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ality. Spoken letter classification in machine learning literature has often led to very

convoluted algorithms to achieve successful classification. The success in this work

can be found in the high classification rate as well as the relatively small amount

of computation required between signal retrieval to feature selection. The relevant

features spring from an analysis of the sequential properties between the vectors

produced from a Fourier transform. The study mainly focuses on the classification

of fricative letters f and s, m and n, and the eset (b,c,d,e,g,p,t,v,z) which are highly

indistinguishable, especially when transmitted over the modern VoIP digital de-

vices. Another feature of this research is the dataset produced did not include sig-

nal processing that reduces noise which is shown to produce equivalent and some-

times better results. All pops and static noises that appear were kept as part of the

sound files. This is in contrast to other research that recorded their dataset with

high grade equipment and noise reduction algorithms. To classify the audio files,

the machine learning algorithm that was used is called the random forest algorithm.

This algorithm was successful because the features produced were largely separable

in relatively few dimensions. Classification accuracies were in the 92%-97% depend-

ing on the data set.
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CHAPTER I

INTRODUCTION

Technology that uses spoken word recognition is all around us. Generally, hu-

mans naturally have a high sensitivity to auditory information. They are able to

pick out the melody of a single instrument among many other playing instruments,

detect slight variations in language accents, or even detect emotions based on the

sound or timbre of someones voice. In the digital era, it is natural to build com-

puter models to similarly be able to discern, classify, and recognize patterns in au-

dio data for research or automated processes. Thanks to a lot of hard work done in

the past, machines now have ways of understanding what you say; people can talk

into their phones and ask it to send text messages, find the nearest gas station or

even ask for word definitions. However, the systems are not perfect. This is because

when we digitize sound, minor variations in the signal become pronounced compli-

cations. To compensate, research in computational signal analysis has had to devise

complex algorithms with multiple steps to manipulate the data so that patterns be-

come more pronounced and the desired outcome can be achieved.

Word recognition has been used by the industry in various forms throughout

the years. If you have ever called a business’s customer service line, chances are

you have run into technology that uses word recognition. There is a high chance

you have also experienced frustration when the electronic response is "I’m sorry I

did not understand your response," or "Did you say _" when you didn’t actually

say anything close to that. Despite some of these personally frustrating instances,
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word recognition technology has become more accurate over the years with the rise

of distributed computing and advanced machine learning algorithms. For example,

Microsoft, Google and Apple has made it a standard to allow you to make com-

mands to their devices with very accurate recognition [HBR14], but why are these

advanced techniques required? What makes word recognition so difficult?

The nature of audio data is what makes word recognition hard. When examin-

ing audio data we realize that it is, considered big data when we examine it using

the three C’s of big data: cardinality, complexity, and continuity [Sut14, GH15].

Consider the example of asking questions or giving commands to your smartphone.

Cardinality represents the number of observations that can grow dynamically. This

can be considered a massive problem when considering the large number of words

that are being added to general vocabulary through slang or the naming of new

products or businesses. Audio data has problems in continuity through the demand

of being recognized in dynamic quantities from any number of people talking into

their smartphone requiring near real time answers at any moment. The complex-

ity of audio data is understood when considering the vastness of sounds used to

make up words in any language and in the vast variety of minor alterations of the

phonetic makeup given someone’s region. To add to the complexity every person

has a different timbre to their voice and some individuals have incomplete knowl-

edge of the language they are speaking due to inexperience. These all add to the

mass amounts of variation [BDMD+07]. All of these variations, however slight they

may seem to humans, are pronounced in digital representations. Audio data is also

high dimensional data. An audio clip that is milliseconds long can return tens of

thousands of signal points based on the sampling rate. There are a variety of au-
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dio properties to reduce the dimensionality of the data but any number of these

properties is often not sufficient to accurately classify spoken words [O’S08]. To get

successful classification rates advanced machine learning and statistical modeling

techniques have been necessary.

The research in this paper uses a small vocabulary environment that focuses on

confusable sets of words, that are commonly studied in other literature in aims to

find new methods of dimensionality reduction for successful word recognition. The

motivation comes from discovering possible patterns present in the imaginary vec-

tors of the signals mapped in Fourier space. Finding relevant features that reduce

the dimensionality in Fourier space could lead to quicker recognition rates because

the step of feature extraction in real time scenarios would take fewer algorithmic

steps. The dataset produced for this research is presented in chapter III. It was

produced without noise reduction, allowing the noise to present relevant informa-

tion for classification and skipping the extra steps of cleaning the audio similar

to what other audio databases have been subject to. Using noise in analysis is a

method proposed by Dalessandro [Dal13] who shows that in many big data prob-

lems, including noise, helps to increase predictive performance. This work presents

patterns in the Fourier space derived from basic linear algebra and reduces the di-

mensionality using principal components for successful classification. For simplifi-

cation, we experiment with three sets of confusable letters, f and s, m and n, and

the eset (b,c,d,e,g,p,t,v,z). The machine learning technique used for classification

was the random forest algorithm. A literature review of past techniques is given

in chapter II. The complete methodology is presented in chapter IV. Results from

this process is presented in chapter V and a discussion of the results in chapter VI.
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The final chapter concludes with research that can be done to continue this work to

realize the full potential of this methodology.
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CHAPTER II

BACKGROUND

There are a lot of common techniques for analyzing audio data. Representing

the signal in the power frequency domain using a discrete Fourier transform is one

of the most common methods . The discrete Fourier transform takes a signal that

is represented by amplitude over time and converts it to discrete values that esti-

mate the power of the frequencies of the different sine waves that make up the sig-

nal [Wel67]. Reducing the data to Mel-Frequency Cepstral Coefficients (MFCC) has

been shown to provide many advantages in various audio analysis problems [DM80].

The success of using MFCC’s comes from its estimation of human perceived fre-

quency bands in signals. Another feature extraction technique is to use perceptual

linear predictive (PLP) analysis to reduce the signals to a scale based on the psy-

chophysics of hearing [Her90]. A signal feature called zero crossing rate measures

the rate at which a signal changes from positive to negative. Other spectral charac-

teristics such as spectral roll-off and spectral centroid allow us to gain insight into

the texture of the sound [Gia15]. Some researchers have also added features such

as lip movement analysis to help in speech recognition. This adds information de-

rived from videos to the dataset, which greatly increases the dimensionality but it

is shown to improve accuracy [BK94,BHMW93].

Typical categories of audio analysis include music analysis and speech analy-

sis. Work done in music analysis include music genre classification and classification

of instruments among bands being played [MEKR11]. There are also a variety of
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speech analysis problems including detecting emotions, classifying speakers, lan-

guage detection, and many different types of word recognition. Many of the prob-

lems in the mentioned categories use the basic features mentioned above or build

from them to detect patterns in audio data. In the paper "Towards Detecting Emo-

tions in Spoken Dialogues," [LN05] Lee presents using acoustical information paired

with the transcribed language to detect the emotions of individuals to recognize

negative and non-negative emotions. The types of acoustical information used was

the fundamental frequency, energy, duration, formant frequencies, pitch, and the ra-

tio of voiced to unvoiced portions of the audio. They found that combining acous-

tical information with language information gives you the best accuracies. Li and

Narayanan propose several new computational models for speaker verification and

language detection using MFCC with shifted delta cepstral, regular MFCC, and

gammatone frequency cepstral coefficients for features that allow for the better re-

sults [LN14].

Word recognition can be defined as building computer systems that take data

derived from an audio input and discerning the word(s) spoken. The vocabulary

the computer system is expected to understand can be defined as small, large or

extended. In extended vocabularies the model should be able to handle new words

not available at the time of training. Word recognition is in itself, an umbrella of

problems including: isolated word recognition, connected word recognition, continu-

ous speech recognition, and spontaneous speech recognition[GGY10]. There are also

more complicated forms of word recognition that require understanding the context

of what is actually being said. An example of this is creating a computing system
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to understand which spoken words should be capitalized. This is useful when the

computer transcribes audio data so that it can be easily read by humans [BS13].

There are many different machine learning and statistical modeling methods

that have been used to deal with the complexity of word recognition. The most

popular and successful methods are Deep Neural Networks (DNN) and Hidden

Markov Models (HMM) [HDY+12,CL16,HBR14]. Both methods require dimension-

ality reduction and large distributed systems for successful classification. In 2010,

Google’s voice assistance for android devices use 39 dimensional perceptual linear

prediction coefficients with linear discriminant analysis to build models that sim-

ulate human auditory characteristics. The complex classifier Google used at that

time involved decision trees tied to HMM [Sch10]. Although HMM showed impres-

sive results in speech recognition, the word error rate reached impressive reductions

with the introduction of DNN. Later in 2014 a deep learning architecture was pro-

posed for Google’s speech recognition system [BH14]. Microsoft researchers present

the advantages of using DNN as feature extractors while using sequence based clas-

sifiers for recognition [DC14]. Some studies have shown that the best results comes

from a combination of DNN and HMM [HBR14,HDY+12]. These are not the only

learning and modeling techniques used. In "Spoken language understanding for nat-

ural interaction: The siri experience," Bellegarda suggests that Apple’s Siri is able

to do spoken request recognition through a reinforcement learning model powered

by Bellman principles called partially observable markov decision processes [Bel14].

These methods have been addressed in large or extended vocabulary situations but

the complexities still persist in small vocabulary environments.
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Small vocabulary word recognition problems such as spoken letter recognition

still fit into the context of big data word classification. This is due to how many

letters have similar phonetic information. For example, a common set of confusable

letters used as a benchmark for classification accuracy is the eset. Most people can

relate to having to spell their name over the phone and the receiver on the other

end, whether it is a human or a computer, mishearing your f as s, b as v or m as

n. That is why phonetic alphabets exist. We say: "s as in Sam" and "f as in frog"

because even humans need additional information to help us distinguish between

the different sets of confusable letters.

One of the more popular research papers on spoken letter recognition is titled

"Spoken Letter Recognition" [CF90] and was published in 1991. The paper is split

up into three main parts. The first part is a full description of the development of

the ISOLET database, which is a very common database in this research area and

it was first developed for this paper. Next, the methodology and systems developed

for isolated spoken letter classification is discussed. Finally, the paper talks about

letter classification when letters are spoken in sequence.

The ISOLET database is a very popular database and it is now available for

free at the UCI data repositories [Lic13]. It is comprised of 150 different speakers

uttering the alphabet twice. The signals are recorded with noise canceling micro-

phones and processed using professional audio equipment so that all the analysis

is done on the clean utterances alone. The signals were then processed into 4 cate-

gories of features they named: contour, sonorant, pre-sonorant, and post-sonorant

totaling 617 features. In each category, there are a variety of signal properties cap-

tured such as zero crossing rate, peak to peak amplitude, estimated pitch, duration,
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and spectral analysis. The majority of features were spectral features, but all the

features were developed to represent specific information to discriminate between

vowel and consonant sounds in the beginning, middle, and end of the spoken letter

[Col90].

After the ISOLET database was generated classification was done using feed

forward neural networks trained using back-propagation. In their research, the

classification performance is influenced immensely by the segmentation algorithms

that breaks apart the audio signal for feature extraction. They also found if they

broke up the neural network into three parts isolating easily confusable sets they

can achieve better performance. The final classification system included 3 networks:

one for the eset, one for m and n, and the final for all the remaining letters. With

this system, they were able to achieve an average classification accuracy of 96%.

The paper "Spoken English Alphabet Recognition with Mel Frequency Cepstral

Coefficients and Back Propagation Neural Networks" [AS+12] builds a system that

uses the MFCC’s for letter recognition. The research presents the classification ac-

curacy when the dimensionality is reduced by using only the twelve MFCC’s. The

dataset used for this study is called the TI ALPHA set and consists of 16 speakers

and 26 utterances of each letter. The signals were preprocessed similar to the ISO-

LET dataset mentioned above. The classification tests were run only on the eset

because of its particularly high confusability. Using 12 MFCC’s and back propaga-

tion neural networks the highest accuracy they were able to achieve was 79.17%.

Speech recognition models have also been built from successful image anal-

ysis techniques. In the paper "Rapid Speaker Adaptation in Eigenvoice Space"

[KJNN00] the methods for feature reduction and accurate classification was mod-
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eled after methods used in face recognition in images [TP91]. The goal of the paper

was to find models of letter recognition built from a speaker dependent system that

could adapt to a new speaker with a relatively small amounts of adaptation model-

ing. The work used the ISOLET database for all experimentation. The strength of

their system comes from the development of eigenvoices which are the eigenvectors

obtained from a principal component analysis of certain characteristics built from

the dataset. The training set contained 120 speakers and for each speaker they

built what they called a "supervector" of parameters. The supervectors contained

for each letter a HMM with six Gaussian outputs and eighteen perceptual linear

predictive cepstral coefficients for each Gaussian output. Principal component anal-

ysis was performed on the 120 supervectors creating the speaker dependent eigen-

voices. Using this model they were able to obtain classification rates for the 30 new

speakers at 86.3% with minimal adaptation weighting.

It is noticeable that HMM are a common statistical technique for letter recog-

nition. The two papers: "On The Use of High Order Derivatives for High Perfor-

mance Alphabet Recognition"[Mar02] and "Signal Modeling for High-Performance

Robust Isolated Word Recognition"[KZ01] also use HMMs for classification. Both

papers also use the ISOLET database for their experiments. They do however,

differ in feature extraction. The first paper takes sequential derivatives of 11 Mel-

cepstrum vectors for each utterance totaling 72 features. The second paper com-

putes Discrete Cosine Transform Coefficients over variable windows for each ut-

terance totaling 50 features. The average success rates for each are comparable,

97.54% and 97.6% respectively.

10



The work in this thesis takes a step back from asking what is a good classifica-

tion algorithm for accurate prediction. It looks at the data and asks the question

how do we make relevant features easier to obtain? Having relevant features that

reduce the dimensionality and the computational complexity allow the possibili-

ties for faster real time analysis. This is because every new observation that comes

into your trained model needs to have the same properties extracted from it that

was extracted from the training data to build the classification model. We have

seen plenty of successful models but the possibility of easily acquiring the informa-

tion the models use easier to get is a very exciting research area. This would allow

speech recognition systems to become more versatile. This is important because

spoken communication is a very common way to pass on information. Think about

the vast amount of data that is present in spoken communication; it is all out there

ready for machines to use, the job of the scientist is to design the proper ways to

extract the information and analyze it.
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CHAPTER III

DATASET

The dataset used for this work was generated especially for this work. This is

because all available data sets that are readily available have already been through

some degree of signal processing and cleaning. This is not aligned with the goal

of this work. The goal is to find methods that require far fewer steps compared to

other works. This includes the steps of cleaning and processing. Approaching the

research from this angle allows for effective methods to be more scalable and more

practical for real world applications.

Generating the observations for the dataset consisted of recording a single speaker

uttering the alphabet 50 times. Each utterance was recorded separately in 2 second

intervals. The subject sat in front of the microphone and was prompted to speak

the letter presented. Each letter was played back to be either accepted or rejected

by the speaker. This was done to ensure that the full letter was captured in the

recording. The recording software then clipped the silence in the beginning and

end of the audio clip. The software did this by starting at both ends of the clip and

moving inward, removing silence until the first instance of sound was found. The

software was not advanced enough to remove clicks or pops in the recording and if

they occurred somewhere in the silenced sections at the beginning or end of the clip

those sections were removed only until the click or the pop. This caused remaining

sections of silence to exist in between the noise and the speaker’s voice. This can be

seen in an example sound wave shown in Figure 1. This wasn’t dealt with because
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noise of all kinds will be present in real world recordings. The microphone used to

record the audio was a standard USB logic computer microphone. The recording

software was written using the python libraries Pyaudio and Wave. Every signal

was saved using the *.wav format.

Figure 1. Example Sound Wave with Noise.
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CHAPTER IV

METHODOLOGY

The entirety of feature selection performed in this study is a spatial analysis of

the signals. There are two parts to our spatial analysis. First we use the Discrete

Fourier Transformation (DFT) algorithm to look at the signals in Fourier space,

then we look into something that hasn’t been proposed elsewhere. We look at the

rotational information between sequential Fourier data points. In doing so we no

longer look at the Fourier data but the sine and cosine components between each

point.

Before any spatial analysis is performed on the signals, each signal was binned

so that every signal had uniform length. This was done according to the following

algorithm:

sigk = s0, s1, ..., sz−1 data points based on the sampling frequency.

binned sigk =

b−1∑
j=0

sj

b
,

2·b−1∑
j=b

sj

b
, ...,

(i+1)·b−1∑
j=i·b

sj

b
, ...,

(m)·b−1∑
j=(m−1)·b

sj

b
.

(4.1)

In Equation 4.1 m is the number of bins, b = z
m

and z is the length of the original

clip. All this represents is a binning that took the mean of a uniform number of

points based on the size the signal. This was done for every signal so they would all

be compressed to length m. Different lengths of m were experimented with to find
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the bin sizes that yield the best classification performance. In Chapter V we show

the results of different bin sizes.

An audio signal can be decomposed into a sum of sine waves, this is called a

composite signal. A Fourier transform takes the signal and decomposes it into the

powers of the frequencies of the different sine waves [Blo04]. The specific algorithm

used was the Fast Fourier Transformation (FFT) which is computationally more

efficient and produces the same results [Wel67]. To see the effects of the FFT algo-

rithm we walk through an example.

Figure 2. Sine Waves f(x), g(x), and h(x).

In Figure 2 we can see three different sine waves with different frequencies and

different amplitudes. The three sine waves are:

15



f(x) = 4sin(2x),

g(x) =
1

2
sin(4x),

h(x) = sin(7x).

C(x) = f(x) + g(x) + h(x).

(4.2)

We can see the sum of the three signals in Figure 3 as a single wave. Audio signals

produce similar composite waves. Practically, audio signals are the sum of a mul-

titudinous number of sine waves and recorded audio will include deformations due

to noise. If you look at Figure 4 we can see a small sample of an audio recording of

the spoken letter ’a.’ Looking at both Figure 3 and Figure 4 we can easily conceive

that audio signals are the sum of sine waves.

Figure 3. Composite Signal C(x).
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The FFT algorithm outputs the data in the complex frequency domain, that is

data in the form of a + bi. The real part of all the data points, or the transforma-

tion of the imaginary point to a real point, gives us the power of the frequencies.

This can be seen in the simple example of performing an FFT on our example com-

posite wave C(x). Figure 5 shows the results of FFT(C(x)). The domain represents

the frequency of the composite signal and the range represents the power at those

frequencies. The question asked that directed this study was: Is there useful infor-

mation embedded in the real AND imaginary parts of the FFT output that could

help us to classify audio signals?

Figure 4. Sample Signal of Spoken ’a.’
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Figure 5. FFT Real Output.

4.1 Feature Selection

The frequency domain on an audio signal looks tremendously different than the

simple example above. This is due to noise and when we speak we create much

more complicated waves than just the sum of a few sine waves. An example of the

frequency domain of the audio signal of someone speaking the letter ’f’ is shown

in Figure 6. As mentioned before the output of an FFT is in the complex domain.

Figure 7 shows the FFT output on the complex plane, where the domain are real

values and the range are imaginary values. This picture is very important to the re-

search. We started to notice visual patterns between letters based on the geometric

shapes of their plots similar to Figure 7. The belief that there are simple patterns

in the raw complex data that can be described computationally in such a way that

allows machines to distinguish between spoken letters, is what was explored.
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Figure 6. Frequency Domain of Spoken Letter ’f.’

Consider a complex point a+ bi as a vector in the complex plane:

v1 =

a
b

 . (4.3)

We can rotate the vector v1 to a new vector v2 in the complex plane by multiplying

v1 by the matrix A as shown in equation 4.4.

A =

cos(α) −sin(α)
sin(α) cos(α)

 . (4.4)
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Figure 7. FFT Output in the Complex Plane.

If we know vector v1 and v2 we can find the rotational transformation matrix A by

computing the following:

A =

 v1·v2
||v1||2 −v1×v2

||v1||2

v1×v2
||v1||2

v1·v2
||v1||2

 . (4.5)

The two operators in the matrix 4.5, · and ×, are the traditional dot product and

cross product, respectively.

To understand how this works an example was formed to show the steps practi-

cally. If we look at Figure 8 we can see two vectors, v1 = −1 + 4i and v2 = 7 + 2i.

We can calculate the rotational transformation that would send v1 to v2 using the
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matrix A defined above. By calculating: v1 · v2 = 1, v1 · v1 = 17 and v1 × v2 = −30,

we can build A such that:

 1
17
−−30

17

−30
17

1
17

 ·
−1

4

 =

7
2

 . (4.6)

Figure 8. Two Imaginary Vectors in the Complex Plane.

This process has been explained in such detail because it is an integral part of

the feature selection for this research. We can reduce the transformation matrix

to two distinct parts: cos(α) and sin(α). The features generated for this research

are the cos(α) and sin(α) values between each sequential point generated from the
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FFT. The mathematical representation of this process is shown in the Equation 4.7

with the final data table shown in Equation 4.8.



FFT (sig0)

FFT (sig1)

...

FFT (sign)


=

f1 f2 ... fm sig0

f1 f2 ... fm sig1

...

f1 f2 ... fm sign

(4.7)

cos1(α), sin1(α) ... cosi(α), sini(α) ... cosm−1(α), sinm−1(α) labels

f1·f2
f1·f1 ,

f1×f2
f1·f1 ... fi·fi+1

fi·fi ,
fi×fi+1

fi·fi ... fm−1·fm
fm−1·fm−1

, fm−1×fm
fm−1·fm−1

sig0

f1·f2
f1·f1 ,

f1×f2
f1·f1 ... fi·fi+1

fi·fi ,
fi×fi+1

fi·fi ... fm−1·fm
fm−1·fm−1

, fm−1×fm
fm−1·fm−1

sig1

...

f1·f2
f1·f1 ,

f1×f2
f1·f1 ... fi·fi+1

fi·fi ,
fi×fi+1

fi·fi ... fm−1·fm
fm−1·fm−1

, fm−1×fm
fm−1·fm−1

sign

(4.8)

4.2 Feature Reduction

The data table presented in Equation 4.8 almost doubles the amount of infor-

mation present after the signals have been binned. It seems as though we have

taken a step back from the goal of simplifying the data. A step for feature reduc-

tion is necessary to achieve the goal of simplified classification. The algorithm used

to reduce the features is Principal Component Analysis (PCA).

When reducing the dimensionality of the data there are a number of ways to

do so. It would be possible to select a random subset of dimensions, or to con-

struct new features based on an arithmetic combination of multiple features but

PCA looks to reduce the dimensionality by finding the directions of greatest vari-
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ation of your dataset. Every observation in your dataset can be constructed as a

linear combination of its features where sigi(t) = b0t0 + b1t1 + ... + bmtm such

that the bi variables are constants to be manipulated. These linear functions can

be changed by altering the constants to find the maximum variance between the

line and the dataset. Using matrix algebra helps us to find the directions of great-

est variance. Given our dataset R, we can compute the correlation matrix CM ,

of R. The eigenvalues of the matrix CM are the orthogonal directions of greatest

variance also called principal components. The first eigenvectors is the direction

of maximum variance, second greatest variance is the second eigenvalue and it de-

scends respectively with each eigenvalue [Jol90]. There are associated eigenvectors

for each eigenvalue. If we multiply our data by the matrix made up of these eigen-

vectors as columns we get a new dataset mapped to its principal component space

where each axis is a principal component.

To show the affect this process can have on data we give an example. Looking

at Figure 9 we see two images, figure 9a is a plot of some test data in two of its

four dimensions. Notice that the data in these two dimensions is not very separa-

ble, meaning we cant really draw a line or plot a function that separates the data in

a way that we can say data on this side is mainly of type 1 while data on the other

is of type 2. However, if we find the principal components of the data and scale all

the dimensions based on the principal components we can see that in only two di-

mensions, the first and second principal components, the data becomes vastly more

separable. This seperation can be seen in Figure 9b.
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(a) Two Dimensions of Raw Data Before the
Principal Components are Found.

(b) The Same Data Scaled by its Two Best
Principal Components.

Figure 9. Principal Component Analysis

The process of scaling the data like this in relation to its principal components

is the essential piece to feature reduction in this work. Given the dataset R we split

the data by their classes. Each of those datasets are split into two other datasets.

The first with only the specified class’s cosine features and the second with the

class’s sine features. Each new dataset has the principal components calculated and

is then scaled by its associated eigenvectors, as discussed above. This is useful be-

cause we can choose how many dimensions we want to use for classification. Instead

of using all 2 ∗ (m− 1) cosine and sine values we can choose a subset of them based

on the dimensions of greatest variance. For example, we can choose the first three

sine and cosine columns for each class. This information is the data scaled by the

first three sine and the first three cosine principal components for each class. The

dimensionality has been greatly reduced from tens of thousands of cosine and sine

values to just a few dimensions. This data is then ready for classification. In Chap-

ter V, the results for varying the number of principal component dimensions that

give the best classification accuracy is shown.
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4.3 Classification

The machine learning algorithm used to classify the data for this work is the

Random Forest Algorithm first proposed by Leo Brieman [Bre01]. The name sug-

gests it is an algorithm that uses many decision trees. The random forest is an

algorithm that divides the data into many subspaces and builds decision trees for

those subspaces. The subspaces are built randomly and the observations produced

for those subspaces are selected randomly as well, using a statistical method called

bootstrapping. The bootstrapping method is random selection with replacement

which allows for observations to be selected many times. This is an important fea-

ture in the random forest algorithm because it allows for outliers to be less promi-

nent and the data centralized to the classes to be more isolated [Sut15]. It also

builds in the validation step of the 3 step train-validation-test model building pro-

cess for machine learning.

The data was split into two sets: train and test. The set sizes were varied to

find optimal train sizes for the best classification accuracies and to avoid over-fitting.

Over-fitting happens when models are over-trained for the specific dataset and lose

the ability to detect generalized patterns to correctly classify unseen data. Experi-

mentation varied the training sizes from 5% to 75% of the total dataset and was in-

cremented by 5. The test set was the remaining amount of the dataset. This gives

us information into how much of the data is necessary for a successful model to be

built.

The entire process has been mapped out visually in Figure 10. The experimen-

tation has been centered in 3 locations and are highlighted in blue: the number of

bins, number of principal component dimensions, and the size of the training/testing
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sets. These three parameters are what directly affect the feasibility of this method,

thus we vary these parameters in isolation to find an optimal solution. There is also

a comparison to this method with other methods shown below. The comparison

shows the different algorithmic steps for the popular feature selection methods men-

tioned in Chapter II, MFCC and PLP, in comparison to the above method. The

steps in Figure 11 do not include as much detail as shown in Figure 10 because it

leaves out the steps of data management and classification. It is easy to see in the

side-by-side comparison that this new method is much shorter algorithmically and

has the potential for much quicker real time results.

Figure 10. Visual Representation of the Letter Classification Methodology.
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Figure 11. Comparison of Feature Extraction Methods [Dav13,AS+12].
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CHAPTER V

RESULTS

In this section the results of experimentation are shown. For every experiment

100 simulations are run per variable to best understand the overall quality of the

classification. This is done because training and test sets are generated randomly.

Generating 100 different training sets per simulation is plenty to have a complete

understanding of the realistic classification accuracy. As stated in the last section,

the three parameters that are tested are the number of principal component dimen-

sions, the size of the training/testing sets, and the number of bins. There is an ad-

ditional section that shows the results of the cleaned values. This is to see if remov-

ing noise will help classification. The subsections that display specific results are

respectively in this order. Discussion of the results follows in the next chapter.

The next six figures, that is Figures 12,13,14,15,16,17, provide the results for

each data subset m and n, f and s, and the eset for the different bin sizes. The dots

represent the average accuracy from 100 trials of randomly selected training sam-

ples. There are three graphs that display the accuracies based on the number of

principal component dimensions and three graphs that display the accuracies based

on the size of the training set in percentages of the full dataset. Each of the six

graphs also provide a comparison of the different bin sizes. Each section thereafter

will reference these graphs and provides a table of the best scores focused on the

particular component of that section.
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Figure 12. Eset Results for Different Principal Component Dimensions. The Differ-
ent Colors Represent the Different Bin Sizes.

Figure 13. Eset Results for Different Training Sizes Based on Percentages of the
Original Dataset. The Different Colors Represent the Different Bin Sizes.
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Figure 14. F,S Results for Different Principal Component Dimensions. The Differ-
ent Colors Represent the Different Bin Sizes.

Figure 15. F,S Results for Different Training Sizes Based on Percentages of the
Original Dataset. The Different Colors Represent the Different Bin Sizes.
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Figure 16. M,N Results for Different Principal Component Dimensions. The Differ-
ent Colors Represent the Different Bin Sizes.

Figure 17. M,N Results For Different Training Sizes Based on Percentages of The
Original Dataset. The Different Colors Represent the Different Bin Sizes.
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5.1 Principal Component Analysis Experiment

In this experiment we varied the the number of principal component dimensions

that we viewed the data in. There was a total of 50 principal components found

for both sine and cosine. The data was scaled by these principal components so

there is a total of 100 dimensions, or features, for the full dataset. For each prin-

cipal component dimension 100 models were built for 100 randomly selected train-

ing sets. Figures 12, 14, and 16 show the average accuracies for the tests. Each test

used a training set size of 65% of the original data. The purpose of this experiment

is to find out how many dimensions are necessary to get accurate recognition. The

nature of the principal components tells us the direction of greatest variance is the

first principal component. It is a fair hypothesis that the majority of the important

information necessary for classification will be captured in the first few dimensions

of each sine and cosine.

Table 1. Show the Best Accuracies for the Corresponding Principal Component
Dimensions.

Data Subset Best Accuracy Percentage PCA per sine and cosine
F,S 97.63 1
M,N 95.11 49
Eset 92.08 25

5.2 Train/Test Size Experiment

This experiment tests how much information is needed to develop an accurate

model. For each training set size, 100 models were built for 100 randomly selected

training sets. Figures 13, 15, and 17 show the average accuracies for the tests. Each

test used 8 principal component dimensions. General intuition says that the more
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data you train your model on the better it will perform. The problem of over-fitting

the data is one that needs to be considered very seriously when building predic-

tive and classifying models. If the model can perform well on a smaller percentage

of training data the features used to build the model are highly scalable. It is ex-

pected that a small percentage of training data is necessary because the spoken let-

ters come from only a single person. It should be expected that more training data

should be needed if the dataset is generated from a variety of speakers.

Table 2. Show the Best Accuracies and the Corresponding Training Set Sizes.

Data Subset Best Accuracy Percentage Training Size
F,S 97.06 55
M,N 93.53 70
Eset 90.87 75

5.3 Initial Signal Binning Experiment

The experiment involving varying the number of bins affects an initial prepos-

sessing step. After the signals were recorded each signal was compressed into m

bins by averaging. This was partly done to create signals of equal length to make

processing easier in the methodology section. Although, a variety of windowing and

binning functions are available[Har78,HRS02] before performing an FFT, this is one

of the simplest type of binning but it is all that is needed. It is likely in these tests

that the larger number of bins will yield better results. Binning allows for a cer-

tain level of smoothing of the data so it is possible that some averaging is necessary.

Every training and principal component test was ruFn on the different datasets cre-

ated from the different bin sizes. The results come from these tests. We can see

clearly the difference in the bins in the Figures 12-17.
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Table 3. Show the Best Accuracies and the Corresponding Bin Size.

Data Subset Best Bin Size
F,S 4096
M,N 8192
Eset 8192

5.4 Noise and Without Noise

There are various ways to clean the values. The cleaning process in this research

is to remove the less prominent frequencies from the signal data. After the FFT is

performed a certain percentage of higher frequencies are removed from the data.

These are where a lot of the noise values are found. The higher frequency values

have a much smaller power and potentially a smaller effect on the overall signal.

In the context of audio data, removing them intuitively seems like it will help the

overall accuracies. The test is o see if not removing them is consistent with other

studies that show that keeping noise in big data environments improves perfor-

mance. The tests were run the same way as above with separate training and prin-

cipal component tests with the same binning sizes. This table only displays the in-

formation for the dimensional analysis because it is enough to draw conclusions.

Table 4. Show the Best Accuracies For Noise Removed Data and the Corresponding
Principal Component Dimensions.

Data Subset Best Accuracy Percentage PCA
F,S 91.55 14
M,N 95.82 4
Eset 91.68 12
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CHAPTER VI

DISCUSSION

The first discussion point should be on the issue of noise in the data since the

rest of the discussion will be on the results from the noisy data. The results from

the noiseless signals had similar or worse results for each dataset. This show that

we do not gain any additional information and possibly lose some predictive power

by cleaning the signals. Since the goal of this work is to make the process of audio

classification as simple and quick as possible we can say confidently that we can

remove the steps of cleaning the audio because they are nonessential. This is not

entirely the same result as was found in Dalessandros paper [Dal13], which stated

that adding noise helped predictability. This is the case for the f and s classification

but for the other two, we get practically the same result. It is not intuitive why this

is the case for audio because noise often inhibits humans in everyday conversations

from understanding what is being said. We can see that at the very least cleaning

the audio with this methodology becomes irrelevant for the machines performance.

Focusing on the principal component dimensions, Table 1 showed us that for

m and n and the eset the best results needed a lot more dimensions that f and s.

While looking at Figures 12, 14, 16 we can see that the highest score is not much

higher than the rest of the results. In fact, for m and n, most of the results higher

than 3 principal component dimensions were above 93.5%. For the eset all of them

above 7 dimensions were above 90%. These differences in accuracies are negligible

when remembering the limitation of our dataset in this training and testing envi-
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ronment. Looking at Figure 18 we can see why it is negligable . It shows the results

of every 100 tests per dimension in the form of box-plots and bubbles. The bub-

bles represent the density of the values at that point and the red dots are the aver-

ages that were first represented in Figure 12. This particular set of accuracy scores

shows that the scores are not spread out between a bunch of different values. This

is because a similar set of letters are failing every time they are left to be in the

test set. Therefore these small variations in average scores are the result of random

chance selection of the training set. These outlier values can also be seen in Figure

19 and 20.

Figure 18. Specific Eset Results for Principal Component Dimensions with Bin Size
8192. The black bubbles represent the individual scores and the size of the bubbles
represent the density of scores at that point. The red dots are the averages which
are the same points found in Figure 12.
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The hypothesis for the principal component dimensions was that there would

not be a need for many dimensions because of the nature of principal component

analysis. This can be shown best when we look at the plots in Figures 19 and 20.

We see f points in blue and s in red. These plots show that the data is almost en-

tirely separable in only two dimensions. This displays the true strength of this

methodology. In comparison to other research in this area, to my knowledge, there

has not been a feature reduction that can show spoken letters almost entirely sepa-

rable in 2 dimensions. There are a few outliers which support the discussion in the

previous paragraph and shows us the need for a slightly higher dimensional analy-

sis.

(a) First Two Principal Component Dimen-
sions for Sine F,S Data.

(b) Same Data Zoomed in to See the Sepa-
rability of F,S.

Figure 19. The First Two Principal Component Dimensions for the Sine Values.

The training experiment shows that the higher amount of training data used

to build a model the better the average accuracy. The hypothesis is still supported

when we dig into the values found in the figures similar to our principal component

dimension discussion. If we look at Figures 13, 15, 17 it can be seen that the high
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average accuracy isnt much different from other training set sizes. In Figure 13 we

can see that at training sizes at 40% and above we get accuracies of at least 90%.

In Figure 15 we only need training sizes of 20% to receive accuracies above 95%

and in Figure 17 it shows to receive an accuracy of 92% or higher we only need a

training set of 15% of the original dataset. It is important to test whether or not

these results occur because the methodology is highly scalable or simply because

the dataset was generated from a single speaker. It needs to be confirmed but be-

cause the results are consistently high in different letter test sets it gives the im-

pression of a highly scalable methodology.

Figure 20. First Two Principal Component Dimensions For Cosine F,S Data.

38



The most inconsistent results have to be with picking the best bin sizes. Look-

ing at Figures 12-17 different bin sizes seem to peak above others in an inconsistent

way. Looking at Figure 16 the line for 1024 bins does really well in the beginning

and then becomes about equivalent to 8192 and 4096. For the f and s test the two

highest bin amounts, 4096 and 8192, do much better than the other bins, with 4096

doing slightly better than 8192. However, for the eset tests, 8192 does much bet-

ter than the rest. One thing is clear, it is not necessarily that the lower number

of bins, the worse the result, and the higher the better the result. Between all the

tests 8192 does consistently better even if it isn’t the best in every circumstance.

These results are the most mysterious. The inconsistency is probably due to the

phonetic makeup of the words. The average binning may blur important informa-

tion based on the make up of the word. Further tests would need to be done to find

out exactly what is the cause of this inconsistency.
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CHAPTER VII

CONCLUSION

An analysis of spoken letter recognition has been shown in the letter sets: f,s,

m,n, and b,c,d,e,g,p,t,v,z. These sets propose a large level of difficulty and has been

the focus of other letter recognition research. The methods described in this pa-

per offer a simplistic method for generating the features necessary for quick and

accurate classification. The features are generated from a spatial analysis initially

in Fourier Space and then in transformations of the data based on the cosine and

sine values between the imaginary vectors returned from the Fast Fourier Transfor-

mation algorithm. The methods involve feature reduction via principal component

analysis which allow our classification to be done in a low dimensional space. The

random forest algorithm is a sufficient algorithm for classification due to the fact

that the data is largely separable in low dimensions seen in Figures 19 and 20. This

has allowed for a highly accurate classification rate for even the most confusable

letters.

There is a variety of work that can still be done in this area. Some of the ques-

tions raised while reflecting on the results are why is there an inconsistency in the

best bins and whether or not the low training sets necessary for good accuracies are

due to the scalability of the methodology. To test the robustness of these methods

a larger data set needs to be generated with a variety of speakers including male,

female, native and non-native. Having a dataset with this large amount of variabil-

ity would show how scalable the methods actually are. It would also give greater
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variability with the same letter. The variability within the same letter is a good

place to start researching why different bin sizes are necessary for different letters.

This work is a great proof of concept and seeks plenty of more research to be

done to test the power of this simple feature selection process. This work could also

be tested in many other problems such as speaker gender detection, accent detec-

tion, and speaker verification. These methods are algorithmically simple enough to

possibly allow themselves to be integrated in native web or phone applications that

wont need a cloud infrastructure for computation.

The biggest work that needs to be done is to see if these methods can be used

in larger vocabulary problems. If word recognition can be done with an algorithmi-

cally simple process it would allow for great improvements to devices that use voice

recognition. Large quantities of data and work are still needed to achieve this. The

further we can improve speech recognition in any of the many sub-problems the fur-

ther launched into the digital era we will be. To have machines that can analyze

and recognize human spoken communication, the greater capacity we will have to

allow machines to help us manage everyday situations.
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APPENDIX A

TRANSFORMATION MATRIX

Given,

v1 =

a
b

 , v2 =
c
d

 , A =


v1 · v2
||v1||2

−v1 × v2
||v1||2

v1 × v2
||v1||2

v1 · v2
||v1||2

 .
We will show that:

A · v1 = v2. (1.1)

a
b

 ·
c
d


||

a
b

 ||2
−

a
b

×
c
d


||

a
b

 ||2a
b

×
c
d


||

a
b

 ||2

a
b

 ·
c
d


||

a
b

 ||2



·

a
b

 =⇒


ac+ bd
√
a2 + b2

2 −
ad− bc
√
a2 + b2

2

ad− bc
√
a2 + b2

2

ac+ bd
√
a2 + b2

2

 ·
a
b



=

a
ac+ bd
√
a2 + b2

2 +−b ad− bc
√
a2 + b2

2

a
ad− bc
√
a2 + b2

2 + b
ac+ bd
√
a2 + b2

2

 =⇒

a
2c+ abd

a2 + b2
+
−bad+ b2c

a2 + b2
a2d− abc
a2 + b2

+
bac+ b2d

a2 + b2


=⇒

a
2c+ abd+−bad+ b2c

a2 + b2
a2d− abc+ bac+ b2d

a2 + b2

 =⇒

 a
2c+ b2c

a2 + b2
a2d+ b2d

a2 + b2

 =⇒

 c(a
2 + b2)

a2 + b2
d(a2 + b2)

a2 + b2

 =

c
d


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