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Since the introduction of the Hodgkin-Huxley equations, used to describe the ex-

citation of neurons, the Nernst equilibria for individual ion channels have assumed

to be constant in time. Recent biological recordings call into question the validity of

this assumption. Very little theoretical work has been done to address the issue of

accounting for these non-static Nernst equilibria using the Hodgkin-Huxley formal-

ism. This body of work incorporates non-static Nernst equilibria into the generalized

Hodgkin-Huxley formalism by considering the �rst-order e�ects of the Nernst equa-

tion. It is further demonstrated that these e�ects are likely dominate in neurons with

diameters much smaller than that of the squid giant axon and permeate important

information processing regions of the brain such as the hippocampus. Particular re-

sults of interest include single-cell bursting due to the interplay of spatially separated

neurons, pattern formation via spiral waves within a soliton-like regime, and quanti�-

able shifts in the multifractality of hippocampal neurons under the administration of

various drugs at varying dosages. This work provides a new perspective on the vari-

ability of Nernst equilibria and demonstrates its utility in areas such as pharmacology

and information processing.
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CHAPTER I

INTRODUCTION

Much of the current neurocomputational literature, including research related to

neural networks, has failed to accurately account for intrinsic feedback mechanisms

working to counteract charge depletion within the smaller diameter neurons. Such

neurons are prevalent across regions of the brain that are responsible for the processing

of information and the conversion of short-term memory to long-term memory. More

recent studies have attempted to better incorporate these feedback mechanisms within

theoretical models of neural activity [CUZ+09,UJBS09,DZ11,BC11,For13], however

no e�ort has been made to include these mechanisms in a continuous network of

neural activity or to generalize these mechanisms to non ion speci�c conductive-based

models.

Single-cell models which do try and account for these mechanisms are useful only

for one or two particular types of neurons; for which modeling requires intimate

knowledge of the ionic channels embedded within the cellular membrane. More phys-

iologically accurate techniques require additional time-dependent equations and eat

up valuable computation time. Before investigating the role that these mechanisms

play in continuous networks, an e�ective description is needed as an alternative to

the current leading procedures and techniques. One such reduction, presented in

Chp. II, allows for computationally e�cient neurosynaptic networks to be modeled

while incorporating these mechanisms.
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For single-cell models, the general electrical dynamics are well understood through

phase-plane analysis. However for network models a similar approach does not yet

exist, making the identi�cation of network bifurcation points di�cult [NC13]. Ob-

serving the phase-plane dynamics in constituent cells may provide some temporal and

spatial resolution for when and where the network bifurcations could occur. Bifur-

cation points provide parametric thresholds for when a network changes behavior.

Network bifurcations within the brain could be pathological, such as the trigger for

an epileptic seizure, or physiological, such as accessing memory or forming a thought.

Investigating these network transitions would allow us to better understand how these

processes take place in the brain, leading to the prevention of seizures or even diseases

such as Alzheimer's.

This work addresses both discrete and continuous networks. In discrete networks

synaptic coupling is modeled as a delayed external potential di�erence and the fo-

cal point of electrical activity is the cell's nucleus (soma). The potential di�erence

is assumed uniform along the axon, and the propagation is assumed instantaneous

[vVH01]. Therefore, the cell's nucleus is directly a�ected by the incoming synaptic

currents. Continuous networks allow for neural media to be treated using reaction-

di�usion theory and little di�erence is made between soma, dendrite, axon, and

synapse. Instead the media is treated as a medium for signal propagation and varia-

tion along this medium are accounted for by functions of space and time. Continuous

networks allow for the propagation which discrete networks assume to be instanta-

neous. Both approaches are valid depending on the problem domain and an e�ort

has been made to account for both where possible.
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The region of the brain believed to have a dominant impact on memory and spatial

reasoning is the hippocampus. Electrical signals within the hippocampus travel along

the trisynaptic pathway which terminates at the subiculum. The subiculum is the

main output of the hippocampus and is believed to be responsible for switching on

and o� circuitry located elsewhere in the brain. The subiculum's ability to transition

between single �ring and network bursting is believed to be critical to its functionality

[O'M05]. Network bursting is discussed in greater detail within Sec. 2.1 of Chp. II,

and the pertinent anatomy of the hippocampus is provided in Sec. 3.1 of Chp. III.

The sections which follow for this chapter help to provide a su�cient theoretical

background for understanding what is most relevant to this work. In Sec. 1.1 the

physics of the phospholipid bilayer is presented and discussed. An introduction to

these topics helps in making sense of the Hodgkin-Huxley equations for membrane

excitation. Sec. 1.2 deals with the probability for an ionic channel to be open or

closed. The net membrane dynamics relies heavily on the precise timing of the ion

channel's gating dynamics. Sec. 1.3 introduces the Hodgkin-Huxley equations for the

squid giant axon. A familiarity with these equations and there origin is necessary

for deriving the �rst-order reduction in Chp. II, which is fundamental to this work

as a whole. Sec. 1.4 provides a short introduction to phase-space and bifurcation

analysis for single neurons. Such terminology presented within this section is critical

to understanding the soliton-like regime which is discussed often throughout Chp. II

and Chp. III.

1.1 Excitable Bilayers

Fig. 1 depicts the membrane of an excitable cell. A chain of excitable cells allows

for electrical signals to propagate within our central and peripheral nervous system.
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The membrane is made up of a phospholipid bilayer and voltage-gated ion channels.

The ion channels are embedded within the lipid-bilayer and �uctuate between open

and closed states. The state of the ion channel a�ects the channel's conductance and

how easily ions �ow across the membrane.

Ions may accumulate on the extra- or intracellular membrane surfaces, forming

potential gradients across the membrane. Ion channels open and close to relieve stress

caused by these concentration gradients. At rest, the potential di�erence across the

cellular membrane, due to a particular ion's concentration gradient, is referred to as

its Nernst potential. Each ion channel has a unique Nernst potential depending on

the external and internal ion concentrations.

Ion channels are also very selective for one particular ion. In order for multiple

ion species to transverse into and out of the intracellular space a unique ion channel

is required for each species of ion. Ions may transverse the cell membrane either

passively or actively. Ion channels provide passive transport via di�usion and move

with the concentration gradient. Ion pumps provide active transport via Adenosine

Triphosphate (ATP) and move against the concentration gradient.

Distinct from passive and active transport, ion channels may have passive or active

conductances. An ion channel with a passive conductance is one where the channel

is in a permanent open state and therefore has a constant conductance. On the

other hand, active ion channels vary in conductance between measured maximum and

minimum values. Varying conductance values for an active ion channel is the result

of conformational changes in membrane proteins which are responsible for opening

and closing the channel. Therefore, the change in conductance is proportional to the

probability that a particular protein conformation is thermodynamically favored.
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Figure 1. The Excitable Cell Membrane. The majority of neurons found in the
brain are multipolar. Multipolar neurons consist of a cell body (soma), single axon,
and many dendrites. Each component of the multipolar neuron has an excitable cell
membrane. However, the ion channels embedded within these membranes vary from
component to component which a�ects the propagation of signals long the neuron as
a whole.

When thought of as an electrical component, the intracellular and extracellular

membrane surfaces make up two sides of a parallel plate capacitor. The net charge

which travels across the membrane, q, is then directly proportional to the potential

di�erence across the cell membrane, V , (Eq. 1.1). Here the coe�cient of proportion-

ality is referred to as the membrane's capacitance, C.

q = CV. (1.1)

The time variation of charge, q̇, is equivalent to the net current due to all the ion

channels, as well as any currents being applied to the membrane directly (Eq. 1.2).

5



Eq. 1.2 is a time-dependent equation for the trans-membrane potential di�erence, V ,

which is dependent upon the externally applied current, Iapp, and the current of each

ion channel, Ii, with the total number of ion channels being N .

C
dV

dt
= −

N∑
i=1

Ii + Iapp. (1.2)

By incorporating Ohm's law, Ii = Gi(V − Vi), Eq. 1.2 is condensed to Eq. 1.3.

C
dV

dt
= −Ge�(V − Veq) + Iapp, (1.3)

where the e�ective conductance Ge� and the equilibrium potential Veq are given by

Ge� =
N∑
i=1

Gi, (1.4)

Veq =
1

Ge�

N∑
i=1

GiVi, (1.5)

with Gi being the channel conductance of the ith ionic channel, and Vi being the

Nernst potential for the ith ionic channel.

1.2 Ion Channel Gating Dynamics

Active ion channels are ion channels with conductance values which vary in time.

Active ion channels have a much richer range of dynamics then passive ion channels

but this comes with a higher degree of complexity. Let's assume Ij, the jth ion channel
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within our {1, 2, ..., N} set of ion channels, has an active conductance characteristic.

Then the ion channel may either be in an open state or a closed state. Let P (no)

be the probability that the ion channel is in an open state and let P (nc) be the

probability that the ion channel is in a closed state. Also, let P (no → nc) be the

probability that an ion channel in an open state will change to a closed state and

P (nc → no) be the probability that an ion channel in a closed state will change to an

open state.

Using the law of conditional probability, P (no → nc)P (no) represents the decrease

in the probability of the channel being in an open state and P (nc → no)P (nc) rep-

resents the decrease in the probability of the channel being in a closed state. The

overall shift in the probability of an ion channel being in the open state, within an

in�nitesimal time, dt, is shown in Eq. 1.6.

d

dt
P (no) =

d

dt
[P (nc → no)P (nc)− P (no → nc)P (no)] . (1.6)

Common throughout literature and this work, Eq. 1.6 is simpli�ed to Eq. 1.7.

dn

dt
= α(1− n)− βn, (1.7)

where n is simply the probability of the ion channel to be in the open state, α is

the rate of moving from a closed to open state, and β is the rate of moving from

an open to closed state. Eq. 1.7 is referred to as a gating equation for the gating

variable n. The typical number of gating variables is two, one for channel activation

and another for channel inactivation. Channels with both activation and inactivation

are referred to as transient while channels with only activation are referred to as
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persistent. The forward and backward rates, α and β, in Eq. 1.7 are functions of the

trans-membrane potential, V , and are experimentally �t to a Boltzmann distribution

using the thermodynamic theory for ion channel activation.

1.3 The Hodgkin-Huxley Equations

In 1952 Alan Hodgkin and Andrew Huxley published a quantitative description of

nerve excitation [HH52]. In 1963 they were awarded the Nobel Prize in Physiology or

Medicine for their work. The Hodgkin-Huxley (HH) model includes three currents: an

active-persistent potassium current, an active-transient sodium current, and a passive

leakage current; represented by Eq. 1.8, Eq. 1.9, and Eq. 1.10 respectively.

IK = ḡKn
4 (V − VK) , (1.8)

INa = ḡNam
3h (V − VNa) , (1.9)

IL = ḡL (V − VL) , (1.10)

The gating variables (n, m, and h) from Eq. 1.8 and Eq. 1.9 have their own time-

dependent equations, namely Eq. 1.11, Eq. 1.12, and Eq. 1.13.

ṅ = αn(V )(1− n)− βn(V )n, (1.11)

ṁ = αm(V )(1−m)− βm(V )m, (1.12)

ḣ = αh(V )(1− h)− βh(V )h, (1.13)

The rate equations for each of the gating variables are given by Eq. 1.14 - Eq. 1.19;

where the trans-membrane potential, V , is given in millivolts.
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αn(V ) = 0.01(10− V )/ {exp ((10− V )/10)− 1} , (1.14)

βn(V ) = 0.125 exp (−V/80), (1.15)

αm(V ) = 0.1(25− V )/ {exp ((25− V )/10)− 1} , (1.16)

βm(V ) = 4 exp (−V/18), (1.17)

αh(V ) = 0.07 exp (−V/20), (1.18)

βh(V ) = 1/ {exp ((30− V )/10) + 1} . (1.19)

These equations, along with Eq. 1.3 in Sec. 1.1 make up the Hodgkin-Huxley equations

used to describe electrical activity in the squid giant axon. All constant parameter

values are listed in table 1.

Table 1. Parameters for the Hodgkin-Huxley Equations. This table includes the
membrane capacitance, Nernst potentials, and maximum channel conductance values.
The values and units for each are given on the right-hand side.

Parameter Value
C 1 µF/cm2

VK −12 mV
VNa 120 mV
VL 10.6 mV
ḡK 36 mS/cm2

ḡNa 120 mS/cm2

ḡL 0.3 mS/cm2

Fig. 2 shows the single-cell dynamics for the HH equations when a depolarizing

external current is applied brie�y at the four millisecond mark. The external stimula-

tion is shown in Fig. 2:A and is labeled depolarization. After this brief stimulation we

can see the cell activate. The cell's activation period is characterized by an increase in

9



the m and n channel activation variables and a decrease in the h channel deactivation

variable, Fig. 2:B. The activation region is shown in Fig. 2:A and is labeled as the

upstroke of the action potential.

0 5 10 15 20

−20

0

20

40

60

80

100

120

V
(m

V
)

Time (ms)
0 5 10 15 20

0

0.5

1

n
,
m
,
h

Time (ms)

0 5 10 15 20
−1000

−500

0

500

1000

I N
a
,I

K
(µ

A
/c
m

2
)

Time (ms)
0 5 10 15 20

−5

0

5

10

15

20

25

30

G
N
a
,G

K
(m

S
)

Time (ms)

(C)

(A) (B)

(D)

Upstroke

Depolarization After−hyperpolarization

h(t)

n(t)

m(t)

GNa(t)

GK(t)

I
K
(t)

I
Na

(t)

Repolarization

Figure 2. Hodgkin-Huxley Cell Excitation Event. A: Typical, single-cell, action
potential with depolarization, upstroke, repolarization, and after-hyperpolarization
regions indicated. B: Time dynamics of the potassium activation variable n, sodium
activation variable m, and sodium in-activation variable h. C: Time dynamics of the
inward sodium current (cyan), outward potassium current (red), and net ionic current
(gray). D: Fast sodium conductance (cyan), and slower potassium conductance (red).

During cell activation, a fast jump in sodium conductivity can be observed,

Fig. 2:D. This results in an inward sodium current, Fig. 2:C. This is followed by

a much slower increase in potassium conductance, Fig. 2:D, and an outward potas-

sium current which works to normalize the cellular membrane, Fig. 2:C. This out-

ward potassium current works to deactivate the cellular membrane. This is shown

in Fig. 2:A and is labeled as the repolarization of the action potential. Due to the

slow nature of the outward potassium current there is also a region of time where
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the membrane undershoots the equilibrium value. This is shown in Fig. 2:A and is

labeled as the after-hyperpolarization of the membrane action potential.

Since its inception, the HH model has been extensively studied. Krinskii and

Kokoz were able to reduce the HH model from four-equations to two-equations by

assuming that sodium activates instantaneously (i.e. m = m∞(V )) and that the n

and h gating variables are symmetric [KK73]. In 1961 Fitzhugh published his work

on projecting the four dimensional HH phase-space to a two-dimensional phase-space

[Fit61]. His work was pivotal to establishing the dynamical systems interpretation

of modern computational neuroscience. In 1981 Catherine Morris and Harold Lecar

employed the HH formalism when modeling barnacle muscle �ber [ML81]. Their work

demonstrated the utility of symmetric α and β rates when modeling non-inactivating

ion channels [LEL75]. In recent years phenomenological spiking models have been

used to reduce the HH-like equations even further, an excellent review is given by

Izhikevich [Izh04].

1.4 Phase-Space and Bifurcation Analysis

In this section the terminology for bifurcations in phase-space is presented with

treatment given to the Andronov-Hopf bifurcation. The Andronov-Hopf bifurcation

is the fundamental bifurcation which is explored in Chp. II and is responsible for

single-cell bursting as a result of communication between spatially distant neurons.

Many of the methods within this section are applied to the Morris-Lecar equations

for cell excitation. Morris-Lecar is the same model which is used in Chp. II. However,

these mathematical concepts and methods also apply to other dynamical systems with

ease. The Morris-Lecar (ML) equations include an active-persistent calcium current,

active-persistent potassium current, and a passive leakage current and was used to
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model the barnacle giant muscle �ber [ML81]. The system of equations is shown in

Eq. 1.20 - Eq. 1.21.

CV̇ = −Ge�(V,W ) [V − Veq(V,W )] + Iapp, (1.20)

Ẇ = (W∞(V )−W ) /τW (V ), (1.21)

where the auxiliary equations are listed in Eq. 1.22 - Eq. 1.26 and the parameter

values are in table 2.

Ge�(V,W ) = ḡCaM∞(V ) + ḡKW + ḡL, (1.22)

Veq(V,W ) = (ḡCaM∞(V )Vca + ḡKWVK + ḡLVL) /Ge�, (1.23)

M∞(V ) =
1

2

(
1 + tanh

[
V + 1.2

18

])
, (1.24)

W∞(V ) =
1

2

(
1 + tanh

[
V − 2

30

])
, (1.25)

τW (V ) =
1

0.04
sech

(
V − 2

30

)
. (1.26)

Fig. 3 shows a single excitation event using the ML model, this is similar to what was

shown in Fig. 2 for the Hodgkin-Huxley model. In addition, a phase-space diagram

for the action potential, presented in Fig. 3, is shown in Fig. 4.

The phase-space diagram is generated simply by plotting the two state variables

(V and W ) against one another. The green and red lines indicate the V and W

nullclines, respectively. A nullcline is the trajectory in phase-space where the time

derivative for the state variable is zero. The intersection of the V and W nullclines

de�nes an equilibrium point for the dynamical system. When the system is at equi-

librium neither state variable changes with respect to time, and therefore the cellular
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membrane remains in a resting state where the net ionic current across the membrane

is zero and the transmembrane potential equals the average Nernst potential.

Table 2. Parameters for the Morris-Lecar Equations. This table includes the mem-
brane capacitance, Nernst potentials, and maximum channel conductance values. The
values and units for each are given on the right-hand side.

Parameter Value
C 20 µF/cm2

VK −84 mV
VCa 130 mV
VL −60 mV
ḡK 8 mS/cm2

ḡCa 4.4 mS/cm2

ḡL 2 mS/cm2
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Figure 3. Morris-Lecar Cell Excitation Event. The indicators and coloring conven-
tions are equivalent to those presented with Figure 2 for the Hodgkin-Huxley model.

Given any point in phase-space there exists a unique trajectory for the system to

follow. The electrical potential pro�le in Fig. 3 is the result of following the circular
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trajectory in Fig. 4. At any point in phase-space the direction is given by the vector

(V̇ , Ẇ ). The collection of (V̇ , Ẇ ) vectors is known as a direction �eld. The direction

�eld in phase-space is greatly in�uenced by the stability of equilibria, such as the one

indicated in Fig. 3 where the nullclines intersect. When the stability of an equilibrium

point changes, or the equilibrium point disappears, it a�ects the direction �eld and

corresponding system trajectory.
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Figure 4. Phase-Space for the Morris-Lecar Model. This �gure depicts one excitation
event using the standard parameter set presented in Table 2.

When an equilibrium point disappears the direction �eld undergoes a transition

know as a Saddle-Node bifurcation. Likewise, when an equilibrium point loses stability

the direction �eld undergoes a transition known as an Andronov-Hopf bifurcation.

The loss of stability is quanti�ed by completely imaginary eigenvalues in the linear

system localized to the equilibrium point. This local equivalency in the neighborhood

of an equilibrium point is known as the Hartman-Grobman theorem [HI97].
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Because of this local equivalency there exists a unique linear system for each

equilibrium point in phase-space which is equivalent to the nonlinear system localize

at that point. For ML, the non-linear system is given in Eq. 1.27 and Eq. 1.28, where

f(V,W ) and g(V,W ) are set by solving Eq. 1.20 and Eq. 1.21 for V̇ and Ẇ .

V̇ = f(V,W ) (1.27)

Ẇ = g(V,W ). (1.28)

The linear system for approximating the non-linear system of equations, Eq. 1.27 and

Eq. 1.28, is given in matrix form in Eq. 1.29 and follows directly by performing a

Taylor expansion around the equilibrium point (V0, W0).

 V̇

Ẇ

 ≈
 ∂f

∂V
∂f
∂W

∂g
∂V

∂g
∂W


 V − V0

W −W0

 . (1.29)

The eigenvalues for the equilibrium point in Fig. 4, (V0, W0), are −0.082 ± 0.016i.

If we apply a current density, Iapp, of 95 µA/cm2 to the cell membrane the system's

nullclines shift and the eigenvalues of the equilibrium point change to 0.021± 0.070i.

The change in sign of the real-part of the eigenvalues indicates that there exists

a value for Iapp between 0 µA/cm2 and 95 µA/cm2 which will cause the eigenvalues

of the equilibrium point to be purely imaginary. This point corresponds to the bi-

furcation point and the loss in stability for the equilibrium point. This occurs when

Iapp = 88.559 µA/cm2.
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Figure 5. Morris-Lecar Bifurcation Event. Using the applied current as a bifurcation
parameter the eigenvalues for the linearized system, localized to the bifurcation point
(V0, W0), become purely imaginary when the equilibrium point loses stability. This
�gure demonstrates continuous excitation events following the loss in equilibrium
stability.

The change to purely imaginary eigenvalues is indicative of an Andronov-Hopf

bifurcation over the injected current parameter, Iapp. The new cell behavior, when

the equilibrium point is unstable, is depicted is Fig. 5. The continuous �ring pattern

of the cell in Fig. 5 is referred to as a stable limit-cycle in phase-space. In the vicinity

of this bifurcation point an unstable limit-cycle also exists.

1.5 Summary and Outline

Many fundamental theoretical concepts and procedures have been presented in

this chapter. In Sec. 1.1 the excitable cellular membrane was introduced along with

a discussion on ionic channels. Ohm's law and Kirchho�'s current law are used to

construct the fundamental framework upon which the Hodgkin-Huxley equations were

built. In Sec. 1.2 the thermodynamics for the open and closed states of ion channels
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was considered using the principle of detailed balance and time-dependent equations

were derived which allow for the transitions between these states to be modeled. In

Sec. 1.3 the Hodgkin-Huxley equations were introduced, building upon the topics

discussed in the previous sections. In Sec. 1.4 the Morris-Lecar model is presented

along with methods for identifying bifurcations points in phase-space.

Chapter. II builds heavily upon the topics introduced in this chapter. In Chap-

ter. II the unstable limit-cycle for the Andronov-Hopf bifurcation discussed in Sec. 1.4

is employed within a continuous network of neurons to demonstrate single-cell burst-

ing as a result of communication between spatially separated neurons. The bifurcation

dynamics are detailed to a �ner degree of accuracy and a derivation of the soliton-like

regime for the Fitzhugh-Nagumo model is presented. The soliton-like regime is of

particular interest due to the unique network dynamics taking place within the vicin-

ity of an Andronov-Hopf bifurcation for the constituent cells making up the network.

In Sec. 1.4 the bifurcation parameter was the applied current. However, in Chap-

ter. II the bifurcation parameter will be the shift in the Nernst equilibria for the ionic

channels making up the membrane. This is a critical conceptual shift and is a detail

that should be established �rst and foremost when reading through Chapter. II.
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CHAPTER II

BURSTING REGIMES IN A REACTION-DIFFUSION SYSTEM WITH ACTION

POTENTIAL-DEPENDENT EQUILIBRIUM

Understanding neural activity is an endeavor spanning several decades of research.

Promising advances have been made in modeling both individual neurons as well as

the combination of neurons making up a network. The goal of such work is to under-

stand how our brains store and access information through identifying the internal

and external factors which play important roles in these processes. In particular, syn-

chronization of the electrical disturbances in neurons, or action potentials, is believed

to play a crucial role in memory formation [AMF+06a].

By introducing additional nonlinearities to the governing equations, a strong

tedency toward synchronization in one-dimensional cables was previously observed

within the �soliton-like regime� of the Fitzhugh-Nagumo model [AM97]. Such exam-

ples of synchronization within simple two-variable systems are of great interest for

studying memory formation, and in this paper we present a physiologically-motivated

modi�cation to a similar two-variable system: the Morris-Lecar model [ML81,LEL75],

which represents a reduced system based on the Hodgkin-Huxley model [HH52], em-

perically obtained to describe the voltage dynamics in the squid giant axon.

Recently, Gonzalez-Perez and collaboroators [GPBM+14] presented an experi-

mental study on the behavior of action potential propagation within invertebrates

in which it was shown that contrary some well-known predictions of the Hodgkin-

Huxley model, it is possible for action potential pulses to �pass through� each other
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instead of annihilating upon contact. This soliton-like behavior motivated the au-

thors to abandon a description of their results in terms of Hodgkin-Huxley-like mod-

els and employ a model for action potentials in terms of soliton-like sound pulses

[GPBM+14]. The authors did concede, however, that certain results [AM97] sug-

gest Hodgkin-Huxley-like models could support such soliton-like behavior with suit-

able modi�cations to parameters. The present work serves as a bridge between re-

cent experimental studies [GPBM+14] and well-known theoretical results involving

these soliton-like regimes [AM99,AM97] by demonstrating how the soliton-like regime

emerges within the Morris-Lecar model when leading-order e�ects due to small cell

size are included.

While the Morris-Lecar model is used as a particular example, the main goal

of this paper is to explore a technique for incorporating voltage-dependent Nernst

potentials into Hodgkin-Huxley-like models. The observation that a variable Nernst

potential a�ects ionic relaxation times has been stated previously by Cressman et al

[CUZ+09]. Due to the very small size of brain axons, the cellular Nernst equilibrium

potential is expected change in response to considerable intracellular charge depletion

[PB07]. Here, we wish to account for this e�ect in neurons with radii several orders

of magnitude smaller than that of the squid giant axon. Within this size regime,

intracellular charge depletion becomes signi�cant. Accounting for intracellular charge

depletion also helps to quantify variations in cell size due to cell swelling which has

been observed during epileptic seizures [CUZ+09].

The chapter is organized as follows: Section 2.1 provides context for the work,

containing a brief overview of Hodgkin-Huxley-like, reaction-di�usion models, as well

as a discussion of neuronal bursting and how our approach enables us to investigate
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this phenomenon. A scheme for incorporating a voltage-dependent Nernst potential

into models derivable from the Hodgkin-Huxley system is proposed in Section 2.2, and

an explicit implementation in the Morris-Lecar model is presented with a discussion of

some of the immediate consequences of this generalization. Detailed results from these

investigations are reported in Section 2.3. Finally, the conclusions and discussion are

contained in Section 2.5.

2.1 Background

Memory formation [AMF+06b] and memory retention have been linked to neural

synchronization since the introduction of the �binding problem," [M.74] which con-

cerns how the brain constructs e�ective equivalence classes of objects deemed �simi-

lar.� Support for the link between memory and neural synchronization has strength-

ened over the years, but the exact spatio-temporal dynamics and phase-locking char-

acteristics have yet to be realized are expected to be extremely complex. The system

is quite delicate, as deviations from physiologically acceptable conditions can result

in memory distortion or impairment [BW01]. Understanding how these networks

can erode in time will help in developing proactive measures to prevent irreversible

network damage.

When building successful models, it is imperative to understand the fundamen-

tal constituents in great detail. Regarding electrical activity in the brain, the basic

building blocks are excitable cells. Hodgkin and Huxley [HH52] pioneered signi�cant

progress in this realm with the introduction of a semi-empirical set of di�erential

equations describing the voltage dynamics in a squid giant axon. The essential ingre-

dients for generating an action potential in a single, excitable cell are a fast inward

ionic current followed by a slower outward ionic current. Additional physical currents
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may also exist, but the key feature is a �lumping� of the dominant currents into �fast�

and �slow� groups. This qualitative grouping of many di�erent physical processes into

two groups is the basis for many of the two-variable systems which were later intro-

duced as qualitatively similar models [ML81,PR94,Fit61] whose technical simplicity

allowed for sophisticated mathematical analysis.

There are many di�erent techniques for extracting a short list of rules from the

di�erential equations governing single neurons which can be applied to a neural net-

work representation such as a cellular automata [GdADM10] or mean-�eld model

[Tre93]. In retaining the full range of single-cell dynamics one must choose between a

discrete network representation or a continuous network representation via reaction-

di�usion theory. Reaction-di�usion systems provide a universal network structure

upon which one may unambiguously investigate various neural coupling strengths via

di�erent di�usion pro�les. Discrete networks provide a much wider array of possible

network structures, and this may naturally result in structurally-dependent coupling

pro�les. However, it should be noted that, when discretized for numerical simulation,

continuous reaction-di�usion systems are nothing more than special cases of discrete

networks, and the distinction between the two becomes less apparent. In the present

work, the focus will be in exploring the predictions of the continuum limit through

numerical work involving a discrete representation of a continuous system.

Network instabilities and abnormalities are thought to be critical features in any

detailed explanation of mental diseases such as epilepsy and Alzheimer's disease.

Research into seizure activity [UJBS09] suggests that the slight variations of cellular

resting potentials due to changes in ionic concentrations during excitation events have
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observable consequences which are not predicted by conventional models employing

static Nernst potentials.

2.1.1 E�ects of Small Diameter Neurons

Conventional Hodgkin-Huxley like single cell models assume that the intracellular

and extracellular ion concentrations act as charge reservoirs [HH52]. As a result,

there is never a net loss or gain in ions across the membrane boundry and the Nernst

potentials remain constant over the span of many excitation events.

To investigate this assumption let's begin with the following conservation law,

Eq. 2.1 (adapted from Cressman et. al [CUZ+09]).

∆ciVoli = −∆coVolo. (2.1)

Here ∆ci is the change in concentration of intracellular ions, Voli is the volume of

intracellular space, ∆co is the change in concentration of extracellular ions, and Volo

is the volume of extracellular space.

�I� from the Hodgkin-Huxley equations is the current density across the mem-

brane. Therefore, if A is the surface area of the membrane, itot = IA is the total

current �owing into the cell. After some ∆t has elapsed the change to the amount of

intracellular charge would be equal to ∆Q = itot∆t. The number of ions entering the

cell is then ∆N = ∆Q/q, where q is the elementry charge unit. The number concen-

tration of ions is then ∆N/Voli. Which, when using Avogadro's number Na, may be

converted to the molar concentration ∆ci = ∆N/(NaVoli). The rate of change in the

intracellular ion concentration is then equal to Eq. 2.2.
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∆ci
∆t

=

(
I

qNa

)
A

Voli
. (2.2)

Eq. 2.2 shows why the original assumption that intracellular and extracellular space

act as charge reservoirs was vaild for cells with small surface-to-volume ratios (i.e.

A/Voli → 0). Although when considering small cell, like in the brain, the rate change

in ion concentration should not be ignored.

During the process of an action potential, charges move across the cell membrane

through ionic channels. If the fraction of total charge leaving the cell is substantial,

the cell becomes signi�cantly charge-depleted. For large-diameter axons this e�ect

is minimal. However, for smaller neurons such as those in the neocortex, this e�ect

may not be negligible. A substantial charge depletion would dramatically a�ect the

resting potential of the ionic channels [PB07]. We quantify charge depletion δ as the

ratio of surface charge to the amount of internal charge at some constant voltage. It

is useful to de�ne,

Qs = V C(πdL), (2.3)

Qi = F [M ]

(
πd2L

4

)
, (2.4)

δ = Qs/Qi = β(1/d), (2.5)

where V is the trans-membrane potential, Qs is the amount of charge stored on the

cell surface for a capacitance C (per unit area), Qi is the amount of intracellular

charge found for an ionic concentration density [M ], F is Faraday's constant, d is the

cell's diameter, L is the length of the cell, and β = (4V C)/(F [M ]). For simplicity,

we consider a cylindrical axon.
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The diameters of typical axons in the neocortex are roughly three orders of magni-

tude smaller than the diameter of the squid giant axon [KS09,DCB+11]. Therefore, δ

is not small and charge depletion cannot be neglected. To take this into consideration

we propose a method for introducing dynamical shifts in Nernst potential which are

functions of the instantaneous trans-membrane potential. While the cell membrane

may contain many di�erent ionic channels, we model the shift in the e�ective Nernst

potential of the entire membrane.

2.1.2 Nernst Potential Shift

Conventional modeling of neuronal excitation takes place on many di�erent lev-

els of detail [Izh04], from the physiologically-detailed and mathematically cumber-

some models [TWMM91,RGWB69] to the qualitatively accurate but mathematically

transparent systems [PR94,Fit61, Izh04]. A popular class of models is based on the

representation of the excitable cell as a circuit in which separate channels exist for

each important group of charge-carrying ions. A few well-known examples are the

Hodgkin-Huxley [HH52] and Morris-Lecar [ML81] models. The fundamental equa-

tion of any model representable as a circuit is conservation of charge, which may be

written as a di�erential equation for membrane potential V as [KS09],

CV̇ = −Ge�(V − Veq) + Iapp, (2.6)

where the e�ective conductance Ge� and the equilibrium membrane potential Veq are

given by
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Ge� =
N∑
i=1

Gi, (2.7)

Veq =
1

Ge�

N∑
i=1

GiVi, (2.8)

with Gi being the channel conductance of the ith ionic channel, N being the total

number of ionic channels embedded within the cell membrane, and Vi being the Nernst

potential for the ith ionic channel.

For passive channels Gi is a constant value, and the channel acts like a simple,

Ohmic resistor. When the ith ionic channel is active, Gi becomes a function of one

or more gating-variables, each of which depends on the membrane potential. The

quantity Ge� is the total conductance over all ionic channels, and Veq is the average

Nernst potential (weighted by channel conductance). In order for the Nernst potential

of a particular ionic channel to remain constant, the intracellular and extracellular ion

concentrations must not change by a signi�cant amount over the course of an action

potential (δ � 1). On the contrary, for substantial charge depletion, δ becomes on

the order of unity.

2.1.3 Conventional Morris-Lecar Model

This work incorporates the e�ects due to signi�cant charge depletion into the

two-variable Morris-Lecar model,

CV̇ = [−Ge�(V,W )(V − Veq(V,W ))] + Iapp(t), (2.9)

Ẇ = (W∞(V )−W )/τW (V ), (2.10)
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originally obtained from the study of barnacle muscle �bers. Here, V is the instan-

taneous membrane potential as before, W is a dimensionless gating variable cor-

responding to the inhibitory response of the potassium channel, and Iapp(t) is any

applied, stimulation current. In this two-variable system, the calcium dynamics are

assumed to act on such short timescales that the calcium channel instantaneously

�nds its voltage-dependent equilibrium state, so M∞(V ) has no intrinsic dynamics.

The potassium dynamics are modeled through the evolution of the dynamical gating

variable W . The explicit forms for the e�ective conductance, equilibrium potential

and other voltage-dependent functions are

Ge�(V,W ) = gCaM∞(V ) + gKW + gL, , (2.11)

Veq(V,W ) = (gCaM∞(V )VCa + gKWVK + gLVL)/Ge�, (2.12)

M∞(V ) =
1

2

(
1 + tanh

[
V − V1

V2

])
, (2.13)

W∞(V ) =
1

2

(
1 + tanh

[
V − V3

V4

])
, (2.14)

τW (V ) =
1

φ
sech

(
V − V3

2V4

)
. (2.15)

Typical values for the parameters are shown in Table. 3. Using these dimensions,

voltage is measured in mV and time in ms. The sodium gating variable, which acts

on very fast timescales is represented by the e�ective step-function, M∞(V ), and

posesses no intrinsic dynamics in the two-variable model. A typical action potential

due to a short stimulation current is shown in Fig. 6. asdf
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Table 3. Parameters for the Morris-Lecar Equations. These parameters were used for
the simulations discussed throughout Chapter II and appear in Eqs. 2.9-2.10.

Parameter Value
C 20 µF/cm2

φ 0.04
gCa 4.4 µS/cm2

gK 8 µS/cm2

gL 2 µS/cm2

VCa 130 mV
VK -84 mV
VL -60 mV
V1 -1.2 mV
V2 18 mV
V3 2 mV
V4 30 mV

2.1.4 Single-Cell Bursting

An action potential pulse train which is modulated by a slower applied current is

referred to as a bursting event. Bursting allows for neurotransmitter concentrations

to reach levels above that of simple action potential pulse trains [WLL+12] and is a

critical component to many cellular networks [NHCG98,LYL+12].

Several types of bursting have been demonstrated in the Morris-Lecar model using

Eq. 2.16 as a slow (ε� 1) external current to modulate the signal's pulse train [DZ11].

dIapp
dt

= ε (V0 − V ) . (2.16)

Recent studies support both pathological [CUZ+09] and physiological [For13]

forms of bursting, as well as single-cell [For14] and network [RFT+08] bursting.
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Figure 6. Action Potential Shape within the Morris Lecar Model. A stimulus is
applied to the resting cell at t = 400ms. Corresponding behavior of recovery variable
W (t) is shown in the inset.

It is likely that the role bursting plays within a particular system is highly de-

pendent on where that system is located in the brain. Even though experimentally

recorded bursting can be easily related to autogenerative regimes in the big nerves, the

mechanisms for bursting in the networks of small brain axons are not well understood.

2.1.5 Discrete and Continuous Networks

Neurons �ring in isolation are unable to transmit vital signals within the brain.

Network models allow for the electrical activity of one neuron to act as an external

input for another neuron. This helps to model the transmission of electrical signals

traveling around the brain. Neurons within the brain are multipolar in structure

with multiple electrical inputs and outputs. Fig. 8 is a schematic of two connected

multipolar neurons.
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Figure 7. Bursting within the Rodent Brain. Experimental recorded bursting patterns
for a single neuron within the rodent trigeminal nerve presented by Negro et. al
[NHCG98].

The typical components of a neuron include the dendrites, the cell body (or soma),

the axon, and the synapses. For multipolar neurons, these components are structured

from left to right in Fig. 8.

21

Figure 8. Two Connected Multipolar Neurons. Neurons in the brain are heavily
branched and interconnected. In addition, the connections between neurons are sub-
ject to synaptic plasticity and may change over time due to long-term potentiation.

All four of these compartments are modeled using the Hodgkin-Huxley formalism.

This was demonstrated in 1991 for the CA1/CA3 hippocampal neurons by Traub
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et. al [TWMM91]. The number of HH-like equations needed to represent a single

pyramidal neuron in the CA1/CA3 hippocampal region is nineteen.

It is quite di�cult to perform phase-plane analysis on a nonlinear system this

large. As a result, in 1994 Pinsky and Rinzel derived a reduced system of two equa-

tions, maintaining all the relevant phase-plane dynamics found in Traub's model

[PR94]. This reduction is more applicable to exact phase-plane solutions and allows

for network models which are more computationally e�cient.

The biological connection between two neurons takes place within a region known

as the synaptic cleft. The synapse of a presynaptic cell and the dendrite of a postsy-

naptic cell make up two ends of the cleft. Neurotransmitters originate at the presy-

naptic cell's synapse, locally di�use through the media, and are collected by the

postsynaptic cell's dendrite. These ions then work to excite the postsynaptic cell.

If the excitation within the postsynaptic cell is large enough to elicit a propagating

action potential the process repeats itself and the signal is transmitted. In the case

of discrete networks, the synaptic input, Eq. 2.17, is added to the applied current,

Iapp, in Eq. 1.2.

Isyn = −
N∑
i

Gi(∆t) (V − Vi) . (2.17)

Eq. 2.17 is similar to the current generated by an active ion channel but the con-

ductance has a di�erent functional dependence. The conductance for the synaptic

current is dependent upon the amount of time which has elapsed since the last �ring

event of the presynaptic neuron, where the neurotransmitter originates. This ap-
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proach assumes that the neurotransmitter di�uses across the synaptic cleft within a

set amount of time. This is modeled this using Eq. 2.18.

Gi(∆t) = ḡif(∆t). (2.18)

The conductance is distributed over time based upon the di�usive rate of the neuro-

transmitter, Eq. 2.19.

f(∆t) =
1

τ1 − τ2

(
e
−∆t
τ1 − e−

∆t
τ2

)
H(∆t). (2.19)

In Eq. 2.19, H(∆t) is the Heaviside function and ensures that the conductance is zero

if the presynaptic neuron has yet to �re. The peak and spread of the distribution,

f(∆t), dictates whether the presynaptic cell is less likely to elicit a �ring event in the

postsynaptic cell (i.e. an inhibitory neurotransmitter) or more likely to elicit a �ring

event in the postsynaptic cell (i.e. an excitatory neurotransmitter) [vVH01].

Discrete networks make the assumption that each cell is space-clamped. A space-

clamped cell maintains a constant voltage value along its entire length. As a result,

the cell's electrical signal travels from one end to the other instantaneously. A network

of space-clamped cells is most useful when modeling localized network events due to

the lack of propagating electrical signals.

Continuous networks, modeled via reaction-di�usion equations like Eq. 2.20, in-

clude the propagating e�ects of the electrical potential. This allows for nonlocalized

network events to occur.
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Figure 9. Propagating Action Potential using the ML System of Equations. This is
a plot for a one-dimensional propagation action potential. The x-axis is the position
long the cable and the y-axis is time. The color contrast for the plot is the trans-
membrane potential. Projected to one single spatial location give a plot of the trans-
membrane potential vs. time (see inlay).

A full derivation is provided by Keener [KS09] with a cellular neural network

interpretation given by Slavova [Sla08].

C
∂V

∂t
= D

∂2V

∂x2
−Ge�(V,W ) [V − Veq(V,W )] + Iapp(x, t). (2.20)

The di�usion coe�cient, D, plays an analogous role to the neurotransmitter in

the discrete networks. Fig. 9 shows a standard propagating action potential. A plot

similar to Fig. 3 is generated by projecting to one point in space (see Fig. 9 inlay).

Solving Eq. 2.20 must be done numerically due to the nonlinearity of the equations.

Some well-known options include explicit Runge-Kutta, and implicit Root Finding.

Explicit Runge-Kutta provides high accuracy but isn't guaranteed to be stable. How-

ever, even when working in two spatial dimensions the explicit Runge-Kutta scheme
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is quite robust. Implicit Root Finding provides a greater degree of stability but re-

quires more time to achieve the same accuracy as the explicit Runge-Kutta scheme.

In addition the Alternating Direction implicit method works very well for two spatial

dimensions. The Alternating Direction method is an operator splitting method and

is easier to work in higher dimensions than the Crank-Nicolson method.

2.1.6 Bursting in Discrete and Continuous Networks

Extended systems of coupled neurons, or neural networks, allow for a trans-

membrane potential di�erence to travel across multiple neurons by means of a prop-

agating excitation wave. This process may result in syncronized electrical activity

for groups of neighboring neurons. Such a synchronized excitation of neighboring

cells, which is believed to play a central role in neural communication, is known as

�bursting� [IBH05].

Bursting has previously been observed in discrete networks of mutually inhibitory

oscillators [SKM94] and is responsible for pattern generation as seen within many

di�erent biological neural networks [MB01]. To investigate bursting, Skinner et al.

used a Morris-Lecar-based network and explored inhibition through synaptic coupling

by introducting Eq. 2.21 as a synaptic source

Isyn = m(V̂ )(V − Vsyn), (2.21)

where Isyn is the synaptic current provided by the inhibitory neuron, m(V̂ ) is a

step-wise function which is zero below a particular voltage threshold and a positive

constant above the threshold, and V̂ is the voltage of the inhibitory neuron. It

was demonstrated that such a coupling allows for frequency control analogous to
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a neuromodulator where synaptic currents a�ect the intrinsic properties of single

neurons as described in [HWM91].

Unlike the work of Skinner et al. we will investigate bursting regimes in a contin-

uous reaction-di�usion system, where coupling between neuronal cells is introduced

by a di�usion term in a nonlinear di�usion equation

∂V (x, t)

∂t
= D

∂2V (x, t)

∂x2
+ f (V ) , (2.22)

When a reaction-di�usion system is written in discrete form, suitable for numerical

analysis, the e�ective coupling term (to second order) can be written in the form,

Isyn = D
∂2V (x)

∂x2
, (2.23)

→ D

∆x2
(Vi+1 − 2Vi + Vi−1), (2.24)

=
−2D

∆x2
(Vi − [Vi+1 + Vi−1] /2), (2.25)

≡ Γ(V̂ )(Vi − Vavg), (2.26)

where Γ(V̂ ) can be de�ned in terms of the di�usion constant D and spatial mesh size

∆x in the way similar to the quantitym(V̂ ) in Eq. 2.21. Previous work [AM97,AM99]

has demonstrated the existence of soliton-like waves for speci�c voltage-dependent

di�usion pro�les. The link between these �ndings and neuronal bursting will be

investigated in Section 2.3.

34



2.2 Morris-Lecar Model with Adaptive Nernst Equilibria

A variable Nernst potential across one or more ionic channels can be incorporated

into Eq. 2.6 by introducting a shift, Vδ , as

CV̇ = −Ge�(V − [Veq + Vδ]). (2.27)

The total trans-membrane potential di�erence from equilibrium, (V − Veq), can be

considered as the driving force of this nonlinear system. As the trans-membrane

potential di�erence increases, the amount of charge stored on the cell surface also

increases. This causes the concentration of intracellular ions to decrease, resuting in

an elevated Nernst potential for positive ions. Using the Nernst equation [PB07] one

�nds the leading-order correction to the Nernst potential Vi of a single channel due

to signi�cant charge depletion δ = ∆Qi/Qi to be,

∆Vi ≈ −
RT

ziF

(
∆Qi

Qi

)
, (2.28)

where ∆Vi is the Nernst shift for the ith ionic channel, R is the ideal gas constant,

zi is the charge value for the ith ionic channel, T is temperature (assumed constant),

and F is Faraday's constant. Any �ux of charge leaving or entering through the cell

membrane is a result of the total potential di�erence across the membrane surface,

∆Qi ∝ (V − Veq). (2.29)

Thus, for each ionic channel, the Nernst shift will be proportional to the total trans-

membrane potential di�erence. Because this is true for any ionic channel with variable
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Nernst potential, the average or e�ective Nernst shift, Vδ, will also depend on the total

trans-membrane potential,

Vδ = α(V0 − V ), (2.30)

where α and V0 are constant parameters. Letting ζ represent the ratio of the average

Nernst shift to the total trans-membrane potential,

ζ =
Vδ

(V − Veq)
. (2.31)

Conservation of charge in a conductance-based model with variable Nernst potential

in the form described by Eq. 2.27 and Eq.2.30 can thus be written as,

CV̇ = (1− ζ)[−Ge�(V − Veq)] + Iapp. (2.32)

A similar type of modi�cation has been studied in the Fitzhugh-Nagumo model, where

a �soliton-like regime� was discovered [AM99]. The connection of the present work

to the soliton-like regime in the Fitzhugh-Nagumo model is explored in Sec. 2.4. To

provide a context for single-cell and network simulations, Eq. 2.32 was applied to

the two-variable version of the Morris-Lecar model [ML81]. When modi�ed using

Eq. 2.32, the Morris-Lecar system given by Eqs. 2.9-2.10 becomes,

CV̇ = (1− ζ)[−Ge�(V − Veq)] + Iapp, (2.33)

Ẇ = (W∞ −W )/τW , (2.34)
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with Eqs. 2.11-2.15 unchanged. Note that rather than being speci�c to the Morris-

Lecar model, Eq. 2.32 represents a general method for incorporating a voltage-dependent

Nernst equilibrium into any conductance-based, or Hodgkin-Huxley-like model. We

have chosen to explore these e�ects using the Morris-Lecar model for its convenient

balance between mathematical simplicity and biological relevance. While not as de-

tailed as the Hodgkin-Huxley system, its parameters are based on biological quantities

and not commonly viewed as arbitrarily tunable parameters. However, as a two-

variable system the Morris-Lecar model shares a qualitative simplicity with other

mathematically idealized models such as the Fitzhugh-Nagumo system.

2.3 Investigations into Single-Cell Dynamics and the One-Dimensional

Excitable Cable

2.3.1 Single-Cell Dynamics

In this section, we wish to explore some basic properties of the Morris-Lecar sys-

tem with the addition of an adaptive Nernst equilibrium by examining the equations

governing a single excitable cell. While the context of the present work lies in studying

behavior of neurons in the brain, we shall employ the standard Morris-Lecar param-

eters as a way to demonstrate the substantial e�ects caused by the introduction of a

variable Nernst potential while minimizing the number of free parameters. The im-

plications of our results outside of the usual domain of relevance for the Morris-Lecar

model are discussed in detail in Sec. 2.5, but we note here that the present goal is a

demonstration of the wide variety of interesting behaviors that can be captured with a

continuous reaction-di�usion system which has been suitably modi�ed to incorporate

the dominant physical e�ects due to small cell size.
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As a starting point, we refer the reader to Fig. 6, which shows the generic behavior

observed in the conventional Morris Lecar system. Brie�y, an external stimulation

current can be applied to raise the membrane potential V above the model's threshold

at which a rapid rise in potential (the �upstroke�) occurs, causing an increase in the

potassium current. This rising potassium current brings the membrane potential

back down (the �downstroke�), overshooting equilibrium and resulting in a recovery

time (�refractory period�) during which no further stimulation generates an action

potential. This basic picture of an action potential event is characteristic of virtually

all common models used to study electrical activity in cardiac and muscular cells,

and we now wish to explore how this picture changes when the Nernst potential is

allowed to vary due to the charge depletion expected to occur within smaller neurons.

Our modi�ed system contains two free parameters, namely α and V0. Solving

Eqs. 2.33-2.34 at di�erent points in (V0, α) space reveals two qualitatively di�erent

regimes of behavior. A region exists where most initial conditions fall into a stable

limit cycle without any external stimulation current. In this regime, the system

exhibits �autogeneration� of excitations. Outside of this region, the system behaves

qualitatively similarly to the standard Morris-Lecar model given in Eqs. 2.9-2.10. An

example of the time-series V (t) and phase space (V,W ) is shown for each of these

regimes in Fig. 10.

While a complete characterization of this modi�ed system is beyond the scope

of the present work, we sketch a global aspect of the qualitative behavior in Fig. 11

where the natural resonant frequency is shown as a function of position in (V0, α)

space.
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Figure 10. Morris-Lecar Phase-Space Dynamics. Upper left: Single neuron (α = 0.7,
V0 = 6.2mV) �ring once after stimulus is applied at t = 0ms and approaching a stable
equilibrium. Upper right: Single neuron (α = 1 and V0 = 6.2mV) entering a stable
limit cycle after initial stimulus. Phase space trajectories for each case are shown in
the panel below the corresponding time-series plot.

The actual resonant frequencies depicted depend directly on the particular choices

of parameters in Table. 3, but the for arbitrary choices of parameters, one may expect

at least the order of magnitude in variation of resonant frequencies as both α and V0

are varied over an order of magnitude in size over the resonant window.

The auto-generation of excitation pulses produced by Eqs. 2.33-2.34 is not en-

tirely di�erent from the behavior produced by the standard Morris Lecar model (c.f.,

Eqs. 2.9-2.10) in the presence of a constant stimulation current.

Indeed, a bifurcation diagram with respect to either α or V0 demonstrates the

emergence of a stable limit cycle within a range of values. Fig. 12 depicts these

bifurcation diagrams which may be compared to the standard Andronov-Hopf bifur-
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cation observed within the conventional Morris-Lecar model with respect to a varying

stimulation current.

While mathematically similar, a distinguishing feature of the particular model

presented here is that this regime of auto-generation emerges naturally within the

extended parameter space of a model which includes the physical e�ects of small cell

size. Speci�cally, these oscillations are driven by a Nernst potential which adapts to

the instantaneous charge depletion experienced by the cell during an excitation pulse

in lieu of an external current.
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Figure 11. Resonant Frequencies for V0 and Alpha. Map in (V0, α) space of resonant
frequencies using typical parameters for Morris Lecar model. Regions colored in white
correspond to points where no stable limit cycles exist in the absence of a stimulation
current.

As a last exploration of the single cell properties, we note that within the limit

cycle, a range of stimulation currents may be applied within a particular phase window

to send the system to a stable equilibrium point.
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Fig. 13 depicts a stable limit cycle for a particular choice of (α, V0) and how this

dynamical behavior may be modi�ed when a stimulation current is applied at a certain

point in the cycle. Within this �vulnerable� phase window, a su�cient stimulation

current can prevent further excitation pulses and cause the membrane potential to

asymptotically approach a constant value, as shown in the right panel of Fig. 13.
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Figure 12. V0 and Alpha as Bifurcation Parameters. Bifurcation diagrams created
using Xppaut showing occurrence of stable, equilibrium points (solid black line),
unstable equilibrium points (dashed black line), stable limit cycle (thick green line)
and unstable limit cycle (thin, red line) as α (left) and V0 (right) are varied.

To �x this notion of a vunerable window, we may repeat the calculation leading

to Fig. 13 for a �xed stimulation current protocol while varying the point in phase

space at which the stimulation is applied. The range of phase space over which this

particular stimulation protocol is e�ective in stabilizing the system is shown in Fig. 14.

While we have chosen a particular stimulus protocol and varied phase, the general

picture of a �vulnerability window� is quite robust and emerges within a measurable

fraction of the phase space as a range of vulnerability with respect to variation in any

particular parameter of interest.
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Figure 13. Single-Cell Dynamics. Left: Auto-generation of pulses in modi�ed Morris-
Lecar system with α = 1, V0 = 6.2mV. Right: An initial stimulus of 80 µA/cm2

applied for 5ms is su�cient to pull the system o� the limit cycle to a stable equilib-
rium.

In the next section, this notion of vulnerability is extended to the context of a one-

dimensional cable of excitable tissue and explored as several size-related parameters

are varied.

2.3.2 One-Dimensional Excitable Cable

In this section, we investigate the consequences of the window of vulnerability,

depicted in Fig. 14, when the cell being stabilized is coupled to a chain of excitable

cells by a di�usive term. As we shall demonstrate, this notion of �vulnerability�

extends naturally to a one-dimensional cable through a range of parameter values

which allows a localized stimulation to stabilize an entire, synchronized cable.
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Figure 14. Vulnerable Window in the Modi�ed Morris-Lecar Model. The system's
limit-cycle trajectory for α = 1, V0 = 6.4mV is shown (thin black line) with the
vulnerable region indicated by a thick red line. Within the vulnerable window, a
short stimulation takes the system from its stable limit cycle to a stable equilibrium
point in phase space.

Regarding the experimental relevance of such a vulnerability window in extended

systems, previous research has demonstrated the existence of a soliton-like regime

close to a subcritical Hopf bifurcation point. Analysis using the Hodgkin-Huxley

model predicts this regime to exist within a 0.1 mM concentration window of extra-

cellular potassium. Below this concentration one generically observes standard action

potential propagation. Above this region one observes pulse trains of propagating ac-

tion potentials, which are likely contributors to seizure-like activity. A shift from the

single-�re regime to the soliton-like regime, with pulse trains of action potentials, is

typically pathophysiological.

Given the clear role action potentials play in formation of memory [AMF+06a],

we are also interested in the possible patterns one could �nd within this soliton-like
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regime, for which small diameter axon activity would likely reside. Using the modi�ed

Morris Lecar model, we present a fundamental, biologically-based, mechansim for

spatiotemporal pattern generation.

For our investigation of extended excitable media, we will consider a continuous

cable of excitable tissue governed by,

CV̇ = D
∂2V

∂x2
+ (1− ζ)[−Ge�(V − Veq)] + Iapp(x, t), (2.35)

Ẇ = (W∞ −W )/τW . (2.36)

Normally, the system of Eqs. 2.35, 2.36 has a simple excitation pulse solution in

response to an external stimulus. If α and V0 are selected close to an Andronov-Hopf

bifurcation point we obtain one stable equilibrium and two limit-cycles (one stable,

one unstable) simultaneously [Izh10] for each cell in the cable, as shown in Fig. 12.

A particular consequence of each cell lying close to this bifurcation point is a global

vulnerability of the entire cable with respect to localized stimulations. To demonstrate

this global vulnerability, we consider a cable of length L undergoing synchronized

oscillations (i.e., each cell in the cable is oscillating in phase with frequency given

by Fig. 11) and apply a short stimulation current near the center of the cable at a

particular phase of the oscillation. Henceforth, we �x our initial conditions to be

V (t = 0, x) = V0, W (t = 0, x) = W0, with

V0 = −22.9764mV, (2.37)

W0 = 0.1770. (2.38)
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The di�usion constant is �xed to D = 0.01cm2/s unless otherwise noted, and we take

L = Nx∆x to be the length of the cable, where Nx is the number of spatial points

considered.

Fixing α = 0.6 and V0 = 1mV as a representative point in (α, V0) close to the

system's Andronov-Hopf bifurcation point, we proceed to �rst demonstrate that a

�xed stimulation current is able to de-synchronize an entire, extended cable for a

�xed range of cable lengths. Fig. 15 schematically depicts this window of vulnerablity

by applying a stimulation current of amplitude i0 = 100µA/cm2 for a duration T0 =

1000∆t to the center cell and its three nearest neighbors to the right and left for

a total of seven cells. For both su�ciently large and su�ciently small cables, a

stimulus su�cient to stabilize a single cell is unable to counteract the cell's coupling

to its oscillating, neighboring tissue (left and right panels of Fig. 15), and the system

returns to a synchronized limit cycle. However, for a range of cable lengths, the initial

stimulus results in a fully quiescent region which eventually spreads throughout the

entire length of the cable (center panel). This resonant e�ect occurs for a small range

in values of L given all other parameters �xed.

In the continuum limit, with which we are interested, the di�usion constant we

have introduced is scalable in the sense that a change in D for a system of length

L = Nx∆x,

D → D′, (2.39)

should result in spatiotemporal dynamics equivalent to those in a system of size

L′ = L

(
D

D′

)1/2

. (2.40)
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Figure 15. One-Dimensional Cable Dynamics. Fixing all parameters except cable
length generically yields a region of vulnerability in extended cables. For small (left)
and large (right) cables, an initial stimulation su�cient to quiesce a single cell causes
a transient quiescent region which results in full synchronization. For a range of cable
lengths (center) the stimulation results in the entire cable approaching an equilibrium
state.

To demonstrate that we are considering discretized systems that e�ectively rep-

resent the continuum limit, we may test this scaling by holding L = Nx∆x �xed and

varying D in a manner that should reproduce results equivalent to those depicted in

Fig. 15. The results of this variation in di�usion constant are shown in Fig. 16 and

support the claim that, by comparison to Fig. 15, these results genuinely represent

an accurate description of the continuum limit.

While adjusting the di�usion constant does not itself represent a truly independent

variation of system properties, we can demonstrate the robustness of our results by

modifying the stimulation protocol. The nature of the window of vulnerability is

fairly insensitive to changes in the nature of the stimulation, provided the overall

charge Q = i0∆t is su�ciently large.

46



D = 0.01388 cm2/s

119 ∆ x

tim
e 

(m
s)

20

40

60

80

100

120

D = 0.01 cm2/s

119 ∆ x

D = 0.00712 cm2/s

119 ∆ x
 

 

−20

−10

0

10

(mV)

Figure 16. One-Dimensional Cable Dynamics. Variation of di�usion constant shows
results consistent with the continuum predictions. Compare to Figure 15.

Fig. 17 shows a picture qualitatively similar to that in Fig. 15, produced with a

larger stimulation current, i0 = 800µA/cm2, applied for a shorter time T0 = 50∆t.

The general behavior of the model within the regime we have focused is fairly

straightforward. As with the single cell, when α and V0 are chosen close to the Hopf

bifurcation point (close to the edge of the cloud showing nonzero resonant frequencies

in Fig. 11) and a stimulation is applied within the vulnerable phase region (see Fig. 14)

in a localized region at the center of an extended, one-dimensional cable, there exists a

range of lengths for which the entire cable becomes quiescent due to the stimulation.

Outside of this range, for both smaller and larger cable lengths, the synchronized

oscillations overtake any transient, quiescent behavior. By varying the oscillation

phase at which the stimulation is applied and holding all other parameters (cable

length, stimulation strength, etc.) �xed, one may construct a global vulnerability

picture for the entire cable as was done for the single cell in Fig. 14.
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Figure 17. One-Dimensional Cable Dynamics. Larger stimulation current (i0 =
800µA/cm2) is used for a shorter time (T0 = 50∆t) in the middle of the cable,
producing qualitatively similar results to those shown in Figure 15.

The global vulnerability picture for Nx = 119, i0 = 100µA/cm2, T0 = 1000∆t

is shown in Fig. 18, and the basic picture is quite similar to that for a single cell.

Speci�cally, a small window of phases exists at which a stimulation may be applied

resulting in the entire cable transitioning from synchronized oscillations to a homo-

geneous, quiescent state. Far away from this window, the e�ects due to the localized

stimulation are transient, and the cable returns to synchronized oscillations at long

times. However, a new layer of complication is introduced by the spatial extension of

the one-dimensional system. In the region of the transition between these two types

of long-time steady states, the system shows extreme sensitivity to the particular

details of stimulation. Moreover, numerical instabilities arise that make an accurate

description of the system at long times practically impossible. The region of phase

at which a stimulation gives rise to complex instabilities is shown by the dashed blue

line in Fig. 18.
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Figure 18. Vulnerable Window of the Modi�ed Morris-Lecar Model. The system's
limit-cycle trajectory for α = 1, V0 = 6.4mV is shown (thin black line) with the
vulnerable region indicated by a thick red line. Regions of instability are shown in
dashed blue line.

As an example of the interesting types of behavior lurking within this unstable

regime, Fig. 19 depicts some extremely long-lived transient behavior. In this case, the

cable is extremely sensitive to the time T0 during which the stimulation is applied

with small changes in T0 corresponding to dramatic changes in the long-time steady

state. The persistence of this transient spatiotemporal complexity for long times

(tens of oscillations, as shown in Fig. 19) makes an accurate investigation of the

dynamics governed by the highly nonlinear partial di�erential equations, Eqs. (2.35)-

(2.36) practically quite di�cult.

The possibility of generating such complex spatiotemporal patterns as those shown

in Fig. 19 is intruiging in its own right.
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Figure 19. One-Dimensional Cable Dynamics. Complex spatiotemporal pattern gen-
erated with increased stimulation time near the crossover between quiescent and syn-
chronized steady-states A standard, second-order stencil was used for evaluation of
the spatial derivative.

However, another interesting aspect of this complexity may be seen by consider-

ing the time-series for the membrane potential of a single cell. Fig 20 depicts the

membrane potential as a function of time for the center cell in the right-hand panel

of Fig. 19.

The shape of V (t) in Fig. 20 is remarkably similar to bursting behavior, which is

typically by introducing a third dynamical variable to a two-variable system such as

the Morris-Lecar model. Through the propagation of voltage through the extended

medium and the complex dynamics generated with the adaptive Nersnt-potential,

our model shows the potential to capture bursting. Abstractly, one may think of our

(e�ective) �third equation� as the integrated e�ects of coupling the center cell to the

rest of the cable.
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Figure 20. Single-Cell Bursting. Time series for the membrane potential V at the
center cell in the one-dimensional cable shown in Figure 19.

Unlike other conventional models for bursting [DZ11, AFR13], we �nd bursting

to arise in this intrinsically two-variable system through coupling of the cell to an

extended system.

2.3.3 Numerical Details

For numerical solutions of Eqs. (2.35)-(2.36), we discretize space and time by tak-

ing mesh sizes of ∆x = 0.1cm and ∆t = 0.01ms for spatial mesh and time-integration

step size, respectively. Time integration is performed using an explicit, �xed step-

size, fourth-order Runge Kutta method. The spatial derivative is approximated by

the standard second-order stencil,

∂2V

∂x2
→ 1

∆x2
(uj+1 + uj−1 − 2uj) , (2.41)
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with a fourth-order, �ve-point stencil [oS64] used to con�rm all results displayed in

this section. When using explicit integration schemes, the numerical stability of a

linear di�usive system is governed by the Courant-Friedrichs-Levy (CFL) number,

which should satisfy µ� 1 to ensure a numerically stable solution.

µ =
D∆t

∆x2
, (2.42)

We �nd experimentally that even for µ � 1, the solution is extremely sensitive to

changes in step sizes due to the nonlinear nature of the system which precludes a strict

application of linear stability analysis. To check the accuracy of solutions presented

in this paper, all solutions were computed with a variety of spatial and temporal step

sizes, ∆t and ∆x, respectively, while holding cable length L and overal integration

time T �xed. Additionally, a fourth-order, �ve-point stencil was employed for the

di�usive term in Eq. (2.35) and compared to results obtained from a standard second-

order, three-point stencil. Aside from Figs. 19-21, no di�erence was observed when

varying step sizes or spatial stencil. In the transitional regime, however, simply

changing the spatial stencil resulted in signi�cantly di�erent behavior. Qualitatively

similar behavior to that shown in Fig. 19 exists when the modi�ed stencil is employed,

but the particular value of T0 at which it occurs is slightly di�erent when the higher-

order stencil is used, as shown in Fig. 21.

Regardless of the particulars of the numerical parameters used to obtain approx-

imate solutions, the behavior depicted in Fig. 19 is robust in the sense that it can

generated for some particular form of the stimulation protocol. While such deli-

cate behavior is extremely di�cult to investigate rigorously within the context of a
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highly nonlinear, continuous reaction-di�usion system, these results have immediate

relevance to inherently discrete systems where the di�usive coupling

∆tD
∂2u

∂x2
→ ∆tD

∆x2
[uj+1 + uj−1 − 2uj] , (2.43)

≡ Γ (uj+1 + uj−1 − 2uj) , (2.44)

becomes a synaptic coupling between discrete neurons with a well-de�ned value. In

this context, the numerical instability we see corresponds to a dramatic sensitivity of

system behavior on the particular coupling between neighboring cells.
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Figure 21. One-Dimensional Cable Dynamics. Complex spatio-temporal pattern
generated with increased stimulation time near the crossover between quiescent and
synchronized steady-states A fourth-order, �ve-point stencil was used for evaluation
of the spatial derivative. Compare to Figure 19.
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Figure 22. Bursting in a One-Dimensional Cable. This plot shows single-cell bursting
(inlay), at the cable's center point, as a result of communication between spatially
separated neurons in a one-dimensional cable.

2.3.4 Network Bifurcations and the Soliton-Like Regime

One excellent example of bursting within a network of neurons is the release of

oxytocin during lactation [WLL+12].

Neuroendocrine cells receive a neuronal input (via suckling) and release the oxy-

tocin hormone into the blood causing milk let-down in lactation. Action potentials are

responsible for the secretion of oxytocin and during suckling intense bursts of action

potential followed by periods of quiescence release pulses of oxytocin into circulation

[RFT+08].

Bursting has also been observed in rodent trigeminal neurons [NHCG98] and dor-

sal root ganglion [LYL+12] as well as many other neural networks. A review is pro-

vided by Izhikevich [Izh10]. To see the similarities between bursting in a simulated

continuous network and a measured experimental result compare Fig. 7 with the inlay

in Fig. 22.
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At the left and right ends of the �ber in Fig. 9 we see heightened potential values

which are indicated by the dark red regions in the color contrast. These regions

of heightened potential are due to our imposed ion impermeable boundries (no-�ux

boundries). Since ions are unable to escape, they collect by the boundry causing an

increase in ion density.

These regions of high ion density are no di�erent than regions where an exter-

nal current is being applied, except that the current amplitude is dependent on the

incoming action potential. In 1999 Aslanidi and Mornev noticed that propagating

action potentials could be made to re�ect o� no-�ux boundries if the local intrin-

sic dynamics of cells at the boundry occurred in the vicinity of a Hopf bifurcation

[AM99].

The result obtained by Aslanidi and Mornev is a natural extension of this idea

when we consider the no-�ux boundry to act as an applied current. Meaning that

if the cells located by the no-�ux boundry are close to producing a Hopf bifurcation

(i.e. producing a stable limit-cycle) then the current provided by the no-�ux boundry

is enough to produce a stable limit-cycle at the boundry. This e�ective current

only exists while the density of ions is high, which is often long enough for a single

backwards propagating action potential for form. The same behavior exists when

two propagating action potentials with similar voltage pro�les collide ( i.e. due to

symmetry and the natural no-�ux boundry at the collision point). In the literature

this behavior is often termed as being soliton-like and is the term used by Aslanidi

and Mornev in describing this phenomena.

Here we see local bifurcation events having a huge impact on global network

dynamics. The intrinsic properties of the cells within the network and their positions
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determine what we see on a larger scale. In Chp. III we look at multifractal analysis

as a metric for information encoding and how it could provide a means for measuring

a neuron's functional utility.

2.4 Derivation of the Soliton-Like Regime in the Fitzhugh-NagumoModel

Mornev and collaborators [AM99] considered a modi�ed form of the Fitzhugh-

Nagumo equations,

du

dt
= f (u)− v, (2.45)

dv

dt
= ε0g (u) [ζu− v] , (2.46)

where f (u) = (u−m0) (u−m1) (u−m2), and ε (u) was chosen to be

g (u) = (1 + λ [2− tanh [(u+ 0.04)/0.01] + tanh [(u− 0.75)/0.1]]) , (2.47)

for some constants ε0 and λ. Rescaling the time variable according to

dτ = g (u(t)) dt, (2.48)

Eqs. (2.45)-(2.46) become

du

dτ
=

1

g(u)
[f(u)− v] , (2.49)

dv

dτ
= ε0 [ζu− v] , (2.50)
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so that with rescaled time, the u-dependence introduced to ε, responsible for the

behavior characterstic of the �soliton regime� examined by Mornev and collaborators,

can be recast in the form of an e�ective shift in Nernst potential by the identi�cation

1

g(u)
→ 1− ζ, (2.51)

where in the ζ is a ratio of two linear functions of u, according to Eqs. (2.30)-(2.31),

and u plays the role of V in the Fitzhugh-Nagumo system. Performing a Taylor

expansion of the hyperbolic functions around u ≈ −0.04 or u ≈ 0.75 reduces g−1(u)

to the same functional form as 1−ζ, indicating that the �soliton-like� e�ects observed

by Mornev and collaborators [AM99] can be understood from a physiological per-

spective as a result of an adaptive Nernst potential which becomes more pronounced

in its e�ects for smaller excitable cells. It should be noted that Mornev [AM99] also

introduced nonlinear di�usion to the Fitzhugh-Nagumo model which is not described

within the framework we have presented. Preliminary computations indicate that

the nonlinear di�usion considered in Ref. [AM99] is not essential to capturing many

aspects of the soliton-like regime including re�ection from open boundaries. System-

atically incorporating further complications to our model is a direction for future

research.

2.5 Summary and Conclusion

In this chapter we have presented a physically motived modi�cation to excitable

models based on the charge depletion which occurs in small excitable cells, such

as neurons. By incorporating this modi�cation into the conventional Morris-Lecar

model, we have explored several examples of the emergent complex behavior which
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have particular relevance to synchronization of neurons in the brain and the relevance

of synchronization to diseases such as epilepsy. The Hodgkin-Huxley system and

related models are currently the closest representation we have to the actual biological

processes taking place within the membrane of an excitable cell.

Generalizing these reaction-di�usion models to include dynamical Nernst poten-

tials provides a platform for future investigation into what di�usive chemical in�u-

ences may have on neural network dynamics. Seizure activity and various burst-

ing events are heavily in�uenced by external factors. If preliminary information re-

garding medicinal reactions are known, these e�ects could possibly be incorporated

within a reaction-di�usion system by means of pro�led di�usion. Recent research into

Belousov-Zhabotinsky reactions and chemical computing [RKM98] show a promising

future for understanding how information is retrieved and written within networks

such as these. Being able to better understand how these networks are maintained

could one day allow us to store and transfer data to an extent never before realized.

In addition to providing bene�ts to those su�ering from mental illness, understanding

neural network stability could also provide new ways of encrypting sensitive network

information.

Research on epilepsy and seizures has shown that a neuron will swell as a result

of electrical activity and when modeling such activity one must account for varia-

tions in ion concentration [CUZ+09]. By incorporating this dynamic size variation

into network simulations it was shown that if glial cells fail to maintain the proper

micro-environmental conditions neurons will produce seizure-like activity. It was also

suggested that how persistent states respond to perturbations may be critical to

transient behavior such as working memory [UJBS09]. One could hope that in the
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near future our understanding of neural networks will allow for a more quantitative

understanding of complex brain activity such as working memory.

In the work of Mornev and Aslanidi [AM99, AM97], soliton-like behavior, with

re�ection from zero-�ux boundaries, was observed in addition to complete synchro-

nization of the cable. The ratio of time constants for membrane potential and recovery

was shifted by a function of trans-membrane potential but without any obvious phys-

iological reason. The present work is an extension of this type of investigation with

the aim of better understanding the particular nonlinearities responsible for observ-

able phenomena and strengthening the link between mathematics and physiology. In

agreement with Aslanidi and Mornev we observed elevated ion �uxes in proximity

to the ion impermeable, no-�ux, boundaries. Therefore, one would expect, for �bers

where the size of the stimulation site is comparable to length of the �ber, these no-

�ux boundaries would reinforce the current applied at the site of stimulation. This

is in agreement with what we observed for smaller cables where the entire �ber re-

mains synchronized with a simple phase-shift in accordance with the stimulus applied.

That is, if the size of the stimulation site is relatively large in comparison to the �ber

length, the no-�ux boundaries will work to amplify the applied stimulus so that the

�ber becomes indistinguishable from the situation where one would apply a stimulus

to the entire �ber itself.

However, when the �ber is long to produce e�ective causual separation between

the center and edges, yet short enough so that the interplay between the center

stimulus and elevated ion-�uxes at both ends of the �ber may produce long-lived,

transient behavior, we �nd an alternation between establishing a phase di�erence and

complete quiescence. Interestingly, this is also the regime where pattern formation
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was observed. The open boundaries act as impermeable membranes so that the �ber

becomes isolated, and acts as a one-dimensional pathway for voltage disturbances. As

demonstrated by Aslanidi and Mornev, if a cable is composed of cells tuned to be near

a Hopf Bifurcation point, it is possible for the elevated ion-concentrations located at

the �ber's edge to cause re�ections at the open boundaries. Therefore, these isolated

regions may sustain activity without external in�uence. When a stimulus is applied

to these isolated regions, as would be the case for sensory information being delivered

to information processing units within the brain, the transients may form complicated

patterns. Most interestingly, when a single cell of the �ber is monitored we observe

potential curves (c.f., Fig. 20) qualitatively identical to bursting measurements made

in rat brains [NHCG98].

The results in this chapter suggest soliton-like regimes are likely common in bio-

logical, excitable media. Additionally, we �nd that one need not abandon the Hodkin-

Huxley-like, parallel channel framework to observe such regimes. An interesting open

question concerns the role played by the phase of stimulation plays in pattern for-

mation. Examining the phase-response for single cells close to a Hopf bifurcation

point, one �nds the existence of a stable limit-cycle, unstable limit-cycle, and a stable

equilibrium point. If the initial conditions are such that the cell is undergoing stable

limit-cycle oscillations and a stimulus is applied within the hyperpolarization stage

of cell recovery so that the trajectory moves across the unstable limit-cycle, then the

stimulation will result is a quiescent cell. Based on these observations the notion

of a �vulnerable window� was established. This compact picture of a vulnerability

window represents a sort of building block to which further research may add in the
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construction of systems used to describe memory formation and both physiological

and pathophysiological behavior within such systems.
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CHAPTER III

THE RELATIONSHIP BETWEEN NERNST EQUILIBRIUM VARIABILITY

AND THE MULTIFRACTALITY OF INTERSPIKE INTERVALS IN THE

HIPPOCAMPUS

3.1 Background

The brain is estimated to contain 100 billion neurons and 100 trillion synapses

[WH88]. The brain is subdivided into many di�erent regions, with the hippocampus

region primarily recognized for memory processing [SM57]. The hippocampus itself

is further divided into smaller regions, with the most experimentally explored regions

being the CA1 and CA3 regions. Action potentials (spikes) travel from the CA3 re-

gion of the hippocampus along Scha�er collaterals toward the CA1 region [CGAO98].

Pyramidal neurons provide the infrastructure for signal propagation within these

regions of the hippocampus. The time interval between successive spikes for a sin-

gle neuron is referred to as the interspike interval (ISI). Consecutive ISIs are only

correlated when biological information persists from one spiking event to the next.

Quantifying these correlations gives some indication for the memory capacity of the

neuron. The Hurst exponent is a quantitative measure for signal correlation and is

commonly used to assess how statistical properties scale in time series data [Ihl12].

Eq. 3.1 shows the relationship between the correlation function, cq(x), for the qth-

order statistical moment and the generalized qth-order generalized Hurst exponent

(the Hölder exponent), Hq. The generalized Hurst exponent is preferable when work-

ing with non-stationary data sets such as experimentally recorded ISIs [BV91]. For
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the 2nd-order statistical moment (i.e. the variance) low exponential values correspond

to mean-enforcing data, while high exponential values correspond to trend-enforcing

data [QR04].

cq(x) ∼ xqHq (3.1)

Several mechanisms are responsible for correlating ISIs in cortical neurons, most of

which take place through a process known as spike-frequency adaptation. These

mechanisms are categorized into two distinctive groups: low-threshold broad adap-

tation and high-threshold sharp adaptation. A good example of low-threshold broad

adaptation is the slow voltage-dependent potassium current, whereas the calcium-

dependent potassium current is often associated with high-threshold sharp adapta-

tion [EPG01]. In addition, excitatory-inhibitory pairs in neuronal networks produce

similar phase response curves (PRCs) as high-threshold adaptation in the excita-

tory neuron. Therefore spike-frequency adaptation is not relegated to only single-cell

mechanisms but may also occur at the network level. In addition, whether the neuron

is a resonator (Andronov-Hopf) or integrator (Saddle-Node) dramatically a�ects the

correlation patterns of ISIs. Resonators possess a richer variety of ISI patterns than

integrators [SL13]; although integrators, typically associated with Class I excitability

(i.e. Saddle-node on invariant circle), possess a richer frequency band [Izh10].

The multifractality of ISIs has been linked to memory performance in rodents.

Neurons with wide singularity spectra play a greater role in memory processing than

neurons with narrow singularity spectra [FOS+14]. Pyramidal neurons in the CA1-

CA3 regions of the hippocampus communicate with many other cells. However, the

majority of these postsynaptic potentials (PSPs) have very low amplitudes. As a

63



result, these low amplitude PSPs work to keep the hippocampus pyramidal neurons

in the vicinity of a bifurcation point [HI97]. Many interesting dynamics, including

the soliton-like regime [AM99,MLS15], occur in the vicinity of bifurcation points.

In this chapter we investigate Nernst variability and its possible relationship with

the multifractality of interspike intervals from neurons within the hippocampus. In

Sec. 3.2 we discuss the various de�ning features of well-known models of neural ac-

tivity. This discussion explains why it is particularly important to retain the some

features of hippocampal neurons which impact correlations in ISIs. In Sec. 3.3 we

discuss our computational methods for singling out the transient e�ects of charge de-

pletion. Our technique ensures that di�erences in multifractality result from only the

biological parameters which we are interested in addressing. In Sec. 3.4 we apply our

model to experimental ISI data to investigate how the administration of various drugs

can impact the ability for hippocampal neurons to process information. Our results

show a clear distinction between various levels of Tetrahydrocannabinol (THC) and

Cannabidiol (CBD) drug administration. These results suggest CBD may help pre-

vent the short-term memory impairment e�ects of THC. In Sec. 3.6 we discuss various

biological mechanisms that may impact the variability in the Nernst potential and

how these mechanisms might contribute to memory processing.

3.1.1 Anatomy of the Hippocampus

The human brain has a left and right hippocampus, each located at the left

and right ends of the fornix that runs along the middle region of the brain and

branches downward. The hippocampus formation contains the entorhinal cortex,

dentate gyrus, CA1 and CA3 areas, and the subiculum [EC04]. The subiculum is the

main output component for the hippocampus and communicates with many other re-

64



gions of the brain [WG90]. Signal input for the subiculum comes from the CA1 region

of the hippocampus where all portions of the CA1 region project to the subiculum

[ADAR91]. Long-term potentiation (LTP), as a model of synaptic plasticity, was

observed in the CA1-subiculum projection [CGAO98].

The hippocampus as a whole is important to spatial memory and reasoning. This

is due to the signal interaction between CA3 and CA1 neurons. Within CA1 region

of the hippocampus, certain neurons are labeled as `place-related' depending on their

electrically activity when rats are placed within regions which they know well. The

subiculum does not contain these place-related cells and recent biological models pre-

dict this is because CA1 place-related cells converge to a substantial smaller number

of cells during the project into the subiculum [O'M05].

It is of great theoretical interest to derive a set of applied currents which produce

ISIs that mimic those found experimentally. Initial steps toward such a procedure are

discussed in Sec. 3.3. Once the CA1 place-related cells have theoretical projections

which adequately mimic the experimental ISIs, a study could be conducted which

models the subiculum as a continuous network of neurons; similar to the reaction-

di�usion system discussed in Sec. 2.3.2. Current biological literature suggests that

place-related cells in the CA1 region of the hippocampus converge to a near single

point on the subiculum [O'M05]. These projections could be used as inputs to the

theoretical model of the subiculum in hopes to generate network transitions from

single �ring action potentials to synchronized bursting events. Such a result would

provide a fundamental insight for which CA1 projections are required to turn on

cortical circuit located elsewhere in the neocortex [SJT+00].
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3.2 A Physiologically Detailed Single-Compartment Model for CA1 and

CA3 Principle Neurons

There are a few de�ning features of the CA1-CA3 neurons which we considered

before designing our theoretical procedure. As previously mentioned, the patterns in

ISIs depend on whether incoming pluses are capable of delaying the onset of future

spikes. This corresponds to whether the phase response curve (PRC) of the model

neuron has negative portions (Type II) or is strictly positive (Type I) [Erm96]. Neu-

rons commonly referred to as resonators possess a Type II PRC, whereas neurons

commonly referred to as integrators possess a Type I PRC. The PRC is strictly pos-

itive for integrators meaning incoming pulses may only advance the onset of future

spikes, never delay them. Resonators are known to produce a wider variety of ISI

patterns due to their subthreshold oscillations and ability to produced spikes from

pulses of hyperpolarizing current [SL13].

Another distinctive characteristic to consider is the class of excitability [Hod48,

RE89]. Class I excitability is characterized by arbitrarily low �ring frequency when

an injected current is applied. Class II excitability jumps in frequency and has a

relatively narrow frequency band. Excitatory pyramidal neurons in the CA1-CA3

regions are generally Class I excitable whereas inhibitory interneurons within these

regions are Class II excitable [Izh10]. Inhibitory interneurons make up about 10-20%

of the neurons within the hippocampus and generally work to control information

�ow within cortical circuits [CT12]. Because of the wider frequency band, excitatory

pyramidal neurons are able to encode input signal strength to output frequency and

often have non-local projections whereas inhibitory interneurons work to control these

signals and are more locally projected.
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The crux to all these characteristic features described above is the phase plane

dynamics; speci�cally, the type of bifurcations which are possible in phase space.

Class I excitability is most amply associated with the Saddle-Node on an invariant

circle bifurcation and Class II excitability is associated with the Saddle-Node (o�-

limit cycle) bifurcation as well as the subcritical and supercritical Andronov-Hopf

bifurcations. Integrators (Type I PRC) are neurons with Saddle-Node bifurcations

while resonators (Type II PRC) are neurons with Andronov-Hopf bifurcations.

After considering these various characteristics and the degree to which each in-

�uences the output ISIs, the soma compartment for the reduced Traub model of

CA1-CA3 hippocampal neurons was used to model principal excitatory neurons in

the hippocampal region [TWMM91,PR94]. This model follows directly from the well-

known Hodgkin-Huxley formalism [HH52,KK73,TWMM91] for neuronal excitability

and is well �tted to physiological data from hippocampal neurons; thus making it

an excellent model for analyzing the multifractal nature of hippocampal neurons.

Limiting dynamics to the soma compartment allows for ease of computation while

retaining the necessary threshold dynamics for plausible spike activation. In addition,

we employ our previous work on adaptive Nernst equilibria to account for variations

in the average Nernst potential due to changes in intracellular and extra cellular ionic

concentrations [MLS15].

The soma compartment for the reduced Traub model, presented by Pinsky and

Rinzel, includes a leakage current, a sodium current with instantaneous activation

(i.e. m = m∞(V )), and a delayed-recti�er potassium current [PR94].
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CmV̇ = − (INa + IK-dr + IL) + Iapp (3.2)

ṅ = (n∞ − n) /τn (3.3)

ḣ = (h∞ − h) /τh (3.4)

Where the ionic currents in Eq. 3.2 are

INa = ḡNam
2
∞h (V − VNa) (3.5)

IK-dr = ḡK-drn (V − VK) (3.6)

IL = ḡL (V − VL) (3.7)

The forward and backward rate equations for n, h, and m are given in Table 4. The

parameters used here are equivalent to those used by Traub et al. 1991, namely

ḡL = 0.1 µS, ḡNa = 30.0 µS, ḡK-dr = 25.0 µS for CA1 neurons and ḡK-dr = 15.0 µS for

CA3 neurons, Cm = 3 µF/cm2, VL = 0 mV, VNa = 115 mV, and VK = −15 mV. Eq. 3.2

may be written in a form common to all conductive-based models by introducing Ge�

and Veq (Eq. 3.8). Where Ge� and Veq from Eq. 3.8 are given by Eqs. 3.9-3.10 for the

reduced Traub model described above.

CmV̇ = −Ge� (V − Veq) (3.8)

Ge� =
(
ḡNam

2
∞h+ ḡK-drn+ ḡL

)
(3.9)

Veq =
(
ḡNam

2
∞hVNa + ḡK-drnVK + ḡLVL

)
/Ge� (3.10)

The Hodgkin-Huxley (HH) model was originally designed under the assumption that

the internal and external ionic concentrations act as charge reservoirs.
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Table 4. The Rate Equations for the Reduced Miles-Traub Model. The forward (Al-
pha) and backward (Beta) rate equations used to craft the steady state and relaxation
times for Eqs. 3.3-3.5.

α(V ) β(V )

n
0.016 (35.1− V )

exp
(

35.1−V
5

)
− 1

0.25 exp

(
20− V

40

)

h 0.128 exp

(
17− V

18

)
4

1 + exp
(

40−V
5

)
m

0.32 (13.1− V )

exp
(

13.1−V
4

)
− 1

0.28 (V − 40.1)

exp
(
V−40.1

5

)
− 1

Therefore the amount of charge �uxing across the cellular membrane is miniscule

compared to the total amount of charge stored either externally or internally. This

assumption is quite valid for large diameter neurons. However, as we discuss further

in Sec. 3.6, this assumption is less valid for hippocampal neurons. In this chapter we

use a �rst-order reduction of the membrane equilibrium to account for the variations

in the average Nernst potential. Eq. 3.11 shows this correction, the details of which

are presented in Meier et al. 2015.

CmV̇ = (1− ζ) [−Ge� (V − Veq)] + Iapp (3.11)

The feedback mechanism for shifting Nernst equilibrium, expanded to �rst order, is

given by Eq. 3.12.

ζ = α

(
V0 − V
V − Veq

)
(3.12)
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The total shift in the membrane equilibrium, in terms of the original membrane

equilibrium Veq, is given by Eq. 3.13.

∆Veq =
α

1− α
(Veq − V0) (3.13)

Fig. 23 shows the range of frequencies possible by selecting an (α, V0) pairing within

the HH conductive-based model presented above. This �gure should be compared to

Fig. 11 for the Morris-Lecar model.

One approach to modeling excitatory/inhibitory neurons in a network of neuron

is to use the approach presented by Ermentrout et al. [EPG01], where excitatory

neurons possess additional adaptation currents that are excluded from inhibitory

neurons. Spike frequency adaptation due to charge depletion may be introduced via

Eq. 3.14, where α is the same α used in Eq. 3.12.

dα

dt
= − (α− α0) /τ + ∆α

∑
spikes

δ (t− tspike) (3.14)

Fig. 24 shows the adaptation dynamics of Eq. 3.14. Fig. 25 shows the α dynamics in

the 0.4mV slice of (V0, α) space. As stated previously in this work, a single point in

the (α, V0) parameter space shifts the cellular equilibrium and this shift in equilibrium

accounts for variations in ionic concentration.

It should be noted that network simulations are not used to derive the results of

this chapter. However, the single-cell simulations performed here are relevant in the

context of network dynamics and the experimental recordings which were used come

straight from neurons operating within a bigger network.
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Figure 23. Plot of Alpha vs. V0 Demonstrating the Wide Range of Frequencies these
Parameters Provide. The color contrast indicates the natural frequency for a neuron
with a particular (α, V0) pairing. The shaded region indicates (α, V0) values placed
in the vicinity of a bifurcation event producing low frequency values.

The applied currents discussed in Sec. 3.3 are derived from in vivo recordings

from Functional Cell Types (FTCs) in the CA1-CA3 rodent hippocampus, graciously

provided by Fetterho� et al. We consider these ad hoc applied currents to repre-

sent network inputs from a large number of neurons, some of which are streaming

information directly into the cell. In Sec. 3.4 we demonstrate the ability to alter the

correlation in ISIs for a single simulated cell receiving this derived ad hoc applied

current.

The reduced Miles-Traub model is Class I excitable. Class I excitable cells produce

arbitrarily low �ring frequencies as a function of injected current. The modi�cation

introduced in Eq. 3.11 does not change this behavior. For the sections which follow,

|α| < 1 and V0 = 0.4 mV. This ensures physiologically acceptable �ring frequencies
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while allowing a suitable resolution for transitions in multifractality to be observed.

With these constraints we would like to call attention to the fact that α > 0 corre-

sponds to a depletion in intracellular charge and α < 0 corresponds to an accumula-

tion in intracellular charge. This follows directly from Eq. 3.13. All of this is relative

to α = 0, where the ionic concentration remains constant (typical HH dynamics).

This allows us to easily relate the model parameter α to the variation in intracellular

ionic concentration. This relationship is used in Sec. 3.3 and Sec. 3.4.

In Sec. 3.3 we describe our theoretical procedure. Our main goal was to investigate

how the administration of various drugs could a�ect a single neuron's ability to process

information. Our inclusion of variable Nernst potentials allowed for us to simulate

varying degrees of ionic stress. By comparing multifractality at varying stress levels

for each drug being considered we can compare a drug's e�ect relative to other drugs

and relative to various doages of that drug.

3.3 Fitting Procedure for Deriving Applied Current from Experimental

ISIs

In order to generate a function for the applied current that produces theoretical

ISIs which match the experimental ISI values within a tolerance of less than one

millisecond the following �tting procedure was employed. For an initial guess of the

applied current function the procedure outlined in Fig. 26 was used. This procedure

begins with a set of experimental ISI data. This set is then transformed from an

instantaneous �ring frequency to a step-wise applied current which occurs over the

length of time necessary to produce the ISI signal.
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Figure 24. Spike Adaptation. Plot of spike adaptation after introducing a time-
dependent equation for �α�, Equation 3.14. Parameters were chosen such that the
frequency range observed during adaptation was consistent with the known frequen-
cies of Pyramidal neurons in the Hippocampus.

This produces an applied current function which assumes the ISI data is in its

steady-state frequency. Therefore this is only a good initial guess for the applied

current we are interested in.

Starting from this initial guess we consider each step in the applied current func-

tion individually. Fundamental to all Class I excitation neurons is the frequency

vs. applied current relationship shown in Fig. 27. Knowing this allows for us to

slightly vary the current value over each individual step in the step function until the

�ring frequency of the detailed Miles-Traub model matches the instantaneous �ring

frequency represented by the experimental ISI recordings.

For Class I excitable cells the relationship between the asymptotic frequency and

applied current can be roughly approximated using Eq. 3.15.
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Figure 25. A Single Vertical Slice of the Alpha - V0 Plane at V0 Equals 0.4 mV,
using the Reduced Miles-Traub Model. The initial jump in spiking frequency, which
is typically associated with spike frequency adaptation currents, is produced here by
the quadratic shape of the F -α curve. This parameter range was also used to generate
Figure 24. Therefore both have a similar frequency range.

A representative �t is shown in Fig. 27.

f(I) = a
√

(I − b) + c (3.15)

If a spike occurs at time ti then the next spike, occurring at time ti+1, may be approx-

imated using Eq. 3.16 under the assumption that the instantaneous �ring frequency

is equivalent to the steady-state �ring frequency at time ti.

ti+1 = f(I(ti))
−1 + ti (3.16)
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Figure 27. Plot of Asymptotic Frequency versus Applied Current. The blue points
were computed using the reduced Miles-Traub model discussed in Sec. 3.2. The red
line is a representative best-�t using Equation 3.15. Here a = 16.24, b = 0.27, and
c = −0.03 for α = −0.2 and V0 = 4 mV.
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The accuracy of this assumption depends on how quickly the cell achieves its steady-

state �ring frequency and how dramatically the applied current varies between two

consecutive spiking events.

Eq. 3.16 is most accurate when the steady-state �ring frequency occurs instan-

taneously and the applied current between two consecutive spiking events is held

constant from ti to ti+1. However the results are quite robust, Fig. 28 shows a com-

parison between the ISIs generated using a reduced Miles-Traub model (discussed in

Sec. 3.2) and those generated using Eq. 3.16 for the same applied current. In addition,

the authors note that f(I(ti))dt works well as an inhomogeneous sampling rate for

a stochastic cell modeled using a Poisson process. Poisson cells are commonly used

to model network boundary conditions in order to simulate stochastic inputs from

cortical projections [vVH01].

In this chapter we employ the approximate relationship between asymptotic fre-

quency and applied current, Eq. 3.15, to generate a step-wise current function from

ISIs measured in the CA3 region of the rodent hippocampus. In Fetterho� et al. 2014

the authors made in vivo electrical recordings from the CA1-CA3 regions of the hip-

pocampus of Long-Evans rats. Their analysis showed multifractality to be a better

indicator than conventional methods for whether a particular neuron was involved in

memory processing during a delayed nonmatch-to-sample task [FOS+14].

Provided with a set of N experimental ISI data points {∆t0, ...,∆tN} between

t = t0 and t = tN , a corresponding step-wise applied current function may be derived

using Eq. 3.16.

Where each ISI, ∆ti, makes up a single current step, I(ti), which lasts from ti to

ti+1.
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Figure 28. Comparison Between the ISIs for the Reduced Miles-Traub Model (blue)
and Equation 3.16 (red). The inset plot is the applied current used to construct both
the blue and red plots. The applied current is a simulated random walk normalized
between 0.500 and 0.015 nA.

This provides us with a steady-state approximation for the applied current re-

quired to match the experimental ISIs. In Sec. 3.4 we derive a step-wise current

function for each value of α explored. The reduced Miles-Traub model guarantees

transient e�ects, which the approximate �t (Eq. 3.15) excludes. By observing the

di�erences in multifractality for each parameter value tested and comparing these

observations between experimental sets, we are able to probe fundamental di�erences

between our experimental recordings.

3.4 Information Processing in the Hippocampus: Neurons Under the

In�uence of THC and CBD

Fig. 30 shows a comparison between experimental and theoretical ISIs. Using

α = 0.15 for the control and α = −0.15 for THC we were able to achieve a percent
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di�erence in the width of the singularity spectrum of 5.8% for control and 18.7% for

THC. The density of ion channels is known to a�ect the �ring class of the soma for

neurons located in the hippocampus [ZBA10].

One possible reason for the less accurate comparison between the theoretical and

experimental ISIs for THC is that the drug modi�es the ion channel densities and

changes the �ring class by doing so. If this were the case then using a class I excitable

model would introduce erroneous e�ects. A 4th-order Runge-Kutta scheme with a

dt = 0.01 ms was used to solve Eq. 3.2-3.4. Both the control and THC model cells

were simulated long enough to acquire at least 2048 ISIs and these data were used

to compare with the experimental recordings using multifractal analysis. The control

cell was simulated for 260.43 s and for the THC cell simulations lasted 734.56 s. Each

α value tested required calculating a new frequency versus applied current best-�t,

as discussed in Sec. 3.3. The left-hand side of Table 5 shows the percent di�erence

between the simulated and experimental ISIs using two di�erent values of α. The

right-hand side of Table 5 shows similar information but calculations where done

relative to the THC recordings. The a, b, and c values for the best-�t (Eq. 3.15)

which �t the corresponding values of α are also given in Table 5.

Functions for applied current were generated from experimental ISI data using

the procedure described in Sec. 3.3. This procedure is outlined in Fig. 26. In varying

ζ from Eq. 3.11, V0 was set to 0.4 mV during all simulations.

This was done for two reasons: (1) a negative V0 value would cause the net mem-

brane current to hyperpolarize on the action potentials upstroke when α is negative

(non-physical) and (2) lower values of V0 allow for a wider range of α to be explored

while keeping the membrane �ring frequency within physiologically acceptable rates.
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Table 5. Percent Di�erence in Singularity Spectra. This table shows how Alpha
impacts the percent di�erence in the width of the singularity spectrum compared to
the experimental data for both the control and THC administration. The a, b, and
c values used to �t the asymptotic frequency to applied current, Eq. 3.15, are also
listed.

Control THC

α 0.15 0 −0.15 0.15 0 −0.15

∆% 5.83% 15.02% 6.10% 21.05% 30.81% 18.75%

a 22.03 19.52 17.01 22.03 19.52 17.01

b 0.04 0.14 0.24 0.04 0.14 0.24

c -0.89 -0.41 -0.10 -0.89 -0.41 -0.10

In �tting the theoretical model to the experimental ISIs, α was varied between

−1 and 1 for all experimental recordings. A magnitude of 1 ensured that the current

conductance, due to the depleted ionic charge, never reaches more than 100% of the

net membrane conductance. For each parameter value tested, a corresponding Iapp

was derived using the method described in Sec. 3.3. The experimental data used

to derive Iapp was recorded from one neuron in one rat from the CA3 region of the

hippocampus. We looked at the behavior of this neuron under the administration

of Tetrahydrocannabinol (THC) and Cannabidiol (CBD). CBD was administered

at dosages of 18 mg/kg and 15 mg/kg. The combination of THC plus CBD was

administered at 2 mg/kg THC, 20 mg/kg CBD and 2 mg/kg THC, 25 mg/kg CBD.

A control session followed each drug administrating session.

Fig. 29 shows the results. For each of the drug administrated sessions a series

of computational experiments were conducted using our model. Each simulation

assumes a slight shift in the intracellular ionic concentration. By compiling a number
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of these simulations we theoretically explore how the multifractality of ISI data could

have changed, given a shift in ionic concentration. In Fig. 29, the y-axis is the slope

of the qth-order Hurst exponent verses q. For whitenoise and monofractal signals this

slope is zero. When the signal carries some multifractal nature this slope is greater

than zero. The x-axis of Fig. 29 is our model parameter α. This parameter is used

to vary the average ionic concentration for the cell.

Fig. 29 shows a de�nite transition in the multifractality of ISI data. This can

be seen by the increase in the slope of Hq vs q (y-axis). All control recordings are

indicated by black lines with white circle markers.

In addition, THC+CBD 2 mg/kg+25 mg/kg is cyan, THC+CBD 2 mg/kg+20 mg/kg

is blue, CBD 18 mg/kg is green, and CBD 15 mg/kg is red. An earlier transition in

the multifractality of ISI data for THC+CBD 2 mg/kg+25 mg/kg indicates a smaller

shift in the ionic concentration is required to ascertain a multifractal signal. Due

to the small diameter of hippocampal neurons, relative to most other neurons, the

physiologically acceptable α value is slightly greater than zero. These curves suggest

a general increase in multifractality with increasing charge depletion.

A positive value for α corresponds to a charge depleting current �owing opposite

the direction of the net membrane current, whereas a negative value for α results in

a depleting current which �ows in the same direction as the membrane current.

Fig. 30 shows statistical data from a principle neuron within the CA1 region of

the hippocampus. The same neuron both with THC administration and without was

used to �t Eq. 3.12 for α using a stabilizing current of −0.37 nA and V0 = 4 mV.

The stabilizing current and V0 were set to achieve a physiologically plausible win-

dow for cellular frequency and applied current.
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Figure 29. Alpha Shift for THC and CBD. The series of drugs presented in Section 3.4
were processed using our computational technique. The slope of Hq vs q is a measure
of the multifractality of the signal. It can be seen that a transition exists in the degree
of multifractality. This provides us with a quantitative measure for how various drugs
in�uence the multifractality of a signal.

Fitting for α was done in order to have some quanti�able measure for the shift in

feedback current due to the administration of THC. From Fig. 30:C we see a drop

in α from 0.15 to 0.1265. Also, the median frequency varies dramatically between

vehicle and THC. This can be explained due to a lack of variability in α. From

Eq. 3.14 we know that spike frequency adaptation increases α resulting in increased

�ring frequencies. It is likely that the administration of THC decreases ∆α which

prevents spike frequency adaptation from occurring.

3.5 Discrete Networks Coupled via Dale's Principle

Before discussing the result of this chapter in the context of neuronal networks I

would like to �rst discuss a generalized approach to modeling discrete networks.
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Figure 30. Comparison Between Experimental and Theoretical ISIs. Plots A and
B show a comparison between experimental ISIs (green) and theoretical ISIs (blue)
for the control (A) and THC (B) recordings. For the control α = 0.15 and for THC
α = −0.15. Plot C shows the di�erence in the singularity spectra for both control
(blue) and THC (green) for both experimental (hollow circles) and theoretical (�lled
circles) ISIs. The width of the singularity spectrum di�ers by 5.8% for the control
and 18.7% for THC.

This discussion is relevant to potential future work which builds upon the results

discovered here. Eq. 3.17 shows the di�usive coupling term for the ith neuron in the

network due to the jth nearest neighbor.

Isyn =
∑
i 6=j

Dij (Vj − Vi) (3.17)

The neuropercolative approach is useful for determining whether the ith neuron pro-

duces excitatory post-synaptic pulses or inhibitory post-synaptic pulses governed by

Dale's principle [HI97] (Eq. 3.18). In addition, this random selection process also de-
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termines whether the ith neuron includes the intrinsic adaptation current (Eq. 3.14),

discussed previously. In accordance with Ermentrout et al. 2001, excitatory neu-

rons possess the adaptation currents. These currents help approximate the calcium-

dependent potassium currents which provide a high-threshold sharp spike-frequency

adaptation to the cell.

∂

∂Vj
(Dij [Vj − Vi]) =


Dij < 0 inhibitory

Dij ≥ 0 excitatory
(3.18)

The fraction of inhibitory neurons can be represented by the parameter �p�.

Fig. 31 shows a typical percolation matrix with inhibitory neurons indicated as

black squares and excitatory neurons as white squares. One further goal is to in-

vestigate how strongly the fraction of inhibitory neurons correlates with the spread

of multifractality within the network. Experimental evidence shows 10-20% of the

neurons within the hippocampus are inhibitory [CT12]. Perhaps multifractality is op-

timal within the range. Also, Fetterho� et al. 2014 notes an increase in the fraction of

inhibitory post-synaptic pulses following the administration of tetrahydrocannabinol

(THC), which they show to decrease the fraction of multifractal neurons within the

network. Therefore we hypothesize a decrease in multifractality as the fraction of

inhibitory neuron increases past some optimal regime.
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Figure 31. Percolation Approach to Neural Coupling. Plot of a typical percolation
matrix (p = 0.1). The black squares represent inhibitory neurons within the network
(Dij < 0) and the white squares represent excitatory neurons (Dij ≥ 0). These
matrices are generated randomly and provide an unbiased network structure from
which to draw meaningful statistics.

3.6 Summary and Conclusion

In this chapter we investigate the relationship between Nernst variability, modeled

as a �rst-order feedback current, and the multifractality of ISIs recorded in the CA3

region of the rodent hippocampus.

In Sec. 3.2 we present the reduced Miles-Traub model for modeling principle neu-

rons within the CA1-CA3 regions of the hippocampus. In Sec. 3.3 we use approximate

steady-state relationships to generate functions for applied current from experimen-

tally recorded ISI data sets. In Sec. 3.4 we use these applied currents to investigate

how Nernst variability can cause varying degrees of multifractality in neurons with

di�ering dosages of THC and CBD.
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Here we have made use of several new procedures and techniques. We have also

employed our previous work on changing Nernst equilibria to allow for varying de-

grees of charge depletion to be modeled. As a baseline, the residuals between the

steady-state ISIs for our theoretical model and the ISIs recorded experimentally were

minimized. The results of this minimization provided us with a function for applied

current which we then used to produce a set of ISI data using the detailed Miles-

Traub model discussed in Sec. 3.2. By varying the charge depletion for each drug

session we could then investigate the dependence between charge depletion and the

information processing abilities for a neuron under the in�uence of a particular drug,

or combination of drugs, at a particular dosage.

The assumption that ionic concentrations act as charge reservoirs is quite valid for

the majority of neurons. Variations in ionic concentration may be brought about by

a number of di�erent mechanisms such as changes in cellular size [CUZ+09,MLS15].

In addition, the uptake of K+ by glial cells will have an impact on the extracellular

concentration of K+, which would cause a shift in Veq. The study of these e�ects may

hold clinical applications for diseases such as epilepsy and tuberous sclerosis [Noo11].

If these diseases indeed have an appreciable e�ect on the cellular equilibrium, and

thus the Nernst potential for individual ionic channels, then a simpli�ed picture of

the feedback mechanism is critical in understanding how these diseases may impact

information processing.

Intracellular calcium dynamics have been shown to provide toggle and gain compu-

tations for Purkinje cells [For14]. This further suggests that changes in intracellular

ionic concentration may have some impact of the capacity for neurons to process

information. We provide a concrete theoretical framework for these variations and

85



demonstrate their e�ect on how neurons in the hippocampus process information.

This provides a framework for further testing and establishes a new quantitative

measure for how drugs impact the signal processing abilities of neurons. More testing

will be needed to further solidify the validity and usefulness of this technique. THC

alone has been shown to shorten the width of the multifractal spectrum [FOS+14].

Shortening of the width of the multifractal spectrum is associated with less multi-

fractal signals. Our results suggest CBD has the potential to help block this e�ect.

The work presented here has important applications in neuronal network dynam-

ics. The neuropercolative approach to network construction would allow for biological

quantities, like charge depletion, to vary randomly across the network. The structure

of dendritic branches and synaptic strengths both play an important role in how infor-

mation propagates within a network made of neurons. Therefore, biological quantities

which are known to a�ect the information processing abilities of single neurons could

be varied across the network with ease. Such studies could produce a generalized un-

derstanding for how networks process information without being restricted to speci�c

test cases.

One potential goal of future work is to investigate how strongly the fraction of

inhibitory neurons correlates with the spread of multifractality within a network.

The neuropercolative approach may be used to determine whether the ith neuron

in a network of neurons produces excitatory post-synaptic pulses or inhibitory post-

synaptic pulses governed by Dale's principle [HI97] (Eq. 3.18).

Experimental evidence shows 10-20% of the neurons within the hippocampus are

inhibitory [CT12]. Perhaps multifractality is optimal within the range. Also, Fetter-

ho� et al. 2014 notes an increase in the fraction of inhibitory post-synaptic pulses
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following the administration of THC, which they show to decrease the fraction of

multifractal neurons within the network. Therefore one hypothesis might be that

multifractality decreases when the fraction of inhibitory neurons within a cortical

network increases past some optimal regime.

Conservation of charge dictates that the variation in ionic concentration which

we have considered for single neurons is inherently a network mechanism. The hip-

pocampal region of the brain is very dense with neurons and this density is perhaps

the necessary consequence of allowing ionic gradients to perform computations which

take place over the course of multiple spiking events, where the ionic concentrations

accumulate and dissipate in time.
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CHAPTER IV

CONCLUSIONS AND FUTURE DIRECTIONS

This work provides a critical foundation for investigating variable Nernst poten-

tials. A valid theoretical argument has been made for the inclusion of variable Nernst

potentials in neurons with relatively small cellular diameters. These neurons are

prevalent within information processing portions of the brain such as the hippocam-

pus. Dynamics such as the soliton-like regime, discussed throughout Chp. II, provide

new ways to think about the propagation of neural signals within the brain and should

not be ignored when modeling signal propagation. These e�ects are relevant to both

discrete and continuous networks of neurons.

Using the introductory content discussed in Chp. I, Chp. II employed the Andronov-

Hopf bifurcation to a continuous network of neurons. The results demonstrated single-

cell bursting as a result of communication between spatially separated neurons and

a derivation of the soliton-like regime in the Fitzhugh-Nagumo model was presented.

Fundamental to this work was the reduction made to the Hodgkin-Huxley like models

to account for variable Nernst equilibria which result from variations in ionic concen-

tration. Chp. III investigates the e�ect Nernst variability has on the multifractality of

individual neurons. By varying the degree of charge depletion a phase transition was

observed for the multifractality of single neurons. Remarkably, shifts in this phase

transition were observed under the in�uence of di�erent drugs at di�ering dosages.

Such a result could prove useful as a sensitive measure for the e�ects drugs have on

neurons within the brain.
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In conclusion I would like to discussion the soliton-like regime in two spatial di-

mensions. In two dimensions we see spiral waves and intricate patterns begin to form.

These patterns could provide a �rst look into memory as a means of spatiotemporal

pattern formation. Fig. 32 is the result of simulating the following Fitzhugh-Nagumo

system in the soliton-like regime.

1

R

(
∂2V

∂x2
+
∂2V

∂y2

)
= C

∂V

∂t
− (f(V + Veq)− f(Veq)) +N (4.1)

∂N

∂t
= (σV −N) /τ (4.2)

Fitzhugh realized that Eq. 4.3 for f(V ) works well for approximating the generalized

cubic-like nullcline of the Hodgkin-Huxley model [Fit61].

f(V ) = −kV (V − Vth)(V − VA) (4.3)

The parameters for this model are as follows: R = 1, C = 1, k = 8, Vth = 0.12,

VA = 1, τ = 1/0.05, and σ = 8. The soliton-like regime was �rst realized for the

Fitzhugh-Nagumo system by changing τ to be a function of the trans-membrane

potential (Eq. 4.4) [AM99].

τ(V ) =

{
0.05 + ∆ε

(
2− tanh

(
V + 0.04

0.01

)
+ tanh

(
V − 0.75

0.1

))}−1

(4.4)

Where ∆ε is a newly introduced parameter which is often set between 0.61 and 0.66.

However, the system used to produce the spiral waves in Fig. 32 was derived using

variable Nernst equilibria, Eq. 4.5, and not with τ(V ), Eq. 4.4. Although, as discussed

in Sec. 2.4 these two approaches are similar.
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V
′

eq = Veq + α (V0 − V ) (4.5)
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Figure 32. Two-Dimensional Reaction-Di�usion System. This �gure shows four time
slices for the Fitzhugh-Nagumo model of cellular excitation. These simulations were
conducted within the soliton-like regime.

Where α (V0 − V ) is identical to Vδ from Eq. 2.27. For Fig. 32, Veq = 0, α = 0.1272,

and V0 = 0.5. The alternating direction implicit method was used with dt = 0.05, and

dx = dy = 0.5. No-�ux boundaries were employed with x and y extending to 86 cm

in both directions. The initial condition was a two spatial dimensional function of

the trans-membrane potential and was acquired by running the simulation iteratively
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over many intervals of time. The simulation eventually settled into this con�guration.

Simulating from this point results in a repeating pattern.

As shown in Chp. III, changes in model parameter α may cause variation in the

multifractality of neural signals. Therefore, making the α parameter a function of

position could allow for information processing to be investigated within continuous

neuronal networks. Simulating higher spatial dimensions, along with quantifying the

e�ects of drugs, make for two very promising directions for this work going forward.
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