal are linked by
a level shift circuit that must tolerate the high-voltage differ-
ence and considerable capacitive switching currents between
the floating high-side and ground-referenced low-side cir-
cuits. The high-voltage gate-drive ICs are differentiated by

unique level-shift design. To maintain high efficiency and
manageable power dissipation, the level-shifters should not
draw any current during the on-time of the main switch.
A widely used technique for these applications is called
pulsed latch level translators, shown in Figure 1.

Figure 1. Level-Shifter in High-Side Drive IC

2.2 Bootstrap Drive Circuit Operation

The bootstrap circuit is useful in a high-voltage gate driver
and operates as follows. When the VS goes below the IC
supply voltage VDD or is pulled down to ground (the low-
side switch is turned on and the high-side switch is turned
off), the bootstrap capacitor, CBOOT, charges through the
bootstrap resistor, RBOOT, and bootstrap diode, DBOOT, from
the VDD power supply, as shown in Figure 2. This is pro-
vided by VBS when VS is pulled to a higher voltage by the
high-side switch, the VBS supply floats and the bootstrap
diode reverses bias and blocks the rail voltage (the low-side
switch is turned off and high-side switch is turned on) from
the IC supply voltage, VDD. 

Figure 2. Bootstrap Power Supply Circuit

UVLO

PULSE GENERATOR

R
R

S Q

VB

NOISE
CANCELLER

S
h

o
o

t-
th

ro
u

g
h

 c
u

rr
en

t 
c

o
m

p
e

n
sa

te
d

 g
a

te
 d

ri
v

er

HO

VS

IN

COM

DC SUPPLY

LOAD

VDD Q1

Q2RG2

RG1

DBOOT

CBOOT
ILOAD

RBOOT

VDD

LO

HO

VB

VS

Bootstrap charge current path

Bootstrap discharge current path

 

Figure 3.17: Bootstrap Power Supply Circuit [6]

The bootstrap capacitor is charged during each switching cycle. Theoretically the voltage

VBS across the bootstrap capacitor, CBOOT , can be charged to:

VBS =VDD −V DBOOT −V DS = 15V −1.2V −0.2V = 13.6V (3.38)

The voltage drop on RBOOT can be ignored because it is very small. The value of the

bootstrap capacitance is determined by the maximum allowable voltage drop on VBS . Assuming

the permissible maximum bootstrap voltage fluctuation, 4VBS , is 0.5 V. The maximum tolerance

of the bootstrap voltage fluctuation is about 1.5 V. Therefore a 0.5 V design specification provides

a 1V margin. The bootstrap capacitance is calculated as [5]:

CBOOT = (iQBS ∗ t p +Qg s)/(4VBS)∗1.5 (3.39)

where iQBS is the quiescent current of the high side section, tp is the switching period. Comparing

with the total charge Qg for the super junction capacitance in this MOSFET model, iQBS ∗ t p can

be ignored. Therefore the bootstrap capacitance is:

CBOOT =Qg s/4VBS ∗1.5 = 170nC /(0.5V )∗1.5 = 127.5nF (3.40)

In the practical design, there are two special considerations on the bootstrap capacitor.

The current drawn from the bootstrap capacitor is a large pulse current. Therefore the ESR
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(Equivalent Series Resistance) of the capacitance has to be very small. Otherwise the losses can

result in a lower capacitor lifetime. The layout rule of the bootstrap capacitor is that it must be

placed as close as possible to the driver IC. Otherwise, the voltage spikes caused by parasitic

resistors and inductors may trigger the undervoltage lockout threshold of the driver IC.

a).Investigation of the Voltage Drop along the Bootstrap Charging Path

As shown in the Equation 3.38, the value of VBS is supposed to be around 13.6 V with a

small periodical fluctuation. This voltage drop along the bootstrap charging path was measured

in the lab. The VBS shown in Figure 3.18 demonstrates the Equation 3.38 for a switching frequency

of 100 kHz. However when the switching frequency is raised to 500 kHz from 100 kHz, the VBS

becomes 10.0 V which is shown in Figure 3.19.

Figure 3.18: VBS under 100 kH z Switching Frequency
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Figure 3.19: VBS under 500 kH z Switching Frequency

There are two possible explanations. One is a small switching period results in a non-

saturation on-state of the MOSFET. According to the Equation 3.38, a non-saturation on-state

means a higher VDS value, thus the VBS is lower than 13.6 V. However the voltage drop on MOSFET

was also measured in the lab, and the resulting VDS was almost zero during the on-state. Thus

this explanation is not valid.

The other reason is the high switching frequency causes a big recovery loss on the boot-

strap diode, DBOOT . The bootstrap diode, DBOOT , is integrated into the driver IC. The perfor-

mance of the bootstrap diode under a high frequency is doubtable. Therefore paralleling a high

performance diode with the existing diode might be a good solution.

3.5.4 PWM (Pulse Width Modulation) Signal Filtering

The PWM signal block is shown in Figure 3.16, which consists of a resistor and a capacitor (RC

filter) for each PWM signal. VHIN and VLIN are two PWM signals from DSP controller. The IO
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ports of this controller can provide 3.3V PWM signals with a maximum current of 4mA. The RC

filter resistances, RHIN and RLIN, can be calculated as:

RH I N = RLI N = 3.3V /4m A = 825Ω (3.41)

In the real design, the value of RHIN and RLIN are chosen as 1 kΩ. The RC filter and its

magnitude bode plot are shown in Figure 3.20. The −3dB cut off frequency needs to be higher

than the frequency of PWM signal. The 500 kHz PWM signal is the highest frequency that will be

used during the soft-start period. Therefore the cut off frequency fc can be set as 600 kHz. Based

on the voltage division rule, the expression of a −3dB output magnitude decrease can be written

as:

−3dB = 20∗ log (
1/(2π∗ f c ∗C )

(R +1/(2π∗ f c ∗C ))
) (3.42)

C = 0.11nF (3.43)

Figure 3.20: RC Low Pass Filter

3.6 Protection and Feedback

There are four parts of design in this section, MOSFET current sensing, input current sensing,

input voltage sensing and fault management. The first two parts are design to protect the short

circuit and restart. The other two are design to acquire the parameters used in the feedback

control.
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3.6.1 Detect the Short Circuit Condition

There is a mechanism in the driver IC model 2EDL23N06PJ to prevent overcurrent (short circuit).

The voltage drop between the pins, PGND and GND, can be sent to a comparator with a threshold

of 0.46 V. If the voltage drop is larger than 0.46 V, then the comparator will be triggered and the

protection is activated to stop all the PWMs signals for a 230µs period. During the protection

period, a 230µs fault signal will be shown on the pin of /FLT.

The voltage drop between PGND and GND needs to be created when the short circuit

is happened. As shown in Figure 3.9, the circulating resonant current flows through MOSFET

during the whole switching cycle. Therefore the overcurrent sensor can be connected in series

with the source terminal of the MOSFET. The overcurrent sensor is shown in the red box in

Figure 3.16.

As calculated in the Equation 3.23, the peak circulating current is 33.0 A. The definition

of the overcurrent value under the short circuit condition is critical. It can’t be too large, thus

some large currents caused by short circuit might be omitted. It also can’t be too small, that the

protection can be triggered by the start currents or the noises. Therefore a three times of the

peak circulating current is selected as the overcurrent limitation. The resistance of the current

sensor can be calculated as:

0.46V /(3∗33.0A) = 4.6mΩ (3.44)

This resistor has to be a special made resistor for power electronics current sensing. The LRMA

series resistors from TT Electronics is selected. The LRMA series resistors have precise resistance,

a high power rating, and a low thermal EMF (Electromotive Force).
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Figure 3.21: Over Current Sensor

3.6.2 Fault Indication and Restart

The /FLT pin will activate under the occurring of the under-voltage protection or the overcurrent

protection. The fault indication signal from /FLT lasts only 230µs. The driver IC will restart

to work after the 230µs activation. If the problems in the circuit are not properly solved, the

driver IC will keep going into the fault condition and restart. Finally the repetitive overcurrent or
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under-voltage conditions probably will damage the MOSFETs or driver IC itself.

The fault signal has to be detected and sent to the DSP controller. Then the DSP controller

can prohibit all the PWM signals until the circuit problems are found and solved. A flip-flop

circuit is shown as below. When the /FLT pin is activated, the zero fault voltage will be locked

and a red LED will be lighted. At the same time, the DSP captures the falling edge of the fault

signal and stops all PWM outputs. A reset signal will be sent to the flip-flop to circuit to clear the

fault condition.
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Figure 3.22: Flip-Flop Circuit for Fault Indication and Restart

3.6.3 Input Current and Zero-crossing Point of Input Voltage

As analyzed in the Chapter 2.3.1, the output voltage of the resonant power supply can be adjusted

by changing the switching frequency. The LC filter after the rectified bridge is far away from

filtering the sinusoidal voltage into a DC voltage. Therefore the DC rectified voltage is actually an

approximate positive semi-sine.
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Figure 3.23: Input Voltage Zero Cross Detection and Input Current Sensor

To acquire a more flat output voltage applied on the magnetron, the voltage gain of the

resonant converter needs to be adjusted along with the positive semi-sine input voltage. The

synchronous control point for every cycle of the positive semi-sine wave can be selected as

the zero-crossing point of the positive semi-sine wave. The zero-crossing detection circuit is

shown in Figure 3.23. A voltage divider is used to obtain the rectified voltage. When the voltage is

approaching the bottom of the positive semi-sine wave, the output of the amplifier will be flipped.

A small capacitor is installed for filtering the possible noises, in case of the false triggering. The

passing frequency band of this filtering capacitor needs to include the frequency of the semi-sine

wave.

The RMS current also need to be acquired to be used in the calculation of the input

power. There are two ways to detect the input current. One is to insert a small precision resistor.

The other method is to adopt a hall effect linear current sensor. A small precision resistor is

cheap, but it needs a amplifying circuit to enlarge the signal. The input current is large, thus a

considerable power will be dissipated in the resistor. Finally the hall effect chip ACS711 model

from Allegro is adopted as the current sensor.
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3.7 Layout of PCB (Printed Circuit Board)

The considerations of designing the high power PCB and electromagnetic interference (EMI) are

discussed in this section.

3.7.1 PCB Copper Calculations

Due to the high current in the resonant tank and the MOSFET bridge, the PCB thickness and the

trace width need to be calculated in case of over temperature or even damage. According to the

standard IPC-2221 (Generic Standard on the Printed Circuit Board Design) [31], the trace width

is calculated as following. First, the Area is calculated:

Ar ea(mi l s2) =
( Cur r ent (A)

k ∗ (
Temp_Ri se(oC )

)b

)(1/c)
(3.45)

Then, the width is calculated:

W i d th(mi l s) = Ar ea(mi l s2)

(T hi ckness(oz)∗1.378(mi l s/oz)
(3.46)

For IPC-2221 external layers: k = 0.048, b = 0.44, c = 0.725. where k, b, and c are constants

obtained from IPC-2221 curves. To reduce the trace width as much as possible, a PCB copper

plate with 3 oz thickness is selected. Bringing the 3 oz thickness into the formula above, and set

the allowable temperature rise as 10oC . The width trace is calculated as 305 mils.

3.7.2 EMI Suppression

The PCB layout of the transformer primary side is shown in Figure 3.24. The left area of the

primary side is the mixed signal processing part (the low power area), and the right area is the

high power side. The switching MOSFET can generate a high electromagnetic noise which might

be interfered with the low voltage side. The PWM signal in the low voltage area is very sensitive,

any pollutions can results in the wrong conduction on the MOSFETs which might burn the

MOSFETs. The low voltage side also has communication with the DSP controller, any noises

might hurt the DSP controller as well.
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Figure 3.24: PCB Layout

As shown in the Figure 3.24, the low power and the high power side are separated on the

PCB. There is only one connection point at the border between these two areas. Also to protect

the low power side from the electromagnetic noise, the ground flooding on the both side of the

low power area is implemented.
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CHAPTER 4: SIMULATION AND EXPERIMENT

4.1 Simulation Results Discussion

The LLC based main circuit in Figure 2.9 is simulated in Pspice environment. A transient analysis

based circuit is built in Pspice as shown in Figure 4.1. The DC input voltage of the MOSFET

bridge is set as 108 V which is equal to the filtered rectified voltage of the AC main in United

States. In the simulation diagram, TR1 is a transformer model with two secondary outputs. The

secondary output between pin 3 and pin 4 is for delivering the energy to the rectifier diode. The

other output between oins 10 and 11 is for driving the filament of the Microwave Oven.
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Figure 4.1: Simulation Diagram of the Main Circuit in Pspice
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4.1.1 The Simulation of the Operation of the Resonant Network

The operation of the resonant network has been discussed in detail in subsection 2.3.2. As shown

in the Figure 2.15. The simulation results of currents Ir , Im and Is are all shown in Figure 4.3.

The resonant current Ir is a sinusoidal wave, the magnetizing current Im is a linear increasing or

decreasing current and doesn’t resonate with Lr and Cr . Because the voltage on Lm is clamped

by the secondary output voltage (constant voltage). The current Is which is delivered to the

secondary side is the difference between Ir and Im .
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Figure 4.2: Simulation of the Operation of the Resonant Network
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4.1.2 The Simulation of the Operation of the Resonant Network

The operation of the resonant network has been discussed in detail in Chapter 2.3.2. As shown

in the Figure 2.15. The simulation results of currents Ir , Im and Is are all shown in Figure 4.3.

The resonant current Ir is a sinusoidal wave, the magnetizing current Im is a linear increasing or

decreasing current and doesn’t resonate with Lr and Cr . Because the voltage on Lm is clamped

by the secondary output voltage (constant voltage). The current Is which is delivered to the

secondary side is the difference between Ir and Im .
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Figure 4.3: Simulation of the Operation of the Resonant Network
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4.1.3 The Output Voltages at Different Switching Frequencies

As analyzed in the Chapter 2.3.1, the voltage gain Mg changes as a function of switching frequency

as shown in Figure 2.12. The curves of Mg under different Qe all have a peak value. In Section

2.4, Qe of 0.4 is selected for this design. The maximum voltage gain Mg =1.25 is produced when

the switching frequency is approximately 0.6∗ fo .

When the switching frequency increases beyond 0.6∗ fo , the voltage gain Mg decreases

and the power delivered also decreases. Therefore adjusting the power level of the microwave

oven can be achieved by adjusting the switching frequency beyond 0.6∗ fo . Three switching

frequencies ( 0.625∗ fo , fo and 1.667∗ fo) are simulated in Pspice. The simulated output voltage as

a function of time is shown in Figure 4.4 for each of the three selected switching frequencies. One

will notice that the steady state output voltage decreases with increasing switching frequency:

4700 V at 0.625 fo , 3980 V at fo , and 2950 V at 1.667 fo .
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Figure 4.4: Output Voltages under Different Switching Frequencies
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Figure 4.5: Resonant Current Ir and Magnetizing Current Im under Different Ln
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4.1.4 The Resonant Currents Under Different Inductor Ratio Ln (Lm/Lr )

Ln is defined as the ratio between Lm and Lr in Equation 2.23. Ln is a critical parameter to

determine the operation of the resonant converter. During the exploration using the simulation,

a problem emerged. The peak of the current Im is too large and almost equals to the peak of the

current I r when Ln is small. That means a substantial current flows through the magnetizing

inductor which will cause a lot of loss.

Increasing the magnetizing inductance can reduce the current Im . Because the slope of

the Im vs. time is inversely proportional to the magnetizing inductance Lm . Therefore a larger

Lm (also means a larger Ln) will reduce the peak of the current Im substantially. The resonant

current Ir and the magnetizing current Im are simulated under three different Ln . They are

shown in Figure 4.5.

4.1.5 Soft Switching Realization

As discussed in subsection 2.3.3, the zero-voltage switching (ZVS) during the MOSFET turn-on

transition is one of the benefit of using the LLC resonant topology. The ZVS MOSFET turn-on

transition is shown in Figure 4.6. Before the MOSFET Q2 is turned on, the voltage drop of Q2 has

already reduced to 0 (closely) because of the conduction of the MOSFET body diode.

Soft switching is also realized on the secondary rectifier diodes. The current flowing in

the rectifier diodes is the current difference between Ir and Im . As observed in Figure 2.15, Ir

and Im has an intersection period. This intersection period is the transition between two PWM

signals. The diode current Id is zero during the intersection period. As shown in Figure 4.7, the

diode current is reduced to zero before it turns off. This is called zero-current switching (ZCS)

which reduces the switching loss substantially.

62



           Time

6.656100ms 6.656200ms 6.656300ms 6.656400ms
V(HS_DRI,OUT) V(LS_DRI) V(0,OUT)

-10.00

0

10.00

20.00

-16.79

Figure 4.6: MOSFET(Q2) Turn on at Zero Voltage
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Figure 4.7: Rectifier Diode(D3) Turn off at Zero Current
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4.1.6 Soft Start

Due to the large resonant capacitance, filtering capacitance and parasitic capacitance, the start-

up current can be huge. The huge start-up current of the resonant converter can damage the

devices and produce a large scale EMI.

As analyzed in Chapter 2, the voltage gain Mg has a much smaller value under a high

switching frequency which is shown in Figure 2.12. Based on this characteristic, the start-up

current can be controlled by using a high frequency PWM to obtain a low output voltage. Thus the

start-up current can be smaller. A DSP can be used to produce a high switching frequency during

startup and the design switching frequency during steady state operation. The simulations of

the start-up current under different frequencies are shown in Figure 4.8.
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Figure 4.8: Start Resonant Current under Different Frequencies
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4.2 Experiment Results Discussion

The experiment tested is implemented based on the designed Prototype which is shown in the

Figure 4.9. The complete circuit was tested using a low voltage power supply and a resistive load.

A 6 V DC voltage was adopted as the input of the MOSFET bridge. The circuit was not tested at

full voltage(and full load) due to a failure in the input full wave rectifier. The two complementary

PWM signals from the DSP are shown in the Figure 4.10. There is a 100 ns dead time between the

turn-on statuses of two MOSFETs.

Figure 4.9: Picture of the System Prototype
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Figure 4.10: Two Complementary PWM Signals from DSP

The two complementary PWM signals are amplified by the driver IC, and the voltage of

the turn-on stage is increased to 13.6 V which is shown in Figure 4.11 in order to drive the gates

of the MOSFETs. The MOSFET switching waveform (channel 1) is shown in Figure 4.12,.

Figure 4.11: Two Complementary PWM Signals from Driver IC
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Figure 4.12: MOSFET Switching Waveform

The two MOSFETs alternatively conducts. The DC voltage applied on the MOSFET bridge

is chopped into a square wave which has a frequency the same as the switching frequency. As

shown in the Figure 2.11, the voltage of the primary side of the transformer is close to the square

Vge, because the voltage drop on the Cr and Lr is close to 0V around the switching frequency fo .

The voltage on the secondary side of the transformer is also a square wave due to the clamping

of the output capacitors. The voltage on the secondary side of the transformer is measured as in

Figure 4.13. The peak to peak secondary voltage is about 150 volts as shown in Figure 4.13. The

input voltage from the MOSFETs is about 6 volts, which gives a voltage gain of about 25 for this

low voltage test.
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Figure 4.13: The Voltage on the Secondary Side of the Transformer(yellow);PWM signal (blue)

Finally the square wave output voltage of the secondary side of the transformer is doubled

by the half-wave voltage doubler and filtered by the capacitor. The output voltage is a DC

voltage which will be applied on the testing load. The output voltage on the load is shown in

Figure 4.14.The volts per division in Figure 4.14 is 50 V.

Figure 4.14: DC Output Voltage

The design specify a voltage gain of 40 from the input to the load. However the voltage
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gain from the input to the load is around 25. The voltage gain is much lower than expectation

because of the voltage drop on the MOSFETs and the transformer core. When the input voltage

is improved to the 108 V nominal rectified grid voltage, the effects of the the voltage drop on the

MOSFETs and the transformer core can be ignored.
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CHAPTER 5: CONCLUSION AND FUTURE WORK

This thesis designed a soft switching power supply forg magnetrons. The design includes

the theoretical analysis, math derivation, simulation and hardware implementation.The soft

switching power supply adopted a LLC based main circuit. The main circuit is analyzed step by

step to show how the resonant network works. The mathematical derivation of the voltage gain

gave a good guidance on analysis. The open-loop main circuit was simulated by Pspice.All the

analyses are verified by the simulation results.

The main part of this thesis is the hardware design and implementation. The hardward

design includes the integrated transformer design, inductor design, driver circuit, mixed-signal

circuit,and firmware debugging. The integrated transformer had a good performance under

lab testing. The switching bridge and the resonant network both worked as expected under the

control of the driver circuit and mixed-signal circuit.

Future work includes: (1) test and debug the main circuit under full load condition,

(2) refine the control firmware to obtain a precise control which can track the fluctuation of

the input grid voltage, (3) Compare the design in this thesis to the switching power supply with

PFC(Power Factor Correction), to see whether the effects of reducing THD is obvious or not.
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