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ABSTRACT 

 

MATHEMATICAL MODELING OF GLIOBLASTOMA TUMOR GROWTH UNDER THE 

INFLUENCE OF CHEMOTHERAPY WITH FLUOROPYRIMIDINE POLYMER F10 

 

Mitra Shabanisamghabady, M.S.T. 

Western Carolina University (April 2016) 

Director: Dr. Martin L. Tanaka 

Glioblastoma multiforme is the most common and most malignant primary tumor of the brain. 

Optimal therapy results in survival time of 15 months for newly diagnosed cancer and 5-7 months 

for recurrent disease. Malignant glioblastoma patients demonstrate limited response to 

conventional therapies that include surgery, radiation, and chemotherapy. New methods of therapy 

are urgently needed. Mathematical models are often used to understand and describe the behavior 

of brain tumors. These models can both increase our understanding of tumor growth, as well as 

aid in the development and preliminary testing of treatment options. In this research five classical 

cancer growth models, in form of ordinary differential equations (ODEs) were used. These models 

were exponential, logistic, generalized logistic, Gompertz and Von Bertalanffy growth models. 

Using data from an in-vivo experiment on glioblastoma, and a nonlinear least-squares solver in 

MATLAB (lsqcurvefit), the characteristic parameters of each model were found and then the 

models were compared to find the best fit. In the second part of the research, using Gompertz 

model, compartment modeling, in-vivo experiment data and lsqcurvefit function in MATLAB, the 

effect of chemotherapy with fluoropyrimidine polymer F10, was modeled. This model can later be 

used for preliminary testing and treatment options for glioblastomas.   
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CHAPTER 1: INTRODUCTION 

 

The number of deaths resulting from cancer every year is second only to cardiovascular 

disease. [1] Primary brain tumors are among the most aggressive and lethal forms of cancer [2] and 

gliomas are the most prevalent form of these. Gliomas are an important form of brain tumor with 

high mortality rate. [3] Gliomas are derived from transformed glial cells and account for 30-40% 

of all primary intracranial neoplasms. [4]  The most common and lethal are glioblastoma 

multiforme (GBM), a World Health Organization grade IV astrocytoma. [5]   

             Patients diagnosed with glioblastoma have a median survival time of approximately one 

year despite use of a variety of medical interventions. [6] One reason for this poor prognosis is 

that GBMs are highly invasive and generate hair-like projections of migratory cells that invade 

adjacent healthy brain tissue. [3] Glioblastoma is the most common malignant brain tumor and 

one of the deadliest human malignancies. Optimal therapy results in survival times of 15 months 

for newly diagnosed cancer and 5–7 months for recurrent disease. New therapeutic modalities 

are urgently needed. [7]  

       Mathematical models are useful for studying tumors, because these allow for more logical 

experimental design and provide valuable insight into the underlying mechanisms of their growth 

and development.[8] Mathematical models that describe the tumor growth can both increase our 

understanding of tumor development, as well as aid in the development and preliminary testing 

of treatment options. [9] 

        In this research five classical mathematical growth models have been used to model the 

tumor growth. These models are the Exponential, Logistic, Generalized logistic, Gompertz and 

Von Bertalanffy models. The solutions for these equations were found either analytically or 
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numerically. Using the least square curve fitting function (lsqcurvefit) in MATLAB, the models 

were fitted to the experimental data. The experimental data used for the optimization, came from 

an in-vivo experiment on nude mice at Wake Forest University. [7] From the optimization the 

best model among this five models was identified. 

In the second part of the research the best model found in the previous part was more 

developed to model the effect of chemotherapy on tumor growth. The data from this part also 

came from an in-vivo experiment on nude mice using F10 as the chemotherapy.  Three different 

doses were evaluated and model parameters were obtained. [7]  

1.1 Key terms   

Apoptosis: A pattern of cell death affecting single cells, marked by shrinkage of the cell, 

condensation of chromatin, and fragmentation of the cell into membrane-bound bodies that are 

eliminated by phagocytosis. Often used synonymously with programmed cell death.[10] 

Astrocytoma: Astrocytomas are tumors that arise from astrocytes—star-shaped cells that make up 

the “glue-like” or supportive tissue of the brain.[11]  

Chromosome: Chromosomes are thread-like structures located inside the nucleus of animal and 

plant cells. Each chromosome is made of protein and a single molecule of deoxyribonucleic acid 

(DNA).[12] 

DNA: Deoxyribonucleic acid (DNA) is a long molecule that contains our unique genetic code. 

Like a recipe book it holds the instructions for making all the proteins in our bodies.[13] 

Gene: A gene is the basic physical and functional unit of heredity. Genes, which are made up of 

DNA, act as instructions to make molecules called proteins.[14] 

In vitro: within a glass; observable in a test tube; in an artificial environment.[10] 

In vivo: within the living body.[10] 
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Nude mouse: Inbred strain of laboratory mouse which is hairless and has no thymic tissue. 

Because it has no source of T lymphocytes, it suffers from a defect in cell-mediated immunity and 

is highly susceptible to infections. This trait is utilized for immunological studies. Called also 

athymic mouse.[15] 

Orthotopic: Occurring at the normal place.[10] 

Proliferation: The reproduction or multiplication of similar forms, especially of cells.[10] 

Tumor: neoplasm; a new growth of tissue in which cell multiplication is uncontrolled and 

progressive.[15] 

Xenograft: A graft of tissue transplanted between animals of different species.[15] 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Definition of cancer  

Cancer is the name given to a collection of related diseases. In all types of cancer, some 

of the body’s cells begin to divide without stopping and spread into surrounding tissues.[16] 

Cancer is the uncontrolled growth of abnormal cells in the body.[17] Cancer can start almost 

anywhere in the human body, which is made up of trillions of cells.[16]  

Normally, human cells grow and divide to form new cells as the body needs them. When 

cells grow old or become damaged, they die, and new cells take their place.[16] Tumors are 

created by cells that have lost the ability to assemble and create tissues of normal form and 

function. The disease is generally named by the type of malfunctioning cells. Some tumors grow 

fast at the beginning and then stop. These are called benign tumors.  In contrast, cancerous 

tumors do not stop growing and are called malignant tumors.[18] 

         Cancer cells differ from normal cells in many ways that allow them to grow out of control 

and become invasive.[16] Some cancerous cells have the ability to proliferate indefinitely 

(immortalization)[16, 18].  They may also they have the ability to grow without attachment to solid 

substrate (anchorage independence).[18] In addition, cancer cells may be able to ignore signals 

that normally tell cells to stop dividing or signal to begin the process of  apoptosis (programmed 

cell death) which the body uses to eliminate unneeded cells. Cancer cells may be able to 

influence the normal cells, molecules, and blood vessels that surround and feed a tumor—an area 

known as the microenvironment. For instance, cancer cells can induce nearby normal cells to 

form blood vessels (angiogenesis) that supply tumors with oxygen and nutrients, which the 

tumor needs to grow. These blood vessels also remove waste products from tumors.[16] 
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2.2 How cancer arises 

Somatic mutations are alterations in DNA that occur after conception.  These can occur 

in any of the cells of the body except the germ cells (sperm and egg) and therefore are not passed 

on to children. These alterations can, but do not always, cause cancer.[19] Mutant cells can turn 

into cancerous cells.  In a mutant cells the loss of entire chromosomes, presence of extra copies 

of other chromosomes or the fusion of the arm of one chromosome with part of another can be 

seen.[18] 

The genetic changes that contribute to cancer tend to affect three main types of genes, 

proto-oncogenes, tumor suppressor genes, and DNA repair genes. These changes are sometimes 

called “drivers” of cancer. Proto-oncogenes are involved in normal cell growth and division. 

However, when these genes are altered in certain ways or are more active than normal, they may 

become cancer-causing genes (oncogenes), allowing cells to grow and survive when they should 

not. Tumor suppressor genes are also involved in controlling cell growth and division. Cells with 

certain alterations in tumor suppressor genes may divide in an uncontrolled manner. DNA repair 

genes are responsible for in fixing damaged DNA. Cells with mutations in these genes tend to 

result in additional mutations in other genes. Together, these mutations may cause cells to 

become cancerous.[16] 

The cause of cancer has not been found for all cancers but for some cancers heredity and 

environment play a role.[18] Cancer causing environmental exposures include substances, such as 

the chemicals in tobacco smoke, and radiation, such as ultraviolet rays from the sun.[16] 
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2.3 Glioblastoma 

Glioblastomas are tumors that arise from astrocytes, the star-shaped cells that make up 

the “glue-like” supportive tissue of the brain (Figure 2.1).  These tumors are usually highly 

malignant (cancerous) because the cells reproduce quickly and are supported by a large network 

of blood vessels. Glioblastomas are generally found in the cerebral hemispheres of the brain, but 

can be found anywhere in the brain or spinal cord. This type of tumor represents about 17% of 

all primary brain tumors. Primary tumors starts at the brain itself. They increase in frequency 

with age, and affect more men than women. Only three percent of childhood brain tumors are 

glioblastomas.[20]  

 

Figure 2.1 Astrocytes [11] 

 

Glioblastoma is the most common malignant brain tumor and one of the deadliest human 

malignancies. [7,21,22] Optimal therapy results in survival times of 15 months for newly diagnosed 

cancer and 5–7 months for recurrent disease. New therapeutic modalities are urgently needed.[7] 

These tumors are “graded” on a scale from I to IV based on how normal or abnormal the 

cells look. There are low-grade astrocytomas and high-grade astrocytomas.  Low-grade 
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astrocytomas are usually localized and grow slowly. High-grade astrocytomas grow at a rapid 

pace and require a different course of treatment.  Most astrocytoma tumors in children are low 

grade.  In adults, the majority are high grade.[23] Glioblastoma multiforme (GBM) is a World 

Health Organization grade IV astrocytoma.[5] 

2.4 Cancer treatment  

Treatment options depend on the type of cancer, its stage, if the cancer has spread, and 

your general health. The goal of treatment is to kill as many cancerous cells while minimizing 

damage to normal cells nearby.[17]  The most common treatments for cancer are surgery, 

chemotherapy, and radiation.[17, 24] Surgery can be used to take out the cancer. The surgeon might 

also take out some or all of the body part the cancer affects. Chemotherapy is the use of drugs to 

kill cancer cells or slow their growth. Some chemo can be given by IV (into a vein through a 

needle), and others are in the form of a pill you swallow. Because chemotherapeutic drugs travel 

to nearly all parts of the body, they are useful for cancer that has spread. Radiation is also used to 

kill or slow the growth of cancer cells. Its effect is localized and it can be used alone or with 

surgery and/or chemotherapy.[24] 

2.5 Cancer treatment with F10  

Many different drugs are used for chemotherapy and new drugs are being developed. One 

group of substances used to treat cancer are flouropyrimidine and its polymers. A 

flouropyrimidine is a type of antimetabolite.[25] Antimetabolites are drugs that interfere with one 

or more enzymes or their reactions that are necessary for DNA synthesis. They affect DNA 

synthesis by acting as a substitute to the actual metabolites that would be used in normal 

metabolism.[26] 
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One of the polymers of flouropyrimidine is F10. F10 is a polymer of 5-fluoro-2′-

deoxyuridine-5′-O-monophosphate (FdUMP), the thymidylate synthase (TS) inhibitory 

metabolite of 5-fluorouracil (5-FU). Thymidylate synthase is the enzyme responsible for the 

conversion by methylation of deoxyuridine monophosphate, dUMP, to thymidine 

monophosphate. Thymidine monophosphase is a deoxyribose called either TMP or dTMP which 

after conversion into thymidine triphosphate, TTP, is incorporated in DNA.[27] F10 is a novel 

anti-tumor agent with minimal systemic toxicity in vivo and strong cytotoxicity towards 

glioblastoma (GBM) cells in vitro. In addition, because F10 also displays strong efficacy for 

GBM treatment with minimal toxicity in nude mice, it a promising drug-candidate for treating 

GBM in human patients.[7] 

Figure 2.2 Chemical Structure of F10 [7] 

2.6 Mathematical models  

Mathematical modeling is a powerful tool for analyzing biological problems that allows 

one to develop and test hypotheses which can lead to a better understanding of the biological 

process. The essentials of a realistic and useful model are 

(i) a sound understanding and appreciation of the biological problem 
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(ii) a realistic mathematical representation of the important biological phenomena 

(iii) useful solutions, preferably quantitative, to what is crucially important 

(iv) a biological interpretation of the mathematical results in terms of insights and 

predictions. The mathematics is dictated by the biology and not vice-versa.[28, 29] 

Mathematical models are often used to understand and predict the behavior of brain 

tumors.[3] Mathematical models that describe the tumor development and growth can both increase 

our understanding of tumor behavior, as well as aid in the development and preliminary testing of 

treatment options. These models can provide insight into the vulnerability of different types of 

tumors to different anti-angiogenic drugs, suggesting avenues for the development of new 

treatment regimes. They also provide a quantitative framework to determine tumor prognosis.[8]  

Figure 2.3 Mathematical Modeling Steps 
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2.7 Mathematical models for tumor growth 

Over the last few decades increasingly complex mathematical models for cancerous 

growth have been developed.[9] There are different groups of models used for modeling tumor 

growth and each of them has advantages and disadvantages. 

Discrete models  

Discrete models are able to incorporate parameters and biological rules discovered from 

cellular research. For a 10 μm glioblastoma cell diameter, cell populations can reach 200 billion 

by the time the body of a tumor reaches 3 cm. This is the diameter in which GBMs are often first 

detected.[28] Discrete modeling of 200 billion individual units is beyond the capability of most 

computers. Therefore these models can only be used for extremely small developing tumors.[3] 

Continuum model 

Continuum models consider tumors as spatial distributions of cell densities. As a result, 

the computational requirements are substantially reduced allowing tumors of clinically 

significant size to be modeled.[30, 31] However, since continuum models do not consider cells 

individually, they lack the capability to simulate cell-to-cell interactions.[3] 

Compartment model 

In a compartment model, cells are grouped based on phenotype and level of 

differentiation. Such models are effective at describing how the sub-populations of various types 

of cells grow. These models are computationally efficient and can handle many different types of 

cells.[3] 

2.8 Classical tumor growth models 

For many decades mathematical models have been used to model tumor growth. In this 

part five classical mathematical models in form of ordinary differential equations have been 
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introduced. These models are the Exponential, Logistic, Generalized logistic, Gompertz and Von 

Bertalanffy models. 

 Exponential growth model 

The exponential growth model is the simplest model that can be used to model tumor 

growth. This model describes growth of a population which its growth is proportional to its size. 

The ordinary differential equation for this model is, 

           
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑎𝑥(𝑡), (2.1) 

where 𝑥 is the population size, 𝑡 is time and 𝑎 is the growth rate. 

The exponential model has been used to model benign tumors and malignant tumors in 

their early stages. This model has been used first in the research of tumor growth modeling by 

Collins et al.[32] and Kusama et al.[33]. Later the general assumption that tumor cells grow 

exponentially has been used in other cancer modeling research.[34, 35] The model kinetics agree 

with the unlimited proliferative activity of tumor cells recorded in early, mainly in vitro, 

studies.[36]  

Logistic, generalized logistic and Gompertz growth model 

Logistic growth describes the growth of a population where its population cannot exceed 

a certain amount because of the environment limitations. The ordinary differential equation for 

this model is, 

          
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑎𝑥(𝑡) (1 −

𝑥(𝑡)

𝐾
), (2.2) 

where, 𝑥 is the population size, 𝑡 is time, 𝑎 is the growth rate and K is the population maximum 

possible size due to the environment limits.  
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The generalized logistic function or curve, also known as Richards' curve is an extension 

of the logistic or sigmoid functions that allows for more flexible S-shaped curves. The ordinary 

differential equation for this model is, 

          
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑎𝑥(𝑡)(1 − (

𝑥(𝑡)

𝐾
)𝜈),  (2.3) 

where, 𝑥 is the population size, 𝑡 is time, 𝑎 is the growth rate, K is the population maximum 

possible size due to the environment limits also known as the carrying capacity and ν affects how 

smooth the curve is approaching the carrying capacity. The logistic model has been used to 

describe tumor growth [37] while others have used the generalized logistic model [38]. 

When a different parameterization is employed, the generalized logistic model converges 

when 𝜐 → 0, to the Gompertz model, [35] define by  

           
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑎𝑒−𝛽𝑡𝑥(𝑡),  (2.4) 

where, 𝑥 is the population size, 𝑡 is time, 𝑎 is the initial proliferation rate and 𝛽 is the rate 

exponential decay of this proliferation rate. This model was first used in modeling tumor growth 

in [39] and later in [40].  

Von Bertalanffy 

The Von Bertalanffy model proposed to derive general laws of organic growth. Stating 

that the net growth rate should result from the balance of synthesis and destruction.[35] The 

ordinary differential equation for this model is, 

           
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑎𝑥(𝑡)𝛾 − 𝑏𝑥(𝑡),  (2.5) 

where, 𝑥 is the population size, 𝑡 is time, 𝑎 is the growth rate, and b is the destruction rate.  

https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Sigmoid_function
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CHAPTER 3: MODELING THE NATURAL GLIOBLASTOMA GROWTH 

 

3.1 In-vivo mice experiment 

The data used for this research was obtained from an experiment performed by Dr. 

Waldemar Debinski, M.D., Ph.D. and his research group at the Brain Tumor Center of 

Excellence, Wake Forest University School of Medicine. In this experiment, the cytotoxicity of 

F10 towards glioblastoma cells was investigated and the anti-tumor activity of locally 

administered F10 towards an orthotopic xenograft model of glioblastoma was evaluated [7]. The 

data used in this research is from the orthotopic xenograft model of GBM part of the experiment. 

The animal experiments were performed in accordance with protocols approved by Wake 

Forest School of Medicine Animal Care and Use Committee in accordance with National 

Institutes of Health guidelines. G48a cells were injected into the deep white matter of the 

posterior thalamus of nude mice (7-week old).  A total volume of 5 μL was injected over a 5 min 

period. There were four groups of animals in four different cages. In each cage there were 5 

mice. The first group of mice did not go under any kind of treatment. But the mice in the 3 other 

cages were treated with F10 at concentrations (80, 120 and 160 mg/kg) for a duration of 7 days 

with the first treatment beginning 21 days after the tumor cell implantation.  

The tumor growth was monitored by evaluating bioluminescence using IVIS imaging 

system three times after the tumor cell implantation. Bioluminescence imaging uses the same 

enzyme and substrate that fireflies use to generate light to track of cells within small animals. 

The enzyme, luciferase, can be inserted into the genome of cancer cells. These cells are then 

implanted within mice, and a tail vein (intra-peritoneal) injection of luciferin delivers the 

substrate to the cells.  The combination of luciferin and luciferase causes light to be emitted, this 
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light can then be captured using a sensitive camera.  Measurement are taken with the mouse 

supported on a heated stage in an enclosed, light-tight box.[41]  

 

Figure 3.1 The IVIS® Imaging Chamber [42] 

 

A part of the IVIS imaging result can be seen in Figure 3.2. Vehicle treated shown in the figure 

is the same as no treatment. For more information on this in-vivo mice experiment refer to [7].   
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Figure 3.2 Luciferase Signal from F10- and Vehicle-Treated Nude Mice at 80 and 120 mg/kg Doses [7] 

 

3.2 Extraction and analysis of raw data  

This research was performed in collaboration with Dr. Debinski’s research group at 

Wake Forest University, we had access to the data that had not yet been published. Data from 

cage 1 is presented in tables 3.1. Mice in cage 1 were vehicle treated 21 days after the tumor 

implantation till day 28. Vehicle treatment doesn’t affect the tumor cells and it is the same as no 

treatment.  

Table 3.1 In-Vivo Mice Experiment Data from Cage One 

 

 

 

 

 

ROI Total Flux [p/s] Date and Time Time Point 

ROI 1 8.33E+05 3/26/2011 9:09 Week 4 

ROI 2 4.22E+06 3/26/2011 9:09 Week 4 

ROI 3 1.84E+07 3/26/2011 9:09 Week 4 

ROI 4 1.38E+06 3/26/2011 9:09 Week 4 

ROI 5 3.02E+06 3/26/2011 9:09 Week 4 

ROI 1 6.27E+06 4/1/2011 18:54 Week 5 

ROI 2 7.38E+07 4/1/2011 18:54 Week 5 

ROI 3 1.13E+06 4/1/2011 18:54 Week 5 

ROI 1 2.50E+07 4/9/2011 16:04 Week 6 

ROI 2 3.93E+08 4/9/2011 16:04 Week 6 

ROI 3 6.67E+06 4/9/2011 16:04 Week 6 
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Initially there were five mice in cage 1. ROI (region of interest) refers to each mice in the 

imaging chamber. Imaging was performed on each mouse 3 times after the tumor implantation, at 

weeks 4, 5 and 6. However, mice 4 and 5 were sacrificed after week 4, so there is no imaging data 

for weeks 5 and 6 for these mice. The data are shown as the total flux in photons per second.  

First, the data points in photons per second versus time in day were plotted in to get a 

general idea of how the photon emission changed over time. Table 3.2 and figure 3.3 show the 

data from mouse 1 in cage 1: 

Table 3.2 In-Vivo Mice Experiment Data for Cage One Mouse One 

 

 

Figure 3.3 Total Flux vs. Time for Cage One Mouse One 

 

ROI Total Flux [p/s] Date and Time Group Time Point 

ROI 1 8.33E+05 3/26/2011 9:09 Cage 1 Week 4 

ROI 1 6.27E+06 4/1/2011 18:54 Cage 1 Week 5 

ROI 1 2.50E+07 4/9/2011 16:04 Cage 1 Week 6 
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It can be seen from the table and the graph that the photon emission and therefore the volume of 

the tumor increased as time passed.  In addition, the rate of growth was also observed to increase.  

Analysis of mouse 2 data yielded similar results (Table 3.3 & Figure 3.4). 

 

Table 3.3 In-Vivo Mice Experiment Data from Cage One Mouse Two 

  

Figure 3.4 Total Flux vs. Time from Cage One Mouse Two 

 

Table 3.4 and figure 3.5 show the data from mouse 3 in cage 1: 

Table 3.4 In-Vivo Mice Experiment Data from Cage One Mouse Three 

ROI Total Flux [p/s] Date and Time Group Time Point 

ROI 2 4.22E+06 3/26/2011 9:09 Cage 1 Week 4 

ROI 2 7.38E+07 4/1/2011 18:54 Cage 1 Week 5 

ROI 2 3.93E+08 4/9/2011 16:04 Cage 1 Week 6 

ROI Total Flux [p/s] Date and Time Group Time Point 

ROI 3 1.84E+07 3/26/2011 9:09 Cage 1 Week 4 

ROI 3 1.13E+06 4/1/2011 18:54 Cage 1 Week 5 

ROI 3 6.67E+06 4/9/2011 16:04 Cage 1 Week 6 
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Figure 3.5 Total Flux vs. Time from Cage One Mouse Three 

 

As shown in Figure 3.5, tumor growth in mouse 3 from cage 1 is not normal. Mouse 3 

from cage 1 was not experiencing any form of treatment after the tumor implantation so the 

photon emission was expected to increase. Photon emission and therefore the volume of the 

tumor for mouse 3 decreased from day 21 to day 27 without any clear reason and therefore data 

from mouse 3 was eliminated from the data analysis. 

Because mice 4 and 5 from cage 1 were sacrifices there was insufficient data to track 

tumor growth for these mice. Table 3.5 and figure 3.6 show the data from cage 1 mice 1, 2 and 4 

averaged: 
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Table 3.5 In-Vivo Mice Experiment Averaged Data from Cage One 

 

 

 

 

Figure 3.6 Total Flux vs. Time from Cage One (Averaged) 

 

The averaged data also shows that the photon emission and therefore the tumor volume 

increased at an increasing rate of growth. 

For the experiment conducted by Dr. Debinski et.al knowing the change in photon emission 

flux was sufficient.  However, for this research the goal was to model the tumor volume change 

and therefore the photon emission data were converted to approximate the volume of the tumor in 

units of 𝑚𝑚3 . The photon emission measures luminescence which is an indirect and not 

completely precise measure of tumor dimensions. However, because these tumors are intracranial, 

Averaged Total Flux 

[p/s] 

Date and Time Group Time Point 

2.36E+06 3/26/2011 9:09 Cage 1 Week 4 

4.00E+07 4/1/2011 18:54 Cage 1 Week 5 

2.09E+08 4/9/2011 16:04 Cage 1 Week 6 
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they cannot be measured directly. In order to quantitate the signal, each cell line must be imaged 

to determine the number of photons/cell. This measurement must be done for each cell line because 

the signal is dependent on the amount of the genes transfected and expressed. This is done by 

preparing a serial dilution of the cell line. Luciferin is added and the cells are imaged to generate 

a standard curve. Unfortunately, this has not been done for the cell line used in this experiment. 

Photon flux from the tumor is proportional to the number of live cells expressing luciferase 

so bioluminescence correlates directly with tumor size. [43] 

            P =  𝐾 × 𝑁, 

where P is the photon emission per second, N is the number of cells and K is a constant. 

It was assumed in this research that the volume of the tumor is the sum of the volumes of each cell 

in the tumor body. Therefore it can be concluded that photon emission is also proportional to the 

volume of the tumor. 

            P =  𝐾′ × 𝑉, 

where P is the photon emission per second, V is the tumor volume and 𝐾′ is a constant. 𝑘′ was 

approximately found to be 1.44 × 106  
𝑃ℎ𝑜𝑡𝑜𝑛

𝑠⁄

𝑚𝑚3  using the Signal vs. Tumor Volume plot shown in 

figure 3.7. 
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Figure 3.7 Monitoring of intracranial growth of glioblastoma in a mouse [44] 

 

The averaged total flux data from table 3.5 was converted to volume in 𝑚𝑚3  using 𝐾′  and 

represented in table 3.6 and figure 3.8. 

 

Table 3.6 In-Vivo Mice Experiment Averaged Data from Cage One in 𝑚𝑚3 

 

 

Averaged volume 

[mm^3] 

Date and Time Group Time Point 

1.633846154 3/26/2011 9:09 Cage 1 Week 4 

27.69230769 4/1/2011 18:54 Cage 1 Week 5 

144.6923077 4/9/2011 16:04 Cage 1 Week 6 
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Figure 3.8 Volume vs. Time from Cage One (Averaged) 

By the same procedure explained for the data in cage 1, the data for cage 2 were averaged 

and changed to the tumor volume. The data from cage 2 is presented in tables 3.7.  

 

Table 3.7 In-Vivo Mice Experiment Data from Cage Two 

 

 

 

 

 

 

ROI Total Flux [p/s] Date and Time Time Point 

ROI 1 4.84E+05 3/26/2011 9:14 Week 4 

ROI 2 1.34E+06 3/26/2011 9:14 Week 4 

ROI 3 1.96E+06 3/26/2011 9:14 Week 4 

ROI 4 2.36E+06 3/26/2011 9:14 Week 4 

ROI 5 4.43E+06 3/26/2011 9:14 Week 4 

ROI 1 1.13E+06 4/1/2011 18:58 Week 5 

ROI 2 2.26E+06 4/1/2011 18:58 Week 5 

ROI 3 2.73E+06 4/1/2011 18:58 Week 5 

ROI 4 1.46E+06 4/1/2011 18:58 Week 5 

ROI 5 2.33E+06 4/1/2011 18:58 Week 5 

ROI 1 1.03E+05 4/9/2011 16:08 Week 6 

ROI 2 2.14E+05 4/9/2011 16:08 Week 6 

ROI 3 1.20E+07 4/9/2011 16:08 Week 6 

ROI 4 1.40E+06 4/9/2011 16:08 Week 6 



23 

 

Table 3.8 and figure 3.9 show the data from mouse 1 in cage 2: 

Table 3.8 In-Vivo Mice Experiment Data from Cage Two Mouse One 

 

 

Figure 3.9 Total Flux vs. Time from Cage Two Mouse One 

 

As seen in table 3.8 and figure 3.9, the photon emission decreased which shows that the 

chemotherapy drug caused the volume of the tumor to decrease. 

Table 3.9 and figure 3.10 show the data from mouse 2 in cage 2: 

 

 

 

ROI Total Flux [p/s] Date and Time Group Time Point 

ROI 1 4.84E+05 3/26/2011 9:14 Cage 2 Week 4 

ROI 1 1.13E+06 4/1/2011 18:58 Cage 2 Week 5 

ROI 1 1.03E+05 4/9/2011 16:08 Cage 2 Week 6 
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Table 3.9 In-vivo Mice Experiment Data from Cage Two Mouse Two 

 

Figure 3.10 Total Flux vs. Time from Cage Two Mouse Two 

 

As seen in table 3.9 and figure 3.10, the photon emission decreased which shows that the 

chemotherapy drug caused the volume of the tumor to decrease. This is similar to the results from 

IVIS imaging of mouse 1 from cage 2. 

Table 3.10 and figure 3.11 show the data from mouse 3 in cage 2: 

Table 3.10 In-Vivo Mice Experiment Data from Cage Two Mouse Three 

ROI Total Flux [p/s] Date and Time Group Time Point 

ROI 2 1.34E+06 3/26/2011 9:14 Cage 2 Week 4 

ROI 2 2.26E+06 4/1/2011 18:58 Cage 2 Week 5 

ROI 2 2.14E+05 4/9/2011 16:08 Cage 2 Week 6 

ROI Total Flux [p/s] Date and Time Group Time Point 

ROI 3 1.96E+06 3/26/2011 9:14 Cage 2 Week 4 

ROI 3 2.73E+06 4/1/2011 18:58 Cage 2 Week 5 

ROI 3 1.20E+07 4/9/2011 16:08 Cage 2 Week 6 
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Figure 3.11 Total Flux vs. Time from Cage Two Mouse Three 

 

It can be seen from Figure 3.11 that results from mouse 3 does not show the effect of 

chemotherapy as expected. The photon emission and therefore the volume of the tumor increase 

despite the chemotherapy. Because of that the data from mouse 3 was not use further in this 

research. 

Table 3.11 and figure 3.12 show the data from mouse 4 in cage 2: 

Table 3.11 In-Vivo Mice Experiment Data from Cage Two Mouse Four 

 

ROI Total Flux [p/s] Date and Time Group Time Point 

ROI 4 2.36E+06 3/26/2011 9:14 Cage 2 Week 4 

ROI 4 1.46E+06 4/1/2011 18:58 Cage 2 Week 5 

ROI 4 1.40E+06 4/9/2011 16:08 Cage 2 Week 6 
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Figure 3.12 Total Flux vs. Time from Cage Two Mouse Four 

 

Table 3.11 and Figure 3.12 show that because of the chemotherapy, photon emission 

decreased which shows that the volume of the tumor decreased. The decrease that can be seen in 

mouse 4 is different than mice 1 and 2 as the decrease can be seen between days 21 and 27 and it 

slowed after day 27. Mouse 5 was sacrificed in this experiment and there is no data available for 

it for week 6 IVIS imaging. For modeling the effect of chemotherapy the photon emission data 

was averaged to be later use in the data fitting process.Table 4.6 and figure 4.5 show the data from 

cage 1 mice 1, 2, 4 and 4 averaged: 

 

Table 3.12 In-Vivo Mice Experiment Averaged Data from Cage Two 

ROI Total Flux [p/s] Date and Time Group Time Point 

ROI 4 9.13E+05 3/26/2011 9:14 Cage 2 Week 4 

ROI 4 1.7E+06 4/1/2011 18:58 Cage 2 Week 5 

ROI 4 1.58E+05 4/9/2011 16:08 Cage 2 Week 6 
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Figure 3.13 Total Flux vs. Time from Cage Two (Averaged) 

 

The photon emission data were changed to approximate volume of the tumor with the same 

method explained. The averaged emission data from table 3.12 changed to volume in 𝑚𝑚3 and 

represented in table 3.13 and figure 3.14. 

 

Table 3.13 In-Vivo Mice Experiment Averaged Data from Cage Two in 𝑚𝑚3 

 

 

Tumor Volume 

[mm^3] 

Date and Time Group Time Point 

6.032 3/26/2011 9:14 Cage 2 Week 4 

11.232 4/1/2011 18:58 Cage 2 Week 5 

1.044 4/9/2011 16:08 Cage 2 Week 6 
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Figure 3.14 Volume vs. Time from Cage Two (Averaged) 

 

3.3 Modeling the natural growth of glioblastomas 

There are many mathematical models describing growth. In this part five most common 

models that were used in this research are presented in form of ordinary differential equations. 

The behavior of each model is explained in more detail. The behavior of each mathematical 

model is controlled by the model parameters. Model parameters were found for each type of 

model that minimized the squared error between the modal and the data found experimentally.  

Optimized model parameters were found by the lsqcurvefit function within MATLAB’s 

optimization toolbox. The function lsqcurvit, solves nonlinear curve-fitting (data fitting) 

problems using least-squares method. The function starts at an initial value x0 and finds 

coefficients x to best fit the nonlinear function to the data. More information about this function 

can be found in MATLAB help.[45] 

As an example, the code for the modeling and optimization of the exponential model is 

presented here. The first part of the code shows the experimental data and this experimental data 



29 

 

stored as vectors.  Data in vector format will be used later for fitting the models to the 

experimental data and plotting the optimized models. 

            % Experimental data 

            initial_volume=0.26; %mm3 

            tumor_volume_21=1.633846154; %mm3 averaged from cage 1 

            tumor_volume_27=27.69230769; %mm3 averaged from cage 1 

            tumor_volume_35=144.6923077; %mm3 averaged from cage 1 

            % Variables 

            xdata=[1 21 27 35]; 

            ydata=[0.26 1.633846154 27.69230769 144.6923077]; 

            t=linspace(1,35); 

 

In the next part of the code, the model was defined and lsqcurvefit function was used to 

optimize the model and fit the model to experimental data. For using lsqcurvefit function, an 

initial value should be given to the function for unknown parameters. This initial value should be 

reasonable or the optimization method will not work properly. The initial values for the unknown 

parameters was found from different sources which are presented in table B1 in Appendix B. 

Then the optimized model and experimental data were plotted.  

            % Exponential Model 

  

            a0=0.1; 

            N1=@(x,xdata)(initial_volume*(exp(x*xdata))); 

            [x,resnorm] = lsqcurvefit(N1,a0,xdata,ydata) 

            N1_Opt=@(t)(initial_volume*(exp(0.1803*t))); 

            figure(1) 

            plot(t,N1_Opt(t)); 

            hold on 

            plot(1,initial_volume,'*',21,tumor_volume_21,'*',…             

            …27,tumor_volume_27,'*',35,tumor_volume_35,'*'); 

            title('Tumor Volume Growth (Exponential model)') 

            ylabel('Tumor volume (mm3)') 

            xlabel('Time (days)') 

            legend('Exponential','experimental data'); 

            hold on 

  

The complete code for all the models can be found in Appendix C. 
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After the models were optimized and the characteristic parameters obtained for each 

model, the models were compared to determine which model fit the experimental data best.  For 

that, the residual norm given by the lsqcurvefit function in MATLAB was used. The model with 

the least residual norm, has the least error and is the best model for the experimental data. 

In the following sections five classical models are used to model the tumor growth 

behavior.  Optimized model parameters are found for each using the methods described above. 

3.3.1 Exponential 

The ordinary differential equation for this model is,  

𝑑𝑉(𝑡)

𝑑𝑡
= 𝑎𝑉(𝑡), (3.1) 

where 𝑉 is the tumor volume, 𝑡 is time and 𝑎 is the growth rate. 

Equation 3.1 can be solved as follows: 

            
𝑑𝑉(𝑡)

𝑑𝑡
= 𝑎𝑉(𝑡), 

Separating the time and volume variables yields, 

            
𝑑𝑉(𝑡)

𝑉(𝑡)
= 𝑎𝑑𝑡, 

Integrating from both side, 

          ∫
𝑑𝑉(𝑡)

𝑉(𝑡)
= ∫ 𝑎𝑑𝑡,  

          ln 𝑉(𝑡) = 𝑎𝑡 + 𝑐,  

Taking exponential from both sides gives, 
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          𝑉(𝑡) = 𝑒𝑎𝑡+𝑐 ,  

          𝑉(𝑡) = 𝑒𝑎𝑡𝑒𝑐 ,  

To find what 𝑒𝑐 is, t is put equal to zero then,   

           𝑉(0) = 𝑒𝑐 ,  

Substituting 𝑉(0) instead of 𝑒𝑐,   

          𝑉(𝑡) = 𝑉(0)𝑒𝑎𝑡, (3.2)  

In the exponential growth model the tumor growth goes to infinity as time goes to infinity.  

          lim
𝑡→∞

𝑉(0)𝑒𝑎𝑡 = ∞  

Defining the exponential function in MATLAB and using lsqcurvefit function from optimization 

toolbox the unknown parameter was found. 

          
𝑑𝑉(𝑡)

𝑑𝑡
= 𝑎𝑉(𝑡),  

          𝑉(𝑡) = 𝑉(0)𝑒𝑎𝑡,  

where 𝑉(𝑡)  is the tumor volume and 𝑉(0) = 0.26 𝑚𝑚3 . In the exponential model, 𝑎  is the 

proliferation rate of the tumor cells and it was found to be 𝑎=0.1803 day-1. 

Then the model and the experimental data were plotted as seen in figure 3.15.  
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Figure 3.15 Tumor Volume vs. Time (Exponential Model) 

3.3.2 Logistic 

The ordinary differential equation for this model is, 

          
𝑑𝑉(𝑡)

𝑑𝑡
= 𝑎𝑉(𝑡) (1 −

𝑉(𝑡)

𝐾
), (3.3) 

where, 𝑉 is the tumor volume, 𝑡 is time, 𝑎 is the proliferation rate and K is the carrying capacity.  

Equation 3.3 can be solved as follow: 

           
𝑑𝑉(𝑡)

𝑑𝑡
= 𝑎𝑉(𝑡)(1 −

𝑉(𝑡)

𝐾
), 

Separating the time and volume variables yields, 

            
𝑑𝑉(𝑡)

𝑉(𝑡)(1−
𝑉(𝑡)

𝐾
)

= 𝑎𝑑𝑡, 
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Rewriting 1 in the denominator as 
𝐾

𝐾
, 

          
𝑑𝑉(𝑡)

𝑉(𝑡)(
𝐾−𝑉(𝑡)

𝐾
)

= 𝑎𝑑𝑡, 

Integrating from both sides yields to, 

          ∫
𝐾𝑑𝑉(𝑡)

𝑉(𝑡)(𝐾−𝑉(𝑡))
= ∫ 𝑎𝑑𝑡,  

          ∫[
1

𝑉(𝑡)
+

1

𝐾−𝑉(𝑡)
]𝑑𝑉(𝑡) = ∫ 𝑎𝑑𝑡,  

          ∫
1

𝑉(𝑡)
𝑑𝑉(𝑡) + ∫

1

𝐾−𝑉(𝑡)
𝑑𝑉(𝑡) = ∫ 𝑎𝑑𝑡,  

          𝑙𝑛𝑉(𝑡) − 𝑙𝑛 (𝐾 − 𝑉(𝑡)) = 𝑎𝑡 + 𝑐,  

          𝑙𝑛
𝑉(𝑡)

𝐾−𝑉(𝑡)
= 𝑎𝑡 + 𝑐,  

Taking exponential from both sides gives, 

         
𝑉(𝑡)

𝐾−𝑉(𝑡)
= 𝑒𝑎𝑡+𝑐 ,  

           
𝑉(𝑡)

𝐾−𝑉(𝑡)
= 𝑒𝑎𝑡𝑒𝑐 ,  

Rearranging the equation to isolate 𝑉(𝑡) and finding C by putting t=0, yield to, 

           𝑉(𝑡) = (𝐾 − 𝑉(𝑡))𝑒𝑎𝑡𝐶,  [𝐶 =
𝑉(0)

𝐾−𝑉(0)
] 

           𝑉(𝑡) =
𝐾𝑉(0)

𝑉(0)+(𝐾−𝑉(0))𝑒−𝑎𝑡
 , (3.4) 
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The logistic growth model is more realistic in the latter stages of growth than the 

exponential growth model because it takes in to accounts the limitations. Logistic model has a 

sigmoid shape, i.e. an increasing curve with one inflection point that asymptotically converges to 

a maximal volume, the carrying capacity. [7] In the logistic the tumor volume goes to the carrying 

capacity as time goes to infinity.  

           lim
𝑡→∞

𝐾𝑉(0)

𝑉(0)+(𝐾−𝑉(0))𝑒−𝑎𝑡
= 𝐾  

The logistic function was modeled in MATLAB.  The optimized model parameters were 

found using lsqcurvefit function in the optimization toolbox. K which is the carrying capacity 

was set to be 420 𝑚𝑚3 which is the volume of a 7 week old nude mouse brain. 

           
𝑑𝑉(𝑡)

𝑑𝑡
= 𝑎𝑉(𝑡) (1 −

𝑉(𝑡)

𝐾
),   

           𝑉(𝑡) =
𝐾𝑉(0)

𝑉(0)+(𝐾−𝑉(0))𝑒−𝑎𝑡
,  

where 𝑉(𝑡) is the tumor volume and 𝑉(0) = 0.26 𝑚𝑚3. In the logistic model 𝑎 is the 

proliferation rate of the tumor cells and it was found to be 𝑎=0.1911 day-1.  

The model and the experimental data were plotted (Figure 3.16).  
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Figure 3.16 Tumor Volume vs. Time (Logistic Model) 

3.3.3 Generalized logistic or Richards 

The ordinary differential equation for this model is, 

          
𝑑𝑉(𝑡)

𝑑𝑡
= 𝑎𝑉(𝑡)(1 − (

𝑉(𝑡)

𝐾
)𝜈), (3.5) 

where, 𝑉 is the tumor volume, 𝑡 is time, 𝑎 is the growth rate, K is the tumor volume maximum 

possible size considering the environment limits also known as the carrying capacity and ν 

affects how smooth the curve is approaching the carrying capacity.  

Equation 3.5 can be solved as follow: 

          
𝑑𝑉(𝑡)

𝑑𝑡
= 𝑎𝑉(𝑡)(1 − (

𝑉(𝑡)

𝐾
)𝜈), 

Separating the time and volume variables yields, 
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𝑑𝑉(𝑡)

𝑉(𝑡)(1−(
𝑉(𝑡)

𝐾
)𝜈)

= 𝑎𝑑𝑡, 

Rewriting 1 in the denominator as 
𝐾𝜈

𝐾𝜈
, 

          
𝑑𝑉(𝑡)

𝑉(𝑡)(
𝐾𝜈−𝑉(𝑡)

𝐾𝜈 )
= 𝑎𝑑𝑡, 

Integrating from both sides yields, 

          ∫
𝐾𝜈𝑑𝑉(𝑡)

𝑉(𝑡)(𝐾𝜈−𝑉(𝑡))
= ∫ 𝑎𝑑𝑡,  

          ∫[
1

𝑉(𝑡)
+

1

𝐾𝜈−𝑉(𝑡)
]𝑑𝑉(𝑡) = ∫ 𝑎𝑑𝑡,  

          ∫
1

𝑉(𝑡)
𝑑𝑉(𝑡) + ∫

1

𝐾𝜈−𝑉(𝑡)
𝑑𝑉(𝑡) = ∫ 𝑎𝑑𝑡,  

          𝑙𝑛𝑉(𝑡) − 𝑙𝑛 (𝐾𝜈 − 𝑉(𝑡)) = 𝑎𝑡 + 𝑐,  

           𝑙𝑛
𝑉(𝑡)

𝐾𝜈−𝑉(𝑡)
= 𝑎𝑡 + 𝑐,  

Taking exponential from both sides gives, 

           
𝑉(𝑡)

𝐾𝜈−𝑉(𝑡)
= 𝑒𝑎𝑡+𝑐 ,  

           
𝑉(𝑡)

𝐾𝜈−𝑉(𝑡)
= 𝑒𝑎𝑡𝑒𝑐 ,  

Rearranging the equation to isolate 𝑉(𝑡) and finding C by putting t=0, yield to, 

            𝑉(𝑡) = (𝐾𝜈 − 𝑉(𝑡))𝑒𝑎𝑡𝐶,  [𝐶 =
𝑉(0)

𝐾𝜈−𝑉(0)
] 
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          𝑉(𝑡) =
𝐾𝑉(0)

(𝑉(0)𝜈+(𝐾𝜈−𝑉(0)𝜈)𝑒−𝑎𝜈𝑡)
1
𝜈

 , (3.6) 

In the logistic growth, the tumor volume goes to the carrying capacity as time goes to infinity.  

          lim
𝑡→∞

𝐾𝑉(0)

(𝑉(0)𝜈+(𝐾𝜈−𝑉(0)𝜈)𝑒−𝑎𝜈𝑡)
1
𝜈

= 𝐾  

Defining the generalized logistic function in MATLAB and using lsqcurvefit function 

within the optimization toolbox the unknown parameters were found. K which is the carrying 

capacity was set to be 420 𝑚𝑚3 which is the volume of a 7 week old nude mouse brain. 

           
𝑑𝑉(𝑡)

𝑑𝑡
= 𝑎𝑉(𝑡)(1 − (

𝑉(𝑡)

𝐾
)𝜈),  

           𝑉(𝑡) =
𝐾𝑉(0)

(𝑉(0)𝜈+(𝐾𝜈−𝑉(0)𝜈)𝑒−𝑎𝜈𝑡)
1
𝜈

 , 

where 𝑉(𝑡) is the tumor volume and 𝑉(0) = 0.26 𝑚𝑚3. In the generalized logistic model, 𝑎 is 

the initial proliferation rate of the tumor cells and it was found to be 𝑎=0.18 day-1. Also 𝜈 was 

found to be 18. The model and the experimental data were plotted (Figure 3.17).  
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Figure 3.17 Tumor Volume vs. Time (Generalized Logistic Model) 

3.3.4 Gompertz 

The ordinary differential equation for this model is, 

𝑑𝑉(𝑡)

𝑑𝑡
= 𝑎𝑒−𝛽𝑡𝑉(𝑡), (3.7) 

where, 𝑉  is the tumor volume, 𝑡  is time, 𝑎  is the initial proliferation rate and 𝛽  is the rate 

exponential decay of this proliferation rate.  

Equation 3.7 can be solved as follow: 

𝑑𝑉(𝑡)

𝑑𝑡
= 𝑎𝑒−𝛽𝑡𝑉(𝑡),  

Separating the time and volume variables yields, 

𝑑𝑉(𝑡)

𝑉(𝑡)
= 𝑎𝑒−𝛽𝑡𝑑𝑡,  
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Integrating from both sides, 

            ∫
𝑑𝑉(𝑡)

𝑉(𝑡)
= ∫ 𝑎𝑒−𝛽𝑡𝑑𝑡,  

           ln 𝑉(𝑡) =  −
𝑎

𝛽
𝑒−𝛽𝑡 + 𝑐,  

Taking exponential from both sides, 

            𝑉(𝑡) = 𝑒
−

𝑎

𝛽
𝑒−𝛽𝑡+𝑐

 ,  

            𝑉(𝑡) = 𝑒
−

𝑎

𝛽
𝑒−𝛽𝑡

𝑒𝑐,  

Rearranging the equation to isolate 𝑉(𝑡) and finding C by putting t=0, yield to, 

          𝑉(𝑡) = 𝑒
−

𝑎

𝛽
𝑒−𝛽𝑡

𝐶,  [𝐶 = 𝑉(0)𝑒
𝑎

𝛽] 

          𝑉(𝑡) = 𝑉(0)𝑒
𝑎

𝛽
(1−𝑒−𝛽𝑡)

,   

Gompertz model shows exponential decay of the relative growth rate. Asymptotically the 

volume of the tumor converges to the carrying capacity which is, 

            lim
𝑡→∞

𝑉(0)𝑒
𝑎

𝛽
(1−𝑒−𝛽𝑡)

= 𝑉(0)𝑒
𝑎

𝛽. 

Defining the Gompertz function in MATLAB and using lsqcurvefit function from 

optimization toolbox the unknown parameters were found. 

           
𝑑𝑉(𝑡)

𝑑𝑡
= 𝑎𝑒−𝛽𝑡𝑉(𝑡),   

           𝑉(𝑡) = 𝑉(0)𝑒
𝑎

𝛽
(1−𝑒−𝛽𝑡)

,  
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Where 𝑉(𝑡) is the tumor volume and 𝑉(0) = 0.26 𝑚𝑚3. The unknown parameters in 

this model are 𝑎, and 𝛽. In the Gompertz model 𝑎 which is the initial proliferation rate of the 

tumor cells, was found to be and to be 0.183 day-1 and the rate exponential decay of this 

proliferation rate  𝛽 was found to be 0.001 day-1. Then the model and the experimental data were 

plotted in figure 3.18. 

Figure 3.18 Tumor Volume vs. Time (Gompertz Model) 

3.3.5 Von Bertalanffy 

The ordinary differential equation for this model is, 

          
𝑑𝑉(𝑡)

𝑑𝑡
= 𝑎𝑉(𝑡)𝛾 − 𝑏𝑉(𝑡), (3.8) 

Equation 3.9 was solved using Wolfram Mathematical by the command below: 

          𝑉(𝑡) = (
𝑎

𝑏
+ (𝑉(0)1−𝛾 −

𝑎

𝑏
)𝑒−𝑏(1−𝛾)𝑡)

1

1−𝛾, (3.10) 
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Defining the Von Bertalanffy function in MATLAB and using lsqcurvefit function from 

optimization toolbox the unknown parameters were found. 

           
𝑑𝑉(𝑡)

𝑑𝑡
= 𝑎𝑉(𝑡)𝛾 − 𝑏𝑉(𝑡),  

           𝑉(𝑡) = (
𝑎

𝑏
+ (𝑉(0)1−𝛾 −

𝑎

𝑏
)𝑒−𝑏(1−𝛾)𝑡)

1

1−𝛾,  

Where 𝑉(𝑡) is the tumor volume and 𝑉(0) = 0.26 𝑚𝑚3. In the Von Bertalanffy model 

showing the volume of tumor growth, 𝑏 and 𝛾 has the same amount as found before, whereas 𝑎 

should have a unit change. 𝑎 was found to be 0.7057 𝑚𝑚3(1−𝛾). 𝑑𝑎𝑦−1. Then the model and the 

experimental data were plotted in figure 3.19. 

 

Figure 3.19 Tumor Volume vs. Time (Von Bertalanffy) 
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3.4 Models comparison  

Examination of the plots shown in Figures 3.9 through 3.13 reveal that all five classical 

models can fit the experimental data points reasonably well after the optimization.  In addition, 

their shapes are very similar for the early stages of tumor growth. The goal of this part of the 

research besides optimizing each model and finding the unknown parameters, was to find the 

model that fit the data best among these five models.  This could lead to a better understanding 

the tumor growth behavior. The optimization function lsqcurvefit also calculates the residual 

norm. Residual norm is a good parameter to evaluate the goodness of fit for each models. The 

residual norm for each function is shown in table 3.14. Also the plots of all the optimized models 

can be seen in figure 3.20. 

 Table 3.14 Models Characteristic Parameters and the Residual Norms 

 

Mathematical 

Model 

Unknown 

Parameter 
Unit 

Parameter 

Values 

Residual norm 

[𝒎𝒎𝟔] 

Exponential a [day-1] 0.179 137 

Logistic a [day-1] 0.1911 351 

K [mm3] 420  

Generalized 

Logistic 

a [day-1] 0.18 137 

K [mm3] 420  

𝜐 - 18  

Gompertz α [day-1] 0.25 43 

β [day-1] 0.02  

Von Bertalanffy a [mm3(1-

γ).day-1] 

0.25 45 

b [day-1] 0.024  

γ - 0.9  
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Figure 3.20 Tumor Volume vs. Time (Models Comparison) 

 

Looking at the residual norms in table 3.14 reveals the Gompertz model to have the least 

residual norm. Another factor to identify the best model is the number of unknown parameters in 

the model. A simple model with less parameters is a better model. We can see that the 

exponential model has one unknown parameters, logistic and Gompertz model have two and 

Generalized logistic and Von Bertalanffy have three. Based on the residual norms and also the 

number of unknown parameters it can be seen that Gompertz model is the best fitting among the 

five classical models.  
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CHAPTER 4: MODELING THE EFFECT OF CHEMOTHERAPY 

 

4.1 Developing the chemotherapy model                

First the Gompertz model which was optimized was plotted on the same graph with the 

experimental data from cage 2. 

Figure 4.1 Gompertz Model and the Experimental Data from Cage Two 

 

As seen in figure 4.1, Gompertz model fits the data before the chemotherapy phase 

begins quite well and then chemotherapy effects the growth of the tumor.  

After chemotherapy the growth of the tumor becomes slower, then the volume begins to 

decrease. This is an expected and desired outcome of chemotherapy and it indicates that F10 may 

be a promising chemotherapy drug for glioblastomas as also mentioned in [7]. Recall from section 

2.6 that F10 is the thymidylate synthase (TS) inhibitory metabolite of 5-fluorouracil (5-FU). [27] 
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This effects the excessive proliferation of tumor cells and also kills some of the tumor cells. For 

modeling the effect of chemotherapy these factors must be considered. 

Chemotherapy treatment occurred over a 7 days period but our model for chemotherapy 

has an instant start and it effect remains the same afterwards.  This is called an on-off effect. 

Therefore the model for representing the data from cage two is a piecewise equation: 

 

          Gompertz model,                                                                 Before chemotherapy 

          Gompertz model + the effect of chemotherapy,                  After chemotherapy 

  

Our model evaluated three different start times for adding the effect of chemotherapy, the 

first day of the chemotherapy (day 21), the last day of the chemotherapy (day 27) and the day in 

the middle of the chemotherapy process (day 25).  This day is defined as the transition time in the 

model, tT. 

Using the first day of chemotherapy models a fast dynamic system response to the drug.  

The effect of chemotherapy begins instantly (in the model) and is maintained by continued 

chemotherapy over the week of treatment and beyond.  Using the last day of chemotherapy models 

a slow dynamic system response to the drug.  The effect of chemotherapy take time before an 

observable effect occurs.  Using the midpoint of treatment models a moderate dynamical system 

response.  Understanding which model fits best will provide insight into the dynamic response of 

the system which may be useful in developing optimized treatment protocols.  
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4.2 Developed chemotherapy model 

Before the chemotherapy begins the model is the Gompertz model found in the previous 

chapter. After the chemotherapy starts, again the base is the Gompertz model with an added part 

showing the effect of chemotherapy. It was assumed that a percentage of the tumor cells died every 

day because of the chemotherapy and leave the tumor body immediately. The compartment model 

of it can be seen in figure 4.2. 

 

Figure 4.2 Chemotherapy Effect Compartment Model  

 

The piecewise ordinary differential equation of it, is as follow:  

 

          
𝑑𝑉(𝑡)

𝑑𝑡
= 𝑎𝑒−𝛽𝑡𝑉(𝑡),                                           Before tT  

          
𝑑𝑉(𝑡)

𝑑𝑡
= 𝑎𝑒−𝛽𝑡𝑉(𝑡) − 𝑏𝑉(𝑡),                            After tT    
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The solution of the ordinary differential equation of the model, is as follow:  

          𝑉(𝑡) = 𝑉(0)𝑒
𝑎

𝛽
(1−𝑒−𝛽𝑡)

,                                                   Before day tT   

          𝑉(𝑡) = 𝑉(0)𝑒
𝑎

𝛽
(1−𝑒−𝛽𝑡)−𝑏(𝑡−𝑡𝑐ℎ)

,                                       After day tT    

This model was fit to the data using lsqcurvefit function in MATLAB and plotted for each 

value of tT.(Figures 4.3 - 4.5) 

Figure 4.3 Fast Dynamic Response: tT = day 21 
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Figure 4.4 Moderate Dynamic Response: tT = day 25 

 

 

Figure 4.5 Slow Dynamic Response: tT = day 28 
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As seen in figures 4.3 through 4.5, in the first developed chemotherapy model when the 

chemotherapy starts, a dramatic change in the slope can be seen, meaning that the speed of tumor 

volume change, suddenly decreased by a great amount. From data fitting, b was found to be 0.3 

day-1. The complete code for this part can be found in Appendix D. 

The other point that can be seen from these figures is that the time assumed for the 

beginning of the effect of chemotherapy, is an important factor in who could the model fits. 

Therefore all three of them were plotted in one figure for comparison in figure 13 to find the best 

fit. 

Figure 4.6 Gompertz Model, Chemotherapy Model and the Experimental Data from Cage Two 

 

Based on the result from the comparison of the 3 different chemotherapy start days, it can 

be found that considering day 25 results in a better fit. This suggests that in a 7 day chemotherapy 

treatment, the effect starts to show itself more in the middle of the treatment period rather than in 
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the beginning or the end of it. This result can be used in the treatment procedure and period 

decisions.  

4.3 Model sensitivity analysis 

In mathematical modeling it is important to know the sensitivity of the model to each of its 

parameters. In this part the sensitivity of the model to each of the model parameters is found. In 

the Gompertz model, showing only the natural growth of the tumor before chemotherapy the 

sensitivity of the function to α and β are found. The MATLAB code of the sensitivity analysis can 

be found in appendix E. 

          𝑉(𝑡) = 𝑉(0)𝑒
𝑎

𝛽
(1−𝑒−𝛽𝑡)

,              

          𝑆 (𝑉(𝑡), 𝛼) =
𝜕𝑉(𝑡)

𝜕𝛼
×

𝛼

𝑉(𝑡)
=  

1

𝛽
(1 − 𝑒−𝛽𝑡) 𝑉(0)𝑒

𝑎

𝛽
(1−𝑒−𝛽𝑡)

×
𝛼

𝑉(𝑡)
                                    

          𝑆 (𝑉(𝑡), 𝛽) =
𝜕𝑉(𝑡)

𝜕𝛽
×

𝛽

𝑉(𝑡)
= 𝑉(0)(−

𝑎

𝛽2
(1 − 𝑒−𝛽𝑡) +

𝑎

𝛽
(𝑡𝑒−𝛽𝑡))𝑒

𝑎

𝛽
(1−𝑒−𝛽𝑡)

×
𝛽

𝑉(𝑡)
 

Figure 4.7 Gompertz Natural Growth Model Sensitivity Plot 

In the modified Gompertz model, showing the effect of chemotherapy on the tumor growth, the 

sensitivity of the function to α, β and b are found. 
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          𝑉(𝑡) = 𝑉(0)𝑒
𝑎

𝛽
(1−𝑒−𝛽𝑡)−𝑏𝑡

,                                        

          𝑆 (𝑉(𝑡), 𝛼) =
𝜕𝑉(𝑡)

𝜕𝛼
×

𝛼

𝑉(𝑡)
= (

1

𝛽
(1 − 𝑒−𝛽𝑡) − 𝑏𝑡) 𝑉(0)𝑒

𝑎

𝛽
(1−𝑒−𝛽𝑡)−𝑏𝑡

×
𝛼

𝑉(𝑡)
     

          𝑆 (𝑉(𝑡), 𝛽) =
𝜕𝑉(𝑡)

𝜕𝛽
×

𝛽

𝑉(𝑡)
= 𝑉(0)(−

𝑎

𝛽2 (1 − 𝑒−𝛽𝑡) +
𝑎

𝛽
(𝑡𝑒−𝛽𝑡))𝑒

𝑎

𝛽
(1−𝑒−𝛽𝑡)−𝑏𝑡

×
𝛽

𝑉(𝑡)
  

          𝑆 (𝑉(𝑡), 𝑏) =
𝜕𝑉(𝑡)

𝜕𝑏
×

𝑏

𝑉(𝑡)
= −𝑉(0) × 𝑡 × 𝑒

𝑎

𝛽
(1−𝑒−𝛽𝑡)−𝑏𝑡

×
𝑏

𝑉(𝑡)
  

Figure 4.8 Modified Gompertz Chemotherapy Effect Model Sensitivity Plot 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

 

 

5.1 Conclusion 

In this research five classical tumor growth mathematical models were used to model the 

natural growth of glioblastoma. The models evaluated were the exponential, logistic, generalized 

logistic, Gompertz and Von Bertallanfy models. The characteristic parameters of each of the 

models were found by fitting the mathematical models to data from an in-vivo experiment on nude 

mice performed at Wake Forest University School of Medicine.  Upon evaluation, the Gompertz 

model was determined be the best fit having the lowest residual norm.  

Next the effect of chemotherapy with F10 on glioblastoma growth was modeled. Gompertz 

model developed for the natural tumor growth was used and the effect of chemotherapy was added 

to the model. The combined model was piecewise continuous and changed slope at the transition 

time, tT.  The model accounted for natural tumor growth until prior to the transition time and 

modeled tumor behavior under the influence of chemotherapy after the transition time.  The results 

from the chemotherapy model shows that the model fits the data better with the delay time of tT = 

25 and therefore it can be said that there is a moderate response time to F10. 

These model can be used for developing more understanding on tumor growth behavior. 

Also using the models, virtual tests can be run to predict the effect of different forms of 

chemotherapy. By doing this lots of time and money can be saved. Moreover the models can later 

be used for preliminary testing and treatment options for glioblastomas.      

5.2 Future work 

In this research the only concentration of chemotherapy evaluated was 80 mg/kg (data from 

cage 2).  The data for higher dosages 120 mg/kg (cage 3) and 160 mg/kg (cage 4) will be modeled 
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in future studies. These high dosages of chemotherapy drug F10 also resulted in more tumor 

shrinkage. [7] The concentration of F10 may also be entered as a component in the model to 

improve the model’s precision or extend its ability to predict tumor volume changes for difference 

concentrations. These models can help to guide future experiments.  The data from cages 3 and 4 

can be found in Appendix A.  

In the current study chemotherapy was consider to be and on-off process.  However, in the 

actual experiment F10 was administered over a period of 7 days.  Future models could take this 

into account.  Finally, measuring data at shorter intervals will provide better insight into the 

characteristic shape of the curves improving the type of model selected and the accuracy of the 

results. 

Also looking at Figures 4.2 through 4.5 from chapter 4 it can be noticed that after 

chemotherapy the rate of tumor volume change, decreases dramatically. Although the presented 

model is a good fit to the data, for having a more precise model the dramatic drop can be 

smoothened. 
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APPENDIX A: IN-VIVO EXPERIMENT RAW DATA 

 

Tables of raw data from the in-vivo experiment  

 

Table A.1 Raw Data for Cage One (Vehicle Treatment Only) 

CAGE 1     

Image Number ROI Image Layer Total Flux 

[p/s] 

Date and Time 

CLT20110326090936A ROI 1 Overlay 8.33E+05 3/26/2011 9:09 

CLT20110326090936A ROI 2 Overlay 4.22E+06 3/26/2011 9:09 

CLT20110326090936A ROI 3 Overlay 1.84E+07 3/26/2011 9:09 

CLT20110326090936A ROI 4 Overlay 1.38E+06 3/26/2011 9:09 

CLT20110326090936A ROI 5 Overlay 3.02E+06 3/26/2011 9:09 

CLT20110401185357A ROI 1 Overlay 6.27E+06 4/1/2011 18:54 

CLT20110401185357A ROI 2 Overlay 7.38E+07 4/1/2011 18:54 

CLT20110401185357A ROI 3 Overlay 1.13E+06 4/1/2011 18:54 

CLT20110409160428A ROI 1 Overlay 2.50E+07 4/9/2011 16:04 

CLT20110409160428A ROI 2 Overlay 3.93E+08 4/9/2011 16:04 

CLT20110409160428A ROI 3 Overlay 6.67E+06 4/9/2011 16:04 

 

Table A.2 Raw Data for Cage Two (Treatment with 80 mg/kg of F10) 

CAGE 2     

Image Number ROI Image Layer Total Flux [p/s] Date and Time 

CLT20110326091429A ROI 1 Overlay 4.84E+05 3/26/2011 9:14 

CLT20110326091429A ROI 2 Overlay 1.34E+06 3/26/2011 9:14 

CLT20110326091429A ROI 3 Overlay 1.96E+06 3/26/2011 9:14 

CLT20110326091429A ROI 4 Overlay 2.36E+06 3/26/2011 9:14 

CLT20110326091429A ROI 5 Overlay 4.43E+06 3/26/2011 9:14 

CLT20110401185803A ROI 1 Overlay 1.13E+06 4/1/2011 18:58 

CLT20110401185803A ROI 2 Overlay 2.26E+06 4/1/2011 18:58 

CLT20110401185803A ROI 3 Overlay 2.73E+06 4/1/2011 18:58 

CLT20110401185803A ROI 4 Overlay 1.46E+06 4/1/2011 18:58 

CLT20110401185803A ROI 5 Overlay 2.33E+06 4/1/2011 18:58 

CLT20110409160813A ROI 1 Overlay 1.03E+05 4/9/2011 16:08 

CLT20110409160813A ROI 2 Overlay 2.14E+05 4/9/2011 16:08 

CLT20110409160813A ROI 3 Overlay 1.20E+07 4/9/2011 16:08 

CLT20110409160813A ROI 4 Overlay 1.40E+06 4/9/2011 16:08 
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Table A.3 Raw Data for Cage 3 (Treatment with 120 mg/kg of F10) 

CAGE 3     

Image Number ROI Image Layer Total Flux [p/s] Date and Time 

CLT20110326092314A ROI 1 Overlay 7.56E+04 3/26/2011 9:23 

CLT20110326092314A ROI 2 Overlay 7.56E+05 3/26/2011 9:23 

CLT20110326092314A ROI 3 Overlay 7.96E+05 3/26/2011 9:23 

CLT20110326092314A ROI 4 Overlay 1.79E+06 3/26/2011 9:23 

CLT20110326092314A ROI 5 Overlay 3.67E+06 3/26/2011 9:23 

CLT20110401190228A ROI 1 Overlay 7.04E+04 4/1/2011 19:02 

CLT20110401190228A ROI 2 Overlay 4.02E+05 4/1/2011 19:02 

CLT20110401190228A ROI 3 Overlay 6.87E+05 4/1/2011 19:02 

CLT20110401190228A ROI 4 Overlay 1.04E+06 4/1/2011 19:02 

CLT20110401190228A ROI 5 Overlay 1.31E+06 4/1/2011 19:02 

CLT20110409161148A ROI 1 Overlay 3.45E+06 4/9/2011 16:11 

CLT20110409161148A ROI 2 Overlay 1.89E+05 4/9/2011 16:11 

CLT20110409161148A ROI 3 Overlay 1.26E+06 4/9/2011 16:11 

CLT20110409161148A ROI 4 Overlay 1.42E+06 4/9/2011 16:11 

 

 

Table A.4 Raw Data for Cage 4 (Treatment with 160 mg/kg of F10) 

CAGE 4     

Image Number ROI Image Layer Total Flux [p/s] Date and Time 

CLT20110326092755A ROI 1 Overlay 4.98E+05 3/26/2011 9:28 

CLT20110326092755A ROI 2 Overlay 7.35E+05 3/26/2011 9:28 

CLT20110326092755A ROI 3 Overlay 1.88E+06 3/26/2011 9:28 

CLT20110326092755A ROI 4 Overlay 4.00E+05 3/26/2011 9:28 

CLT20110326092755A ROI 5 Overlay 5.85E+05 3/26/2011 9:28 

CLT20110401190612A ROI 1 Overlay 1.62E+06 4/1/2011 19:06 

CLT20110401190612A ROI 2 Overlay 1.66E+06 4/1/2011 19:06 

CLT20110401190612A ROI 3 Overlay 3.17E+06 4/1/2011 19:06 

CLT20110401190612A ROI 4 Overlay 1.29E+06 4/1/2011 19:06 

CLT20110401190612A ROI 5 Overlay 1.17E+06 4/1/2011 19:06 

CLT20110409161526A ROI 1 Overlay 1.19E+06 4/9/2011 16:15 

CLT20110409161526A ROI 2 Overlay 5.74E+06 4/9/2011 16:15 

CLT20110409161526A ROI 3 Overlay 3.14E+07 4/9/2011 16:15 

CLT20110409161526A ROI 4 Overlay 1.25E+06 4/9/2011 16:15 
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APPENDIX B: TUMOR GROWTH MODEL PARAMETERS 

 

Table B.1 Human Glioblastoma parameter values 

 

 

Table B.2 Lung cancer parameter values [35] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Values Units Source 

Cell Radius 0.005 mm 8 

Proliferation rate 2.75 1/day 8 

Apoptosis rate 0.32 1/day 3 

Mathematical 

Model 

Unknown 

Parameter 
Unit 

Parameter 

Values 

Exponential a [day-1] 0.257 

Logistic a [day-1] 0.502 

K [mm3] 1297 

Generalized 

Logistic 

a [day-1] 2555 

K [mm3] 4378 

𝜐 - 0.00014 

Gompertz α [day-1] 0.743 

β [day-1] 0.0792 

Von Bertalanffy a [mm3(1-

γ).day-1] 

7.72 

b [day-1] 6.75 

γ - 0.947 
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APPENDIX C: MATLAB CODE FOR THE NATURAL GROWTH  

 

MATLAB Code for Mathematical modeling of Glioblastoma volume growth 

% MathematicalModelingofGlioblastoma 
% NudeMiceIn-vivoModedlWithoutChemotherapy 

  
clc; 
close all; 
format long 

  
% Experimental data 

  
initial_volume=0.26; %mm3 
tumor_volume_21=1.633846154; %mm3 averaged from cage 1 
tumor_volume_27=27.69230769; %mm3 averaged from cage 1 
tumor_volume_35=144.6923077; %mm3 averaged from cage 1 

  
% Variables 

  
xdata=[1 21 27 35]; 
ydata=[0.26 1.633846154 27.69230769 144.6923077]; 
t=linspace(1,35); 

  
% Exponential Model 

  
a0=0.1; 
N1=@(x,xdata)(initial_volume*(exp(x*xdata))); 
[x,resnorm] = lsqcurvefit(N1,a0,xdata,ydata) 
N1_Opt=@(t)(initial_volume*(exp(0.179*t))); 
figure(1) 
plot(t,N1_Opt(t)); 
hold on 
plot(1,initial_volume,'*',21,tumor_volume_21,'*',27,tumor_volume_27,'*',35,tu

mor_volume_35,'*'); 
title('Tumor Volume Growth (Exponential model)') 
ylabel('Tumor volume (mm3)') 
xlabel('Time (days)') 
legend('Exponential','experimental data'); 
hold on 

  

  
%Logistic Model  

  
a0=0.3; 
N2=@(x,xdata)((initial_volume*420)./(initial_volume+(420-

initial_volume)*exp(-x(1)*xdata))); 
[x,resnom] = lsqcurvefit(N2,a0,xdata,ydata) 
N2_Opt=@(t)((initial_volume*420)./(initial_volume+(420-initial_volume)*exp(-

0.1911*t))); 
figure(2) 
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plot(t,N2_Opt(t)); 
hold on 
plot(1,initial_volume,'*',21,tumor_volume_21,'*',27,tumor_volume_27,'*',35,tu

mor_volume_35,'*'); 
title('Tumor Volume Growth (Logistic Model)') 
ylabel('Tumor volume (mm3)') 
xlabel('Time (days)') 
legend('Logistic','experimental data'); 
hold on 

  

  
%Generalized Logistic Model  

  
a0=[18;0.18]; 
N3=@(x,xdata)((initial_volume*420)./((initial_volume.^x(1)+(420.^x(1)-

initial_volume.^x(1))*exp(-x(2)*x(1)*xdata)).^(1./x(1)))); 
[x,resnom] = lsqcurvefit(N3,a0,xdata,ydata) 
N3_Opt=@(t)((initial_volume*420)./((initial_volume.^19+(420.^19-

initial_volume.^19)*exp(-0.19*18.2*t)).^(1./19))); 
figure(3) 
plot(t,N3_Opt(t)); 
hold on 
plot(1,initial_volume,'*',21,tumor_volume_21,'*',27,tumor_volume_27,'*',35,tu

mor_volume_35,'*'); 
title('Tumor Volume Growth (Generalized Logistic Model)') 
ylabel('Tumor volume (mm3)') 
xlabel('Time (days)') 
legend('Generalized logistic model','Experimental data'); 
hold on 

  

  
%Gompertz Model 

  
a0=[0.1;0.02]; 
N4=@(x,xdata)(initial_volume*exp((x(1)/x(2))*(1-exp(-x(2)*xdata)))); 
[x,resnom] = lsqcurvefit(N4,a0,xdata,ydata) 
alpha=0.25; 
betta=0.02; 
N4_Opt=@(t)(initial_volume*exp((alpha/betta)*(1-exp(-betta*t)))); 
figure(4) 
plot(t,N4_Opt(t)); 
hold on 
plot(1,initial_volume,'*',21,tumor_volume_21,'*',27,tumor_volume_27,'*',35,tu

mor_volume_35,'*'); 
title('Tumor Volume Growth (Gompertz)') 
ylabel('Tumor volume (mm3)') 
xlabel('Time (days)') 
legend('Gompertz','Experimental data'); 
hold on 
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% Von Bertalanffy Model 

  
a0=[0.25;0.024;0.9]; 
N5=@(x,xdata)(((x(1)./x(2))+(initial_volume.^(1-x(3))-(x (1)./x(2)))*exp(-

x(2)*(1-x(3))*xdata)).^(1./(1-x(3)))); 
[x,resnom] = lsqcurvefit(N5,a0,xdata,ydata) 
a=0.25; 
b=0.024; 
gamma=0.9; 
N5_Opt=@(t)(((a./b)+(initial_volume.^(1-gamma)-(a./b))*exp(-b*(1-

gamma)*t)).^(1./(1-gamma))); 
figure(5) 
plot(t,N5_Opt(t)); 
hold on 
plot(1,initial_volume,'*',21,tumor_volume_21,'*',27,tumor_volume_27,'*',35,tu

mor_volume_35,'*'); 
title('Tumor Volume Growth (Von Bertalanffy)') 
ylabel('Tumor volume (mm3)') 
xlabel('Time (days)') 
legend('Von Bertalanffy','Experimental data') 
hold on 

  
% Plots 

  
figure(6) 
plot(t,N1_Opt(t),t,N2_Opt(t),t,N3_Opt(t),t,N4_Opt(t),t,N5_Opt(t),1,initial_vo

lume,'*',21,tumor_volume_21,'*',27,tumor_volume_27,'*',35,tumor_volume_35,'*'

); 
title('Tumor Volume Growth') 
ylabel('Tumor volume (mm3)') 
xlabel('Time (days)') 
legend('Exponential','Logistic','Generalized Logistic','Gompertz','Von 

Bertalanffy','Experimental data'); 
hold on 
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APPENDIX D: MATLAB CODE FOR THE CHEMOTHERAPY EFFECT 

 

MATLAB Code for Mathematical modeling of Glioblastoma volume change under the effect of 

chemotherapy with F10 

% MathematicalModelingofGlioblastoma 
% NudeMiceIn-vivoModedlWithChemotherapyWithF10 

  
clc; 
close all; 
format long 

  
% Experimental data 

  
initial_volume=0.26; %mm3 
tumor_volume_21=6.34; %mm3 averaged from cage 1 
tumor_volume_27=11.232; %mm3 averaged from cage 1 
tumor_volume_35=1.044; %mm3 averaged from cage 1 

  
% Variables 

  
xdata=[1 21]; 
%27 35]; 
ydata=[0.26 6.34]; 
%11.8 1.9]; 
t=linspace(1,35); 
t1=linspace(28,35); 
t2=linspace(25,35); 
t3=linspace(21,35); 

  

  
% Gompertz Model+chemotherapy effect 

  

  
a0=[0.25;0.02]; 
N11=@(x,xdata)(initial_volume*exp((x(1)/x(2))*(1-exp(-x(2)*xdata)))); 
[x,resnom] = lsqcurvefit(N11,a0,xdata,ydata) 
alpha=0.2; 
betta=0.02; 
N11_Opt=@(t)(initial_volume*exp((alpha/betta)*(1-exp(-betta*t)))); 
a01=[0.05]; 
N12=@(x,x1data)(initial_volume*exp((alpha/betta)*(1-exp(-betta*x1data))-

x(1)*((x1data-28)))); 
[x,resnom] = lsqcurvefit(N12,a01,x1data,y1data) 
b=0.25; 
N12_Opt=@(t1)(initial_volume*exp((alpha/betta)*(1-exp(-betta*t1))-0.45*(t1-

28))); 
N13_Opt=@(t2)(initial_volume*exp((alpha/betta)*(1-exp(-betta*t2))-0.33*(t2-

25))); 
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N14_Opt=@(t3)(initial_volume*exp((alpha/betta)*(1-exp(-betta*t3))-0.25*(t3-

21))); 
figure(1) 
plot(t,N11_Opt(t)) 
hold on 
plot(1,initial_volume,'*',21,tumor_volume_21,'*',27,tumor_volume_27,'*',35,tu

mor_volume_35,'*'); 
title('Tumor Volume Change') 
ylabel('Tumor volume (mm3)') 
xlabel('Time (days)') 
legend('Gompertz model','Experimental data') 
hold on 
hold on 
figure(2) 
plot(t,N11_Opt(t),t3,N14_Opt(t3),t2,N13_Opt(t2),t1,N12_Opt(t1)); 
hold on 
plot(1,initial_volume,'*',21,tumor_volume_21,'*',27,tumor_volume_27,'*',35,tu

mor_volume_35,'*'); 
title('Tumor Volume Change') 
ylabel('Tumor volume (mm3)') 
xlabel('Time (days)') 
legend('Gompertz model','Day 21','Day 25','Day 28','Experimental data') 
hold on 
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APPENDIX E: MATLAB CODE FOR THE SENSITIVITY ANALYSIS 

 

MATLAB Code for Sensitivity analysis  

% MathematicalModelingofGlioblastoma 
% Sensitivity Analysis 

  
clc; 
close all; 
format long 

  
% Experimental data 

  
initial_volume=0.26; %mm3 

  
% Variables 

  
t=linspace(1,35); 

  
% Gompertz Model sensitivity analysis 

  
alpha=0.2; 
betta=0.02; 
N11_Opt=@(t)((1/betta)*(1-exp(-

betta*t)).*initial_volume.*exp((alpha/betta).*(1-exp(-betta*t)))); 
N12_Opt=@(t)(initial_volume.*exp((alpha/betta).*(1-exp(-betta*t)))); 
N13_Opt=@(t)(((-alpha/(betta^2)).*(1-exp(-betta.*t))+(alpha/betta).*(t.*exp(-

betta.*t))).*initial_volume.*exp((alpha/betta).*(1-exp(-betta*t)))); 
figure(1) 
plot(t,(N11_Opt(t)./N12_Opt(t))*alpha) 
hold on 
plot(t,(N13_Opt(t)./N12_Opt(t))*betta) 
title('Sensitivity plot') 
ylabel('Sensivity') 
xlabel('Time (days)') 
legend('alpha','betta') 
hold on 

  
% Gompertz Model sensitivity analysis 

  
t1=linspace(25,35); 
alpha=0.2; 
betta=0.02; 
b=0.25; 
N11_Opt=@(t1)(((1/betta)*(1-exp(-betta*t1))-

b*t1).*initial_volume.*exp((alpha/betta).*(1-exp(-betta*t1))-b*t1)); 
N12_Opt=@(t1)(initial_volume*exp((alpha/betta)*(1-exp(-betta*t1))-b*(t1))); 
N13_Opt=@(t1)(((-alpha/(betta^2)).*(1-exp(-

betta.*t1))+(alpha/betta).*(t1.*exp(-

betta.*t1))).*initial_volume.*exp((alpha/betta).*(1-exp(-betta*t1))-b*t1)); 
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N14_Opt=@(t1)(-t1.*initial_volume.*exp((alpha/betta).*(1-exp(-betta.*t1))-

b.*t1)) 
figure(2) 
plot(t1,(N11_Opt(t1)./N12_Opt(t1))*alpha) 
hold on 
plot(t1,(N13_Opt(t1)./N12_Opt(t1))*betta) 
hold on 
plot(t1,(N14_Opt(t1)./N12_Opt(t1))*b) 
title('Sensitivity plot') 
ylabel('Sensivity') 
xlabel('Time (days)') 
legend('alpha','betta','b') 
hold on 

 

 


