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Abstract
Maize (Zea mays or corn), both a major food source and an important cytogenetic model, evolved from a 
tetraploid that arose about 4.8 million years ago (Mya). As a result, maize has extensive duplicated regions 
within its genome. We have sequenced the two copies of one such region, generating 7.8 Mb of sequence 

spanning 17.4 cM of the short arm of chromosome 1 and 6.6 Mb (25.6 cM) from the long arm of chromosome 
9. Rice, which did not undergo a similar whole genome duplication event, has only one orthologous region

(4.9 Mb) on the short arm of chromosome 3, and can be used as reference for the maize homoeologous
regions. Alignment of the three regions allowed identification of syntenic blocks, and indicated that the maize 

regions have undergone differential contraction in genic and intergenic regions and expansion by the 
insertion of retrotransposable elements. Approximately 9% of the predicted genes in each duplicated region 

are completely missing in the rice genome, and almost 20% have moved to other genomic locations. Predicted 
genes within these regions tend to be larger in maize than in rice, primarily because of the presence of 

predicted genes in maize with larger introns. Interestingly, the general gene methylation patterns in the maize 
homoeologous regions do not appear to have changed with contraction or expansion of their chromosomes. 

In addition, no differences in methylation of single genes and tandemly repeated gene copies have been 
detected. These results, therefore, provide new insights into the diploidization of polyploid species.
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Maize, Zea mays L., is one of the most productive crops on earth. 

It is a critical source of animal feed, a staple food for many coun- 

tries in Latin America and Africa, and has many industrial uses. It 

serves as a model species to study many basic biological processes 

such as recombination, transposition, meiosis, paramutation, 

imprinting, gene expression, and plant development. Owing to 

its economic and biological importance (Messing 2005), maize 

with its large genome of 2400 Mb (Rayburn et al. 1993) is the 

next plant genome to be sequenced completely. This has been 

preceded by the more technically and financially feasible small 

genomes of Arabidopsis (125–155 Mb) (Arabidopsis Genome Ini- 

tiative 2000; Hosouchi et al. 2002; Bennett et al. 2003), rice (389 

Mb) (International Rice Genome Sequencing Project 2005), and 

the ongoing sequencing projects of Medicago truncatula and Lotus 

japonicus genomes, 500 Mb each (Cannon et al. 2005; Young et 

al. 2005; Town 2006). 

Within the cereals, conserved genetic markers can readily be 

found, and are largely collinear (Gale and Devos 1998). However, 

genome sizes vary greatly, as illustrated by the difference be- 

tween the 389-Mb rice genome (International Rice Genome Se- 

quencing Project 2005) and the 16,000-Mb hexaploid wheat ge- 

nome. This discrepancy between genome size and organismal 

complexity has been referred to as the C-value enigma (Thomas 

Jr. 1971). One reason for the size variation is polyploidy, a com- 

mon feature of flowering plants. Bread wheat, for example, is a 

hexaploid formed from three distinct genomes: A, B, and D (Sor- 

rells et al. 2003). Ancient polyploidy events are also evident, as is 

the case with maize, which arose from an ancestor that under- 

went a whole-genome duplication (WGD), a conclusion drawn 

from early cytogenetic and genetic studies (McClintock 1930; 

Rhoades 1951). After the WGD event, chromosome breakage and 

fusion led to the formation of chromosomes composed of differ- 

ent homoeologous chromosomal segments derived from the two 



 

 

 

parental genomes. Sequencing a sample of these homoeologous 

regions from different chromosomes and comparing those linked 

genes with orthologous regions from rice and sorghum, a species 

much closer to maize than rice, have permitted the alignment of 

genes derived from common ancestral grass chromosomes 

(Swigonova et al. 2004). It appears that the two progenitors of 

maize and the progenitor of sorghum were n = 5 species that 

diverged about 11.9 million years ago (Mya). The two maize pro- 

genitors are believed to have hybridized not later than 4.8 Mya 

(Swigonova et al. 2004). 

Sequence analysis of collinear segments, whole-genome 

shotgun sequences, BAC end sequences (BES), and fully se- 

quenced random BAC clones have also been important for our 

understanding of the drastic differences in genome sizes (Tik- 

honov et al. 1999; Meyers et al. 2001; Song et al. 2002; Messing 

et al. 2004; Haberer et al. 2005). Greater than two-thirds of the 

maize sequence obtained to date consists of nongenic repetitive 

DNA elements, as compared to only one-third in rice. Moreover, 

most of the repetitive DNA in maize is composed of LTR retro- 

transposons, whereas the rice genome contains a much higher 

proportion of DNA transposons (10.4% vs. 1.3% in maize). This 

difference could have a major effect on genome size, since LTR 

retrotransposons do not excise as part of their transposition 

mechanism. Instead, they use a replicative RNA-based mecha- 

nism, and thus their numbers in the genome increase with each 

round of transposition. Consequently, they are the major factor 

in the increase in genome size in maize relative to rice. Using 

alignments of maize LTR sequences, calculations have shown 

that the majority of retrotranspositions have occurred during the 

last 5 Myr—after the hybridization event of the two progenitors 

(SanMiguel et al. 1998; Swigonova et al. 2005). Therefore, in ad- 

dition to genome duplication by WGD, subsequent retrotrans- 

position has led to further expansion of the maize genome. Be- 

sides these size increases, the chromosomes have undergone 

breakage and fusion cycles, leading to formation of the mosaic of 

different homoeologous segments found today (Song et al. 2002). 

Comparative analysis of orthologous regions between cere- 

als has also allowed a higher resolution view of synteny, and its 

preservation or lack thereof. Although alignments of genetic 

markers indicate extensive synteny between grass genomes (Gale 

and Devos 1998), sequence analysis of orthologous chromo- 

somal regions shows extensive gene movement during specia- 

tion. A study comparing the duplicated regions of maize with 

orthologous regions in rice and sorghum has shown that 15% of 

all genes in any pairwise comparison are noncollinear (Lai et al. 

2004b). Comparison to the nearly complete rice genome se- 

quence shows that these genes are not simply deleted, but have 

moved to different genomic locations. Even within the same spe- 

cies, some genes may move to nonorthologous locations (Fu and 

Dooner 2002; Song and Messing 2003; Brunner et al. 2005). 

When different maize inbreds were compared with each other, it 

became clear that insertion of gene fragments and, perhaps, 

genes could create haplotype variability. Moreover, recent analy- 

sis of such haplotype variability indicated that movement of 

gene fragments and potentially intact genes is often caused by a 

new type of transposition mechanism involving a helicase func- 

tion from helitron transposons (Kapitonov and Jurka 2001; Lal et 

al. 2003; Lai et al. 2005; Morgante et al. 2005). However, this 

mechanism appears to be different from one that often creates 

new members of a gene family. For instance, the maize zein and 

sorghum kafirin genes are new (relative to rice) noncollinear 

genes that have been differentially amplified in tandem arrays 

after their insertion, apparently by a non-helitron mechanism 

(Song et al. 2002). Interestingly, gene movement and amplifica- 

tion of this gene family occurred during the same time period as 

retrotransposition increased the genome size of maize (Song et al. 

2001). The analysis of the duplicated regions of maize indicates 

that in nearly half of the cases, one homeologous copy of the 

duplicated genes was lost after tetraploidization (Ilic et al. 2003; 

Lai et al. 2004b; Messing et al. 2004). Thus, maize is expected to 

have less than double the number of genes that are present in 

rice, which has an estimated gene number of 37,544 (Interna- 

tional Rice Genome Sequencing Project 2005). Based on the size 

of the transcriptome and the average gene number within 100 

random BAC clones (Haberer et al. 2005), the number of maize 

genes has been estimated to range between 42,000 and 56,000, 

consistent with the observed frequent loss of the second copies of 

many duplicated genes. 

All studies of orthologous regions described to date have 

investigated relatively small chromosomal intervals containing 

few maize genes, owing in large part to the resources available at 

the time of the studies. Here, we use the completed rice genome 

sequence and well-characterized maize BAC libraries to study 

much longer chromosomal regions. DNA fingerprinting was used 

to select BAC clones with a minimal overlap from highly redun- 

dant maize B73 BAC libraries (Yim et al. 2002) that were an- 

chored with collinear markers from 20 cM of the short arm of 

rice chromosome 3 (Buell et al. 2005). Taking advantage of the 

availability of the MTP (minimum tiling path) for both these 

contiguous regions and thereby not having to determine the 

next overlapping clone for a sequenced BAC, all of the 116 maize 

clones were shotgun-sequenced in parallel and assembled into 

contiguous sequences. These sequenced maize regions yielded 

many new transposable elements (TEs) and 479 non-TE-related 

gene models. We also could determine the overall maize chromo- 

some architecture with respect to the distribution of repeat se- 

quences and genes, and regarding the distribution of genomic DNA 

methylation by analyzing methylation-filtered (MF) sequences. 

Comparison of these large duplicated regions in maize showed that 

maize chromosomes have both expanded and contracted relative 

to the rice genome, demonstrating the unevenness of insertions 

and deletions of genes and TEs in closely related species. 

 

Results and Discussion 

Physical and genetic maps 

Two homoeologous regions of maize, Zm1S and Zm9L, were se- 

lected for this study (Supplemental Fig. 1). Zm1S is located on the 

short arm of chromosome 1, spans the markers bnlg1124 at po- 

sition 29.0 and bnlg1112 at position 46.4 of the BNL 2002 map, 

and is contained within a tiling path that contains 60 BAC clones 

(Supplemental Table A). Zm9L is located on the long arm of 

chromosome 9, spans the markers bnlg619 at position 129.4 and 

bnlg1129 at position 155.0 of the BNL 2002 map, and is con- 

tained within a tiling path that contains 56 BAC clones (Supple- 

mental Table B). Based on these markers, the two homoeologous 

regions of the maize genome comprise a genetic distance of 17.4 

and 25.6 cM, respectively, or a total of 43 cM. If the same re- 

gions are compared to maps derived from recombinant inbred 

lines, the genetic distances expand dramatically as expected (Lee 

et al. 2002). Based on collinear markers, these regions are or- 

thologous to rice chromosome 3 and sorghum chromosome 1 

(Supplemental Table C). 



 

 

 

Clones were subjected to shotgun sequencing, and se- 

quences were assembled with ARACHNE and then were curated 

as described in Methods. All clones are listed in Supplemental 

Tables D (Zm1S) and E (Zm9L), with their sizes and accessions. 

The tiles yield a sequence of 7,822,695 and 6,560,930 bp, respec- 

tively, from these contiguous BACs. Both maize regions have 

dramatically higher recombination frequencies per kilobase com- 

pared to the average for the entire maize genome. The B73 ge- 

nome has an estimated total physical length of 2.4 Gb compris- 

ing about 2000 cM, or an average of 1.2 Mb/cM (Rayburn et al. 

1993; Gardiner et al. 2004). In contrast to a low recombination 

rate of only 450 kb/cM in Zm1S, the Zm9L region has a high 

recombination frequency of 256 kb/cM (Supplemental Table F), 

which is the same as the average recombination frequency in rice 

of 255 kb/cM (International Rice Genome Sequencing Project 

2005). Still, the recombination frequency of the orthologous rice 

region, Os3S (200 kb/cM) (Supplemental Table C), is even higher 

than the genome-wide average for rice (highest in Os3 of 225 

kb/cM). 

 

Gene content 

To enable any analysis of the collinear maize regions, their gene 

content must be determined. However, over-prediction of genes 

is a general problem in higher plants (Bennetzen et al. 2004), but 

particularly problematic in maize because of the large number of 

transposable elements and the ease with which these sequences 

can be mistaken for endogenous genes. For this reason, our meth- 

ods and criteria for gene finding are chosen for their high strin- 

gency as described previously (Haberer et al. 2005). Using these 

methods, Zm1S contains 236 predicted genes, and Zm9L carries 

243 predicted genes (Table 1). This amounts to gene densities of 

1 gene per 33 kb and per 27 kb on Zm1S and Zm9L, respectively. 

This relatively high gene density, compared to 1 gene per 43.5 kb 

for the entire maize genome (Haberer et al. 2005), is consistent 

with the higher recombination frequency observed for Zm9L, 

 

 
Table 1. Statistics of gene models for the Zm1S, Zm9L, and Os3S 
regions   

thereby confirming a long-held hypothesis of genetic maps of 

eukaryotic species (Thuriaux 1977). 

The number of exons per gene is similar between the two 

maize regions (5.5–6.8) and the rice regions (5.7). However, 

many genes in maize appear to be expanded in length compared 

to rice (average gene length: 4.2 kb for maize, 3.3 kb for rice). 

While the average exon length is slightly longer in rice than in 

maize, the reverse is true for the length of introns (Table 1). We 

also find a number of very large predicted genes in maize, and 

these large-intron genes are responsible for the larger average 

intron size compared to rice. The largest predicted maize gene on 

the chromosome 1 segment is 89.1 kb and on the chromosome 9 

segment it is 64.7 kb, whereas the largest predicted gene in the 

comparable rice regions is only 30.4 kb. It is possible that some of 

these very large predicted maize genes are annotation artifacts, or 

mutant alleles, but we have found some cases in which maize B73 

ESTs seamlessly cover the exons flanking a very large intron, 

suggesting that these large candidate genes are expressed and 

properly processed (Supplemental Fig. 2). Therefore, it appears 

that maize has expanded both intergenic regions and the genes 

themselves relative to rice. 

 

Intergenic regions 

The intergenic regions in all three chromosomes are composed of 

a mixture of low-copy noncoding sequences, also referred to as 

nonassigned intergenic sequences, and repetitive DNA elements. 

To separate these two categories, we used a customized and ex- 

haustive repeat sequence library and a hierarchical repeat ontol- 

ogy (Methods). A list of the major repeat sequence families is 

presented in Table 2. To provide a genome-wide context for the 

results from these regions, we compared the results to reference 

values taken from the whole rice genome or from the 100 ran- 

domly chosen BAC clones that were previously sequenced from 

maize (Haberer et al. 2005). 

For all regions, the observed repeat content is lower than the 

average genome values. This is not unexpected, given that the 

gene density is higher than the genome-wide average. Compared 

to the average for the rice genome (33% repetitive DNA), the 

studied Os3S region contains only 19% repetitive DNA, while the 
 

   the entire genome (63% for Zm1S and 59% for Zm9L). Con- 

Total number of BACs  60  56  N/A 
Minimal tile (bp) 7,822,695 6,560,930 4,900,000 
Predicted genes 236 243 644 
Predicted exons 1296 1642 3688 
Average number of exons 

per gene 5.5 6.8 5.7 
Average intron size (bp) 587 472 356 
Median intron size (bp) 150 137 140 
Average exon size (bp) 258 230 298 
Median exon size (bp) 142 132 149 
Average gene size (kb) 4.1 4.3 3.3 
Median gene size (kb) 2.5 2.8 2.7 
Average exon density/100 kb 16.6 25.0 75.3 
Average gene density 

(kb per gene) 33 27 7.6 
Maximum gene length 

(kb) 87.9 64.7 30.4 

G + C content (%) 
Overall 47.2 47.2 44.3 
Exons 56.0 52.7 53.3 
Introns 44.7 42.5 39.1 
Intergenic regions 45.6 43.3 41.6 
Unassigned regions 45.5 44.9 43.2 

versely, the amount of coding space in Os3S (44%) differs from 

the overall rice average of 33%. Interestingly, among all 12 rice 

chromosomes (35%), chromosome 3 (29%) has the least amount 

of repeats and the highest average gene density, 1 gene per 8.7 

kb, as opposed to the rice genome, 1 gene per 9.9 kb (Interna- 

tional Rice Genome Sequencing Project 2005). The maize regions 

differ even more dramatically from the genome-wide coding den- 

sity of 7.5%, with 12% for Zm1S and 15.8% for Zm9L. Interest- 

ingly, the nonassigned intergenic sequences are less variable, but 

also differ slightly from the genome-wide averages. For Os3S, the 

nonassigned intergenic sequences comprise 37% of the space 

(compared to a genomic average of 34%), while both Zm1S and 

Zm9L have 25% nonassigned intergenic sequences, compared to 

a 22% genome-wide average. 

One of the striking differences observed for Os3S is that the 

region contains a higher than average quantity of DNA trans- 

posons (by a factor of 1.44). This is largely due to the insertion of 

miniature inverted-repeat-transposable elements (MITES) 

(Wessler et al. 1995), which are known to be preferentially asso- 

   ciated with genes (Zhang et al. 2000). Conversely, Os3S harbors 



 

 

Table 2. Repeat elements genome-wide, and in the three regions of rice and maize 

Classification Os Zma Os3S Zm1S Zm9L 

ologous sequences. Individual seg- 

ments of Zm1S have expansion fac- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a100 random BACs. 
bPercent of total repetitive DNA. 
Summary data for each category is in bold. 

 

a lower than average level of retrotransposable elements by a 

factor of 0.76. 

The distribution of repeat elements correlates well with the 

higher than average gene density in the maize chromosome re- 

gions studied. These features are preserved even in the segment 

that underwent the largest expansion (Zm1S). In this respect, it is 

interesting to note that these regions are located at the distal 

ends of their respective chromosomes (Fig. 1). It has previously 

been proposed that regions close to the telomeric regions of the 

wheat genome have increased gene density (Akhunov et al. 

2003). Furthermore, analysis of maize pachytene chromosomes 

suggests that gene density in euchromatin is fourfold higher than 

in heterochromatin and that expressed sequence tag (EST) mark- 

ers mostly map to distal euchromatin (Anderson et al. 2006). As 

in all other complex eukaryotic genomes studied, genome-wide 

analyses also show a strong correlation between gene density and 

recombination rates in maize (Anderson et al. 2006). 

 

Alignment of syntenic regions 

When all three regions are aligned based on conserved se- 

quences, the Zm1S region becomes the limiting factor despite 

being the longest sequence of 7.8 Mb (Fig. 1). This region has 

experienced the highest degree of relative expansion, which can 

be expressed as the size of the maize region compared to the rice 

reference region. Based on distinct junctions of nonhomoeolo- 

gous sequences separating sequence segments of collinear genes, 

one can divide the aligned sequences into segments of homoe- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Arabidopsis (Devos et al. 2002; Ma 

and Bennetzen 2004; Ma et al. 2004), 

or by a combination of the two. 

Another marked feature of 

Zm1S is an insertion of 600 kb of nonconserved DNA between 

segments A and B1. Smaller nonconserved junctions are also 

found at the same orthologous position in rice and the other 

maize chromosome. Such junctions can also be found at position 

4.1 Mb on Zm1S, at 1.7 Mb on Os3S, and at 3.5 Mb on Zm9L. On 

Zm9L, a region of 1.8 Mb has undergone an inversion relative to 

rice and the other maize chromosome. Sequences on Zm1S cov- 

ering the inversion of Zm9L may extend beyond the sequenced 

region that would encompass segment C. From this comparison, 

it appears that all three chromosomes have junctions in the same 

position that interrupt synteny blocks. In one case the junction 

appears to have grown relatively large, in another it is the site of 

an inversion. Such conserved junctions have been observed for 

another orthologous region of sorghum, maize, and two rice sub- 

species and hypothesized as potential hotspots for chromosome 

changes (Song et al. 2002). One possibility is that sites for chro- 

mosome breakage and fusion have been conserved through spe- 

ciation. Such hotspots are reminiscent of fragile sites in human 

chromosomes that can undergo chromosome breakage and re- 

combination, a process that is tightly regulated to avoid delete- 

rious mutations (Schwartz et al. 2005). 

 

Contraction and expansion of synteny blocks 

To study the underlying causes for the unequal degrees of local 

expansion in more detail, we analyzed the contribution of genic, 

repetitive, and the nonassigned (nongenic and nonrepetitive) se- 

quences within the individual segments. Interestingly, the ap- 

   tors between 1.9 for segment A and 

Class I: Retroelement
b
 61.9 95.2 47.4 95.2 95.5 4.2 for segments B1 and B2 (Fig. 1). 

LTR retrotransposon 59.50 94.40 45.40 93.55 94.20 The expansion rates of Zm9L vary 
Ty1/copia 8.37 32.92 5.86 48.07 46.14 from 0.8 (segments B1 and B2) to 
Ty3/gypsy 37.89 52.71 29.20 39.77 

43.07 
almost no expansion (segments A 

TRIM 0.11 0.01 0.08 0.03 0.03 
Other LTR 13.12 8.75 10.27 5.68 4.95 and C) to 1.8 (segment D). Conse- 

Non-LTR  retrotransposon 1.76 0.39 1.76 0.92 1.10 quently, degrees of expansion be- 
LINE 1.13 0.39 0.75 0.92 1.10 tween Zm1S and Zm9L differ by as 
SINE 0.63 0.00 1.01 0.00 

0.00 much as a factor of 5.25 (segments 
Unclassified retroelement 0.62 0.38 0.23 0.72 0.17 

B1 and B2). If, after the WGD event, 
Class II: DNA transposon 34.5 2.6 50.0 2.7 

3.0 maize had retained all of its dupli- 
DNA transposon superfamily 17.15 1.54 20.05 1.31 

1.31 
cated regions, the relative sizes of 

CACTA superfamily 7.98 0.89 2.97 0.43 0.49 
hAT superfamily 1.11 0.16 2.35 0.16 0.26 the present-day maize and rice ge- 
Mutator superfamily 1.99 0.02 2.16 0.05 0.02 nomes would suggest a genome- 
Tc1/Mariner superfamily 0.45 0.01 1.20 0.03 0.03 wide threefold expansion rate for 
PIF/Harbinger 0.03 0.17 0.10 0.13 

0.24 
all homoeologous regions in maize. 

Other transposon family 5.59 0.29 11.27 0.50 0.27 

MITE 14.14 0.42 25.53 0.43 0.61 While segments B1 and B2 of Zm1S 
Stowaway 2.56 0.05 4.30 0.06 0.10 expanded beyond the average, all 
Tourist 2.58 0.07 5.07 0.08 0.10 others are far below the expected ex- 
Other MITE 8.99 0.29 16.16 0.28 

0.41 pansion rates. It is not clear whether 
Unclassified DNA transposon 3.21 0.59 4.36 0.95 1.04 

this was caused by a lower-than- 
Helitron 0.14 0.01 0.04 0.00 

0.06 average frequency of transposon am- 
Simple sequence 0.94 0.44 0.35 0.08 

0.13 
plification in all regions but B1 or B2, 

High copy number gene 0.15 0.02 0.10 0.02 0.01 
Other 2.40 1.80 2.17 2.03 1.37 or  by  a  higher  frequency  of  the 

Total as percent of genome      small deletions (most caused by il- 

Repetitive DNA 33 70 19 63 59 legitimate  recombination)  that 
Coding space 33 8 44 12 16 have been found to be responsible 
Unassigned space 34 22 37 25 25 for genome shrinkage in rice and 

 



 

 

 

 
 

Figure 1. Alignments of chromosomal regions from Zm1S, Os3S, and Zm9L. The three horizontal lines with scales in million basepairs (Mb) represent 
the chromosomal regions from Zm1S, Os3S, and Zm9L. On these horizontal lines, the positions of the genes are marked with a white vertical bar. Above 
those lines, a schematic diagram shows the alignment of these regions with respect to their chromosomal locations. Vertical lines connect syntenic genes 
between Zm1S and Os3S, and Zm9L and Os3S, respectively. Line color indicates syntenic arrangement of genes between Zm1S–Os3S–Zm9L (red), 
syntenic arrangement of tandem genes (green), and syntenic arrangements of genes either between Zm1S–Os3S or between Zm9L–Os3S (black). 
Syntenic blocks are labeled A, B1, B2, C, and D. Syntenic blocks are interrupted by regions without corresponding genes. The expansion grade of each 
syntenic block with respect to rice is shown as fold expansion. 

 

parent lack of expansion on Zm9L is largely due to a reduction of 

genic space by a factor of 0.4–0.5 for segments A, B1, B2, and C 

and 0.7 for segment D (Table 3). The same is true for the nonas- 

signed genomic space containing intergenic and regulatory re- 

gions, which are also reduced in almost all segments, although to 

a more moderate degree except in segment D. 

A different situation occurs for the Zm1S region. Although 

segment A experienced an overall expansion, the genic space is 

considerably reduced by a factor of 0.4. In addition, the non- 

assigned space has a moderate expansion factor of 1.3. For the 

drastically expanded segments B1 and B2, we observed rela- 

tive expansion factors of 1.2 and 1.4 for the genic space, and 

2.3 and 2.7 for the unassigned space (Table 3). Interestingly the 

expansion factor of genes between random maize BACs versus 

random rice regions is 1.4 (Table 3). Based on 37,544 gene models 

in rice, the number of gene models in maize would be 

37,544 x 1.4 = 52,562, which falls within the range proposed 

earlier (Haberer et al. 2005). 

Further analysis of repeat elements in different segments 

illustrates the uneven target site preference of retrotransposition 

(Table 3). The Zm1S and Zm9L regions have very different dis- 

tributions of repeat elements. Segments of Zm9L are quite vari- 

able and range between 34.6% and 61.2% in repeat content 

(overall, 58.8%). In comparison, Zm1S shows less variability and 

has a local repeat concentration that ranges between 62% and 

65.5% (overall, 63.1%). The B1 segments of both maize regions 

have the largest increase in retroelement content relative to rice, 

with Ty1/copia-like elements increasing substantially more than 

the Ty3/gypsy-like elements. The increase in Zm1S is nearly a 

magnitude higher than in Zm9L. B1 is marked on one side by a 

rather large junction of nonhomoeologous sequences that occurs 

in both Zm1S and Zm9L. On the other side, an inversion event is 

specific to Zm9L, and perhaps is involved in the halted expan- 

sion of Zm9L relative to Zm1S. Once the entire maize genome is 

sequenced, it will be possible to assess whether there is a general 

correlation between local genome expansion and the presence of 

inversions or other chromosomal rearrangements. 

Analysis of these two large regions does not reveal evidence 

of large gene islands separated by retrotransposon blocks. As 

previously reported, most gene islands are small (one to two 

genes) (Bennetzen et al. 2005) and vary between the different 

homoeologous regions. A picture is emerging in which different 

chromosomal regions evolve into a mosaic of syntenic blocks 

with differential expansion caused by the contraction of genic 

and intergenic space in combination with the addition of differ- 

ent combinations of repeat elements. 

 

Gene loss after WGD to form maize 

Studying the sequence of these large contiguous regions provides 

an opportunity to study microcollinearity within the syntenic 

blocks at a much higher resolution than possible with genetic or 

physical maps. The surprising result is the extent of noncollinear- 

ity found between rice and maize, and between the two maize 

chromosomes (Fig. 2A). Out of 644 predicted rice genes (see 

Methods), only 270 (42%) are collinear with one of the maize 



 

 

 

Table 3. Size and expansion factors for the different syntenic blocks 

Syntenic block A B1 B2 C D 

loid  and  polyploid  examples  of 

closely related species provide im- 

   portant clues about the diploidiza- 

Size in megabases tion  process  that  commonly  fol- 
 

Zm1S 2.34 1.13 3.50   lows  polyploidization  (Wolfe  
Os3S 1.22 0.27 0.84 1.01 0.96 2001). 
Zm9L 1.35 0.23 0.65 0.98 1.68  

Expansion factor for Zm1S versus Significant gene movement in rice 

 
 
 
 
 
 

E 

 
 

 

LTR retrotransponsons 6 55 2.8 5 43 
Ty3/gypsy-like elements 5 54 1.8 4 33 
Ty1/copia-like elements 11 79 18 27 126 

Expansion factor for 100 random 
maize BACs versus random 
rice regions with respect to: 

Size in megabases 6.1 
Genic space 1.4 
Unassigned sequences 4.1 
Repeat elements 13.0 

LTR retrotransponsons 20.0 
Ty3/gypsy-like elements 18.0 
Ty1/copia-like elements 51.0 

test against the near-complete rice 

genome sequence can reveal 

whether the gene is present else- 

where in the rice genome. The extra 

maize genes were compared against 

all genes from rice (TIGR 3 release 

and IRGSP; BLASTP E < 1e-20). For 

43 noncollinear genes (out of 64; 
67%) from Zm1S and 47 noncol- 

linear genes (out of 69; 68%) from 

Zm9L, homologous genes have 

been detected elsewhere in the rice 

genome. Still, 21 and 22 genes from 

Zm1S and Zm9L, respectively, had 

chromosomes. The number increases only slightly to 306 (48%) 

when less stringent microsynteny criteria are used. Because a 

large number of BAC clones are still at phase 1 (unordered con- 

tigs due to physical gaps) stage and not finished (Supplemental 

Tables D and E), the order of contigs within BAC clones is not 

always resolved (see also Methods). This relaxed stringency 

would also allow for small-scale rearrangements within syntenic 

blocks. 

When comparing both maize regions with rice, the number 

of genes collinear in all three regions is <50%. This is not unex- 

pected because, as has been noted previously, one copy of a du- 

plicated gene has been frequently lost after the WGD event. Of 

the 270 genes in rice that are present in either Zm1S or Zm9L, 

only 298 genes (55%) of the possible 540 (one copy in each maize 

region) were detected. This number increases to 346 (64%) with 

the relaxed stringency described above. This is a lower percentage 

than previously observed for the analysis of five different dupli- 

cated regions of the maize genome (Lai et al. 2004b). Within 

those regions, 17 out of 24 collinear genes were detected. How- 

ever, collinearity was more narrowly defined in the earlier study 

because sorghum could be used as an independent reference for 

determining orthologous genes in rice. Unfortunately, the sor- 

ghum chromosome 1 region orthologous to the regions analyzed 

here is not yet available as a minimum tiling path. 

An even greater loss of the second gene copies of the genes 

in the duplicated genome (90%) occurred after the hybridization 

of the two fungal species that formed baker’s yeast (Kellis et al. 

2004). These studies illustrate that comparative analysis of dip- 

no homologs in rice (Fig. 2A). Additional comparisons of these 

remaining genes against EST and tentative consensus collections 

(TCs) from other plant species revealed an additional six and 

three genes, respectively, that have a homologous counterpart 

elsewhere, adding further evidence for these being real genes in 

maize. 

Conversely, we addressed the same question for the 338 

genes present in rice Os3S, but lacking orthologous counterparts 

on both Zm1S and Zm9L. In the absence of the entire maize 

genome sequence, we took advantage of the complete collection 

of maize genomic survey sequences (GSS containing high C0t 

[HC], MF, BES, and whole-genome shotgun sequences) and ex- 

pressed sequences (EST and TCs) and asked whether the extra 

Os3S genes are homologous to any of the maize-derived GSSs or 

ESTs/TCs. Out of the 338 extra rice genes, 220 (65%) were as- 

signed to maize GSSs or ESTs/TCs. Because the current maize 

GSSs and ESTs/TCs do not cover the complete gene set of maize, 

this can be considered an underestimate of the number of rice 

genes with a homolog elsewhere in the maize genome. In fact, for 

51 out of the 118 rice genes without identified maize counter- 

parts, homologs could be detected in ESTs/TCs collections from 

other plants. Nevertheless, our results indicate that maize and 

rice contain additional (or different) genes without homologous 

counterparts in the other species at levels of 9%–10% 

(Zm1S + Zm9L vs. rice) and 18% (Os3S vs. maize). In support of 

this finding, a recent comparison of maize unigenes or cDNAs 

with the rice genome indicates that 22% of the maize genes are 

not present in rice (Lai et al. 2004a). Their presence in other grass 

Os3S with respect to: 
Size in megabases 1.9 4.2 4.2 and maize 
Genic space 0.4 1.4 

1.2 
A large number of the genes located 

Unassigned sequences 1.3 2.3 2.7 
Repeat elements 6.5 28.0 13.0 in all three chromosomal regions 

LTR retrotransposons 11 521 22   are  noncollinear,  64  for  Zm1S 
Ty3/gypsy-like elements 9 380 14   (27%), 69 for Zm9L (28%), and 338 
Ty1/copia-like elements 22 833 142 

  for Os3S (52%). However, the pres- 

xpansion factor for Zm9L versus ence of a gene on one chromosome 
Os3S with respect to:      and its absence on the other do not 

Size in megabases 1.1 0.8 0.8 1.0 1.8 mean that such a gene was lost. For 
Genic space 0.4 0.5 0.4 0.4 

0.7 genes present in the maize regions 
Unassigned sequences 0.7 0.7 0.7 0.7 1.1 
Repeat elements 3.5 3.1 1.6 2.7 7.1 and absent in rice Os3S, a simple 

 



 

 

 

 
 

Figure 2. Corresponding, syntenic genes between the Zm1S, Os3S, and Zm9L chromosomal re- 
gions. Gene models for all three regions were determined as described in the text. A graphic repre- 
sentation is given for genes (A) that are syntenic, have homologs within the syntenic regions, have 
homologs in the rice genome or maize GSSs/EST collections, have a homologous counterpart in other 
plant EST collections, or are species-specific; and (B) that are syntenic between both maize regions and 
have a homolog or no homolog on the other maize chromosome. Each fraction is labeled with the 
number of genes and the percentage of the total within its sample. 

 

DNA methylation of the maize regions 
 

An important component in the analysis 

of maize genome organization is the dis- 

tribution of methylated nucleotides. 

DNA methylation and de-methylation 

have been correlated with tissue-specific 

activation of gene expression and open 

and closed chromatin formations (Spena 

et al. 1983; Bennetzen et al. 1994; Lund 

et al. 1995a,b). Methylation has also 

been shown  to silence  the activity  of 

transposable elements (Chomet et al. 

1987). 

To gain insights into the distribu- 

tion of methylation within the large 

contiguous sequenced regions of the 

maize genome, we mapped genomic sur- 

vey sequences (GSSs) derived from a 

methylation-filtered (MF) library (Rabi- 

nowicz et al. 1999; Palmer et al. 2003; 

Whitelaw et al. 2003) to the Zm1S and 

Zm9L regions. The DNA fragments are 

1–2 kb in size and highly enriched for 

sequences that have nonmethylated 

bases in the maize nuclear genome. As 

the maize genome contains large quan- 

tities of highly conserved sequences 

(e.g., transposable elements), widely dis- 

tributed across the genome, we applied 

stringent criteria to anchor MF-GSS 

clones to their specific maize region of 

species suggests that speciation has resulted in substantial gene 

loss or death. 
 

Duplicated genes in maize 

If maize experienced a high degree of gene loss after the WGD 

event, how many of the genes remain as duplicated copies? We 

analyzed both maize regions by bidirectional best BLASTP hits 

(BBHs) of their derived protein sequences (Fig. 2B). The number 

of duplicated genes with both copies retained is remarkably low, 

with 28% and 20% for Zm1S and Zm9L, respectively. Applying 

less stringent synteny criteria (e.g., that collinearity does not 

need to be preserved, but only a BBH needs to be present), the 

percentage increases to 35% and 28%, respectively. 

In summary, 150 genes of both maize regions are related to 

each other, while 153 and 176 genes from Zm1S and Zm9L, re- 

spectively, represent either a single copy of a duplicated gene or 

a noncollinear gene as described above. Even with the inclusion 

of genes conserved on both maize chromosomes, an estimate of 

the number of genes lost and gained relative to rice is uncertain. 

Recently an additional comparison against a syntenic region 

from sorghum has shown that both copies of a gene derived from 

an ancestral chromosome can be lost relative to a copy conserved 

in its position in sorghum and rice (Lai et al. 2004b). Thus, it is 

clear that having the additional data point from the sorghum 

syntenic region would be instrumental in reconstructing the evo- 

lutionary history of duplication, retention, and syntenic gene 

order. Still, the differences between collinear and noncollinear 

genes are striking and indicate that both gene death and gene 

mobility have been frequent in the maize lineage post- 

polyploidization. 

origin. For nonrepetitive regions, this strategy allows for high 

specificity to identify regions within the Zm1S and Zm9L regions 

that are represented among MF sequences. It should be noted 

that the MF libraries as well as the BAC clones were derived from 

the same maize inbred line, B73 (Palmer et al. 2003; Whitelaw et 

al. 2003), and the sequencing error rate of the GSS has been 

reported to be 2.3 x 10-3 or lower (Fu et al. 2004). In contrast, 

MF sequence clones containing conserved repetitive sequence 

can often not be unambiguously anchored to a specific region, as 

many highly similar copies may be present throughout the ge- 

nome. In addition to MF GSSs, we mapped another collection of 

sequences derived from high C0t (HC) enrichment, which has 

been demonstrated to be enriched for low-copy-number se- 

quences (Whitelaw et al. 2003; Yuan et al. 2003). 

Figure 3 gives a graphical overview of the density distribu- 

tion for MF and HC clones in the two maize Zm1S and Zm9L 

regions. Both filtered libraries cover a similar percentage of the 

genic (CF: 32%; MF: 30%) as well as of  the  complete  genomic 

space (CF: 12.4%; MF: 16.6%). The cumulative  coverage  of  CF 

and MF for the genic space was 49%, indicating overlapping and 

complementary specificities for  the  two  methods.  About  91.5% 

of all genes were detected by at least one GSS tag. A previous 

comparison of CF and MF with a set of 78 full-length cDNAs also 

showed that 95% of the cDNAs are tagged by at least one se- 

quence read (Springer et al. 2004). However, total nucleotide cov- 

erage of the full-length cDNAs approached 75%, although this 

obviously included only exons. In a separate study, 152 predicted 

genes from early-published maize BAC sequences were analyzed 

and exhibited a similarly high level of coverage, across both ex- 

ons and introns (W.B. Barbazuk, unpubl.). Here, we find a much 



 

 

 
 

 
 

Figure 3. Position and density of sequence features of the maize regions Zm1S and Zm9L, and rice 
chromosomal region Os3S. Color-coded densities of several genomic features (repeats, coverage by 
filtrated GSSs and genes) are shown for Zm1S, Zm9L, and Os3S. Blue represents lowest (0%), green 
medium (50%), and red highest (100%) density of the respective feature. Relative density has been 
determined within a sliding window of 50 kb and in steps of 1000 bp. Locations of GSSs represent 
alignment positions by BLASTN. Note that the four high-density regions within the maize gene bars 
indicate four very large genes (>50 kb gene size) that were predicted by our annotation. 

fore, larger introns and the regulatory 

flanking regions appear to have a higher 

frequency of methylated bases and short 

repeat sequences than the exons of 

genes. For instance, regulatory elements 

can be separated from the coding re- 

gions by methylated retroelements in 

the B1 and Tb1 loci (Stam et al. 2002; 

Clark et al. 2004), and the large intron of 

the P1 gene is methylated both in the 

normal allele and its epiallele P-pr 

throughout development (Das and 

Messing 1994). Still, the high percentage 

of tagged genes, with the HC and MF 

libraries each comprising only 450 Mb of 

single sequence reads compared to a to- 

tal genome size of 2.4 Gb, underpins the 

value of both sequence collections for a 

rapid exploration of the genic space in 

maize when their physical map position 

is not required. 

To analyze the potential epigenetic 

influences on the regulation of dupli- 

cated genes, we were particularly inter- 

ested in similarities and differences of 

the methylation patterns for both tan- 

demly repeated genes and conserved 

syntenic genes between the Zm1S and 

Zm9L regions. Coverage of tandemly re- 

peated genes by MF clones was quite 

similar to the average coverage of all 479 

genes. In particular, 78% of all genes and 

75% of tandem genes had at least one 

matching MF clone. 

lower coverage across introns, which contributes to the lower 

overall coverage mentioned above. Interestingly, the coverage of 

introns (expressed as the percentage of sequence length) is lowest 

in the genes with the largest introns (Supplemental Table G). The 

difference between the data presented here and previous reports 

is likely explained by the varying abundance of genes with large 

introns present in each data set. For the 152-gene set, introns had 

an overall mean of 410 bp and a median of just 141 bp, and the 

largest intron was just over 7 kb. In contrast, the values for the 

Zm1S and Zm9L regions presented here were 587 bp and 472 bp 

(mean), 150 bp and 137 bp (median), and 23 kb and 62 kb (maxi- 

mum intron size). This difference is perhaps not surprising since 

the first maize BAC sequences were not chosen at random, but 

rather by probing with known genetic markers, and they were 

consequently biased in terms of gene density. For instance, a 

comparison of 117 nonrandom published BAC sequences with 

100 randomly selected BAC sequences demonstrated that the 

nonrandom BACs had a lower repeat content than the random 

BACs (52% vs. 66%) (Haberer et al. 2005). Moreover, the 100 

random regions exhibited a combined coverage of CF and MF for 

all predicted genes of 51% (Haberer et al. 2005), which is close to 

the findings observed here. Therefore, the difference between the 

three data sets, the 78 full-length cDNAs, the 152 predicted genes 

from earlier sequenced BACs, and the 644 predicted genes from 

this study is that coverage of genes by CF and MF is reduced in 

genes with larger introns. It also has been shown that untrans- 

lated transcribed regions (UTRs) and promoter regions tend to 

have a lower coverage by a GSS tag (Haberer et al. 2005). There- 

Genes conserved in both syntenic maize segments revealed 

a significantly higher coverage by MF clones (0.42x of the genic 

space vs. 0.30x for all genes), suggesting a higher degree of hy- 

pomethylation for this class of genes. Interestingly, the fraction 

of these conserved genes with no MF coverage (3.8%; 3 out of 78) 

is significantly lower compared to the expectation for all genes 

[P < 0.0001; P(X :s 3) = Bn,p(78, 3, X :s 3)]. However, given the 

small sample size and the incomplete sequence space currently 

covered by MF clones, it is not yet clear whether these observa- 

tions indicate a functional characteristic of conserved syntenic 

genes. 

Interestingly, the expansion that occurred in different inter- 

vals of Zm1S and Zm9L relative to Os3S did not create a differ- 

ential methylation pattern. Hypomethylation seems to be pre- 

sent even in regions where an increased expansion by retrotrans- 

position occurred. Future analysis of other duplicated regions of 

the maize genome will help to refine the correlation of methyl- 

ation and chromosome architecture. 

 

Conclusions 

We have obtained the first large contiguous sequences of maize, 

spanning >43 cM of genetic distance, by an economical sequenc- 

ing strategy. The sequence data enabled an analysis of the 

changes that occurred after the progenitor of maize was formed 

by hybridization of two closely related species. By using the 

known genome sequence of rice as a reference, important in- 

sights into genome evolution have been obtained. An unforeseen 



 

 

 

result is the enormous variability of chromosomal expansion in 

different syntenic blocks. Our data suggest that the ancestral 

chromosomes contained seeding sites for inversions and inser- 

tions within segmental duplicated regions, including sites for 

differential growth by insertions and deletions. It appears that 

the C-value enigma results from a composite of chromosome 

contraction and expansion. In addition, the death and birth of 

new genes is pronounced. Approximately a tenth of the pre- 

dicted maize genes lack a homologous counterpart in rice, a phe- 

nomenon unseen in closely related mammalian genomes (Inter- 

national Human Genome Sequencing Consortium 2004). Fur- 

thermore, the mobility of genes is quite high. Nearly a third of 

the predicted genes in both species seem to have moved to new 

positions. Upon hybridization of its two progenitors, maize has 

lost one copy of more than half of its duplicated genes, indicat- 

ing that an increase in gene numbers by diversification of protein 

functional characteristics and/or regulatory properties is limited. 

The genic space in maize has, in part, also enlarged because of an 

increase in intron sizes. 

 

Methods 

DNA sequencing, sequence assembly, and data deposition 

The tiling path for both maize chromosomes was selected at the 
Arizona Genomics Institute. All BACs were validated by cross- 
checking their HindIII profiles with pre-existing agarose finger- 
prints. Overlap between clones is quite variable because they 
were not yet optimized with high-resolution fingerprinting (Nel- 
son et al. 2005). The average overlap amounts to 15% for the tile 
of chromosome 1 and 21% for chromosome 9 (Supplemental 
Table F), which would extrapolate to 17,200 clones for all FPCs, 
currently 90% of the B73 genome (http://www.genome.arizona. 
edu/fpc/maize/). 

In total, 116 BAC clones were chosen for sequencing. Sixty 
clones for maize chromosome 1 were sequenced at The Institute 
of Genomic Research, while Zm9L was sequenced with 40 clones 
at the Broad Institute, and 16 at the Plant Genome Initiative at 
Rutgers (Supplemental Tables D and E). Randomly sheared BAC 
DNA in a very narrow size range of 4 kb was used to construct 
shotgun libraries in the pOTWI vector for Zm9L, while the 
pCR4TOPO vector (Invitrogen) and 6–8-kb inserts were used for 
Zm1S BACs. Inserts were sequenced from both ends using uni- 
versal primers (Vieira and Messing 1982), ABI 3730 capillary se- 
quencers, and the ABI PRISM BigDye Terminator Cycle Sequenc- 
ing Ready Reaction kit (Applied BioSystems). Sequence assembly 
was carried out using ARACHNE (Batzoglou et al. 2002; Jaffe et al. 
2003). This resulted in 50 phase 1 and 10 phase 2 BACs (ordered 
contigs with a few sequencing gaps) from Zm1S and 28 phase 1 
and 28 phase 2 BACs from Zm9L (Supplemental Tables D and E). 
Overlaps between neighboring BACs were determined using 
BLASTN, while resultant pseudomolecules were constructed after 
careful inspection and verification of each overlap both manu- 
ally as well as by TPF processor (http://www.ncbi.nlm.nih.gov). 
The Zm1S pseudomolecule has 15 physical gaps, while the Zm9L 
pseudomolecule contains 10 physical gaps. 

In order to confirm that the entire pseudomolecule mapped 
to the same location on the physical and genetic maps, we 
mapped several new SSRs (Supplemental Table H). Four BACs, 
distributed across the 56 BAC Zm9L megacontig, were chosen for 
detection of SSRs (Castelo et al. 2002). A total of 165 SSRs were 
found in the 603 kb of insert DNA in these four BACs. The SSR 
frequency in these four BACs ranges from 19 to 32 SSRs per 100 
kb with an average of 27 SSRs per 100 kb (Supplemental Table I). 

In order to detect polymorphism, primer pairs were designed 
from five SSR-flanking regions per BAC. For the genetic mapping, 
two RIL (recombinant inbred line) mapping populations from 
Ben Burr (Brookhaven National Laboratory, NY) were used (Burr 
et al. 1988), to increase the chance of finding useful polymor- 
phism. First, RIL mapping population 2 (CO159 x Tx303) was 
used to detect polymorphism through PCR amplification. Out of 
the 20 primer pairs, PCR amplification was observed in 14 of 
them (two of them had no product in one of the parents). There- 
fore, only 12 were taken into consideration, and polymorphism 
was observed in only three of the 12 (polymorphism frequency of 
25%) that involved only two out of the four BACs. Therefore RIL 
mapping population 1 (T232 x CM37) was used to detect poly- 
morphism in the remaining two BACs. The success rate for PCR 
amplification was exactly the same (60%) as earlier. However, the 
degree of detected polymorphism was observed to decrease 
slightly from 25% to 17% (Supplemental Table B), involving only 
one of the two BACs. Hence, of the four BACs, only three could 
be mapped, and, as expected, all three BACs (ZMMBBc0051H21, 
c0536M23, and c0320B12), as well as the test marker (umc1505), 
were mapped to chromosome 9 bin 07. 

Sequences of genetic markers from maize, rice, and sorghum 
were downloaded from the community Web sites, and used to 
determine their exact positions in the maize and rice sequences 
at the PGIR. After extensive curation and editing, files of the 
pseudomolecules were sent to the Munich Information Center 
for Protein Sequences (MIPS) for analysis. 

 
Sequence analysis 

For sequence annotation, we used the same data processing pipe- 
line described previously (Haberer et al. 2005). In short, repeat 
elements were detected by openRepeatMasker 3.1 using a cus- 
tomized library (http://www.repeatmasker.org/) for plant repeat 
elements and cutoff values of 100 for hit length and 255 for hit 
score. The underlying library for plant repeat elements was com- 
piled from different publicly available resources and classified by 
a hierarchical repeat ontology. The clustered nonredundant set 
comprised 5294 sequences with a total size of 12.6 Mb. Repeat 
masked sequences were analyzed for their coding potential by 
applying extrinsic (homology-based) and intrinsic (ab initio 
gene prediction methods) criteria and methods. Genes were de- 
tected by applying FGeneSH++ (Salamov and Solovyev 2000) and 
GenemarkHMM (Lukashin and Borodovsky 1998) using mono- 
cot and maize matrices, respectively. In addition, BLAST homol- 
ogy searches of the respective BAC sequences against EST assem- 
blies (BLASTN) and protein sequences (SWISS-PROT and UniProt; 
BLASTP) were carried out (Altschul et al. 1990). EST collections 
included assemblies of Arabidopsis thaliana, Medicago truncatula, 
Triticum aestivum, Sorghum bicolor, Hordeum vulgare, Saccharum of- 
ficinalis, Oryza sativa, and Zea mays (The TIGR Gene Index Data- 
base at http://www.tigr.org/tdb/tgi). We used the Genome- 
Threader program for spliced alignments of the EST and TC se- 
quences (Gremme et al. 2005). GenomeThreader has been 
especially designed for gene structure prediction in organisms 
containing long introns and uses a spliced alignment strategy. All 
gene models underwent manual curation and adaptation to sup- 
porting experimental evidence (e.g., EST, TC, and protein ho- 
mologies), if necessary. The annotations including supporting 
evidence for each BAC can be accessed online or downloaded in 
the Apollo-compatible GameXML format from the MIPS maize 
database (http://mips.gsf.de/proj/plant/jsf/maize/index.jsp). In 
addition, the sequences of the pseudomolecules Zm1S (7.82 Mb) 
and Zm9L (6.56 Mb) are available in FASTA format on the same 
Web page in the download area. 

http://www.genome.arizona/
http://www.repeatmasker.org/)
http://www.tigr.org/tdb/tgi)
http://mips.gsf.de/proj/plant/jsf/maize/index.jsp)


 

 

 

The gene annotation of the syntenic part of rice was based 
on the TIGR rice assembly (version 3). Sequences were masked for 
repetitive elements applying identical methods as used for both 
maize regions. For gene prediction, TIGR (v3) gene models as well 
as complementary monocot ESTs/TCs collections were mapped 
to the genomic sequences. Potential transposable elements were 
identified by BLASTN comparisons against the MIPS plant repeat 
library (for cutoff parameters, see above). Identified repetitive 
elements and transposable elements within rice were excluded 
from the analysis of syntenic relationships. 

In order to determine the syntenic relation between pre- 
dicted genes/proteins, the bidirectional best BLASTP hits (BBHs; 
e-value < 1e-20) of the proteins of each chromosomal region was 
determined. The syntenic pairs were determined manually once 
with rice as central reference, where genes from both maize chro- 
mosomes were compared to rice, and between the two maize chro- 
mosomes. The micro-collinear gene clusters were merged into 
macro-collinear blocks. 

The criterion for homologous genes considered as tandem 
duplicated genes was a BLASTP e-value < 1e-20 and a maximal 
distance of one nonhomologous gene inserted between the ho- 
mologous genes. 

 

Coverage of filtered clones 

The MF and HC sequence reads available at TIGR (http:// 
www.tigr.org/tdb/tgi/maize/) were used to determine the cover- 
age of genes by the filtered sequence reads. All filtered sequence 
reads were compared against the two pseudomolecules by 
BLASTN sequence comparison. To anchor a clone to a genomic 
location, an alignment length of at least 90% of the clone length 
and a minimal sequence identity of 98% over the alignment 
length were required. Genomic/exonic/intronic coverage was de- 
termined on a nucleotide basis and was normalized to the length 
of the respective segment. 
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