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Abstract: 

 

Miscalibration, the failure to accurately evaluate one’s own work relative to others' evaluation, is 

a common concern in social systems of knowledge creation where participants act as both 

creators and evaluators. Theories of social norming hold that individual’s self-evaluation 

miscalibration diminishes over multiple iterations of creator-evaluator interactions and shared 

understanding emerges. This paper explores intersubjectivity and the longitudinal dynamics of 

miscalibration between creators' and evaluators' assessments in IT-enabled social knowledge 

creation and refinement systems. Using Latent Growth Modeling, we investigated dynamics of 

creator’s assessments of their own knowledge artifacts compared to peer evaluators' to determine 

whether miscalibration attenuates over multiple interactions. Contrary to theory, we found that 

creator’s self-assessment miscalibration does not attenuate over repeated interactions. Moreover, 

depending on the degree of difference, we found self-assessment miscalibration to amplify over 

time with knowledge artifact creators' diverging farther from their peers' collective opinion. 

Deeper analysis found no significant evidence of the influence of bias and controversy on 

miscalibration. Therefore, relying on social norming to correct miscalibration in knowledge 

creation environments (e.g., social media interactions) may not function as expected. 

 

Keywords: Intersubjectivity | Miscalibration | Longitudinal analysis | Knowledge artifacts | Peer-

evaluation | Latent classes 

 

Article: 

 

Introduction 
 

Rapid advances in Web 2.0-based social media technologies have made creating and distributing 

digital knowledge artifacts (KAs) easier, more accessible, and less expensive. As a result, online 

collaboration to produce, refine and manage new knowledge is increasing in popularity (Sage 

and Rouse 1999). For example, digitally published articles outlining current knowledge about a 
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topic, are often co-created, co-evaluated and maintained by self-organized knowledge 

communities in IT-mediated social media (Dede 2008). KAs are creations that social groups use 

to represent and share knowledge. In organizations, for example, KAs are integrated as part of 

organizational knowledge management systems (KMS) to retain organizational memories. In 

social media, wikis, blogs and other public shared knowledge bases, such as eHow.com and 

About.com, enable quick access of users from any walks of life to rich and yet easily 

comprehendible information. Our understanding of KAs is based on the notion of cognitive 

artifacts – things that help us understand and perform tasks (Heersmink 2013; Norman 1992). A 

cognitive artifact is an artificial device or object designed to display or operate on information to 

serve a representational function (Norman 1992). Sharable and transferable representations of 

knowledge such as cognitive artifacts have multiple distributed cognition benefits and provide 

structured shareable referents to coordinate thought or a process in a variety of domains (Kamsu-

Foguem et al. 2014; Kirsh 2010; Sutton 2001; Tung et al. 2014. KAs facilitate information 

sharing in knowledge communities where KA creators, evaluators and users collaboratively learn 

and evolve the collective understanding of a topic (Salazar-Torres et al. 2008). As new, more 

dynamic and participatory IT-enabled modes of information exchange emerge, understanding 

how KAs are created and evaluated in social systems, and how differences between creators’ and 

evaluators' opinions regarding KA evolve over time has very important implications for the 

future information systems research. 

 

Anyone with Internet access can produce a digital KA or modify an existing one and share it 

with the world instantaneously. However, users’ or reviewers' perceptions and opinions about the 

quality, utility and verity of KAs, captured in evaluations, may vary significantly (Black and 

Wiliam 1998). In knowledge communities, KAs emerge through social interactions between 

creators and evaluators. These interactions and evaluation are subjective in nature. All 

knowledge codification and transfer incorporates subjective elements and greatly depends upon 

individual interpretations (Sutton 2001). As a result, the facts, opinions, values and beliefs 

around knowledge captured by KAs may or may not be shared by all community members. Over 

time, subjective preferences impact how KAs' quality and utility are perceived by both creators 

and evaluators. Unexplained variances in user’s perceptions raise questions about the reliability 

and validity of the evaluation of socially produced KAs. 

 

Much research has focused on socially constructed knowledge in technology-mediated, web-

based communities (Brown et al. 1989; Cusinato et al. 2009; Dede 2008; Hu et al. 2007; Lauw et 

al. 2008; Miranda and Saunders 2003). Despite wide-spread societal acceptance of, and reliance 

on digital KAs, very little research examines the intersubjective nature of KA creation and 

evaluation (Walsham 2006) and organizational social learning (Wang 2011) in IT-enabled peer-

based environments. Without research to understand the inter-twined and intersubjective 

processes involved in creating and evaluating KAs, effective designs of information systems that 

facilitate creation of reliable and valid KAs remain underinformed. 

 

The purpose of this paper is to present a systematic investigation of the inter-twined and 

intersubjective social creation and evaluation processes that online knowledge communities use 

to create KAs. In particular, miscalibration is explored, which, for the purpose of our study, 

refers to the difference in perceptions of a KA’s quality between the creator and peer evaluators 

(Kruger and Dunning 2002; Sadler and Good 2006; Sargeant et al. 2008. The impact of repeating 



iterations of multi-peer evaluation and feedback as a mechanism to improve creators’ self-

assessment competency through ongoing social interactions is examined. Lauw et al. (2008) 

suggested subjectivity of evaluations is reflected in evaluators' bias (individual evaluators' 

deviation from opinions of other evaluators) and controversy of KAs (the level of disagreement 

of evaluators’ opinions about a particular object). Therefore, we also examine the interactions 

between miscalibration and these important concepts of the evaluation process. 

 

In this paper, we address the research question: How does miscalibration of self-perceptions with 

the perceptions of others in a knowledge community changes over multiple iterations in the 

presence of bias and controversy? 

 

We study the longitudinal dynamics of miscalibration between creators' and peer evaluators' 

perceptions regarding the KA, under different levels of bias and controversy, as members engage 

in multiple iterations of creating and evaluating KA. Using a sample of 435 students at a large 

public university, we explore changes in students' peer assessment, self-assessment, 

miscalibration metrics, controversy and bias over time. We tested our hypotheses using standard 

inferential statistics (t-tests). The major methodological advance that we propose is to apply 

Latent Growth Modeling (LGM) to study the longitudinal dynamics of miscalibration between 

creator’s and peers’ evaluation of KA. The nature of intersubjectivity, as many other social 

phenomena and theories explored by the IS research, is not static but rather intrinsically 

longitudinal. Yet, longitudinal analyses, and LGM in particular, have been sparsely used by IS 

researchers Zheng et al. (2014). Our study provides a systematic method to evaluate and 

understand the longitudinal development of expertise and KAs in IT-enabled knowledge 

communities and contributes to the currently sparse research of temporal evolution of such 

communities. 

 

Understanding creator-evaluator interactions around KAs is important for three audiences. In the 

business community, technology-aided knowledge management is a critical factor for sustained 

competitive advantage. Being able to statistically assess employees' shared belief and knowledge 

systems will be an important advance. For those engaging in open online social KA creation 

(e.g., eHow.com, wikiHow.com, about.com, Pinterest, Yelp, etc.), the ability to capture 

actionable reliability, validity and utility metrics for KAs and creators will improve the efficacy 

of these knowledge communities. In education, the shift toward Massive Open Online Courses 

(MOOCs) and other pedagogical approaches that rely heavily on peer learning, requires 

educators to be able to identify and influence intersubjective agreement or disagreement around 

KA evaluations. 

 

The paper proceeds as follows. In Section 2, we give overview of the relevant prior research, 

develop our hypotheses and present the research model. In Section 3, we describe our research 

methodology. Section 6 reports the results of hypotheses testing. Finally, we discuss our findings 

and present the conclusions, limitations and areas of future research in Section 7. 

 

Literature review 
 

Knowledge communities and intersubjectivity 

 



Knowledge communities are social systems of knowledge creation and exchange between 

members situated in the context of the particular domain of interest (Amin and Roberts 2008; 

Brown et al. 1989; Edwards 2001; Sutton 2001). In such social system, creators and users of 

equal status, or peers, interact through communicative actions of providing peer evaluation and 

feedback intended to achieve rational cooperative or conflicting objectives and advance 

perspectives, while collectively searching for shared meaning, clarification and agreement 

(Habermas 1981; Hermida 2011). Common meaning, intersubjectively derived through exchange 

of multiple perspectives in the form of qualitative and quantitative evaluations and feedback 

results in better comprehension of KAs representing problems and solutions by actors (Miranda 

and Saunders 2003; Walsham 2006). Intersubjectivity can be viewed as the shared understanding 

that emerges from socio-technical interactions of individual in the pursuit of the common goal 

(Bostrom and Heinen 1977; Markus and Robey 1988; Miranda and Saunders 2003). 

 

At the same time, individual subjectivity poses a threat to the objective evaluation of KA 

produced in knowledge communities. Knowledge encoded in a KA means different things to 

different people depending on their backgrounds, positions and social context. When dealing 

with an artifact developed as a result of a simple task, with a single straightforward outcome 

exists and non-conflicting, objective goodness criteria (Zigurs and Buckland 1998), attainment of 

KA’s goodness can be assessed by comparing the outcome to this set of objective criteria. Most 

KA, however, result from complex open-ended tasks or problems with attributes such as multiple 

acceptable outcomes, multiple solution schemes, conflicting interdependence, and outcome 

uncertainty (Campbell 1988). In different literature streams such problems are known as “ill-

structured” (Simon 1969, 1973), “wicked” (Rittel and Webber 1973), or “design” problems 

(Conklin 2001). Consequently, they typically involve creativity, subjectivity and ambiguity 

about KA’s goodness. Since such problems are multifaceted, and facets are difficult to measure 

objectively, evaluations suffer from bounded rationality (Dorst 2003; Kreps 1997; Simon 1959). 

Evaluators' judgments regarding the KA depend on their subjective understanding of the content 

and the context. Expertise is often focused and limited, whereas the complexity of tasks and 

corresponding KAs is virtually unlimited. Moreover, every subjective evaluation is affected by 

evaluators' knowledge of the KA and the domain, as well as their individual perspective towards 

them including any individual biases regarding the relevant subject matter, content and context 

(Matusov 1996; Walsham 2006). One of the common ways to alleviate subjectivity of 

evaluations of KAs built around complex tasks is subject to multiple peer reviews and 

evaluations (Hardaway and Scamell 2012). A variety of models have been proposed in different 

settings, which are largely based on the belief that a collective evaluation, or the wisdom of 

crowd, is more objective than a single evaluator’s subjective, or biased assessment (Surowiecki 

2004). Thus, goodness, or attainment, of a KA becomes intersubjective. It describes 

understanding that emerges from the shared experiences (Schutz 1967), and is determined by 

subjective states shared by multiple individuals (Scheff 2006) and, thus, by the intersubjective 

interpretation by multiple creators and evaluators (Dorst 2003; Miranda and Saunders 2003; 

Walsham 2006). Intersubjectivity emphasizes that shared cognition and consensus is essential in 

the shaping of ideas and relations. 

 

Peer evaluation 

 



KA evaluation based on multiple peer evaluators' perspectives and opinions presents its own 

challenges. While in some instances it may result in intersubjective consensus regarding KA 

goodness and produce constructive and complete recommendations for its improvement, in other 

it may lead to contradicting conclusions or prescribe conflicting directions, leaving the creator 

perplexed regarding desired properties of KA. Yet, since multi-peer evaluation is believed to be a 

more valid and reliable alternative to KA quality assessment than a single-evaluator’s opinion, it 

is worthwhile to investigate its outcomes and how it may be employed to improve KA creation 

and refinement process in knowledge communities. Since the 1990s, peer evaluation and its 

impact on learning process and outcome has been extensively studied by social science and 

education research (Topping 2005). Defined by Topping (1998) as “an arrangement in which 

individuals consider the amount, level, value, worth, quality, or success of the products or 

outcomes of learning of peers of similar status”, peer evaluation usually carries some 

combination of formative and summative assessment. Summative assessment seeks to monitor 

performance by providing a quantitative summary evaluation of the attainment of a particular 

task objective (Shepard 2007). It is typically used for external accountability and is expressed in 

the form of a score or grade. Formative assessment involves qualitative feedback with the aim to 

promote improvement by suggesting adjustments and modifications to the artifact (Crooks 2001; 

Huhta 2008). 

 

Despite the large volume of research, conditions for efficacious peer evaluation remain 

inconclusive. When actors interact with their peers in learning or problem-solving situations, 

intersubjective disequilibration occurs, inconsistent knowledge is exposed, opposing perceptions 

and ideas are explored, and inadequate logical reasoning and strategies are challenged (Piaget 

and Gabain 1926; Slavin 1992; Yu et al. 2005. As a result, peer evaluation helps build cognitive 

ability because it facilitates peer interaction, exchange and absorption of critical concepts (King 

1989). While some studies highlighted the importance of peer evaluation in social and self-

regulated learning systems to achieve competency gains, other noted that peer group ‘value 

diversity’ negatively impacts collaborative learning’s efficacy by inhibiting the formation of a 

shared perspective and understanding (Van Gennip et al. 2009, Van Gennip et al. 2010). 

 

Peer evaluation improves competencies of actors who assess and are being assessed by exposing 

them to the practice of evaluating others' KAs and receiving feedback on their own KAs (Brutus 

and Donia 2010). Peer feedback enhances individuals' meta-cognitive learning and critical 

thinking skills (Wang and Wu 2008) and enables learning at high cognitive levels (Bouzidi and 

Jaillet 2009). Helping others to improve their creations by giving feedback, as well as improving 

one’s own creations based on feedback received from peers is a competency that is acquired 

through practice (Sluijsmans et al. 2004). Providing, receiving and incorporating constructive 

summative and formative feedback to improve KA attainment, as well as creators' and 

evaluators' competencies, are important aspects of peer interactions that extend beyond the 

classroom into technology-enabled knowledge communities. However, translating social 

interactions of KA peer evaluations into effective KA creation and refinement requires a great 

degree of self-awareness and maturity of peer reviewer and feedback recipient. 

 

Self-evaluation: Challenges in calibration 

 



Just as peer evaluation, self-evaluation is a complex social activity. In particular, assessing one’s 

own competencies relative to those of other knowledge community members through the process 

of self-reflection is a critical thinking skill Lin et al. (2001)In the context of KA creation and 

refinement, self-reflection, self-evaluation, and self-regulation play dual roles: they stimulate 

creator’s motivation and creativity to produce and refine new artifacts and they guide the creator 

to be responsive to external feedback and evaluations. These cognitive activities are intrinsic to 

professional behavior and creative pursuits. Accurate self-evaluation results in greater 

satisfaction with the accomplished results and stimulates aspiration to reach new goals (Bandura 

1977). 

 

Accurate self-evaluation is difficult to achieve. Previous theoretical and empirical studies 

showed mixed results when comparing self-evaluation to peer evaluation. While some evidence 

suggested that self-evaluation may be as accurate (or even more accurate) as external assessment 

Dochy et al. (1999); Lindblom-ylänne et al. 2006), other studies found that self-evaluation can be 

significantly miscalibrated, i.e., creators tend to inflate their own self-assessments compared to 

evaluations of their work by peers (Falchikov 1986; Falchikov and Boud 1989; Ryvkin et al. 

2012; Sargeant et al. 2008). Results on whether specific criteria and good guidance improve self-

evaluation accuracy are also mixed (Buchy and Quinlan 2000; Lindblom-ylänne et al. 2006; 

Orsmond et al. 2000; Sluijsmans et al. 2002; Taras 2002). 

 

The behavioral economics literature, specifically the research on the “unskilled-and-unaware” 

problem by Kruger and Dunning (1999), indicate that subjects with lower task competency (the 

“unskilled”) tend to overestimate their performance, thus showing overconfidence. On the other 

hand, individuals with higher competency levels (the “skilled”) typically underestimate their 

performance compared to peers' efforts, showing underconfidence (Kruger and Dunning 1999; 

Ryvkin et al. 2012). Further, this miscalibration is not normally distributed because there are 

more “unskilled” members that overestimate their own performance than “skilled” who 

underestimate theirs. According to Kruger and Dunning (1999), the unskilled lack the 

metacognitive ability to realize their incompetence. In effect, they are afflicted by a “double 

curse” of low skill and low ability to recognize competence when presented. Moreover, when 

assessing other artifacts' relative values, unskilled peers may introduce into the intersubjective 

group dynamics biases, which may compromise the reliability of evaluations. In the absence of 

objective criteria for evaluating complex-problem KAs, where reliability serves as a source of 

validity of KA assessment (Uebersax 1988), this presents a serious issue for peer evaluation in 

knowledge management systems. The theory of social modeling suggests that self-assessment of 

KA would tend to converge toward peer assessment as social interactions between members of 

the knowledge community ensue (Bandura 1962). A number of studies addressed the issue of 

reducing miscalibration (for example, creator’s overconfidence) through experience of multiple 

iterations and feedback (Ryvkin et al. 2012). While some studies demonstrated this effect (e.g., 

Koriat et al. 1980; Lichtenstein and Fischhoff 1980; McKenzie 1997; Sieck and Arkes 2005; 

Sieck et al. 2007; Stone and Opel 2000), other found that miscalibration is robust with respect to 

feedback (e.g., Pulford and Colman 1997; Sharp et al. 1988. The present study contributes to this 

discourse by investigating the discrepancy between creator’s self-perception of the artifact 

goodness and peer evaluators' perceptions in the specific context of a technology-enabled peer-

based knowledge creation and evaluation environment. 

 



Controversy and bias 

 

Given the inevitable dependency of perceived KA attainment on the variation in subjective peer 

evaluations, two other important aspect of intersubjectivity that must be considered are 

controversy of a KA and evaluator bias (Gillespie and Cornish 2010; Lauw et al. 2008). Even if 

most evaluators in the community are subjectively fair, some of them may have idiosyncratic 

preferences or opinions that will distort consensus (Douceur 2009; Shah et al. 2013. Moreover, 

since not all KAs are evaluated by all community members (due to physical constraints), 

aggregating KA evaluations also requires consideration of systematic biases of individual 

evaluators, such as their “confidence” or “reputation”. 

 

Different KAs may vary in the variety and divergence of opinions they generate. Therefore, 

some KAs may be more “controversial” than the other. Controversy does not necessarily imply 

the lack of “goodness”; it is a concept orthogonal to quality; i.e., a controversial KA may have 

high or low goodness attainment depending on who evaluates it (Lauw et al. 2008). In the 

domain of online peer-based evaluation systems, a number of models have been recently 

proposed to account for impacts of individual evaluators' idiosyncrasies, their impact on 

intersubjective assessment of evaluated objects, implications for individual reputation and 

overall consensus (Cusinato et al. 2009; Dai et al. 2012; Lauw et al. 2006; Lauw et al. 2008; 

Mizzaro 2003; Roos et al. 2012). 

 

Cognitive biases of individual actors influence their perceptions about their own and their peers' 

work (in the form of KAs) and, therefore, affect how intersubjective agreement or disagreement 

about KAs' goodness is reached. As a result, whenever individual perceptions of evaluators about 

a particular KA align, less dissonance in evaluations is observed, whereas when perceptions 

conflict, we observe more variation in evaluations and, hence, treat a KA as more controversial. 

Lauw et al. (2008), in particular, introduced and discussed operationalization of the notions of 

controversy and bias in evaluation systems, which are briefly summarized here. Controversy and 

bias are inter-related measures of the departures among evaluations of an object, such as a KA. 

Controversy captures a degree of divergence of evaluations among reviewers. In other words, 

controversy reflects the lack of agreement among peers about a specific KA’s goodness 

attainment. Evaluator bias refers to a degree of deviation of the particular evaluator’s 

assessments from other evaluators. Stated simpler, bias reflect how much the actor’s opinion, in 

general, is different from the opinions of others. 

 

Applying the concepts of controversy and bias to modeling intersubjectivity of evaluations in 

knowledge communities serves three purposes: 

 

(a) to differentiate actor’s competencies into creation and evaluation competencies by 

separating the impact of individual evaluation competency on overall evaluation (in bias) 

and creator’s propensity to produce KA’s with higher or lower degree of evaluation 

consensus (in controversy); 

(b) to assess reliability of subjective evaluations of artifacts by segregating KAs with higher 

consensus (lower controversy) and lower consensus (higher controversy); and 

(c) to examine the relationship between actor’s creation and evaluation competencies and 

self-evaluation by relating bias and controversy to miscalibration. 



  

Therefore, in our approach, we differentiate between bias and controversy as cognitive traits 

(which are outside the scope of this paper) and bias and controversy as operationalization of 

aspects of intersubjective evaluation. 

 

Conceptual model and hypotheses 
 

The reviewed literature shows that it remains ambiguous whether peer evaluation interactions 

among members of a knowledge community always lead to better intersubjective shared 

evaluation of KAs' goodness (Topping 1998). Moreover, this shared understanding can be 

viewed in multiple ways, reflecting its complex and subjective nature. Thus, to conceptualize and 

operationalize the research question motivating this study, we present a temporal model of 

intersubjectivity of peer evaluations of KAs. 

 

For the purposes of this paper, we conceptualize KA evaluation in a knowledge community as a 

dynamic system of several concepts that describe the interrelationships among individual 

valuations given to KAs by their creators and multiple peer evaluators. We define attainment as 

the reflection of the goodness of KA in the view of evaluators. We define miscalibration as the 

difference between the creator’s self-perception of the artifact attainment and the aggregate peer 

evaluation perceptions about it. We adopt and apply the definitions of bias by Lauw et al. (2008) 

to describe deviations of individual peer evaluation from other peer evaluations. Similarly, we 

adopt their definition of controversy to describe the overall aggregate divergence of peer 

evaluations of an individual KA. We further conceptualize KA evaluation subjectivity of an actor 

as a combination of miscalibration with respect to her own KA and evaluator bias with respect to 

KAs created by other actors in the knowledge community. Accordingly, intersubjective 

assessment is conceptualized as a combination of attainment of a KA and its controversy. 

Together, attainment, controversy, miscalibration, and bias reflect a snapshot, at a particular 

time, of intersubjective understanding of the KA goodness in the knowledge community 

stakeholders in the particular KA (Fig.1). 

 

 
Figure 1. A Single-instance intersubjective KA evaluation 

 



 
Figure 2. Conceptual model of the change of intersubjective understanding of attainment over 

time 

 



 
Figure 3. The SLIP benchmarking interface used to collect assessments of case analyses 

 

 
Figure 4. Example scenario of mutual peer evaluation ranking 

 



 
Figure 5. Mutual peer evaluation and self-assessment ranking 

 

 
Figure 6. Controversy in mutual peer evaluation 

 

 
Figure 7. Bias in mutual peer evaluation 

 



 
Figure 8. The student interface showing self- and peer assessment of case analyses 

 



 
Figure 9. Changes in peer and self-assessment and miscalibration 

 

 
Figure 10. Latent classes of the miscalibration (with indicated standard errors) 

 

 
Figure 11. Latent classes of peer-evaluated attainment (with indicated standard errors) 

 



 
Figure 12. Latent classes of self-assessed attainment (with indicated standard errors) 

 

Since we are interested in exploring dynamics of this system over time, the following conceptual 

model describes the longitudinal view of intersubjectivity in a knowledge community (Fig. 2). 

 

Existence of systematic miscalibration 

 

Based on the theory that suggests that external assessment and self-evaluations do not 

necessarily align, we first of all are interested in confirming that difference exists in evaluations 

of KAs. Therefore, we hypothesize that: 

 

 H1a: KA attainment based on creator’s self-evaluation is systematically different from 

attainment based on aggregate peer evaluations. 

 H1b: Attainment based on creator’s self-evaluations is systematically higher than 

attainment based on aggregate peer evaluations (i.e., creators are systematically 

overconfident). 

 

Systematic longitudinal change of miscalibration 

 

Social psychology, including literature on information processing and collective intelligence 

(Conklin 2001; Simon 1979), collective action (Hargrave and Van de Ven 2006), social 

cognitive theory (Bandura 1962; Bandura and Walters 1963; Gagne 1985), social construction of 

meaning (Miranda and Saunders 2003), knowledge as social practice (Brown and Duguid 2001), 

and intersubjectivity (Gillespie and Cornish 2010; Matusov 1996) suggests that over time, 

knowledge community members – creators and evaluators – learn from each other, develop 

shared understanding and individual competencies. 

 

Through the experience of observing and evaluating the work of others, as well as being 

evaluated and receiving peer feedback, they realize implicit expectations with regard to 

attainment, as well as reconsider and adjust their actions to avoid being penalized for producing 

more controversial artifacts and reviews and to conform to social norms (Kreps 1997). Repeated 

experience in evaluating others and oneself and being evaluated results in subjects' better 

understanding of what is expected and, hence, in improved quality of artifacts and reviews, and 

more accurate evaluations (Brutus et al. 2013. Divergent opinions find settlement, shared 

understanding emerges. As subjects become more confident in evaluating others' KAs, they also 



become more critical of their own creations, and, therefore, self-evaluations become more 

reflective of the KA attainment perceived by peers. Based on this theory, we expect that multiple 

sequential mutual assessments create intersubjective dynamics that lead to the convergence 

between peer and self-evacuations in a group. Thus, over time they lead to the reduction of 

miscalibration in KA evaluations. 

 

On the other hand, while it is possible, that mutual peer feedback leads to better common 

understanding, and, therefore, to the reduction of miscalibration (that is, both overconfidence and 

underconfidence should decrease), the double-curse argument of the Unskilled-and-unaware 

theory suggests that miscalibration may also systematically increase. Thus, past research 

suggests that although over time (i.e., multiple iterations) miscalibration may changes 

systematically, it provided no conclusive suggestions about the direction of these systematic 

changes in miscalibration. Therefore, we hypothesize that: 

 

 H2: Over multiple successive mutual creator-evaluator interactions, miscalibration 

changes systematically (i.e., non-randomly). 

 

Moreover, we anticipate that the intersubjective dynamics among subjects with homogeneous 

skills should be different from those in a population with substantially diverse skill levels. 

 

Impact of controversy 

 

Theory also suggests that subjectivity and intersubjectivity of perceived goodness of an 

evaluated KA and, consequently, its attainment evaluations, are influenced by the degree of 

evaluators' disagreement and manifest themselves through evaluator biases and KA controversy 

(Lauw et al. 2008). Intuitively, since higher controversy means a higher degree of divergence of 

assessments among evaluators and therefore implies a significant portion of evaluations in the 

mix that may not align with creator’s own perception of her KA goodness captures, and since 

controversy may or may not be evident to the creator, we would expect creator’s self-evaluation 

to diverge from the aggregate peer evaluation. Therefore, we hypothesize that: 

 H3: Actors, who as creators produce KAs with higher controversy levels, show higher 

miscalibration than peers, who produce KAs with lower controversy levels. 

 

Impact of bias 

 

Finally, due to variation in backgrounds, competence, skills and perspectives among evaluators, 

and because expertise of any given reviewer is limited and focused, a reviewer’s evaluations may 

systematically deviate from those of other peers. That is, the evaluator’s judgments towards KAs 

in a specific topic domain may be biased compared to the peers' aggregate assessment. Since bias 

reflects higher degrees of divergence of an individual’s evaluations from evaluations by other 

peers, we would expect that a creator, who tends to diverge from others on evaluations of others' 

KAs, will also diverge from others on evaluation of her own work. Therefore, we hypothesize 

that: 

 H4: Actors, who as evaluators show higher bias level, also show higher level of 

miscalibration than peers with lower evaluator bias levels. 

 



Research methodology 
 

Participants 

 

Participants were 435 undergraduate students at a large public university taking a sophomore 

level business course on the Principles of Management. The course was taught in spring 2013 in 

two face-to-face sections. The entire student body taking the course participated in this study. 

Students engaged in ten take-home assignments designed to improve analytical writing, critical 

thinking and information evaluation skills. The dropout rate of the students during the course 

was negligible (0.6 %), i.e., practically all students participated in the experiment throughout the 

entire course. The overall response rate was about 90 % for the case analyses submissions and 

88 % for evaluations. 3617 usable records were obtained across ten assignments. For assignment 

5, due to a university holiday, multiple students did not turn in their submissions and the peer 

review group size significantly deviated from the intended. Therefore, the data from this 

assignment was excluded from our analysis. Students completed these assignments as part of 

their course work and were not offered any monetary or social incentives. The score resulting 

from peer evaluation was included as a component of their grade. Age, gender or other 

demographic data were not collected. 

 

System design, protocol and procedure 

 

To operationalize and conduct our study, we used the online Social Learning Interaction 

Platform (SLIP) system developed by researchers at a large public university and designed to 

facilitate and monitor students' interactions in multiple online evaluations of each other’s 

submissions in randomly assigned and double-blind peer groups (Ford and Babik 2013). In the 

SLIP system, interactions between subjects are executed according to the following protocol. 

Before each assignment, subjects are randomly allocated into peer review groups of, typically, 

five or six individuals. This group size is chosen for the following reasons: on the one hand, four 

or five peer evaluations give better grounds for statistical reliability of evaluations than two or 

three; on the other hand, evaluating (and especially ranking) more than four or five submissions 

causes substantially higher cognitive load, and, hence, is less accurate (Alwin and Krosnick 

1985; Miller 1956). The group size of four to six peers is also advocated in other online peer 

review systems Cho et al. (2008); Joordens et al. 2009 (while the specific choice of the peer 

group size may affect the results of evaluation, we leave this issue outside the scope of this 

study, and for its purpose keep the group size constant). To eliminate biases due to non-

anonymity, such as “friendship” or “retaliation” grading, all reviews and evaluations are double-

blind (i.e., the identities of the reviewers are not revealed to the recipients of reviews and vice-

versa at any time). Students in each peer group work individually and independently on a single 

common task requiring two electronic submissions in the SLIP – case analysis write-up (the 

“Artifact”), and peer and self-assessment (the “Benchmarks and Critiques”). Thus, in each group, 

all students act as creators as well as mutual evaluators of each other’s KA. 

 

For the Artifact, each student writes a case analysis report (an essay up to 800 words in length) 

and submits it in the SLIP. The topic of each assignment is the same for all students. While 

topics of the cases vary across assignments, the substantive task and the evaluation rubrics of the 

assignments remain the same over all ten iterations. Thus, we can claim that the difficulty of the 



assignment remained constant. After the Artifact submissions are collected, they are distributed 

anonymously among the peers in the group for summative and formative evaluation. Every 

student in the group has to review, evaluate and critique every other peer’s Artifact, as well as 

her own Artifact. 

 

Measures 

 

Generally, summative evaluation can be conducted using either of two types of scales – ranking 

or rating. Rating refers to the comparison qualities of different objects using a common absolute, 

or cardinal, scale. Ranking, sometimes called forced-distribution rating, means comparing 

different objects directly one to another on a relative, or ordinal, scale (Schleicher et al. 2008). 

Both ranking and rating have their strengths and weaknesses, and have been used in research of 

social phenomena, including studies of peer evaluations (Krosnick 1999; Krosnick et al. 2003). 

 

The SLIP system forces students to make judgmental choices about the merits of Artifacts 

relative to each other and at the same time allows capturing peer and self-evaluation data as both 

rating and ranking simultaneously. Specifically, for peer and self-evaluation, each student 

benchmarked their peers’ Artifacts, along with their own Artifact using the SLIP Slider GUI 

control (Fig. 3). The SLIP Slider displays a continuum from “Very Poor” to “Excellent”, on 

which numbered handles corresponding to each peers’ Artifacts can be positioned based on the 

reviewer’s judgment. A rubric to assess “goodness” of analyses was provided to all participants. 

The M-handle represents the student’s self-evaluation. Importantly, students cannot overlap any 

two handles to indicate an identical “goodness” level. That is, judgments about “goodness” of 

any two Artifacts have to be at least marginally distinct. Rating is recorded as an integer between 

1 and 100 reflecting a position of the essay on the continuum from “Very poor” to “Excellent” 

independently of the quality of other Artifacts. Ranking was recorded as an integer between 1 

(the highest rank) to group size minus 1 (N-1) (the lowest) reflecting a relative position of the 

essay among other essays in the group. 

 

Several past studies demonstrated that for many tasks ranking-based evaluations are cognitively 

easier, and therefore, contain significantly less noise, than rating-based evaluations (Barnett 

2003; Carterette et al. 2008; Stewart et al. 2005). Ranking has been advocated as a more robust 

approach to evaluation of complex KA, for example, in peer reviewing and evaluation of 

conference papers (Douceur 2009) and submissions in online courses (Raman and Joachims 

2014; Shah et al. 2013). The results of our analysis are consistent with these findings. For the 

sake of space, in this paper we present operationalization and empirical analysis of ranking-based 

assessment. Peer and self-evaluation ranking data are converted into the variables of attainment, 

bias, controversy and miscalibration (self-assessment inaccuracy). Here we provide only general 

conceptual summary of these measures; Appendixes 1 and 2 present a detailed algebraic 

description of calculations based on the algorithm by Ford and Babik (2013). 

 

Attainment score is computed by inverting the ranking; i.e., the rank of 1 is converted to the 

maximum score, and the rank of (N-1) is converted to the minimum score of 1. Aggregate peer-

evaluated attainment is computed as the average of attainment scores produced by peer ranking; 

self-ranking is excluded from the computation of aggregate peer-evaluated attainment to avoid 

attainment inflation. Let us illustrate this with as simple example (Fig. 4). Consider the following 



matrix of the mutual assessment attainment scores in a group of five actors acting as creators of 

Artifacts and peer evaluators of each other’s Artifacts. Each column represents ranks given by 

each actor to peers' Artifacts, each row represents ranks received by each Artifact. The empty 

diagonal elements indicate the exclusion of self-assessment from attainment calculations. The 

higher numbers signify the higher ranking. As can be seen from Fig. 4, actor I receives the 

aggregate attainment score of 1, and the actor IV receives the aggregate attainment score of 4. 

 

Miscalibration of each Artifact is computed as the difference between the average peer-

evaluation attainment score and the self-evaluation attainment score. For illustration, consider 

the same scenario as in Fig. 4 but now with self-assessment ranks given on the matrix diagonal 

(Fig. 5). Obviously, actor V shows very low miscalibration (her peer-evaluated attainment score 

is 4, and her self-assessment attainment score is also 4, hence, miscalibration is zero); whereas, 

actor I shows very high overconfidence (her peer-evaluated attainment score is 1, and her self-

assessment attainment score is also 4, thus, miscalibration is negative 3). 

 

In this study, controversy of a particular Artifact is computed as deviation from mean (DFM); 

i.e., as the average absolute value of deviations between the attainment score given to the 

Artifact by each evaluator and the average attainment score given by the rest of evaluators 

(excluding creator’s self-evaluation). Figure 4 illustrates a scenario where each Artifact has zero 

controversy, i.e., all Artifacts were assigned the same ordinal positions (ranks) by all evaluators. 

Consider now the following scenario on Fig. 6. Artifacts III, IV, and V show very little variation 

in received ranks; the average deviation from mean of four respective attainment scores of each 

of these Artifacts is not very large, and, hence, these Artifacts can be considered non-

controversial. In contrast, peer evaluations of Artifact I are polarized (two peers gave it the 

highest rank and two other – the lowest), the average deviation from mean of four respective 

attainment scores of this Artifact is large and, therefore, it shows higher level of controversy. 

Similarly, peer evaluations of Artifact II are scattered through the entire ranking scale, hence, the 

variation of peer evaluations is large, and, therefore, this Artifact is also more controversial than 

Artifacts III, IV and V. 

 

Bias of a particular evaluator in this study is also computed as deviation from mean (DFM), i.e., 

as the average absolute value of deviations between the attainment score given to every Artifact 

by the evaluator and the average attainment score given to these Artifacts by the rest of 

evaluators (excluding creator’s self-evaluation). Figure 4 illustrates a scenario where each 

evaluator shows zero bias (with respect to other evaluators), i.e., all evaluators assigned all 

Artifacts the same ordinal positions (ranks). Consider now the following scenario on Fig. 7. 

Actors I, II, III, and IV assigned all Artifacts the same ordinal positions (adjusted for exclusion 

of their self-assessment). Thus, they are in an implicit agreement about attainment of all 

Artifacts. Actor V, however, assigned ranks to all Artifacts in the reverse order; thus, the average 

deviation of evaluations of actor V from the average of four evaluations by actors of each 

respective Artifacts is large, and, hence, actor V can be considered a highly biased evaluator 

(irrespective of the source of her bias). 

 

For this study, the version of Ford and Babik (2013)’s algorithm that computes controversy and 

bias as deviations from mean was used as a starting point of our exploration. Alternative 

approaches to estimation, such as deviations from co-evaluators have also been advocated (Lauw 



et al. 2006, 2008). The algorithm permits these alternative estimation approaches, and we 

explored them in our other studies. The algorithm also makes adjustments for the number of 

submitted Artifacts and evaluations (benchmarks); for the peer group size to make these scores 

comparable across different groups; and for the bias and controversy nonlinearity due to the use 

of ranking and the exclusion of self-assessment from the attainment computation (see 

Appendixes 1 and 2). 

 

After the completion of the assignment, attainment, controversy, bias and self-assessment 

accuracy scores, as well as other performance indicators, were presented to students in the format 

shown in Fig. 8. 

 

Table 1 and Table 2 below provide descriptions, descriptive statistics and a correlation matrix of 

the data collected. 

 

 
 



 
 

Since this study is only concerned with the aspects of peer evaluation intersubjectivity, such as 

miscalibration vis-à-vis peer evaluations, controversy and bias, and not with the “true” 

performance of creators, the data on the external/expert evaluation of submissions was not 

collected. The level of competency, i.e., attainment of creators, was only assessed through peer 

evaluation that represents participants' perception of the Artifacts' “goodness”. The following 

section describes the analysis and results of our hypotheses testing. 

 

Analyses and results 
 

The results of empirical testing of our hypotheses are summarized in Table 3. For consistency 

and completeness of analysis, we tested our hypotheses using both measurement scales – ranking 

and rating. In this paper, for the sake of space, we present the results based on ranking data only. 

While both modes consistently evidence the same effects, we find the rating data to contain more 

idiosyncratic noise than ranking data and the results derived from it much less conclusive. In the 

next four subsections, we present the results of hypotheses testing using simple inferential 

statistics. Since this method produced inconclusive results, we further show the results of 

hypothesis testing using LGM (in Subsections 4.5 and 4.6). 

 



 
 

Existence of systematic miscalibration 

 

To test for the existence of miscalibration in our sample, we compared the attainment scores 

resulting from peer and self-evaluation using the one-sample t-test (Table 4, Table 5, Fig. 9). The 

presence of a significant miscalibration, i.e., the difference between these two measures, supports 

our core hypothesis that creators' and peer evaluators' perceptions about the attainment of a KA 

generally diverge. In assignment 1, the ranking-based peer evaluation produced in a lower 

attainment score (M = 3.004, SD = 1.021) than self-assessment (M = 3.703, SD = 1.089). This 

difference was significant (in two-tail t-test, t (399) = −10.706, p = 0.000). Note that while 

attainment based on peer ranking is essentially constant slightly above 3 across all assignments 

(because forced ordinal distribution (i.e., ranking) with the median equal 3was used for peer 

evaluation), attainment based on self-ranking shows signs of steady increase from early 

assignments to the later assignments. 

 



 
 

 
 

Notably self-evaluation attainment score on average exceeds the peer-evaluation attainment 

score. Moreover, the significant overconfidence (the negative difference between peer- and self-

evaluation ranking-based attainment scores) is observed in all consecutive assignments. This 

result shows that miscalibration does occur and persists across the series of assignments, i.e., 

student systematically perceive their attainment to be higher than that of the artifacts created by 

their peers, and on average this overconfidence increases. 

 

Systematic longitudinal change in miscalibration 

 



Contrary to our expectations guided by social learning theory that in the intersubjective 

evaluations of complex-tasks KAs, where problem solving and learning are tightly intertwined 

and where perceptions of actors about the goodness of solutions may differ initially but should 

converge over multiple iterations of creator-evaluator interactions, we do not observe this pattern 

in our sample (Table 4, Fig. 9). As students continuously receive feedback from their multiple 

peers, they are expected to become more self-aware towards later assignments, and, therefore, 

their self-assessment should be closer to peer evaluation, or, in other words, miscalibration 

should diminish. Instead, the overall miscalibration increased towards the last assignment. In our 

study, miscalibration increased from assignment 1 until assignment 5, then suddenly dropped 

from 5 to 6 (which we attribute the data collection anomaly described above), and then remained 

practically flat (Fig. 9). Thus, instead of expected convergence, on aggregate, we observe overall 

widening miscalibration. This counter-theoretic finding leads us to further investigation of 

longitudinal dynamics of miscalibration (Subsection 4.5). 

 

Impact of controversy 

 

Next, we compared miscalibration for the pools of subjects with high and low controversy in 

their KAs. In the overall sample, for the ranking-based attainment scores, the students whose 

Artifacts were not very controversial (controversy below 0.33, lowest one-third) showed a 

greater miscalibration (M = −1.199, SD = 1.511) than the students whose Artifacts were very 

controversial (controversy above 0.67, highest one-third) (M = −1.010, SD = 1.180). Overall, 

this difference was significant, (t(2237) = −3.397, p = 0.000). In assignment 1, the difference 

between the two pools was significant (t(186) = −2.224, p = 0.027). This result, however, was 

not stable: in assignment 2, no evidence of significant difference was found; in assignment 3, the 

difference is significant at 5 % but not significant at 1 %; in the consecutive assignments, a 

marginally significant difference was found only in assignment 6 (p = 0.057). 

 

We also investigated whether the overconfident subjects (who have a negative peer-self 

difference (65 % of the sample) differ in controversy from the underconfident subjects (those 

with a positive peer-self difference). In assignment 1, based on ranking, the pool with negative 

peer-self differences showed the average controversy (M = 0.553, SD = 0.312) that was 

insignificantly different from the pool with positive peer-self differences (M = 0.526, SD = 

0.307) (t(377) = −0.833, p = 0.406). In other assignments, the results was the same, except 

assignment 4 (p = 0.01), 5 (p = 0.000), 7 (p = 0.01), 8 (p = 0.000), 10 (p = 0.002). 

 

Impact of bias 

 

Further, we compared miscalibration for the pools of subjects with high and low evaluator bias. 

In the overall sample, for the ranking-based attainment scores, the students whose evaluator 

judgments were unbiased vis-à-vis other reviewers (bias below 0.33) showed a smaller 

miscalibration (M = −0.962, SD = 1.334) than the students whose judgments were more biased 

(bias above 0.67) (M = −1.080, SD = 1.333). This difference was significant, (t(2314) = 2.130, p 

= 0.033). In the individual assignments, however, the difference between the two pools was 

significant only in assignments 8 (t(224) = 2.097, p = 0.037) and 9 (t(219) = 1.978, p = 0.049). 

 



Further, we examined whether the overconfident subjects differ in bias from the underconfident 

subjects. In assignment 1, based on ranking, the pool with negative peer-self differences showed 

the average controversy (M = 0.508, SD = 0.300) that was not significantly different from the 

pool with positive peer-self differences (M = 0.541, SD = 0.295) (t (285) = −1.080, p = 0.281). 

In other assignments, the results was the same, except assignment 5 (p = 0.000), 8 (p = 0.002), 

marginally in 9 (p = 0.084), and 10 (p = 0.024). 

 

In summary, we see that simple inferential statistics and t-tests do not afford conclusive results in 

our hypotheses testing. Therefore, we continue our investigation with LGM, the method that 

allows us to look inside the population and differentiate actors with dissimilar traits and 

behaviors. 

 

Latent longitudinal trajectory dynamics in miscalibration, peer evaluation, and self-assessment 

 

Given the fact that at the aggregate sample level we did not observe theoretically plausible 

decrease in miscalibration that would indicate social learning and due to inconclusive results 

with regard to controversy and bias, we conjectured that our sample includes subjects drawn 

from sub-populations with specific and dissimilar behaviors. These different behaviors cannot be 

revealed with conventional statistical techniques, such as t-test. LGM is a nascent technique that 

allows deeper investigation of whether there are latent classes of subjects that demonstrate 

different behaviors of miscalibration, as well as peer and self-assessment with LGM following 

the group-based trajectory modeling proposed by Jones, Nagin, and Roeder (2001). LGM models 

relationships within a single variable as well as between variables by discovering longitudinal 

patterns characteristic of latent sub-populations Curran et al. (2004); Duncan 1999; Zheng et al. 

2014). The existence of such latent classes can provide a basis for explaining our observations. 

Following the discovery of such classes with LGM, to further understand the relationships 

between different aspects of intersubjective evaluations, we cross-tabulated frequencies of 

subjects in different latent classes and controversy and bias categories and applied chi-squared 

test to check whether actors in different latent classes of miscalibration demonstrate different 

propensities in attainment, self-assessment, controversy and bias. 

 

LGM represents systematic change (e.g., growth) of repeated measures of a dependent variable 

as a function of time and other variables and allows investigating inter-individual variability in 

this change. In LGM, a construct that affects longitudinal dynamics is modeled as a latent 

random variable with individual unobservable realizations in a sample. Therefore, in our study, 

with this method, we hypothesize the existence of unobserved latent classes in the subject 

population that have distinct temporal trajectories of peer and self-perceptions regarding 

attainment. The SAS TRAJ procedure was used to fit a series of mixture models to the data 

(Jones et al. 2001). The Bayesian information criterion (BIC) was used to identify the number of 

classes in the model (Schwarz 1978). Specifically, 2ΔBIC, twice the difference between the BIC 

for the full model (larger number of classes) and that for the reduced model (smaller number of 

classes), is interpreted as the degree of evidence for the full model. This interpretation is justified 

because 2ΔBIC is approximately equal to 2lnB10, where B10 is the Bayes factor (Kass and 

Raftery 1995). A value of 2lnB10 greater than 10 is interpreted as very strong evidence against 

the reduced model, which can be replaced by a more complex model, suggesting the presence of 



an additional latent class (Kass and Wasserman 1995). Table 6 below shows the refinement 

process through which we select the most reasonable number of latent classes. 

 

 
 

For miscalibration, the best fitting model shows three latent classes and a significant cubic trend. 

Around 64 % of students showed a slight overconfidence (a small negative difference that 

increased first and then remained stable) (the “0” class); 28 % of students showed substantial 

overconfidence (the “-” class with a larger negative difference and the pattern similar to that of 

the “0” class). About 8 % showed slight and growing underconfidence (the “+”class; i.e. these 

subjects' self-perception is below peer perception and this gap widens as the progress over 

assignments (Fig. 10). 

 

To understand the nature of the three latent classes discovered in miscalibration, we also looked 

tested for possible latent classes in attainment based on peer evaluation and self-assessment. For 

peer evaluation, the best fitting model had three latent classes: around 59 % of students receiving 

stable median ranking over multiple assignments (Medium), 37 % starting high and continuing to 

improve (High), and 4 % starting low and declining over time (Low), as shown in Fig. 11. 

 

For self-assessment, the best fitting model had four latent classes and a significant cubic trend: 

around 46 % of students self-assessing at about median score with the tendency to higher self-

assessment over time (Low); 25 % starting above median but below high, increasing toward the 

middle of the course and then dropping (MediumL); 16 % starting just above median and 

monotonically increasing towards the end (MediamH); 13 % starting high, and remaining flat at 

near ceiling (High), as shown in Fig. 12. 

 

To investigate whether a significant relationship exists between the latent classes of 

miscalibration and peer-evaluated attainment, we cross-tabulated the miscalibration classes 

against the peer-evaluated attainment classes and conducted the chi-square tests (Table 7). 



 
 

The differences in the distribution of miscalibration across the latent peer-perceived attainment 

classes in this sample are statistically significant (Pearson chi-square (df = 4, N = 3617) = 

566.08, p-value =0.000. Interestingly, the dominant majority of underconfident creators (i.e. with 

positive miscalibration) come from the high peer-perceived attainment class, whereas the 

creators who produced low-attainment essays (as perceived by the peers) mostly show large 

overconfidence (negative miscalibration). This finding is consistent with the theory of unskilled-

and-unaware problem that suggests that the unskilled tend to overestimate the quality of their 

work, whereas the skilled tend to underestimate the quality of their work. 

 

At the same time, the majority of creators who produced medium attainment Artifacts (the 

largest class) tend to show near-zero (or slightly negative) miscalibration, suggesting that they 

are the most accurate self-evaluators (35 % of the overall sample, 60 % of the medium 

attainment class). Yet, 37 % of the creators with medium attainment Artifacts (21 % of the 

overall sample) showed large overconfidence. These findings indicate that among creators with a 

medium skill level, while the majority are accurate evaluators, the inaccurate evaluators (the 

unskilled-and-unaware) constitute a significant minority. 

 

In summary, by applying LGM we discovered that miscalibration behavior is not uniform. 

Contrary to the social learning theory, despite multiple iterative creator-evaluator feedback 

interactions, actors' self-assessment did not converge to peer evaluation, indicating that their self-

awareness takes its own path. This finding is, nevertheless, consistent with the predictions of the 

unskilled-and-unaware problem theory that the “unskilled” are “doomed” to remain unaware. 

Moreover, looking inside miscalibration, we find that that it is driven by even more complex 

interactions in peer-evaluated and self-evaluated attainment. 

 

Effects of controversy and bias on miscalibration in the latent growth model 

 

LGM revealed no significant latent trajectories in either controversy or bias. In addition, cross-

tabulation and chi-square testing showed that various levels of controversy or bias are associated 

with particular latent classes of miscalibration. Specifically, in each of the three miscalibration 



classes, subjects with high, low and near-zero controversy are also distributed practically 

uniformly, further supporting the lack of stable specific patterns of controversy in our sample 

(Table 8). 

 

 
 

Similarly, in each of the three miscalibration classes, subjects with high, low and near-zero bias 

are distributed practically uniformly, further supporting the lack of stable specific patterns of bias 

in our sample (Table 9). 

 

 
 

Thus, our hypotheses that controversy and bias are intrinsically related to miscalibration are not 

supported. 

 

Discussion and conclusion 
 

Discussion 



Our analyses revealed some interesting and counter-theoretic results that have implications for 

researchers, educators and managers. Using simple statistics and t-tests, we found that in 

concordance with theory, miscalibration between creator’s self-perception and peer evaluators' 

perceptions regarding KA goodness does exist. Moreover, in the overall sample, we observed 

significant changes in miscalibration over multiple iterations or creator-evaluators interactions. 

Social learning and norming theories suggests that perceptions of knowledge community 

members regarding qualities of the KA will settle, calibrate and converge towards each other 

over time (Gersick 1991). However, our results showed that contrary to our theory-based 

expectations, miscalibration does not reduce over multiple iterations as subjects receive peer 

feedback on their performance. Instead, this miscalibration, prevailingly overconfidence, in the 

overall sample increased over time. 

 

Intrigued by our counter-theoretic findings, we undertook deeper investigation of evaluation 

behavior beyond traditional t-tests and analysis of variances, and employed LGM to scrutinize 

the homogeneity of the data and to understand the temporal changes (Bentein et al. 2005; Leite 

and Stapleton 2011). This scrupulous analysis of data over multiple iterations of mutual peer and 

self-evaluations between subjects in random anonymous peer groups revealed latent classes of 

community members involved in KA creation and evaluation that can be characterized by 

specific patterns of miscalibration, peer-evaluated and self-evaluated attainment. That is, the 

results showed that the creation attainment and self-evaluation behaviors are not homogenous 

across subjects. Specifically, we observed significantly distinct patterns in peer evaluation, self-

evaluation and miscalibration among several latent classes. 

 

The miscalibration data showed that the predominant majority of subjects tend to overestimated 

their performance in comparison with peer-evaluated attainment. Moreover, approximately one 

in every three overconfident subjects showed significantly increasing overconfidence over 

multiple iterations. A relative minority of subjects showed underconfidence by self-assessing 

their KAs lower comparing with peer-evaluated attainment. Furthermore, contrary to theory, 

underconfidence also increased over multiple iterations. Thus, contrary to theoretic predictions, 

our findings showed that miscalibration does not attenuate over multiple iterations but instead 

increases regardless of whether subjects are initially overconfident or underconfident, and 

regardless of the initial competency level measured by peer-evaluated attainment. Further, we 

discovered that overconfident subjects tend to become more overconfident, while underconfident 

subjects become more underconfident. This adversely affects development of shared 

understanding in the knowledge community. Moreover, miscalibration increases contrary to the 

expectation that repeated mutual evaluation interactions between actors working on the same 

problem and feedback provided by peer evaluators to creators reduce miscalibration through 

social learning. 

 

In peer evaluation, subjects whose Artifacts were evaluated higher by peers in early iterations, 

tend to show even higher peer-evaluated attainment in the later iterations, thus demonstrating 

learning as perceived by peer evaluators. In contrast, subjects whose Artifacts received lower 

peer evaluations in earlier iterations, also receive distinctly lower evaluations in subsequent 

iterations, thus demonstrating regress in their performance. Latent-class analysis of self-

assessment also revealed several interesting behavioral patterns; in particular, just under half of 



all subjects tend to rank themselves around or slightly above median quite persistently over 

multiple iterations. 

 

Our results also indicated that different subjects miscalibrate in different ways. In concordance 

with the unskilled-and-unaware theory, subjects whose work is evaluated highly by their peers 

tend to showed underconfidence by self-assessing their own work lower; in contrast, subjects 

whose work is peer-evaluated low demonstrated overconfidence in their work by self-assessing 

their own work higher than peers. Most strongly overconfident students come from the latent 

class of medium attainment performers – roughly, two out of three overconfident students are 

students given medium scores by their peers. 

 

While there are theoretic reasons to assert that controversy and bias may be important 

intersubjectivity factors associated with miscalibration, we could not find any significant effect 

of controversy and bias on miscalibration with the models that we tested. In our study, we used 

the average deviation from mean approach to capture the phenomena of bias and controversy. 

Alternative approaches could be applied, such as the average deviation from co-evaluators, that 

have been argued to have advantages over the deviation from mean approach (Lauw et al. 2006, 

2008). The lack of the evidence of the association of miscalibration with bias and controversy 

may be either due to the model (mis)specification or the choice of measures. To keep the present 

study parsimonious, we deliberately applied the approach described by Lauw et al. (2006) as 

naïve, that uses the deviation from mean approach and ignores the mutual dependency of bias 

and controversy in capturing these phenomena. This may have resulted in a weaker signal of bias 

or controversy in our data, but helps establish the base line for our future studies of the 

phenomenon. It informs and inspires an interesting avenue for our future research to employ 

more advanced models for studying bias and controversy, such as the reinforcement-based model 

Lauw et al. (2008) or non-linear models Roos et al. (2012), to investigate the impact of bias and 

controversy on miscalibration. The lack of evidence that latent classes of controversy and bias 

exist is indicative of the conflict between theories of intersubjectivity and the unskilled-and-

unaware problem, which explains that in peer-based knowledge creation and refinement systems 

where objective external criteria of goodness are not applicable, we cannot evaluate one subject’s 

competency unless we establish competencies of other subjects. This is a circular problem that is 

difficult to solve endogenously. 

 

We also found that the use of forced-distribution ordinal scale (ranking) to measure attainment is 

more robust with respect to the overall level of competency of the actors in a given population 

and less noisy with respect to individual idiosyncratic biases of evaluators than continuous 

cardinal scale (rating). In our analyses, the use of ranking reveals sharper differences in 

attainment and miscalibration across latent classes than rating. 

 

In summary, our results show, in agreement with theory and findings of earlier studies that a 

significant miscalibration (i.e., a gap between peer and self-evaluation) does exist and that this 

gap changes over multiple mutual review iterations in re-mixed creator-evaluator groups. 

Contrary to the theory and our expectations, miscalibration does not decrease over time but, 

instead, it increases. On average, miscalibration increases regardless of the goodness of Artifacts 

and competency of creators, as well as its initial magnitude and direction. This implies that 

miscalibration is endogenous in nature (Meyer 1995). By observing the change of miscalibration 



over time, we removed the effect of initial conditions (and thus, fixing some of the weaknesses 

of the quasi-experimental design). This allows us to focus on changes endogenous or systemic to 

the creator-evaluator social system. We observe that miscalibration is amplified over time as the 

signal of self-perception. This is also consistent with the unskilled-and-unaware problem view 

(the unskilled underestimate how bad they are, while the skilled underestimate how good they 

are) and contrasts with the social system view (in the social system where the abilities of actors 

vary, high-ability actors and low-ability actors act differently, but over time converge in their 

abilities and behaviors). 

 

Contributions 

 

This study adds to the existing literature in IT-enabled knowledge creation and learning social 

systems by further exploring the phenomenon of miscalibration and relating it to other factors of 

creation and evaluation performance and intersubjectivity, such as peer-evaluated and self-

assessed attainment, controversy and bias. Specifically, we investigated the longitudinal 

dynamics of miscalibration over multiple anonymous creator-evaluator interactions. 

 

We make theoretical contribution by developing hypotheses regarding the miscalibration of self-

assessment with respect to peer evaluation in creator-evaluator interactions, its change over 

multiple iterations, and the effects of the KA controversy and evaluator bias on this gap. Our 

methodological contribution is in developing a method for measuring the KA controversy and 

evaluator bias in mutual creator-evaluator social interactions based on forced-distribution ordinal 

scale (ranking). We make empirical contribution by testing these hypotheses with a large sample 

of student case analyses subjected to multiple peer evaluation and the creators' self- assessment. 

We designed an information system to test the hypotheses about socio-technical interactions 

occurring in epistemic, practice and other open knowledge creation communities. Importantly, to 

test our hypotheses, we applied LGM method rarely used in the information systems research. 

Our study is among the very few to study intersubjectivity in knowledge creation and evaluation 

on a longitudinal basis. Our thorough literature review did not reveal any studies that identified 

distinct classes of the knowledge community actors that exhibited distinct behaviors regarding 

peer and self-evaluations of KAs. The applications of the LGM methodology produced results 

consistent with the unskilled-and-unaware problem theory. 

 

Limitations and directions for future research 

 

We would like to acknowledge the following limitations of our study, which also grant 

promising future research opportunities. First, we used a sample of undergraduate students in one 

university; therefore, any generalizations to other populations should be made with caution. We 

intend to replicate our results with multiple samples of undergraduate and graduate students in 

various disciplines from different universities, as well as in non-academic settings (we have 

access to these data through the SLIP). Second, we observed an idiosyncratic anomaly in the 

sample in one of the iterations. While we removed this instance from the analysis and assumed 

that this shock had no significant effects on the findings of the study, we did not test whether this 

is true; for the future studies we will use samples with no such anomalies. Third, some important 

components of intersubjective interaction between creators and evaluators, such as the intra-

group inter-observer reliability, were not considered in this study. The SLIP computes this 



metric, and we intend to incorporate it in our empirical model in the future studies. Fourth, in this 

study, we calculated controversy and bias using the naïve approach that Lauw et al. (2008) 

criticized for ignoring the fact that bias and controversy mutually affect each other. We agree 

with this criticism and in the future studies intend to modify our system design to account for this 

reciprocal effect. Simultaneous estimation of controversy and bias as suggested by Lauw et al. 

(2008) and application the cultural consensus theory (Anders and Batchelder 2012; Batchelder 

and Anders 2012) are possible solutions to the endogeneity problem in studies evaluation of 

complex-task KA where objective criteria of goodness are not applicable. 

 

Implications 

 

Our findings have important implications for a number of domains. In knowledge production, 

refinement and management, especially in the business community, identifying and 

differentiating the value of contributions made by actors with varying abilities and skills are 

highly important. We suggest a set of metrics and a methodology for identifying competent 

contributions and evaluations and tracing them over time. Specifically, these metrics and 

methodology can be used in design of peer-based knowledge creation and refinement 

information systems. These metrics and methodology can also be applied in social-media-based 

open knowledge and recommender systems that people rely on to guide their daily decisions. For 

learning, alleviating miscalibration has effect on self-awareness and self-efficacy. Educational 

systems for peer review and peer learning should be designed to help actors with varying 

abilities recognize their strength and weaknesses. For decision making and decision support 

systems, recognizing controversial and biased contributors and identifying the nature and sources 

of their controversy and bias helps prevent undesired behaviors such as “group-think”. 

 

Appendix 1: Measurement Operationalization (Single-Group Ranking Model) 

 

Suppose, each peer group consists of N subjects that are indexed i = {1, 2, …, N}. Each 

subject irank-orders other (N-1) subjects' Artifacts so that the “best” is ranked 1 and the “worst” 

is ranked (N-1), that is, here only subject i’s rank-ordering of his peers' Artifacts is considered. 

The matrix of mutual evaluations of Artifacts produced by the group is 

 

 
 

where ranks given are in rows, ranks received are in columns, a ij denotes a rank given by a 

subject i to a subject j for the Artifact (or, symmetrically, received by a subject j from a 

subject i). Note that a i  = [a i1  a i2 … a ij … a iN ] is a row vector of ranks given by a subject i to 

all his peers such that 

 



 
 

where E j is the indicator function such that 

 

 
 

Note that the row vector e = [E 1  E 2 … E N ] is the vector of the indicator function’s values. 

These conditions constitute the data integrity constraints. The first condition means that a 

subject i’s assessment of his own Submission is not included in this matrix. The second condition 

means that each peer’s Artifact, without exceptions, needs to be rank-ordered. The third 

condition means that rank-ordering is enforced, that is, no two peers' Artifacts may have the 

same rank. Note that relaxing this assumption allows each Artifact to be rated rather than ranked. 

The forth condition means that a missing Artifact is given N points. 

 

Suppose C > 1 is the maximum possible attainment score for an Artifact; i.e., the attainment 

score of C is given to an Artifact that received the rank of 1, and the attainment score of 1 is 

given to an Artifact that received the rank of (N-1). A failure to submit an Artifact results in the 

attainment score of 0. Then the following transforms the rank a ij given by a subject i to 

subject j into the attainment score c ji received by subject j from subject i: 

 

 
 

Or 

 

 
 

For example, suppose N = 6 subjects and C = 5 points. Then, the transformation rule is: 

 



 
 

The matrix of the individual Artifact attainment scores for the entire group is (scores received are 

in rows, scores given are in columns) 

 

 
 

where scores received are in rows, scores given are in columns, 

 

 
 

A subject i’s attainment score for the Artifact is the average attainment score received from all 

his peers, who submitted their evaluations, ideally (N-1). Hence, the column vector of attainment 

scores for Artifacts is 

 

 
 

where the row vector f = [F 1  F 2 … F N ] is the vector of values of the indicator function F j such 

that 

 

 



Hence, the attainment score for the Artifact of subject i is 

 

 
 

where  is the row vector of Artifact attainment scores received by a subject i. 

 

Subjects are also required to self-evaluate, that is, rank-order their own Artifacts among those of 

other peers. However, their self-ranking is not included in the calculation of attainment of their 

own Artifact. The difference between attainment measures derived from self-assessment and 

peer assessment results is computed as follows. Suppose α i is a rank given by a subject i to his 

own Artifact, such that α i coincides with one of the values a i . Then, self-evaluation score for 

Artifact attainment is defined as 

 

 
 

and miscalibration, i.e., the difference between the attainment score produced by self-assessment 

and the attainment score produced by peer assessment) for the Artifact of a student i is defined as 

 

 
 

The assessor error (ER) measures a given subject’s divergence from assessments of each peer’s 

Artifact by the rest of the peer group. Subject i’s assessor error is defined as 

 

 
 

where |. | denotes the absolute value operator, and ø denotes an undefined (missing) value 

(assessor error cannot be calculated if assessment was not submitted). The column vector of 

assessor error measures is 

 

 
 

where |. | denotes the matrix of absolute values of the element-wise differences of the two square 

matrices (not the determinant of the matrix). In this vector, all elements for which F i is zero are 

undefined (missing values). 

 

The assessee error (EE) is a measure of divergence among peers in assessing a given subject’s 

Artifact. Subject i’s assesse error is defined as 



 
The column vector of assesse error measures is 

 

 
 

where Q N×N is a square matrix with zeros on the diagonal and ones off diagonal, the operator “°” 

denotes the Hadamard product of matrices (entry-wise product operator). In this vector, all 

elements for which E i is zero are undefined (missing values). 

 

The average group assessor error (AGER) is defined as 

 
The average group assessee error (AGEE) is defined as 

 
It can be shown that corresponding AGER and AGEE are equal. 

 

The intra-group inter-observer reliability (IGIOR) for any given group is defined as 

 
 

where δ−δ− is the AGER of the given group, 

 

δ−conδ−con is the AGER of the group with the perfect convergence among peers’ evaluations of 

each other’s Artifacts on the ordinal-scale (relative ranks), 

 

δ−divδ−div is the AGER of the group with the perfect divergence among peers’ evaluations of 

each other’s Artifacts on the ordinal-scale (relative ranks). 

 

The IGIOR can be interpreted as how far the given peer group as a whole is from the perfect 

convergence on ranking each other’s Artifact. For a group with the perfect convergence, the 

IGIOR is equal 1; for a group with the perfect divergence, the IGIOR is equal 0. Note that since 

it can be shown that corresponding AGER and AGEE are equal, it does not matter whether either 

AGER or AGEE are used to compute the IGIOR. 

 

Bias (normalized ER) is the ER adjusted for the chosen values of C so that it ranges between 0 

and 1. Bias can be interpreted as a measure of a given subject’s divergence from the rest of the 

peer group in assessing each peer’s Artifact irrespective of the overall rank of the subject’s 

Artifact and the maximum possible attainment score. 

 

A given subject i’s bias is defined as 



 
 

where ri is the rank of the subject i’s Artifact among the rest of the Artifacts of the peer group 

based on the Artifact’s attainment score (in other words, ri corresponding to the larges value in 

the vector c−c− is equal to 1 and ri corresponding to the smallest value in the vector c−c− is 

equal to N); 

 

δcon(ri) is the ER corresponding to the rank ri in the peer groups with the perfect convergence 

(IGIOR y = 1); 

 

δdiv is the ER in the peer groups with the perfect divergence (IGIOR y = 0). In a peer groups with 

the perfect divergence, all peers have the same ER because no one is better in assessing others 

than the rest of the group. Computations of δcon(ri) and δdiv are explained in the appendix 2. 

 

Controversy (normalized EE) is the EE adjusted for the chosen values of C so that it ranges 

between 0 and 1. Controversy can be interpreted as a measure of divergence among peers in 

assessment of a given subject’s Artifact irrespective of the overall ranks their Artifacts and the 

maximum possible attainment score for the Artifact. 

 

Controversy of an Artifact produced by a subject i is defined as 

 

 
 

Bias and controversy are recorded in vectors δˆ and γˆ respectively. Normalization is necessary 

because while ER and EE are the same for all subjects in the peer group with the perfect 

divergence (because no one is better in assessing Artifacts than the rest of the group), in the peer 

group with the perfect convergence ER and EE have non-zero values and are non-linearly 

dependent on the rank r i of the subject i’s Artifact among the Artifacts of the peer group based 

on the attainment score. In other words, in a peer group with non-equal attainment scores (that is 

when at least some convergence exists among peer on the quality of each submission and 

submissions can be ranked based on the score), each rank position is characterized by a 

systematic non-zero ER and EE just because of its place in the relative ranking of peers' 

Artifacts. This is due to the fact that subjects’ own self-evaluations are not included in the 

computations of the attainment scores. A more detailed explanation of this phenomenon is given 

below. 

 

This single-groups ranking model can be easily extended to multiple groups. 

 

Appendix 2: Correcting Nonlinearity in Ranking (Computing AGER and AGEE for Peer 

Groups with Perfect Convergence and Perfect Divergence) 

 

To determine IGIOR, bias and controversy, AGER and AGEE for the extreme special cases of 

the perfect convergence and the perfect divergence of a peer group need to be computed. In 



addition, ER for each relative rank position in a peer group needs to be computed for the case of 

perfect convergence. 

 

First, let us consider the case of the perfect intra-group inter-observer convergence, that is, the 

summative assessment result for which IGIOR is equal 1. Suppose the row vector s 1 × N  = [1, 2, 

…, N] is the vector of latent ranks of potential attainment (goodness) of a given set of Artifacts. 

That is, we assume that each Artifact is of such goodness and each subject has such evaluation 

skills that when asked to rank-order these Artifacts, the subjects come to the perfect convergence 

on ranking of each Artifact (we also assume that all subjects submit their Artifacts). Under these 

assumptions, the latent ranks should be equal to the ranks generated by the system, that 

is s i  = ri for all i. However, since each Artifact’s attainment is computed using ranks received 

from peers (ranging in {1, 2, …, N-1}) and excluding subject’s self-ranking of his own Artifact, 

despite the perfect convergence each subject will make an assessor error (ER) of a various 

degree. For example, in a peer group of six subjects, subject 1 will not be able to give his own 

Artifact the rank of 1 but would have to give it to the Artifact of subject 2. Similarly, subjects 2, 

3, 4, and 5 will have to give the rank of 5 to the Artifact of subject 6. Consequently, each Artifact 

will also bear an assessee error (EE) of varying degree. 

 

The matrix A con of ranks given in a peer group with the perfect convergence is obtained from the 

vector s by the following transformation 

 

 
 

where I N×N is the identity matrix, 1 1×N is a vector of ones, 

 

H 1 N×N is a square shift matrix with all elements equal zero except for elements equal one just 

above the main diagonal, 

 

H 2 N×N is a square shift matrix with all elements equal zero except for elements equal one just 

below the main diagonal, 

 

T 1 N×N is a square matrix with all elements in the upper triangle above the main diagonal equal 

ones and all other equal zero, 

 

T 2 N×N is a square matrix with all elements in the lower triangle below the main diagonal equal 

ones and all other equal zero, the operator “°” denotes the Hadamard product of matrices (entry-

wise product operator). 

 

For the special case of N = 6, the matrix A con looks as follows: 

 



 
 

Using the rule for transforming ranks into scores the matrix of scores C con is obtained as 

 

 
such that 

 

 
 

For the case of N = 6 and C = 5, the matrix C con looks as follows: 

 

 
 

The column vector of attainment scores for the peer group in the perfect convergence is 

 

 
 

The column vector of ER is 

 



 
 

where |. | denotes the matrix of absolute values of the element-wise differences of the two square 

matrices (not the determinant of the matrix). 

 

The column vector of EE is 

 

 
 

where Q N×N is a square matrix with zeros on the diagonal and ones off diagonal, the operator “°” 

denotes the Hadamard product of matrices (entry-wise product operator). 

 

The following table summarizes the attainment, assessor error (ER) and assessee errors (EE) 

scores for the case of the peer group with the perfect convergence where N = 6 and C = 5: 

 

 
 

The following diagram graphically represents attainment, ER and EE scores for the extreme 

special case of the peer group with the perfect convergence where N = 6 and C = 5: 

 



 
Figure. 13. Non-linear Error Behavior in the Perfect Convergence Group (N = 6, C = 5) 

 

Thus, we obtained ER and EE scores for the extreme special case of the peer group with the 

perfect convergence. 

 

The AGER for the peer groups with the perfect convergence is 

 

 
 

The AGEE for the peer groups with the perfect convergence is 

 

 
For the peer group with the perfect convergence with N = 6 and C = 5, the 

AGER δ−conδ−conand the AGEE γ−conγ−con are both equal 4/3. 

 

Thus, we obtained values of AGER and AGEE for each relative rank for the extreme case of the 

perfect convergence. 

 

Now, let us consider the case of the perfect intra-group inter-observer divergence, that is, the 

result of mutual summative peer assessment, for which IGIOR is equal zero. In this case, the row 

vector s 1×N  = [1, 2, …, N] does not reflect latent ranks of quality of a given set of Artifacts. That 

is, we assume that each Artifact is of such goodness, and each subject has such evaluation skills 

that when asked to rank-order these Artifacts the subjects are not be able to converge on 

thegoodness of Artifacts and their ranking, resulting in the perfect divergence on ranking of each 

Artifact (we also again assume that all subjects submit the deliverable). In other words, the 

latentgoodness of all Artifacts and evaluation skills of all subjects are assumed to be absolutely 



equivalent/homogenous. Under these assumptions, each subject’s Artifact receives from his 

peers the entire range of possible ranks, and no one subject is better in assessing his peers than 

the rest of the group. The matrix A div of ranks given in a peer group with the perfect divergence, 

therefore, is a Latin square – an N × N matrix filled with integers from {1, 2, …, N}, each 

occurring exactly once in each row and exactly once in each column. One of the ways such 

matrix can be constructed is by the Cyclic Method (Bailey, 2008): Place s in reverse order 

(or (N+1)1−s(N+1)1−s) in the top row of A div ; in the second row, shift all the integers to the 

right one place, moving the last symbol to the front; continue in this fashion, shifting each row 

one place to the right of the previous row. 

 

For the special case of N = 6, the matrix A div looks as follows: 

 

 
 

Note that for the purpose of obtaining ER and EE scores for the case of the perfect divergence 

the method of obtaining A div matrix does not matter as long as it is a Latin square with the 

diagonal elements equal N. 

 

Similarly to the case of the perfect convergence, using the rule for transforming ranks into scores 

the matrix of attainment scores C div is obtained as 

 

 
such that 

 

 
 

For the case of N = 6 and C = 5, the matrix C div looks as follows: 

 



 
 

The column vector of attainment scores for the group in the perfect convergence is 

 

 
 

The column vector of assessor errors is 

 

 
 

The column vector of assessee errors is 

 

 
 

The following table summarizes attainment, bias and controversy scores for the case of the peer 

group with the perfect divergence where N = 6 and C = 5: 

 

 
 



Thus, we obtained values of ER and EE for the extreme special case of the peer group with the 

perfect divergence. Note that all subjects' submissions in such group are characterized by equal 

attainment, ER and EE scores. 

 

The AGER for the peer group with the perfect divergence is 

 

 
 

The AGEE for the peer group with the perfect divergence is 

 

 
 

For the peer group with the perfect divergence where N = 6 and C = 5, AGER δ−divδ−divand 

AGEE γ−divγ−divare both equal 6. 

 

Thus, we obtained values of AGER and AGEE for the extreme special case of the perfect 

divergence. The IGIOR for the case of the perfect convergence ycon=1 and for the case of the 

perfect divergence ydiv=0. 
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