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Recent literature suggests that gait dynamics plays a role in establishing healthy, 

adaptive gait behavior, and that illness or injury can alter the dynamic patterns of gait 

(termed fractal patterns). So called “dynamical diseases” change the fractal patterns in 

gait, hereby reducing adaptive gait ability and increasing fall-risk. Previous research has 

shown that fractal patterns in gait can be strengthened through the use of a fractal 

metronome stimulus. However, in previous research participants have consistently 

presented weaker fractal patterns than prescribed by the metronome, despite 

improvements from their baseline. One postulate is that this gap between the stimulus and 

the participants’ response is due to the prescriptive nature of the stimulus – that is, the 

metronome is presented with no interaction with the user. If so, the introduction of real-

time feedback regarding synchrony with the stimulus may be beneficial to strengthening 

fractal patterns. The purpose of this study was to examine the role of feedback in 

increasing synchrony with a fractal metronome stimulus, and in entraining fractal gait 

patterns. There were three hypotheses: First, feedback would elicit a stronger coupling 

between participants’ gait dynamics and the dynamics of the stimulus relative to a non-

feedback condition. Second, the addition of feedback to the visual metronome would lead 

to a stronger fractal pattern during the training and post-training (retention) phases. Third, 

participants with the strongest coupling during training would exhibit the strongest fractal 

patterns during training and post training. Results showed no difference in coupling 
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between feedback and non-feedback conditions. The addition of feedback to the fractal 

metronome led to no significant difference in fractal strength from baseline to training 

and baseline to retention.  While greater coupling was correlated to stronger fractal 

patterns during training, there was no relationship between coupling and retention.  This 

study was consistent with previous studies supporting the use of metronomes to alter gait 

dynamics, and was one of the first to examine feedback in conjunction with fractal gait 

training.  
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CHAPTER I 

 

INTRODUCTION

 

 

It is difficult to overstate the importance of functional mobility for independent 

living and high quality of life. Ambulation or gait is a core factor in determining 

functional mobility, which refers to the ability to safely and effectively navigate through 

the environment. Categorized as a Basic Activity of Daily Living (James, 2014), safe and 

effective gait is considered instrumental to self-care and an independent lifestyle. 

Functional gait behavior is the product of many factors: balance, executive function, 

muscular strength, timing, and coordination. The complexity of gait provides many 

avenues by which deficiency can be introduced. Degradation of functional gait behavior 

can occur through injury, aging, or a multitude of diseases, including Parkinson’s, 

Multiple Sclerosis, and stroke. Worsening gait function is linked not only to decreased 

mobility, but also an increased risk of injury due to falling (Campbell et al., 1989). Fall 

risk is particularly prevalent in an elderly population, with up to 30% of community-

dwelling adults over 65 reporting one or more falls within the past year (Shema et al., 

2013). Clinical rehabilitative practice attempts to address these gait deficits and restore a 

higher level of functional mobility. 

 It has been acknowledged in recent decades that gait dynamics may play an 

important role in healthy adaptive gait behavior. The term “dynamical systems” describes 
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systems, including the physiological, which evolve through different states as a function 

of time. When measuring biological signals across a span of time, minor fluctuations in

the signal are evident, even when environment factors are unchanged. The historical view 

of variability is that it is “noise”- meaningless imprecision in the mechanisms of the 

system. This paradigm does not see system variability as being of particular importance; 

researchers are more typically concerned with measures of central tendency (i.e., the 

mean about which the variability occurs). Recently, research has begun to re-evaluate the 

importance of variability. Beginning with cardiac dynamics, researchers have started to 

view small fluctuations in time series as not only natural, but necessary for the health of 

the system.  

Utilizing non-linear mathematical tools, it is possible to examine the structure of 

variability, in effect describing how related any series of points may be to any other series 

of points as a function of time. In this way, the structure of variability in a time-series can 

be classified on a spectrum ranging from complex (highly correlated) to uncorrelated 

(white noise). It is thought that healthy biological systems, such as gait or cardiac 

rhythms, should exhibit a specific class of fluctuation described as fractal patterns, which 

is characterized by repeated patterns of variability across time scales. A fractal pattern is 

characterized by both low frequency patterns, as well as high-frequency fluctuations. 

Healthy gait rhythms therefore fall between these two poles of the continuum. 

Maladaptive gait behavior may be a result of gait patterns shifting to either extreme. On 

the one hand highly structured systems are too rigid to meet altered demands from the 

environment, while on the other hand an unstructured signal lacks any sort of defined 
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pattern that would allow for control. Therefore, healthy systems need some level of 

fractal noise to function, but a high level of variability leads to breakdown in 

functionality.  

While yet to be put to clinical practice, it is thought that many gait dysfunctions 

can be treated via manipulation of underlying gait dynamics. So-called “dynamical 

diseases” may produce pathological gait behavior by driving gait patterns out of the 

healthy part of the spectrum, toward either of the two extremes. Attempts to manipulate 

gait dynamics, using rhythmic auditory and visual stimuli have been met with initial 

success. Rhea and colleagues (2014), have shown that synchronization to a visual 

metronome driven by a fractal signal can alter subjects’ position along the spectrum of 

gait variability. Participants exposed to highly correlated patterns are capable of 

entraining to those stimuli and changing their gait dynamics. However, no study has yet 

shown the ability to induce fractal patterns of specified strength: participants’ gait 

dynamics tend to be significantly less correlated than the stimulus to which they are 

exposed. The size of the “gap” between the stimulus and the resultant motor behavior has 

been shown to be a product of the presentation modality of the stimulus. The visual 

metronome manipulation task is ripe for enhancements which may increase its ability to 

alter gait dynamics 

The purpose of this study was to examine the effect of extrinsic feedback on the 

resulting gait patterns when synchronizing to a visual metronome task. This study was a 

continuation of previous work by Rhea, Kiefer, and Wittstein (2014) and represents one 

possible avenue for addressing the gap between stimulus and output. It was postulated



  4 
 

that real-time interactive feedback would enhance coupling to the metronome and in so 

doing strengthen fractal patterns in comparison to the non-feedback condition. Three 

hypotheses were tested:  

Hypothesis 1: Feedback would elicit a stronger coupling (i.e., higher cross-

correlation values) between participants’ gait dynamics and the dynamics of the stimulus 

relative to a non-feedback condition.  

Hypothesis 2: The addition of feedback to the visual metronome would lead to a 

stronger fractal pattern during the training and post-training (retention) phases.  

Hypothesis 3: Participants with the strongest coupling during training would 

exhibit the strongest fractal patterns during training and post-training. 
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CHAPTER II 

REVIEW OF THE LITERATURE

 

 

Overview 

This chapter will explore the literature regarding: (1) the gait task, (2) the 

variability and adaptability hypothesis, (3) detrended fluctuation analysis, (4) origins of 

fractal noise, (5) sensorimotor and metronome synchronization, (6) cross-correlations in 

gait studies and (7) how feedback can be used to enhance sensorimotor synchronization. 

A summary will address opportunities for further research.  

The Gait Task 

Gait is a rhythmic, cyclic motion that progresses through limb-alternating stages 

during the course of a single cycle. Both limbs experience swing and stance phases in the 

course of a complete cycle, which is defined as from one heel strike to another with the 

same limb (Winter, 1991).The lower extremities oscillate through multiple states—left 

limb stance, dual limb stance, right limb stance—before returning to their previous state. 

The following figure illustrates the stages of a full gait cycle (Hartmann et al., 2010). 
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Figure 1. The Gait Cycle with Proportions for each Phase with Healthy Adult Gait 

 

The lower extremities can be described mathematically as a pair of coupled 

oscillators; each limb progresses cyclically through stance phase, swing phase, and back 

again. While constantly in motion, each limb traces a mostly consistent pattern in space. 

During typical healthy gait neither limb operates independently. An increase in gait speed 

decreases stance times and increases swing times for both limbs symmetrically (Winter, 

1991). Each limb moves in antisynchrony with each other, half a gait cycle apart. While 

one limb is in stance phase, the other swings, and vice versa. A vital feature of this 

system of coupled oscillators is its stability as limit-cycle oscillators. When subjected to a 

perturbation which disrupts the gait cycle, the limbs may briefly fall out of antisynchrony 

with each other, but will naturally and quickly recouple, reestablishing the previous 

pattern over the course of several strides. This behavior allows the gait cycle to recover 

following trips or slips that occur during navigation of the physical environment. 
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Pathological gait exhibits decreased adaptability to perturbation. Aging and illness are 

linked with maladaptive gait behavior and increased fall risk. This may be due to an 

altered gait cycle and reduced limb coupling. For example, hemiparetic gait is common in 

sufferers of stroke, where one limb is has significant muscular strength deficits in 

comparison to the other. This results in asymmetrical gait, with a shorter swing phase and 

ground clearance in the affected limb (Vaughan, et al., 1999). Asymmetrical or 

uncoupled limb oscillations may make it more difficult to establish and maintain stable 

gait cycles. 

Variability and Adaptability Hypothesis 

The adaptability of systems such as the gait cycle is thought to be linked to 

fluctuations of physiological variables (Glass & Mackey, 1988). Biological systems have 

been long recognized as exhibiting minor fluctuations as a function of time, even when 

systemic and environmental factors remain constant. Stable or homeostatic systems can 

be described mathematically as either steady states or oscillators. In these steady states,   

a given set of parameters will always produce a constant solution, which does not change 

as a function of time.. Steady state models do not provide adequate justification for the 

existence of observed biological variability. As such, variability has been historically 

considered meaningless noise — errors in measurement or methodology that were 

ignored in favor of mean values (Diniz et al., 2011).  

Traditional measures of variability focused on the magnitude of variability, such 

as standard deviation or coefficient of variation, or standard error. These linear measures 

provide a narrow view of variability as a phenomenon. Later motor control paradigms 
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linked the magnitude of variability to the health of a system, whereby increased 

variability was a sign of degraded accuracy of an individual’s motor function. This view 

is supported by studies showing increased variability across motor tasks with advancing 

age and declining function (Roos et al., 1997).  

This view, that variability across physiological systems is indicative of the 

failing health of these systems, rests upon the premise that successive fluctuations are 

entirely unrelated to each other. This form of unstructured, uncorrelated values is 

described as “white noise”. However, it has been shown that fluctuations in biological 

systems are not uncorrelated white noise. Box and Jenkins (1976) published 

mathematical processes that allowed the examination of time series for dependence 

between successive data points, albeit on a short-term window of time. Correlations 

between successive points in a system can be observed over increasingly large time 

scales, suggesting that any individual value is an expression of all prior values in the 

series. This correlation of patterns in time series is known as self-similarity, fractal 

patterns, or 1/f noise. 

Fractal patterns are present in numerous physiological systems, first evidenced 

in heartbeat time series (Peng et al., 1993), and later in gait stride times (Hausdorff et al., 

1995). It is also present during finger-tapping (Gilden, Thornton, & Mallon, 1995) and 

metronome synchronization tasks (Torre & Delignières, 2008). Goldberger and 

colleagues (2002) link healthy behaviors to the presence of 1/f noise, a position 

reinforced by the weakening of fractal patterns due to injury, aging, or disease 

(Hausdorff, 2007; Hausdorff et al., 1997; Lipsitz & Goldberger, 1992). Healthy gait 
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requires the presence of fractal fluctuations for proper motor function (Hausdorff et al., 

1995). Herman et al (2005) showed that high level gait disorder is correlated with both 

increased fall risk and weak fractal patterns. It is hypothesized that the presence of minor 

fluctuations provides a system with the ability to adapt to perturbation. It is easy to 

imagine perturbations to the gait cycle: a physical obstacle may result in a trip, after 

which a healthy system may be able to recover and return to the original gait pattern. Too 

rigid of a gait pattern, i.e. overly correlated, would be unable to adapt to the perturbation. 

However, an under correlated gait pattern, i.e. white noise, lacks the structure necessary 

for a coordinated response and is similarly maladaptive. It is therefore thought that 

healthy adaptive behavior resides in an optimal zone; that is, neither too structured nor 

too noisy. 

Detrended Fluctuation Analysis 

 Due the inability of traditional linear measures to capture the structure of gait 

variability, a non-linear dynamics approach is necessary. Detrended fluctuation analysis 

(DFA) is a metric that quantifies the strength of self-correlation in a time series, i.e. how 

strongly fractal patterns are expressed (Hausdorff et al., 1995). DFA was initially utilized 

to describe DNA sequences (Peng et al., 1994) and later applied more broadly to other 

physiological systems. DFA examines structure across increasingly large subsets of a 

times series in order to quantify long-range correlations on multiple time scales. 

Calculation of DFA begins by demeaning all points of the time series (i.e., 

shifting the mean of the time series to zero) and then summing the points, as in Figure 2. 
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Figure 2. Calculation of Demeaning of Data 
 

y(k) = ∑ [𝑆(𝑖) − 𝑆𝑎𝑣𝑒]𝑘
𝑖=1  

 

The average step interval is subtracted from value of each step interval S(i) to mean 

center the data (i.e., values now reflect variation about the average step interval). The 

y(k) time series is the summation of all demeaned y(k) values, which is then partitioned 

into discrete, smaller time series.. A polynomial curve is fitted to each sub-series, which 

range in size from 4 data points, to ¼ the length of the time series. The data in each sub-

series is detrended by taking the magnitude of the difference between the trend values 

and the observed data. The amount of fluctuation within each section is computed using 

the Root Mean Square (RMS) method, depicted in Figure 3.  

 

Figure 3. Root Mean Square Calculation for DFA 

 

 𝐹(𝑛) = √
1

𝑁
∑ [𝑦(𝑘) −𝑁

𝑘=1 𝑦𝑛 (𝑘)]2 

 

The logarithm of the RMS function is graphed as a function of the logarithm of 

the section size (number of data points in section) in a log-log plot. This process repeats 

iteratively with larger sections up to the maximum size. A line of best fit is constructed, 

the slope of which corresponds to the DFA alpha value of the time series. The entire DFA 

calculation is illustrated in Figure 4, from Rhea and Kiefer (2014).  
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Figure 4. DFA Calculation, Adapted from Rhea and Kiefer (2014). Panel A illustrates an 

example demeaned time series. Panel B shows the process of partitioning the time series 

and calculating a line of best fit. Panel C presents the log-log plot of RMS and section 

size. 

 
 

The DFA alpha metric provides a method of examining variability along a 

continuum, as shown in Figure 5 (adapted Rhea, Kiefer, D’Andrea, et al., 2014). Highly 

regular time series yield a DFA alpha of 1.0, while overly random series yield 0.5. 

Healthy adult gait usually has a DFA alpha value of around 0.75 (Hausdorff et al., 1995). 
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Older adults with gait and balance disorders exhibit DFA values close to 0.5, which may 

be related to decreased adaptability and greater fall risk (Hausdorff, 2007).  

 

Figure 5. Examples of Time Series Depicting Random (DFA α = 0.50), Between   

Random and Persistent (DFA α = 0.75), and Persistent (DFA α = 1.0) Patterns. Adapted 

from Rhea, Kiefer, D’Andrea, et al. (2014). 

 
 

 

Origins of Fractal Patterns 

There is no consensus in the literature on the origin of fractal patterns in 

biological systems. The debate is divided primarily between two camps: those who 

believe fractal patterns can be caused “locally” by individual subsystems, and those who 

believe fractal patterns are an emergent property indicative of the complexity of a system 

(Diniz et al., 2011). In the former paradigm, 1/f noise can arise from a single aspect of the 
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system, not the interaction of the system as a whole. Wing and Kristofferson (1973) 

posited rhythmic synchronization behavior required two components: a central internal 

timekeeper and a motor control process. The central timekeeper is considered the source 

of 1/f noise seen in the motor output (Gilden et al., 1995). The internal timekeeper is 

therefore responsible for adaptive responses to perturbations to the rhythm. 

 In contrast, the second school of thought views fractal patterns as arising from 

the interactions between various interdependent subcomponents of the system. A system 

exhibiting strong fractal patterns is thought to be more complex. A complex system lacks 

a central controller; instead, the subcomponents are free to behave within certain 

parameters, and self-organize dynamically into a coordinated system (Van Orden et al., 

2003). This allows for emergent behavior and dynamically changing coordination based 

upon environmental changes. In this view, fractal patterns are indicative of complexity, 

and therefore emergent coordinated behaviors (West & Brown, 2005). 

Sensorimotor Synchronization 

Sensorimotor Synchronization (SMS), where motor behavior is temporally 

coordinated with an external stimulus, has been utilized to examine rhythmic behaviors. 

The primary method to examine SMS has been a finger tapping task in coordination with 

an audio or visual metronome. Humans are capable of synchronization to stimuli of 

various tempos with ease. To synchronize with an external event requires the capacity to 

anticipate the next occurrence of that event. Early studies (Woodrow, 1932) noted that 

participants’ taps preceded each beat of a tempo-locked audio stimulus by an interval of 
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milliseconds. This anticipatory tendency is quantified as the negative mean asynchrony 

(NMA). 

Accepting the complexity hypothesis of fractal patterns, and rejecting the notion 

of an internal timekeeper requires an alternative explanation of humans’ ability to 

successfully coordinate tapping intervals. Rather than rely on an internal timekeeper, 

Dubois (2003) developed the construct of strong anticipation to explain this ability. 

Strong anticipation models timing as an interaction between an organism and its 

environment as a single dynamical system. Instead of relying on previous data points to 

anticipate, hyperincursive reference to previous and successive data points is used by 

examining multiple time scales, not just the local scale (i.e., current moment). Global 

coordination between the organism and environment requires fractal time scaling. Inter-

tap intervals for finger tapping tasks display fractal patterns consistent with coupling or 

entrainment. Studenka and Newell (2013) examined the role of what is termed 

prospective control (Lee, 1993). They utilized a force production task, where participants 

modulate the amount of force their fingers produced to fall in-line with a displayed force 

curve. Participants were presented with signals of varying regularity (sinusoidal wave and 

fractal patterns down to white noise), and were given prospective information (i.e., a 

visual representation of the force curve coming up) of varying durations. Their findings 

noted that less regular signals, such as fractal patterns, benefitted from larger prospective 

windows. This further supports the strong anticipation model by demonstrating the use of 

future data points across multiple timescales to inform the current moment. 
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Metronome Synchronization 

Given the established link between fractal patterns in stride time, gait 

complexity, and adaptive behavior, a new focus has developed in recent years on 

manipulating gait timing in order to entrain strong fractal patterns. This has been 

accomplished utilizing chaotic metronomes. Chaotic metronomes are ones that do not 

have a fixed period, but instead exhibit a form of structured noise. Stephen et al (2008) 

used a chaotic auditory metronome with a finger-tapping task, a scenario where local 

prediction should be impossible. They found that the structure of the participants’ tapping 

was strongly correlated to the structure of the metronome (r=0.96). This favors strong 

anticipation, showing that participants can couple to the global time structure. The 

interaction between metronome and participant can be viewed through the dynamical 

systems framework as the coupling between the oscillating gait cycle and the external 

oscillator of the stimulus (Repp, 2005). This coupling relationship allows for entrainment 

of fractal patterns.  

 Previous work by Rhea and colleagues (2014a, 2014b) demonstrated the 

efficacy of visual metronome tasks at modulating participants’ gait patterns, both when 

synchronizing to the metronome, in the 10 minutes immediately following removal of the 

stimulus. Study participants were tasked with synchronizing their self-paced gait cycle to 

a visual metronome projected on a screen in front of a treadmill with an underlying 

fractal pattern (DFA α= 0.98). Several modes of presenting the visual metronomes were 

utilized. Discrete, flashing foot prints and continuous sliding footprints successfully 

entrained stronger fractal patterns, pushing participants’ mean DFA α significantly 
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higher. Cross-correlational analysis of time lags showed a combination of proactive and 

reactive strategies necessary for entraining new patterns. This cross-correlational profile 

is consistent with previous findings from successful synchronization trials (Stephen et al., 

2008). 

However, a visual stimulus presented using a virtual avatar had the opposite 

effect, weakening participants’ fractal patterns, resulting in participants exhibiting white 

noise patterns (Rhea et al 2014c). It was initially postulated that this stimulus was 

presenting extraneous information that only served to distract participants. A follow-up 

study utilized an eye-tracking head-mounted camera system to examine the focus of 

attention (MacPherson and Rhea, 2015). Results showed that participants attended 

specifically to the avatars’ heel strike. Despite this, cross-correlational analysis found no 

evidence of the proactive/reactive strategies necessary for retention, suggesting that an 

avatar stimulus might not be a viable stimulus mode to develop fractal gait 

characteristics. 

 Data from a study by Hove et al. (2010) can be used to help explain the results 

from Rhea and colleagues’ papers. Hove and colleagues examined the effect of different 

modes of visual stimuli in finger-tapping tasks, as shown in Figure 6. 
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Figure 6. Various Presentation Modes for Visuomotor Synchronization Task, Adapted 

from Hove et al. (2010). 

 
 

 

Their results let to the conclusion that continuous, motion-compatible stimuli 

induced the best performance at the task. It is thought that the visual system is not as 

adept at processing rhythmic information as the auditory system (Wright & Elliott, 2014). 

However, a combination of spatial and temporal information, such as a rhythmically 

moving bar, is better processed visually relative to a discrete stimulus, such as a flashing 

square. In a task such as gait, where optic flow is heavily weighted (Warren, 2006), this 

may be especially true. It is important to note that the “finger” condition—the video 

footage of a finger tapping—elicited poorer performance than the other spatiotemporal 

conditions. It is believed that biological representations of the task, such as the avatar 

metronome of Macpherson and Rhea (2015), is overly constraining. In a dynamical 

systems view, a system self-organizes in order to accomplish tasks, and is capable of near 
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infinite solutions to a task. By presenting a full-body avatar, information is provided 

beyond timing of heel strike to include the whole gait cycle. Attempts to conform to this 

gait cycle constrains gait behavior, disrupting the self-organizing complexity of the 

system and reducing gait patterns to unstructured white noise (MacPherson & Rhea, 

2015).  

It is important to note that the fractal patterns produced when synchronizing to 

visual metronomes are not identically structured to the patterns of the stimulus. As shown 

in Figure 7, entrained patterns approach, but are lower than the target DFA α value of 

0.98. The size of this gap differs based on presentation modality (Rhea, Kiefer, Wittstein, 

et al., 2014). In this case, participants were asked to synchronize to a discrete stimulus 

(flashing left and right foot prints) or a continuous stimulus (footprints that slide along 

the ground). However, in both presentation modes, the target values and the expressed 

values were significantly different. The difference between the target and expressed 

values may be indicative of the limitations of purely prescriptive visual metronomes. In 

order to more accurately manipulate fractal patterns, interactive methods of presenting 

the patterns may prove useful. 
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Figure 7. Participants’ DFAα Values when Subjected to Two Presentation Modes of 

Visual Metronome. In each mode, DFA values while attending to metronome (Training) 

fails to reach the DFA level of the metronome (the dotted gray line). Adapted from Rhea, 

Kiefer, Wittstein, et al. (2014) 
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Cross-Correlation of Time Lags  

Cross-correlational analysis is a tool that has been previously used to examine 

the coupling of two systems during an anticipatory task (Marmelat & Delignières, 2012) 

and during synchronization to a fractal gait metronome (Rhea, Kiefer, D’Andrea, et al., 

2014). Cross-correlation compares the participants’ stride time series to the series 

produced by the metronome, across a number of positive and negative time adjustments. 

Doing so allows for not only the correlation of time series (i.e. how well a participant 

mimicked the metronome) but also the assessment of strategy (anticipatory vs. 

reactionary). This can serve as a check to ensure that participants are in fact coupling to 

the metronome as instructed.  

 As shown in Figure 8, MacPherson and Rhea (2015) compared cross-

correlational data between a fractal avatar metronome (A), a fractal discrete metronome 

(B), and a white noise discrete metronome (C). The discrete fractal metronome displays a 

moderate cross-correlation, with distinct peeks about the central point (no asynchrony). 

This is indicative of an ability to couple to the stimulus, with a variety of anticipatory and 

reactionary strategies amongst subjects. In contrast, the avatar cross-correlation is very 

low, similar to white noise, and entirely devoid of evidence for coupling strategies. This 

suggests that an avatar metronome task is not an achievable task, even in young healthy 

adults. 

 

 

 



21 
 

Figure 8. Comparison of Cross Correlation of Time Lags for Various Metronome Signals. 

Panel A shows correlation of participants’ stride time series with a fractal avatar 

metronome. Panel B depicts correlations with discrete flashing fractal metronome. Panel 

C shows correlation with a white noise metronome. Adapted from MacPherson and Rhea 

(2015). 

 
 

 

Extrinsic Feedback to Increase Synchrony 

Schmidt and Lee (1988) describe feedback as essential to the process of learning 

new motor patterns. In many synchronization studies, such as those previously performed 

by Rhea and colleagues, participants were limited to receiving intrinsic feedback. This 

information is self-generated and may include proprioceptive information regarding the 

position of the foot or movements compared to internal rhythm-keeping. However, 

intrinsic feedback fails to provide definitive knowledge of results (i.e. success/failure at 

the task), and so performance may be further enhanced with the addition of extrinsic 

feedback. Augmented extrinsic feedback may be of use in complex skill acquisition and 
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performance (Swinnen, 1996) Extrinsic information about performance has been shown 

to reduce absolute error in positioning tasks (Bilodeau, Bilodeau, & Schumsky, 1959), 

suggesting that the addition of extrinsic feedback to the fractal metronome paradigm 

utilized by Rhea and colleagues could enhance performance.  

Extrinsic feedback in the context of a sensorimotor synchronization paradigm 

could take the form of visual or auditory cues indicating success or failure to synchronize 

with a metronome. For example, Aschersleben (2003) used visual feedback during an 

anticipatory synchronization task (i.e., finger tapping to a metronome) to reduce negative 

mean asynchrony, which increased participants’ ability synchronize to a tempo-locked 

metronome. Kuznetsov and Wallot (2011) found that increased feedback reduced the 

presence of fractal patterns during tempo-locked finger tapping. In this context, a 

reduction of fractal patterns may be interpreted as evidence of the emergence of newly 

developed movement patterns as the system reorganizes in response to feedback. In the 

domain of continuous tasks, the effect of extrinsic feedback has been examined in 

isometric force production. Studenka and Newell (2013) found that when tracing 

irregular force production curves, the combination of prospective control (i.e. future 

curve information) and reactive feedback (i.e. previous curve information and personal 

performance) were correlated with increased performance. 

Feedback scheduling for optimal motor performance and learning has been 

explored in previous research. Studies have examined both the relative frequency of 

feedback (how often it is received) and the timing of feedback (how quickly it is received 

after each trial). There is currently no strong consensus on optimal feedback scheduling. 
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A series of studies involving positioning tasks showed no differences in performance 

between 100% feedback (feedback after each trial) and a reduced frequency of feedback 

in either short term or long term retention tests in linear positioning tasks and in timing 

tasks (Sparrow, 1995). This suggests that the effect of feedback frequency on acquisition 

and retention may be specific to the task. In examining feedback timing, immediate 

knowledge of results has been shown to enhance motor performance, though this comes 

with the risk of developing feedback dependency (Anderson et al., 2001).  

Real-time visual feedback has been used with some success in the field of gait 

rehabilitation (Barrios, Crossley, & Davis, 2010) to retain movement patterns. However, 

to the author’s knowledge there is currently no data on the effect of extrinsic feedback on 

fractal pattern entrainment in gait. 

Summary 

The literature shows that fractal fluctuations in biological systems are correlated 

with the healthy function of those systems. Fractal fluctuations are thought to prepare the 

system for external perturbation, allowing the system to adapt to the disruption and 

resume normal function. In gait, weakening of fractal patterns is associated with 

maladaptive gait and increased fall risk. Pathological populations, such as sufferers of 

chronic stroke or Parkinson’s disease, exhibit both poorer motor function and reduced 

DFA α values. The manipulation of gait dynamics to improve or restore healthy fractal 

patterns represents a promising new approach to gait rehabilitation. By temporally 

coordinating stride times with an external visual metronome, it is possible to entrain to 

alter fractal patterns, with evidence of short-term retention.  



24 
 

 Despite the promise such interventions hold, there is a gap, both literally and 

figuratively, in our ability to push participants to desired DFA α values. Though it is 

possible to alter gait patterns toward the desired end of the spectrum, it has not been 

previously demonstrated that gait patterns can be trained to exhibit the DFA target 

provided by the stimulus. The extent to which gait patterns fall short of the goal appears 

to be affected by the presentation modality of the metronome, with biological forms 

having a detrimental effect. 

 To date, experimental interventions manipulating gait dynamics have been 

prescriptive. That is, a stimulus is presented and the participant is tasked with coupling to 

the stimulus. There is no interactivity between the participant and the stimulus. Feedback 

in other domains, such as finger tapping and isometric force production, has been shown 

to be beneficial to improving adherence to the task. Incorporation of interactive feedback 

stimulus may provide a tool for participants to adjust their performance in real time, 

decreasing the size of the gap between their performance and the target pattern. The 

proposed study intends to examine how this tool might be used.
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CHAPTER III 

OUTLINE OF PROCEDURES

Participants 

 

    20 young healthy adults (11 male and 9 female; height: 172.38±9.97 cm, weight: 

70.57±10.69 kg, age: 23.47 ±3.85 years) were recruited as participants. The UNCG IRB 

approved all study procedures and all participants signed a consent form. Potential 

subjects were excluded for the following criteria: recent history of lower extremity injury; 

cardiac or respiratory illness; vision not corrected to normal; neuromuscular or balance 

disorders. 

Instrumentation 

 

 The participants' gait dynamics data were collected using 12 Qualysis motion 

capture cameras (Gothenburg, Sweden) while on a Simbex Active Step treadmill 

(Lebanon, NH). Qualysis Track Manager were used to label anatomical landmarks, which 

were imported into Visual 3D software (C-Motion, Germantown, MD). Visual 3D were 

be used to create time-series of stride time. Matlab (MathWorks, Natick, MA) were used 

to compute detrended fluctuation analysis of the stride time time-series. Cross-correlation 

of time lags were calculated using custom Matlab scripts and Excel software. Participants 

also wore eye-tracking goggles (American Science Laboratories, Los Angeles, CA), 

which recorded participants' field of view, eye fixations and saccades during the 

experimental conditions. The eye-tracking data were used to determine whether the 
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participants were looking proactively or reactively at the visual stimulus. However, that 

question is outside the scope of the manuscript associated with this thesis, so the eye-

tracking data is presented in Appendix A. 

Procedure 

  All participants visited the lab on two separate days for testing, with 48 hours 

between the first and second sessions. Prior to the first session, participants completed a 

medical history and physical activity questionnaire. They also determined their self-

selected walking speed by walking on a treadmill that started at 0 m/s and was slowly 

increased in speed until the participant indicated that was they were at their normal 

walking speed. Next, the participant started walking at 2.0 m/s and the treadmill speed 

was slowed down until they indicated that was their normal walking speed. The average 

speed was then taken as their self-selected walking speed if both speeds were within 10% 

of each other. Otherwise, the procedure was redone. This chosen speed was used for both 

sessions. The average preferred walking speed was 1.10+/-0.11 m/s.  

In each session, participants completed a 30-minute treadmill walk that was 

administered in three 10-minute phases. The first 10 minute window was the pre-training 

phase (taken as a baseline), where participants walked at their self-selected speed with no 

stimuli present. The next 10 minute window (training phase) included synchronizing their 

heel-strikes during walking to a fractal visual metronome projected in front of them 

(Figure 9). Participants saw see one of two different visual metronomes each day 

(feedback or non-feedback conditions), the order of which was be counterbalanced. In the 

final 10 minute window (post-training phase), the metronome was removed, and 
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participants continued walking at their self-selected pace. All three 10 minute phases 

were completed in succession, leading to 30 minutes of continuous walking per testing 

day. 

The visual metronome used was identical to the one in experiment 2 of Rhea, 

Kiefer, Wittstein, et al., (2014), except one of the metronomes had a feedback feature. 

Both visual metronomes consisted of flashing left and right footprints, with a moving 

ground plane, and were presented 2 meters on a projection screen in front of the 

treadmill. The timing of the appearance of the footprints was fractal (DFA α = 0.98), with 

a mean stride time of 1.17 ± 0.07 sec. In the non-feedback condition, the footprints 

remained a single color (brown, see panel B in Figure 9). In the feedback condition, the 

footprints were displayed in a color based on the participant's heel-strike—green if the 

participant’s corresponding heel was less than 2 cm vertically from the treadmill belt 

when the footprint appeared or red if they were above that threshold (see panel C in 

Figure 9). Thus, the participants were provided performance feedback on every step 

throughout the 10 minute training phase in the feedback condition.  
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Figure 9. Concept of Visual Metronome Stimulus. Panel A depicts position of projected 

stimulus in relation to treadmill. Panel B shows heel strike stimulus in non-feedback 

condition. Panel C depicts success/failure feedback in the extrinsic feedback condition.  

 
 

Participants also wore eye-tracking goggles (Applied Science Laboratories, 

Bedford, MA) during the synchronization phase of each session. These goggles recorded 

the scene from the perspective of the participant, as well as pupillary fixations and 

saccades at a rate of 30 Hz. 

Gait data were collected using a 12-camera motion capture system (Qualisys, 

Gothenburg, Sweden) sampled at 200 Hz. Retro-reflective Qualisys markers were placed 

at anatomical landmarks on the body. Polymer panels with attached markers were placed 

on the lateral surface of the shank and thigh, with individual markers placed on the 

anterior and posterior superior iliac crests, the medial and lateral knee and ankles, the 

posterior aspect of the calcaneus, and the medial and lateral metatarsophalangeal joints. A 

total of 34 markers were applied to each subject, as shown in Figure 10 
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Figure 10. The Location of Panels and Individual Retro-Reflective Markers for Data 

Collection  
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The raw position time series data were reduced to inter-stride-interval (ISI) series 

using Visual3D (C-Motion, Germantown, MD). The resultant time series were processed 

to calculate two metrics. First, participants’ gait timing was compared to that of the 

provided metronome using cross-correlational analysis. This analysis quantifies the 

coupling between the fractal gait patterns expressed by the participants to the fractal 

patterns presented by the visual metronome. The cross-correlation data were analyzed 

two ways. First, the peak correlation for each participant was examined to determine if 

their coupling to the metronome got stronger in the feedback condition. Second, the 

standard deviation of cross-coupling across participants across all time lags of interest (-

20 to 20 samples) was examined to determine if participants were converging on a 

common coupling strategy within each metronome condition. Next, Detrended 

Fluctuation Analysis (DFA) α values were computed to measure the underlying dynamics 

of participants’ stride intervals. The DFA and cross-correlational analyses were computed 

using custom Matlab software (Mathworks, Natick, MA). 

Statistics 

To address hypothesis 1 (influence of feedback on coupling to the fractal 

metronome) two separate two-tailed dependent-samples t-test were used. The first one 

was run on the peak correlation for each participant between the two metronome 

conditions in order to determine if their coupling to the metronome got stronger when 

feedback was present. The second one was run on the SD of cross-coupling across 

participants across all time lags of interest (-20 to 20 samples) to determine if participants 

were converging on a common coupling strategy within each metronome condition. Also, 
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delta scores were calculated for both peak correlation and SD of the cross-coupling in 

order to examine changes in synchronization strategy.   

To address hypothesis 2 (influence of feedback on fractal gait patterns), a 3 x 2 

repeated measures ANOVA was run on participants’ DFA α values, with phase (pre-

training, training, and post-training) and condition (no feedback and feedback) as the 

within-subject factors. 

To address hypothesis 3 (relation between coupling strength during training and 

retention) a Pearson correlation coefficient was calculated between the peak cross 

correlation values DFA α values during training and post-training. Significance for all 

tests were set a priori at α=0.05
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CHAPTER IV 

MANUSCRIPT
 
 

Targeted for the journal Motor Control 
 
 

Introduction 

Functional gait, the capacity to navigate environmental obstacles effectively, is 

categorized as a Basic Activity of Daily Living (James, 2014), an activity that is essential 

to self-care and an independent lifestyle. While functional gait behavior is the product of 

many factors, it has been suggested in recent decades that the manner in which gait varies 

over time (termed gait dynamics) may reflect a person’s functional capacity (Hausdorff, 

2007; Rhea & Kiefer, 2014; Stergiou and Decker, 2011). That is, even when walking at a 

preferred pace on a treadmill, every step is slightly varied from the previous one. In 

young healthy adults, these gait dynamics exhibit a particular self-similar structure—

termed fractal patterns. Aging, pathology, and disease leads to a weakening of the fractal 

patterns, and also corresponds to a decrease in functional mobility, as defined by an 

increase in fall rates and perceived limitations with respect to walking ability (Hausdorff, 

et al., 1997; Hausdorff, 2007). Thus, finding a way to strengthen the fractal patterns 

within gait dynamics may enhance functional mobility in aged and clinical populations.  

 Attempts to manipulate participants’ fractal patterns using rhythmic auditory 

and visual stimuli have met with initial success (Hove et al., 2012;Kaipust et al., 2013; 
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Uchitomi et al., 2013; Marmelat et al., 2014; Roerdink et al., 2015; Terrier, 2016). For 

example, it has been shown that synchronization to a visual metronome driven by fractal 

patterns can alter subjects’ position along the spectrum of gait variability (Rhea, Kiefer, 

Wittstein, et al., (2014). That is, participants who were asked to synchronize their stride 

timing to a metronome with strong fractal patterns were capable of entraining their gait 

patterns to the stimulus. However, it was observed that participants were only able to 

alter their gait dynamics roughly halfway between their baseline and the fractal strength 

prescribed by the metronome. It was proposed that the lack of specificity may have been 

due to the type of stimulus provided. Thus, experiment 2, Rhea, Kiefer, Wittstein, et al. 

(2014) compared visual metronomes driven by a fractal pattern, but presented either 

discretely or continuously. With both stimulus presentations, the participants were able to 

alter their gait dynamics halfway to the prescribed fractal strength, and retention (tested 

immediately after the 10 minute fractal gait training) was only observed after the discrete 

stimulus. Thus, it was postulated that participants’ inability to reach the specified fractal 

strength may be due to other factors, such as the lack of feedback.   

 Although the role of feedback in motor control and learning is a well-studied 

topic, it has yet to be incorporated in fractal gait training. Interactive cuing has been 

explored (Hove et al., 2012; Uchitomi et al., 2013), but this method only takes the 

performers’ past movement into account when producing the next stimulus cue, and it 

does not provide the participant with any information about their performance. Extrinsic 

feedback (i.e., externally provided feedback) has been shown to be useful in the 

acquisition of a new motor pattern (Swinnen, 1996). Feedback can be provided either 
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after the completion of the motor task, or continuously during the execution of the motor 

task in order to guide participants as adjustments are made. The addition of extrinsic 

feedback to the fractal visual metronome may allow participants to couple more closely 

to the stimulus and may strengthen their fractal patterns to a greater extent.  

The purpose of this study was to examine the effect of extrinsic feedback on the 

resulting gait patterns when synchronizing to a visual metronome task. This study is a 

continuation of previous work by Rhea, Kiefer, Wittstein et al. (2014) and represents one 

possible avenue for addressing the gap between stimulus and output. Three hypotheses 

were tested. First, feedback would elicit a stronger coupling (i.e., higher cross-correlation 

values) between participants’ gait dynamics and the dynamics of the stimulus relative to a 

non-feedback condition. Second, the addition of feedback to the visual metronome would 

lead to a stronger fractal pattern during the training and post-training (retention) phases. 

Third, participants with the strongest coupling during training would exhibit the strongest 

post-training fractal patterns.  

Methods 

Participants 

Nineteen young healthy adults (10 male and 9 female; height: 172.38±9.97 cm, 

weight: 70.57±10.69 kg, age: 23.47 ±3.85 years) participated in this study. All subjects 

were screened via self-report questionnaire for neurological conditions, cardiac or 

respiratory illness, or structural injuries that would degrade their gait performance. All 

participants were additionally screened for deficits in visual acuity (corrective lenses 
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were permitted) and color-blindness that would affect their ability to synchronize to the 

provided metronome. 

Ethics Statement 

The University of North Carolina at Greensboro institutional review board 

approved all procedures, and all participants signed an informed consent form prior to 

participation.  

Procedure 

All participants visited the lab on two separate days for testing, with 48 hours 

between the first and second sessions. Prior to the first session, participants completed a 

medical history and physical activity questionnaire. They also determined their self-

selected walking speed by walking on a treadmill that started at 0 m/s and was slowly 

increased in speed until participants indicated that was they were at their normal walking 

speed. Next, participants started walking at 2.0 m/s and the treadmill speed was slowed 

down until they indicated that was their normal walking speed. The average speed was 

then taken as their self-selected walking speed if both speeds were within 10% of each 

other. Otherwise, the procedure was administered again until both speeds were within the 

threshold of agreement. This chosen speed was used for both sessions. The average 

preferred walking speed was 1.10+/-0.11 m/s.  

In each session, participants completed a 30-minute treadmill walk that was 

administered in three 10-minute phases. The first 10 minute window was the pre-training 

phase (taken as a baseline), wherein participants walked at their self-selected speed with 

no stimuli present. The next 10 minute window (training phase) included synchronizing 
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their heel-strikes during walking to a fractal visual metronome projected in front of them 

(Figure 12). Participants followed one of two different visual metronomes each day 

(feedback or non-feedback conditions), the order of which was be counterbalanced. In the 

final 10 minute window (post-training phase), the metronome was removed, and 

participants continued walking at their self-selected pace. All three 10 minute phases 

were completed in succession, leading to 30 minutes of continuous walking per testing 

day. 

The visual metronome used was identical to the one in experiment 2 of Rhea, 

Kiefer, Wittstein, et al. (2014), except one of the metronomes had a feedback feature. 

Both visual metronomes consisted of flashing left and right footprints, with a moving 

ground plane, and were presented onto a projection screen 2 meters in front of the 

treadmill. The timing of the appearance of the footprints was fractal (DFA α = 0.98), with 

a mean stride time of 1.17 ± 0.07 sec (Figure 11).  The mean stride time was chosen to 

closely match mean walking speed in healthy adults, and to be consistent with previous 

work, In the non-feedback condition, the footprints remained a single color (brown, see 

panel B in Figure 12). In the feedback condition, the footprints were displayed in a color 

based on the participant's heel-strike—green if the corresponding heel was less than 2 cm 

vertically from the treadmill belt when the footprint appeared or red if they were above 

that threshold (see panel C in Figure 12).  The height of the calcaneus marker was tracked 

in real time by the metronome script, which made the determination of which color to 

display for each footprint.  Thus, the participants were provided extrinsic feedback on 

every step throughout the 10 minute training phase in the feedback condition.  
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Figure 11. Time Series of Metronome Stride Intervals 

 
    

Figure 12. Concept of Visual Metronome Stimulus. Panel A depicts position of projected 

stimulus in relation to treadmill. Panel B shows heel strike stimulus in non-feedback 

condition. Panel C depicts success/failure feedback in the extrinsic feedback condition.  
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Gait data were collected using a 12-camera motion capture system (Qualisys, 

Gothenburg, Sweden) sampled at 200 Hz. Subjects were fitted with retroreflective 

markers on the posterior aspect of the heel. The raw position time series data were 

reduced to an inter-stride-interval (ISI) series using Visual3D (C-Motion, Germantown, 

MD). The resultant time series data were processed to calculate two metrics. First, 

participants’ gait timing was compared to that of the provided metronome using cross-

correlational analysis. This analysis quantifies the coupling between the fractal gait 

patterns expressed by the participants to the fractal patterns presented by the visual 

metronome. The cross-correlation data were analyzed two ways. First, the peak 

correlation for each participant across conditions was examined to determine if their peak 

correlation (i.e successful coupling to the metronome) increased in the feedback 

condition. Second, the standard deviation of cross-coupling across participants across all 

time lags of interest (-20 to 20 samples) was examined to determine if participants were 

converging on a common coupling strategy within each metronome condition. Next, 

Detrended Fluctuation Analysis (DFA) α values were computed to measure the 

underlying dynamics of participants’ stride intervals. The DFA and cross-correlational 

analyses were computed using custom Matlab software (Mathworks, Natick, MA). 

Statistics 

To address hypothesis 1 (influence of feedback on coupling to the fractal 

metronome) two separate two-tailed dependent-samples t-test were used. The first one 

was run on the peak correlation for each participant between the two metronome 

conditions in order to determine if  coupling to the metronome got stronger when 
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feedback was present. The second one was run on the SD of cross-coupling across 

participants across all time lags of interest (-20 to 20 samples) to determine if participants 

were converging on a common coupling strategy within each metronome condition. Also, 

delta scores were calculated for both peak correlation and SD of the cross-coupling in 

order to examine changes in synchronization strategy.   

To address hypothesis 2 (influence of feedback on fractal gait patterns), a 3 x 2 

repeated measures ANOVA was run on participants’ DFA α values, with phase (pre-

training, training, and post-training) and condition (no feedback and feedback) as the 

within-subject factors. 

To address hypothesis 3 (relation between coupling strength during training and 

retention) a Pearson correlation coefficient was calculated between the peak cross 

correlation values and DFA α values during training and post-training. Significance for 

all tests were set a priori at α=0.05. 

Results 

Hypothesis 1: Influence of feedback on coupling to the fractal metronome 

The cross-correlation analysis showed no differences between feedback and 

non-feedback conditions in the peak correlation, t(18) = 1.90, p = .07. However, the SD 

across time lags was smaller in the no feedback condition, t(40) = 11.16, p < .001 (Figure 

13).  

 



40 
 

Figure 13. Cross Correlations of 40 Time Lags. Gray lines indicate each individual 

subject’s data. The bold black lines indicate mean values across all subjects. 

 

 

Hypothesis 2: Influence of feedback on fractal gait patterns  

Analysis of DFA values showed that the feedback (with/without) × phase 

(pre/sync/post) interaction was significant, F(2,36) = 3.49, p = .04, partial η
2
 =0.314 

(Figure 14). Follow-up tests showed the training and post-training phases were higher 

than the pre-training phase in the no feedback condition (p ≤ .02), but no differences were 

observed in the feedback condition. 
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Figure 14. Mean DFA Values for Phase and Feedback Condition. Asterisks indicate 

significant increase from Pre-training within the metronome condition. 

 

 

Hypothesis 3: Relation between coupling strength during training and retention 

There was a significant correlation between peak cross-correlation during 

training and DFA values during training in both the feedback condition r(17) = .769, p < 

0.01, and the non-feedback condition r(17) = .787, p < 0.01. However, there was no 

correlation between peak cross-correlation during training and DFA values during 

retention in either the feedback condition r(17) = .15, p = .55, or the non-feedback 

condition r(17) = .28, p = .246. 

Discussion 

The purpose of this study was to examine the utility of extrinsic feedback to 

enhance the effectiveness of fractal gait metronomes to alter fractal gait dynamics. It was 

hypothesized that the addition of feedback after each step would lead to stronger fractal 
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gait patterns during training and retention, and that fractal strength would be correlated 

with stronger coupling to the visual metronome. The results show that feedback did not 

lead to stronger coupling in comparison to the non-feedback metronome, nor did it lead 

to stronger gait patterns during training or post-training. Further, coupling strength during 

training was not found to be correlated with the strength of the fractal gait patterns in the 

post-training phase.    

The development of new fractal patterns can be compared to the learning of a new 

motor skill. In that context, a certain level of extrinsic feedback is known to aid in the 

accurate performance of a new motor skill. The guidance hypothesis of extrinsic 

feedback posits that extrinsic feedback serves to direct the participant toward desired 

modes of motor behavior more effectively than trial-and-error (Swinnen, 1996). This is 

useful to achieve the desired movement quickly during initial practice. It was postulated 

that this feedback mode would have enhanced participants’ ability to couple to the fractal 

metronome. However, the addition of feedback to our visual metronome did not enhance 

fractal gait patterns.  

The results for the non-feedback metronome were consistent with previous 

research using the discrete footprint metronome (Rhea, Kiefer, D’Andrea, et al., 2014; 

Rhea Kiefer, Wittstein, et al., 2014). Participants’ fractal patterns were strengthened in 

the current study, and there is evidence of short-term retention of these patterns after 10 

minutes of training. It is interesting to note that while the peak cross-correlation did not 

change when feedback was added, the SD across time lags was increased. This suggest 
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that participants converged on a more common synchronization strategy in the non-

feedback condition, but exhibited varied strategies once feedback was added. This 

observation suggests extrinsic feedback provided in a continuous manner may not be the 

most salient information for this type of task. In order to successfully synchronize to a 

fractal metronome, a certain level of prediction about the next time interval between 

footprint flashes is necessary. This anticipation has been termed strong anticipation as 

first defined by Dubois et al. (2003) and empirically shown in human timing patterns by 

Stephen et al. (2003). The strong anticipation framework suggest that humans are 

sensitive to fractal patterns when attempting to synchronize to a stimulus with a varying 

time interval. The derivation of this sensitivity is still an empirical question. Data in the 

current study suggest that immediate extrinsic feedback on synchronization performance 

does not elicit stronger fractal gait patterns during or after training. Since the strong 

anticipation framework suggests that humans are sensitive to fractal patterns, and such 

patterns require a relatively long time to evolve, focusing the participants in on their most 

recent behavior may have caused them to not attend to their longer-term evolving 

behavior, which may account for the “predictability” when feedback was added to the 

fractal metronome. Thus feedback using a larger retrospective windowed approach may 

allow participants to better attune to the underlying fractal patterns of the stimulus, 

potentially leading to stronger coupling. Such a windowed approach, both retrospective 

and prospective, has been shown to enhance synchronization behavior (Studenka & 

Newell, 2013). 
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There are at least two potential reasons why the addition of feedback did not 

enhance fractal gait patterns. The first is the introduction of feedback increased the 

variability of participants’ cross-correlations. Participants may be demonstrating more 

widely differing abilities to integrate the feedback into their synchronization strategy. Or 

conversely, the increased variability may show varying degrees to which participants 

were successfully able to ignore the negative aspects of the metronome, be that over-

exposure or a negative affective response induced by repeated discouraging feedback. 

Secondly, immediate feedback after each trial may induce an overreliance on the 

feedback for performance. The guidance hypothesis also asserts that too frequent 

feedback may cause the participant to rely on the feedback when executing the motor 

task, rather than engaging in the development of a self-centered movement strategy. 

Thus, when frequent feedback is removed, performance has been shown to degrade 

(Winstein & Schmidt, 1990). In the current study, when extrinsic feedback was removed 

post-training, no retention was observed, suggesting that little or no actual motor learning 

took place. 

This study was intended to set the groundwork for future studies into feedback-

based fractal interventions. As such, the selected frequency of feedback was chosen as an 

initial point of entry into the feedback domain. The presentation of the feedback was also 

chosen so as not to alter the appearance of the metronome more than necessary, in order 

to facilitate comparison to previous work. In future studies, a more altered visual 

feedback may prove beneficial. In particular, future work would reduce the frequency of 

feedback. The feedback presented in this study was designed to be an indicator of when 
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participants’ fell out of sync with the metronome. In future work, a bandwidth approach, 

where participants only received feedback when they are no longer in synchrony should 

be explored.  

In conclusion, this study demonstrates that the addition of extraneous feedback on 

every step during a fractal gait training session does not lead to stronger fractal patterns. 

It is likely that less frequent feedback would be beneficial in this context. However, the 

optimal profile of the feedback schedule has yet to be determined. While fractal gait 

training shows some promise, researchers should continue to use motor learning 

principles to guide the development of their protocol in order to get the desired motor 

output. 
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CHAPTER V 

 

DISCUSSION 
 
 

 Functional mobility, specifically the ability to adapt gait to perturbations, may 

be related to underlying patterns in individuals’ strides. This specific form of variability, 

termed “Fractal Patterns” correlate to functional movement behaviors and decreased fall 

risk. However, these patterns weaken with age or pathology. Interventions designed to 

strengthen fractal patterns in gait may be of clinical utility in addressing fall risk. Fractal 

visual metronomes have been successfully utilized to strengthen fractal patterns in both 

patients with pathology and healthy participants. However, the degree to which fractal 

metronomes can alter gait dynamics appears related to presentation modality, with no 

current method able to induce fractal patterns of specific strength. That is, participants’ 

dynamics remain present consistently weaker than the frac tal patterns prescribed by the 

metronome stimulus. While this gap between stimulus and participants’ dynamics may 

represent a ceiling effect for this intervention, exploring other methods of enhancing the 

visual stimulus may yield a breakthrough treatment for dynamical diseases.  

A limitation of previous work with fractal metronomes is the prescriptive nature 

of the stimulus, involving no direct interaction between the participants’ actions and the 

stimulus received. This study was intended to move away from a non-interactive, 

prescriptive stimulus toward a more user-interactive metronome. To that end, this study 

compared a non-feedback metronome to one where participants received feedback about 
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their timing after every step. The aim of adding feedback was to increase participants’ 

ability to actively synchronize with a dynamic metronome, and in so doing, more closely 

mimic the strong fractal dynamics driving the metronome stimulus. 

It was determined that this form of constant extrinsic feedback did not improve 

the efficacy of the metronome  While it is acknowledged that extrinsic feedback can be 

beneficial, is plausible that feedback on every step is detrimental to performance. A 

limitation of this study was a lack of post-training affective questionnaires, which may 

have been able to address the question of whether feedback after every step was 

distractionary or frustrating. Motor control/learning research shows that constant 

feedback is not a best practice, so future research should explore distributed feedback in 

the context of the gait synchronization task. The feedback provided was intended to 

signal to participants when they fall out of synchrony with the metronome, hopefully 

earlier than they would have been able to perceive unaided. A bandwidth form of 

feedback may be less distractionary or frustrating to participants’ while still achieving the 

desired effect. 
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APPENDIX A 

EYE-TRACKING DATA 

 

 

Methods 

To determine whether they were visually anticipating or reacting to the visual cue, 

participants wore eye-tracking goggles (Applied Science Laboratories, Bedford, MA) 

during the synchronization phase of each session (see Figure 13). These goggles recorded 

the scene from the perspective of the participant, as well as pupillary fixations and 

saccades at a rate of 30 Hz.  Rate of anticipation was quantified by examining the five 

frames (160ms) preceding the appearance of each footprint for every step.  It was 

determined if the participant’s eye motion over this window trended toward the left or the 

right.  If eye motion trended toward the left prior to the appearance of a left footprint, the 

participant was said to have anticipated that footprint.  Anticipation for the right footprint 

was calculated similarly. 
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Figure 15. ASL MobileEye Eye Tracking Headset. 

 

 

Results 

Analysis of eye tracking data showed, consistent with the cross-correlation data, 

a split between reactionary and anticipatory. During the non-feedback condition, 

participants anticipated the arrival of the next footfall 49.90 ± .004 percent of the time, 

and 50.16±.005 percent during the feedback condition. 

 

 


