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1 Introduction

One of the attractions of functional programming is the ease by which programmers

may lift the level of abstraction. A central example is the use of higher-order

combinators for defining and reasoning about programs that operate on recursively

defined datatypes. For example, recursive functions on lists can often by re-expressed

in terms of the higher-order function foldr , which has the type:

foldr :: (a→ b→ b)→ b→ [a]→ b

Interleaving data and effects



The benefits of expressing recursive functions in terms of combinators like foldr ,

rather than through direct use of recursion, are twofold. Firstly, we are automatically

guaranteed several desirable properties, such as totality (on finite input), without

having to do any further reasoning. Secondly, functions defined using foldr obey a

uniqueness property that allows us to easily derive further properties about them. The

style of programming that uses combinators such as foldr and its uniqueness property

has become known as ‘origami programming’ (Gibbons, 2003), and forms a key part

of the general Algebra of Programming methodology (Bird & de Moor, 1997).

Programming and reasoning using higher-order recursion combinators is built

upon the category theoretic foundation of initial f-algebras for functors f (Goguen

et al., 1978). In initial algebra semantics, datatypes are represented by carriers of

initial f-algebras – i.e., least fixed points of functors f – and combinators such

as foldr are derived from the universal properties of initial f-algebras. The initial

f-algebra methodology has been successful in unifying and clarifying structured

functional programming and reasoning on values of recursive datatypes that go far

beyond lists and foldr .

In this article we present a class of recursive datatypes where direct use of

the initial f-algebra methodology does not provide the right level of abstraction.

Specifically, we consider recursive datatypes that interleave pure data with effectful

computation1. For example, lists of characters that are interleaved with input/output

operations that read them from an external source can be described by the following

datatype declaration:

data List ′io newtype List io =

= Nilio
| Consio Char List io

Listio (IO List ′io)

Similarly, as we shall see in Section 1.1, Haskell’s lazy datatypes can be thought of

as pure data interleaved with the possibility of non-termination effects.

Using the initial f-algebra methodology to program with and reason about such

datatypes forces us to mingle the pure and effectful parts of our programs and proofs

in a way that obscures their essential properties (as we demonstrate in Section 4).

By abstracting out the effectful parts, we arrive at the concept of initial f-and-m-

algebras, where f is a functor whose initial algebra describes the pure part of the

datatype, and m is a monad that describes the effects. In this article we will show

that initial f-and-m-algebras represent a better level of abstraction for dealing with

interleaved data and effects.

The key idea behind f-and-m-algebras is to separate the concerns of dealing with

pure data, via f-algebras, and effects, via m-Eilenberg–Moore-algebras. For readers

unfamiliar with m-Eilenberg–Moore-algebras, an m-Eilenberg–Moore-algebra can

be thought of as a special kind of f-algebra that interacts well with computational

1 Following Filinski & Støvring (2007), we will refer to datatypes that interleave pure data with effects as
effectful datatypes. Strictly speaking, this is a misnomer because values of these types only contain pure
descriptions of effects. However, we feel that this name correctly conveys the intuition that datatypes
with interleaved monadic values are of a different character to datatypes without monadic values, as
we illustrate by the examples in this introduction.



effects described by a monad m. We will introduce m-Eilenberg–Moore-algebras

properly in Section 5.1.

We shall see in Section 6 that the separation into pure and effectful concerns has

the following benefits:

• Definitions of functions on datatypes that interleave data and effects look very

similar to their counterparts on pure datatypes. We will use the example of

adapting the append function on lists to a datatype of lists interleaved with

effects to demonstrate this. The pure part of the computation remains the same,

and the effectful part is straightforward. Therefore, definitions of functions on

pure datatypes can often be transferred directly to their effectful counterparts.

Moreover, the new definitions are generic in the interleaved monad we use for

representing effects — for example, the IO monad for input/output effects, or

the non-termination monad for laziness.

• Proofs about functions on interleaved datatypes also carry over almost

unchanged from their pure counterparts. We demonstrate this through the

proof of associativity for append on effectful lists, again generic in the monad

representing the effects. The proof carries over almost unchanged from the

proof of associativity of append for pure lists, except for an additional side

condition that is discharged almost trivially.

The concept of initial f-and-m-algebras is originally due to Filinski and Støvring

in the specific setting of Cpo (the category of complete partial orders and continuous

functions) (Filinski & Støvring, 2007), and was subsequently extended to a general

category-theoretic setting for arbitrary functors f by Atkey et al. (2012). In this

article, we aim to introduce the concept of initial f-and-m-algebras to a general

functional programming audience and show how they can be used to structure and

reason about functional programs in practice, without the heavy category-theoretic

prerequisites of Atkey et al.’s work.

1.1 Interleaving data and effects

To motivate our consideration of interleaved data and effects, in this section we give

two scenarios where Haskell implicitly interleaves effects with pure data. By making

this implicit interleaving explicit, we will see in the main body of this article how the

f-and-m-algebra formalism allows for the implicit assumptions made when reasoning

about Haskell datatypes using initial f-algebras can be made explicit as well.

1.1.1 I/O effects

The hGetContents function from the Haskell standard library provides an example

of implicit interleaving of data with input/output effects. The hGetContents function

has the following type:

hGetContents :: Handle → IO [Char]

Reading the type of this function, we might assume that it operates by reading all

the available data from the file referenced by the given handle as an IO action,



yielding the list of characters as pure data. In fact, the standard implementation

of this function postpones the reading of data from the handle until the list is

actually accessed by the program. The effect of reading from the file handle is

implicitly interleaved with any later pure computation on the list. This interleaving

is not made apparent in the type of hGetContents , with the following undesirable

consequences:

• Input/output errors that occur during reading (e.g., network failure) are

reported by throwing exceptions from pure code, using Haskell’s imprecise

exceptions facility. Since the actual reading may occur long after the call to

hGetContents has apparently finished, it can be extremely difficult to determine

the scope in which such an exception will be thrown.

• Since it is difficult to predict when the read effects will occur, it is no longer

safe for the programmer to close the file handle. The handle is implicitly closed

when the end of the file is reached. This means that if the string returned by

hGetContents is never completely read, the handle will never be closed. Since

open file handles are a finite resource shared by all processes on a system,

the non-deterministic closing of file handles can be a serious problem with

long-running programs.

Despite these flaws, there are good reasons for wishing to interleave the effect of

reading with data processing. A primary one is that the file being read may be

larger than the available memory, so reading it all into a buffer may not be possible.

However, the type of hGetContents fails to make the interleaving explicit.

Using the Listio types defined on Page 2, we can give an implementation of

hGetContents whose type makes explicit the interleaving of data and effects. A

simple implementation can be given in terms of the standard Haskell primitives for

performing IO on file handles:

hGetContents :: Handle → Listio
hGetContents h = Listio (do isEOF ← hIsEOF h

if isEOF then return Nilio
else do c← hGetChar h

return (Consio c (hGetContents h)))

By using the Listio datatype, we have made the possibility of effects between the

elements of the list explicit. Therefore, the problems we identified above with implicit

interleaving are solved: input/output failures are reported within the scope of IO

actions, and we have access to the IO monad to explicitly close the file.

We return to the example of interleaved I/O effects in Section 8, where we will

see how practical techniques that have been proposed by the Haskell community for

making the interleaving explicit can be handled neatly by using f-and-m-algebras.

1.1.2 Non-termination

A second scenario involving implicitly interleaved effects is built in to every Haskell

type: the possibility of non-termination while inspecting a pure value. Haskell has a



non-strict semantics, which is usually implemented using a lazy evaluation strategy,

in which the computation of a value is only invoked if the value is actually needed.

For the purposes of reasoning about the behavior of Haskell programs, we can

model the possibility of non-termination using the lifting or non-termination monad,

(−)⊥. This monad adds a bottom element ⊥ to a type, representing the possibility

of non-termination at that type. Every Haskell type is implicitly lifted using this

monad.

A well-known benefit of Haskell’s implicit possibility of non-termination at every

type is the easy representation of infinite data structures. Laziness means that a

computation that generates an infinite value is evaluated on demand as the structure

is explored. We implicitly used this facility in our definition of hGetContents above

to deal with the possibility of Handles that may return infinite streams of values.

Unfortunately, the beneficial capability of representing infinite data structures comes

with the downside that we can no longer distinguish, just by looking at the types,

between finite lists and possibly infinite lists. Both are assigned the type [a] for

some a. It is often the case that functions are written under the implicit assumption

that they are only applied to finite lists (for example, the standard reverse function).

Likewise, when reasoning about Haskell programs it is often implicitly assumed

that lists are finite, so that standard techniques like induction can be applied. We

examine the assumptions implicit in the reverse function in Section 6.2.

To make these implicit assumptions explicit, we can modify the type Listio from

the introduction to get the type Listlazy of lists interleaved with the possibility of

non-termination:

data List ′lazy a newtype List lazy a =

= Nillazy

| Conslazy a (Listlazy a)

Listlazy (List ′lazy a)⊥

A value of type Listlazy a is thus a possibly non-terminating computation that results

in either a Nillazy constructor, or Conslazy constructor applied to a value of type a

and another Listlazy a. (Note that, for simplicity’s sake, we have not modelled the

fact that constructors of datatypes in Haskell also evaluate their arguments lazily.)

The List lazy a type is precisely the ‘even’ style of interleaving pure data and laziness

advocated by Wadler et al. (1998). The obvious alternative interleaving, named the

“odd” style by Wadler et al., is expressible as a single datatype declaration:

data Listodd a

= Nilodd

| Consodd a (Listodd a)⊥

In the “odd” formulation, the lifting monad (−)⊥ is only used in the recursive

position in the Consodd constructor. Wadler et al. argue that this “odd” style leads

to lazy computations being forced much earlier than the programmer might expect:

since the first element of a list in the odd style is not wrapped in the lifting

monad, any function that returns a Listodd a value must always have the first

element available immediately. The ‘even’ style, as exemplified by our List lazy type

constructor above, is, Wadler et al. argue, usually what is expected.



Correctly reasoning about values of type Listlazy a and other lazy data structures

has traditionally required the use of domain-theoretic techniques (Pitts (1996)

provides a comprehensive overview). The technique of using f-and-m-algebras that

we present in this article allows sound reasoning about lazy data structures at an

abstract level, dispensing with the need to directly invoke domain-theoretic concepts.

Indeed, Filinski and Støvring used lazy data structures as their initial motivation

for introducing f-and-m-algebras in the category Cpo (Filinski & Støvring, 2007).

1.1.3 A common generalisation

We have now seen two scenarios in which list-like datatypes with interleaved effects

naturally arise, namely the Listio datatype from Page 2 and the Listlazy datatype

above. The obvious common generalisation abstracts over the monad m:

data List ′ m a newtype List m a =

= Nilm
| Consm a (List m a)

List (m (List ′ m a))

A value of type List m a consists of an effect described by m, then either a Nilm to

indicate the end of the list, or a Consm with a value of type a and another value of

type List m a. Thus, this datatype describes lists of values of type a interleaved with

effects from the monad m.

We can now generalise further by replacing the constructors Nilm and Consm with

an arbitrary functor f that describes the data to be interleaved with the effects of

the monad m. Doing so, we arrive at the following definition:

data MuFM ′
0 f m newtype MuFM0 f m =

= In (f (MuFM0 f m)) Mu (m (MuFM ′
0 f m))

(We have named these types MuFM0 f m and MuFM ′
0 f m with a 0 subscript

because we will introduce a more refined, but isomorphic, presentation in Section

7.2.) This definition makes it clear that the datatypes we are considering interleave

pure data, represented by the functor f, with effects, represented by the monad m.

Our definition is the generalisation of Wadler et al.’s ‘even’-style lazy lists, from lists

to arbitrary functors f, and from lifting to arbitrary monads m.

The aim of this article is to show that f-and-m-algebras are the appropriate level

of abstraction both for defining functions that operate on values of type MuFM0 f m,

and for reasoning about them.

1.2 The contents of this article

We aim to make this article relatively self-contained, so we include the necessary

background to enable the reader to follow our proofs and definitions. The structure

of the remainder of the article is as follows:

• In Section 2, we recall the standard definitions of f-algebras, initial f-algebras,

and monads, all in a functional programming context. We highlight the proof

principle associated with initial f-algebras (Proof Principle 1), and demonstrate



that f-algebras can be thought of as abstract interfaces for programming and

reasoning.

• We introduce our main running example of list append and its associativity

property in Section 3. In this section, we make use of the initial f-algebra

methodology for pure datatypes to define list append, and also to show how

Proof Principle 1 is used to prove its associativity property.

• To motivate the use of f-and-m-algebras, in Section 4 we attempt to define

and prove associative the append function for effectful lists directly from Proof

Principle 1. This turns out to be unnecessarily complicated and loses the direct

simplicity of the proof in the pure case.

• In Section 5, we present the definition of f-and-m-algebras, and highlight the

associated proof principle (Proof Principle 2). Initial f-and-m-algebras raise

our level of abstraction by separating the concerns of pure data and effectful

computation. We demonstrate the usefulness of this separation in Section

6, where we revisit the definition of list append on effectful lists, and its

associativity property. Using initial algebra semantics for f-and-m-algebras,

we are able to reuse much of the definition and proof from the pure case in

Section 3, and the additional work that we need to carry out to deal with

effects is minimal.

• In Section 7, we show that the construction of initial f-and-m-algebras can be

reduced to initial (f ◦m)-algebras. Consequently, we are able to give a generic

construction of initial f-and-m-algebras for arbitrary functors f and monads

m.

• In Section 8, we present an extended example of the use of initial f-and-m-

algebras. Motivated by the undesirable properties of implicitly interleaving

pure lists with I/O effects that we described in the previous section, the

Haskell community has developed several approaches that explicitly interleave

effects with data. Examples include Kiselyov’s Iteratees (Kiselyov, 2012) and

Gonzalez’s pipes library2. We show that at least these two constructions are

instances of the general construction of the coproduct of a free monad with

another monad. Hyland, Plotkin and Power previously gave this coproduct

construction using purely categorical techniques. In Section 8, we reconstruct

this result using f-and-m-algebras. Several of the properties proved by Kiselyov

and Gonzalez for their respective libraries are shown to follow directly from

the observation that their definitions are instances of the sum of a free monad

with another monad.

2 Background: f-algebras, initial f-algebras, and monads

Initial f-and-m-algebras build upon the foundations of initial f-algebras, and of

monads. We recall the definition of f-algebras, initial f-algebras, and monads in

this section, and derive the accompanying definitional and proof principles. We will

2 http://hackage.haskell.org/package/pipes



make use of the basic definitions of the polymorphic identity function id = λx. x 

and function composition g ◦ h = λx. g (h x).

2.1 Basic definitions

The initial f-algebra methodology uses functors f to describe the individual “layers”

of recursive datatypes. Formally, functors are defined as follows:

Definition 1

A functor is a pair (f, fmapf) of a type operator f and a function fmapf of type:

fmapf :: (a→ b)→ f a→ f b

such that fmapf preserves the identity function and composition:

fmapf id = id (1)

fmapf (g ◦ h) = fmapf g ◦ fmapf h (2)

In Haskell, the fact that a type operator f has an associated fmapf is usually

expressed by declaring that f is a member of the Functor typeclass:

class Functor f where

fmap :: (a→ b)→ f a→ f b

It is left to the programmer to verify that the identity and composition laws are

satisfied. The use of typeclasses to represent functors allows the programmer to just

write fmap and let the type checker infer which f’s associated fmap was intended.

However, in the interest of clarity, we shall always use a subscript on fmap to

indicate which type operator is intended.

An f-algebra for a given functor f is an operation for reducing an f-structure of

values to a value. Formally, f-algebras are defined as follows:

Definition 2

An f-algebra is a pair (a, k) of a carrier type a and a structure map k :: f a→ a.

Given a pair of f-algebras, there is also the concept of a homomorphism (i.e., a

structure preserving map) between them:

Definition 3

Given a pair of f-algebras (a, ka) and (b, kb), an f-algebra homomorphism between

them is a function h :: a→ b such that the following diagram commutes3:

f a
fmapf h

��

ka

��

f b

kb

��
a

h �� b

(3)

3 By commutes, we mean the standard meaning: the two paths in the diagram denote equal functions
built by composing the labels on the arrows.



Definition 4

An initial f-algebra is an f-algebra (μf, in) such that for any f-algebra (a, k), there

exists a unique f-algebra homomorphism from (μf, in) to (a, k). We write this

homomorphism as �k�, and note that �k� is a function of type μf → a such that

�k� ◦ in = k ◦ fmapf �k�.

The requirement that an initial f-algebra always has an f-algebra homomorphism

to any f-algebra allows us to define functions on the datatypes represented by

carriers μf of initial f-algebras. The uniqueness requirement yields the following

proof principle for functions defined on initial f-algebras.

Proof Principle 1 (Initial f-algebras)

Suppose that (μf, in) is an initial f-algebra.

Let (a, k) be an f-algebra, and g :: μf → a be a function. The equation

�k� = g,

holds if and only if g is an f-algebra homomorphism:

g ◦ in = k ◦ fmapf g.

We demonstrate the use of Proof Principle 1 in Section 3 below, to set up our

presentation of f-and-m-algebras and their associated proof principle. Jacobs &

Rutten (2011) further develop the use of Proof Principle 1 (and its dual notion for

final coalgebras) for reasoning about recursive programs on pure data.

2.2 Examples of initial f-algebras

The usefulness of the initial f-algebra abstraction for functional programming lies in

the fact that we can directly implement initial f-algebras in functional programming

languages. We give two examples of implementations of initial f-algebras. The first

example shows that standard recursively defined Haskell datatypes can be retrofitted

with the initial f-algebra structure. The second example shows that it is possible, in

Haskell, to construct an initial f-algebra for any functor (f, fmapf ).

Example 1

The functor ListF a describes the individual layers of a list:

data ListF a x

= Nil

| Cons a x

fmapListF a :: (x→ y)→ ListF a x→ ListF a y

fmapListF a g Nil = Nil

fmapListF a g (Cons a x) = Cons a (g x)

Assuming for the moment that the Haskell datatype [a] only contains finite lists,

the following definitions witness that [a] is the carrier of an initial ListF a algebra:

in :: ListF a [a]→ [a]

in Nil = [ ]

in (Cons a xs) = a : xs



and

�−� :: (ListF a b→ b)→ [a]→ b

�k� [ ] = k Nil

�k� (a : xs) = k (Cons a (�k� xs))

As we pointed out in Section 1.1, the assumption that the type [a] only contains finite

lists is unsound. We have failed to account for the possibility of non-termination

effects interleaved between the elements of the list. With extra effort, it is possible

to integrate non-termination effects into the f-algebra formalism, as we show in

Section 4. However, in Section 5 we show how f-and-m-algebras offer a simple and

direct solution to reasoning about Haskell’s lazy lists, as well as other datatypes

interleaved with effects.

Example 2

Again ignoring the possibility of non-termination, we can implement the carrier of

an initial f-algebra for an arbitrary functor (f, fmapf) as a recursive datatype:

data Mu f = In {unIn :: f (Mu f)} (4)

We have used Haskell’s record definition syntax to implicitly define a function

unIn :: Mu f → f (Mu f) that is the inverse of the value constructor In. The

f-algebra structure map is defined as the value constructor In:

in :: f (Mu f)→ Mu f

in = In

and the f-algebra homomorphisms out of Mu f are defined in terms of the functor

structure fmapf and Haskell’s general recursion:

�−� :: Functor f ⇒ (f a→ a)→ Mu f → a

�k� = k ◦ fmapf �k� ◦ unIn

This construction has been called “two-level types” (Sheard & Pasalic, 2004), due to

the separation between the functor f and the recursive datatype Mu .

These two examples demonstrate that initial algebras for a given functor are

not unique: the types [a] and Mu (ListF a) are not identical, but they are both

initial (ListF a)-algebras. Therefore, we regard the initial f-algebra abstraction

as an interface to program against, rather than thinking in terms of specific

implementations such as Mu f. Note that it is possible to prove that any two

initial f-algebras are isomorphic, by using the initial algebra property to define the

translations between them, and Proof Principle 1 to prove that the translations are

mutually inverse. This isomorphism result is known as Lambek’s Lemma (Lambek,

1968).

2.3 Monads

As is standard in Haskell programming, we describe effectful computations in

terms of monads (Moggi, 1991; Peyton Jones & Wadler, 1993). We have opted

to use the ‘categorical’ definition of monad in terms of a join (or multiplication)



operation, rather than the Kleisli-triple presentation with a bind operation (>>=)

that is more standard in Haskell programming because the categorical definition is

more convenient for equational reasoning. Standard references such as the lecture

notes by Benton et al. (2000) discuss the translations between the two presentations.

Definition 5

A monad is a quadruple (m, fmapm, returnm, joinm) of a type constructor m, and three

functions:

fmapm :: (a→ b)→ m a→ m b

returnm :: a→ m a

joinm :: m (m a)→ m a

such that the pair (m, fmapm) is a functor (Definition 1), and the following properties

are satisfied:

joinm ◦ returnm = id (5)

joinm ◦ fmapm returnm = id (6)

joinm ◦ fmapm joinm = joinm ◦ joinm (7)

and also the naturality laws:

returnm ◦ f = fmapm f ◦ returnm (8)

joinm ◦ fmapm (fmapm f) = fmapm f ◦ joinm (9)

As with functors and the Functor typeclass, monads in Haskell are usually

represented in terms of the Monad typeclass. Again, for this article, we will always

use subscripts on returnm and joinm to disambiguate which monad is being referred

to, instead of leaving it for the reader to infer.

Finally in this short recap of monads, we recall the definition of a monad

morphism between two monads. Monad morphisms represent structure preserving

maps between monads. We will use monad morphisms in our extended example of

the use of f-and-m-algebras to construct the coproduct of two monads in Section 8.

Definition 6

Let (m1, fmapm1
, returnm1

, joinm1
) and (m2, fmapm1

, returnm2
, joinm2

) be two monads. A

monad morphism between them is a function h :: m1 a→ m2 a such that:

h ◦ fmapm1
g = fmapm2

g ◦ h (10)

h ◦ returnm1
= returnm2

(11)

h ◦ joinm1
= joinm2

◦ h ◦ fmapm1
h (12)

3 List append I: pure lists

We now introduce our running example of list append and its associativity property.

In this section, we use an initial (ListF a)-algebra and Proof Principle 1 to define

and prove associative the append function on pure lists. (Purity here means that

this proof does not apply to Haskell’s lazy lists, unlike the proofs we will present in



Sections 4 and 6.) In Section 4 we attempt to use the initial f-algebra technique to

prove the analogous property in a setting with interleaved effects, and see that direct

use of initial f-algebras makes the definition and proof unnecessarily complicated.

In Section 5, we use f-and-m-algebras to simplify the definition and proof, and show

that this lets us reuse much of the definition and proof that we give in this section.

The definition and proof that we present here are standard and have appeared

many times in the literature. We present them in some detail in order to use them

as a reference when we cover the analogous proof for append for lists interleaved

with effects.

We program and reason against the abstract interface of initial f-algebras. Hence

we assume that an initial (ListF a)-algebra (μ(ListF a), in) exists, and we write �−�

for the unique homomorphism induced by initiality, i.e., for the unique map taking

each f-algebra (a, k) to the unique f-algebra homomorphism �k� :: μf → a. We can

define append in terms of �−� as:

append :: μ(ListF a)→ μ(ListF a)→ μ(ListF a)

append xs ys = �k� xs

where k :: ListF a (μ(ListF a)) → μ(ListF a)

k Nil = ys

k (Cons a xs) = in (Cons a xs)

Immediately from the definition of append we know that λxs . append xs ys is

a (ListF a)-algebra homomorphism, for any ys , because it is defined in terms of

�−�. Unfolding the definitions shows that the following two equational properties

of append hold. These tell us how it operates on lists of the form in Nil and

in (Cons a xs). We have:

append (in Nil) ys = ys (13)

append (in (Cons a xs)) ys = in (Cons a (append xs ys)) (14)

We now make use of these properties and Proof Principle 1 to prove associativity:

Theorem 1

For all xs , ys , zs :: μ(ListF a),

append xs (append ys zs) = append (append xs ys) zs

Proof

The function append is defined in terms of the initial algebra property of μ(ListF a),

so we can use Proof Principle 1 to prove the equation:

�k� xs = append (append xs ys) zs

In this instantiation of Proof Principle 1, g = λxs . append (append xs ys) zs , and:

k Nil = append ys zs (15)

k (Cons a xs) = in (Cons a xs) (16)



Thus we need to prove that for all x :: ListF a (μ(ListF a)),

append (append (in x) ys) zs

= k (fmapListF a (λxs . append (append xs ys) zs) x)

There are two cases to consider, depending on whether x = Nil or x = Cons a xs .

In the first case, we reason as follows:

append (append (in Nil) ys) zs

= {Equation (13)}
append ys zs

= {definition of k (Equation (15))}
k Nil

= {definition of fmapListF a}
k (fmapListF a (λxs . append (append xs ys) zs) Nil)

The other possibility is that x = Cons a xs , and we reason as follows:

append (append (in (Cons a xs)) ys) zs

= {Equation (14)}
append (in (Cons a (append xs ys))) zs

= {Equation (14)}
in (Cons a (append (append xs ys) zs))

= {definition of k (Equation (16))}
k (Cons a (append (append xs ys) zs))

= {definition of fmapListF a}
k (fmapListF a (λxs . append (append xs ys) zs) (Cons a xs))

�

Thus the proof that append is associative is relatively straightforward, using Proof

Principle 1. We shall see below, in Section 4, that attempting to use Proof Principle 1

again to reason about lists interleaved with effects leads to a more complicated proof

that mingles the reasoning above with reasoning about monadic effects. We then

make use of f-and-m-algebras in Section 5 to prove the same property for lists inter-

leaved with effects, and show that we are able to reuse the core of the above proof.

4 List append II: lists with interleaved effects, via f-algebras

Given the success of initial f-algebras for defining and reasoning about programs

that operate on pure datatypes, it seems reasonable that they might extend to

programming and reasoning about programs that operate on effectful datatypes like

List m a. As we shall see, it is possible to use initial f-algebras for reasoning about

programs on effectful datatypes, but the proofs become unnecessarily complicated.

We demonstrate these complications through an extension of the list append

example from Section 3 to the case of lists with interleaved effects. We carry out

this proof directly at the level of f-algebras, just as we did in the previous section.

After the proof, we reflect on the difficulties that we encountered in the proof. Some

of these difficulties can be mitigated by use of more advanced f-algebra techniques,



such as fold fusion. However, we will discover that f-and-m-algebras yield a more

satisfactory solution.

Our presentation is parametric in the kind of effects that are interleaved with the

list. We merely assume that they can be described by some monad (m, fmapm , returnm ,

joinm ).

By inspecting the auxillary declaration of List ′ m a, and comparing it to the exam-

ples of initial f-algebras that we presented in the Section 2, we can see that they are

themselves carriers of initial (f ◦m)-algebras, where f is an appropriate functor and

◦ denotes functor composition. For example, List m a is isomorphic to m (μ(ListF a◦
m)), where μ(ListF a ◦ m) is the carrier of some initial (ListF a ◦ m)-algebra.

Equipped with this observation, we can proceed with adapting the definition of

append that we gave in Section 3 to the setting of lists interleaved with effects. As

above, we program and reason against the abstract interface of initial algebras. We

assume that an initial (ListF a ◦ m)-algebra (μ(ListF a ◦ m), in) exists, and we write

�−� for the unique homomorphism induced by initiality. We now define eAppend

(“e” for effectful) by:

eAppend :: m (μ((ListF a) ◦ m))→ m (μ((ListF a) ◦ m))→ m (μ((ListF a) ◦ m))

eAppend xs ys = joinm (fmapm �k� xs)

where k :: ListF a (m (m (μ((ListF a) ◦ m))))→ m (μ((ListF a) ◦ m))

k Nil = ys

k (Cons a xs) = returnm (in (Cons a (joinm xs)))

This definition bears a slight resemblance to the definition of append above, but we

have had to insert uses of the monadic structure returnm , joinm and fmapm to manage

the effects. Thus we have had to intermingle the effectful parts of the definition with

the pure parts. This is a result of the fact that the initial f-algebra abstraction is

oblivious to the presence of effects.

As we did for append in Equations (13) and (14) above, we can derive two

properties of eAppend . Equations (17) and (18) tell us how eAppend acts on pure

computations that return values constructed with each of the list constructors:

eAppend (returnm (in Nil)) ys = ys (17)

and

eAppend (returnm (in (Cons a xs))) ys

= returnm (in (Cons a (eAppend xs ys)))
(18)

We note that the derivations of these equations involve more work than their

counterparts for append . In particular, we are forced to spend time shuffling the

returnm , joinm and fmapm around in order to apply the monad laws. Evidently,

if we were to always use initial f-algebras to define functions on datatypes with

interleaved effects, we would be repeating this work over again. Moreover, as we

shall see in the proof of Theorem 2 below, we cannot make direct use of Equation

(17) because we are forced to unfold the definition of eAppend too early.



Theorem 2

For all xs , ys , zs :: m (μ(ListF a ◦ m)),

eAppend xs (eAppend ys zs) = eAppend (eAppend xs ys) zs

Proof

We will eventually be able to use Proof Principle 1, but first we must rearrange both

sides of the equation to be of a suitable form. We use kl to denote an instance of

the function k defined in the body of eAppend with the free variable ys replaced

by l.

Let us simplify the left hand side of the equation to be proved:

eAppend xs (eAppend ys zs)

= {definition of eAppend}
joinm (fmapm �keAppend ys zs� xs)

The right hand side of the equation requires a little more work:

eAppend (eAppend xs ys) zs

= {definition of eAppend}
eAppend (joinm (fmapm �kys� xs)) zs

= {definition of eAppend}
joinm (fmapm �kzs� (joinm (fmapm �kys� xs)))

= {naturality of joinm (Equation (9))}
joinm (joinm (fmapm (fmapm �kzs�) (fmapm �kys� xs)))

= {monad law: joinm ◦ joinm = joinm ◦ fmapm joinm Equation (7)}
joinm (fmapm joinm (fmapm (fmapm �kzs�) (fmapm �kys� xs)))

= {fmapm preserves composition (Equation (2))}
joinm (fmapm (joinm ◦ fmapm �kzs� ◦ �kys�) xs)

= {definition of eAppend}
joinm (fmapm ((λl. eAppend l zs) ◦ �kys�) xs)

Looking at the final lines of these two chains of equations, we see that the problem

reduces to proving the following equation:

�keAppend ys zs� = (λl. eAppend l zs) ◦ �kys� (19)

To prove this equation, we use Proof Principle 1, which reduces the problem to

proving the following equation for all x :: ListF a (m (μ(ListF a ◦ m))):

eAppend (�kys� (in x)) zs

= keAppend xs ys (fmapListF a (fmapm ((λl. eAppend l zs) ◦ �kys�)) x)

There are two cases to consider, depending on whether x = Nil or x = Cons a xs .

In the first case, we reason as follows. Note that, we are unable to directly apply

our knowledge of the effect of eAppend on Nil (Equation (17)), unlike in the proof

of Theorem 1 where we could use Equation (13). This is because we had to unfold



the definition of eAppend in order to apply Proof Principle 1.

eAppend (�kys� (in Nil)) zs

= {�kys� is a (ListF a ◦ m)-algebra homomorphism}
eAppend (kys (fmapListF a (fmapm �kys�) Nil)) zs

= {definition of fmapListF a}
eAppend (kys Nil) zs

= {definition of kys}
eAppend ys zs

= {definition of keAppend ys zs}
keAppend ys zs Nil

= {definition of fmapListF a}
keAppend xs ys (fmapListF a (fmapm ((λl. eAppend l zs) ◦ �kys�)) Nil)

In the second case, when x = Cons a xs , we reason using the following steps:

eAppend (�kys� (in (Cons a xs))) zs

= {�kys� is a (ListF a ◦ m)-algebra homomorphism}
eAppend (kys (fmapListF a (fmapm �kys�) (Cons a xs))) zs

= {definition of fmapListF a}
eAppend (kys (Cons a (fmapm �kys� xs))) zs

= {definition of kys}
eAppend (returnm (in (Cons a (joinm (fmapm �kys� xs))))) zs

= {definition of eAppend}
eAppend (returnm (in (Cons a (eAppend xs ys)))) zs

= {Equation (18)}
returnm (in (Cons a (eAppend (eAppend xs ys) zs)))

= {definition of eAppend}
returnm (in (Cons a

(joinm (fmapm �kzs� (joinm (fmapm �kys� xs))))))

= {naturality of joinm (Equation (9))}
returnm (in (Cons a

(joinm (joinm (fmapm (fmapm �kzs�) (fmapm �kys� xs))))))

= {monad law: joinm ◦ joinm = joinm ◦ fmapm joinm (Equation (7))}
returnm (in (Cons a

(joinm (fmapm joinm

(fmapm (fmapm �kzs�) (fmapm �kys� xs))))))

= {fmapm preserves function composition (Equation (2))}
returnm (in (Cons a

(joinm (fmapm (joinm ◦ fmapm �kzs� ◦ �kys�) xs))))

= {definition of eAppend}
returnm (in (Cons a

(joinm (fmapm ((λl. eAppend l zs) ◦ �kys�) xs))))



= {definition of keAppend ys zs}
keAppend ys zs (Cons a (fmapm ((λl. eAppend l zs) ◦ �kys�) xs))

= {definition of fmapListF a}
keAppend ys zs

(fmapListF a (fmapm ((λl. eAppend l zs) ◦ �kys�)) (Cons a xs))

�

We identify the following problems with this proof:

• We had to perform a non-trivial number of rewriting steps in order to get

ourselves to into a position in which we can apply Proof Principle 1. These

steps are not specific to the eAppend function, and will have to be re-done

whenever we wish to use Proof Principle 1 to prove a property of a function

on data interleaved with effects.

• We were forced to unfold the definition of eAppend multiple times in order

to proceed with the calculation. As we noted during the proof, this unfolding

prevented us from applying Equation (17) and instead we had to perform

some of the same calculation steps again. For the same reason, in the Cons

case, we were only able to apply Equation (18) once, unlike in the proof of

Theorem 1 where the analogous equation was applied twice. We also had to

expand eAppend again in order to rewrite the occurrences of joinm and fmapm .

To some extent, it is possible to mitigate these problems without using f-and-m-

algebras.

The first problem can be addressed by noting that eAppend xs ys = extend �kys� xs ,

where extend :: (a → m b) → m a → m b is the argument flipped bind (>>=)

operation for the monad m. Using the general fact that extend f (extend g x ) =

extend (extend f ◦ g) x allows for a quicker reduction of the theorem statement to

Equation (19).

The second problem can be addressed by using the general fold fusion law to

prove Equation (19). Fold fusion is an important consequence of Proof Principle 1

that can first be derived as an independent lemma. In the current setting, the fold

fusion law can be stated as follows:

f (k1 Nil) = k2 Nil

f (k1 (Cons x xs)) = k2 (Cons x (fmapm f xs))

}
⇒ f ◦ �k1� = �k2�

Using fold fusion shortens the sequences of equational reasoning for the Nil and

Cons cases by a few lines at the start and the end, but does not free us from

having to unfold the definition of eAppend and reason using the monad laws. Using

fold fusion and the general property of extend does save us a little effort, but does

not clearly separate the pure and effectful parts of the proof in the way that the

f-and-m-algebra proof principle in the next section will allow us to, and still does

not allow us to directly reuse the reasoning from the proof in the pure case in

Theorem 1.

We see, then, that the definition and proof that we have given in this section –

not to mention alternative proofs akin to those discussed above – demonstrate that



direct use of initial f-algebras provides the wrong level of abstraction for dealing 

with datatypes that interleave data and effects.

5 Separating data and effects with f-and-m-algebras

As we saw in the previous section, directly defining and proving properties of

functions on datatypes consisting of interleaved pure and effectful information is

possible, but tedious. We were not able to build upon the definition and proof that

we used in the non-effectful case (Section 3), and our equational reasoning repeatedly

broke layers of abstraction: we were forced to unfold the definition eAppend several

times in the proof of Theorem 2 in order to perform further calculation.

To solve the problems we have identified with the direct use of f-algebras, we use

the concept of f-and-m-algebras, originally introduced by Filinski & Støvring (2007),

and generalised to arbitrary functors by Atkey et al. (2012). As the name may imply,

f-and-m-algebras are simultaneously f-algebras and m-algebras. A twist is that the

m-algebra component must be an m-Eilenberg–Moore algebra. m-Eilenberg–Moore

algebra structure for a type a describes how to incorporate the effects of the monad

m into values of type a.

5.1 m-Eilenberg–Moore algebras

Given a monad (m, fmapm, returnm, joinm) (Definition 5), an m-Eilenberg–Moore-

algebra is an m-algebra that also interacts well with the structure of the monad:

Definition 7

An m-Eilenberg–Moore algebra consists of a pair (a, l) of a type a and a function

l :: m a→ a

such that the following two diagrams commute:

a
returnm��

id

����
��

��
��

m a

l

��
a

(20)

m (m a)
joinm ��

fmapm l

��

m a

l

��
m a

l �� a

(21)

m-Eilenberg–Moore algebras form a key piece of the theory of monads, especially

in their application to universal algebra. For a monad m that represents an algebraic

theory (e.g., abelian groups), the category of all m-Eilenberg–Moore algebras is

exactly the category of structures supporting that algebraic theory. Mac Lane’s

book (Mac Lane, 1998) goes into further depth on this view of m-Eilenberg–Moore

algebras.



In terms of computational effects, an m-Eilenberg–Moore-algebra (a, l) represents

a way of “performing” the effects of the monad m in the type a, preserving the

returnm and joinm of the monad structure. For example, if we let the monad m be

the error monad ErrorM :

data ErrorM a

= Ok a

| Error String

fmapErrorM g (Ok a) = Ok (g a)

fmapErrorM g (Error msg) = Error msg

returnErrorM a = Ok a

joinErrorM (Ok (Ok a)) = Ok a

joinErrorM (Ok (Error msg)) = Error msg

joinErrorM (Error msg) = Error msg

then we can define an ErrorM -Eilenberg–Moore-algebra with carrier IO a as follows:

l :: ErrorM (IO a)→ IO a

l (Ok ioa) = ioa

l (Error msg) = throw (ErrorCall msg)

The function throw and the constructor ErrorCall are part of the Control .Exception

module in the Haskell standard library. The algebra l propagates normal IO

actions, and interprets errors using the exception throwing facilities of the Haskell

IO monad.

The general pattern of m-Eilenberg–Moore-algebras with carriers that are them-

selves constructed from monads has been studied by Filinski under the name

“layered monads” (Filinski, 1999). The idea is that the presence of m-Eilenberg–

Moore-algebras of the form m (m′ a) → m′ a, for all a, captures the fact that the

monad m′ can perform all the effects that the monad m can, so we can say that m′

is layered over m.

A particularly useful class of m-Eilenberg–Moore algebras for a given monad m is

the class of free m-Eilenberg–Moore-algebras. The free m-Eilenberg–Moore algebra

for an arbitrary type a is given by (ma, joinm). In terms of layered monads, this

just states that the monad m can be layered over itself. We will make use of this

construction below in the proof of Theorem 4 below.

Finally in this short introduction to m-Eilenberg–Moore algebras, we define

homomorphisms between m-Eilenberg–Moore-algebras. These are exactly the same

as homomorphisms between f-algebras that we defined in Section 2.

Definition 8
An m-Eilenberg–Moore-algebra homomorphism

h :: (a, la)→ (b, lb)

consists of a function h :: a→ b such that the following diagram commutes:

m a
fmapm h��

la

��

m b

lb

��
a

h �� b

(22)



5.2 Definition of f-and-m-algebras

As we indicated above, an f-and-m-algebra consists of an f-algebra and an m-

Eilenberg–Moore-algebra with the same carrier. Intuitively, the f-algebra part deals

with the pure parts of the structure, and the m-Eilenberg–Moore-algebra part deals

with the effectful parts. We require the extra structure of an m-Eilenberg–Moore

algebra in order to account for the potential merging of the effects that are present

between the layers of the inductive datatype (through the preservation of join) and

the correct preservation of potential lack of effects (through the preservation of

return).

Definition 9

An f-and-m-algebra consists of a triple (a, k, l) of an object a and two functions:

k :: f a→ a

l :: m a→ a

where l is an m-Eilenberg–Moore algebra.

Homomorphisms of f-and-m-algebras are single functions that are simultaneously

f-algebra homomorphisms and m-Eilenberg–Moore-algebra homomorphisms:

Definition 10

An f-and-m-algebra homomorphism

h :: (a, ka, la)→ (b, kb, lb)

between two f-and-m algebras is a function h :: a→ b such that:

h ◦ ka = kb ◦ fmapf h (23)

h ◦ la = lb ◦ fmapm h (24)

Given the above definitions, the definition of initial f-and-m-algebra is straight-

forward, and follows the same structure as for initial f-algebras. Abstractly, an

initial f-and-m-algebra is an initial object in the category of f-and-m-algebras and

f-and-m-algebra homomorphisms. We use the notation μ(f|m) for carriers of initial

f-and-m-algebras to indicate the interleaving of pure data (represented by f) and

effects (represented by m).

Definition 11

An initial f-and-m-algebra is an f-and-m-algebra (μ(f|m), inf , inm) such that for any

f-and-m-algebra (a, k, l), there exists a unique f-and-m-algebra homomorphism from

(μ(f|m), inf , inm) to (a, k, l). We write this homomorphism as �k|l� and note that �k|l�
is a function of type μ(f|m)→ a.

As for initial f-algebras, the requirement that an initial f-and-m-algebra always

has an f-and-m-algebra homomorphism to any other f-and-m-algebra allows us

to define functions on the carriers of initial f-and-m-algebras. The uniqueness

requirement yields the following proof principle for functions defined on initial

f-and-m-algebras. It follows the same basic form as Proof Principle 1 for initial



f-algebras, but also includes an obligation to prove that the right hand side of the

equation to be shown is an m-Eilenberg–Moore-algebra homomorphism.

Proof Principle 2 (Initial f-and-m-Algebras)

Suppose that (μ(f|m), inf , inm) is an initial f-and-m-algebra.

Let (a, k, l) be an f-and-m-algebra, and let �k|l� denote the induced function of

type μ(f|m)→ a. For any function g :: μ(f|m)→ a, the equation:

�k|l� = g

holds if and only if

g ◦ inf = k ◦ fmapf g (25)

and

g ◦ inm = l ◦ fmapm g (26)

The key feature of Proof Principle 2 is that it cleanly splits the pure (Equation

(25)) and effectful (Equation (26)) proof obligations. Therefore we may use this

principle to cleanly reason about programs that operate on interleaved pure and

effectful data at a high level of abstraction, unlike the direct reasoning we carried

out in Section 4. We shall see this separation in action for our list append running

example in the next section.

Example 3

The List m a datatype in the introduction was defined as follows:

data List ′ m a newtype List m a =

= Nilm
| Consm a (List m a)

List (m (List ′ m a))

This datatype can be presented as the carrier of an initial (ListF a)-and-m-algebra.

The inListF a function is defined as follows:

inListF a :: ListF a (List m a)→ List m a

inListF a Nil = List (returnm Nilm)

inListF a (Cons a xs) = List (returnm (Consm a xs))

The inm component is slightly complicated by the presence of the List constructor.

We use Haskell’s do notation for convenience:

inm :: m (List m a)→ List m a

inm ml = List (do {List x← ml ; x})

(If it were not for the List constructor, then inm would simply be joinm .)

Finally, we define the induced homomorphism to any other (ListF a)-and-m-

algebra as a pair of mutually recursive functions, following the structure of the



declaration of List m a:

�−|−� :: (ListF a b→ b)→ (m b→ b)→ List m a→ b

�k|l� = loop

where loop :: List m a→ b

loop (List x) = l (fmapm loop ′ x)

loop ′ :: List ′ m a→ b

loop ′ Nilm = k Nil

loop ′ (Consm a xs) = k (Cons a (loop xs))

We will give a general construction of initial f-and-m-algebras in Section 7.2 that

builds on the generic definition of initial f-algebras from Section 2. The key result

is that the existence of initial f-and-m-algebras can be reduced to the existence of

initial (f ◦ m)-algebras: this is Theorem 4 below.

6 List append III: lists with interleaved effects, via f-and-m-algebras

We now revisit the problem of defining and proving associativity for append on lists

interleaved with effects that we examined in Section 4. We use the abstraction of

(initial) f-and-m-algebras, firstly to simplify the implementation of eAppend from

Section 4, and secondly to simplify the proof of associativity. We shall see that

both the definition and proof mirror the definition and proof from the pure case we

presented in Section 3.

By separating the pure and effectful parts of the proof, Proof Principle 2 allows

us to reuse proofs from the pure case. Therefore, it makes sense to ask when the

additional condition (Equation (26)) that it imposes fails. We examine an instance

of this in Section 6.2, where a standard property of list reverse fails to carry over to

the case of lists with interleaved effects.

6.1 Append for lists with interleaved effects

We define our function eAppend against the abstract interface of initial (ListF a)-

and-m-algebras that we defined in the previous section. Hence we assume that an

initial (ListF a)-and-m-algebra (μ(ListF a|m), inListF a, inm) exists, and we denote the

unique (ListF a)-and-m-algebra homomorphism using the notation �−|−�. We can

define the function eAppend in terms of initial f-and-m-algebras as:

eAppend :: μ(ListF a|m)→ μ(ListF a|m)→ μ(ListF a|m)

eAppend xs ys = �k|inm� xs

where k :: ListF a (μ(ListF a|m))→ μ(ListF a|m)

k Nil = ys

k (Cons a xs) = inListF a (Cons a xs)

Note that, unlike the direct definition of eAppend that we made in Section 4, this

definition is almost identical to the definition of the function append from Section

3. The only differences are the additional m-Eilenberg–Moore-algebra argument to



�−|−� and the different type of inListF a. The fact that the pure part of the definition

(i.e., the function k) is almost identical to the k in the definition of append is

a result of the separation of pure and effectful concerns that the abstraction of

f-and-m-algebras affords.

Just as in the case of append , we can immediately read off two properties of

eAppend . We have one property for each of the constructors of the type constructor

ListF a:

eAppend (inListF a Nil) ys = ys (27)

eAppend (inListF a (Cons a xs)) ys = inListF a (Cons a (eAppend xs ys)) (28)

Both of these equations follow from the fact that the �k|inm� in the definition of

eAppend is an f-and-m-algebra homomorphism, using Equation (23).

Again by construction, we also know that for any fixed ys , λxs . eAppend xs ys

is an m-Eilenberg–Moore-algebra homomorphism. Hence we have the following

property of eAppend for free, from Equation (24). For all x :: m (μ(ListF a|m)):

eAppend (inm x ) ys = inm (fmapm (λxs . eAppend xs ys) x ) (29)

If we unfold the definition of inm, we can see that Equation (29) captures the fact

that eAppend always evaluates its first argument. This is made clearer if we write

inm using the inverse function to the constructor List, unList (List xs) = xs , yielding

the following equation that is equivalent to Equation (29):

eAppend (List (do {xs ← x; unList xs})) ys

= List (do {xs ← x; unList (eAppend xs ys)})

With these three properties of eAppend in hand we can prove that it is associative.

We use Proof Principle 2, which splits the proof into the pure and effectful parts. As

we shall see, the pure part of the proof, where the real work happens, is identical to

the proof steps we took in the proof of Theorem 1. The effectful parts of the proof

are straightforward, following directly from the fact that λxs . eAppend xs ys is an

m-Eilenberg–Moore-algebra homomorphism for all ys (Equation (29)).

Theorem 3

For all xs , ys , zs :: μ(ListF a|m),

eAppend xs (eAppend ys zs) = eAppend (eAppend xs ys) zs

Proof

The function eAppend is defined in terms of the initial algebra property of μ(ListF

a|m), so we can apply Proof Principle 2. Thus we must prove Equations (25) and

(26). Firstly, for all x :: ListF a (μ(ListF a|m)), we must show that Equation (25)

holds, i.e. that:

eAppend (eAppend (inListF a x) ys) zs

= k (fmapListF a (λxs . eAppend (eAppend xs ys) zs) x)

where

k Nil = eAppend ys zs

k (Cons a xs) = inListF a (Cons a xs)



This equation is, up to renaming, exactly the same as the equation we had to show

in proof of Theorem 1. Therefore, we use the same reasoning steps to show this

equation, relying on the properties of eAppend captured above in Equations (27)

and (28).

Secondly, we must show that the right hand side of the equation to be proved is

an m-Eilenberg–Moore-algebra homomorphism, i.e., that Equation (26) holds:

eAppend (eAppend (inm x) ys) zs

= inm (fmapm (λxs . eAppend (eAppend xs ys) zs) x)

This follows straightforwardly from the fact that λxs .eAppend xs ys is itself an m-

Eilenberg–Moore-algebra homomorphism for all ys , as we noted above in Equation

(29), and that such homomorphisms are closed under composition:

eAppend (eAppend (inm x) ys) zs

= {Equation (29)}
eAppend (inm (fmapm (λxs . eAppend xs ys) x)) zs

= {Equation (29)}
inm (fmapm (λxs . eAppend xs zs) (fmapm (λxs . eAppend xs ys) x))

= {fmapm preserves function composition (Equation (2))}
inm (fmapm (λxs . eAppend (eAppend xs ys) zs) x)

�

As promised, the proof that eAppend is associative, using Proof Principle 2, is much

simpler than the direct f-algebra proof we attempted in Section 4. In addition, the

separation of pure and effectful parts has meant that we were able to reuse the proof

of the pure case from Section 3, and so need only to establish the side condition for

effects.

This proof, and the f-algebra proof in Section 4, are both generic in the monad

m that we use to represent effects. In particular, if we instantiate m to be the non-

termination monad, then we have proved that list append for Haskell’s standard

lazy lists is associative, without having to explicitly deal with a Cpo semantics.

6.2 Reverse for lists with interleaved effects?

Given the above example of a proof of a property of a function on pure lists carrying

over almost unchanged to lists interleaved with effects, we might wonder if there

are circumstances where this approach fails. Clearly, it cannot be the case that all

properties true for pure lists carry over to effectful lists. One example of a property

that fails to carry over is the following property of the reverse function:

reverse (append xs ys) = append (reverse ys) (reverse xs) (30)

Intuitively, this property cannot possibly hold for a reverse function on lists

interleaved with effects, since in order to reverse a list, all of the effects inside

it must be executed in order to reach the last element and place it at the head

of the new list. Thus the left hand side of the equation above will execute all the

effects of xs and then ys in order, whereas the right hand side will execute all the



effects of ys first, and then xs . If the interleaved effects involve the possibility of

non-termination, as in the Listlazy example in Section 1.1, then reverse may never

get to the last element of the list.

If we try to prove this property using Proof Principle 2, we see that we are unable

to prove Equation (26), namely that the right hand side of the effectful version

of Equation (30) (Equation (31), below) must be an m-Eilenberg–Moore-algebra

homomorphism in the variable xs .

However, we can define a reverse function on effectful lists as follows. This is very

similar to the standard definition of (non-tail recursive) reverse on pure lists, and

makes use of the eAppend function we defined above.

eReverse :: μ(ListF a|m)→ μ(ListF a|m)

eReverse = �k|inm�

where k :: ListF a (μ(ListF a|m))→ μ(ListF a|m)

k Nil = inListF a Nil

k (Cons a xs) = eAppend xs (inListF a (Cons a (inListF a Nil)))

Verifying the effectful analogue of Equation (30) requires a little extra step before we

can apply Proof Principle 2, because the left hand side of the equation is constructed

from a composite of two functions of the form �−|−�. However, it is straightforward

to prove that this composite is equal to �k ′|inm�, where

k′ :: ListF a (μ(ListF a|m))→ μ(ListF a|m)

k′ Nil = eReverse ys

k′ (Cons a xs) = eAppend xs (inListF a (Cons a (inListF a Nil)))

This same extra step is required in the case for pure datatypes as well, so this is

not where the problem with interleaved effects lies. If we attempt to apply Proof

Principle 2 to the equation:

�k′|inm� xs = eAppend (eReverse ys) (eReverse xs) (31)

Then the pure part of the proof goes through straightforwardly. We are left with

proving that λxs . eAppend (eReverse ys) (eReverse xs) (i.e., the right hand side of

this equation) is an m-Eilenberg–Moore-algebra homomorphism for all ys . Certainly,

eReverse is an m-Eilenberg–Moore-algebra homomorphism by its construction via

the initial f-and-m-algebra property. However, λys . eAppend xs ys is not an m-

Eilenberg–Moore algebra homomorphism for all xs , as the following counterexample

shows.

Let the monad m be the ErrorM monad we defined in Section 5.1. If eAppend

were an ErrorM -Eilenberg–Moore-algebra homomorphism in its second argument

the following equation would hold:

eAppend (inListF a (Cons a (inListF a Nil))) (inErrorM (Error "msg"))

= inErrorM

(fmapErrorM (eAppend (inListF a (Cons a (inListF a Nil))))

(Error "msg"))

(32)



However, starting from the left hand side, we calculate as follows:

eAppend (inListF a (Cons a (inListF a Nil))) (inErrorM (Error "msg"))

= {Equation (28)}
inListF a (Cons a (eAppend (inListF a Nil) (inErrorM (Error "msg"))))

= {Equation (27)}
inListF a (Cons a (inErrorM (Error "msg")))

while the right hand side of Equation (32) reduces by the definition of fmapErrorM

to simply:

inErrorM (Error "msg")

Thus the proof fails. This is the formal rendering of the intuition for the failure

given at the start of this subsection.

7 Generic implementation of initial f-and-m-algebras

We have seen that existing datatypes such as List m a can be given the structure of

initial f-and-m-algebras. In this section, we show that, in Haskell, we can implement

an initial f-and-m-algebra for any functor f and monad m. We build on the

generic implementation of initial f-algebras we presented in Section 2.2. The key

construction is to show that if we have an initial (f ◦ m)-algebra, then we can

construct an initial f-and-m-algebra.

7.1 From initial (f ◦ m)-algebras to initial f-and-m-algebras

Initial f-and-m-algebras can be constructed from initial (f ◦m)-algebras. If the type

μ(f ◦ m) is the carrier of an initial (f ◦ m)-algebra, then the initial f-and-m-algebra

that we construct has carrier m (μ(f ◦ m)). One way of looking at the proof of the

following theorem is as containing all the additional parts of the definition and

proof steps we carried out in the direct initial f-algebra proof of associativity in

Section 4 that were missing in the initial f-and-m-algebra approach in the previous

section. Thus we have abstracted out parts that are common to all definitions and

proofs that involve interleaved data and effects.

Theorem 4

Let (f, fmapf) be a functor, and (m, fmapm, returnm, joinm) be a monad. If we have

an initial (f ◦ m)-algebra (μ(f ◦ m), in), then m (μ(f ◦ m)) is the carrier of an initial

f-and-m-algebra.

Proof

See Appendix A. �

In Atkey, Ghani, Jacobs and Johann’s work (Atkey et al., 2012), this same result

was obtained in a less elementary way by constructing a functor Φ from the category

of (f ◦m)-algebras to the category of f-and-m-algebras. The functor Φ was shown to

be a left adjoint, and since left adjoints preserve initial objects, Φ maps any initial

(f ◦ m)-algebra to an initial f-and-m-algebra.



7.2 Implementation of initial f-and-m-algebras in Haskell

In light of Theorem 4, we can take the Haskell implementation of initial f-algebras

from Section 2 and apply the construction in the theorem to construct an initial

f-and-m-algebra.

The seed of our construction is the existence of an initial (f◦m)-algebra. Therefore,

we need to first construct the composite functor f ◦ m. To express the composition

of two type operators as a new type operator, we introduce a newtype, as follows4:

newtype (f : ◦ : g) a = C {unC :: f (g a)}

We define fmapf :◦: g straightforwardly in terms of fmapf and fmapg:

fmapf :◦: g h (C x) = C (fmapf (fmapg h) x)

Theorem 4 states that if μ(f ◦ m) is the carrier of an initial (f ◦ m)-algebra, then

m (μ(f ◦ m)) is the carrier of an initial f-and-m-algebra. Therefore, we can define

an implementation of an initial f-and-m-algebra by setting μ(f|m) to be the type

MuFM f m, defined as:

type MuFM f m = m (Mu (f : ◦ :m))

Unfolding the definitions of f : ◦ :m and Mu shows that the type MuFM f m is, up

to isomorphism, the same as the type MuFM0 f m from Section 1.1 that we arrived

at by generalising the Listio and Listlazy examples.

The f-algebra and m-Eilenberg–Moore-algebra structure maps inf and inm are

defined following the construction in Theorem 4:

inf :: f (MuFM f m)→ MuFM f m

inf = returnm ◦ in ◦ C

inm :: m (MuFM f m)→ MuFM f m

inm = joinm

Finally, we construct the unique f-and-m-algebra-homomorphism out of

MuFM f m following the proof of Theorem 4 by building upon our implementation

of the unique homomorphisms out of the initial (f : ◦ :m)-algebra:

�−|−� :: (f a→ a)→ (m a→ a)→ MuFM f m→ a

�k|l� = l ◦ fmapm �k ◦ fmapf l ◦ unC �

We can also implement �−|−� directly in terms of Haskell’s general recursion, just

as we did for the implementation of �−�. This definition arises by inlining the

implementation of �−� into the definition of �−|−� above, and performing some

straightforward rewriting. The direct implementation of �−|−� is as follows:

�−|−� :: (f a→ a)→ (m a→ a)→ MuFM f m→ a

�k|l� = l ◦ fmapm loop

where loop = k ◦ fmapf l ◦ fmapf (fmapm loop) ◦ unC ◦ unIn

4 This definition requires the GHC extension -XTypeOperators, allowing infix type constructors.



Whichever implementation of �−|−� we choose, we note that there is an implicit

precondition that the second argument (of type m a→ a) must be an m-Eilenberg–

Moore algebra. Unfortunately, it is not possible to express this requirement in

Haskell’s type system.

8 Application: Streaming I/O and coproducts of free monads with arbitrary monads

In Section 1.1, we motivated the consideration of streams of interleaved data and

effects by giving the hGetContents function a type that more precisely reflects its

actual behaviour. The Haskell community, motivated by the concerns about lazy I/O

that we listed in Section 1.1, has proposed several other datatypes that capture the

interleaving of effects with pure data5, in order to make the interleaving explicit. One

of the earliest was Kiselyov’s iteratees (Kiselyov, 2012). Iteratees are used to support

lazy I/O in languages such as Haskell by handling different kinds of sequential

information processing in an incremental way.

Iteratees are descriptions of functions that alternate reading from some input

with effects in some monad, eventually yielding some output. Kiselyov captured this

using the following datatype, which follows the same pattern of mutual recursion as

the List m a datatype declaration from Section 1.1:

data Reader ′ m a b newtype Reader m a b =

= Input (Maybe a→ Reader m a b)

| Yield b

Reader (m (Reader ′ m a b))

A value of type Reader m a b is some effect described by the monad m, yielding either

a result of type b, or a request for input of type a. As Kiselyov demonstrates, the

fact that values of type Reader m a b abstract the source of the data that they read

is extremely powerful: different constructions allow values of type Reader m a b to

be chained together, or connected to actual input/output devices, all while retaining

the ability to perform concrete effects in the monad m.

Kiselyov treats the Reader m a b type in isolation, and notes that it has several

useful properties, including the fact that it is (the functor part of) a monad. In

terms of f-and-m-algebras we can see that the type Reader m a b is an initial

f-and-m-algebra, where the functor f is given by:

data ReaderF a b x

= Input (Maybe a→ x)

| Yield b

With this formulation, we could use Proof Principle 2 to reason about programs

involving iteratees. For example, we could prove Kiselyov’s result that Reader m a b

is a monad whenever m is.

However, we can see iteratees as an instance of a yet more general construction:

the coproduct of a free monad with an arbitrary monad m. Monad coproducts

5 For example, the iteratees, iterIO, conduits, enumerators, and pipes Haskell libraries all make
use of interleaved data and effects. These libraries are all available from the Hackage archive of Haskell
libraries (http://hackage.haskell.org/).



provide a general and canonical way of specifying the combination of two monads

(Lüth & Ghani, 2002) (we formally define coproducts of monads in Section 8.3,

below). Almost trivially, once we observe that Reader m a is the coproduct of two

monads, we can immediately deduce that it is a monad, rather than having to prove

this fact as a special case for Reader m a. As we will see below in Section 8.4,

the coproduct of a free monad and an arbitrary monad can be straightforwardly

constructed using initial f-and-m-algebras. Much of this straightforwardness rests

on the clear separation of pure and effectful concerns afforded by f-and-m-algebras.

Following on from Kiselyov’s work, Gonzalez implemented the pipes library. The

central definition of the pipes library is the Proxy a′ a b′ b m r datatype, which

generalises Kiselyov’s Reader m a b type. Gonzalez defines the Proxy type as follows:

data Proxy a′ a b′ b m r

= Request a′ (a→ Proxy a′ a b′ b m r)

| Respond b (b′ → Proxy a′ a b′ b m r)

| M (m (Proxy a′ a b′ b m r))

| Pure r

In essence, a value of type Proxy a′ a b′ b m r is a tree of requests of type a′, reading

values of type a, and responses of type b, reading values of type b′, interleaved with

effects described by the monad m, finally yielding values of type r. Thus, Gonzalez’s

type adds the possibility of bidirectional requests and responses to Kiselyov’s Reader

type (hence the name “pipes” of the library).

Gonzalez proves several properties of the Proxy type constructor directly6,

including demonstrating that, just as was the case for Iteratees, it forms (the functor

part of) a monad. Gonzalez’s proofs appeal to an informal notion of coinduction in

order to handle recursion in the presence of potentially infinite Proxy a′ a b′ b m r

values arising from Haskell’s non-strict semantics (recall the discussion in Section

1.1). Just as with Iteratees, we could observe that Proxy types are instances of data

interleaved with effects, and reformulate Gonzalez’s proofs using Proof Principle 2,

accounting for non-strictness by treating it just as an arbitrary monad. However,

we can again save work by observing that Proxy a′ a b′ b m r is an instance of

the coproduct of a free monad and the monad m, and consequently the result that

Proxy a′ a b′ b m r is a monad follows.

In the next subsection, we present the formal definition of the notion of a free

monad, and briefly describe the reading of free monads as abstract interaction trees

that can be interpreted in multiple ways. In Section 8.2, we show that concrete free

monads can be defined using specific initial f-algebras. We will be able to reuse

most of this construction when constructing the coproduct in Section 8.4. We present

the formal definition of the monad coproduct in Section 8.3, and elaborate on the

reading of free monads as interaction trees, now interleaved with effects from some

arbitrary monad. In Section 8.4, we present a concrete construction of the coproduct

of a free monad with an arbitrary monad. By using f-and-m-algebras we are able

6 https://github.com/Gabriel439/Haskell-Pipes-Library/blob/master/laws.md



to reuse much of the core of the definitions of the free monad structure we defined

in Section 8.2.

8.1 Free monads

A free monad for a functor (f, fmapf) is a way of extending f to be a monad while,

intuitively, adding no additional constraints. A useful application of free monads is

as a way of describing effectful computations over a set of commands, where the

commands are described by the functor f, and no commitment is made as to their

interpretation. Swierstra & Altenkirch (2007) have developed this idea to provide a

straightforward way of reasoning about programs that perform input/output. We

will briefly describe this view of free monads after we give the formal definition:

Definition 12
Let (f, fmapf) be a functor. A free monad on (f, fmapf) is a monad

(FreeM f, fmapFreeM f, returnFreeM f, joinFreeM f)

equipped with a function:

wrapf :: f (FreeM f a)→ FreeM f a

that satisfies:

wrapf ◦ fmapf (fmapFreeM f g) = fmapFreeM f g ◦ wrapf (33)

wrapf ◦ fmapf joinFreeM f = joinFreeM f ◦ wrapf (34)

and such that for every monad (m, fmapm, returnm , joinm) and g :: f a → m a, such

that g is natural:

g ◦ fmapf k = fmapm k ◦ g
there is a unique monad morphism 〈〈g〉〉 :: FreeM f a→ m a such that:

joinm ◦ fmapm 〈〈g〉〉 ◦ g = 〈〈g〉〉 ◦ wrapf

An alternative but equivalent definition of free monad, which is slightly more

standard from a categorical point of view, has the type of wrapf as f a→ FreeM f a.

We choose the form in Definition 12 because it is more convenient for programming.

The following lemma is an immediate consequence of the definition of free

monad, and can be taken as another alternative definition in terms of isomorphisms

of collections of morphisms. It will be useful when we come to define the coproduct

of free monads with arbitrary monads in terms of f-and-m-algebras in Section 8.4

below.

Lemma 1
If (FreeM f, fmapFreeM f , returnFreeM f , joinFreeM f) is a free monad for a functor

(f, fmapf), then the operation 〈〈−〉〉 :: (∀a. f a → m a) → (∀a. FreeM f a → m a)

is a bijection between natural transformations and monad morphisms. The inverse

operation can be defined as follows:

〈〈−〉〉−1 :: (∀a. FreeM f a→ m a)→ (∀a. f a→ m a)

〈〈h〉〉−1 = h ◦ wrapf ◦ fmapf returnFreeM f



One way of explaining the free monad abstraction is in terms of expressions with

variables, and substitution. Under this reading, the functor (f, fmapf) describes the

constructors that can be used to make expressions, and a value of type FreeM f a

is an expression comprised of the constructors from f and variables from a. The

joinFreeM f part of the monad structure provides substitution of expressions into

other expressions, and the extension 〈〈g〉〉 allows us to interpret a whole expression

if we can interpret all the constructors.

Another reading, which is more in line with our general theme of computational

effects, is in terms of “interaction trees”. We think of the functor (f, fmapf) as

describing a collection of possible commands that can be issued by a program.

For example, the functor (ReaderF a, fmapReaderF a), that we define now, describes

a single command of reading a value from some input. The ReaderF a functor is

defined as follows:

data ReaderF a x

= Read (a→ x)

fmapReaderF a :: (x→ y)→ ReaderF a x→ ReaderF a y

fmapReaderF a g (Read k) = Read (g ◦ k)

We think of values of type FreeM (ReaderF a) b as trees of read commands,

eventually yielding a value of type b. We use the wrapReaderF a part of the free

monad interface to define a primitive read operation:

read :: FreeM (ReaderF a) a

read = wrapReaderF a (Read returnFreeM (ReaderF a))

Every free monad is a monad, so we can use Haskell’s do notation to sequence

individual commands. For example, here is a simple program that reads two strings

from some input, and returns them as a pair in the opposite order.

swapRead :: FreeM (ReaderF String) (String , String)

swapRead = do {s1 ← read ; s2 ← read ; return (s2, s1)}

The free monad interface gives us considerable flexibility in how we actually

interpret the read commands. For example, we can interpret each read command as

reading a line from the terminal by defining a transformation from ReaderF String

to IO , using the standard Haskell function getLine to do the actual reading:

useGetLine :: ReaderF String a→ IO a

useGetLine (Read k) = do {s← getLine; return (k s)}

The free monad interface now provides a way to extend this interpretation of

individual commands to trees of commmands:

〈〈useGetLine〉〉 :: FreeM (ReaderF String) a→ IO a

Applying 〈〈useGetLine〉〉 to swapRead results in the following interaction, where the

second and third lines are entered by the user, and the final line is printed by the

Haskell implementation:

> 〈〈useGetLine〉〉 swapRead

"free"

"monad"

("monad", "free")



The free monad interface provides us with a powerful way of giving multiple

interpretations to effectful commands. Moreover, it is easy to extend the language

of commands simply by extending the functor f. Swierstra (2008) demonstrates a

convenient method in Haskell for dealing with modular construction of functors for

describing commands in free monads. However, explicitly naming every additional

command that we wish to be able to perform can be tedious. Sometimes, we simply

want access to effects in a known monad m. For example, we may know that we

want to execute concrete IO actions as well as abstract read operations. One possible

way of accomplishing this is to ensure that there is an additional constructor to the

functor f that describes an additional “abstract command” of performing an effect

in the chosen monad. For example, we could extend the ReaderF a functor like so

to add the possibility of effects in a monad m:

data ReaderMF m a x = Read (a→ x) | Act (m x)

This approach has the disadvantage that the effects of the monad m must now be

handled by the interpretation of the other abstract commands. For example, we

would have to add another case to the useGetLine function to handle the Act case.

Thus, we would be forced to combine the interpretation of the pure data representing

abstract commands with the interpretation of concrete effects. As we have observed

in the case of list append in Section 4, the mingling of such concerns can lead to

unnecessarily complicated reasoning. Fortunately, a conceptually simpler solution is

available: we take the coproduct of the free monad for the functor f that describes

our abstract effects with the monad m that describes our concrete effects. We define

the coproduct of two monads in Section 8.3 below, and demonstrate how monad

coproducts cleanly combine abstract effects with concrete effects. Before that, in the

next section, we demonstrate how to construct free monads from initial f-algebras.

8.2 Constructing free monads, via f-algebras

Figure 1 demonstrates how the free monad interface we defined in the previous

section may be implemented in terms of initial (FreeMF f a)-algebras, where the

functor FreeMF f a is also defined in Figure 1. The key idea is that a value of

type FreeM f a is constructed from layers of ‘terms’ described by the functor f,

represented by Term constructor, and terminated by ‘variables’, represented by the

Var constructor.

The definition of the free monad structure is relatively straightforward, using the

functions induced by the initial algebra property of μ(FreeMF f a). Each of the

properties required of free monads is proved by making use of Proof Principle 1.

When we construct the coproduct of a free monad with an arbitrary monad in

Section 8.4 we will be able to reuse many of the definitions in Figure 1.

8.3 Coproducts of monads

Monad coproducts provide a canonical way of describing the combination of two

monads to form another monad. We can think of the coproduct of two monads



Let (f, fmapf) be a functor, and define:

data FreeMF f a x

= Var a

| Term (f x)

fmapFreeMF :: (x→ y)→ FreeMF f a x→ FreeMF f a y

fmapFreeMF g (Var a) = Var a

fmapFreeMF g (Term fx ) = Term (fmapf g fx )

Free monads:

type FreeM f a = μ(FreeMF f a)

fmapFreeM f :: (a→ b)→ FreeM f a→ FreeM f b

fmapFreeM f g = �k�
where k (Var a) = in (Var (g a))

k (Term x) = in (Term x)

returnFreeM f :: a→ FreeM f a

returnFreeM f a = in (Var a)

joinFreeM f :: FreeM f (FreeM f a)→ FreeM f b

joinFreeM f = �j�
where j (Var x) = x

j (Term x) = in (Term x)

wrapf :: f (FreeM f a)→ FreeM f a

wrapf x = in (Term x)

〈〈−〉〉 :: (f a→ m a)→ FreeM f a→ m a

〈〈g〉〉 = �e�
where e (Var a) = returnm a

e (Term x) = joinm (g x)

Fig. 1. Constructing free monads via f-algebras

as the ‘least commitment’ combination. The coproduct of two monads is able

to describe any effects that its constituents describes, but imposes no interaction

between them. The coproduct of two arbitrary monads is not always guaranteed to

exist, but is known to exist in certain special cases. For example, monad coproducts

are guaranteed to exist when the monads in question are ideal monads (Ghani &

Uustalu, 2004), or when working in the category of Sets (Adámek et al., 2012), or

if the monads are constructed from algebraic theories (Hyland et al., 2006). One

particular special case is when one of the constituent monads is free, as we shall see

in Section 8.4, below.

Formally, ‘least commitment’ is realised as the existence of a unique monad

morphism out of a coproduct for every way of interpreting its constituent parts.

Coproducts of monads are precisely coproducts in the category of monads and

monad morphisms. The following definition sets out the precise conditions:



Definition 13

Let (m1, fmapm1
, returnm1

, joinm1
) and (m2, fmapm1

, returnm2
, joinm2

) be a pair of mon-

ads. A coproduct of these two monads is a monad (m1+m2, fmapm1+m2
, returnm1+m2

,

joinm1+m2
) along with a pair of monad morphisms:

inj 1 :: m1 a→ (m1+m2) a

inj 2 :: m2 a→ (m1+m2) a

and the property that for any monad (m, fmapm, returnm, joinm) and pair of monad

morphisms g1 : m1 a→ m a and g2 : m2 a→ m a there is a unique monad morphism

[g1, g2] : (m1+m2) a→ m a such that

[g1, g2] ◦ inj 1 = g1

[g1, g2] ◦ inj 2 = g2

In Section 8.1, we demonstrated how the free monad over a functor describing

read commands allowed us to provide multiple interpretations of ‘reading’. The

monad coproduct (FreeM (ReaderF String))+IO freely combines the abstract read

commands described by the functor ReaderF String with the concrete input/output

actions of the IO monad. We view (FreeM (ReaderF String))+IO as the modular

reconstruction of the Iteratee monad Reader m a we presented in Section 8.

The following example extends the swapRead example from Section 8.1 to perform

an input/output effect as well as two abstract read effects. The inj1 and inj2
components of the coproduct monad interface allow us to lift effectful computations

from the free monad and the IO monad respectively:

swapRead2 :: ((FreeM (ReaderF String))+IO) ()

swapRead2 = do s1 ← inj1 read

s2 ← inj1 read

inj2 (putStrLn ("(" ++ s2 ++ "," ++ s1 ++ ")"))

This program executes two abstract read commands to read a pair of strings, and

then executes a concrete IO action to print the two strings in reverse order to the

terminal.

We can provide an interpretation for the abstract read operations by combining

the coproduct interface with the free monad interface. For example, to interpret the

read commands as reading from the terminal, we use the useGetLine interpretation

from Section 8.1:

[〈〈useGetLine〉〉, id ] :: ((FreeM (ReaderF String))+IO) a→ IO a

Alternatively, we can interpret the abstract read commands as reading from a file

handle. The function useFileHandle describes how to execute single reads on a file

handle as an IO action7:

useFileHandle :: Handle → ReaderF String a→ IO a

useFileHandle h (Read k) = do {s← hGetLine h; return (k s)}

7 This functionality is very similar to the standard Scheme with-input-from-file function, which
temporarily uses a file as the source for input, rather than the terminal.



Again, we can combine the free monad and monad coproduct interfaces to extend

this interpretation of individual abstract read commands to all trees of read

commands interleaved with arbitrary IO actions:

λh. [〈〈useFileHandle h〉〉, id ] :: Handle → ((FreeM (ReaderF String))+IO) a→ IO a

Abstracting over the meaning of symbols such as read as we have done here

is of course not new. The basic feature of the λ-calculus is to allow abstraction

over the meaning of symbols. We could have written swapRead2 as follows, using

λ-abstractions rather than the monad coproduct:

swapRead2 :: IO String → IO ()

swapRead2 read = do s1 ← read

s2 ← read

putStrLn ("(" ++ s2 ++ "," ++ s1 ++ ")")

The two different interpretations above could then be obtained as swapRead2 getLine

and swapRead2 (hGetLine h). However, this approach becomes unwieldy if the

definition of swapRead2 becomes more complex: the parameter read needs to be

passed through to all other functions that might need to do abstracted reading,

and it is the responsibility of the programmer to do this plumbing manually. With

the monad coproduct approach, the plumbing is handled automatically. Another

advantage of monad coproducts over λ-abstraction of command interpretations is

that we have access to the pure data constructors describing the commands. In the

pipes library, for example, composition of Proxy values into a pipeline relies on

being able to match the Request constructors of one Proxy with the Response

constructors of another. Abstraction over opaque IO actions, as in the alternative

swapRead2 above, does not permit this kind of introspection.

8.4 Constructing coproducts with free monads via f-and-m-algebras

Figure 2 demonstrates the construction of the coproduct of a free monad with

an arbitrary monad m in terms of initial f-and-m-algebras. We program against

the abstract interface of initial f-and-m-algebras, rather relying on any particular

implementation.

The definitions of the basic monad structure – fmap, return and join – are almost

identical to the corresponding definitions for the free monad in Figure 1. This

demonstrates the same feature of the use of f-and-m-algebras that we saw when

defining the effectful list append in Section 6: the clean separation of pure and

effectful concerns allows us to reuse much of the work we performed in the non-

effectful case. The proofs that these definitions actually form a monad carry over

just as they did for the list append example.

For the monad coproduct structure, we use the pure and effectful parts of the

initial (FreeMF f a)-and-m-algebra stucture – inFreeMF f a and inm – for the first

and second injections inj 1 and inj 2 respectively. Since inFreeMF f a injects an single

abstract command from f into the coproduct, we use the free monad structure to

inject all the commands into the coproduct.



type ((FreeM f)+m) a = μ(FreeMF f a|m)

fmap(FreeM f)+m :: (a→ b)→ ((FreeM f)+m) a→ ((FreeM f)+m) b

fmap(FreeM f)+m g = �k|inm�
where k (Var a) = inFreeMF f b (Var (g a))

k (Term x) = inFreeMF f b (Term x)

return (FreeM f)+m :: a→ ((FreeM f)+m) a

return (FreeM f)+m a = inFreeMF f a (Var a)

join (FreeM f)+m :: ((FreeM f)+m) (((FreeM f)+m) a)→ ((FreeM f)+m) a

join (FreeM f)+m = �j|inm�
where j (Var x) = x

j (Term x) = in (Term x)

inj1 :: FreeM f a→ ((FreeM f)+m) a

inj1 = 〈〈inFreeMF f a ◦ Term〉〉

inj2 :: m a→ ((FreeM f)+m) a

inj2 = inm ◦ fmapm return (FreeM f)+m

[−,−] :: (∀a. FreeM f a→ m′ a)→ (∀a. m a→ m′ a)→ ((FreeM f)+m) a→ m′ a

[g1, g2] = �c|joinm′ ◦ g2�
where c (Var a) = returnm′ a

c (Term x) = joinm′ (〈〈g1〉〉−1 x)

Fig. 2. Construction of coproducts with free monads via f-and-m-algebras

In order for the use of the (FreeMF f a)-and-m-algebra initiality to construct a

function on μ(FreeMF f a|m) in the definition of [−,−] to be valid, we must check

that the second component of �c|joinm ′ ◦ g2� is actually an m-Eilenberg–Moore-

algebra. For the first law (Equation (20)), we reason as follows:

joinm′ ◦ g2 ◦ returnm

= {g2 is a monad morphism (Equation (11))}
joinm′ ◦ returnm′

= {monad law: joinm′ ◦ returnm′ = id (Equation (5))}
id

The second law (Equation (21)) is also straightforward:

joinm′ ◦ g2 ◦ joinm

= {g2 is a monad morphism (Equation (12))}
joinm′ ◦ joinm′ ◦ g2 ◦ fmapm g2

=
{
monad law: joinm′ ◦ joinm′ = joinm′ ◦ fmap ′m joinm′ (Equation (7))

}
joinm′ ◦ fmapm′ joinm′ ◦ g2 ◦ fmapm g2

= {naturality of g2}
joinm′ ◦ g2 ◦ fmapm joinm′ ◦ fmapm g2

= {fmapm preserves function composition (Equation (2))}
joinm′ ◦ g2 ◦ fmapm (joinm′ ◦ g2)



The proof that [g1, g2] satisfies the conditions specified in Definition 13 is remarkably

similar to the proof that 〈〈g〉〉 satisfies the required properties for the free monad

specification. This is another testament to the power of f-and-m-algebras.

We emphasise that the result we have presented here is not new; Hyland et al. have

already demonstrated, albeit with a different proof technique, that the construction

we have given here actually defines the monad coproduct. A special case of this

result, where the free monad part of the construction is the free monad over the

identity functor, has also been previously presented by Piróg & Gibbons (2012). Our

contribution is to show that the use of f-and-m-algebras simplifies and elucidates

the definitions involved.

9 Conclusions

We have presented a generalisation of Filinski and Støvring’s f-and-m-algebras

to arbitrary categories, and seen how they simplify defining and reasoning about

functions that manipulate interleaved data and effects. The key observation is that

initial f-and-m-algebras are the analogue for the effectful setting of initial f-algebras

in the pure setting. As such, they support the transporting of the standard definitional

and proof principles to the effectful setting. This allows the implicit interleaving of

data with effects, such as I/O and non-termination, to be made explicit and properly

reflected in functions’ types. Because they separate pure and effectful concerns, f-

and-m-algebras support the direct transfer of definitions and proofs — as illustrated

with our running example of list append — from the pure setting to the effectful

setting. We have further shown how programming with initial f-and-m-algebras can

be made practical by giving a generic construction of them in terms of (f ◦ m)-

algebras. Finally, we have argued that other datatypes that interleave data and

effects in languages such as Haskell can be expressed as coproducts of free monads

with arbitrary monads, and can thus be straightforwardly constructed using initial

f-and-m-algebras.

9.1 Related work

The earliest attempt to incorporate effects into the initial algebra methodology

appears to be Sheard’s (1993a; 1993b) use of compile-time reflection to give

direct constructions of monadic map and fold functions. Fokkinga (1994) and later

Pardo (2004), generalised Sheard’s constructions to the general categorical setting,

giving a generic recursion combinator for effectful recursive computations that has

type

�−�m : (f a→ m a)→ μf → m a

and whose definition requires the existence of a distributive law d :: f (m a)→ m (f a)

describing how effects percolate through pure data in a uniform way. Fokkinga

and Pardo both defined such distributive laws by induction over a grammar of

regular functors, and then used them, together with liftings of functors to Kleisli

categories (Barr & Wells, 1990; Mulry, 1995), to define monadic folds for regular



datatypes. The result was an effectful structural recursion scheme over pure regular

data in which all effects are pushed to the ‘outside’ to monadically wrap a pure

result.

In fact, as both Fokkinga and Pardo show, the existence of a distributive law

for just the binary product functor is all that is actually required to ensure that

distributive laws exist for all regular functors. However, such laws need not exist for

all monads; there is no distributive law for binary products for the state monad, for

example. In any case, the assumption that distributive laws exist is too strong for

the purposes of this article: we are concerned here with structural recursion over

effectful data, in which data and effects are interleaved, rather than just monadically

wrapped data.

Although Fokkinga and Pardo work in the same effectful setting, Pardo transfers

more origami programming ideas from the pure setting to the effectful one than

Fokkinga does. In addition to defining the aforementioned monadic folds (catamor-

phisms), Pardo dualises them to give monadic unfolds (anamorphisms) for structuring

corecursive programs with monadic effects. He also defines monadic hylomorphisms

to support even more general ways of structuring monadic computations and

combining their results. Interestingly, monadic hylomorphisms do achieve some

interleaving of recursive calls to effectful computations with other computations,

but the computations they structure must still consume pure data. Pardo also

develops rules for fusing monadic programs structured using the monadic constructs

he defines.

Meijer & Jeuring (1995) further extend ideas of origami programming to the

effectful setting by developing a number of monadic fusion rules. Among these is a

new short cut fusion rule for eliminating (pure) intermediate structures of type fa

for regular functors f in a monadic context m. Jürgensen (2002) and Voigtländer

(2008) also define monadic fusion rules based on the uniqueness of the map from a

free monad to any other monad. Like the aforementioned recursion schemes, many

methods based on initial algebras for restricted classes of (pure) datatypes are in

fact generalisable to arbitrary inductive types. For example, Ghani & Johann (2009)

give a short cut fusion rule that can eliminate data structures of any (pure) inductive

type in any monadic context.

The work of Filinski & Støvring (2007) is undoubtedly the most closely related to

ours. As we do in this article, they give folds for datatypes with proper interleaving of

effects. They do so first considering the case of lazy datatypes, and then generalising

to datatypes that interleave monadic effects other than nontermination with pure

data. To first model the way laziness interleaves the possibility of nontermination

at any point in the production of a data structure, and then to model more general

interleavings of effects, Filinski and Støvring work in the specific category Cpo, and

with a specific grammar of what might be called “effectful regular functors” that

allow effects in recursive positions. Their principle of definition by rigid induction

amounts to the derivation of folds for minimal invariants for monads in Cpo. A

minimal invariant is a special case — in the specific setting of Cpo for the lifting

monad m and an effectful regular functor f — of the carrier of the initial f-and-

m-algebra, and Filinski and Støvring’s folds are special cases of our folds from



Definition 11. Such monadic folds differ from those of Fokkinga, Pardo, and Meijer

and Jeuring in that they derive from initiality in the category of f-and-m-algebras,

rather than from initiality of algebras in the Kleisli category for m under the

auspices of a distributive law for f and m. Because initial f-and-m-algebras properly

interleave effectful computations with the construction of pure data, so that effects

are actually an integral part of the data being processed rather than just wrapping

it, more general recursive patterns of effectful computation are possible.

Given the well-known relationship between folds and induction, it is perhaps

surprising that the papers preceding Filinski and Støvring’s do not derive induction

rules or other proof principles for effectful datatypes. Filinski and Støvring do,

however, give a principle of proof by rigid induction for such datatypes that is a

variant of those of both Lehmann & Smyth (1981) and Crole & Pitts (1992).

More generally, their development supports the same kind of reasoning principles,

again in the specific category and for the specific functors with which they work,

that we show arbitrary initial f-and-m-algebras to support. The results reported

in this article thus extend both the definitional principles of Filinksi and Støvring

for structuring recursion over effectful datatypes, and their proof principles for

reasoning about computations over such datatypes, to the general category-theoretic

setting and to arbitrary functors. Filinski and Støvring also give fusion rules for

effectful streams (although not for arbitrary effectful datatypes), and illustrate the

extension of relational reasoning to effectful datatypes. We consider neither fusion

rules nor relational reasoning here. Nevertheless, we see that this article generalises

previous extensions of the initial algebra methodology to the effectful setting in

three ways: it handles arbitrary functors, rather than special classes of functors;

it handles actual interleaving of effects and data, rather than just the wrapping of

pure results in effectful contexts; and it gives proof principles for reasoning about

interleaved effectful computations, rather than just constructs for structuring those

computations.

9.2 Future work

The monadic induction schemes supported by Filinski and Støvring, and generalised

here, give one way to reason about effect-interleaved data. The ‘fast and loose’

reasoning advocated by Danielsson et al. (2006) is another. Using a logical relations

style relation to relate total and non-total semantics of programs, Danielsson et al.

show that programmers can reason about programs as though they were written in

a total language and expect, in certain cases, to carry the results over to non-total

languages. It would be useful from both practical and theoretical viewpoints to

know if this kind of ‘morally correct’ reasoning can be extended to effects other

than just nontermination. Indeed, while in this paper we have looked at reasoning

principles that are valid for all monads m, including nontermination, it would

be interesting to investigate what properties of pure data carry over to effectful

data in the presence of monads with specific properties. For instance, the equation

eLength (eAppend xs ys) = eLength (eAppend ys xs), for a suitable definition of

eLength , is not valid in the presence of effects described by an arbitrary monad m,



but is valid if m is commutative. By considering specific classes of monads, it may be

possible to formulate specialised variants of Proof Principle 2.

In this article we have concentrated on demonstrating the utility of initial f-and-

m-algebras for definition and reasoning, but we have not yet explored the potential

for additional theoretical development of f-and-m-algebras. Fusion laws and other

derived properties of initial f-and-m-algebras, extending the work of Filinski and

Støvring that we mentioned above from streams to arbitrary interleaved data types,

are the most obvious avenue for future work. A further line of future work lies in

deeper investigation of the categorical properties of the category of f-and-m-algebras.

In the present work, we constructed the category of f-and-m-algebras and showed

that it had initial objects from first principles, while in Atkey et al.’s previous

work (Atkey et al., 2012), this was demonstrated by constructing an adjunction

between the category of f-and-m-algebras and the category of (f ◦ m)-algebras. An

anonymous reviewer has pointed out the interesting property that the category of

f-and-m-algebras is isomorphic to the category of ((FreeM f)+m)-Eilenberg–Moore

algebras, showing that the monad coproduct construction in Section 8 has a deeper

significance. Further investigation of this kind of characterisation may lead to yet

higher-level tools for defining and reasoning about programs that interleave pure

data with effects.
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A Proof of Theorem 4

Theorem 4

Let (f, fmapf) be a functor, and (m, fmapm, returnm, joinm) be a monad. If we have

an initial (f ◦ m)-algebra (μ(f ◦ m), in), then m (μ(f ◦ m)) is the carrier of an initial

f-and-m-algebra.

Proof

The f-algebra and m-Eilenberg–Moore-algebra structure are constructed from the

(f ◦m)-algebra structure map in and the structure of the monad m. For the f-algebra

component, we use the composite:

inf = returnm ◦ in :: f (m (μ(f ◦ m)))→ m (μ(f ◦ m))

The m-Eilenberg–Moore-algebra component is straightforward, using the free m-

Eilenberg–Moore-algebra construction from Section 5.1:

inm = joinm :: m (m (μ(f ◦ m)))→ m (μ(f ◦ m))

Since we have used the free m-Eilenberg–Moore-algebra construction, we are

automatically guaranteed that we have an m-Eilenberg–Moore-algebra.

Now let us assume we are given an f-and-m-algebra (a, k, l). We construct, and

prove unique, an f-and-m-algebra homomorphism h from the algebra (m (μ(f ◦
m)), inf, inm) to the algebra with carrier a using the initiality of μ(f ◦ m):

h = l ◦ fmapm �k ◦ fmapf l� :: m (μ(f ◦ m))→ a



Close inspection of h reveals that it has the same structure as the definition of

eAppend in terms of initial f-algebras we gave at the start of Section 4, where

l = joinm. Therefore, as we noted in the introduction to Section 7.1, the construction

we are building here abstracts out the common parts of proofs and definitions on

effectful datatypes.

To complete our proof, we now need to demonstrate that h is an f-and-m-algebra

homomorphism, and that it is the unique such. We split this task into three steps:

1. The function h is an f-algebra homomorphism. We reason as follows:

h ◦ inf

= {definitions of h and inf }
l ◦ fmapm �k ◦ fmapf l� ◦ returnm ◦ in

= {naturality of returnm (Equation (8))}
l ◦ returnm ◦ �k ◦ fmapf l� ◦ in

= {l is an m-Eilenberg–Moore-algebra (Equation (20))}
�k ◦ fmapf l� ◦ in

= {�−� is an (f ◦ m)-algebra homomorphism (Equation (3))}
k ◦ fmapf l ◦ fmapf (fmapm �k ◦ fmapf l�)

=
{
fmapf preserves function composition (Equation (2))

}
k ◦ fmapf (l ◦ fmapm �k ◦ fmapf l�)

= {definition of h}
k ◦ fmapf h

2. The function h is an m-Eilenberg–Moore-algebra homomorphism, as shown

by the following steps:

h ◦ inm

= {definitions of h and inm}
l ◦ fmapm �k ◦ fmapf l� ◦ joinm

= {naturality of joinm (Equation (9))}
l ◦ joinm ◦ fmapm (fmapm �k ◦ fmapf l�)

= {l is an m-Eilenberg–Moore algebra (Equation (21))}
l ◦ fmapm l ◦ fmapm (fmapm �k ◦ fmapf l�)

= {fmapm preserves function composition (Equation (2))}
l ◦ fmapm (l ◦ fmapm �k ◦ fmapf l�)

= {definition of h}
l ◦ fmapm h

3. The function h is the unique such f-and-m-algebra homomorphism. Let us

assume that there exists another f-and-m-algebra homomorphism h′ :: m (μ(f◦
m)) → a. We aim to show that h = h′. We first observe that the following

function defined by composition:

h′ ◦ returnm :: μ(f ◦ m)→ a



is an (f ◦ m)-algebra homomorphism from (μ(f ◦ m), in) to (a, k ◦ fmapf l), as

verified by the following steps:

h′ ◦ returnm ◦ in

= {definition of inf}
h′ ◦ inf

= {h′ is an f-and-m-algebra homomorphism}
k ◦ fmapf h′

= {monad law: joinm ◦ fmapm returnm = id (Equation (6))}
k ◦ fmapf (h′ ◦ joinm ◦ fmapm returnm)

= {h′ is an m-Eilenberg–Moore-algebra homomorphism (Equation (22))}
k ◦ fmapf (l ◦ fmapm h′ ◦ fmapm returnm)

=
{
fmapf preserves function composition (Equation (2))

}
k ◦ fmapf l ◦ fmapf (fmapm (h′ ◦ returnm))

Thus, by the uniqueness of (f ◦ m)-algebra homomorphisms out of μ(f ◦ m),

we have proved that

h′ ◦ returnm = �k ◦ fmapf l� (A 1)

We now use this equation to prove that h = h′ by the following steps:

h

= {definition of h}
l ◦ fmapm �k ◦ fmapf l�

= {Equation (A 1)}
l ◦ fmapm (h′ ◦ returnm)

= {fmapm preserves function composition (Equation (2))}
l ◦ fmapm h′ ◦ fmapm returnm

= {h′ is an m-Eilenberg–Moore-algebra homomorphism (Equation (22))}
h′ ◦ joinm ◦ fmapm returnm

= {monad law: joinm ◦ fmapm returnm = id}
h′

Thus h is the unique f-and-m-algebra homomorphism from m (μ(f ◦ m)) to a.

�




