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Studying the variability of physiological subsystems (e.g., cardiac and locomotor 

control systems) has been insightful in understanding how functional and dysfunctional 

patterns emerge within their behaviors. The coupling of these subsystems (termed 

cardiolocomotor coupling) is believed to be important to maintain healthy functioning in 

the diverse conditions in which individuals must operate. Aging and pathology result in 

alterations to both the patterns of individual systems, as well as to how those systems 

couple to each other. By examining cardiac and locomotor rhythms concurrently during 

treadmill walking, it is possible to ascertain how these two rhythms relate to each other in 

different populations (i.e., younger and older adults) and with varying task constraints 

(i.e., a gait synchronization task or fast walking task). The purpose of this research was to 

simultaneously document the characteristics of cardiac and gait rhythms in younger (18-

35 yrs) and older (63-80 yrs) healthy adults while walking and to establish the extent to 

which changes in these systems are coupled when gait is constrained. This study 

consisted of two repeated-measures experiments that participants completed on two 

separate days. Both experiments consisted of three 15-minute phases. During the first 

(baseline) and third (retention) phases of both experiments, participants walked with no 

cues or specific instructions at their preferred walking speed. During the second phase, 

participants were asked to synchronize their step falls to the timing of a visual cue 

(experiment 1) or to walk at 125% of their preferred walking speed (experiment 2). Fifty-

one healthy adults (26 older, 67.67±4.70 yrs, 1.72±0.09 m, 70.13±14.30 kg; 25 younger, 

24.57±4.29 yrs, 1.76±0.09 m, 73.34±15.35 kg) participated in this study. Participants’ 

cardiac rhythms (R-R interval time series) and locomotor rhythms (stride interval, step 



 
 

width, and step length time series) were measured while walking on a treadmill.  

Characteristics of variability in cardiac and locomotor rhythms and the coupling between 

cardiac and gait rhythms were measured. Results revealed that younger and older healthy 

adults alter gait patterns similarly when presented with a gait synchronization or fast 

walking task and that these tasks also alter cardiac patterns. Likewise, both groups 

exhibited enhanced cardiolocomotor coupling when tasked with a step timing constraint 

or increased speed during treadmill walking. Combined, these findings suggest that 

walking tasks likely alter both locomotor and cardiac dynamics and the coupling of 

physiological subsystems could be insightful in understanding the diverse effects aging 

and pathology have on individuals. 
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CHAPTER I 

 

INTRODUCTION 

 

Statement of Problem 

Physiology is a branch of biology that examines the function of organisms and 

their parts. While there are many parts of a physiological system, cardiac behavior and 

motor behavior are two of the most commonly assessed components. Research on the 

behavior of these two subsystems has led to advancements in knowledge about how 

healthy behavior emerges, as well as what occurs when aging or pathology affects one or 

both subsystems. Specifically, the study of the variability in patterns of behavior has been 

particularly useful in understanding a subsystem’s functional ability (Goldberger, Peng, 

& Lipsitz, 2002; Stergiou & Decker, 2011).   

Variability of cardiac and gait patterns, individually, is indicative of the quality of 

function of the underlying control systems (Berntson et al., 1997; Davids, Bennett, & 

Newell, 2006; Kleiger, Miller, Bigger Jr, & Moss, 1987; Winter, 1991). These systems 

have been well studied on their own, but less often examined together. Structural and 

functional connections between the cardiac and motor systems innately link these two 

fundamental physiological subsystems. As individuals age or experience pathology, 

several changes occur within and between physiological subsystems. Thus, by examining 

the individual and shared patterns of variability of cardiac and motor behavior, we will 

better understand fundamentally how physiological systems work together to form 
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functional (or sometimes dysfunctional) behaviors, provide new insight for the 

assessment of dynamical diseases and aging that affect multiple physiological systems, 

and provide additional information to help guide rehabilitation and treatment associated 

with dysfunction. 

 The electrocardiogram (ECG) is among the most studied biological signals. 

Through years of research, it has become accepted that cardiac behavior does not follow 

a perfectly repetitive rhythm. Instead, variability in heart rate patterns is an integral part 

of normal cardiac function (Acharya, Joseph, Kannathal, Lim, & Suri, 2006). Through 

this understanding, the field of Heart Rate Variability (HRV) developed and provided 

several new insights into the characteristics of normal and abnormal cardiac rhythms. Not 

only are normal cardiac rhythms variable, but they also exhibit fractal characteristics. 

That is, the fluctuations of heart beat intervals exhibit similar patterns whether they are 

observed on a large time scale (several hundred beats) or a small time scale (tens of 

beats). Fractal patterns can appear highly complex, however the patterns are not merely 

random, but contain a level of determinism (albeit, often nonlinear). Fractal patterns can 

be quantified using numerous metrics that essentially provide information as to a signal’s 

complexity. Detrended fluctuation analysis (DFA), sample entropy (SE), and recurrence 

quantification analysis (RQA) are among the more prominent methods to assess the 

complexity of physiological signals with fractal patterns (e.g., cardiac and gait rhythms). 

Interestingly, aging and pathology have been associated with a change in complexity – 

often a loss – that is demonstrated by decreased DFA scaling exponent alpha (DFA α), 
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decreased SE, and changes in the metrics derived from RQA. These metrics were first 

used to study HRV, but have now been applied to study other physiological subsystems. 

 As HRV became more commonplace and insightful into cardiac rhythms, 

researchers began to extend this variability framework to the study of human movement. 

Similar to cardiac behavior, healthy gait rhythms exhibit inherent variability. The 

temporal (stride time interval) and spatial (step length and step width) kinematics of gait 

are variable and exhibit fractal characteristics. Thus, algorithms used to assess HRV 

became equally useful in studying the control of human gait. Some have contended that 

variability in gait patterns is a functional component related to the adaptability or 

flexibility of the motor system (Hausdorff, 2007; Rhea & Kiefer, 2014; Stergiou & 

Decker, 2011). Logically, variability would afford the ability to make small (or large) 

adjustments when presented with an obstacle, perturbation, or alteration in the task or 

environment. On the other hand, gait patterns locked into a set rhythm may be less able to 

handle more complex tasks such as climbing stairs or recovering from catching a toe on 

the curb. Changes in the magnitude and structure of variability of gait rhythms, like 

cardiac rhythms, are also indicative of dysfunction in the underlying control networks 

(Brach, Berlin, VanSwearingen, Newman, & Studenski, 2005; Brach, Studenski, Perera, 

VanSwearingen, & Newman, 2008; Gabell & Nayak, 1984; Hausdorff, 2005). 

Specifically, reduced standard deviation (SD) or coefficient of variation (CV) of stride 

time and step width have been associated with higher risk of falls (Hausdorff, Rios, & 

Edelberg, 2001; Hausdorff, 2007). Similarly, a change in complexity appears to be 

indicative of the motor system losing fine-tune control (decreased complexity) or 
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becoming overly constrained and rigid (increased complexity). Therefore, it has been 

proposed that there are optimal levels of both magnitude and structure of variability 

within and between gait cycles (Stergiou & Decker, 2011). 

 While cardiac and gait function have been widely examined independently, less 

attention has been focused on understanding the coupling of these interconnected 

subsystems. Following the path and role of blood through the cardiovascular system, it is 

easy to see that cardiac function affects the transport of oxygen and nutrients to muscles 

for motion.  Likewise, movement facilitates the return of blood to the heart and therefore 

may influence cardiac patterns. 

It has been contended that cardiolocomotor synchronization may be a more 

metabolically efficient during exercise (Phillips & Jin, 2013). However, the need for 

coupling, or improved efficiency, could be a due to either task goals (i.e., performance 

improvements) or health quality (i.e., aging or pathology). Thus, coupling may be a 

marker of improved efficiency or of a decline in health. We would expect, therefore, that 

aging and disease would increase the coupling of physiological subsystems to allow them 

to operate more efficiency. From an adaptability perspective, however, this may make 

those subsystems less robust to perturbations created by the environment or task. Thus, 

examining the coupling of physiological subsystems will provide new insight into both 

physiological efficiency and the processes associated with aging and pathology.  

 Novak, Hu, Vyas, & Lipsitz (2007) observed greater cardiolocomotor coupling in 

elderly individuals relative to younger individuals during treadmill walking. Specifically, 

cardiac beat-to-beat intervals were positively associated with step intervals and 
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normalized foot pressure. Thus, muscle contractures may serve as a rhythmic pump 

returning venous blood to the heart and act as a possible mechanism for this coupling 

phenomenon (Novak et al., 2007). Cardiolocomotor coupling has also been observed 

during bicycling, a task which does not involve impact events or significant changes in 

vertical acceleration (Kirby, Nugent, Marlow, MacLeod, & Marble, 1989). Therefore, 

muscle contracture, as opposed to heel impact or vertical acceleration of the heart, may 

play a larger role in this coupling behavior. Cardiolocomotor synchronization has been 

observed both spontaneously and voluntarily; both cases resulting in a dissociation of 

both cardiorespiratory and respirolocomotor coupling (Niizeki, Kawahara, & Miyamoto, 

1993). Combined, coupling may be a result of two independent constraints – changes in 

physiological demands, such as during exercise, or due to processes specific to aging or 

pathology.  

 Individual characteristics of cardiac and motor patterns, as well as how those 

patterns couple with each other provide information about the extent to which 

physiological function is healthy and normal. Thus, the purpose of this dissertation is to 

examine the variability characteristics of the cardiac and gait rhythms individually and as 

they relate to each other. Younger and older healthy adults will participate in this study to 

allow observation of effects relating to normal aging processes. By specifying constraints 

in a gait task, it is possible to observe the concurrent changes in cardiac and motor 

patterns, and assess the relationship of the output of these two physiological subsystems. 

The characteristics of cardiac rhythms, gait rhythms, and cardiolocomotor coupling will 

be quantified in two experimental conditions: (1) before, during, and after a gait 
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synchronization task during treadmill walking at a self-selected pace and (2) before, 

during, and after walking faster than preferred speed. Both experimental conditions have 

been previously shown to alter the fractal characteristics in gait of young healthy adults 

(Jordan, Challis, & Newell, 2007b; Rhea, Kiefer, D’Andrea, Warren, & Aaron, 2014), so 

this study will extend our previous knowledge by (1) determining if similar changes in 

gait characteristics are observed in older adults, (2) quantifying cardiac characteristics 

when gait characteristics are modulated in a specific manner in both age groups, and (3) 

characterizing the coupling between the cardiac and motor systems during these 

physically challenging tasks in both age groups. 

Objective and Hypothesis 

The objective is to simultaneously document the characteristics of cardiac and 

gait rhythms during walking and to establish the extent to which changes in these systems 

are coupled when the gait is constrained via (1) a gait synchronization task or (2) walking 

faster than preferred speed. A necessary step to accomplish this will be to test and expand 

on a technique used to quantify coupling specifically for cardiac and locomotor signals. 

 Hypothesis 1: As a group, young healthy adults will exhibit different variability 

characteristics of gait rhythms compared to older adults. Specifically, we hypothesize that 

the younger group will have greater mean, smaller SD and CV, greater DFA α, and 

greater SE of stride time, step length, and step width time series. We expect these 

predictions to persist through each phase of both experiments. 

 Hypothesis 2: As a group, young healthy adults will exhibit different variability 

characteristics of cardiac rhythms compared to older adults. Specifically, we hypothesize 
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that the younger group will have greater mean, greater SD and CV, greater DFA α, and 

greater SE of R-R intervals. We expect these predictions to persist through each phase of 

both experiments. 

Hypothesis 3:  We hypothesize that cardiolocomotor coupling during the pre-test 

phase will be similar between the younger and older groups. When gait is constrained via 

the gait synchronization task or increased walking speed (experimental phase), we predict 

the older group will demonstrate a larger increase in the coupling index. During the post-

test phase, we predict the younger group will return to pre-test phase values of the 

coupling index, while the older group will exhibit residual effects of the experimental 

phase. 

Limitations and Assumptions 

1. The results from this dissertation will be unable to be generalized to populations 

other than younger and older healthy adults, as will be examined in the study. 

2. All participants will attenuate to the task (gait synchronization or 125% of 

preferred walking speed) to the best of their ability throughout the entire 

experimental phase. 

3. The sampling frequency of 100 Hz for the motion capture system (Qualisys AB, 

Göteborg, Sweden) is adequate to accurately track and calculate the kinematics of 

lower limb body segments during walking. 

4. The sampling frequency of 1000 Hz for the electrocardiogram (Biopac Systems, 

Inc., Goleta, CA, USA) is adequate to accurately observe cardiac signals and 

identify timing of R-peaks. 
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5. This work will not account for all possible pre-existing pathologies of the cardiac 

or motor subsystems, especially if not yet diagnosed by a physician. 

6. Walking on a treadmill may be different than overground walking, which may 

include variable surface conditions in addition to the inherent variability of human 

gait. 

7. Participants will be able to select a preferred walking speed similar to that of 

overground walking. 

Delimitations 

1. Kinematic measurements will be made for both legs. However, variability 

measures will only calculated for the right limb. In cases where the right limb is 

unable to be used, such as marker drop-out, the left limb will be used. 

2. Only healthy adults, either 18-35 or 63-80 years of age will participate in this 

study. 

3. Events will be automatically identified. False-positives and false-negatives will be 

removed or manually replaced, respectively, as appropriate. 

Operational Definitions 

Healthy: No diagnosis of cardiac, neuromuscular, or movement dysfunction; no acute 

injury or illness that would prevent participants from exhibiting normal cardiac or 

movement behaviors; self-reported ability to walk for 45 consecutive minutes on a 

treadmill at a self-selected pace; normal or corrected to normal vision. 

Coupling: Concurrent changes in the behavioral state of two separate physiological 

signals. In this research, the signals being examined are cardiac R-R interval and stride 
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interval time series. Using ordered recurrence plot analysis, the coupling index quantifies 

the extent to which these two signals are coupled. 

Variability: Variability is defined here to refer to both linear and nonlinear assessments 

of signal distributions, fluctuations, and patterns. The SD and CV of a time series will be 

used to describe the magnitude of variability. The structure of variability will be 

measured using DFA αand SE. RQA will be used to quantify the coupling strength 

between the structure of variability in cardiac and gait behavior.  

Time series: A time series consists of a collection of events or measurements in the order 

in which they occurred. 

Young: Between 18 and 35 years old. 

Older: Between 63 and 80 years old. 

Gait synchronization task: Walking on a treadmill while matching step timing with the 

timing of a visual cue – in this case blinking left and right footprints. 

Preferred walking speed: Self-selected pace on the treadmill described as a walk with a 

dog or through the park. A detailed description of this selection process is described in 

the Chapter 3. 

 

Variables 

Independent Variables 

Sex – Sex will be recorded for each participant. 

Age (Group) – Age will be calculated in years from the participant’s birthdate to the date 

of starting participation. 
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Resting HRV – 8-minutes of ECG will be recorded during sitting at the beginning of 

each testing session. HRV characteristics (mean, SD, DFA α, and SE) will be calculated 

from the beat-to-beat time series. 

Blood pressure – Systolic and diastolic blood pressure (mmHg) will be recorded 

following 8-minutes of sitting at the beginning of each testing session. 

Preferred walking speed – Preferred walking speed will be found for each participant 

on their first day of participation using an iterative process in which the participant begins 

very slow or very quickly on the treadmill and informs the researchers to speed up or 

slow down the treadmill, respectively, until they are at a comfortable walking pace 

similar to walking through a park. The process will be repeated until consecutive attempts 

are within 0.2 m/s. The last two speeds selected by the participant will be averaged and 

used as the preferred walking speed for the rest of the study. 

Dependent Variables 

µRR, µST, µSW, µSL– The average heart beat interval (µRR), average stride interval (µST), 

average step width (µSW), and average step length (µSL) will be calculated from each 

signal’s time series as: 

 
μ=[∑i=1→N(xi])]/N, 

 

 the sum of each datum of the time series, divided by the total number of observations. 

σRR, σST, σSW, σSL – The standard deviation will be calculated from each time series as: 

 
σ = √{[∑i=1→N(xi –μ)2]/N} 
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where xi is each value in the time series, µ is the mean of the appropriate time series, and 

N is the total number of observations in the time series. 

α RR, α ST, α SW, α SL – Detrended fluctuation analysis scaling exponent alpha will be 

calculated from each time series using custom written Matlab scripts. The algorithm is 

discussed in Chapter 2. Values approaching 0.5 are considered to be associated with 

randomness, and values approaching or exceeding 1.0 are associated with more scale 

invariant long-range correlations (or increased fractality). 

SERR, SEST, SESW, SESL – Sample entropy will be calculated from each time series using 

custom written Matlab scripts. The algorithm is discussed in Chapter 2. Values 

approaching 0 are considered to be highly regularly, and values approaching 2.0 are 

considered to be highly complex. 

Coupling index – The coupling index will be calculated from order pattern recurrence 

plots of the R-R interval and stride interval time series. The algorithm is discussed in 

Chapter 2. No clear standards are in place for the value of the coupling index, however, 

they will serve as a metric on a comparative basis. Higher values are associated with 

stronger coupling between two signals. Theoretically values can range from 0 (no 

coupling) to 1 (complete coupling), but physiological data have been previously reported 

on the scale of 10-2 (Groth, 2005).
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CHAPTER II 

 

REVIEW OF THE LITERATURE 

 

Variability in Human Physiology 

 Variability of physiological systems is becoming a vastly studied phenomenon. 

Beat-to-beat variability in cardiac behavior was first formally identified by Reverend 

Stephen Hales over 250 years ago (Hales, 2000). Not until the invention of the 

electrocardiogram (ECG), however, did the study of cardiac rhythms evolve into a more 

quantifiable behavior. Similarly, it has been established for over a century that human 

gait exhibits variability from stride-to-stride (von Vierordt, 1881). Through these 

observations, and advances in mathematics and statistics, numerous ways to quantify 

variability in human physiology have been developed. Herein, the topic of magnitude of 

variability will be used to refer to the standard deviation (SD) and coefficient of variation 

(CV), both of which provide a summary statistic of the overall behavior. Alternatively, 

the manner in which the variability unfolds over time (or space) will be quantified by 

examining the structure of variability. While there are many metrics available for the 

assessment of the structure of variability (Bravi, Longtin, & Seely, 2011), this proposal 

only utilizes the most common and clinically valuable metrics to date, which includes 

detrended fluctuation analysis (DFA), sample entropy (SE), and recurrence quantification 

analysis (RQA).  
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Cardiac Rhythms 

The electrocardiogram (ECG) is one of the most studied physiological signals. 

Cardiac rhythms, similar to gait rhythms, are controlled through a number of mechanisms 

and could be considered as a dynamical system. The study of heart rate variability (HRV) 

has become a heavily studied field and informative of the physiological factors 

controlling cardiac rhythms, especially autonomic activity (Acharya et al., 2006; Camm 

et al., 1996). 

The plethora of measures to quantify variability are discussed in detail by Bravi, 

Longtin, and Seely (2011). This review highlights that many of these measures originate 

from the study of heart rate times series. In fact, Jeffrey Hausdorff, a leading researcher 

who studies the clinical importance of gait dynamics, explains that his foray into gait 

dynamics stemmed from wanting to understand the relationship between heart rate 

variability (HRV) and gait dynamics on a beat-to-beat and stride-to-stride basis 

(Hausdorff, 2007). 

HRV refers to the analysis of the beat-to-beat variations in cardiac rhythms. It is 

believed that HRV is associated with the ability of the cardiac system to adapt to changes 

in environment, task, or the heart itself. Both linear and nonlinear measures have been 

employed to study this phenomenon. The prevailing theory is that autonomic neural 

regulation of the cardiovascular system causes the normal variations observed in cardiac 

rhythms (Saul, 1990). The sympathetic and parasympathetic nervous systems are able to 

respond to perturbations and allow healthy heart function to occur in a wide variety of 
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environments and during changing tasks. The next sections outline some of the most 

commonly used linear and nonlinear analyses to analyze HRV. 

Linear Analyses 

Linear analyses of HRV are predominantly in the time and frequency domains. 

This section provides a summary of the metrics recommended by the Task Force of the 

European Society of Cardiology and the North American Society of Pacing and 

Electrophysiology (Camm et al., 1996) to assess HRV clinically. Measurements in the 

time domain include standard deviation of normal-normal beats (SDNN), HRV triangular 

index, standard deviation of average normal-normal beats (SDANN), and root mean 

square of squared differences (RMSSD). SDNN summarizes the overall magnitude of 

variability within a single recording (typically 24-hours). Similarly, the triangular index 

is a geometric assessment of the distribution of R-R intervals and represents another 

overall measure of HRV. SDANN assesses the long-term variability of heart rate by 

calculating the SD of the means of consecutive 5-minute windows of ECG data. RMSSD 

takes the root mean square of the differences of consecutive heart beat intervals and 

quantifies the short-term variability and accounts for the order of heart beats. Linear 

measures of HRV have been shown to decrease with aging and in association with 

pathology (Guzzetti, Magatelli, Borroni, & Mezzetti, 2001; Kleiger et al., 1987).  

Power spectral density (PSD) analysis has been employed to assess the 

contributions of specific frequency bands on the cardiac signal. Using a Fast Fourier 

Transform (FFT), a continuous ECG recording is converted to its frequency components. 

The power of frequencies are then reported as a histogram with bins that define ultra-low 
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frequency (ULF) (< .003 Hz), very low frequency (VLF) (.003 - .04 Hz), low frequency 

(LF) (.04 - .15 Hz), and high frequency (HF) (.15 - .4 Hz) components. ULF 

measurements are only reliable in long-term recordings (24-hours) because they occur on 

such a slow scale. Additionally, the ratio of LF to HF components (LF/HF) is often 

reported. LF and HF are also often expressed as normalized units as the ratio of power to 

total power minus VLF components. It is believed that vagal activity is primarily 

responsible for the HF component. The LF component, when expressed as normalized 

units, is believed to be associated with sympathetic modulations. Finally, the LF/HF ratio 

measures the balance between sympathetic and vagal modulations. The physiological 

interpretations of ULF and VLF components are still unclear and warrant continued study 

(Camm et al., 1996). Table 1 summarizes time and frequency domain measurements of 

HRV recommended by the Task Force. 
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Table 1. Linear Measures of Heart Rate Variability in the Time and Frequency Domains. 

Task Force recommendation of linear metrics to assess heart rate variability in the 

frequency and time domains. * and † denotes metrics used only for short (5 min) and 

long (24 h) ECG recordings, respectively. (Adapted from Camm et al., 1996). 

 

Linear measures of Heart Rate Variability  

in the Time and Frequency Domains 

Metric Units Description 

Time Domain Measures 

Statistical Measures 

SDNN ms Standard deviation of all NN intervals 

SDANN ms 
Standard deviation of the averages of NN intervals in all 5-

minute segments of the entire recording 

RMSSD ms 
The square root of the mean of the sum of the squares of 

differences between adjacent NN intervals 

Geometric Measures 

HRV 

triangular 

index 

  

Total number of all NN intervals divided by the height of the 

histogram of all NN intervals measured on a discrete scale with 

bins of 7.8125 ms (1/128 seconds)  

Frequency Domain Measures 

5-min total 

power 
ms2 

The variance of NN intervals over the temporal segment (≈≤0.4 

Hz)* 

Total power ms2 Variance of all NN intervals (≈≤0.4 Hz)† 

ULF ms2 Power in the ULF range (≤0.003 Hz) 

VLF ms2 Power in VLF range (≤0.04 Hz) 

LF ms2 Power in LF range (0.04-0.15 Hz) 

LF norm nu LF power in normalized units LF/(total power−VLF)×100 

HF ms2 Power in HF range (0.15-0.4 Hz) 

HF norm nu HF power in normalized units HF/(total power−VLF)×100 

LF/HF na  Ratio LF [ms2]/HF[ms2] 
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Nonlinear Analyses 

As previously discussed, the advent of nonlinear metrics to assess time series has 

led to a number of alternative measurements to quantify the rhythms in a cardiac signal. 

The Task Force recommendations suggest that nonlinear tools are only promising and 

have not yet led to major breakthroughs in understanding of HRV (Camm et al., 1996). 

Therefore, they should continue to be studied but are not yet appropriate for clinical 

assessment. However, more recent research has begun to describe the clinical utility of 

nonlinear analyses (Manor & Lipsitz, 2013; Schumacher, 2004). The next few paragraphs 

describe two of the most commonly used nonlinear analyses for physiological signals: (1) 

detrended fluctuation analysis and (2) sample entropy.  

Detrended Fluctuation Analysis 

 DFA was originally presented by Peng et al. (1994) to assess the long-range 

correlations in DNA sequences. This work originated from fluctuation analysis and 

introduced a detrending process to help deal with nonstationary signals. A very clear 

explanation of the DFA process is described in Peng, Havlin, Stanley, & Goldberger 

(1995) and is paraphrased below. 

The detrended fluctuation analysis process follows these steps: (1) integrate the 

time series, (2) divide the time series into windows of equal length, n, (3) within each 

box, fit a least-squares linear fit, (4) detrend the integrated time series by subtracting the 

local trend (least-square linear fit line) from the time series data, and (5) calculate the root 

mean square fluctuation, F(n), of the integrated and detrended time series (eq. 1). 
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  F(n) = √{1/N·∑k=1→N[y(k)-yn(k)]2} (eq. 1) 

 In eq. 1, N and n are the total number of data points within each window (n is 

used as a description for the box size, and N for the number of data points, but these 

values are equal in this case), y(k) is the current data point being evaluated, and yn(k) is 

the local trend value for the current data point being evaluated. This process is repeated 

for several time scales (box sizes), resulting in a relationship between box size (n) and the 

average fluctuations for that box size F(n). The typical range for box sizes is from 4 data 

points to ¼ the length of the time series. When plotting the relationship of F(n) and n on a 

double-log plot, a linear relationship indicates self-similar scaling. The slope of this linear 

relationship is termed DFA scaling exponent alpha (DFA α), and quantifies the scaling 

characteristic of a time series (Figure 1).  

For a completely random, uncorrelated time series, DFA α is equal to 0.5. Values 

of DFA α larger than 0.5 and less than 1.0 indicate that large fluctuations are more likely 

to be followed by large fluctuations, and small fluctuations by small. This characteristic 

is termed persistence. Values of DFA α less than 0.5 are indicative of antipersistence, or 

large fluctuations being followed by small fluctuations and vice versa. 
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Figure 1. Illustration of the DFA Process. The stride interval time series is demeaned 

using the y(k) function (a). Next, the time series is partitioned into a series of box sizes. 

For visual clarity, a subset of the time series (minutes 7-9) have been zoomed in on and 

two of the box sizes are shown (b). A trend line is fitted within each box and the residual 

variability above and below the trend line is calculated using the Fn function. The residual 

variability within each box size is then plotted on a log-log plot and a least squares line is 

fit to the data. The slope of the least squares line is the DFA α metric. (Adapted from 

Rhea & Kiefer, 2014). 
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Persistence is typically observed in healthy physiological signals (Diniz et al., 

2011; Van Orden, Kloos, & Wallot, 2009) and DFA α values of  healthy cardiac beat-to-

beat intervals during rest are near 1.0 (Acharya, Lim, & Joseph, 2002). More importantly, 

DFA α has been identified as a potential indicator of healthy (or unhealthy) neural 

function for the cardiac system  (Acharya et al., 2002). The DFA α can be partitioned into 

separate values by quantifying different parts of the log-log plot slope line, which is 

informative about the variability patterns at smaller and larger time scales. Box sizes of 4 

to 16 are used to quantify α1, while box sizes of 16 to 64 are used to calculate α2.Using 

the α1 and α2 values in a HRV analysis, distinction can be made between normal heart 

patterns, complete heart block, and ectopic (abnormal) heart rhythms (Acharya et al., 

2002; Mourot, 2014). The specific α values have been associated with the relative 

contribution of sympathetic and vagal control of heart beat dynamics (α1) and changes in 

sympathetic modulation (α2) (Willson, Francis, Wensel, Coats, & Parker, 2002). This also 

has the potential to provide predictive and prognostic value to clinicians (Goldberger, 

Amaral, et al., 2002; Manor & Lipsitz, 2013). 

Sample Entropy 

 Sample entropy evolved from information theory and ultimately quantifies the 

regularity (inverse of complexity) of time series data (Richman & Moorman, 2000). 

Similar to DFA, this work evolved from a comparable analysis, approximate entropy 

(ApEn), which was developed by Pincus, Gladstone, & Ehrenkranz (1991) to provide a 

computationally efficient way to measure the entropy of time-series data. Intuitively, SE 

quantifies the complexity (high SE values) or regularity (low SE values) of a time series. 
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Both ApEn and SE use a template matching algorithm to compare the number of matches 

at template size m to the number of matches at template size m+1. ApEn counts a self-

match in this process and, therefore, may overestimate the regularity of a time-series. SE 

was developed to ignore self-matches and provide a more accurate assessment of 

regularity. The mathematical process to measure sample entropy is paraphrased below 

from Richman & Moorman (2000). 

 Calculating sample entropy requires setting the template length (m) and the radius 

(r) that defines the maximum distance between the template and vector being evaluated 

to be considered a match. The value r is often expressed in terms of the SD of the time-

series to allow for comparison of time-series with different magnitudes of variability.  

The calculation of sample entropy follows the following steps: (1) create a set of 

vectors (xm) each consisting of all the sets of consecutive points of length m, (2) calculate 

the scalar distance as defined in eq. 2 between each vector in xm, (3) count the number of 

vector pairs (of length m) with a distance (d) less than r  (this count of matches will be 

called B), and (4) repeat steps 1 through 3 using a template of size m+1 to find the 

number of vector pairs (of length m+1) with a distance less than r (this count of matches 

will be called A). 

 

d[x(i),x(j)]=max{|u)i+k)-u(j+k)|: 0 ≤ k ≤ m-1} (eq. 2) 
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In the preceding steps, self-matches are not counted, and only the first N – m 

templates are used to ensure that all vectors used are defined. The conditional 

probabilities of B and A are then calculated as the sum of the conditional probabilities for 

each vector matching each template of size m and m+1, respectively. Finally, the 

negative natural logarithm of the conditional probability of A divided the conditional 

probability of B is calculated and defined as SE. Because the conditional probabilities for 

both A and B are based on the same number of templates, this can be simplified to just 

use the counts of A and B (eq. 3). 

 

SE(m,r,N)=-ln(A/B) (eq. 3) 

 

 

Therefore, SE(m,r,N) is equal to the negative natural logarithm of total matches of size 

m+1 per matches of size m, accounting for every possible template of size m+1 and m. 

 Setting the parameters m and r is especially important, as they both will greatly 

influence the number of matches identified. Lake, Richman, Griffin, & Moorman (2002) 

defined a process to optimize these parameters. This method suggests identifying 

acceptable values for m based on a priori reasoning, then using this to select an 

acceptable value of r such that the 95% confidence interval is approximately 10% of the 

SE estimate. 

 Several additional measures of entropy exist, but the utility of SE and ApEn in the 

analysis of physiological time series makes them the most important to discuss. In 

general, entropy has been used to measure the regularity of several types of systems (e.g., 

chaotic, mechanical, physiological). Yet, ApEn and SE have become the most 
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prominently reported entropy metrics for physiological time series. Pincus et al. (1991) 

originally developed ApEn to study heart beat rhythms, endocrine hormone pulsatility, 

and respiratory data as a relative measure that had strong potential to identify differences 

between healthy and clinical groups. The work by Richman & Moorman (2000) and Lake 

et al. (2002) built upon this and primarily focused on cardiac rhythms. 

 Cardiac rhythms tend to show higher levels of complexity associated with 

improved health status. Entropy has been used to quantify the regularity of cardiac 

rhythms in healthy, elderly, pathological, and neonates, among other populations. Even 

with healthy aging, entropy tends to decrease as an indicator of a loss of complexity of 

the cardiac control system (Pikkujämsä et al., 1999). Multiscale entropy has been used to 

show that healthy cardiac patterns have more complexity than the cardiac behavior in 

clinical populations with congestive heart failure or atrial fibrillation (Costa, Peng, & 

Goldberger, 2008; Eduardo Virgilio Silva & Otavio Murta, 2012). Interestingly, these 

two pathologies come about in different ways – loss of variability and increased 

regularity (i.e., congestive heart failure) and more random cardiac patterns (i.e., atrial 

fibrillation). Recently, Mourot (2014) demonstrated the ability of short cardiac time 

series (only 256 beat-to-beat intervals) and entropy (i.e., ApEn and SE) to distinguish 

between coronary artery disease and healthy heart function. Use of these metrics with 

shorter data sets is valuable because it will allow clinicians to collect data during a visit 

and not rely on other methods, such as 24-hour monitoring for data collection. 

In general, it is believed that an appropriate level of entropy – or irregularity – of 

rhythmic physiological patterns is a marker of the inherent flexibility and adaptability of 
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the observed physiological system. In contrast, decreased entropy, or regularity, may 

make a physiological system rigid and unable to adapt to stressors when needed. 

However, it should be noted that an overly irregular system, such as that observed from 

atrial fibrillation, will likely also lead to dysfunctional behavior. Thus, there is a “sweet 

spot” between regular and irregular behavior that allows flexible and adaptive behavior to 

emerge. These behaviors emerge from, among other things, the neural connectivity of the 

underlying control system, to which SE has been proposed to be sensitive enough to pick 

up (Lipsitz, 2002; Pincus, 1994). Specifically, as SE decreases, cardiac output becomes 

more regular because the underlying control mechanisms become less complex with 

aging and pathology. Mechanistically, this has been suggested to be related to vagal 

control of cardiac function (Beckers, Ramaekers, & Aubert, 2001). Additionally, it has 

been shown consistently that aging and pathology result in a loss of complexity as 

measured by entropy (i.e., SE, ApEn, and Multiscale SE) in both movement patterns and 

cardiac patterns. 

 The preceding sections have detailed the mathematics and utility of detrended 

fluctuation analysis and sample entropy. While these are only two of the myriad of 

metrics that can be used to quantify the dynamics of physiological time series (Bravi et 

al., 2011), they are presented because they quantify unique characteristics of time series 

and can be plausibly linked to mechanistic explanations and functional outcomes. DFA α 

appears most likely associated with vagal control of heart rate dynamics, while SE may 

be associated with the health and connectivity of neural networks and feedback 

mechanisms within the cardiac control systems. Using the loss of (or change in) 
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complexity theory as a theoretical basis, aging and pathology lead to a loss of neural 

connectivity throughout the body. This leads to a loss of complexity in the control 

mechanisms for both autonomic function (i.e., cardiac patterns) and voluntary movement 

(i.e., gait rhythms). DFA α allows us to assess the fractal scaling of the output of these 

systems, while SE provides a measure of complexity. Thus, DFA α and SE act as global 

indices of physiological function with plausibly different mechanisms. Together, these 

two metrics have the potential to elucidate characteristics of cardiac control that are not 

obvious from linear methodologies or even alone. 

Loss of (or Change in) ‘Complexity’ as a Theoretical Construct 

 Lipsitz and Goldberger (1992) proposed the loss of ‘complexity’ theory as a 

plausible explanation of the outcomes related to aging and pathology. They hypothesized 

that aging is due to “a progressive loss of complexity in the dynamics of all physiological 

systems” (p. 1808). Lipsitz and Goldberger describe (1) loss or impairment of 

components and (2) altered coupling between components as the likely mechanisms for 

loss of physiological complexity. At the entire system level, we can think of this as either 

dysfunction of an individual subsystem (e.g., cardiac and motor behavior) or changes in 

how subsystems work together to produce healthy function. 

 Complexity is a quality of a signal or a behavior that is difficult to define 

(Grassberger, 2012). Existing somewhere between order and chaos, complexity should 

not be confused with randomness. Hallmarks of complex biological systems are self-

organization, emergence of features not implicit in the systems, and inherent feedback 

within and between component systems (Diniz et al., 2011; Grassberger, 2012). Thus, 
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there have been numerous metrics to quantify complexity of physiological time series, 

and a consensus on definition and quantification has not been reached. Yet, there are 

several examples of research that demonstrate loss of complexity as a characteristic of 

aging or pathology. Definitions and measurement of complexity is often varied between 

researchers. Thus, caution should be taken when assessing these research findings. What 

has generally been reported, however, is that complexity of heart rate dynamics and 

locomotor behavior decline with age, independent of pathological changes in 

physiological function (Manor & Lipsitz, 2013). Some recent research in motor behavior 

suggests that in certain circumstances complexity could also increase due to aging or 

pathology (Morrison & Newell, 2012). Differences in tremor signal in different tasks, 

specifically, highlights the importance of accounting for the effect of task on behavior 

complexity. In this light, loss of complexity theory should be considered a subset of 

dynamical disease theory proposed by Glass and Mackey (1988), in which changes in the 

dynamic characteristics (i.e., either increases or decreases in complexity) are due to 

changes in the underlying function of the systems observed. 

Changes in Cardiovascular Complexity 

 With the growth of heart rate variability as a field and advances in applying 

dynamic systems tools to physiology, several recent studies have improved our 

understanding of complexity in the cardiovascular system. Through the loss of neural 

connectivity or other mechanisms, aging results in a loss of complexity of the cardiac 

patterns. Kaplan et al. (1991) identified decreased entropy and dimension of cardiac 

dynamics (i.e., heart rate time series and continuous blood pressure) in older adults 
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compared to younger adults during supine paced breathing, supine spontaneous 

breathing, and 60° tilt spontaneous breathing. Both of these findings are indicative of less 

complex cardiac dynamics and therefore a loss of complexity in the control mechanisms 

of heart rate. Similarly, Pikkujämsä et al. (1999) identified a decrease in ApEn and 

increase in DFA α associated with aging, indicative of loss of complexity of the cardiac 

control systems. This study examined healthy participants throughout the lifespan (age 1 

to 82). 

 Pathology of the cardiovascular system has also been shown to relate to changes 

in complexity of heart rate patterns. Interestingly, the connection between entropy and 

critical care indices (i.e., disease severity and mortality) has recently come to light for 

several cardiovascular pathologies (Angelini et al., 2007; Costa, Goldberger, & Peng, 

2002; Gomez-Garcia, Martinez-Vargas, & Castellanos-Dominguez, 2011; K. K. L. Ho et 

al., 1997; Y.-L. Ho, Lin, Lin, & Lo, 2011; Norris, Stein, & Morris Jr, 2008). Loss of 

complexity is more prominent in patients presenting pathological cardiac function and is 

also associated with reduced survival rates. These findings support the added value of 

examining nonlinear measures of complexity along with traditional HRV characteristics. 

Gait Rhythms 

Gait is a fundamental motor skill performed by nearly every human being. It has 

been studied throughout the years and its quality is often indicative of the health and 

mobility capacity of a person. Historically, movement variability has been viewed as an 

indication that the motor system lacks the necessary control to perform a task in a 

repeatable manner. As such, increases in variability were viewed as indications of a 
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poorly functioning system, whereas minimizing variability demonstrated the control 

needed to be a skilled performer (Bryan & Harter, 1897; Thorndike, Lay, & Dean, 1909; 

Thorndike, 1927). 

Traditionally, gait is assessed by examining summary metrics, such as mean stride 

time, during short bouts of walking. However, it has become widely accepted that the 

stride times of both healthy and unhealthy adults exhibit fluctuations (Gabell & Nayak, 

1984; Hausdorff et al., 1996; West & Griffin, 1998). Variability in human movement is 

no longer thought of as noise or error, but instead it is considered an intrinsic and 

deterministic property of the dynamical systems that control movement (Davids, Glazier, 

Araújo, & Bartlett, 2003; Glazier, Davids, & Bartlett, 2003; Stergiou, Harbourne, & 

Cavanaugh, 2006). Moreover, studies examining the magnitude (i.e., standard deviation) 

and structure (i.e., nonlinear assessments) of variability in gait rhythms have identified 

utility in the variety of metrics used in the assessment of gait (Bravi et al., 2011). 

Human gait is a repetitive, cyclic activity that can be characterized in several 

ways. Often, specific features of a stride cycle (e.g., stance or swing phase time, peak 

knee flexion angle, gait asymmetry) are used to assess the quality of an individual’s 

movements. Because of the cyclical nature of human gait, summary measures for these 

features have been developed for young, elderly, as well as some pathological 

populations and are often used as a comparative basis when assessing an individual’s 

movement quality (Oberg, Karsznia, & Öberg, 1994; Öberg, Karsznia, & Öberg, 1993; 

Winter, 1991). These normative data have provided clinicians with a simple measurement 

to characterize different impairments in gait and to determine an appropriate course of 
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action. Yet, as our fundamental understanding of different motor deficits has continued to 

grow, new tools have emerged that provide additional insight into the variability present 

in gait rhythms. The following sections outline the linear and nonlinear analyses 

commonly used in gait and what has been learned from this research. 

Linear Analyses 

As previously described, linear measures such as SD and CV measure the 

magnitude of variability present in a time series. Jordan, Challis, & Newell (2007) 

identified that increasing walking speed, from 80% to 120% of preferred walking speed 

incrementally decreased stride time while increasing step length. This study also revealed 

that CV of both stride interval and step length decrease with increasing gait speed. An 

increase in the magnitude of variability has been shown to relate to increased fall-risk 

(Hausdorff et al., 2001). Rosano et al. (2007) observed increases in the SD of step width 

associated with a “greater burden of subclinical [sic] abnormalities” (p.193). However, 

the relationship between gait variability and dysfunction has not been completely one-

sided. Brach et al. (2005) showed that either too much or too little variability in step 

width was associated with fall history in elderly adults exhibiting normal healthy gait 

speeds. In another study, Brach et al. (2008) identified that variability in different 

characteristics of gait may have different underlying mechanisms. Specifically, central 

nervous system impairment was associated with increased stance time variability while 

sensory impairment (i.e., visual or proprioceptive) was associated with increased step 

width variability. The consensus of research in gait variability is that there is an optimal 

magnitude of variability, and too much or too little can be detrimental to function or 
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performance (Stergiou et al., 2006). This optimal range is likely dependent on the task, 

environment, and individual – a key characteristic of dynamical systems. 

Nonlinear Analyses 

 In addition to quantifying the magnitude of variability, researchers have used 

nonlinear analyses to quantify the structure of variability, which defines how the 

variability unfolds over time. The structure of variability allows for the identification of 

patterns of variability over short and long time scales. Specifically, DFA SE have become 

popular nonlinear analyses and are well-suited for the study of gait time series.  

As discussed previously, DFA quantifies the fractal scaling of a time series, and 

SE quantifies the degree of irregularity (i.e., complexity) of a time series by using a 

pattern matching algorithm. DFA and SE have been selected because they quantify the 

structure of variability and some have argued that they relate to the adaptability or 

healthy function of physiological systems (Goldberger, 1990; Manor & Lipsitz, 2013; 

Rhea et al., 2011; Vaillancourt & Newell, 2002). DFA values in physiological systems 

typically range between 0.5 to 1.0, with the lower numbers indicating more random 

patterns and the higher number representing more organized patterns. Stride-to-stride 

intervals are typically around 0.75 for normal healthy gait (Hausdorff et al., 1996). Step 

width and step length patterns are less published, but some research suggests that these 

gait characteristics exhibit DFA values closer to 0.5 (Stergiou & Decker, 2011; Wittstein 

et al., under review).  

In walking and running on a treadmill, DFA α has been shown to observe a U-

shaped curve, with increasing values of DFA α as speed moves away from a participant’s 



31 
 

self-selected pace (Jordan, Challis, & Newell, 2007a; Jordan et al., 2007b). Hausdorff et 

al. (1997) identified that DFA α in both healthy aging and Huntington’s disease patients 

exhibit lower values (though still persistent) than healthy young and age-matched 

controls, respectively. Gates & Dingwell (2007) identified no difference between 

peripheral neuropathy patients and age-matched controls. Hausdorff (2007) suggests that 

these findings, together, suggest that there may be a specific neural locus responsible for 

the generation of stride interval fractality. The observation of decreased fractal scaling in 

Huntington’s disease patients suggest that the striatal pathology in the basil ganglia 

associated with loss of fine motor may be this specific locus. Moreover, other deficits or 

differences in this region of the brain could explain some of the variation observed across 

even healthy young adults. 

In gait, entropy – in its many forms – has been useful to associate the irregularity 

of walking patterns with clinical changes in walking. In the flexion-extension time series 

during walking, ACL deficient knees exhibit a lower entropy than healthy knees 

(Georgoulis, Moraiti, Ristanis, & Stergiou, 2006). Similarly, OA patients had 

significantly lower SE values of shank accelerations than age-matched healthy 

participants (Tochigi, Segal, Vaseenon, & Brown, 2012). Buzzi and Ulrich (2004) 

demonstrated that sagittal plane accelerations of the thigh, shank, and foot tended to be 

more regular (lower ApEn) in children with down syndrome compared to healthy 

controls. For stride interval time series, normal walking speed has been shown to be more 

complex than fast, slow, or walking paced by a metronome (Costa, Goldberger, & Peng, 

2005). 
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In general, it has been shown that both DFA α and entropy of gait characteristics 

tend to be different in aging or pathological populations, or when the system is stressed 

(walking faster or slower than the preferred speed). It is reasonable, then, to assume that a 

change in these characteristics, even in healthy individuals, is suggestive of changes in 

the underlying neural control process that maintains gait patterns. For this reason, 

Stergiou et al. (2006) have suggested an optimal variability hypothesis which applies to 

both linear and nonlinear measurements of variability. In application, a change in DFA α 

or entropy could potentially be used to assess the quality with which the motor system is 

functioning, and whether or not the motor system is able to change its control 

mechanisms to changing environmental and task constraints. 

Changes in Locomotor Complexity 

 Redundancy in the neural control of movement results in complex patterns of 

locomotor behavior. While there have been a few studies that relate complexity in gait to 

ability to overcome physical (Hausdorff, 2007; Jordan, Challis, Cusumano, & Newell, 

2009) and cognitive (Grubaugh & Rhea, 2014) stress (such as a trip or dual-tasking, 

respectively), there have been several studies examining the changes in complexity of 

gait patterns associated with aging and illness, as well as when participants are asked to 

alter their walking speed or patterns. Aging has consistently shown a loss of complexity 

in movement patterns as indicated by lower DFA α (Hausdorff et al., 1997; Scafetta, 

Marchi, & West, 2009), SE (Tochigi et al., 2012), and ApEn (Buzzi & Ulrich, 2004). 

Similarly, distinct pathologies with differing mechanisms have also demonstrated 

evidence of loss of complexity. Herman et al. (2005) demonstrated that fractal scaling 
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exponent (DFA α) is lower in fallers than non-fallers with higher-level gait disorders (i.e., 

not due to structural or peripheral neural deficits and without clearly identified 

pathology). Similarly, the fractal scaling of gait rhythms of individuals with Huntington’s 

disease (Hausdorff et al., 1997) or Parkinson’s disease (Frenkel-Toledo et al., 2005) is 

lower than healthy controls. 

While some authors contend that lower fractal scaling actually represents more 

complexity (Vaillancourt & Newell, 2002), it is important to note that complexity and 

randomness are not synonymous. A completely random gait pattern lacks any 

predictability and therefore it is not complex. A healthy gait pattern exhibits some low 

level of predictability, but its complexity is more colloquially defined as the ease with 

which we can accurately model the gait behavior. Thus, it is important to consider the 

context of the research and metrics before assessing the directionality of the relationship 

between a metric and complexity. 

 As has been discussed, loss of complexity theory is a framework within which to 

study aging and pathological processes. Changes in both structure (e.g., loss of neurons) 

and function (e.g., reduced muscle strength) of the physiological system and it 

subsystems, as well as alterations in how components couple with each other, provide a 

plausible explanation for loss of complexity theory. Thus, examining the complexity of 

the cardiac and locomotor subsystems individually, as well as the coupling between these 

subsystems, advances our understanding of how physiological function emerges. These 

findings may then lead to improved assessments of health and provide health-relevant 

dynamical characteristics to drive the development of new rehabilitation techniques. 
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Manor and Lipsitz (2013) reviewed several examples of how complexity has been used 

as a sensitive measure to test the effectiveness of interventions for both cardiac dynamics 

and postural control. Hausdorff (2007) has also demonstrated the utility of gait dynamics 

to understand quality of the motor control system and the relationship of gait variability 

to health and injury. These papers outline the potential of using complexity to understand 

the alterations in gait and cardiac function through normal aging and pathological 

mechanisms. 

Physiological Coupling 

 The coupling of physiological subsystems is not a new topic of research. Yet, 

breakthroughs in understanding the mechanisms and effects of coupling have been few 

and far between. As reviewed above, research in physiological variability has primarily 

been observed in one subsystem at a time. There are competing theories as to whether 

coupling of physiological subsystems, broadly defined, is beneficial or detrimental to 

healthy human functioning. Logically, it makes sense that a highly synchronized and 

coupled system could have the benefit of more efficient function, such as the 

synchronized rowing of an elite crew team. In this light, Godin & Buchman (1996) 

suggest that the decoupling of organ function may signal the onset of multiple organ 

dysfunction syndrome. Similarly, cardiolocomotor coupling may be more energetically 

efficient (Niizeki & Saitoh, 2014). However, contrary to this hypothesis, several 

researchers contend that coupling is a sign of loss of complexity, simplifying the control 

mechanisms for physiological function, and therefore a potential marker of dysfunction 

(Kyriazis, 2003; Novak et al., 2007).  
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It is plausible that both of these postulates in regard to the role of physiological 

coupling are accurate. That is, a healthy physiological system may consist of a series of 

subsystems (e.g., cardiac and motor) that have the ability to couple and uncouple based 

on the particular task demands. For example, when the task becomes physically 

challenging, the subsystems may couple to conserve energy. However, there may also be 

situations when it is either energetically or functionally more efficient to have each 

subsystem work independently. For example, it is desirable for the heart to keep beating 

in the absence of gait (i.e., sitting in a chair). That adaptive ability of the physiological 

system to transition the mode of subsystem synchronization best utilized for a particular 

task is a hallmark of a healthy system. Alternatively, aging and pathology have 

consequences that affect the capacity of several physiological subsystems, which may 

preclude the ability to couple or uncouple as freely as a healthy system. Thus, these 

systems may lock into a mode of synchronization or independency as a way to maintain 

some, yet not optimally adaptive, behavior. Therefore, it is important to understand how 

physiological subsystems interact to more confidently identify when physiological 

healthy has been compromised.  

To begin to understand how the cardiac and locomotor systems are linked, we 

conducted a pilot study examining the dynamics of both systems during a gait 

synchronization task in young, healthy adults (Wittstein & Rhea, 2015). The task 

consisted of synchronizing the gait cycle to a set of flashing footprints on a projection 

screen in front of the treadmill. In this population, the cardiac and locomotor dynamics 

exhibited independent changes through each phase (pre-test, exp, and post-test) of the 
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study. The mean R-R interval increased during the synchronization phase (likely due to 

the faster stride times requiring higher cardiac output), while no significant differences 

were exhibited by CV and DFA α across phases. Meanwhile, the locomotor dynamics 

exhibited changes associated with the specific phase of the experiment.  In a loosely 

coupled system, as we would expect in young healthy adults, the cardiac function and 

motor tasks can function nearly independently. However, in an older population, we 

would expect to see similar shifts in dynamics across phases in these two systems 

because they are likely more strongly coupled. Data from our pilot study are presented in 

Figure 2, as well as what we hypothesize to observe in an older population that likely 

have increased coupling of their cardiac and locomotor systems. 
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Figure 2. Pilot Data and Hypothetical Data for Cardiac and Stride Time Rhythms. Mean, 

CV, and DFA α (top to bottom) of stride time (blue solid) and R-R interval (red solid). 

Hypothesized data is also presented (dashed lines) to demonstrate how increased 

cardiolocomotor coupling may potentially be observed through individual physiological 

subsystems. 
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 There have been several practical and theoretical challenges in directly 

quantifying the coupling characteristic of mathematical systems and physiological 

systems. Thus, coupling has been defined and measured in several ways, often dependent 

on the field in which it is being observed. From a mechanical systems perspective, 

coupling is most often defined as a physical link between two mechanical bodies. Thus, 

the two bodies’ motions must be linked. If this link is rigid, the two bodies will be 

perfectly coupled. If the link consists of multiple segments, springs, or is otherwise not 

rigid, the relationship between the two bodies becomes more complex and potentially 

nonlinear. In computer programming, coupling refers to the extent to which one routine 

relies on another. For example, if one program requires information from another 

program to operate, those systems are coupled. We can apply these definitions to 

physiological subsystems because they share neural connections, physical connections, 

and resources. Additionally, the ultimate goal of each subsystem is to allow the 

individual to function (i.e., maintain life). By measuring the coupling, or the extent of 

synchronization, of two physiological subsystems we are able to identify how closely 

those subsystems can affect each other. 

Given these definitions, researchers have used varying mathematical methods to 

define and describe coupling of physiological subsystems. Kreuz et al. (2007) discuss 

several different types of synchronization and used coupled mathematical models to test 

and compare six measurements of synchronization. Their ultimate findings were that 

measurements of synchronization should be chosen “pragmatically as the measure which 

most reliably yields valuable information [sic] in test applications” (p. 36). This 
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demonstrates the challenges associated with quantifying coupling or synchronization of 

complex systems (e.g., physiological subsystems). 

Numerous methodologies have been employed to describe and quantify the 

coupling of two time series. Rosenberg and colleagues (1989) demonstrated the value of 

using both time- and frequency-domain (i.e. Fourier transformations) techniques in 

identifying coupling between neural pathways that activate the same muscle spindle.  In 

this method, it was possible to remove the influence of one input by filtering specific 

frequency regions of a signal and ultimately demonstrated that the response changes of 

the muscle spindles were additive of its inputs (two separate static fusimotor axons). 

However, the Fourier approach is limited because it does not account for the temporal 

localization of events. The use of phase angles (or relationships) has also been used to 

quantify the coupling of time series (Mrowka, Cimponeriu, Patzak, & Rosenblum, 2003; 

Niizeki & Saitoh, 2014). The advantage to this technique is that it potentially allows for 

some description of directionality of coupling (i.e., the phase angle could be positive or 

negative between two signals). However, this method examines the relative timing of 

events and does not account for the impact that past events may have on future events. 

Information theory has provided many tools and into the measurement of dynamic 

characteristics of time series, including the coupling between time series (Grassberger, 

1991; Richman & Moorman, 2000; Schreiber, 2000; Schulz et al., 2013; Xie, Zheng, 

Guo, & Chen, 2010). This technique is the basis of the aforementioned SE and ApEn, 

along with Cross-SE and Cross-ApEn, with the latter two quantifying the coupling 

between two time series. The basic foundation of this method is to measure how much 
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information is contained within a series of data (Shannon, 1948) can be applied to 

examine the shared information (or unique information) between two separate time series 

(Richman & Moorman, 2000). Using a template matching technique, it is possible to 

examine if patterns repeat within a time series or between two separate time series. In 

practice, this has been used to measure the asynchrony of various types of time series, 

including economic data (Lin, Shang, & Zhong, 2014; Liu, Qian, & Lu, 2010) and 

physiological time series (Fabris, De Colle, & Sparacino, 2013; Richman & Moorman, 

2000; T. Zhang, Yang, & Coote, 2007). An advantage of using entropy measures is that it 

is used across several fields and is easily modifiable to varying data types, having been 

widely used for physiological time series, among others. On the other hand, the 

interpretation of entropy measures is still debated and entropy may be highly sensitive to 

signal infidelity (i.e., spikes in data) (Aboy, Cuesta-Frau, Austin, & Micó-Tormos, 2007; 

Molina-Picó et al., 2011).  

Lastly, linear techniques have been used to examine the coupling between 

physiological time series. Kirby et al. (1989) defined cardiolocomotor coupling as present 

when the heart and step rates were within 1% of each other. In this example, 

synchronization is when the mean values of two systems’ characteristics are very near 

each other. Niizeki, Kawahara, & Miyamoto, (1993), on the other hand, defined coupling 

to be present when the SD of the phase difference between the onset of heartbeats and 

gait signals was below 0.1 (or 10% of the phase range). This suggests that 

synchronization occurs when the relative timing of events in each system becomes very 

consistent. Novak, Hu, Vyas, & Lipsitz (2007) used the coefficients of correlation (r) and 
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determination (R2) to evaluate the coupling of heartbeat and stepping patterns. Because 

R-R intervals and step intervals do not occur simultaneously, the authors constructed 

continuous time series from the interval data to enable them to calculate r and R2. It was 

unclear what method was used to construct the continuous time series. These are just 

three different methods that researchers have used to quantify the coupling of cardiac and 

locomotor systems. However, advancement has been made in recent decades to create 

methods that quantify the coupling within a dynamically changing system. The origin and 

development of those methods is outlined below. 

 Many techniques have been used to measure time series coupling and dynamics, 

each with their own strengths and weaknesses. Linear techniques such as quantifying the 

mean or variation of data are extremely informative when comparing to normative data, 

and is practical for use in clinically settings. However, physiological signals are nonlinear 

and chaotic, so these methods likely overlook phenomena that present themselves 

unpredictably or subtly. Fourier techniques provide great insight into the frequency 

domain characteristics of time series and can indicate directionality between coupled 

systems. However, this method does not account for when events actually occur.  Phase 

angles or relative phase have been useful in identifying the onset of a coupling 

relationship, but again, this method is limited because it matches one event to another and 

does not allow for past events to have influence on future events. Entropy has been 

another promising measurement for studying the dynamics and coupling of time series. 

Specifically, it is possible to account for diverse types of data and look at the shared 

entropy between two signals. Combining entropy measures with recurrence plot analyses 
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ultimately will provide both a qualitative visualization of coupling as well as quantitative 

measurements with which to understand the measures the relationship of physiological 

subsystems. Recurrence plots deal with nonstationarity of data and can be symbolically 

transformed to account for differences in signal types and are therefore ideal in 

examining the coupling between cardiac and locomotor behaviors. Given the challenges 

described with other coupling methods, and the potential value of recurrence plots to 

examine cardiolocomotor coupling, manuscript 1 of this dissertation focuses on an 

evaluation of a coupling technique derived from recurrence plots. The general theory 

behind recurrence plots is described below, followed by description of how they can be 

used to quantify coupling between two systems. 

 Recurrence Plots 

Beginning with a single time series, such as the stride interval time series, 

recurrence plots are constructed by marking points in time where values are within a 

certain radius of each other. However, this is accomplished through a process of 

embedding the time series in a d-dimensional state-space using time lag methods 

(Takens, 1981). Takens embedding theorem allows the derivation of underlying 

dynamical system characteristics from a single observable signal. That is, even though 

the control of the stride interval may require several degrees of freedom, the dynamics of 

its control behavior can be reconstructed and analyzed using a single observable signal 

derived from kinematics (e.g., stride interval time series). To reconstruct a phase space, a 

d-dimensional vector representation of a time series x(i) can be created such that each 

component of x(i) is the corresponding value of the time series at time point i and i+kτ, 
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where k is all integers from 1 to d-1 and τ is the time lag constant. This process can then 

be repeated for another time point (j). The N x N matrix (or recurrence plot) can then be 

constructed by plotting i versus j and making points in which the vector |x(i) – x(j)| (the 

distance between the points in a d-dimensional phase space) is within a certain radius. An 

example of the construction of a state-space from continuous knee angle data and a 

recurrence plot from stride interval data is shown in Figure 3a and 3b, respectively. 

 

Figure 3. Illustration of Time Delay Embedding to Create a Phase Space and a 

Recurrence Plot. (a) The reconstruction of continuous knee angle time series (left) in two 

dimensions (center) and three dimensions (right). (b) A stride interval time series (left) 

and its resulting recurrence plot (right) using an embedding dimension of 5, time delay of 

5, radius of 45 and line minimum of 2. (Adapted from Rhea & Kiefer, 2014). 

 

 

a 

b 
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 Eckmann, Kamphorst, and Ruelle (1987) first used recurrence plots to 

qualitatively assess the natural time correlation of a time series. This group original 

identified characteristics such as typology and texture to distinguish the large-scale and 

small-scale characteristics, respectively. Sparsely populated recurrence plots [i.e., 

“uniformly grey” (Eckmann, Kamphorst, & Ruelle, 1987, p. 974)] are indicative of 

homogenous dynamical systems. Conversely, long diagonal bands equally spaced from 

the line of identity (i.e., where i = j) indicate periodicity of the signal. The density of 

points as a function of time difference (i.e., the shading near to versus far from the line of 

identity) illustrates characteristics of drift or convergence of the signal. These qualitative 

observations of the recurrence plots eventually led to formalized quantitative methods to 

assess the dynamical characteristics of time series using recurrence plots. 

Recurrence Quantification Analysis (RQA) 

 Webber and Zbilut (1994) developed RQA to quantify recurrence plots. They 

identified five measurable characteristics of the plots – percent recurrence (%REC), 

percent determinism (%DET), maximum line length (Lmax), entropy (ENT), and trend 

(TND). Marwan et al. (2002) added two additional metrics – percent laminarity (%LAM) 

and trapping time (TT). %REC is simply the percentage of possible points in the N x N 

recurrence plot that are within the specified radius. To Eckmann, this would be identified 

as the darkness of the recurrence plot. %DET is the percentage of recurrent points that 

form diagonal lines, suggesting that a set of points reoccurred more than once within a 

time series. Diagonal lines must have a minimum length that is predefined and is often set 

to two points. Lmax is the length of the longest diagonal line (excluding the line of identity 
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where i = j). This value is inversely related to the Lyapunov exponent and how chaotic, or 

unstable, a signal is. Thus, small values of Lmax are associated with highly chaotic time 

series and large values with highly regular time series (e.g., a sine wave). ENT is the 

Shannon information entropy (Shannon, 1948) corresponding to the diagonal lines. It is 

important to note that ENT from RQA has an inverse relationship with more traditional 

entropy techniques (ApEn and SE) due to how it is mathematically derived (Rhea et al., 

2011). In short, diagonal lines are placed into bins of a histogram based on their length. 

Individual probabilities for each bin can then be used to calculate the entropy of the 

signal (eq. 4), where H is the entropy, p is the probability of the bin and n is the total 

number of bins used.  

 

H=∑k=1→npi·log(pi) (eq. 4) 

 

 

TND can be used to quantify the stationarity of a time series and relates to 

Eckmann’s identification of drift. It is calculated as the slope of the least squares 

regression of recurrence percentage as a function of distance from the line of identity. In 

other words, this maps the density of diagonal lines near and far from the center line. 

Values that deviate away from 0 (either positive or negative) suggest drift is present in 

the signal. %LAM and TT measure characteristics of vertical structures in the recurrence 

plots, percentage of points that create vertical structures and the average length of vertical 

structures, respectively. Vertical structures are indicative of the presence of a laminar 

state (i.e. transition from one chaotic behavior to another chaotic behavior), while 

diagonal lines are indicative of the transition between periodic and chaotic states. 



46 
 

 RQA has been useful in understanding the dynamic characteristics of 

physiological signals including electromyograms (Farina, Fattorini, Felici, & Filligoi, 

2002; Filligoi & Felici, 1999), cardiac signals (Marwan et al., 2002; Zbilut, Koebbe, 

Loeb, & Mayer-Kress, 1990), and kinematics of gait and posture (Labini, Meli, Ivanenko, 

& Tufarelli, 2012; Riley, Balasubramaniam, & Turvey, 1999; Riva, Toebes, Pijnappels, 

Stagni, & van Dieën, 2013). It is especially strong at detecting changes in the behavioral 

states of time series data. Specifically, by performing RQA with a sliding window, subtle 

changes in signal characteristics can be identified by changes in the RQA outcome 

measures as a function of time. This is of particular interest, because shifts in the 

behavioral state of a physiological system suggest that it is being stressed in some way 

and therefore attempting to operate in a more efficient manner. Features extracted from 

the RQA of R-R interval time series have been recently used to identify health status of 

hearts. Krishnan et al. (2012) proposed unique recurrence plot characteristics for atrial 

fibrillation, complete heart block, ischemic/dilated cardiac myopathy, sick sinus 

syndrome, and normal sinus rhythm. Using statistical models, RQA has the potential to 

automatically diagnose cardiac diseases. Laminar states associated with the onset of 

ventricular tachycardia have also been detected using RQA features (Marwan et al., 

2002). Additionally, in the study of postural control, RQA has been able to distinguish 

between the distinct control strategies in aging (Seigle, Ramdani, & Bernard, 2009) and 

pathological (Schmit et al., 2006) populations, as well as when visual feedback is 

removed in a young, healthy population (Riley et al., 1999). Combined, these studies 
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demonstrate the success and potential of RQA in understanding physiological functioning 

across several different subsystems and observable signals. 

Cross Recurrence Analyses 

RQA was originally used to examine the dynamic characteristics of a single signal 

within a dynamical system. However, it is also possible to compare the dynamics of two 

different signals using a similar methodology. Cross recurrence quantification analysis 

(cRQA) was derived from recurrence quantification analysis (RQA) in order to study the 

shared dynamics of two signals.  The state-spaces are constructed in the same way as 

described previously with RQA, except two separate time series are used. Then the N x N 

matrix can be constructed such that the distance vector |x(i) – y(j)| [where y(j) represents 

the second signal] will define the dark points of the recurrence plot. Importantly, this 

method is most appropriate for signals from the same process and ideally the same 

observable signal, such as comparing two cardiac signals (Marwan, Romano, Thiel, & 

Kurths, 2007). However, order patterns can be derived from cross recurrence plots and 

they allow for the assessment of common patterns between different observable signals 

(e.g., cardiac and gait signals) or of signals with dissimilar amplitudes (e.g., different 

channels of an EEG) (Groth, 2005). This is accomplished by applying the cross-

recurrence plot concept to local ordinal patterns within two time series, disregarding the 

actual magnitude for each datum. Thus, in the case of identifying coupling between 

cardiac and locomotor rhythms, order patterns recurrence plots should be employed. 

Order patterns are created using a symbolic transformation of a time series. 

Similar to RQA, a phase space can be reconstructed using time delay embedding of an 
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appropriate dimension, D.  Next, the phase space can then be divided into equal regions 

such that each region is bounded by the locations within the space where the time series 

for each delayed embedding is equal to the time series at a different delayed embedding. 

For example, a three dimensional phase space can be split into six regions defined by the 

planes in which x(t) is equal to x(t+τ), x(t) is equal to x(t+2τ), or x(t+τ) is equal to 

x(t+2τ).Thus, for a given D, D! possible order patterns (πx) will exist for the time series 

x(t) (Figure 4).  

 

Figure 4. The Six Possible Order Patterns (πx) of x(t) for Embedding Dimension D=3. 

Note that in application, when evaluating order patterns, < and ≥ are used to assess the 

locus of a point in phase space, negating potential equalities. (From Groth, 2005, p. 2). 

 

 

 
 

 

While it is more difficult to visualize a higher dimensional phase space, the mathematical 

process to identify the order patterns of a time series remains the same. 

 Once the order patterns for two separate time series have been identified, a 

recurrence plot can be constructed with points darkened when πx(t)=πy(t’). However, it is 

also possible to express this as a function of t and τ. As it is possible that time series x(t) 

and y(t’) are on differing time scales, t’ can be replaced by t + τ. Thus, the order patterns 

can be visualized horizontally instead of diagonally, allowing easier analysis of longer 
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time periods.  Figure 5 illustrates the order patterns recurrence plots in both forms for two 

channels of electroencephalography (EEG) data. 

 

Figure 5. EEG Data Depicted as a Traditional Recurrence Plot (left) Using Order Patterns 

and as a Horizontal Recurrence Plot (right) from the Same Order Patterns.  In the 

horizontal representation, bands represent time lags where similar dynamics were 

observed by both signals concurrently (and therefore, coupling). The left graph only 

shows a small time period near seizure onset, whereas the right graph shows a larger time 

period including periods immediately before, during, and after seizure offset. (Adapted 

from Groth, 2005). 

 

 

 
 

 

 The utility of cRQA to evaluate coupling strength has been demonstrated with 

physically coupled oscillators (Shockley, Butwill, Zbilut, & Webber, Jr., 2002), the 

relationship between cognitive load to postural sway characteristics (Pellecchia & 

Shockley, 2005), interpersonal movement coordination (Riley, Richardson, Shockley, & 

Ramenzoni, 2011), and respirolocomotor coordination (Hessler, 2010). While it has not 

been used specifically to examine the relationship between cardiac and locomotor 

rhythms, the coupling index calculated from order patterns recurrence plots has been 

robust, and therefore, well-suited for the proposed research. It will be necessary, 
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however, to test this technique on cardiac and locomotor signals, as they will likely 

present unique challenges because they are two different observables (unlike EEG data). 

The coupling index is measured by calculating the Shannon entropy of the 

normalized recurrence rate as a function of time lag. Equations 5, 6, and 7 show the series 

of required calculations.  

 

RR(𝜏)=∑t R(t,𝜏) (eq. 5) 

 

 

rr(𝜏)=RR(𝜏)/{∑τ[RR(τ)]} (eq. 6) 

 

 

𝜌𝜋 = 1-{-∑𝜏 min→𝜏 max rr(𝜏)∙ln[rr(𝜏)]}/ln(𝜏max-𝜏min) (eq. 7) 

 

 

In summary, the recurrence rate, RR(𝜏), is defined by the total recurrent points at 

all times, t, for a given time lag (eq. 5).  Next, it is normalized by dividing by the sum of 

the recurrence rate at each 𝜏 evaluated (eq. 6). Finally, the Shannon entropy can be 

calculated and use to define the coupling index, 𝜌𝜋, between two independent time series 

(eq. 7).  The coupling index examines the distribution of recurrence rate at varying 𝜏. 

Thus, 𝜌𝜋 ranges from 0 (no coupling) to 1. Cutoff values have not yet been suggested to 

define strengths of coupled systems. However, between the qualitative assessment of 

banding and the quantification of coupling index, it will be apparent whether a younger 

or older population exhibit stronger coupled cardiac and locomotor rhythms. It is hopeful 

that this research will enlighten investigators as to the normative values and utility of 

coupling index for these particular time series. 
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Mechanisms for Coupling 

 Considering the above evidence, there are likely several mechanisms and 

explanations for the coupling of cardiac and locomotor patterns. Similar to the concept of 

movement variability being good to prevent overuse injury, but bad when you need 

consistent and reliable movement accuracy and performance, coupling can be viewed as 

having beneficial and detrimental pathways. Therefore coupling could occur under two 

distinct circumstances: (1) in the event that energetic efficiency is needed as during 

exercise or fatigue and (2) when aging or pathology results in a loss of neural 

connectivity, requiring interdependent control systems to then couple together more 

closely. 

 Improved efficiency has been suggested to occur through the optimization of 

blood flow to the muscles and therefore minimizing the energy needed for cardiac 

contractions (Kirby et al., 1989; Niizeki et al., 1993; Novak et al., 2007). Through 

exercise, muscle contractions may dynamically modulate venous return and therefore 

create a oscillating (and coupled) mechanical connection between the motor system and 

cardiac system (Blain, Meste, Blain, & Bermon, 2009). Previously, it had been proposed 

that vertical acceleration of the heart, due to impacts during walking or running, may 

impact the cardiac control networks (Kirby et al., 1989), but Blain et al. (2009) 

demonstrated that increased workload was associated with indications of increased 

coupling between the cardiac and locomotor systems during a cycling task. 

 In contrast, aging and pathological processes may result in deficits relating to the 

function and connectivity of neuronal networks. While muscle contractions will still aid 
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in venous return, other sensory loops within the cardiac control system may decline with 

aging and disease. Novak et al. (2007) suggested that attenuation of baroreflexes 

associated with aging may lead to enhanced coupling. While baroreflex sensitivity is 

increased, the stretch reflexes (Bainbridge reflex) become the primary source for sensory 

feedback in cardiac control. The increased blood volume associated with venous return 

and coupled with gait timing then drives the coupling between cardiac and locomotor 

systems. 

Theoretical and Clinical Motivations 

 Coupling provides a framework in which to study how changes in one 

physiological subsystem affects another. Continued research using this framework will 

lead to better understanding of how healthy human function relates to systemic health and 

compensatory mechanisms when one subsystem is impaired. For example, by 

understanding the relationship between cardiac and motor rhythms, in addition to their 

relationships with health, we can begin to hypothesize the mechanisms and expected 

outcomes relating to aging and pathology. That is, when a patient presents with a heart 

attack, we’ll have a better understanding of how this will influence their ability to 

ambulate. There are both theoretical and clinical implications of studying and 

implementing a coupling framework. 

 Dynamic systems theory allows us to consider how systems interact with each 

other to result in functional or dysfunctional behavior. Along with other groups, our 

research group has previously and consistently shown that gait patterns can be altered 

systematically in healthy individuals by asking them to synchronize their stepping 
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patterns with a blinking visual metronome (Bank, Roerdink, & Peper, 2011; Rhea, 

Kiefer, D’Andrea, et al., 2014; Rhea, Kiefer, Wittstein, et al., 2014). While this is a novel 

and important finding of its own, it is important to also consider how altering gait 

patterns may alter other characteristics of health. From a dynamic systems perspective, it 

is plausible that changing the gait timing patterns could also result in changes to cardiac 

dynamics. The potential changes across subsystems have not been prominently studied. 

By altering the timing patterns in gait, the baroceptor and Bainbridge reflexes allow a 

fractal stimulus to act within the cardiac control loops (Crystal & Salem, 2012; Novak et 

al., 2007). Similarly, walking faster or slower than the preferred walking speed has been 

shown to alter the fractal scaling of gait, which could also change cardiac behavior. Thus, 

how the heart responds to changes in the locomotor behavior may be very telling of the 

functional quality of the cardiac system. 

 From a more general perspective, considering system coupling along with  

individual system dynamics will help develop a framework to study the healthy (or 

unhealthy) function of the physiological system. By altering one subsystem’s behavior 

intentionally, we can observe changes in other subsystems and then infer whether these 

dynamics are characteristics of healthy, aging, or pathological function of the individual 

subsystems and the whole person. Observations of the effects of altering gait patterns on 

cardiac patterns will guide empirical testing of the physiological mechanisms and 

theories that explain the phenomenon of cardiolocomotor coupling and its potential 

benefits to health sciences. 
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 This method could then lead to an innovative application of theory to potentially 

change assessment and interventions of unhealthy behaviors. Once we understand how 

the cardiac and locomotor subsystems couple and interact with each other during walking 

we can apply this technique to develop either assessments or interventions. Regarding 

assessments, these findings will give us more detailed metrics to assess the health of an 

individual. By considering multiple subsystems, we can better assess the systemic quality 

of function related to aging or disease. Similarly, this method will allow us to identify 

non-invasive ways to alter cardiac dynamics through locomotor interventions. 

Specifically, by identifying variables of cardiac health that can be altered systematically 

through gait training, we can design interventions to improve these characteristics of 

heart health while also promoting healthy locomotor behavior. The potential of these 

applications is supported by recent studies that used intentional cardiolocomotor coupling 

to improve running performance (Phillips & Jin, 2013) and provided auditory or visual 

fractal stimuli to alter the complexity characteristics in gait (Hove, Suzuki, Uchitomi, 

Orimo, & Miyake, 2012; Rhea, Kiefer, D’Andrea, et al., 2014; Rhea, Wittstein, Kiefer, & 

Haran, 2013; Rhea, Kiefer, Wittstein, et al., 2014). 

 Thus, this dissertation contributes to the literature in three ways. Manuscript 1 

explores the empirical value of a mathematical technique designed to quantify coupled 

systems, While this technique has proven useful in other domains, manuscript 1 uses 

synthetic signals to define coupling strength and then uses a cardiac single and a 

locomotor signal to empirically show the strength of cardiolocomotor coupling, which 

provides the foundation for future work in this area.  Manuscript 2 then examines cardiac 
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and locomotor dynamics individually in two gait tasks in both younger and older adults. 

Finally, manuscript 3 employs the mathematical technique from manuscript 1 to examine 

cardiolocomotor coupling in younger and older adults during the two gait tasks. 

Collectively, these manuscripts help to better understand the interaction between the 

cardiac and locomotor systems, and how that interaction changes during different task 

demands and as a function of age. 
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CHAPTER III 

METHODS 

 

Participants 

 

 Two groups of twenty-five healthy adults of ages 18-35 and 63-80 yrs were 

recruited from the university population and local community to complete both 

experiments. To ensure that we would observe the desired changes in gait dynamics, a 

power analysis of the pilot data revealed that on the basis of observed effect size for 

phase (partial η2=0.426), a sample size of 10 would be needed to obtain statistical power 

at the 0.8 level. Once significant changes in locomotor dynamics are observed 

(hypothesis 1), the purpose of this proposal was to examine concurrent changes in cardiac 

dynamics (hypothesis 2), and the coupling between locomotor and cardiac dynamics 

(hypothesis 3). Thus, the power analysis was run to ensure an adequate sample size with 

respect to hypothesis 1. While appropriate data is not currently available to conduct a 

power analysis for between-group effects, previous studies have successfully shown age-

related differences in gait (Hausdorff et al., 1997; Herman et al., 2005; Kang & Dingwell, 

2008) and cardiac (Iyengar, Peng, Morin, Goldberger, & Lipsitz, 1996; Kaplan et al., 

1991) dynamics with sample sizes equal to or smaller than 50. Thus, a sample size of 50 

(25 younger and 25 older adults) was selected. These age groups allowed for comparison 

to earlier studies that examined gait and/or cardiac dynamics. Healthy was defined as no 

pre-existing diagnoses of heart disease, neuromuscular dysfunction, or acute lower limb 
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injury, the ability to walk continuously on a treadmill without assistance for 45 minutes, 

and no other self-reported injuries or illness. All participants read and signed an informed 

consent form approved by the UNCG Institutional Review Board. Participants were 

requested not to exercise rigorously within 8 hours of their testing date(s) to limit the 

effect of acutely performed exercise on physiological subsystems. Participants were 

instructed to wear tight fitting, but comfortable walking clothes. Participants wearing 

clothing preventing the attachment of reflective markers on stable anatomical landmarks 

were asked to change into compression shorts and/or a tank top provided by the 

researchers. 

Procedures 

 Upon arrival, participants provided informed consent and completed an intake 

questionnaire (APPENDIX A) to gather demographic, basic health, and exercise behavior 

information. The skin of the participant was cleaned using NuPrep® Skin Prep Gel 

(Weaver and Company, Aurora, CO, USA) inferior to the lateral clavicle on each side 

and superior the left ASIS. ECG electrodes were prepared with Signa Gel® (Parker 

Laboratories, Inc., Fairfield, NJ, USA) and placed on the cleaned sites. The ECG signal 

was collected at 1000 Hz using a MP-150 with a RSPEC wireless transmitter (Biopac 

Systems, Inc., Goleta, CA, USA) and viewed on a monitor to ensure signal fidelity. An 8-

camera Qaulisys Oqus (Göthenberg, Sweden) system was used to track set of 34 markers 

at 200 Hz and identify the motions of both lower limbs. Individual markers were placed 

on the ASIS, PSIS, medial and lateral knee, medial and lateral malleolus, the first and 

fifth metatarsals, and the calcaneus of each limb. Additionally, 4-marker rigid bodies 
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were placed on each thigh and shank segment. A static image was recorded for two 

seconds to help develop a calibration model for motion tracking. 

 Upon placing the ECG electrodes and reflective markers, participants’ blood 

pressure and 8-minutes of ECG signal were recorded while sitting. Next, participants 

identified their preferred walking speed. To find this speed, the treadmill was set to 0.5 

meters per second and participants were asked to instruct the researchers to increase the 

speed until they feel they are at a comfortable walking pace similar to walking through a 

park. Next, the treadmill was set to 2.0 meters per second and participants were asked to 

instruct the researchers to decrease the speed until they again feel like they are at a 

comfortable walking speed. This process was repeated until the final speeds were within 

0.2 meters per second. The average of the two speeds (starting slow and starting fast) was 

used for the rest of the study as the preferred walking speed. 

Experimental Procedures 

 This study consisted of comparing the coupling index measurement between 

various synthetic and experimental signals and two experiments to be conducted on two 

separate days with at least 48 hours between testing sessions. The order of the 

experiments was counterbalanced. Both experiments used a similar structure consisting 

of three 15 minute phases. During the first and third phases of both experiments, 

participants walked with no cues or specific instructions at their preferred walking speed. 

This equates to a baseline phase (phase one) and retention phase (phase three). Phase two 

of both experiments was the experimental phase. 
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In the second phase of the first experiment, participants were instructed to 

synchronize their gait cycle to a visual metronome projected onto a screen in front of the 

treadmill. The metronome consisted of blinking left and right footprints presented at eye-

height over a sliding textured floor, identical to a previous research project in our 

laboratory (Rhea, Kiefer, Wittstein, et al., 2014). The timing of the presentation of the 

footprints was fractal (DFA α = 0.98) and the participants were instructed to match the 

timing of their steps to the blinking footprints in front of them, such that when the right 

foot appears the participant should be making contact with their right heel (and left with 

left).  

In the second phase of the second experiment, participants walked at 125% of 

their preferred walking speed, similar to the experiment by Jordan, Challis, & Newell 

(2007). This was accomplished by the researchers setting the treadmill speed to 100% of 

the preferred walking speed in phase one, increasing the treadmill speed to 125% in 

phase two, and then decreasing the treadmill speed back to 100% in phase three. 

Data Reduction 

 The ECG data were reduced using custom written Matlab® scripts (Mathworks, 

Newton, MA). First, the data were filtered with a zero-lag 4th order Butterworth filter. 

Next, the R-peaks were identified by finding a local maximum above a cutoff threshold 

set to 2 SD of the mean value for each individual trial. R-R interval time series were 

constructed by calculating the time between consecutive R-peaks. Two artifacts are 

possible using this method: 1) identification of R-peaks where there is not a true event 

present and 2) missing the identification of R-peaks. Data was inspected for these two 
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artifacts manifesting as extremely small or long R-R intervals, respectively. In cases 

where a false positive was identified, the R-peak was removed and the time series was 

constructed without the removed R-peaks. In cases where a false negative was identified, 

an R-peak was manually placed at the visible peak of the missing heartbeat. If there was 

no clearly missed peak due to signal dropout or other artifacts, an R-peak was placed 

halfway between the nearest correctly identified R-peaks. In cases where several R-peaks 

were misidentified consecutively, the data was truncated to remove the suspect data as 

long as 400 consecutive heartbeats were identified. If these solutions were not possible, 

the data was removed from analysis completely or the subject rescheduled at a later date. 

 The kinematic data was reduced using custom Visual3D® scripts (C-Motion, Inc., 

Germantown, MD). The position of the calcaneus markers was used to identify the step 

length, step width, and stride interval during walking. First, the data was filtered with a 

zero-lag 4th order Butterworth filter. Next, the velocity of the calcaneus in the anterior-

posterior (AP) direction was calculated by taking the derivative of the AP position data. 

During treadmill walking, when the AP velocity of the calcaneus markers goes from a 

positive velocity to a negative velocity, the foot is at heel contact (Zeni Jr, Richards, & 

Higginson, 2008). Events, labeled R_ON and L_ON, were placed at the positive to 

negative zero crossings of the AP velocity for the right and left foot, respectively. A third 

event, labeled STEP, was placed at each R_ON and L_ON event. The stride interval for 

each leg was calculated as the time between consecutive ON events for each respective 

leg. The step width was calculated as the medial-lateral (ML) distance between the 

calcaneus markers at the time of each step event. The step length was calculated as the 
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AP distance between the calcaneus markers at the time of each step event. Time series for 

stride interval, step width, and step length were then constructed from their calculated 

values. Each time series was inspected for false positive and false negative event 

identification using the stride interval time series. Similar to the cardiac signal, events 

were either manually placed at the most appropriate location or removed and the time 

series reconstructed. 

 For order patterns recurrence plot analysis, the R-R and stride interval time series 

was transformed into a continuous time series, each lasting 15-minutes in length. This 

was done by constructing a new time series using the time of events (as opposed to the 

event number) then filtering and resampling, such that each transformed time series 

consisted of 900 samples, reflecting a measurement of heart rate and stride interval each 

second. Each continuous time series was filtered with a low-pass bidirectional 2nd order 

Butterworth filter with a cutoff frequency of 5 Hz. As the continuous time series was 

constructed from discrete event series, this filter was selected to provide zero lag and 

eliminate high frequency oscillations that could not have been observed between 

heartbeats or step events from the original discrete time series. Researchers have reported 

using similar techniques to convert between discrete event series and continuous time 

series, however, their specific methodologies were not been clearly reported (Camm et 

al., 1996; Novak et al., 2007). 

 Mean, SD, CV, DFA α, and SE were calculated from the individual time series. 

Ordered recurrence plot analysis was used to calculate the coupling indices for stride time 

and R-R interval time series for each phase. For the calculation of DFA α, window sizes 
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of 4 through N/4 were used. An optimization process for the selection of parameters m 

and r (template length and radius, respectively) for the calculation of SE has been 

previously described by Lake et al. (2002). For this study, m and r was optimized based 

on a subset of our participants and set to 2 and 0.3 SD, respectively. The optimization 

process was done separately for cardiac and kinematic time series; however, the same 

parameters were selected based on the optimization for the stride interval time series and 

cardiac time series. In all, each phase of the experiment resulted in 5 measurements  

(mean, SD, CV, DFA α, and SE) for each individual time series (R-R interval, stride 

interval, step width, and step length) as well as a coupling index between the stride time 

and R-R interval time series. 

 To test the utility of coupling index, synthetic signals (four sinusoids with 90° 

phase shifts and two signals of Gaussian white noise) were constructed and reduced in the 

same manner as the experimental cardiac and locomotor data.  Then, the coupling index 

was calculated for pairs of signals (e.g., a sinusoid with a random signal), allowing a 

comparison of the value of coupling index for theoretically highly coupled systems 

(sinusoids coupled to themselves or phase shifted sinusoids), weakly coupled systems 

(cardiac and locomotor coupling), and non-coupled systems (random signals with other 

signals). 

Statistical Plan 

  In testing each hypothesis, alpha was set to .05 a priori. Any follow-up tests were 

appropriately adjusted.  
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Hypothesis 1: As a group, young healthy adults will exhibit different variability 

characteristics of gait rhythms compared to older adults. Specifically, we hypothesized 

that the younger group would have greater mean, lesser SD and CV, greater DFA α, and 

greater SE of stride time, step length, and step width time series. We expected these 

predictions to persist through each phase of both experiments. Separate 2 × 3 (group × 

phase) repeated measures MANOVAs were calculated and Hotelling’s Trace was used to 

compare each variability characteristic (mean, SD, CV, DFA α, and SE) of the stride 

interval, step length, and step width time series between groups at each phase. A 

significant main effect for group, in the appropriate directions, indicated a correct 

hypothesis. When appropriate, follow-up analyses were used to determine how the 

groups’ locomotor behaviors differed within each phase of the experiments and to assess 

interaction effects.  

Hypothesis 2: As a group, young healthy adults will exhibit different variability 

characteristics of cardiac rhythms compared to older adults. Specifically, we 

hypothesized that the younger group would have greater mean, greater SD and CV, 

greater DFA α, and greater SE of R-R intervals. We expected these predictions to persist 

through each phase of both experiments. Separate 2 × 3 (group × phase) repeated 

measures MANOVAs were calculated and Hotelling’s Trace was used to compare each 

variability characteristic (mean, SD, CV, DFA α, and SE) of the R-R interval time series 

between groups at each phase. A significant main effect for group, in the appropriate 

directions, indicated a correct hypothesis. When appropriate, follow-up analyses were 
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used to determine how the groups’ cardiac behaviors differed within each phase of the 

experiments and to assess interaction effects. 

Hypothesis 3:  We hypothesized that cardiolocomotor coupling, during the pre-

test phase, would similar between the younger and older groups. When performing the 

gait synchronization task or increasing walking speed, we predicted the older group 

would demonstrate a larger increase in the coupling index. During the post-test phase, 

we predicted the younger group would return to pre-test phase values of the coupling 

index, while the older group would exhibit residual effects of the experimental condition. 

A 2 × 3 (group × phase) repeated measures ANOVA was calculated and Hotelling’s 

Trace was used to compare the coupling index between R-R interval time series and 

stride interval time series between groups at each phase. When appropriate, follow-up 

analyses were used to determine how the groups’ cardiolocomotor coupling differed 

within each phase of the experiments and to assess interaction effects. 

Hypothesis 4: We hypothesized that highly coupled synthetic signals (sinusoids) 

would demonstrate markedly higher coupling index values than random signals or 

experimental data. Additionally, experimental data (i.e. cardiolocomotor coupling) would 

exhibit higher coupling index values than random signals. Independent samples t-tests 

were used to test for significant differences between the coupling of pairs of signals.  

Three manuscripts were developed to test these hypotheses. Manuscript I outlines 

a new technique to study cardiolocomotor coupling, testing Hypothesis 4. Hypotheses 1 

and 2 are examined in Manuscript II, and hypothesis 3 is examined in Manuscript 3 using 

the new technique. 
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CHAPTER IV 

MANUSCRIPT I 
 

Introduction 

 Examining the dynamics of physiological subsystems has provided much insight 

into how systems change over time. For example, older adults exhibit cardiac rhythms 

that have weaker fractal organization compared to younger healthy adults (Iyengar et al., 

1996). Likewise, too much or too little step width variability in gait has been associated 

with fall history in older adults (Brach et al., 2005). While this approach has been useful 

in understanding how a single subsystem fluctuates (e.g., the cardiac or loccomotor 

control system), it is generally recognized that many (if not all) subsystems work in 

conjunction with other subsystems. These connections are linked at the structural or 

functional level, and each connected subsystem may influence its connected partners. 

Thus, understanding how physiological subsystems are coupled may enhance our 

understanding of larger scale physiological functioning (i.e., across multiple subsystems), 

potentially leading to a stronger understanding of human health. 

The coupling of physiological subsystems is not a new topic of research (Glass, 

2001; Godin & Buchman, 1996; Kirby et al., 1989; Novak et al., 2007; Strogatz, Stewart, 

& others, 1993). Yet, breakthroughs in understanding the mechanisms and effects of 

coupling have been limited. For example, coupling of cardiac and locomotor rhythms 

have been demonstrated in running (Kirby et al., 1989), in aging populations (Novak et 
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al., 2007), and linked to improved performance in endurance running (Phillips & Jin, 

2013). Many of the tools used to study physiological coupling stem from concepts in the 

physical sciences. The continued transition to applications in the biological and medical 

sciences may lead to new findings that demonstrate the utility of coupling to healthy 

function and to practical applications in health sciences (such as diagnostics, prognostics, 

and treatment advances). The coupling behavior of two interconnected systems (in this 

case, the cardiac and locomotor systems—termed cardiolocomotor coupling) may 

provide clues as to the quality of overall health and function of a person. 

 Prior research has generally characterized coupling as a common change in a 

specific or set of dynamics within two systems’ measurements. For example, Niizeki and 

colleagues used heel contact times during treadmill running to define epochs of strides 

and then calculated the phase relationship between a stride and the cardiac beats within it 

(Niizeki et al., 1993). Then, the standard deviation of this phase relationship is calculated 

with a sliding window to identify periods when entrainment (or coupling) between the 

cardiac and locomotor systems is present. In an alternative approach, Novak and 

colleagues used correlations to identify the cardiolocomotor coupling in younger and 

older adults during walking at various speeds (Novak et al., 2007). They proposed that 

higher correlations in the time between these events (consecutive heartbeats or strides) 

indicated higher levels of coupling between the two systems. While these techniques 

provided new and interesting information about the relationship between cardiac and 

locomotor rhythms, there are more direct metrics to quantify the coupling between two 

independent signals. 
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 Recurrence quantification analysis (RQA) measures patterns with recurrence plots 

and has become a popularly used technique to assess the dynamic characteristics of 

complex systems (Marwan et al., 2007; Marwan, 2008; Webber, Jr. & Zbilut, 1994). By 

nature, physiological systems are highly complex and dynamic. Thus, researchers have 

used RQA  to analyze gait (Labini et al., 2012), electrocardiograms (ECG) (Krishnan et 

al., 2012; Naschitz et al., 2004; Zbilut, Thomasson, & Webber, Jr., 2002), 

electroencephalograms (EEG) (Groth, 2005), and electromyography (Farina et al., 2002), 

among many other physiological and non-physiological applications (e.g., financial data) 

(Marwan, 2008). Moreover, emerging theories suggest that the coupling relationship of 

physiological signals may play an important role in physiological function, especially in 

aging and pathological populations (Groth, 2005; Manor, Hu, Peng, Lipsitz, & Novak, 

2012; Niizeki & Saitoh, 2014; Novak et al., 2007). Using RQA, it is possible to directly 

assess the coupling of two different signals over a finite amount of time. 

 In quantifying the coupling of signals from two different systems, three problems 

need to be addressed. First, the signals may be measured on different scales (i.e., have 

different magnitudes or different units). Transformation or normalization of the data, 

then, is necessary to observe the signals in the same space. Second, the signals of interest 

need to be collected at the same rate. When examining discrete events, such as the 

cardiac beat interval or stride interval, it is impossible to control event timing so that both 

occur simultaneously. Thus, data resampling can be used to model the signals for the 

duration of an experimental session. A third problem arises when working with complex 

systems or transient experimental conditions. Nonstationarity of data is especially 
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problematic for linear measurements, such as mean or standard deviation, but can also 

pose problems in several nonlinear measurements, such as entropy (Magagnin et al., 

2011). To solve the nonstationarity problem, a symbolic transformation technique is often 

adopted (Marwan et al., 2007). Thus, it is possible to use signal processing techniques 

post-data collection to examine the coupling between two systems.  Such steps make it 

possible to examine the coupling relationship between two nonlinear, independently 

observed, and chaotic signals such as those commonly found in physiological 

subsystems. 

 Mathematical methods, rooted in RQA, allow researchers to investigate more 

directly the coupling of two signals. Order pattern recurrence plots (ORPs), a specific 

type of recurrence plot, and their quantification have been previously used to demonstrate 

the coupling between separate channels of EEG signals (Groth, 2005). While theory 

suggests this method should also be able to be used on different signal types (e.g., one 

cardiac and one locomotor signal), it has not yet been demonstrated. The purpose of this 

paper is to demonstrate the utility of ORPs to quantify the coupling of two independent 

physiological signals while comparing its results to the coupling of synthetic signals (i.e., 

sinusoids and random noise). ORPs and the related coupling index (ρπ) are calculated 

from pairs of diverse signal types ranging from simple sine waves to random Gaussian 

noise to cardiac inter-beat intervals and locomotor inter-stride intervals. Synthetic signals 

were constructed to convey varying levels of coupling, allowing this study to determine if 

this method is sensitive to changes in coupling between systems. It was hypothesized that 
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a larger ρπ would be observed in signals that were coupled (i.e., comparing two sinusoid 

time series) relative to uncoupled signals (i.e., comparing two random time series) 

Methods 

Order Pattern Recurrence Plots 

 ORPs are a variation of recurrence plots in which a time series is symbolically 

transformed into a series of order patterns. Groth (2005) described this method and its 

value in assessing the coupling of EEG signals. By adjusting window size, lag, and 

window shift, it is possible to identify a relationship between time and coupling for the 

duration of a recording. Unlike EEGs, other physiological signals are discrete, such as the 

cardiac intervals and stride time intervals. Thus, the samples in a time series are taken at 

varying points in time (i.e., at the time when the event of interest occurs, such as R-wave 

in an ECG), and may not exhibit continuity from one measurement to the next. 

Test Signals 

 Eight separate time series of 880 data points each were used to investigate the 

ability of ORPs to quantify coupling. First, four time series were created from a sine 

wave (x=sin(t) evaluated from 0 to 87.9 in 0.1 increments) with 90° phase shifts. As these 

signals are mathematically identical aside from the phase shift, we would expect them to 

exhibit a large degree of coupling. Because of the phase shift, the coupling will not be 

identical. However, it will, in all cases, be very high compared to other test signals. 

Next, two random time series were created with the same statistical mean and 

standard deviation of the sine wave time series. These time series should show little to no 

coupling, both with any of the sine wave time series and with each other.  
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Last, a cardiac inter-beat interval time series, also called an R-R time series, and a 

stride interval time series were calculated from electrocardiogram and motion capture 

measurements, respectively, during 15-minutes of treadmill walking at a self-selected 

pace. As previously mentioned, measuring coupling between physiological subsystems 

requires the independent signals to be (1) normalized or transformed to account for 

differences in scale, (2) resampled to synchronize observations of each system, and (3) 

filtered or transformed to  deal with nonstationarity. The raw signals were resampled to 

have a measurement of heart beat interval and stride interval every second from 0 to 900 

seconds (901 data points), resolving the second issue. When resampling data near the 

endpoints, it is impossible to assume what the data prior to the first data point or after the 

last data point would have been. To account for this challenge, the first and last ten data 

points were truncated from each resampled time series. RQA using order patterns 

resolves the remaining issues, as magnitude of the signal is no longer relevant in the 

symbolically transformed data and recurrence quantification preserves characteristics of 

nonlinearity unique to the individual signals. Previous studies suggest that 

cardiolocomotor coupling should be more evident than random noise, but still quite low, 

in young healthy adults walking at a comfortable self-selected pace (Kirby et al., 1989; 

Niizeki et al., 1993; Novak et al., 2007). The participant from which the physiological 

signals were measured was a healthy, recreationally active adult male with no history of 

cardiac disease, no locomotor or neuromuscular dysfunction, and no lower limb injuries 

within the previous three months (21.4 yrs, 178.5 cm, 76.0 kg, 1.1 m/s walking speed, 

exercises on average 6 days a week for 30-60 minutes). The experimental data were 
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obtained from a larger study in which procedures were approved by the University of 

North Carolina at Greensboro Institutional Review Board. 

Measurements of Coupling 

 As noted in the literature, there are several ways to quantify coupling of two 

signals. Thus, to examine the utility of ORP, we elected to examine the nature of 

coupling across a range of time series with defined dynamics. Thus, the following sets of 

signals, illustrated in Figure 6, were evaluated for coupling (listed in from greatest 

expected coupling to least): 

 

1. the original sine wave with itself 

 

2. the original sine wave with each of its 3 phase shifted signals 

3. the random signal with itself 

4. the original sine wave with a random Gaussian signal 

5. The 1 Hz, resampled cardiac R-R interval and the stride interval time series. 

6. the random signal with a separate random Gaussian time series 

 

 

 To quantify coupling in the signals, order pattern recurrence plots were 

constructed from the original time series. A limitation of traditional recurrence plots is 

that it requires signals to be on the same measurement scale. To solve this problem, order 

patterns are defined for each time series reflecting the magnitude relationship of 

consecutive data points (Keller & Lauffer, 2003). Setting the dimension, D, we can alter 

the number of points examined to define an order pattern. For the simple example of 

D=2, order patterns (π) can be defined as 
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πx(t)={0, x(t) <(t+𝜗); 1, x(t) ≥ x(t+𝜗). (1) 

 

 

The time-delay for embedding is denoted by ϑ. Thus, two possibilities exist, the first 

value of x is smaller (π=0) or larger (π=1) than the time delayed value of x. For any 

dimension, there exist D! possible order patterns (Figure 7). This symbolic 

transformation is robust to transient changes in amplitude, thus allowing the comparison 

of symbol sequences from different observed systems. Groth (2005) added to this 

technique by introducing order recurrence plots which examine the recurrence (or cross 

recurrence) of the local ordinal structure within time series, and making their 

characteristics quantifiable. 

 Next, with the order patterns defined for each time series, a cross recurrence 

analysis can be used to observe recurrent dynamics shared between two different 

observations. In this case, a recurrent point is identified when πx(t)= πy(t’) allowing us to 

create a recurrence plot and quantify its characteristics. 

 One measurement, recurrence rate (RR), represents a statistical measure of 

similarities between two dynamical systems and can be used to identify the coupling 

relationship between the time series of two systems. Specifically, we define RR(τ) as the 

total number of recurrence points over time (t) as a function of time lag (τ). Then, RR(τ) 

can be normalized by rr(τ)=RR(τ)/ΣτRR(τ) to identify the relative amount of recurrence at 

a given time lag with respect to the total recurrence at all observed time lags. 

 Finally, the coupling index is calculated on windows (ρπ,w) of data using Shannon 

entropy, 
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𝜌𝜋,w = 1-{-∑𝜏 min→𝜏 max rr(𝜏)∙ln[rr(𝜏)]}/ln(𝜏max-𝜏min) (2) 

 

 

and the average coupling index (ρπ) can be reported for the entire time series. Coupling 

values can theoretically range from 0 (no coupling) to 1 (complete coupling), but are 

dependent on the values of τmax and τmin selected. 

 For each sinusoid evaluated, ρπ,w was calculated for 60 evenly spaced windows 

using varying lag lengths (±15 data points, ±30 data points, or ±60 data points) to 

calculate RR(τ) from the order recurrence plots. ρπ for the entire time series was 

calculated as the average of the windowed calculations. Because a sinusoid should have 

much more coupling with itself (even with a phase shifted version of itself) than random 

or experimental data, and coupling should be relatively consistent across each 90° phase 

shift regardless of lag lengths observed, we calculated the standard deviation of ρπ,w for 

each lag length to identify which lag length demonstrated the most consistency. A lag 

length of ±15 data points was selected to report. However, it should be noted that the 

findings were consistent regardless of which lag length was used. The computational 

steps to create order pattern recurrence plots and calculate coupling are illustrated in 

Figure 8. 

Independent samples t-tests were used to test for significant differences between 

the coupling index of pairs of signals. Alpha was set to 0.05 a priori. 

Results 

 Figure 9 illustrates the order recurrence plots for each of the tested pairings of 

signals. Unlike traditional recurrence plots, these depict the recurrence in the diagonal 
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direction such that recurrence can be visualized as a function of time and lag. Therefore, 

the line of incidence for auto-recurrence plots is horizontal instead of diagonal. 

 The mean, standard deviation, and coefficient of variation of the coupling index 

for each pair of signals analyzed are presented in Table 2 and the inferential statistics are 

presented in Table 3. 

 

Table 2. Coupling Index of Synthetic and Experimental Time Series. Mean, standard 

deviation (SD), and coefficient of variation (CV) of coupling index, ρπ,w, for 60 evenly 

dispersed windows of test signals. 

 

ORP 

Name 

Time Series 

A 

Time Series 

B 

Mean SD CV 

AA0 sin(x) sin(x) 0.193443 0.258806 133.79% 

AA1 sin(x) sin(x+90) 0.178682 0.275402 154.13% 

AA2 sin(x) sin(x+180) 0.166237 0.276354 166.24% 

AA3 sin(x) sin(x+270) 0.179275 0.276011 153.96% 

AR1 sin(x) random(x) 0.000839 0.000390 46.56% 

RR1 random(x) random(x) 0.003698 0.002168 58.64% 

RR2 random(x) random(y) 0.001168 0.000463 39.62% 

EXP R-R interval stride time 0.001574 0.000695 44.14% 
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Table 3. Inference Statistics of Difference of Coupling Index Between Pairs of Signals. 

Difference of average coupling index, ρπ, for each possible pair of signals. Test signal 

codes are correspond to those designated in table 1. The signal indicated in bold had a 

significantly larger coupling index. 

 

Test signals Difference t p-value 

AA0 – AA1  0.01476  0.291 0.772 

AA0 – AA2  0.02721  0.473 0.638 

AA0 – AA3  0.01417  0.279 0.781 

AR1 – RR1 - 0.00286 - 9.662 < 0.001 

AR1 – RR2 - 0.00033 - 5.219 < 0.001 

AR1 – EXP - 0.00074 - 7.109 < 0.001 

RR1 – RR2  0.00253  8.527 < 0.001 

RR1 – EXP  0.00212  7.792 < 0.001 

RR2 – EXP - 0.00041 - 3.678 0.001 

 

As predicted, the coupling of a sinusoid to itself or a 90° phase shifted version of 

itself was much stronger than the coupling between two dissimilar signals (the coupling 

between: sinusoid and a random signal, two random signals, two separate experimental 

signals). It was also much larger (approximately 50 times in magnitude) than a random 

signal’s coupling with itself. Because coupling index is calculated over a range of lags, a 

completely coupled system (ρπ = 1) would require two signals with matching order 

patterns at every time lag (i.e., two same-direction constant slopes). That was not the case 

for our signals, accounting for the relatively low mean coupling indices.  

 When looking more closely at the non-sinusoidal signals, ρπ was significantly 

different than each other signal pair. Table 3 shows pairwise comparisons of ρπ for each 

possible combination of pairings examined. While on one hand, the magnitude of this 

coupling appears to be very small, ρπ did suggest there was more coupling between 
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cardiac and locomotor rhythms as compared to a sinusoid and random signal or two 

independent random signals. Yet, the cardiolocomotor coupling was less than the 

coupling exhibited by a random signal with itself. 

Discussion 

 This study demonstrated how order pattern recurrence plots and their 

quantification can be used to calculate the coupling between two non-linear, 

independently observed, and chaotic signals. We showed that (1) coupling index, as 

calculated, has very different values for two sinusoids (an autorecurrence or cross 

recurrence of phase shifted sinusoids) as opposed to more random or chaotic signals that 

are often identified in nature, (2) by using order patterns to symbolically transform 

physiological data, coupling index can be calculated on diverse data types, and (3) 

coupling index is capable of identifying differences between two coupled physiological 

signals (cardiac and locomotor pattern) and two uncoupled random signals. 

 Each of these findings is important, as recurrence quantification may provide a 

new technique to assess the coupling between two seemingly independent physiological 

systems. There appears to be a trend in the literature, suggesting that the coupling of two 

physiological systems maybe be highly informative as to the mechanism and extent of 

dysfunction associated with pathology or aging (Censi, Calcagnini, & Cerutti, 2002; 

Godin & Buchman, 1996; Novak et al., 2007; Schulz et al., 2013). Thus, clearly 

demonstrating that this coupling index can distinguish the extent of coupling in different 

data types is a valuable contribution to better understanding coupling behavior. 

Moreover, the scale of coupling from this metric is more clear, as a self-coupled sinusoid 
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exhibited values more than 50 times greater than a self-coupled random signal, more than 

100 times greater than that observed between cardiac and locomotor rhythms, and more 

than 150 times greater than the coupling of two separate random signals. Values of 

coupling indices were not reported by Groth (2005), and therefore it is valuable to report 

the scale of this metric in different conditions.  

The coupling of physiological subsystems may indicate the overall quality of 

function of those subsystems and grander health issues. Considering the cardiac and 

locomotor systems, coupling may be increased to improve mechanical or metabolic 

efficiency (Kirby et al., 1989; Phillips & Jin, 2013) or as a necessity to accommodate 

increased constraints on these systems due to aging or other processes (Lipsitz & 

Goldberger, 1992; Novak et al., 2007). One reason for such low values in our 

experimental data is that our participant was very healthy and therefore his cardiac and 

locomotor rhythms were not very coupled. Thus, before this or other metrics can be used 

in a clinical setting, more research is necessary to discern the precision of coupling index, 

especially in varying populations that are believed to exhibit higher degrees of coupling. 

Developing a metric to quantify the coupling between diverse physiological subsystems 

will be an important step in understanding, diagnosing, and potentially even treating 

dysfunction that affects several physiological subsystems. 

This research was limited to only the simple synthetic signals of sinusoids and 

random time series. Considering the raw values for coupling index, observables 

containing sinusoids (i.e. knee angle data) may be biased towards increased coupling 

index. Additional synthetic signals, specifically those of nonlinear coupled oscillators 
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should also be examined to better standardize the meaning of coupling values. In this 

study, a sinusoid only exhibited a coupling index with itself of approximately 0.2. While 

many may consider this a “perfectly coupled” system, it may suggest that 0.2 is on the 

upper extremes of coupling index (though it can theoretically be as large as 1). 

 The approach demonstrated in this study is one technique to overcome the 

challenges of recording, analyzing, and comparing diverse biological rhythms. However, 

it does pose some challenges that still need to be addressed. The recurrence of order 

patterns indicate some level of coupled dynamics between two systems. Yet, it is difficult 

to interpret the actual meaning of coupled behaviors. Similarly, because this technique is 

relatively new to physiological research, continued exploration of the magnitude of 

coupling and its relation to health is extremely important. This technique does require 

long time series and may lose accuracy towards the end-points of datasets. 

Experimentally, these issues can be controlled, but the technique needs to be refined to be 

of use in a clinical setting. Finally, as we embark into a new era of mathematical 

integrated physiology, challenges such as diverse types of data will need to be overcome. 

While this study demonstrated one technique to overcome cardiac and locomotor rhythms 

being recorded at different instances and having different magnitudes, other techniques 

should be explored to best identify a generalizable way to approach quantifying the 

coupling between two different observables. 
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Figure 6. 190 Data Points of Synthetic and Experimental Test Signals for Coupling 

Analyses. Panels A and B show the four synthetic sine waves and two synthetic random 

signals used for analyses, respectively. Panel C shows the sine wave and random signal 

tested for coupling. Panel D shows experimental RR interval and stride interval data 

tested for coupling. Coupling was calculated for the test signal in each panel (blue line) 

with each other signal. Self-coupling was also calculated for the sine wave and random 

Gaussian noise signals (blue lines in A and B, respectively). For clarity, signals are 

illustrated offset. 
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Figure 7. Possible Order Patterns for Dimension D=2 (top) and D=3 (bottom). Symbolic 

transformation of time series results in a sequence of order patterns which can then be 

used to implement cross recurrence analyses. 
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Figure 8. Visualization of the Process to Calculate Coupling Index (ρπ) within One 

Window of Data (N=20, lag=±5). This processes is repeated using a sliding window to 

calculate the average coupling index for longer data sets. A: Twenty samples of cardiac 

and stride interval are shown with the first (red box), fifth (green box), and last (purple 

box) groupings of 3 samples highlighted to show how they were coded as order patterns 

(πx). Examining 3 samples allows for 6 possible order patterns. The matching templates 

are shown in black at the bottom of each colored box. B: Cardiac (vertical axis) and 

stride interval (horizontal axis) order pattern series are highlighted with matching colors 

to those coded from A. Recurrent points are marked with a black square. The highlighted 

area (blue) shows the data in which data both ±5 samples were available to calculate 

coupling index. C: The recurrence plot is shown as a function of time and lag (τ). 

Calculation steps are shown to the right: (1) Calculate the recurrence rate for each lag 

time, (2) normalize the recurrence rate by dividing by the total number of recurrence 

points observed, and (3) calculate the Shannon Entropy of the normalized recurrence 

rates. 

 

Figure 9. Diagonal-wise Order Pattern Recurrence Plots of Each Tested Pairing. Each 

recurrence plot is charted as time (x-axis) against lag (y-axis) ranging from 1 to 880 and -
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15 to +15, respectively. The top panel shows the ORP of sin(x) with (A) itself, (B) 

sin(x+90), (C) sin(x+180), and (D) sin(x+270). The bottom panel shows the ORP of (E) 

sin(x) with random signal #1, (F) random signal #1 with itself, (G) random signal #1 with 

random signal #2, and (H) cardiac intervals with stride intervals in experimental data. 
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CHAPTER V 

 

MANUSCRIPT II 

 

 

Introduction 

Individually, variation in cardiac and gait rhythms has been well-studied and is 

informative to understand the quality of their underlying control systems (Hausdorff et 

al., 2001; Jordan et al., 2009; Rhea, Kiefer, Wittstein, et al., 2014; Routledge, Campbell, 

McFetridge-Durdle, & Bacon, 2010; J. Zhang, 2007). For example, recurrence 

quantification analysis of cardiac beat intervals can be used to detect variation 

abnormalities in cardiac health (Krishnan et al., 2012), while fall-risk can be assessed by 

examining gait variability using inertial sensors (Riva et al., 2013). Even though 

physiological subsystems, such as the cardiac and locomotor systems, are often linked 

structurally and functionally, there has been an emphasis placed on studying individual 

subsystems. However, recent research has adopted a systems biology approach to 

examine multiple physiological subsystems concurrently (Wayne et al., 2013). By 

examining the variability in cardiac and locomotor subsystems together, it is possible to 

get a more complete understanding of the effects of aging and pathological processes 

(Schulz et al., 2013). 

Both aging and pathology result in changes in the dynamics of several 

physiological subsystems. Often, these changes are concurrent, altering the shared 

dynamics between subsystems (Godin & Buchman, 1996; Seely & Christou, 2000). An 
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example of this is the observation that cardiolocomotor coupling is stronger in healthy 

older adults compared to healthy younger adults, which was postulated to reflect a  

decline in the complexity of neural networks and feedback loops in older adults (Novak 

et al., 2007). Thus, aging may require stronger coupling between physiological 

subsystems in order to maintain a certain level of function (i.e., to complete the given 

task). The cardiac and locomotor systems share structural and functional components, 

and, therefore, a change in one system is likely to result in an observable change in the 

other, which could ultimately influence the overall functional level of the person (Lipsitz, 

2002). Thus, it is plausible that an altered cardiac system may lead to altered locomotor 

function and vice versa. It has also been suggested that altering one subsystem may have 

a holistic effect across multiple subsystems, potentially providing a new way to approach 

rehabilitation (Manor & Lipsitz, 2013). However, these are empirical questions that 

require observation of function across two or more physiological subsystems during a 

variety of tasks.  

A starting point is to measure cardiac and gait rhythms when the dynamics of one 

system are predictably altered. Previous work in this area has shown at least two ways to 

experimentally alter gait dynamics. First, it has been demonstrated that the variability of 

gait rhythms can be altered intentionally and directionally using visual (Rhea, Kiefer, 

D’Andrea, et al., 2014; Rhea, Kiefer, Wittstein, et al., 2014) or auditory (Hove et al., 

2012; Kaipust, McGrath, Mukherjee, & Stergiou, 2013; Marmelat, Torre, Beek, & 

Daffertshofer, 2014; Uchitomi, Ota, Ogawa, Orimo, & Miyake, 2013) fractal 

metronomes. Fractal metronomes provide a stimulus to which a participant can 
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synchronize their movement—often stride time—with the unique characteristic that the 

timing between visual or auditory beats is variable, and more specifically, exhibiting a 

self-similar and persistent pattern over time (i.e., the definition of a fractal). This fractal 

form of variation between stimulus beats reflects the non-uniform nature of human gait 

rhythms, which has been shown to be fractal in young healthy adults (Hausdorff et al., 

1996), but typically becomes more random (i.e., less persistent) due to aging and 

pathology (Hausdorff, 2007; Rhea & Kiefer, 2014; Stergiou & Decker, 2011; 

Vaillancourt & Newell, 2002). By asking participants to synchronize their gait cycle to a 

metronome exhibiting either a random or persistent timing structure, gait dynamics are 

shifted toward the prescribed dynamic (Hove et al., 2012; Kaipust et al., 2013; Marmelat 

et al., 2014; Rhea, Kiefer, D’Andrea, et al., 2014; Rhea, Kiefer, Wittstein, et al., 2014; 

Uchitomi et al., 2013). Another way to alter gait dynamics is to alter walking speed. 

Increasing or decreasing speed from a preferred pace has demonstrated increases in 

fractal characteristics of stride times (Jordan et al., 2007b). Thus, either a fractal 

metronome or speed change can be used to predictably alter gait dynamics. 

While these two methods have been shown to alter gait dynamics in a predictable 

way, it is unknown how cardiac rhythms are manipulated during these experimental 

manipulations. Since cardiac rhythms in their own right have been taken as a measure of 

cardiac health (Berntson et al., 1997; Iyengar et al., 1996; Pikkujämsä et al., 1999), 

understanding how cardiac rhythms are altered during these types of gait manipulations – 

which are becoming more commonplace in gait rehabilitation – would provide valuable 

information to ensure that an unintended consequence relative to cardiac health is not 
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occurring. The cardiac and locomotor systems are interconnected, and this interaction 

may change with increased age, so it is important to determine the effect of typical and 

experimental gait interventions on cardiac patterns in younger and older adults. 

The purpose of this study was to simultaneously assess the variability in cardiac 

and locomotor rhythms in younger and older healthy adults during treadmill walking 

tasks. The two experimental conditions included: (1) walking while synchronizing to a 

fractal visual metronome and (2) walking at a fast speed, as well as a pre-test and post-

test after each experimental manipulation to check for retention of the cardiac and 

locomotor patterns. Confirming the expected changes in gait patterns and observing the 

related changes in cardiac patterns may inform clinicians as to the potential value of these 

types of interventions as well as provide new considerations for prognostic, diagnostic, 

and treatment evaluation or aging (and potentially pathological) patients. It was 

hypothesized that the older group would exhibit a greater magnitude of variation 

[assessed with standard deviation (SD) and coefficient of variation (CV)] and an altered 

structure of variability [assessed with detrended fluctuation analysis (DFA) and sample 

entropy (SE)] in gait and cardiac patterns compared to the younger group across the pre-

test, experimental conditions, and post-test.   

Methods 

Participants 

A total of fifty-one healthy, physically active individuals participated in the study. 

Twenty-five younger adults (24.57±4.29 yrs, 1.76±0.09 m, 73.34±15.35 kg) and twenty-

six older adults (67.67±4.70 yrs, 1.72±0.09 m, 70.13±14.30 kg) were recruited from a 
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convenience sample from the University of North Carolina at Greensboro and regional 

activity groups (i.e., hiking, running, and cycling). Volunteers were excluded from the 

study if they had any pre-existing diagnoses of heart disease, neuromuscular dysfunction, 

or acute lower limb injury. Additionally, all participants had to be classified as moderate 

to no risk of exercise according to the American College of Sports Medicine Guidelines 

for Exercise Testing and Prescription (Ehrman, 2010) and self-report an ability to walk 

unassisted for 45-minutes on a treadmill at a self-selected pace. Participant information is 

summarized in Table 4. All participants provided informed consent for the study. All 

procedures for the study were approved by the University of North Carolina Institutional 

Review Board.



 

 
 

8
8

 

Table 4. Participant Demographics by Group. Demographics [mean(SD)] for participants including age, mass, height, 

kinematic characteristics, blood pressure (BP), exercise descriptors, and time between testing sessions. Exercise duration 

corresponds to a categorical assessment of average time per session, (1 = less than 30 minutes, 5 = more than 120 minutes). 

Exercise intensity corresponds to a categorical assessment of average intensity during and exercise session (1 = very light, 5 = 

very hard). 

 

Group 

 

 

 

Age 

 

 

(yrs) 

Mass 

 

 

(kg) 

Height 

 

 

(cm) 

Avg. 

ST 

 

(s) 

PWS 

 

 

(m/s) 

125% 

PWS 

 

(m/s) 

Systolic BP 

Diastolic BP 

 

(mmHg) 

Ex. 

Frequency 

 

(days/wk) 

Ex. 

Duration 

 

(au) 

Ex. 

Intensity 

 

(au) 

Time 

btwn. 

Sessions 

(hrs) 

Older 
67.67 

(4.70) 

70.13 

(14.30) 

1.72 

(0.09) 

1.08 

(0.09) 

1.18 

(0.23) 

1.48 

(0.29) 

136.77 (15.91)

80.23 (10.94)
 

6.27 

(1.00) 

2.88 

(1.07) 

3.38 

 (0.64) 

184.02 

(63.15) 

Younger 
24.57 

(4.29) 

73.34 

(15.35) 

1.76 

(0.09) 

1.15 

(0.08) 

1.10 

(0.17) 

1.38 

(0.22) 

119.48 (8.73)

76.76 (8.91)
 

5.32 

(1.38) 

2.52 

(0.92) 

3.36 

(0.56) 

216.95 

(154.68) 
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Experimental Design 

 The experiment was conducted during two sessions, at least 96 hours apart (200.8 

± 119.0 hours between). During the first session only, participants completed an intake 

questionnaire about health history and lifestyle, the SF-36 Health Survey (Optum, Eden 

Prairie, MN), and had their height and mass recorded. Additionally, only during the first 

session, each participant’s preferred walking speed (PWS) was identified. PWS was 

identified by asking the participants to walk on the treadmill at a slow speed (0.5 m/s) 

and inform the researcher to increase the speed until they felt they were at a “natural and 

comfortable walking pace”. Participants were then asked to start walking at a fast pace 

(2.0 m/s) and inform the researcher to decrease the speed of the treadmill until they felt 

they were at a “natural and comfortable walking pace”. If the two speeds were within 0.2 

m/s of each other, the average was recorded as the participant’s PWS. Otherwise, the 

process was repeated until a PWS was identified. 

 In both sessions, the experimental procedures included, in order, measurement of 

blood pressure, 8-minutes of electrocardiogram (ECG) measurement while sitting, 15 

minutes of treadmill walking at a self-selected pace, 15 minutes of treadmill walking in 

one of two experimental conditions (i.e., gait synchronization or fast walking), and 15 

additional minutes of treadmill walking at their preferred pace. These phases are referred 

to as the sitting, pre-test, experimental, and post-test phases, respectively. During 

walking, both ECG and kinematics were recorded. 

 The two experimental conditions were a gait synchronization task (matching heel 

strike timing to a visual metronome projected in front of the participant at their PWS) and 
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fast walking (walking at 125% of their PWS). The visual metronome consisted of two 

flashing footprints projected at eye-level on a screen in front of the treadmill (Figure 10). 

The footprints prescribed the desired timing between heel strikes for the left and right 

feet, with the timing between the appearance of the footprints exhibiting a fractal pattern 

(DFA α = 0.98, indicating persistence) and the same mean stride time as that of the 

participant at their PWS (Table 4). The experimental walking trial condition was 

counterbalanced such that half of each group completed the visual metronome task on 

their first visit followed by the fast walking task on their second visit, whereas the other 

half of the group performed the opposite task order. 

Instrumentation 

Thirty-six retroreflective markers were placed on anatomical landmarks to define 

a model consisting of the foot, knee, thigh, and pelvis. Markers were placed bilaterally on 

the anterior superior iliac spine, posterior superior iliac spine, greater trochanter of the 

femur, medial and lateral condyle of the femur, medial and lateral malleoli, calcaneus, 

and first and fifth metatarsal heads. Additionally, rigid plates consisting of 4 markers 

were placed on each thigh and shank segment. An 8-camera motion capture system 

(Qualisys AB, Gothenburg, Sweden) collected movement data at 200 Hz for each 15-

minute walking trial. 

ECG data were recorded using an MP-150 Data Acquisition System (Biopac 

Systems, Inc., Goleta, CA) at 1000 Hz. Three Ag/AgCl electrodes were place on the torso 

of each participant – below the clavicle on the right and left side of the participant and 
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above the left anterior superior iliac spine – to form an Einthoven’s triangle. Lead I (right 

shoulder to left shoulder) electrical activity was recorded. 

Data Reduction 

 Data reduction consisted of converting raw ECG signal to beat-to-beat interval 

time series (R-R time series) and position data from motion capture into stride interval, 

step width, and step length time series. The three variables selected to quantify locomotor 

behavior allowed for an examination of both temporal (stride interval) and spatial (step 

width and step length) characteristics, which are commonly reported in the gait literature 

(Brach et al., 2005, 2008; Gabell & Nayak, 1984; Jordan et al., 2007b). Measurements of 

variability could then be extracted from the cardiac and locomotor time series from each 

variable. 

 ECG data were reduced to a beat-to-beat interval time series. First, the raw ECG 

data were detrended and filtered. A 6th order polynomial was fit to and subtracted from 

the data to remove nonlinear trends in the raw ECG signal. Next, a 7th order Savitzky-

Golay filter was applied to sliding windows of 21 data points to remove high frequency 

noise from the raw signal. R-peaks and S-peaks (or troughs) were then identified as any 

local maxima or minima more than three standard deviations from the mean signal 

(Hargittai, 2005). Traditionally, the beat-to-beat interval is calculated as the time between 

R-peaks. However, in some cases due to axis deviation of the ECG signal, identifying R-

peaks was problematic with several false peaks being identified. In cases in which the 

average distance away from the mean ECG signal was smaller for the R-peak than that of 

the S-peak, the R-peaks were reidentified by finding the local maxima within 0.1 seconds 
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prior to the S-peak. Beat-to-beat interval time series were constructed from the time 

between R-peaks after the detrending, filtering, and R-peak identification were 

completed. Finally, data were examined for outliers – R-R intervals greater than two 

standard deviations from the average R-R interval for the 10 beats before and after it. 

Outliers (< 5% of the data) were replaced with the median of the ten beat-to-beat 

intervals before and after the outlier. In cases at the beginning and end of the trial where 

there were not 10 intervals before or after, a total of 20 intervals was still used to 

calculate the median replacement and local mean. 

 Visual 3-D (C-Motion, Bethesda, MD) was used to calculate each time series 

from position data recorded with motion capture. Position data were first smoothed using 

a bidirectional 2nd order butterworth filter with lowpass cutoff frequency of 6 Hz. Heel 

contact time of each foot was identified using the velocity (derivative of position) of each 

calcaneus marker (Zeni Jr et al., 2008). The time between consecutive heel contacts was 

used to construct left and right stride interval time series. Because previous research has 

indicated no difference between limbs for these variables, only the right limb stride 

interval data is reported (Rhea, Kiefer, D’Andrea, et al., 2014). Similarly, using the 

timing of consecutive steps (right heel contact to left heel contact), step width and length 

were identified as the medial-lateral and anterior-posterior distances, respectively, of the 

calcaneus markers at heel contact time. Step width and step length time series were then 

constructed from these data. 

 The mean, SD, CV, DFA scaling exponent alpha (DFA α), and SE were 

calculated from each time series to quantify characteristics of data variability. SD and CV 
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provide a measurement of the magnitude of variability, while DFA α and SE provide a 

measurement of the structure of variability. DFA α and SE calculation methods are 

provided in detail in other publications (Peng et al., 1994; Richman & Moorman, 2000). 

In short, DFA α quantifies the self-similarity of a time series on multiple scales (i.e., we 

used window sizes ranging from 4 data points to one-fourth of the data length) by 

establishing a relationship between fluctuations in the time series at each scale and the 

scale size. Values typically range on a spectrum from 0.5 (Gaussian white noise) to 1.0 

(pink noise or 1/f noise) in physiological subsystems. In healthy individuals stride 

interval time series DFA α exhibits values near 0.75, while R-R interval time series 

exhibits values near 1.0. This difference is thought to be due to the voluntary control that 

can override gait rhythms but are less prevalent for control of cardiac rhythms (Jordan et 

al., 2007a).  SE quantifies the complexity of a time series by using a pattern matching 

algorithm, dependent on m (template length for counting matches) and r (radius within 

which two vectors must be to be considered a match). Parameters m and r were set to 2 

and 30% of the SD of the time series, respectively. These values were selected based 

upon previous use of SE in the literature for cardiac and gait data (Eduardo Virgilio Silva 

& Otavio Murta, 2012; Lake et al., 2002; Porta et al., 2013; Richman & Moorman, 2000; 

Yentes et al., 2013). Highly regular time series (e.g. a sinusoid) will exhibit a SE of 0, 

while random time series will exhibit a value near 2.  

 Statistical Approach 

The two experimental conditions were tested as separate experiments. That is, 

separate MANOVAs were used for data collected on the gait synchronization day and on 
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the fast walking day. Hotelling’s Trace was used as the test criterion for both 

experiments. For gait data, a 2 x 3 (GROUP x PHASE) MANOVA was used to examine 

the mean, SD, CV, DFA α, and SE for stride interval, step length, and step width time 

series. Because the cardiac data also included a sitting phase, a 2 x 4 (GROUP x PHASE) 

MANOVA was used. Follow-up Bonferroni adjusted t-tests were used to compare the 

experimental and post-test phases to the pre-test phase. Significant difference from the 

pre-test for the experimental condition would indicate a change due to the condition. 

Additionally, if the post-test was also significantly different from the pre-test and in the 

same direction, there is some evidence of retention. Alpha was set a priori to 0.05. 

Results 

Gait Synchronization Task 

All findings for the gait synchronization experiment are summarized in Table 5. 

For gait variables, a PHASE x GROUP interaction was identified during the gait 

synchronization experiment (F30,162=2.353, p<0.001, partial η2=.303). Specifically, step 

length mean, stride time mean, stride time SD, stride time CV, and stride time entropy 

demonstrated the interaction effect.   
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Table 5. Summary of Results [Mean(SD)] from the Gait Synchronization Task 

Experiment. Significant main effects of GROUP are indicated by * (p<0.05). Significant 

difference from pre-test phase indicated by † (p<0.05. Note, this is a main effect for the 

collapsed groups.  

 

  Group Pre-Test Synchronization Post-Test 

S
te

p
 L

en
g
th

 (
m

) 

mean 
Older 0.60(0.10) 0.59(0.10)† 0.62(0.09)† 

Younger 0.57(0.09) 0.56(0.09) 0.58(0.09) 

SD* 
Older 0.02(0.01) 0.05(0.01)† 0.02(0.01) 

Younger 0.02(0.01) 0.04(0.01) 0.02(0.01) 

CV* 
Older 0.04(0.03) 0.09(0.03)† 0.04(0.03) 

Younger 0.03(0.01) 0.08(0.01) 0.03(0.01) 

DFA α 
Older 0.64(0.11) 0.80(0.09)† 0.67(0.12)† 

Younger 0.65(0.11) 0.86(0.05) 0.70(0.10) 

SE 
Older 1.41(0.24) 1.16(0.19)† 1.40(0.32) 

Younger 1.49(0.24) 1.22(0.15) 1.46(0.23) 

      

S
te

p
 W

id
th

 (
m

) 

mean 
Older 0.09(0.03) 0.11(0.03)† 0.09(0.03) 

Younger 0.11(0.03) 0.12(0.03) 0.11(0.03) 

SD* 
Older 0.02(0.01) 0.02(0.01)† 0.02(0.00)† 

Younger 0.02(0.01) 0.02(0.01) 0.02(0.01) 

CV* 
Older 0.26(0.10) 0.24(0.09)† 0.29(0.10)† 

Younger 0.18(0.06) 0.17(0.05) 0.20(0.07) 

DFA α 
Older 0.64(0.06) 0.70(0.09)† 0.64(0.08) 

Younger 0.66(0.06) 0.74(0.08) 0.64(0.09) 

SE 
Older 1.68(0.05) 1.62(0.07)† 1.68(0.07) 

Younger 1.67(0.05) 1.59(0.01) 1.67(0.05) 

      

S
tr

id
e 

In
te

rv
a
l 

(s
) 

mean* 
Older 1.10(0.09) 1.09(0.08)† 1.14(0.09)† 

Younger 1.17(0.08) 1.16(0.07) 1.18(0.08) 

SD 
Older 0.03(0.02) 0.08(0.02)† 0.02(0.01) 

Younger 0.02(0.01) 0.08(0.01) 0.02(0.01) 

CV 
Older 0.02(0.01) 0.07(0.02)† 0.02(0.01) 

Younger 0.02(0.01) 0.07(0.01) 0.02(0.01) 

DFA α 
Older 0.80(0.09) 0.86(0.07)† 0.81(0.11) 

Younger 0.78(0.09) 0.88(0.05) 0.81(0.10) 

SE* 
Older 1.32(0.26) 0.96(0.18)† 1.41(0.19) 

Younger 1.47(0.15) 0.99(0.15) 1.45(0.15) 
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R
-R

 i
n

te
rv

a
l 

(s
) 

mean* 
Older 0.72(0.08) 0.68(0.10)† 0.71(0.08) 

Younger 0.65(0.12) 0.64(0.13) 0.68(0.20) 

SD 
Older 0.05(0.06) 0.04(0.07) 0.05(0.06) 

Younger 0.04(0.02) 0.04(0.05) 0.14(0.50) 

CV 
Older 0.07(0.08) 0.06(0.07) 0.07(0.09) 

Younger 0.06(0.03) 0.07(0.08) 0.13(0.35) 

DFA α 
Older 0.80(0.19) 0.86(0.17)† 0.79(0.19) 

Younger 0.82(0.12) 0.86(0.12) 0.82(0.11) 

SE* 
Older 0.85(0.31) 0.77(0.27) 0.87(0.35) 

Younger 1.12(0.35) 1.09(0.32) 1.11(0.32) 

 

Multivariate main effects were identified for both GROUP (F15,34=2.720, p=0.008, 

partial η2=.545) and PHASE (F30,19=31.498, p<0.001, partial η2=.980). Pairwise 

comparisons revealed significant differences between groups for stride interval mean 

(F=6.891, p=0.012, partial η2=.126), stride interval SE (F=4.269, p=0.044, partial 

η2=.082), step width SD (F=11.272, p=0.002, partial η2=.190), step width CV (F=12.789, 

p=0.001, partial η2=.210), step length SD (F=14.106, p<0.001, partial η2=.227), and step 

length CV (F=5.246, p=0.026, partial η2=.099). Specifically, the older group exhibited 

shorter stride times and less complexity in the stride time data, as well as less step width 

and step length variability. Significant main effects for PHASE were identified for all gait 

kinematics variables (mean, SD, CV, DFA α, and SE for stride interval, step width, and 

step length time series). Pairwise comparisons by phase indicated that all gait kinematics 

variables were significantly different between the pre-test and experimental phases (all 

p<0.01). Significant differences were also identified between the pre-test and post-test 

phases for stride interval mean, step width SD, step width CV, step length mean, and step 

length DFA α (all p<0.01). Of the variables with both post-test and experimental phases 

  Group Pre-Test Synchronization Post-Test 
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being different than the pre-test phase, only step width SD and step length DFA α were in 

the same direction (in both cases these variables increased after the pre-test). 

For cardiac variables, a PHASE x GROUP interaction was identified during the 

gait synchronization experiment (F15,407=2.579, p=0.001, partial η2=.087). Specifically, 

mean R-R interval demonstrated the interaction effect. Multivariate main effects were 

identified for both GROUP (F5,43=889, p<0.001, partial η2=.508) and PHASE 

(F15,33=50.394, p<0.001, partial η2=.958) of cardiac variables as well. The older group 

exhibited significantly slower R-R intervals (F=5.313, p=0.026, partial η2=.102) and less 

complex (lower SE) R-R interval patterns (F=21.181, p<0.001, partial η2=.311) than the 

younger group. Follow-up testing also showed that R-R interval mean was shorter (faster 

heart beat) (F=11.454, p=0.001, partial η2=.196) and DFA α was elevated (F=4.085, 

p=0.049, partial η2=.080) during the experimental phase compared to the pre-test phase. 

However, neither of these changes in cardiac behavior were retained during the post-test 

phase. 

Fast Walking Task 

 All findings for the fast walking experiment are summarized in Table 6. 

No interaction effects were identified for gait variables (F30,162=1.268, p=0.177, 

partial η2=.190) or cardiac variables (F15,407=1.165, p=0.297, partial η2=.041) during the 

fast walking experiment. 
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Table 6. Summary of Results [Mean(SD)] from the Fast Walking Task Experiment. 

Significant main effects of GROUP are indicated by * (p<0.05). Significant difference 

from pre-test phase indicated by † (p<0.05). Note, this is a main effect for the collapsed 

groups. 

 

  Group Pre-Test Fast Walking Post-Test 

S
te

p
 L

en
g
th

 (
m

) 

mean 
Older 0.60(0.10) 0.69(0.10) 0.62(0.09) 

Younger 0.59(0.08) 0.67(0.08) 0.60(0.08) 

SD* 
Older 0.02(0.01) 0.02(0.01) 0.02(0.01) 

Younger 0.02(0.01) 0.02(0.01) 0.02(0.01) 

CV* 
Older 0.04(0.03) 0.03(0.02) 0.04(0.02) 

Younger 0.03(0.01) 0.02(0.01) 0.03(0.01) 

DFA α 
Older 0.65(0.16) 0.67(0.12) 0.65(0.11) 

Younger 0.67(0.10) 0.68(0.12) 0.69(0.08) 

SE 
Older 1.39(0.31) 1.42(0.26) 1.44(0.21) 

Younger 1.51(0.21) 1.45(0.27) 1.49(0.22) 

      

S
te

p
 W

id
th

 (
m

) 

mean 
Older 0.09(0.03) 0.09(0.03)† 0.09(0.03) 

Younger 0.11(0.03) 0.11(0.03) 0.10(0.03) 

SD* 
Older 0.02(0.01) 0.02(0.01)† 0.02(0.01) 

Younger 0.02(0.00) 0.02(0.00) 0.02(0.01) 

CV* 
Older 0.26(0.09) 0.28(0.08)† 0.29(0.09) 

Younger 0.19(0.06) 0.19(0.07) 0.21(0.08) 

DFA α 
Older 0.65(0.07) 0.61(0.06)† 0.65(0.06) 

Younger 0.66(0.07) 0.63(0.07) 0.65(0.06) 

SE 
Older 1.67(0.06) 1.70(0.06)† 1.67(0.06) 

Younger 1.65(0.08) 1.69(0.05) 1.68(0.05) 

      

S
tr

id
e 

In
te

rv
a
l 

(s
) 

mean* 
Older 1.10(0.09) 1.02(0.08)† 1.14(0.10) 

Younger 1.17(0.08) 1.07(0.07) 1.18(0.08) 

SD 
Older 0.07(0.24) 0.02(0.01) 0.02(0.01) 

Younger 0.02(0.01) 0.01(0.01) 0.02(0.01) 

CV 
Older 0.06(0.20) 0.02(0.01) 0.02(0.01) 

Younger 0.02(0.01) 0.01(0.01) 0.02(0.01) 

DFA α 
Older 0.80(0.11) 0.77(0.11) 0.76(0.10) 

Younger 0.80(0.08) 0.79(0.10) 0.81(0.09) 

SE 
Older 1.33(0.38) 1.43(0.29) 1.46(0.14) 

Younger 1.45(0.14) 1.52(0.14) 1.43(0.17) 
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  Group Pre-Test Fast Walking Post-Test 
R

-R
 i

n
te

rv
a
l 

(s
) 

mean 
Older 0.71(0.10) 0.68(0.21) 0.68(0.11) 

Younger 0.67(0.12) 0.65(0.16) 0.74(0.32) 

SD 
Older 0.05(0.07) 0.09(0.18) 0.05(0.08) 

Younger 0.05(0.08) 0.13(0.37) 0.13(0.41) 

CV 
Older 0.07(0.07) 0.11(0.14) 0.06(0.09) 

Younger 0.06(0.08) 0.18(0.57) 0.10(0.20) 

DFA α 
Older 0.79(0.17) 0.80(0.18) 0.81(0.19) 

Younger 0.84(0.13) 0.84(0.15) 0.83(0.13) 

SE* 
Older 0.76(0.37) 0.69(0.34) 0.83(0.31) 

Younger 1.13(0.31) 1.09(0.30) 1.14(0.22) 

 

For gait variables, the fast walking experiment also exhibited main effects for 

both GROUP (F15,34=3.439, p=0.001, partial η2=.630) and PHASE (F30,19=262.162, 

p<0.001, partial η2=.998). Significant differences between groups were identified for 

stride interval mean (F=5.981, p=0.018, partial η2=.070), step width SD (F=10.329, 

p=0.001, partial η2=.177), step width CV (F=13.951, p<0.001, partial η2=.225), step 

length SD (F=8.294, p=0.006, partial η2=.147), and step length CV (F=4.943, p=0.031, 

partial η2=.093). The older group demonstrated shorter stride time intervals and more 

variability of both step width and step length (both SD and CV). Differences across 

phases of the experiment were identified for stride interval mean, step width mean, step 

width SD, step width CV, step width DFA α, step width SE, step length mean, step length 

SD, and step length CV (all p<0.05). The pre-test and experimental phase were 

significantly different for each of these variables, with the exception of step width mean. 

Additionally, changes in gait kinematics were persistent during the post-test phase for 

step width variability (both SD and CV increased during fast walking and remained 

elevated during the post-test as compared to the pre-test phase) and step length mean 
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(longer step lengths were used during fast walking and the post-test than during pre-test 

walking). 

 For cardiac variables, the fast walking experiment also identified significant main 

effects for both GROUP (F5,43=11.599, p<0.001, partial η2=.574) and PHASE 

(F15,33=40.668, p<0.001, partial η2=.949). The older group exhibited significantly less 

complexity (lower SE) in their R-R interval patterns (F=28.591, p<0.001, partial η2=.378) 

than the younger group. Follow-up testing revealed that differences in phase were only 

found between the sitting phase and pre-test phase. There was no effect of phase on any 

cardiac variables when comparing the experimental and post-test phases to the pre-test 

phase. 

Discussion 

 This study demonstrated that both older and younger healthy adults alter gait 

patterns similarly when presented with a gait synchronization task. During the gait 

synchronization experiment, main effects for phase were exhibited for all gait pattern 

variables, but none were shown during the fast walking task. This might suggest that a 

gait synchronization task has greater potential to alter gait and cardiac rhythms than fast 

walking. Moreover, R-R interval changed only during the synchronization condition 

(decreased mean and increased DFA α). These are important findings because it suggests 

that it may be possible to alter gait and cardiac rhythms simultaneously.  

Manor and Lipsitz (2013) suggest that by modifying a single component of a 

system, such as gait timing, it may holistically alter the dynamics across several 

physiological subsystems, a postulate that is supported by our data. One theory to 
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facilitate this is a diminishing of baroreflex sensitivity associated with aging. Adaptive, 

healthy people may not experience this deficit, while others will necessarily rely more 

heavily on the information that is available and shared between subsystems, ultimately 

resulting in elevated cardiolocomotor coupling. In the future, it may be possible to take 

advantage of this phenomenon by targeting one subsystem for intervention and observing 

improvements across other subsystems. For example, it may be possible to strategically 

prescribe gait interventions that predictably alter cardiac dynamics. 

 It has been demonstrated that a gait synchronization task can be used to change 

gait rhythm dynamics in a prescribed direction and that there is some retention of these 

changes once a stimulus is removed (Hove et al., 2012; Rhea, Kiefer, Wittstein, et al., 

2014; Uchitomi et al., 2013). In this study, a concurrent increase of R-R interval, step 

width, step length, and stride interval DFA α during the gait synchronization task 

supports the likelihood that cardiolocomotor synchronization occurs during walking. 

Coupling may be enhanced to account for natural aging processes that decrease the 

redundancy in neurological pathways (Manor & Lipsitz, 2013) or to accommodate 

external constraints during walking as demonstrated during the gait synchronization task. 

It should be noted that no retention was observed after the gait synchronization task in the 

post-test with respect to the gait dynamics. This likely occurred due to the fact that the 

mean of each participants’ prescribed fractal time series was normalized to their preferred 

walking speed, whereas previous research used a single time series across all participants 

(Rhea & Kiefer, 2014; Rhea, Kiefer, Wittstein, et al., 2014). Recent work has begun to 

characterize how altering characteristics of a fractal stimulus can affect synchronization 
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(Marmelat et al., 2014), so future work should continue to examine the nature of human 

synchronization to a variety of stimulus signal characteristics.  

 Much of the literature supports a loss of physiological complexity (i.e., moving 

toward more patterned behavior) associated with aging, illness, and dysfunction 

(Goldberger, Peng, et al., 2002; Lipsitz & Goldberger, 1992; Vaillancourt & Newell, 

2002). It is suggested that these changes in complexity arise due to reduced connectivity 

between components of the system, such as degraded neural connections, which may lead 

to lower functionality (Lipsitz, 2002). This study supports previous findings with the 

observation that older healthy adults exhibited lower sample entropy of R-R intervals and 

stride intervals than younger healthy adults. Combined with evidence of cardiolocomotor 

coupling (Novak et al., 2007), it becomes more important, now, to consider the 

interaction of physiological rhythms across different systems (i.e. cardiac and locomotor 

systems). 

 The population examined included a convenience sample of healthy college 

students and very active, healthy older adults from the community. As the burden to 

participate was likely higher on the older adults (traveling to campus, busier schedules, 

etc.), and these adults had to exhibit the same healthy characteristics as the younger 

adults, it is likely that these older adults were exceptionally healthy and motivated and 

were not experiencing many of the hallmarks common to aging, a notion supported by 

their exercise frequency and duration as well as their PWS (i.e., it was faster than the 

younger group’s PWS). Examining a more diverse population that has exhibited more 



 

103 
 

common signs of aging, it is likely that our findings would be more pronounced, 

supporting the case for gait synchronization to modify gait rhythms and cardiac rhythms.  

 Future studies should be designed to understand the mechanisms of coupling 

between physiological subsystems. This will lead to creating new interventions designed 

to restore healthy system dynamics in older or unhealthy individuals, ultimately leading 

to more adaptive and functional improvements in these populations (Manor & Lipsitz, 

2013). It is important to link experimental findings with theoretical and mechanical 

underpinnings, such as loss of complexity theory and physiological coupling, to further 

progress our understanding of how healthy (and unhealthy) physiological function 

emerges. Physiological coupling has been previously examined by measuring the 

correlation between coinciding cardiac and step intervals (Novak et al., 2007), identifying 

periods in which heart rate and step rate are very near equal (Kirby et al., 1989), 

identifying time periods in which the relative timing of physiological events (cardiac, 

locomotor, and respiratory) remained consistent (Niizeki et al., 1993), and quantifying 

the recurring patterns present across cardiac and respiratory rhythms (Censi et al., 2002). 

These studies demonstrate that there is a natural phenomenon of coupling in 

physiological subsystems. It has further been suggested that uncoupling of physiological 

subsystems may help explain the pathogenesis of multiple organ dysfunction (Godin & 

Buchman, 1996). Future work could expand upon these studies by introducing more 

challenging or constraining tasks with well-defined dynamic characteristics to understand 

how interventions could be designed to improve physiological rhythms across multiple 

systems. Continuing to understand individual subsystem dynamics and response to 
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constraints (i.e., interventions) combined with a foundational understanding of how 

systems couple in varying tasks will lead to improved intervention design that can be 

more selective in changing physiological subsystems’ dynamics. 

 In conclusion, this study showed that younger and older healthy adults exhibited 

similar changes in gait rhythms when synchronizing their step timing to a visual 

metronome, but no changes during a fast walking task. Similarly, cardiac dynamics 

changed during only the gait synchronization task. This suggests the potential for specific 

walking tasks to be designed to alter cardiac and gait dynamics simultaneously and in a 

specified manner. 
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Figure 10. Experimental Setup Illustrating Gait Synchronization Task. Alternating left 

and right footprints were presented to the participant on a projection screen during 

treadmill walking. The timing between steps exhibited fractal characteristics. Adapted 

from Rhea et al. (2014). 
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CHAPTER VI 

 

MANUSCRIPT III 

 

 

Introduction 

 Aging throughout adulthood leads to changes in the rhythmicity of the cardiac 

system. Average and maximum heart rate becomes slower with age, leading to lower 

cardiac reserve to complete strenuous tasks. Moreover, the variability in time between 

heart beats changes as we age, which has been associated with decreased functional 

ability in the cardiac system (Amaral, Goldberger, Ivanov, & Stanley, 1998; Iyengar et 

al., 1996; Pikkujämsä et al., 1999). For example, congestive heart failure is often 

characterized by overly regular timing between heart beats (i.e., very low variability), 

whereas myocardial infarction exhibits highly variable and complex patterns between 

heart beats (Costa et al., 2005; Glass, 2001; Y.-L. Ho et al., 2011; Mourot, 2014). 

Collectively, research on the rhythmicity of heart beat behavior has been informative 

about cardiac health. However, very little research has examined how cardiac factors 

influence fundamental movement patterns, such as walking.  

 Similar to cardiac behavior, gait rhythmicity changes throughout adulthood. The 

parallels between cardiac and gait behavior are strikingly similar. Gait speed slows and 

stride time variability changes with age; both of which area associated decreased 

functional ability, leading to an increase in fall rate (Hausdorff, 2007; Herman et al., 
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2005; Morrison & Newell, 2012; Öberg et al., 1993). It is no surprise that these indicators 

of dysfunction derived from rhythmicity occur across physiological subsystems, as each 

system plays a role in maintaining the overall function of a larger biological system (i.e., 

the human), sharing functional and structural components (Bailon, Garatachea, De La 

Iglesia, Casajus, & Laguna, 2013; Niizeki & Saitoh, 2014; Novak et al., 2007). Thus, 

behaviors of physiological subsystems in humans are inevitably coupled and observed 

changes in movement rhythms will likely coincide with changes in cardiac rhythms, and 

vice versa (Blain et al., 2009; Kirby et al., 1989; Niizeki & Saitoh, 2014; Novak et al., 

2007). Despite the interconnected nature of cardiac and locomotor rhythms, directly 

quantifying the coupling between two physiological subsystems has rarely been done. 

Yet, as a framework, coupling across subsystems provides additional, important 

information about the current state (or level of function) of a complex system (i.e., a 

system with many interacting parts, such has human physiology). It is likely that coupling 

is enhanced when physiological demands are placed on an organism. With aging, 

declines in strength or stroke volume make it more necessary for the body’s physiological 

subsystems to work in concert to maintain adequate function. Therefore, quantifying the 

coupling between the cardiac and locomotor system as a function of aging could lead to a 

more holistic understanding of how the subsystems are linked, potentially opening up 

new pathways for assessment and rehabilitation. 

 The notion of cardiolocomotor coupling has been previously examined. Kirby et 

al. (1989) identified the consistency between heart and step rates during walking and 

running on a treadmill, as well as when cycling on an ergometer. Similarly, Niizeki et al. 
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(1993) observed consistency in the relative timing of steps within a cardiac cycle and 

classified this as coupling of the two systems. Novak, et al. (2007) found enhanced 

correlation between cardiac and step intervals in elderly individuals and provided a 

simple model to explain how cardiac and locomotor rhythms may be coupled and 

increased in relation to aging. Together, these papers suggest that cardiolocomotor 

coupling may be related to the functional capacity of the physiological system, which is 

dependent on the integration of its subsystems. Thus, coupling may increase as needed in 

order to complete the task demands. While previous research in this area has contributed 

to our understanding of cardiolocomotor coupling, most work in this area has examined 

concurrent changes in both systems using linear statistical methods (e.g., correlations 

between systems, relative phase of events, etc.). 

One issue that must be navigated in this area is selecting an appropriate 

measurement from the wealth of techniques available to assess dynamic behaviors of 

complex systems, synchronization, and coupling. Cardiac and locomotor control systems 

are nonlinear in their behaviors, and therefore, it is likely that their coupling 

characteristics will also exhibit nonlinear properties. Recurrence quantification analysis 

offers a unique way to quantify the coupling relationship between physiological systems 

by considering the each signal’s completely in relation to the other. It is also important to 

note that cardiolocomotor coupling may change when task demands are altered, which 

would provide further insight into the holistic nature of the system. Thus, taking 

advantage of advances in measurement and analytic techniques, in conjunction with 
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altered task demands may provide novel information about cardiolocomotor coupling as a 

function of aging.  

The purpose of this study was to quantify the coupling of cardiac and locomotor 

rhythms in younger and older healthy adults during two treadmill walking tasks, each 

with a different task demand. We hypothesized that older adults would exhibit higher 

levels of cardiolocomotor coupling than younger adults. Moreover, this coupling 

relationship would increase in both groups when task demands are increased in each 

treadmill walking task. 

Methods 

Participants 

Fifty-one healthy, physically active participants provided informed consent to 

participate in the study. A convenience sample of twenty-five younger adults (24.57±4.29 

yrs, 1.76±0.09 m, 73.34±15.35 kg) and twenty-six older adults (67.67±4.70 yrs, 

1.72±0.09 m, 70.13±14.30 kg) were recruited from the University of North Carolina at 

Greensboro and regional activity groups (i.e., hiking, running, and cycling). This data 

was collected as part of a larger study (Wittstein, Starobin, et al., n.d.-a) and participant 

characteristics are summarized in Table 4. All procedures for the study were approved by 

the University of North Carolina at Greensboro Institutional Review Board. 

Experimental Design 

 The experiment was conducted during two sessions on separate days with at least 

96 hours apart (200.8±119.0 hours between). During the first session only, participants 

completed an intake questionnaire about health history and lifestyle, the SF-36 Health 
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Survey (Optum, Eden Prairie, MN), and had their height and mass recorded. The intake 

questionnaire included questions to assess participants’ risk of exercise. Participants 

classified as high risk according to the American College of Sports Medicine Guidelines 

for Exercise Testing and Prescription (Ehrman, 2010) were excluded from the study. 

Additionally, each participant’s preferred walking speed (PWS) was identified during the 

first testing session. PWS was identified using an iterative process in which participants 

were instructed to request increases or decreases in treadmill speed until they felt like 

they were at a comfortable pace. Participants started with slow walking (0.5 m/s) and 

asked for increases in speed then repeated the process starting with fast walking (2.0 m/s) 

and asking for decreases in speed. This process was repeated until consecutive trials were 

within 0.2 m/s of each other. PWS was recorded as the average of the two speeds the 

participants settled upon. 

 Each testing session consisted of three 15-minute phases: (1) pre-test phase, (2) 

experimental phase, and (3) post-test phase. During the pre-test and post-test phases, 

participants walked on the treadmill at their PWS without any instructions. During the 

experimental phase, participants were asked to perform a gait synchronization task while 

walking or walk at a faster speed. These experimental conditions were counterbalanced 

such that half the participants completed the gait synchronization and fast walking tasks 

during their first and second sessions, respectively. While walking on the treadmill, 

electrocardiographs and gait kinematics were recorded simultaneously. 

 In the gait synchronization task, participants walked on the treadmill at their PWS 

while matching the timing of their heel strike to a visual metronome projected before 
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them. The metronome showed blinking left and right feet on a moving ground and black 

background (Figure 10). A fractal time series (DFA α = 0.98) was constructed with the 

same mean stride time as the participant and was used to define the time between 

footprint appearance on the screen. In the fast walking task, participants walked at 125% 

of their PWS without any visual cues. The gait synchronization task and the fast walking 

task were selected as experimental manipulations because both task have been previously 

shown to increase task demands during walking, hereby altering gait variability in a 

specific and predictable manner (Jordan et al., 2007b; Rhea, Kiefer, D’Andrea, et al., 

2014). Thus, cardiolocomotor coupling could be examined in this context to investigate 

the concurrent behavior of the cardiac and locomotor systems when task demands are 

increased.   

Instrumentation 

A model of the lower limbs (i.e., pelvis, thigh, shank, foot) was constructed from 

retroreflective markers placed bilaterally on the anterior superior iliac spine, posterior 

superior iliac spine, greater trochanter of the femur, medial and lateral condyle of the 

femur, medial and lateral malleoli, calcaneus, and first and fifth metatarsal heads, along 

with rigid plates consisting of 4 markers on each thigh and shank segment.  An 8-camera 

motion capture system (Qualisys AB, Gothenburg, Sweden) recorded movement data at 

200 Hz during each 15-minute phase. An MP-150 Data Acquisition System (Biopac 

Systems, Inc., Goleta, CA) was used to record ECG data at 1000 Hz. Three Ag/AgCl 

electrodes were place on the torso of each participant (below the left and right clavical 



 

112 
 

and just above the left anterior superior iliac spine) to form an Einthoven’s triangle. Lead 

I electrical activity was recorded from the right shoulder to left shoulder. 

Data Reduction 

 Raw ECG signals were converted to beat-to-beat interval time series (R-R time 

series) and position data into stride interval time series. The coupling of the two time 

series could then be calculated during each phase using order pattern recurrence plots 

(Wittstein, Starobin, et al., n.d.-b). 

 To reduce the raw ECG data to R-R time series, data were detrended and filtered. 

Nonlinear trends were removed by subtracting a best fit 6th order from the signal. 

Likewise, high frequency noise was removed using a 7th order Savitzky-Golay filter 

applied to sliding windows of 21 data points (Hargittai, 2005). R-peaks and S-peaks (or 

troughs) were then identified as any local maxima or minima more than three standard 

deviations from the mean signal. Traditionally, R-R interval is calculated as the time 

between R-peaks. However, in some cases due to axis deviation of the ECG signal, 

identifying R-peaks was problematic with several false peaks being identified. In cases in 

which the average distance away from the mean ECG signal was smaller for the R-peak 

than that of the S-peak, the R-peaks were reidentified by finding the local maxima within 

0.1 seconds prior to the S-peak. R-R interval time series were constructed from the time 

between R-peaks after the detrending, filtering, and R-peak identification were 

completed. Finally, outliers greater than 2 SD from the local (±10 epochs) mean of R-R 

intervals were identified and replaced with the local median. In cases at the beginning 
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and end of the trial where there were not 10 intervals before or after, a total of 20 

intervals was still used to calculate the median replacement and local mean. 

 Visual 3-D (C-Motion, Bethesda, MD) was used to calculate stride interval time 

series from position data. Position data were first smoothed using a bidirectional 2nd order 

butterworth filter with lowpass cutoff frequency of 6 Hz. The velocity (derivative of 

position) of the calcaneus marker in the sagittal plane was used to identify heel contact 

times (Zeni Jr et al., 2008). The time between consecutive heel contacts of the same foot 

was used to construct left and right stride interval time series. Only the right stride 

interval time series was used for analysis because previous research has indicated no 

difference in stride interval dynamics between legs during walking (Rhea, Kiefer, 

D’Andrea, et al., 2014). 

 R-R interval and stride interval time series were resampled to have a measurement 

of heart beat at each second from 0 to 900 seconds (901 data points). To account for 

issues with resampling the data near the end points, the first and last ten data points were 

truncated from each time series. Order pattern recurrence plots were constructed by 

symbolically transforming each time series into local ordinal structures then identifying 

recurrent patterns between the two time series. Specific details of this methodology were 

described by Groth (2005) with electroencephalograms. These methods were refined for 

use with cardiac and locomotor signals (Wittstein, Starobin, et al., n.d.-b). In short, the 

order patterns represent the local transition data points and are coded to uniquely 

represent a patter. For an order of two consecutive data points there are only two possible 

patterns (a positive slope or negative slope). By examining three or more consecutive 
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data points to define order patterns, the patterns become more complex. Order patterns 

were defined using sets of three consecutive data points. To quantify the coupling 

between the time series, recurrent points (identical order patterns) were identified for the 

entire time series. The relative recurrence rate was calculated as the amount of recurrence 

at a given time lag with respect to the total recurrence at all observed time lags. Last, the 

coupling index is calculated as the Shannon entropy of relative recurrence rate within a 

window. Coupling index was calculated for 60 evenly spaced windows using lag lengths 

of ±15 data points. The average coupling index and heart rate for the entire time series 

was reported, representing the overall level of coupling during each 15-minute walking 

trial. 

Statistical Approach 

The dependent variable was the average coupling index and the independent 

variables were group (younger or older), experiment condition (gait synchronization task 

or fast walking task), and phase (pre-test, experimental, or post-test). A three way 

(GROUP x EXPERIMENT x PHASE) repeated measures ANOVA was used to test for 

statistical significance. Hotelling’s Trace was used as the test criterion. Follow-up 

Bonferroni adjusted t-tests were used where appropriate. Alpha was set a priori to 0.05. 

Effects sizes (Cohen’s d) were calculated [(μa – μb)/σpooled] and interpreted to examine the 

magnitude of differences between and within groups (Cohen, 1992). 

Results 

 A repeated measures ANOVA indicated a main effect of PHASE for the heart rate 

of participants (F2,46=16.739, p<0.001, partial η2=.421). No other effects were identified. 
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The average heart rate for the older group ranged from 84.3±9.2 beats per minute (bpm) 

during the pre-test on the synchronization day to 93.2±19.8 bpm during the fast walking 

phase. Meanwhile, the younger group exhibited average heart rates ranging from 

88.7±20.5 bpm during the post-fast walking test to 97.6±18.0 bpm during the gait 

synchronization test. 

A main effect was identified for PHASE (F2,46=6.605, p=0.003, partial η2=.223). 

Specifically, the experimental conditions exhibited a 14.8% increase in cardiolocomotor 

coupling compared to the pre-test (p=0.002, Cohen’s d = 0.692) and was 13.3% higher 

than the post-test phase (p=0.007, Cohen’s d = 0.608). The pre-test and post-test phases 

were not significantly different. Results are illustrated in Figure 11. A GROUP x  PHASE 

interaction neared significance (F2,46=2.439, p=0.098, partial η2=.098). To explore this 

interaction, the between and within group effect sizes were calculated and are presented 

in Table 7. 

 

Table 7. Effect Sizes (Cohen’s d) for Between and Within Group Comparisons. 

Between group effect sizes    

  Gait synchronization task    Fast walking task 

  Younger adults vs older adults    Younger adults vs older adults 

  pre-test exp post-test   pre-test exp post-test 

  0.686 0.117 0.455   0.510 0.244 0.046 

Within group effect sizes    

 

  

 Gait synchronization task  Fast walking task 

  

pre-test  

vs. exp 

pre-test vs.  

post-test 

exp vs.  

post-test   

pre-test  

vs. exp 

pre-test vs.  

post-test 

exp vs.  

post-test 

younger 0.153 0.017 0.143   0.255 0.167 0.326 

older 0.755 0.220 0.608   0.771 0.259 0.668 
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Discussion 

 This study quantified cardiolocomotor coupling in younger and older adults 

during treadmill walking tasks where the demands were increased. The data demonstrate 

that both older and younger healthy adults exhibit enhanced cardiolocomotor coupling 

when tasked with a step timing constraint or increased speed during treadmill walking. 

However, comparing the effect size between the pre-test to experimental phases within 

each group, enhanced coupling appeared to more pronounced in the older population, 

suggesting that aging alters the coordination between the cardiac and locomotor systems 

in order to adapt to increased task demands. The age group by phase interaction neared 

significance, so we elected to use effects sizes to continue exploring this observation. 

Since both populations were able to successfully complete both waking tasks, this 

highlights the notion that increased cardiolocomotor coupling develops with aging in 

order to get the same motor output (treadmill task completion). This supports the 

possibility to use cardiolocomotor coupling to assess the physiological demand placed on 

a system by either task, environment, or even aging and pathology. Additionally, this 

could be used to quantify the ability of a person to adapt to cardiac or locomotor tasks 

and constraints. 

 Previous research on cardiolocomotor coupling has led to two, seemingly 

antithetical interpretations about the nature of the coupling. An increase in 

cardiolocomotor coupling was shown to relate to improved performance of motor tasks 

(Blain et al., 2009; Phillips & Jin, 2013), suggesting that increased coupling reflects 

enhanced functional ability. However, increased cardiolocomotor coupling has also been 
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observed in older adults and pathological populations (Kirby et al., 1989; Novak et al., 

2007), suggesting that increased coupling reflects decreased functional ability. It could be 

argued, however, that these two observations are simply different mechanisms by which 

the demands on the system are increased. Therefore, a common theme between previous 

cardiolocomotor coupling research – supported by data in the current paper – is that 

coupling may be used by an organism when it has a need for more efficiency as in a more 

difficult task.  

In the current study, we demonstrated a similar increase in cardiolocomotor 

coupling between our two experimental conditions. Although the nature of the task 

demands were different, both experimental conditions altered the task demands relative to 

the pre-test phase and led to an increase in cardiolocomotor coupling to adapt to the tasks. 

When the task constraints were removed (i.e. during the post-test phase) the 

cardiolocomotor coupling decreased. Looking more closely, the older population 

experienced at 17.6% increase during gait synchronization and 31.2% increase during 

fast walking, large effect sizes (Cohen’s d = 0.755 and 0.771, respectively). Meanwhile, 

the younger group only experienced 3.2% and 8.9% increases during gait synchronization 

and fast walking conditions, respectively.  

It is logical that a younger, and likely healthier neural network would allow a 

younger participant to couple less and still complete the fast walking and gait 

synchronization tasks successfully. Likewise, less complex neural networks that may be 

common in older adults could force coupling to play a more prominent role in adapting 

control systems to task demands. Our results suggest that both older and younger adults 



 

118 
 

were able to adapt to an increase in walking task demands, but they used different 

pathways to complete the task. The older adults increased their coupling as a survival 

mechanism, per se, while the younger adults did not. This highlights the flexible nature of 

our cardiac and locomotor systems as we age in order maintain functional ability when 

new task demands are presented or removed. 

 A limitation of this study is that it only included healthy younger and older adults. 

Because of the health quality of these groups, it may have led to smaller coupling index 

values – though larger than the coupling observed between a random signal and a 

sinusoid (Wittstein, Starobin, et al., n.d.-b). However, this is a necessary first step to 

understand the typical behavior of cardiolocomotor coupling. Future work should expand 

this methodology to incorporate pathological populations across a wider range of 

physiological subsystems and experimental conditions. For example, Groth (2005) 

demonstrated increased coupling of electroencephalogram channels is associated with the 

onset of epileptic seizures. However, it is unclear whether coupling caused the seizure or 

if coupling was a result of another neurological deficit. This brings up the importance to 

consider that coupling likely plays a role in both healthy and unhealthy function. It is 

therefore imperative to continue to examine coupling in healthy and pathological 

populations under varying task demands. Finally, associating individual system dynamics 

in addition to coupling of systems to other markers of health function and decline may 

provide new evidence and possibilities to develop diagnostics, assessments, and 

treatments for a wide range of ailments. 
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 In conclusion, it is becoming increasingly important to consider the implication of 

one physiological subsystem’s function on another (Lipsitz, 2002; Manor & Lipsitz, 

2013). By examining coupling, we can get stronger insight into an individual’s functional 

health status. This study demonstrated that older adults may have developed a pathway of 

relying more heavily on coupling physiological subsystems to adapt to challenging 

physical demands compared to younger adults. 
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Figure 11. Cardiolocomotor Coupling in Older (blue) and Younger (yellow) Healthy 

Adults. Results are illustrated with both numerical values for coupling (bars with 

standard error) and as a percentage of the pre-test value (at 100% in green) of coupling 

(lines). 
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CHAPTER VII 

 

DISCUSSION 

 

 

 This dissertation research was designed to quantify the coupling of cardiac and 

locomotor rhythms in younger and older healthy adults. It has been previously suggested 

that the dynamics within and between (i.e., coupling) physiological subsystems is a 

marker of both individual system function and overall health of an individual   (Lipsitz, 

2002; Manor & Lipsitz, 2013; Schulz et al., 2013). To this end, better understanding the 

natural rhythms as they relate to healthy aging will lead to deeper understanding of how 

functional and dysfunctional health evolves. To accomplish this, first, a technique to 

study cardiac and locomotor coupling was refined and tested on synthetic (i.e., sine 

waves and Gaussian noise) and experimental data. Second, an experiment was conducted 

to measure the cardiac and locomotor rhythms in healthy adults during normal treadmill 

walking, during a gait synchronization task, and during a fast walking task.  The data 

from this experiment support previous research indicating that changes in gait rhythms 

are task dependent. Importantly, it adds to this body of research by concurrently 

observing cardiac dynamics and quantifying the coupling between the two systems. 

 Many studies in physiological variability are limited to studying each 

physiological subsystem separately (Acharya et al., 2002; Faust & Bairy, 2012; 

Hausdorff, 2005; Stergiou & Decker, 2011). However, this approach hinders the ability to 

consider human health more holistically. Humans are complex organisms composed of an 
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untold number of components interconnected through common neuronal pathways, 

shared resources (e.g., oxygen, sodium, etc.), and ultimately the functional purpose to 

maintain life. This massive network only exacerbates the importance of considering 

health a function of how systems work together, as opposed to how one system is failing.  

Examining the common dynamics and coupling between physiological signals is an entry 

point to accomplishing this task. 

 Conducting novel and meaningful research requires the application of analytical 

techniques to new applications. Groth (2005) presented a method of quantifying the 

coupling of time series using recurrence patterns applied to the analysis of EEG signals.  

Not only did these findings demonstrate the utility of order pattern recurrence plots, it 

also demonstrated how the coupling of EEG signals may relate to the onset of epileptic 

seizure. However, this method had not yet been used to examine the coupling of two 

different physiological susbsystems. The first part of this dissertation aimed to extend this 

work to examine cardiolocomotor coupling and compare its measurement to the coupling 

of known synthetic signals of theoretically (but qualitatively) known amounts of 

coupling. The present data demonstrated that phase shifted sinusoids (theoretically highly 

coupled) exhibit coupling on a much larger scale than uncoupled signals (i.e., two 

random signals or a sinusoid to a random signal) or than cardiolocomotor coupling.  

Interestingly, however, cardiolocomotor coupling was also significantly greater than the 

sets of uncoupled signals. This provides a starting point to understand the meaning of 

coupling index as calculated from recurrence plots and supports previous literature 
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describing physiological subsystems as coupled (Diab, Hassan, Boudaoud, Marque, & 

Karlsson, 2013; Schulz et al., 2013; Strogatz et al., 1993) 

 The second part of this dissertation used gait tasks to predictably manipulate gait 

dynamics while observing the accompanying modifications of cardiac dynamics as well 

as the coupling between the two systems. Gait characteristics were altered using a visual 

metronome with fractal characteristics (Rhea, Kiefer, D’Andrea, et al., 2014) as well as a 

fast walking task (Jordan et al., 2007b). Pre-test and post-test phases of the experiment 

also allowed for comparison to normal walking and an assessment of short-term 

retention. 

 The first two hypotheses of this dissertation concerned the relationship of cardiac 

and locomotor dynamics to aging in healthy populations. The findings suggest that both 

younger and older healthy adults alter gait similarly when presented with a gait 

synchronization task or fast walking task. More importantly, the data revealed a PHASE 

x GROUP interaction effect during the gait synchronization experiment that may suggest 

control mechanisms differ with age. This study also demonstrated that cardiac dynamics 

are also altered during these tasks. This is important because it may allow clinicians to 

identify specific gait tasks to intervene and predictably alter cardiac dynamics in addition 

to gait dynamics.  

 The second hypothesis of this dissertation examined the coupling between cardiac 

and locomotor rhythms in relation to aging. Only a main effect for PHASE was identified 

for coupling, suggesting that younger and older adults exhibit similar changes in coupling 

due to increased task constraints.  Though there were not clear group differences, the data 
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was suggestive of older adults demonstrating greater increases in cardiolocomotor 

coupling during gait synchronization and fast walking. This was supported by moderate 

to large effect sizes of coupling within the older group and smaller effect sizes in the 

younger group due to change from the pre-test to experimental phase. 

 Limitations to these findings should be considered. A convenience sample of 

healthy older and healthy younger adults may not illicit as diverse populations as desired.  

The older population was more active than the younger population, did not exhibit many 

of the hallmarks common of aging (such as sowed preferred walking speed) and may be 

more motivated to maintain or improve their physical health. Additionally, increasing the 

demands of the tasks would likely help identify a critical point in which a change in 

control strategy (i.e. changed dynamics or changed coupling) needs to occur in order to 

complete the task. Walking tasks with only moderate workload and little motivation for 

success may have limited these findings. 

 In all, this research supports the following conclusions: (1) the coupling between 

diverse pairs of physiological signals (in this case, cardiac and locomotor) can be 

quantified using order pattern recurrence plots, (2) a gait synchronization task and a fast 

walking task alter both gait and cardiac dynamics in both healthy younger and older 

adults, (3) task related changes in cardiac and gait dynamics may also be age dependent, 

(4) and cardiolocomotor coupling appears to manifest when task constraints or increased 

workload are placed on an individual, regardless of their age. Continued study in this area 

should test these phenomena on more diverse populations, especially those that exhibit 

known deficits to one physiological subsystem of interest. Additionally, future work 
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should try to empirically test mechanisms, such as baroceptor reflex, thought to be 

responsible for coupling relationships between physiological subsystems.
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Intake Questions 

All information will be collected and/or recorded electronically using Qualtrics software. 

 

These questions are to screen you for participation in the study, gather basic demographic 

information, and record a basic health history. 

 

1. What is your sex? 

 

2. What is your date of birth? 

 

3. Do you have any general health problems or illnesses (e.g., diabetes, respiratory 

disease, concussion, etc.)? 

 

4. Do you have any vestibular (inner ear) or balance disorders? 

 

5. Have you ever been diagnosed with a cardiac condition or disease or have you 

ever suffered a cardiac event (such as a heart attack)? 

 

6. Have you ever been diagnosed with, or are you currently aware of any 

neuromuscular or movement dysfunction? 
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7. Please list any surgeries you have had, including a description and date 

(approximate if necessary). 

 

8. Are you able to walk at a comfortable pace for 45 minutes without stopping and 

without assistance?  

 

9. Please list all medications (including dosage) you are currently taking. This 

includes over the counter medications, vitamins, or supplements that you take 

regularly, in addition to medication prescribed by a physician. 

 

10. Please list all lower extremity injuries that you have experienced in the last 10 

years.  List the location of the injury, a description of the injury, and the date the 

injury occurred (approximate if necessary). 

 

11. Please list any activities you participate in for exercise. Estimate the total number 

of hours per week you participate in each activity. 

 

12. When was the last time you exercised? What activity were you doing? 

 


