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Data has shape and that shape is important. This is the anthem of Topological

Data Analysis (TDA) as often stated by Gunnar Carlsson. In this paper, we take a

common method of persistence involving the growing of balls of the same size and
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that it is possible to interpolate between persistence on a set with no noise and a

set with noise. For the coverage problem, we present an algorithm which provides a

cheap way of covering a compact domain.
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CHAPTER I

INTRODUCTION

In this chapter we will give a historical overview of persistent homology. Persistent

homology is a tool used in Topological Data Analysis (TDA) to extract topological

information from a data set. Conclusions are then drawn from the information ex-

tracted to describe patterns that occur in the data set. The original results in this

thesis were obtained through collaboration with Dr. Greg Bell, Dr. Cli� Smyth,

Joshua Martin, and James Rudzinski all from UNC Greensboro.

1.1 History

The concept of persistent homology was developed independently through the

work of Frosini, Robins, and Edelsbrunner. Frosini's size functions and the theory

introduced in 1990 [Fro90], are equivalent to 0-dimensional persistent homology. In

1999, Robins [Rob99] studied homology of sampled spaces and described images of

homomorphisms induced by inclusion. This was developed in terms of �persistent

holes.� In 2000, Edelsbrunner et al [ELZ02] formally introduced persistent homology

with an algorithm and a persistence diagram. See Section 2.6. In the years that fol-

lowed persistent homology blew up as hot topic in mathematics. Research in medical

imaging [CBK09, LKC+12], sensor networks [DSG07], sports analysis [Gol14], and

many other �elds make use of this data analysis tool.
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1.2 Motivation and Preliminary Results

We are motivated by two classical problems in network and data analysis: the

outlier problem and the coverage problem. The outlier problem deals with detecting

noise in data sets and then dealing with it appropriately. Unlike classical persistence

(which does not necessarily remove noise) and modern data analysis (which typically

removes all things considered to be noise), our method attempts to provide a medium

where we do not remove noise, just reduce the importance of it.

Our result yields an interpolation between the two methods. In the coverage

problem, we assume that we are given a compact region of interest to cover with

predetermined sensor locations. We base the cost of covering a region on the range of

the sensors. We then seek to produce ranges that yield a low coverage cost. Again,

the classical notion is that all sensors have the same power, but we seek to reduce

the power of dense points. In the next section we will cover a few preliminaries

and introduce the theory of persistent homology. Our �rst result, Theorem 3.3,

generalizes the classical Rips lemma to the situation with multiple radii. The next

result, Theorem 3.10, strengthens a classical idea of stability, which says structure

is preserved if points are perturbed slightly. Theorem 3.8 says that the structure

is also preserved if the radii are changed slightly. Finally, Theorem 3.12 combines

the previous two theorems and says we can preserve structure by moving points

and changing radii. The last two results, Theorem 3.14 provides the interpolation

and Theorem 3.21 shows that we can produce the ranges that reduce coverage cost.

Finally, at the end we present experimental results of our methods.
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CHAPTER II

INTRODUCTION TO PERSISTENCE

In this chapter we will develop enough persistence theory to be able to understand

the main subject matter. Often we will be working inside the real vector space Rn,

though some notions can be de�ned over more general spaces. A basic understanding

of algebra (especially linear algebra) as well as basic topology will be assumed. We

will begin with categories.

2.1 Categories

The main problem in topology is to determine when two spaces are homeomorphic.

Constructing such equivalences or proving that they do not exist is di�cult in general.

So we'd like to translate the problem to a simpler algebraic one. The tool that allows

this translation can be found within category theory. This section is developed by

following [Rot98].

De�nition 2.1. A category C consists of a class of objects denoted Obj(C) and for

any two objects A,B ∈ Obj(C) there corresponds a set of morphisms Hom(A,B),

whose elements are denoted as f : A→ B,with the following properties.

• The family of morphism sets, Hom(C), is pairwise disjoint.

• There is a notion of composition ◦ : Hom(A,B)× Hom(B,C)→ Hom(A,C)

such that,

� if f : A → B and g : B → C are morphisms then g ◦ f : A → C is a

morphism and;
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� composition is associative when de�ned, i.e. if f : A→ B, g : B → C, and

h : C → D are morphisms then (h ◦ g) ◦ f = h ◦ (g ◦ f).

• To every object A ∈ Obj(C) there corresponds an identity morphism idA :

A→ A so that if f : A→ B and g : C → A are morphisms we have f ◦ idA = f

and idA ◦ g = g.

Example 2.2. The following is a list of categories.

• Top is the category whose objects are topological spaces and whose morphisms

are continuous maps.

• Top∗ has pointed topological spaces (spaces (X, x0) where x0 ∈ X is �xed)

as objects and continuous maps f : (X, x0) → (Y, y0) where f(x0) = y0. as

morphisms.

• Groups is the category consisting of all groups as objects and whose morphisms

are homomorphisms.

• Sets is the category whose objects are sets and whose morphisms are functions.

• Ab is the category whose objects are abelian groups and whose morphisms are

homomorphisms.

• Let F be a �eld. Then VectF is a category whose objects are �nite dimensional

vector spaces over F and whose morphisms are linear maps.

• A preordered set (P,≤) is a set P along with a relation ≤ so that for every

x, y, z ∈ P we have x ≤ x and x ≤ y, y ≤ z ⇒ x ≤ z. If P is a preordered

set, then P forms a category whose objects are elements of P . The set of
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morphisms consists of x → y whenever x ≤ y. We call such a category a

preordered category.

De�nition 2.3. If A and C are categories then a functor T : A → C satis�es

1) T : Obj(A)→ Obj(C) is a function; i.e. A ∈ A implies T (A) ∈ C.

2) If f : A→ A′ is a morphism of A then T (f) : T (A)→ T (A′) is a morphism of

C satisfying:

� whenever g◦f is de�ned for two morphisms g and f inA we have T (g◦f) =

T (g) ◦ T (f); and

� T (1A) = 1T (A) for every A ∈ A.

Example 2.4. 1) For a category C the identity functor J : C → C is de�ned by

J(A) = A for A ∈ C and J(f) = f for f ∈ Hom(C).

2) The forgetful functor F : Top → Sets assigns to each topological space

its underlying set, and assigns each continuous function to itself as a function

of sets (�forgetting� continuity). One can de�ne a forgetful functor from any

category to Sets.

3) Fix an object A ∈ C. Then Hom(A, ·) : C → Sets is a functor assigning to

each object B the set Hom(A,B) and to each morphism f : B → B′ it assigns

the induced map Hom(A, f) : Hom(A,B) → Hom(A,B′) which is de�ned

by g 7→ f ◦ g. We denote the induced map by f∗. This functor is called the

covariant Hom functor.

4) The fundamental group is a functor π1 : Top∗ → Group.

5



De�nition 2.5. An equivalence in a category C is a morphism f : A→ B for which

there is a morphism g : B → A with f ◦ g = 1B and g ◦ f = 1A.

For example, a homeomorphism is an equivalence inTop and a group isomorphism

is an equivalence in Group. The following theorem formalizes the process of turning

a topological problem into an algebraic one.

Theorem 2.6. If A and C are categories and T : A → C is a functor then if f is f

an equivalence in A implies that T (f) is an equivalence in C.

Proof. For a functor T we see 1 = T (1) = T (f ◦ g) = T (f) ◦ T (g) and 1 = T (1) =

T (g ◦ f) = T (g) ◦ T (f) Hence T (f) is an equivalence in C.

Hence, if two topological spaces X and Y are homeomorphic and T : Top →

Group is any functor, then T (X) and T (Y ) are isomorphic.

2.2 Simplicial Complexes

Simplicial complexes provide a computable approximation of many topological

spaces. Since many spaces of interest can be approximated in this way, we use sim-

plicial homology (which is more easily computable) to extract information from data

sets. We use [Rot98] to develop the simplicial homology theory.

De�nition 2.7. A subset A of Rn is convex if for every pair of points x, x′ ∈ A

the line segment determined by x and x′ is contained in A. In symbols we have

{tx+ (1− t)x′ | 0 ≤ t ≤ 1} ⊂ A.

Example 2.8. The following two �gures involve an example and non-example of

convex sets.
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Figure 1. A Convex Set

Figure 2. A Non-Convex Set

We'd like to be able to talk about the smallest convex set containing a set of

points. But to do this we need to know whether intersections retain convexity.

Theorem 2.9. Let J be an indexing set. If {Xj : j ∈ J} is a family of convex subsets

of Rn then ∩Xj is also convex.

Proof. Let x, x′ ∈ ∩Xj. Then x, x′ ∈ Xj for every j ∈ J . Since each Xj is convex the

line segment determined by x and x′ is containted in Xj for every j ∈ J . Therefore

the line segment is contained in the intersection of the Xj. Therefore the intersection

is convex.

Figure 3. The Union of Convex Sets is Not Convex

7



De�nition 2.10. Suppose X ⊂ Rn. Then the convex hull of X in Rn is the

intersection of all convex sets containing X. This is also called the convex set in Rn

spanned by X.

We denote the convex hull of the points p0, p1, ..., pm ∈ Rn by [p0, p1, ..., pm]. We

seek to prove that the convex hull is the union of all possible line segments in a set

X. To show this we need a precise de�nition of line segment in Euclidean space.

De�nition 2.11. Let p0, p1..., pm ∈ Rn. A convex combination these points is a

point x with x =
∑m

i=0 tipi where
∑
ti = 1 and ti ≥ 0 for all 0 ≤ i ≤ m.

Theorem 2.12. If p0, p1, ..., pm ∈ Rn then the convex hull, [p0, p1, ..., pm] is the set of

all convex combinations of p0, p1, ..., pm.

Proof. Let S be the set of all convex combinations of p0, p1, ..., pm. We will proceed

by using the double containment argument.

First we show [p0, p1, ..., pm] ⊂ S. It will su�ce to show that S is a convex set

containing {p0, p1, ..., pm}. It is easy to see pj ∈ S by setting tj = 1 and ti = 0

where i 6= j. Now we show S is convex. Let α =
∑m

i=1 aipi and β =
∑m

i=1 bipi be

convex combinations of p0, p1, ..., pm. Then ai, bi ≥ 0 for all i and
∑m

i=1 ai = 1 =∑m
i=1 bi. Now suppose 0 ≤ t ≤ 1. Then tα + (1 − t)β =

∑m
i=1[tai + (1 − t)bi]pi.

Since
∑m

i=1[tai + (1 − t)bi] = 1 we have a convex combination and hence we have

[p0, p1, ..., pm] ⊂ S.

Next we show S ⊂ [p0, p1, ..., pm]. If X is any convex set containing {p0, p1, ..., pm},

we show by induction on m. If m = 0 then S = {p0} and we are done. Suppose

m > 0. Suppose then p =
∑m

i=0 tipi is a convex combination. We may assume t0 6= 0

(otherwise we just relabel) and t0 6= 1 (else S = {p0}). By induction
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q =
t1

1− t0
p1 + ...+

tm
1− t0

pm ∈ X

(since this is a convex combination), and so p = t0p0 + (1− t0)q ∈ X.

De�nition 2.13. A set {p0, ..., pm} ⊂ Rn is a�ne independent if the set {pj − p0 |

j = 1, ...,m} is a linearly independent subset of Rn.

Consider {p0, p1}. If p1 6= p2 we see this set is a�ne independent. The set

{p0, p1, p2} is a�ne independent if the three points are not collinear. In the same way

a four point set is a�ne independent if they are not coplanar.

De�nition 2.14. Let {p0, ..., pm} be an a�ne independent subset of Rn. Then

[p0, ..., pm] is called the m−simplex with vertices {p0, ..., pm}.

Figure 4. A 0-simplex (Point), 1-simplex (Line Segment), 2-simplex (Triangle), and
3-simplex (Tetrahedron).

De�nition 2.15. If {p0, ..., pm} is an a�ne independent subset of Rn, then we de�ne

the barycenter of σ = [p0, ..., pm] to be the average of its vertices. That is, bσ =

1
m+1

(p0 + p1 + ...+ pm).

The barycenter of a point is itself. The barycenter of a line segment is its midpoint.

If we have a triangle or tetrahedron, the barycenter is what we call the center of

gravity.

9



De�nition 2.16. Let [p0, ..., pm] be an m-simplex. The face opposite pi is

[p0, ..., p̂i, ..., pm] = {
∑

tjpj | tj ≥ 0,
∑

tj = 1 and ti = 0}.

(The p̂i means delete pi). The boundary of [p0, ..., pm] is the union of the faces

opposite each pi. A k-face is a k-simplex spanned by k+ 1 of the vertices {p0, ..., pm}

We refer to a k-face as a face when k is understood.

De�nition 2.17. A �nite simplicial complex K is a �nite collection of simplices

in some Euclidean space, so that

1) if σ ∈ K and τ is a face of σ then τ ∈ K; and

2) if σ, τ ∈ K then σ ∩ τ is either empty or a face of σ and τ .

We denote the vertex set of K by Vert(K). It is the set of all 0-simplices of K.

Property 1) is often called the downward closure property. Property 2) could be

seen as a minimal incidence property.

Example 2.18. The following �gure is an example of a simplicial complex.

Figure 5. A Simplicial Complex

The following �gure shows a failure of property (2).

10



Figure 6. Property 2) Fails

In this �gure we have a 0-simplex that intersects a 2-simplex which violates prop-

erty (2).

De�nition 2.19. The underlying space of a simplicial complex K is the union of

all simplices in K and is denoted by |K| = ∪σ∈Kσ.

De�nition 2.20. A topological space X is a triangulable if there exists a simplicial

complex K and a homeomorphism h : |K| → X. The ordered pair (K,h) is called a

triangulation.

De�nition 2.21. Let K and L be a simplicial complexes. A simplicial map φ :

K → L is a function φ : Vert(K)→ Vert(L) such that whenever {p0, p1, ..., pm} spans

a simplex of K, then {φ(p0), φ(p1), ..., φ(pm)} spans a simplex of L. Note that φ does

not ncessarily have to be one-to-one.

The collection of all �nite simplicial complexes with the set of all simplicial maps

forms a category K.

De�nition 2.22. Let {p0, p1, ..., pm} ⊂ Rn be a�ne independent. Let A denote the

convex hull of the points. Then a map T : A → Rk (for some k ≥ 1) is said to be

a�ne if T (
∑
tjpj) =

∑
tjT (pj) where

∑
tj = 1 and ti ≥ 0.

Theorem 2.23. If [p0, ..., pm] is an m-simplex and [q0, ..., qn] is an n-simplex and

f : {p0, ..., pm} → {q0, ..., qn} is any function then there exists a unique a�ne map

T : [p0, ..., pm]→ [q0, ..., qn] so that T (pi) = f(pi) for every 0 ≤ i ≤ m

11



Proof. De�ne T (
∑
tjpj) =

∑
tjf(pj) where tj ≥ 0 and

∑
tj = 1. T is clearly an

a�ne map. To show uniqueness suppose T ′ also satis�es this. Then with
∑
tjpj

being a convex combination, linearity gives T ′(
∑
tjpj) =

∑
T ′(tjpj) =

∑
tjT

′(pj) =∑
tjf(pj) = T (

∑
tjpj).

Theorem 2.24. A simplicial map φ : K → L induces a continuous map |φ| : |K| →

|L|.

Proof. We will de�ne |φ| as follows. For each σ ∈ K, de�ne fσ : σ → |L| to be the

a�ne map determined by φ restricted to Vert(σ) (by previous theorem). By condition

2) in the de�nition of a simplicial complex we have that the fσ must agree on overlaps.

Then we apply the gluing lemma [Rot98] to conclude that |φ| is continuous map from

|K| to |L|.

This theorem implies that | | : K → Top by taking a simplicial complex K 7→ |K|

and a simplicial map φ 7→ |φ| is a functor.

We can de�ne a partial order on a simplicial complex K by saying σ ≤ τ if σ is a

face of τ . So, σ < τ if Vert(σ) ( Vert(τ).

De�nition 2.25. If σ is a simplex let bσ denote the barycenter of σ. If K is a sim-

plicial complex de�ne the barycentric subdivision, SdK of K, to be the simplicial

complex with

Vert(SdK) = {bσ | σ ∈ K}

and with simplices [bσ0 , ..., bσq ] where σ0 < σ1 < ... < σq ∈ K.

12



Figure 7. A Simplicial Complex K (Left) and SdK (Right)

De�nition 2.26. If σ is an m-simplex then we say the dimension of σ is m. Fur-

thermore the dimension of a simplicial complex K is max{dim(σ) | σ ∈ K}

De�nition 2.27. For any q ≥ −1 the q-skeleton, K(q) of a simplicial complex K is

the simplicial complex consisting of all simplices with dimension no greater than q.

That is, K(q) = {σ ∈ K | dim(σ) ≤ q} As a convention we set dim ∅ = −1.

Now that we have a concrete notion of a simplicial complex, we will abstract the

idea. In this manner we will be able to more easily de�ne homology groups. The idea

is to work with these objects abstractly, then worry about �tting them into a nice

space later.

2.3 Abstract Simplicial Complexes

De�nition 2.28. Let V be a �nite set. An abstract simplicial complex K is a

family of nonempty subsets of V , called simplices so that

1) v ∈ V implies {v} ∈ K; and

2) σ ∈ K and σ′ ⊂ σ implies σ′ ∈ K.

De�nition 2.29. LetK and L be a abstract simplicial complexes. A simplicial map

φ : K → L is a function φ : Vert(K) → Vert(L) such that whenever {v0, v1, ..., vm}

spans a simplex of K, then {φ(v0), φ(v1), ..., φ(vm)} spans a simplex of L. Note that

φ is not necessarily one-to-one.

13



Note that the de�nition of face is the same and hence the partial order is the

same.

De�nition 2.30. The barycentric subdivision SdK of an abstract simplicial com-

plex K is de�ned as follows: Vert(SdK) = {σ ∈ K}; we de�ne a simplex of SdK to

be a set {σ0, ..., σq} with σ0 < ... < σq ∈ K.

Observe that all abstract simplicial complexes and simplicial maps form a category

Ka and every simplicial complex K gives rise to an abstract simplicial complex Ka

with the same vertex set.

Theorem 2.31. There is a functor u : K → Ka such that K ∼= u(Ka) for all K ∈ K

and L ∼= (u(L))a for all L ∈ Ka

Proof. Let L ∈ Ka and let V = Vert(L) = {v0, ..., vn}. The standard n-simplex ∆n is

a simplex with vertices {e0, ..., en} ⊂ Rn where the ei are the standard basis vectors.

If s = {vi0 , ..., viq} is a q-simplex in L, de�ne |s| = [ei0 , ..., eiq ] to be the q-simplex

spanned by the mentioned vertices. Finally, we de�ne u(L) to be the family of all |s|

for s ∈ L.

Now suppose φ : L → L′. Then u(φ) : u(L) → u(L′) corresponds to the ob-

vious simplicial map. From here it is easy to see that u is a functor and that the

isomorphisms exist.

De�nition 2.32. A geometric realization of an abstract simplicial complex L is

a space homeomorphic to |u(L)|.

For K ∈ K, |K| is a geometric realization. Theorem 2.31 is an important one

as it will allow us to not worry about making the distinction between simplicial
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complexes and abstract simplicial complexes. From here on we shall drop the adjective

�abstract.� We will also not distinguish between the categories K and Ka and we will

just write K. We are heading towards de�ning homology but before we move on

we shall cover two important simplicial complexes and a relationship between them.

This will be the focus of our main matter later. In Rn, given ε > 0 the closed ball

around x of radius ε is Bε(x) = {y ∈ Rn | d(x, y) ≤ ε}. The material for the rest of

this section can be found in [EH10a].

De�nition 2.33. Suppose U is a collection of sets. Then the nerve of U is the

abstract simplicial complex N (U) = {σ ⊂ U |
⋂
σ 6= ∅}.

We will consider our set as a set of open balls. Then by taking the nerve we obtain

a special type of simplicial complex known as the �ech complex.

De�nition 2.34. Suppose X ⊂ Rn is �nite and ε > 0. Let B = {Bε(x) | x ∈ X}

The �ech complex at scale ε is the abstract simplicial complex Čε(X) = N (B) .

From the de�nition we see that N (B) = {τ ⊂ B |
⋂
Bε(x)∈σ Bε(x) 6= ∅}. Thus we

can identify the simplex τ with the simplex σ whose vertices are the centers of the

balls in τ in this way we can write Čε(X) = {σ ⊂ X |
⋂
x∈σ Bε(X) 6= ∅}.

The �ech complex is hard to compute because the condition requires us to test

that a collection of balls has a common intersection. The di�culty increases greatly

as dimension increases. Thus, we seek something that is quick to compute and that

approximates the �ech complex well enough. The next complex we look at satis�es

this and is known as the Vietoris-Rips complex or just Rips complex. We could easily

de�ne the Rips complex as the �ag of the �ech complex, however, this would not be

useful computationally. So we de�ne it in the following way.
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De�nition 2.35. Let X ⊂ Rn be �nite and ε > 0. The Rips complex at scale ε is

the set

Rε(X) = {σ ⊂ X | d(x, y) ≤ 2ε ∀x, y ∈ σ}.

Example 2.36. We will illustrate the di�erence between the Rips and �ech com-

plexes here.

Figure 8. The Union of the Segments is the �ech Complex

Figure 9. The Rips Complex Includes the 2-simplex

If we were to enlarge the radius of balls in the �ech complex just a little we would

obtain another �ech complex that contains the Rips complex at the original scale.

This actually happens for every �ech complex and hence we get a result that tells us
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that the Rips complex approximates the �ech complex. The following theorem can

be found in [DSG07].

Theorem 2.37 (Rips Lemma). Suppose X ⊂ Rd is �nite and ε, ε′ > 0 so that

ε ≥ ε′ ·
√

2d
d+1

. Then Rε′ ⊂ Čε ⊂ Rε

We will omit this proof as we will give a proof of our more general result later in

Theorem 3.3.

2.4 Homology and Betti Numbers

In this section we seek to understand simplicial homology. As the name suggests

this will be a crucial tool in persistent homology. In particular, we will use simplicial

homology to make an inference as to the shape of a data set. We will develop homology

�rst as groups and then mention a generalization to modules.

De�nition 2.38. An oriented simplicial complex K is a simplicial complex with a

partial order on Vert(K) whose restriction to the vertices of any simplex is a linear

order.

De�nition 2.39. Let k ≥ 0 A k-chain Ck(K) on an oriented simplicial complex K

is the abelian group with the following presentation:

• Generators: all (k + 1)-tuples (p0, · · · , pk) where pi ∈ Vert(K) such that

{p0, ..., pk} spans a simplex in K;

• Relations:

1) (p0, ..., pk) = 0 if a vertex is repeated;

2) (p0, ..., pk) = sgn(π)(pπ(0), · · · , pπ(k)) where π is a permutation of {0, ..., q}

and sgn(π) = ±1 depending on the parity of π.
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Lemma 2.40. If K is an oriented simplicial complex of dimension m then

1) Ck(K) is a free abelian group with basis all symbols 〈p0, ..., pk〉, where {p0, ..., pk}

spans a k-simplex in K and p0 < ... < pk. Moreover, 〈pπ(0), ..., pπ(k)〉 =

sgn(π)〈p0, ..., pk〉.

2) Ck(K) = 0 for all k > m

Thus, we have separated the simplicial complex K into its k-simplex pieces. We'd

like to know how each k-chain relates to say the k − 1 and k + 1-chains. For this we

have the boundary maps.

De�nition 2.41. Suppose Ck(K) and Ck−1(K) are chain spaces. Then the kth

boundary map is the homomorphism ∂k : Ck(K)→ Ck−1(K) given by

∂k(〈p0, p1, ..., pk〉) =
k∑
i=0

(−1)i〈p0, p1, ..., p̂i, ..., pk〉.

Theorem 2.42. Given the chains Ck+1(K), Ck(K) and Ck−1(K). We have ∂k∂k+1 =

0.

Proof. The proof is just a routine computation which we show now.
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∂k(∂k+1(〈p0, ..., pk+1〉) = ∂k

(
k+1∑
i=0

(−1)i〈p0, ..., p̂i, ..., pk+1〉

)

=
k+1∑
i=0

∂k((−1)i〈p0, ..., p̂i, ..., pk+1〉)

=
k+1∑
i=0

(∑
j<i

(−1)i+j〈p0, ...p̂j, ..., p̂i, ..., pk+1〉

+
k+1∑
j>i

(−1)i+j−1〈p0, ..., p̂i, ...p̂j, ..., pk+1〉

)
.

Notice that for j > i we have j−1 in the exponent. This is due to the fact that we

are looking at a k simplex hence j ≤ k. Further notice that for each simplex obtained

while j < i there is one of opposite orientation arising while j > i hence everything

cancels and we are left with ∂k(∂k+1(〈p0, ..., pk+1〉) = 0.

De�nition 2.43. The collection of all chains over K together with the boundary

maps is called a chain complex and is denoted C•(K).

Let K and L be oriented simplicial complexes. If φ : K → L is a simplicial

map then we will de�ne the map φ# : Cq(K) → Cq(L) by φ#(〈p0, p1, ..., pq〉) =

〈φ(p0), φ(p1), ..., φ(pq)〉.

Lemma 2.44. φ#∂k = ∂kφ# for each k ≥ 0

Proof. Suppose σ is a k-simplex. Then
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φ#∂k(σ) = φ#

(
k∑
i=0

(−1)i〈p0, p1, ..., p̂i, ..., pk〉

)

=
k∑
i=0

(−1)iφ#(〈p0, p1, ..., p̂i, ..., pk〉)

=
k∑
i=0

(−1)i〈φ(p0), φ(p1), ..., ˆφ(pi), ..., φ(pq)〉.

On the other hand, ∂kφ#(σ) = ∂k(〈φ(p0), φ(p1), ..., φ(pq)〉)

=
∑k

i=0(−1)i〈φ(p0), φ(p1), ..., ˆφ(pi), ..., φ(pq)〉.

We will now look at cycles and boundaries, which will allow us to de�ne homology.

De�nition 2.45. Given a chain complex C•(K) we de�ne the k-cycles Zk(K) =

ker ∂k. We de�ne the k-boundaries Bk(K) = im∂k+1.

Since the boundary maps are homomorphisms, Zk(K) and Bk(K) are both sub-

groups of the abelian Ck(K). Furthermore since ∂k∂k+1 = 0 we see Bk(K) is a normal

subgroup of Zk(K). Hence we get the following de�nition.

De�nition 2.46. The kth homology group is Hk(K) = Zk(K)/Bk(K).

Theorem 2.47. For each k ≥ 0, Hk : K → Ab is a functor.

Proof. We already know how Hk deals with objects of K. So, for a simplicial map φ :

K → L we de�ne Hk(φ) = φ∗ : Hk(K)→ Hk(L) by φ∗(z +Bk(K)) = φ#(z) +Bq(L).

From here it is a routine check to see that Hk is a functor.

Although we developed homology in terms of groups, one can actually speak more

generally about homology over an R-module (left or right) where R is a ring with unit

[Rot08]. By writing [p0, ..., pm] as the m-simplex spanned by the presented vertices

we obtain the following de�nitions.
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De�nition 2.48. Let R be a ring with unit and K be an oriented simplicial complex.

Then a k-chain module Ck(K) is a collection of linear combinations (which are �nite

sums) of the form
∑

i tiσi where ti ∈ R and σi ∈ K. Any oriented k-simplex is equal

to −1 times the simplex of opposite orientation. That is [p0, ..., pm] = −[pm, ..., p0].

De�nition 2.49. Suppose Ck(K) and Ck−1(K) are chain spaces. Then the kth

boundary map is a linear map ∂k : Ck(K)→ Ck−1(K) given by

∂k([p0, p1, ..., pk]) =
k∑
i=0

(−1)i[p0, p1, ..., p̂i, ..., pk].

Theorem 2.50. Given the chain spaces Ck+1(K), Ck(K) and Ck−1(K). We have

∂k∂k+1 = 0.

De�nition 2.51. The collection of all chains over K together with the boundary

maps is called a chain complex and is denoted C•(K).

De�nition 2.52. Given a chain complex C•(K) we de�ne the k-cycles Zk(K) =

ker ∂k. We de�ne the k-boundaries Bk(K) = im∂k+1.

Linearity of the boundary maps give us Bk(K) ⊆ Zk(K) ⊆ Ck(K) as submodules.

Hence we �nally have the following de�nition.

De�nition 2.53. Let R be a ring and K be an oriented simplicial complex. Then

the kth homology module is Hk(K) = Zk(K)/Bk(K) = ker ∂k/im∂k+1.

In this way, by setting R = Z, we immediately obtain the de�nition of homology

groups. Often we will take R to be a �eld which creates homology vector spaces. One

�eld commonly used for its computability is Z/2Z. That is the �eld of two elements.

By using this �eld we forgo orientation which allows us to easily compute homology.
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Example 2.54. Let us compute the homology groups of a triangle that is not �lled

in.

A B

C

For ease we will assume our coe�cients are coming from Z2. To begin we compute

the chain spaces C2 = 0, C1 = span{[AB], [AC], [BC]}, and C0 = span{[A], [B], [C]}.

Next we compute the rank and nullity of the boundary maps. rk(∂2) = 0 = Nul(∂2)

this one is easy since we have a 0 space. In a similar manner we have rk(∂0) = 0 and

Nul(∂0) = 3 Now let us consider the matrices arising from the remaining boundary

map.

∂1 =


1 0 1

1 1 0

0 1 1



This matrix is obtained by labeling the columns as the edges and the rows as the

vertices then placing a 1 wherever a vertex meets an edge. After a quick reduction we

see rk(∂1) = 2, Nul(∂1) = 1 Thus, we see H1 = Z1/B1
∼= Z2, and H0 = Z0/B0

∼= Z2

The following theorem can be found in [EH10b]

Theorem 2.55 (Nerve Theorem). If U is a union of convex sets then Hk(N (U)) ∼=

Hk(U).
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We note that the usual Nerve theorem is stated in terms of homotopy, but since we

do not use homotopy, and homotopy type implies isomorphic homology, we just use

the version that �ts our case. The Nerve Theorem tells us that given a nice collection

sets (such as a �nite collection of closed or open balls) the topological information

encoded in the union of the collection is also encoded in the nerve of the collection.

This tells us that the �ech complex accurately represents the space formed by the

union of balls.

De�nition 2.56. The kthBetti number, βk is the rank of the kth homology module.

Since simplicial complexes are �nite, each k-chain has a basis which consists of

exactly all of the k-simplices in K. Now consider the quotient map φ : Zk → Zk/Bk.

By the Rank-Nullity Theorem we know dimZk = dim(imφ) + dim(kerφ). Note

that kerφ = Bk and imφ = Hk. Hence we obtain dim(Hk) = dim(Zk) − dim(Bk).

Informally, the Betti numbers count the number of k-dimensional holes a space has.

2.5 Persistence Modules

Imagine a set of points in some Euclidean space. Place balls around these points

and allow them to grow. At each step compute the �ech complex. Notice that as the

balls grow, the simplices that appear at scale ε are present at each scale ε′ > ε. This

notion of an increasing chain of inclusions is called a �ltration, which we now de�ne.

De�nition 2.57. Let K be a simplicial complex. A �ltration of K is a totally

ordered set of subcomplexes of K so that

∅ = K−1 ⊂ K0 ⊂ K1 ⊂ ... ⊂ Kn = K.
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We note that each Ki is itself a simplicial complex hence we can create an increas-

ing (by embedding) sequence of chain complexes.

C•(K0) ↪→ C•(K1) ↪→ ... ↪→ C•(Kn).

The embedding is given by the map induced by the inclusion of Ck(Ki) into

Ck(Ki+1) for each k and i. From this we see that this induces a linear map ηik :

Hk(Ki, R)→ Hk(Ki+1, R).

Figure 10. This is a Filtration.

De�nition 2.58. Given a �ltration of a simplicial complex K and a commutative

ring with unit R, the kth persistence module Hk of K over R is the family of

the kth homology modules Hk(Ki, R) together with the induced linear maps between

them, ηik : Hk(Ki, R)→ Hk(Ki+1, R).

As the name suggests, persistence modules have a module structure. In fact, they

can be given a graded module structure over the polynomial ring R[x]. This will

allow us to apply a standard decomposition theorem that us to de�ne diagrams and

barcodes, which are topological summaries of data from which we draw conclusions.

De�nition 2.59. A graded ring R is a ring that decomposes as a direct sum of

abelian groups R =
⊕

i∈Z≥0
Ri so that x ∈ Ri and y ∈ Rj implies xy ∈ Ri+j. Any

element x ∈ Ri is said to be homogeneous of degree i. Finally, if I ⊂ R is a two

sided ideal and I =
⊕

i∈Z≥0
I ∩Ri, then I is called a graded ideal.
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De�nition 2.60. A left graded module is a left module M over a graded ring R

such that M =
⊕

i∈Z≥0
M i and RiM j ⊂ M i+j. M is non-negatively graded if

M i = 0 whenever i < 0.

As mentioned before, a persistence module can be given a graded module structure

over the polynomial ring R[x]. That is, Hk =
⊕∞

i=0H
i
k where the action of x is given

by x ·
∑∞

i=0m
i =

∑∞
i=0 η

i
k(m

i) for mi ∈ H i
k. This is no large leap as we think of the

action intuitively as a shift up by one unit. This means that the action is the link

that connects homologies across di�erent complexes in the �ltration. The following

theorem is a generalization of Theorem 5 on page 463 in [DF04].

Theorem 2.61. [Structure for Theorem for Finitely Generated Graded Modules over

a PID] Let R be a graded Principal Ideal Domain (P.I.D.) and let M be a �nitely

generated graded R-module. Then M is isomorphic to the direct sum of �nitely many

cyclic modules M ∼=
⊕m

i=1 ΣbiR/(ai)⊕
⊕r

j=1 ΣcjR where Σk denotes a k-shift upward

in grading and where bi, ci ∈ N and ai ∈ R with ai divides ai+1 for all 1 ≤ i ≤ m−1.

The isomorphism is unique up to reordering.

Proof. The proof of this is nearly identical to the proof of Theorem 5 on page 463 of

[DF04] which we now go through.

Since M is �nitely generated and graded we can �nd homogeneous elements

{x1, ..., xn} that generate M . Recall that homogeneous means for each i we have

xi ∈M j for some j. Now let Rn denote the free R-module with basis of homogeneous

elements {b1, ..., bn} of the same grade as the xi. De�ne the map π : Rn → M by

π(bi) = xi. It is clear that π is a surjective homomorphism; hence we apply the �rst

isomorphism theorem to obtain M ∼= Rn/ kerπ. By Theorem 4 page 462 of [DF04]

there exists a basis {y1, ..., yn} of homogeneous elements of Rn so that {a1y1, ..., amym}
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is a basis for kerπ for some elements a1, ..., am with a1|a2| · · · |am. Hence we see that

we have

M ∼= Rn/ kerπ =

(
n⊕
i=1

Ryi

)
/

(
m⊕
i=1

Raiyi

)
.

Now we de�ne a map

φ :
n⊕
i=1

Ryi →
m⊕
i=1

Σdeg(yi)R/(ai)⊕
n−m⊕
j=1

Σdeg(yj)R

where Σk denotes a k-shift upward in grading and where

(α1y1, ..., αnyn) 7→ (α1mod(a1), ..., αmmod(am), αm+1, ..., αn).

It is clear that kerφ = {(α1y1, ..., αmym, 0, ..., 0) | ai|αi ∀ i}, but this is exactly kerπ.

Hence we have then

M ∼=
m⊕
i=1

Σdeg(yi)R/(ai)⊕
n⊕

j=m+1

Σdeg(yj)R.

Now by calling r = n − m, deg(yi) = bi for 1 ≤ i ≤ m, and deg(yj) = ci for

m + 1 ≤ j ≤ n we get exactly the form we seek. Uniqueness follows from the

divisibility property of the a′is

The following theorem is just a direct application of the graded structure theorem

to persistence modules.
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Theorem 2.62 (Structure Theorem for Persistence Modules). Suppose Hk is a per-

sistence module over the polynomial ring R[x] as above. Then,

Hk =
n⊕
i=1

(xai)⊕
m⊕
j=1

(xbj)/(xcj)

where ai, bj, cj ∈ R+ are non -negative real numbers for all i, j.

Really what we are saying is that given a persistence module and a nice polynomial

ring we are able to decompose the persistence module into free and torsion portions.

The left side (free portion) will come in at step ai in the �ltration and will persist for

all future parameters whereas the right portion (torsion elements) corresponds to the

homology generators that come in to existence at bj and die at bj + cj.

2.6 Persistence Diagrams and Barcodes

We would like to know that if we have two (possibly) di�erent samples from the

same space, the persistence diagrams are �close.� We will de�ne a distance between

diagrams and prove that diagrams are stable under small perturbations with respect

to this distance. This entire section follows the development in [CSEH07] which was

the �rst paper to provide a proof of the stability theorem.

De�nition 2.63. Formally, a multi-set A is the graph of a function µ : A →

N ∪ {+∞} where A is a set. Elements of A are of the form (a, µ(a)). We call µ(a)

the multiplicity of a ∈ A.

Informally, a multi-set is simply a collection of objects that are allowed to appear

multiple times. For example the collection {1, 1, 2, 3, 4, 4, 4, 5} can be written formally

as the multi-set {(1, 2), (2, 1), (3, 1), (4, 3), (5, 1)}.
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De�nition 2.64. Let F be a �eld and suppose Hk is a persistence module over F[x]

with its decomposition

Hk =

(⊕
i

xai

)
⊕

(⊕
j

xbj/xcj

)
.

We de�ne the persistence barcode, or just barcode, Bk to be a multi-set of intervals

in R̄+ with elements of the form [ai,∞] and [bj, bj + cj]. Where ai, bj, cj ∈ R+.

0 1 2 3 4

Figure 11. A Barcode

De�nition 2.65. Let F be a �eld and suppose Hk is a persistence module over F[x]

with its decomposition as above. We de�ne the persistence diagram Dk to be a

multi-set of points in R̄2
+ of the form (ai,∞) and (bj, bj + cj), where ai, bj, cj,∈ R+,

union the diagonal ∆ = {(x, x) : x ≥ 0} counted with in�nite multiplicity.
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0 1 2 3 4

1

2

3

4

Figure 12. A Persistence Diagram

0 1 2 3 4

1

2

3

4

Figure 13. The Barcode Encoded into the Persistence Diagram.

We are headed towards the stability of persistence diagrams where we see the

�ltration as arising from a function. The following development will be in terms

of singular homology, but a classical result in algebraic topology is that singular

and simplicial homology are isomorphic on triangulable spaces [Rot08]. In our case,
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the nice spaces are triangulable. Similar to the previous section, a continuous map

between topological space f : X→ Y induces linear maps fk : Hk(X)→ Hk(Y). Also

if f : X→ Y and g : Y→ Z are continuous functions then (g ◦ f)k = gk ◦ fk. For our

purposes we shall consider the case where X is a subspace of Y and f as the inclusion

map.

De�nition 2.66. Let X be a topological space and f : X → R be a function. The

sub-level set of f at some real number a is the set f−1((−∞, a]).

De�nition 2.67. Let X be a topological space and f : X → R be a real function

on X. A homological critical value of f is a real number a so that there is an

integer k so that for every su�ciently small ε > 0 the map Hk(f
−1(−∞, a − ε]) →

Hk(f
−1(−∞, a+ ε]) induced by inclusion is not an isomorphism.

Put simply, a homological critical value is exactly the point where the generators

of the homology of a sub-level set change.

De�nition 2.68. A function f : X → R is said to be tame if it has �nitely many

homological critical values and the homology modules Hk(f
−1(−∞, a]) are �nite di-

mensional for every k ∈ Z≥0 and a ∈ R.

To reduce the cumbersome notation, �x an integer k. Let Fx = Hk(f
−1(−∞, x]).

For x ≤ y let f yx : Fx → Fy be the map induced by the inclusion f−1(−∞, x] ⊂

f−1(−∞, y]. We will write F y
x to mean imf yx . As a convention we set F y

x = {0}

whenever x or y is in�nite.

De�nition 2.69. Let f : X → R be a tame function and x ≤ y ∈ R̄. We call

F y
x a persistent homology group and we call βyx = rankF y

x a persistent Betti

number.
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Lemma 2.70 (Critical Value Lemma). Suppose the closed interval [x, y] contains no

homological critical value of some function f . Then f yx is an isomorphism for each

k ∈ Z≥0.

Proof. Let m0 = (x + y)/2. Then f yx = f ym0
◦ fm0

x . If f yx is not an isomorphism then

either f ym0
or fm0

x is not an isomorphism. Without loss of generality suppose it is

the latter. Let M0 = [x,m0]. Now take m1 = (x + m0)/2. As before either fm0
m1

or

fm1
x is not an isomorphism. Continue in this manner to obtain a countable decreasing

sequence of intervals whose intersection is a point. That point is a homological critical

value by de�nition contradicting our hypothesis.

From here on we shall �x our dimension for homology to be k ≥ 0. Suppose

f : X → R is tame with (ai)
n
i=1 its homological critical values. Let (bi)

n
i=0 be so that

bi−1 < ai < bi. Let b−1 = a0 = −∞ and an+1 = bn+1 =∞. Note that here we obtain

a �ltration Fb0 ↪→ Fb1 ↪→ ... ↪→ Fbn , which yields a persistence module.

De�nition 2.71. Take integers 0 ≤ i, j ≤ n + 1 and de�ne the multiplicity of the

pair (ai, aj) to be

µji = β
bj
bi−1
− βbjbi + β

bj−1

bi
− βbj−1

bi−1

De�nition 2.72. The persistence diagram arising from f , D(f) is the multiset

of points (bi, bj) ∈ R×R counted with multiplicity µji , union all of the points on the

diagonal, ∆ with in�nite multiplicity.

Notice that this de�nition is the same as the previous de�nition of a persistence

diagram. We will use this de�nition as it is more convenient. We wish to include the

diagonal points for the following reason. Given two persistence diagrams, we would
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like to be able to pair each point on the diagram in an �optimal way� which will be

explained later. Given that there might not be a pairing without the diagonal (as

the number of o� diagonal points could di�er in each diagram) we must have it to

achieve the goal.

De�nition 2.73. Given a multi-set A we de�ne the total multiplicity of A to be the

sum of the multiplicities of elements in A and is denoted #(A).

For example the total multiplicity of the persistence diagram without the diagonal

(because with the diagonal the total multiplicity would be trivial) is #(D(f)−∆) =∑
i<j µ

j
i . We will refer to this number as the size of the persistence diagram. Now for

a bit of notation. We will let Qb
a = [−∞, a]× [b,∞]. That is the upper left quadrant

determined by the point (a, b).

Lemma 2.74 (k-Triangle Lemma). Let f be a tame function and suppose x < y

are not homological critical values of f . Then the total multiplicity of the persistence

diagram in the resulting upper left quadrant is #(D(f) ∩Qy
x) = βyx.

Proof. Since x < y suppose without loss of generality that x = bi and y = bj−1. For

ease of notation we will let βji = β
bj
bi
. Then by de�nition we have

#(D(f) ∩Qy
x) =

i∑
k=−1

n+1∑
`=j

µ`k

=
i∑

k=−1

n+1∑
`=j

(β`k−1 − β`k + β`−1
k − β`−1

k−1

= βn+1
−1 − βn+1

i + βj−1
i − βj−1

−1 .

32



Notice that the �rst, second, and fourth term are all 0 by convention. Hence, we

are left with βj−1
i = βyx as desired.

The multiplicity µji can also be written as a di�erence of di�erences. That is

µji = (β
bj−1

bi
− βbjbi ) − (β

bj−1

bi−1
− βbjbi−1

). The �rst term, βbj−1

bi
, can be interpreted as the

number of independent homology classes, or features, in Fbj−1
that are born before

Fbi . Then the �rst di�erence, βbj−1

bi
−βbjbi , counts the number of features in Fbj−1

, born

before Fbi , that die before Fbj . In the same way, the second di�erence, βbj−1

bi−1
− βbjbi−1

counts the features in Fbj−1
born before Fbi−1

, that die before Fbj . Then we conclude

that the multiplicity µji counts the features born between Fbi−1
and Fbi that die

between Fbj−1
and Fbj , see Figure 14.

De�nition 2.75. Let X and Y be multisets of points in metric space. De�ne the

Hausdor� distance (also known as the Pompeiu-Hausdor� distance) between X

and Y is

dH(X, Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}.

De�nition 2.76. Let X and Y be multisets of points of the same total multiplicity.

Let Γ = {γ : X → Y | γ is a bijection}. We de�ne the bottleneck distance to be

dB(X, Y ) = inf
γ∈Γ

sup
x∈X
‖x− γ(x)‖∞.
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(ai, aj)

bi−1bi

bj−1

bj

(bi, bj−1)

(a) The Shaded Region Repre-

sents βj−1
i

(ai, aj)

bi−1bi

bj−1

bj

(b) The Lighter Region Repre-

sents βj−1
i − βji .

(ai, aj)

bi−1bi

bj−1

bj

(c) This is µji

Figure 14. A Visual Representation of Multiplicity

Note that for persistence diagrams, Γ is not empty as every diagram contains

in�nitely many diagonals ∆. We are closing in on the stability theorem in [CSEH07].

We will �rst need to cover a few more lemmata. Recall that if f is a tame function on
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a topological space X, Fx = Hk(f
−1((−∞, x])). In the same way for a tame function

g on X, Gx = Hk(g
−1((−∞, x])). Also, f yx : Fx → Fy, gyx : Gx → Gy, F y

x = imf yx , and

Gy
x = imgyx. Finally, let ε = ‖f − g‖∞, Q = Qc

b and Qε = Qc+ε
b−ε for b < c. What we

will show next is that if we have two tame functions, then the diagrams are somehow

interleaved, see Figure 15. This will be made more precise in the theorem.

Figure 15. A Visual Representation of the Quadrant Lemma

Lemma 2.77 (Quadrant Lemma). Let X be a topological space. Let f : X→ R and

g : X→ R be two tame functions. Then #(D(f) ∩Qε) ≤ #(D(g) ∩Q).

Proof. Since ε = ‖f − g‖∞ we have f−1((−∞, x]) ⊂ g−1((−∞, x+ ε]). Let φx : Fx →

Gx+ε be the induced inclusion map. Similarly g−1((−∞, x]) ⊂ f−1((−∞, x + ε]) Let

ψx : Gx → Fx+ε. We have then the following two diagrams.
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Fb−ε Fc+ε Fb+ε Fc+ε

Gb Gc Gb Gc

fc+εb−ε

φb−ε

fc+εb+ε

gcb

ψc ψb

gcb

ψc

Since the inclusion maps commute, we have that the induced maps commute also.

Hence from the left diagram we get f c+εb−ε = ψc ◦ gcb ◦ φb−ε Suppose ξ ∈ F c+ε
b−ε . Then

by de�nition there is some η ∈ Fb−ε so that ξ = f c+εb−ε (η). Hence with ζ = gcb(φb−ε(η))

we have ξ = ψc(ζ). This means that F c+ε
b−ε ⊂ ψ(Gc

b). From the second diagram we

have ψc(Gc
b) = ψc ◦ gcb(Gb) = f c+εb+ε ◦ ψb(Gb) ⊂ F c+ε

b+ε . Putting these together we �nd

F c+ε
b−ε ⊂ ψc(G

c
b) ⊂ F c+ε

b+ε .

Interpreting this tells us that dimF c+ε
b−ε ≤ dimGc

b. By applying the k-Triangle

Lemma we have that this inequality applies to the total multiplicities and therefore

we obtain our desired result that #(D(f) ∩ Qε) ≤ #(D(g) ∩ Q). We note that if

b, b − ε, c, or c + ε happen to be homological critical values we can simply introduce

a su�ciently small δ and repeat the argument.

Lemma 2.78 (Box Lemma). Let a < b < c < d ∈ R̄ and let f and g be tame

functions. Let R = [a, b] × [c, d] and let Rε = [a + ε, b − ε] × [c + ε, d − ε]. Then

#(D(f) ∩Rε) ≤ #(D(g) ∩R).

We will omit this proof as it is quite lengthy with the same �avor as the proof of

the Quadrant Lemma. We will, however, give a picture of how this lemma works.
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Figure 16. An Illustration of the Box Lemma

From the Box lemma we have dH(D(f), D(g)) ≤ ‖f−g‖∞. Before the next lemma

we need a de�nition.

De�nition 2.79. Let f, g : X→ R be tame and let δf = min{min{‖p− q‖∞ | p, q ∈

D(f)−∆},min{‖p− q‖∞ | p ∈ D(f)−∆ q ∈ ∆}}. In the case where there are not

two o�-diagonal points in D(f) we set the �rst minimum to∞. We call f and g very

close if ‖f − g‖∞ < δf/2.

Intuitively, δf measures how much room there is between the closest points in the

diagram of f . Then if g is so that the distance between g and f is less δf , then g

must be very close or even almost the same function as f .

Lemma 2.80 (Easy Bijection Lemma). Let f, g : X → R be very close and tame

functions. Then dB(D(f), D(g)) ≤ ‖f − g‖∞.

Proof. Let µ denote the multiplicity of the point p in D(f)−∆. Let Γε be the square

with center p and radius ε = ‖f − g‖∞. Applying the Box Lemma gives us that
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µ ≤ #(D(g)∩Γε) ≤ #(D(f)∩Γ2ε). By de�nition of very close we have 2ε ≤ δf which

means that p is the only point in D(f)∩Γ2ε. But this means #(D(g)∩Γε) = µ. This

means we can map all points of D(g) ∩ Γε to p bijectively. We apply this to all o�

diagonal points in D(f). If anything in D(g) remains, it is exactly those points farther

than ε away from D(f) − ∆. However since dH(D(f), D(g)) ≤ ε we see that these

remaining points are less than ε away from ∆. Sending these points to the diagonal

we obtain a bijection which moves points by at most ε completing this proof.

For our �nal lemma before we prove the Bottleneck Stability Theorem, let f̂ and ĝ

be piecewise-linear functions de�ned on a simplicial complexK. Let hλ = (1−λ)f̂+λĝ

where 0 ≤ λ ≤ 1. The collection of all hλ forms a linear interpolation between f̂ and

ĝ.

Lemma 2.81 (Interpolation Lemma). In the notation above, dB(D(f̂), D(ĝ)) ≤ ‖f̂−

ĝ‖∞.

Proof. Let c = ‖f − g‖∞. Note that for each λ, hλ is tame. Also, δ(λ) = δhλ is

positive. Then the set C of open intervals Cλ = (λ− δ(λ)/4c, λ + δ(λ)/4c) forms an

open cover of [0, 1]. Since [0, 1] is compact we may take not only a �nite subcover

of C, but a minimal subcover C ′ of C. So let λ1 < λ2 < ... < λn be the centers of

the intervals in C ′. Since C ′ is minimal we know that Cλi ∩ Cλi+1
6= ∅. Thus λi+1 −

λi ≤ (δ(λi) + δ(λi+1)/4c ≤ max{δ(λi), δ(λi+1)}/2c. Now, by de�nition of c we have

‖hλi−hλi+1
‖∞ = c(λi+1−λi). That is to say ‖hλi−hλi+1‖∞ ≤ max{δ(λi), δ(λi+1)}/2c.

But this means hλi and hλi+1
are very close and hence we apply the Easy Bijection

Lemma to get dB(D(hλi), D(hλi+1
) ≤ ‖hλi − hλi+1

‖∞ for each 1 ≤ i ≤ n− 1. Putting

λ0 = 0 and λn+1 = 1 we have this holding for 0 ≤ i ≤ n Then the triangle inequality

gives us
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dB(D(f̂), D(ĝ)) ≤
n∑
i=0

dB(D(hλi), D(hλi+1
) ≤

n∑
i=0

‖hλi − hλi+1
‖∞.

But the latter sum is bounded above by ‖f̂ − ĝ‖∞ since the hλ sample the inter-

polation between f̂ and ĝ, which concludes the proof.

With all of our combined technical results we now state and prove the Bottleneck

Stability theorem.

Theorem 2.82 (Bottleneck Stability). Let X be a triangulable space with continuous

tame functions f, g : X→ R. Then dB(D(f), D(g)) ≤ ‖f − g‖∞.

Proof. Since X is triangulable there is a �nite simplicial complex L and homeomor-

phism Φ : L → X. Note Φ can be chosen so that f ◦ Φ is tame and has the same

diagram as f . Since f and g are continuous and L is compact there is a subdivision

K of L so that

|f ◦ Φ(u)− f ◦ Φ(v)| ≤ δ and |g ◦ Φ(u)− g ◦ Φ(v)| ≤ δ

where u and v are vertices of a common simplex in K and δ is su�ciently small.

Now let f̂ , ĝ : SdK → R be the piecewise linear interpolations of f ◦ Φ and g ◦ Φ

on K. Then by the construction of K, ‖f̂ − f ◦ Φ‖∞ ≤ δ and ‖ĝ − g ◦ Φ‖∞ ≤ δ.

Now by the Interpolation Lemma we have dB(D(f̂), D(ĝ)) ≤ ‖f̂ − ĝ‖∞ ≤ ‖f −

g‖∞ + 2δ. By supposing δ ≤ min{δf , δg} we obtain from the Easy Bijection Lemma,

dB(D(f), D(f̂)) = dB(D(f ◦Φ), D(f̂) ≤ δ and dB(D(g), D(ĝ)) = dB(D(g◦Φ), D(ĝ) ≤

δ. Finally, by putting it all together we have

dB(D(f), D(g)) ≤ dB(D(f), D(f̂))+dB(D(f̂), D(ĝ))+dB(D(g), D(ĝ)) ≤ ‖f−g‖∞+4δ
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By allowing δ to tend to 0 we conclude dB(D(f), D(g)) ≤ ‖f − g‖∞.

This theorem validates the method of persistent homology. It guarantees that any

two good samples of a space will have similar looking diagrams. In other words, if

one were to repeat an experiment, then one should recover the shape of the data that

was recovered in the original experiment.
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CHAPTER III

RESULTS

3.1 A Multi-scale Rips Lemma

In this chapter we present our results. We will often consider a data cloud in

Rd. Recall that the Rips and �ech complexes were de�ned at a scale ε. We will

extend these de�nitions to be de�ned for multiple radii in the form of a function

r : X → (0,∞). The following de�nition is an obvious extension of the classical

de�nition made simply by replacing the scale with a function.

De�nition 3.1. Let X ⊂ Rd be �nite with n elements. Let r : X → (0,∞) be a

function. De�ne the multi-scale �ech complex at scale r to be the set

Čr(X) = {σ 6= ∅ ⊂ X | ∩xi∈σBri(xi)}

where ri = r(xi).

Clearly, by taking r(x) = ε for all x ∈ X we obtain Čε(X) the classical �ech

complex at scale ε. Now recall that the Rips condition requires d(xi, xj) ≤ 2r = r+r.

So, if we take the function r the Rips condition then simply turns into d(xi, xj) ≤

ri + rj. We use the notation with the x′is for convenience, since we can place a total

ordering on any �nite set X.

De�nition 3.2. Let X be a dubset of a metric space (M,d) and r : X → (0,∞) be

as above. De�ne the multi-scale Rips complex to be

Rr(X) = {σ ⊂ X | ∀xi, xj ∈ σ d(xi, xj) ≤ ri + rj}.
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Figure 17. The Multi-Scale �ech Complex

Figure 18. The Multi-Scale Rips Complex

Theorem 3.3. Suppose X ⊂ Rd is �nite with N elements. Further suppose that

r : X → (0,∞) and ε, ε′ > 0 so that ε ≥ ε′ ·
√

2d
d+1

. Then Rε′r ⊂ Čεr ⊂ Rεr

Proof. The second containment Čεr(X) ⊆ Rεr(X) follows from the fact that the

multi-scale Rips complex is the �ag complex of the �ech complex. To show that

Rεr(X) ⊂ Čεr, we take an element of the Rips complex at scale ε′. That is suppose

there is some �nite collection {xk}`k=0 ⊆ Rd so that ‖xi − xj‖2 ≤ ε′(r(xi) − r(xj))

whenever i 6= j. De�ne a function f : Rd → R by
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f(y) = max
0≤j≤`

{
‖xj − y‖2

r(xj)

}
.

Clearly, f is continuous and |f | → ∞ as ‖y‖2 → ∞. Thus f attains a minimum

on some compact set containing conv({xk}`k=0). It follows that f attains an absolute

minimum, say y0, on Rd. By a reordering of vertices if needed, we may assume f(y0) =

1
r(xj)
‖xj − y0‖2

2 for some subcollection {xj}nj=0 ⊆ {xk}`k=0 and f(y0) > 1
r(xj)
‖xj − y0‖2

2

for {xj}`j=n+1. Let g(y) = max0≤j≤n{ 1
r(xj)
‖xj−y‖2} and h(y) = maxn+1≤j≤`{ 1

r(xj)
‖xj−

y‖2}.

Now we wish to show that y0 ∈ conv({xj}nj=0). To this end, we apply Farkas'

Lemma [HUL04]: either y0 ∈ conv({xj}nj=0) or there is a v ∈ Rd such that v · xj ≥ 0

for all 0 ≤ j ≤ n and v · y0 < 0. Thus we need only show that there is no v ∈ Rd

so that v · (xj − y0) > 0 for 0 ≤ j ≤ n. By way of contradiction, suppose otherwise.

Since

‖xj − (y0 + λv)‖2
2 = ‖xi − y0‖2

2 − 2λv · (xj − y0) + λ2‖v‖2
2

for each 0 ≤ j ≤ n, it follows that g(y0 − λv) < f(y0) for all λ ∈ (0, λ1) where

λ1 = min0≤j≤n 2v · (xj − y0)/‖v‖2
2. Since h(y) is continuous and h(y0) < f(y0), there

exists a λ2 so that h(y0 + λv) < f(y0) for λ ∈ [0, λ2). Thus there exists a λ > 0

such that f(y0 + λv) = max{g(y0 + λv), h(y0 + λv)} < f(y0), a contradiction to the

minimality of y0.

By Carathéodory's theorem [GWZ96] and reordering of vertices if necessary, there

exists some subcollection of vertices {xi}mi=0 where 0 < i ≤ min{d, n}. It is not

possible that i = 0. If so, then y0 = x and f(y0) = 1
r(x0)
‖x0 − y0‖2 = 0 and f is
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identically zero. Since σ contains a vertex x1 6= x0, it follows that f(y0) = f(x0) >

1
r(x1)
‖x1 − x0‖2 > 0, a contradiction.

By way of notation, let x̂j = xj − y0. Note that

‖x̂j‖2
2 = r(xj)

2f(y0)2. (3.1)

Take a0, a1, . . . , am ∈ R≥0 so that
∑m

i=0 ai = 1 and y0 =
∑m

i=1 aixi. Then∑m
i=0 aix̂i. By relabeling, we may assume that a0r(x0) ≥ r(xi)ai when i > 0. Then

we obtain x̂0 =
∑m

i=1
ai
a0
x̂i, and so

r(x0)2f(y0)2 = ‖x̂0‖2
2 = −

m∑
i=1

ai
a0

x̂0x̂i.

Among the indices 1, 2, . . . ,m, there is some ι such that

1

d
r(x0)2f(y0)2 ≤ 1

m
r(x0)f(y0)2 ≤ −aι

a0

x̂0x̂ι. (3.2)

Putting (3.1) and (3.2) together, we �nd

f(y0)2

(
r(x0)2 +

2a0r(x0)2

aιd
+ r(xι)

2

)
≤ ‖x̂0‖2

2 − 2x̂0x̂ι + ‖x̂ι‖2
2

= ‖x̂0 − x̂ι‖2
2

= ‖x0 − xι‖2
2

≤ (ε′(r(x0) + r(xι)))
2.

We will now show that
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(r(x0)2 + r(xι)
2)2

r(x0)2 + 2a0r(x0)2

aιd
+ r(xι)2

≤ 2d

d+ 1
.

It su�ces to show (d − 1 + 4a0
aι

)r(x0)2 − 2(d + 1)r(x0)r(xι) + (d − 1)r(xι)
2 ≥ 0.

Since a0
aι
≥ r(xι)

r(x0)
we get

(d− 1 + 4
a0

aι
)r(x0)2 − 2(d+ 1)r(x0)r(xι) + (d− 1)r(xι)

2

≥
(
d− 1 + 4

r(xι)

r(x0)

)
r(x0)2 − 2(d+ 1)r(x0)r(xι) + (d− 1)r(xι)

2

= (d− 1)(r(x0)− r(xι))
2

≥ 0

as desired. Our assumption that ε ≥ ε′
√

2d/(d+ 1) implies f(y0) ≤ ε and thus

y0 ∈
m⋂
i=0

B̄εr(xi)(xi).

Therefore σ ∈ Čεr(X) and we are done.

3.2 Stability

We would like to be able to �t the multi-scale Rips complexes into the stabil-

ity framework presented in the previous section. Hence, we must de�ne a function

whose sub-level sets form the Rips complex and is continuous and tame. This is done

through the entry function.

De�nition 3.4. Let X ⊂ Rd be �nite. Let r : X → (0,∞). Finally let X denote a

compact set in Rd containing X. We de�ne the entry function fX,r : X → R by
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fX,r(y) = min
x∈X

{
d(x, y)

r(x)

}
.

t

x1 x2 x3

Figure 19. The Entry Function Traces the Bottom of the Cones.

For a bit of intuition imagine a point set in the plane. Begin growing cones above

the points with corresponding radius ratios. As the cones grow they will intersect.

The entry function traces the bottom of these cones. Now we'd like to show the

sub-level sets indeed have the same homology as the �ech complex.

Proposition 3.5. Suppose X ⊂ Rd is �nite of size N . Let r : X → (0,∞). Then

Hk(f
−1
X,r(−∞, a]) ∼= Hk(Čar(X).

Proof. It will su�ce to show f−1
X,r(−∞, a] =

⋃
xi∈X Bar(xi)(xi) since the Nerve Theo-

rem will grant us the isomorphism between the homology spaces. We proceed with the

standard argument. Suppose x ∈ f−1
X,r(−∞, a). Then a ≥ fX,r(x) = minxi∈X

d(x,xi)
r(xi)

=

d(x,xj)

r(xj)
for some xj. Hence arj ≥ d(x, xj) That is to say x ∈ Bar(xj)(xj). Thus

f−1
X,r(−∞, a) ⊂

⋃
xi∈X Bar(xi)(xi). Next let x be in the union. Then there is some

xi ∈ X for which d(x, xi) ≤ ar(xi). Hence d(x,xi)
r(xi)

≤ a. Therefore f(x) ≤ a, or

x ∈ f−1
X,r(−∞, a].

Lemma 3.6. For a �nite set X ⊂ Rd, a function r : X → (0,∞) and a compact set

X containing X, the entry function fX,r : X → R is continuous and tame.
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Proof. Due to the �niteness of our point set, the function is a minimum over skewed

distances. Since we are looking at a minimum of continuous functions, we conclude

that the entry function is continuous.

As we are assuming that there are only �nitely many points in X, there are

only �nitely many local maximums and minimums. Hence there are �nitely many

homological critical values. Thus the entry function is tame.

With this lemma we have satis�ed the hypotheses of the stability theorem, which

we state fully here.

Theorem 3.7. Let X,X ′ ⊂ Rd of size N . Let r, r′ : X → (0,∞) and X be a compact

set containing X ∪X ′. Then the following three things hold,

(i) dB(D(fX,r, D(f ′X,r)) ≤ ‖fX,r − fX,r′‖∞;

(ii) dB(D(fX,r, D(fX′,r)) ≤ ‖fX,r − fX′,r‖∞;

(iii) dB(D(fX,r, D(f ′X′,r)) ≤ ‖fX,r − fX′,r′‖∞.

This theorem follows directly from stability result [CSEH07]. But what we'd like

to do is strengthen this result by getting a bound on the distance between the entry

functions. We accomplish this with the next three theorems.
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x1 x2 x3

t

x1 x2 x3

Figure 20. Perturbation of r

Theorem 3.8 (Weight Stability). Let X ⊆ Rd be �nite. Let r, r′ : X → (0,∞) be

functions and X be a compact set containing X. Then for every ε > 0

‖fX,r − fX,r′‖∞ < ε whenever ‖r− r′‖∞ < δ =
εmin{r(x)r′(x) |x ∈ X}

diam(X)
.

Proof. It su�ces to show that

‖fX,r − fX,r′‖∞ ≤
‖r− r′‖∞diam(X)

min{r(x)r′(x) |x ∈ X}
.

To begin,

‖fX,r − fX,r′‖∞ = max
y ∈X
{|fX,r(y)− fX,r′(y)|}
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since fX,r and fX,r′ are continuous functions with compact domain, it follows that

there exists some y0 ∈ X such that

‖fX,r − fX,r′‖∞ = |fX,r(y0)− fX,r′(y0)|.

Then we have

‖fX,r − fX,r′‖∞ =

∣∣∣∣min
x∈X

{
‖x− y0‖2

r(x)

}
− min

x∈X

{
‖x− y0‖2

r′(x)

}∣∣∣∣ .
Since X is a �nite set, there exist xj, xk ∈ X so that

∣∣∣∣min
x∈X

{
‖x− y0‖2

r(x)

}
− min

x∈X

{
‖x− y0‖2

r′(x)

}∣∣∣∣ =

∣∣∣∣‖xj − y0‖2

r(xj)
− ‖xk − y0‖2

r′(xk)

∣∣∣∣ .
It is either the case that ‖xj − y0‖2/r(xj) = ‖xk − y0‖2/r

′(xk) or, without loss of

generality, ‖xj−y0‖2/r(xj) > ‖xk−y0‖2/r
′(xk). If ‖xj−y0‖2/r(xj) = ‖xk−y0‖2/r

′(xk)

then ‖fX,r − fX,r′‖∞ = 0 and we are done. Now, suppose ‖xj − y0‖2/r(xj) > ‖xk −

y0‖2/r
′(xk). Since ‖x− y0‖2/r(x) ≥ ‖xj − y0‖2/r(xj) for all x ∈ X, it must hold that

‖xj − y0‖2

r(xj)
− ‖xk − y0‖2

r′(xk)
≤ ‖xk − y0‖2

r(xk)
− ‖xk − y0‖2

r′(xk)
.

Therefore,
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‖fX,r − fX,r′‖∞ =

∣∣∣∣‖xj − y0‖2

r(xj)
− ‖xk − y0‖2

r′(xk)

∣∣∣∣
≤
∣∣∣∣‖xk − y0‖2

r(xk)
− ‖xk − y0‖2

r′(xk)

∣∣∣∣
=

∣∣∣∣ [r′(xk)− r(xk)]‖xk − y0‖2

r(xk)r′(xk)

∣∣∣∣ .
Finally,

‖fX,r − fX,r′‖∞ ≤
∣∣∣∣ [r′(xk)− r(xk)]‖xk − y0‖2

r(xk)r′(xk)

∣∣∣∣
≤ ‖r− r′‖∞diam(X)

min{r(x)r′(x) |x ∈ X}
,

as desired.

Corollary 3.9. If r, r′ : X → [1,∞), then for every ε > 0

‖fx,r − fX,r′‖∞ < ε whenever ‖r− r′‖∞ < δ =
ε

diam(X)
.

Before we go through the next theorem we will say a word on the idea. Imagine

a sensor network with moving or movable sensors. As the sensors move, the sensing

range doesn't change. To model this we require a bijection η between X and X ′.
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Figure 21. Perturbation of the Points

Theorem 3.10 (Point Perturbation Stability). Suppose X,X ′ ⊆ Rd of common size

N , r : X → (0,∞), and suppose that η : X ′ → X is a set bijection. Furthermore,

suppose that X is a compact set containing both X and X ′. Let fX′,r◦η be the entry

function on X ′ induced by r ◦ η. Then for every ε > 0

‖fX,r − fX′,r◦η‖∞ < ε whenever max
x∈X′
{‖x− η(x)‖2} < δ = εmin

x∈X
{r(x)}.

Proof. We will proceed by showing

‖fX,r − fX′,r◦η‖∞ ≤
max {‖x− η(x)‖2 | x ∈ X ′}

min {(r ◦ η)(x) | x ∈ X ′}
.

Since fX,r and fX′,r′ are continuous functions with compact domain,

‖fX,r − fX′,r◦η‖∞ = max {|fX,r(x)− fX′,r◦η(x)| | x ∈ conv(X ∪X ′)} .
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It follows that there exists some y0 ∈ X so that

‖fX,r − fX′,r◦η‖∞ =

∣∣∣∣min
x∈X

{
‖x− y0‖2

r(x)

}
− min

x∈X′

{
‖x− y0‖2

(r ◦ η)(x)

}∣∣∣∣ .
The �niteness of X and X ′ implies the existence of xj ∈ X and xk ∈ X ′ such that

∣∣∣∣min
x∈X

{
‖x− y0‖2

r(x)

}
− min

x∈X′

{
‖x− y0‖2

(r ◦ η)(x)

}∣∣∣∣ =

∣∣∣∣‖xj − y0‖2

r(xj)
− ‖xk − y0‖2

(r ◦ η)(xk)

∣∣∣∣ .
Now it is either the case that ‖xj−y0‖2/r(xj) = ‖xk−y0‖2/(r◦η)(xk) or, without

loss of generality, ‖xj − y0‖2/r(xj) > ‖xk − y0‖2/(r ◦ η)(xk). In the �rst case, we

have that ‖fX,r − fX′,r◦η‖∞ = 0 and we are done. To continue, suppose that ‖xj −

y0‖2/r(xj) > ‖xk − y0‖2/(r ◦ η)(xk). Since ‖xj − y0‖2/r(xj) ≤ ‖x − y0‖2/r(x) for

all x ∈ X, it must be the case that ‖xj − y0‖2/r(xj) ≤ ‖η(xk)− y0‖2/(r ◦ η)(η(xk)).

Therefore

‖xj − y0‖2

r(xj)
− ‖xk − y0‖2

(r ◦ η)(xk)
≤ ‖η(xk)− y0‖2

(r ◦ η)(xk)
− ‖xk − y0‖2

(r ◦ η)(xk)
.

This implies

‖fX,r − fX′,r◦η‖∞ =

∣∣∣∣‖xj − y0‖2

r(xj)
− ‖xk − y0‖2

(r ◦ η)(xk)

∣∣∣∣ ≤ ∣∣∣∣‖η(xk)− y0‖2

(r ◦ η)(xk)
− ‖xk − y0‖2

(r ◦ η)(xk)

∣∣∣∣

=
|‖η(xk)− y0‖2 − ‖xk − y0‖2|

(r ◦ η)(xk)
≤ ‖η(xk)− xk‖2

(r ◦ η)(xk)
≤ max{‖x− η(x)‖2 | x ∈ X ′}

min{(r ◦ η)(x) | x ∈ X ′}
.
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Corollary 3.11. If r : X → [1,∞), then

‖fX,r − fX,r◦η‖∞ < max
x∈X
{‖x− η(x)‖2}.

Proof. From the proof of Theorem 3.10, ‖fX,r − fX′,r◦η‖∞ < max{‖x−η(x)‖2|x∈X′}
min{(r◦η)(x)|x∈X′} . But

now, min{(r ◦ η)(x) | x ∈ X ′} ≥ 1. Hence, ‖fX,r − fX′,r◦η‖∞ < max{‖x−η(x)‖2|x∈X′}
min{(r◦η)(x)|x∈X′} ≤

max{‖x− η(x)‖2 | x ∈ X ′}.

t

x1 x2 x3x′1 x′2 x
′
3

t

x1 x2 x3x′1 x′2 x
′
3

Figure 22. Perturbation of the Points and Radii

Theorem 3.12 (Combined Stability). Suppose X,X ′ ⊆ Rd of common size N ,

r : X → (0,∞) and r′ : X → (0,∞) are functions, and η : X ′ → X is a set bijection.

Let m1 = minx∈X′{r(x)} and m2 = min{(r◦η)(x)r′(x)|x∈X′}
diam(X)

. Then for every ε > 0 we

have ‖fX,r − fX′,r′‖∞ < ε whenever maxx∈X′{‖x − η(x)‖2} + ‖(r ◦ η) − r′‖∞ < δ =

εmin {m1,m2} .
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Proof. Let ε > 0,m1 = minx∈X′{r(x)} and m2 = min{(r◦η)(x)r′(x)|x∈X′}
diam(X)

. By Theorem

3.8,

‖fX′,r◦η − fX′,r′‖∞ <
ε

2
whenever ‖(r ◦ η)− r′‖∞ <

εmin{(r ◦ η)(x)r′(x) | x ∈ X ′}
2diam(X ′)

.

Also,

‖fX,r − fX′,r◦η‖∞ <
ε

2
whenever max

x∈X′
{‖x− η(x)‖2} <

ε

2
min
x∈X
{r(x)}

by Theorem 3.10. Therefore, if we require

max
x∈X′
{‖x− η(x)‖2}+ ‖(r ◦ η)− r′‖∞ < 2 min{εm1, εm2},

then we have

‖fX,r − fX′,r′‖∞ ≤ ‖fX,r − fX′,r◦η‖∞ + ‖fX′,r◦η − fX′,r′‖∞

<
ε

2
+
ε

2
= ε

and we are done.

3.3 The Outlier Problem

The goal of this section is to develop a way to interpolate between persistence on

a set with a lot of noise and persistence on a set with the noise removed. But �rst we

are going to see that if we add in �nitely many points with radius 0 to a �nite set,

then homology for n ≥ 1 remains unchanged.
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Lemma 3.13. Let X, Y ⊂ Rd be �nite. Let r : X ∪ Y → [0,∞) be so that r(x) 6= 0

for each x ∈ X and r(y) = 0 for each y ∈ Y . Then Hn(Čr(X ∪Y )) ∼= Hn(Čr(X)) for

n ≥ 1.

Proof. It will su�ce to show the conclusion holds when Y consists of just one point y.

Now either y ∈
⋃
x∈X Br(x) or not. Suppose �rst that y is in the union. First note that⋃

x∈X Br(x) =
⋃
x∈X Br(x)∪{y}. Then by applying the Nerve Lemma twice we obtain

the following string of homology equivalences Hn(Čr(X ∪ {y})) ∼= Hn(
⋃
x∈X Br(x) ∪

{y}) ∼= Hn(
⋃
x∈X Br(x)) ∼= Hn(Čr(X)). Now if y is not in the union, then we have

a disjoint union Čr(X) t {y}. Then Hn(Čr(X)) t {y}) = Hn(Čr(X))
⊕

Hn({y}) =

Hn(Čr(X)) as long as n ≥ 1. It is clear that we can repeat this argument for any

additional points in Y hence we are done.

Note that the addition of points can change 0 homology if the points added land

outside the cover of the balls. This lemma is indeed necessary to the next proof as

our stability theorems require we have two sets of the same size.

Theorem 3.14. Let X, Y ⊂ Rd be disjoint and �nite of size N and M respectively.

Call Z = X ∪ Y Let r : X → [0,∞) be so that r(x) = 1 for each x ∈ X and r(y) = 0

for each y ∈ Y . Let s(x) = 1 for every x ∈ Z Then for every ε > 0 and n ≥ 1 there

exists δ > 0 so that λ < δ implies dB(Dn(fZ,rλ), Dn(fX,s)) ≤ ε.

Proof. By the previous lemma, points with 0 radius do not a�ect homology for

n > 0, thus we have Dn(fX,s) = Dn(fZ,r0). Hence, dB(Dn(fZ,rλ), Dn(fX,s)) =

dB(Dn(fZ,rλ), Dn(fZ,r0)). Note that ‖rλ − r0‖∞ = λ By applying radius stabil-

ity, we can �nd a δ so that for any λ < δ we have dB(Dn(fZ,rλ), Dn(fX,s)) =

dB(Dn(fZ,rλ), Dn(fZ,r0)) ≤ ε.
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So what we see is that if {λm} is any sequence converging to 0 then Dn(fZ,rλm )→

Dn(fX,s). Moreover, we know that given a reliable method to locate noise, we can

more precisely detect the underlying structure without having to completely throw

away points.

3.4 The Coverage Problem

In this section our goal is to use the idea of multiple-radii to reduce the cost of

coverage. We will be considering a compact, simply-connected region of interest.

Figure 23. Coverage of Region of Interest
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Figure 24. Reduced Cost Coverage of Region of Interest

De�nition 3.15. Given a system X of n sensors and weights r : X → (0,∞) we

de�ne the total cost of the sensors running at power r to be C(X, r) =
∑

x∈X r(x)2.

De�nition 3.16. Give a system X of sensors and weights r : X → (0,∞), and a

compact simply connected region of interest D in some metric space we say (X, r)

covers D if for each y ∈ D there is some x ∈ X so that d(x, y) ≤ r(x).

Notice that we can say that the time in which (X, r) coversD is exactly max{fX,r(y) |

y ∈ D}. Hence by letting ur = max{fX,r(y) | y ∈ D} we see the cost of coverage is

C(X, r) =
∑n

i=1 u
2
rr

2
i .

De�nition 3.17. Suppose X ⊂ Rd is �nite. Then the Voronoi cell of a point x

in X is the set of all points in Rd for which x is closest, Vx = {u ∈ Rd | d(x, u) ≤

d(y, u) ∀ x ∈ X}. The collection of all Vx is called the Voronoi diagram.

De�nition 3.18. TheDelaunay complex of X is the nerve of the Voronoi diagram,

DC = {σ ∈ X |
⋂
x∈σ Vx 6= ∅}. We refer often to theDelaunay triangulation which

is just the 1-skeleton of the Delaunay complex, DT = DC(1).
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Proposition 3.19. If (X, r) covers D where r(x) = r(y) for every x, y ∈ X, then

the edges of the Delaunay complex are edges in the nerve of the cover.

Proof. Suppose [xy] is an edge in the Delaunay complex. Then the intersection of the

Voronoi cells of x and y is not empty. In fact the intersection of these cells with the

edge is nonempty. Suppose w is in that intersection. Since we have coverage, there

must be point z ∈ X so that d(z, w) ≤ r(z). But by de�nition of the Voronoi cell

of x, and since we are assuming r(x) = r(y), we must have d(x,w) ≤ r(x). For the

same reason, w is also in the Voronoi cell of y we must have d(w, y) ≤ r(y). Hence

by the triangle inequality we have d(x, y) ≤ r(x) + r(y) as desired.

Our coverage algorithm makes use of two pre-existing algorithms. The �rst is to

compute the Delaunay triangulation given a �nite set. The second is a quadratic pro-

gramming algorithm used to minimize our cost subject to some constraints. Quadratic

programming (quadprog) is the problem of �nding a vector x that minimizes a

quadratic function, possibly subject to linear constraints. That is minx{1
2
xTHx+cTx}

subject to Ax ≤ b. We will now see that we can apply this directly to our situation.

Let X be a set of n sensor locations. Since X is �nite, we put a total order on it.

Let ri = r(xi) and ~r = [r1, ..., rn] be the associated vector. Then we are minimizing∑n
i=1 r

2
i . Hence to �t this into the quadprog equation we let H = 2I where I is

the n × n identity and we see that indeed 1
2
~rTH~r = ~rT · ~r =

∑n
i=1 r

2
i . Now, for our

constraints suppose we have the set E of edges of the Delaunay triangulation of X.

We know X is �nite hence E is �nite. Suppose then we have a total ordering on E.

then we take b to be the vector whose entries are the negative norms of the vertices

in the edges of the Delaunay triangulation. So if z = [xy] ∈ E let us write ‖z‖ to

mean −‖y− x‖2. Then the i-th entry of b is bi = ‖zi‖. Let A have rows and columns
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numbered by the ordering on X. Then de�ne A to be the matrix where the i-th row

contains a −1 for each of the vertices in bi. Then A~r ≤ b implies d(xi, xj) ≤ ri + rj

for each edge in the Delaunay triangulation. We will refer to applying the quadprog

function as quadprog(H, f,A, b).

Algorithm 3.20. This algorithm will be used to reduce cover cost of a sensor network.
Data: sensorLocations

Result: sensorPowers

begin
Compute Delaunay triangulation on sensorLocations

Edges = edges in Delaunay triangulation

b = ‖zi‖ for zi ∈ Edges

A = Corresponding matrix

H = 2 · I

f = 0

sensorPowers = quadprog(H, f,A, b)

end

We immediately see the following theorem as a consequence of this algorithm and

the preceding proposition.

Theorem 3.21. Let X be a set of sensor locations with region of interest D. Let

r : X → (0,∞) be the radius obtained from the algorithm. Let s : X → (0,∞) be

constant so that (X, s) covers D. Then C(X, r) ≤ C(X, s).
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CHAPTER IV

SUMMARY AND FUTURE DIRECTIONS

In this paper we have generalized the notion of a single radii to multiple radii by

de�ning two classical complexes and generalizing the classical relationship between

them. In doing so we have presented three notions of stability and a notion interpo-

lation between two methods of data analysis. Furthermore, we have shown that it

is possible to reduce cost of covering a region. In the future we hope to develop an

algorithm which assigns the best possible weights to detect the right feature with-

out having to remove noise. We also hope to optimize the cost of covering compact

domains with sensor placement and radii assignment.
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