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ABSTRACT

SOLAR FARM HOURLY DISPATCHING USING A SUPERCAPACITOR AND BATTERY EN-
ERGY STORAGE SYSTEM

Jordan Chaires, M.S.T.

Western Carolina University (April 2016)

Director: Dr. Bora Karayaka

While most research on solar energy has been concentrated on smoothing intermittent power

being pushed into the power grid, this research is focused on improving the complete integration

of solar energy into the power grid by dispatching, or supplying a constant level of power, for 1-

hour time periods. A hybrid energy storage system (HESS), consisting of lead-acid batteries and

supercapacitors, will absorb and supply the necessary levels of power to keep the systems output

power constant. The demand on the overall HESS and the two components in HESS, lead-

acid batteries and supercapacitors, will maintain the constant level of power to dispatch. The

predicted level of output power, for a one hour dispatching period, is determined by an estimation

algorithm that uses actual solar data from Oak Ridge National Laboratory collected every minute

throughout the day. This research shows results from June 9th, 2015, June 10th, 2015, June 12th,

2015, and December 25th, 2015 between 5:00 AM and 7:59 PM [3]. The estimation algorithm

incorporates the solar irradiance and temperature to estimate the PV arrays average output

power and its efficiency. The demand on the HESS is sent through a low-pass filter with a time

constant of 1-minute that is then used as the reference for the lead-acid batteries. The remaining

demand on the HESS is used as the reference for the supercapacitors. This utilizes the lead-acid

batteries high energy density property, or slow charge/discharge rates at high energy levels, and

the supercapacitors high power density property, or rapid charge/discharge rates at low energy

levels [1, 4].



CHAPTER 1: INTRODUCTION

1.1 Key Terms

Intermittent : A power source that varies in power levels through time is said to be an inter-

mittent power source. Solar energy is an intermittent power source.

Dispatchable: A power source that is capable of supplying a constant power on demand is a

dispatchable power supply.

Synergy : A greater outcome of two elements when combined than individually is synergy. A

supercapacitor in combination with a battery shows synergy [1].

Battery Bank : Multiple batteries connected to provide a greater combined capacity.

Supercapacitor Bank : Multiple supercapacitors connected to provide a greater combined ca-

pacity.

State of Charge (SOC): A battery’s capability to hold a specific amount of charge in reference

to its original capability determines the batteries’ SOC and is represented as a percentage.

Depth of Discharge (DOD): A battery’s lowest depletion SOC is quantifiable as its DOD. To

increase the longevity of a battery, it should not be depleted beyond its recommended DOD.

Additional notations are defined as needed throughout this dissertation. Definitions of

some terms already defined may be repeated for the sake of clarity and emphasis.

1.2 Problem Statement

Solar energy has the potential to greatly increase the Earths longevity by decreasing greenhouse

gas emissions. To maximize the use of solar energy, energy storage devices and methods must

be optimized. Although some research has been done to integrate battery systems with solar

PV systems, there are still system conditions, such as number of charge/discharge cycles of the

batteries, that are not being taken into account and could greatly improve the efficiency of the

system [5]. Utilizing the combination of a battery and supercapacitor, we will be capable of mini-

mizing charge/discharge cycles of the batteries while delivering a constant and reliable renewable
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power to the utility grid. The base load of the dispatched power will be provided using a lead-

acid battery bank while the peak power demands will be compensated using a supercapacitor

bank. The combination of supercapacitors with lead-acid batteries creates synergy because of

the supercapacitor’s high power density property and the lead acid battery’s high energy density

property. The supercapacitor’s high power density property allows the supercapacitor bank to

charge/discharge quickly. The lead acid battery’s high energy density property allows the battery

bank to charge/discharge at higher energy levels. The combination of the two creates synergy

because the supercapacitor can be used to absorb high frequency power components of the system

demand to provide smoother power demand on the battery bank. A smoother power demand on

the battery bank will decrease the number of charge/discharge cycles for the battery resulting in

a longer battery life.

The outline of this thesis will follow the design process of a solar farm system with the

integration of a battery bank and supercapacitor bank to provide a constant dispatchable power

to the utility grid. In Chapter 2: Literature Review, research on related topics will be analyzed in

order to determine the direction, objectives, and techniques to be used for extending the lifespan

of the battery in the PV system. Then, in Chapter 3: Methodology, control methods and analysis

tools to be applied to the system will be examined. Chapter 4: Anticipated Results will apply

analysis tools from Chapter 3 on results from Matlab Simulink simulations. Finally, Chapter 5:

Conclusion and Future Work explores areas of this research that could be expanded upon.

2



CHAPTER 2: LITERATURE REVIEW

2.1 Background

Renewable energy sources have been increasing in popularity and therefore have become an in-

teresting topic of research due to their ability to allow the world to become less reliant on fossil

fuels such as oil, coal, and gas [5]. This means that solar energy has the potential to greatly

increase Earth’s longevity by decreasing greenhouse gas emissions. Optimization in harnessing

the solar energy is important because it means creating a system that will be capable of wasting

little power that results in economic advantages as well as environmental advantages. Increasing

the efficiency of a power source will inevitably increase the rate of return on the investment into

solar energy.

Figure 2.1: Typical output of a photovoltaic cell during one day [1]

Solar energy is naturally an intermittent renewable resource, which means providing vary-

ing power levels due to natural and meteorological conditions, and is only sporadically available [5].

Figure 2.1 is an example of a typical output by a PV cell during the daytime and shows how spo-

radic solar power can be. Power electronics, which are used to monitor and control power flow into,

out of, and through the utility grid are not designed with the large power fluctuations introduced
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by renewable energies. So, the intermittence of solar energy poses a great challenge in power

electronics when it is connected directly to the utility grid. However, by creating a system that is

capable of storing this harvested energy it is possible to convert solar energy into a dispatchable

power supply that can be used throughout the day.

Storage of the solar energy through batteries, supercapacitors, compressed air, and pumped

hydro storage have been shown to smooth varying output power from PV systems connected to

power grids [6]. The size of such storage systems has been investigated in order to minimize initial

cost of the system while also focusing on increasing efficiency of the system. Optimizing the ratio

of photovoltaic cells to storage size is an essential step to the optimization of the system.

The supercapacitor has a high power density property, which means it is capable of fast

charge/discharge rates at lower energy levels, whereas a battery, such as the lead-acid battery,

has a high energy density, which means it is capable of charging and discharging at higher energy

levels but at slower charge/discharge rates [1, 4].

2.2 Current Techniques

There are many characteristics of designing a power source that must be taken into consideration

in order to have an optimized system. The capacity size of an energy storage device, such as a

battery bank, used to harvest power from an intermittent power source (i.e. solar energy) will

determine the system’s smoothing capability. For a system to be dispatchable it must be able

to supply constant amounts of power for specific durations of time. The size of a storage device,

is dependent on the control strategy being implemented on the system, charge/discharge rate

requirements, and the purpose of the system (standalone or grid-connected) [6]. However, cost

restrictions to a systems design will be a major constraint to the size selection of the storage

device. Proper investigation of balancing size, cost, and efficiency during the design of a system

will increase the likelihood of creating an optimal system.

Limiting the state of charge (SOC) of lead-acid batteries can help to increase the lifespan

and can minimize maintenance needs. Keeping the battery SOC at or below 100% is crucial for

the lifespan of the battery as to prevent overcharging the battery. However, other research has
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proposed limiting the charge to 70% to prevent overcharge of lead acid batteries [7]. The depth

of discharge (DOD) can also affect the longevity of lead-acid batteries. Some lead-acid batteries,

referred to as deep discharge batteries, are capable of being discharged to an SOC of 0%. For other

lead-acid batteries, preventing the DOD of the battery to reach 0% is crucial as this will greatly

reduce the lifespan of a lead-acid battery [1]. A DOD of 30% is commonly used to extend the

lifetime of a lead-acid battery [7]. Also, most manufactures will have a recommended discharge

rate. However, other discharge rates may be used but with some limitations. For example, a

manufacturer may provide a recommended discharge rate of 100mA and state that the battery

can provide this power for 10 hours, if the battery is rated 1Ah. Although a smaller discharge

rate such as 50mA is acceptable, high discharge rates such as 2A are not recommended. Contrary

to the assumption that a battery rated at 1Ah could be discharged at 2A for the duration of half

an hour, discharge rates have non-linear characteristics and should not be discharged at higher

than recommended discharge rates. These theoretical values can vary depending on an individual

battery’s unique energy loss characteristics and the operating range.

Maximum power point tracking algorithms (MPPT) are used to optimize the output power

of a photovoltaic (PV) array by controlling the duty ratio of a DC/DC converter directly connected

to the PV array. The duty ratio is the on/off switching ratio of a converter that is determined

by the desired reduction or gain from the input voltage to the output voltage. A few of these

algorithms are Perturb and Observe (P&O), Incremental Conductance (IncCond), Constant Volt-

age, Constant Current and fuzzy logic based algorithms [8]. The two most common algorithms

used for MPPT in current technology are P&O and IncCond. The P&O algorithm is slower than

the IncCond algorithm when weather conditions change solar irradiation levels at a fast rate.

The IncCond algorithm is simple and more efficient at optimizing the provided irradiation to the

PV array than P&O [9]. However, IncCond will produce small oscillations around the maximum

power point (MPP) it’s tracking.

Utilizing a combination of a battery and supercapacitor can help smooth the intermittent

solar power for dispatching by charging/discharging fluctuating power produced by the PV array.

This is due to the capability of supercapacitors to charge/discharge quickly, which can help to

reduce drastic fluctuations (high frequencies) of power to the battery during charge/discharge
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cycles, without having to alter the MPPT algorithm that controls the duty cycle of the boost

converter [1]. This combination has also been researched with hybrid electric vehicles and was

proven to improve the lifespan of a battery by minimizing large output currents to the motor by

use of a supercapacitor [10]. The required size of the supercapacitor will depend on the maximum

required energy needed by the system from the supercapacitor and can be calculated using Eq.

(2.1) where E is energy measured in Joules, C is the supercapacitor’s capacitance measured in

Farads, and V is the supercapacitor’s voltage measured in Volts [11].

E =
1

2
C × V 2 (2.1)

2.3 Chosen Techniques

A 100kW PV array chosen for implementation will be directly connected to a DC/DC converter

controlled by the IncCond MPPT algorithm because of it’s superior efficiency at extracting the

maximum amount of power from the given solar power [9]. Also, a lead-acid battery bank of 250V

and 200Ah will be used in combination with a supercapacitor bank of 270V and 700F to create

a dispatchable power to the utility grid. The lead-acid battery bank will have a DOD of 40%,

which is an SOC range of 60% to 100%. Also, a rule-based control method will be implemented

to prevent the battery bank from operating outside of its SOC range. Another rule-based control

method will be used to adjust the reference power of each dispatching period to keep the SOC of

the battery bank around 80%. The supercapacitor bank will be used to buffer the high frequency

components of the PV array and decrease the number of charge/discharge cycles of the battery,

which will increase the lifespan of the battery.
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CHAPTER 3: METHODOLOGY

3.1 System Topology

Figure 3.1: Solar Farm and HESS Power Flow [2]

The photovoltaic energy system (PVES) consists of a 100kW solar farm that outputs power

through a DC/DC converter. The hybrid energy storage system (HESS) consists of a 250V ,

200Ahr lead-acid battery bank, a 270V , 700F supercapacitor bank, and a DC/DC converter

connected to each bank. The combination of the battery bank and the DC/DC converter directly

connected to it is referred to as the battery energy storage system, or BESS. The combination of

the supercapacitor bank and the DC/DC converter directly connected to it is referred to as the

supercapacitor energy storage system, or SESS. The PVES and HESS are connected in parallel

to the DC-link cap, acting as the DC bus. The voltage level of the DC bus is controlled by the

DC/AC inverter, or grid-connected converter (GCC). Because the PVES and HESS are connected

to the DC bus as current sources and the GCC controls the DC bus voltage, stable power flow
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is obtainable by adjusting current flow through the DC/DC converters [12]. It is important to

mention that the DC/DC converter of the PVES is uni-directional, meaning the power flow is

only to flow out of the PVES and towards the HESS and/or the DC bus. However, the DC/DC

converters of the HESS are bi-directional and are independently operated. Both the BESS and

the SESS have three modes of operation in the proposed methodology:

1. Charging

2. Discharging

3. No power flow

3.2 Control of PVES

The solar farm component of the PVES is a photovoltaic (PV) array comprised of 66 parallel

strings and five series connections of SunPower SPR-305-WHT solar cells. The available power

from the PV array relies on two weather conditions:

1. Solar Irradiation (W/m2)

2. Solar Cell Temperature (◦C)

This research was conducted using actual data recorded at Oak Ridge National Laboratory

(ORNL) using global horizontal irradiation and air temperature as an estimate of the solar cell

temperature. It is important to mention that although actual cell temperature may be higher

than ambient temperature in practice, it is beyond the scope of this research to account for these

complex dependencies. Therefore, for the sake of simplicity ambient and cell temperatures are

assumed to be the same.

As mentioned in Section 3.1, the DC/DC converter in the PVES is uni-directional so the

power flow is only out of the PVES and is controlled by the incremental conductance maximum

power point tracking (MPPT) algorithm. As mentioned in Section 2.3, incremental conductance

MPPT is highly efficient producing the maximum power for highly intermittent solar irradiation.

8



The detailed flow chart of incremental conductance shown in Fig. 3.2 represents the function

block in Fig. 3.3. The average model of the PVES DC/DC converter is shown in Fig. 3.4 and

was derived from the DC/DC average converter model in Power Electronics: A First Course by

N. Mohan [13]. The PVES converter uses the DPV ES, or duty cycle for the PVES, signal as the

input control signal. The duty cycle, as defined in Section 2.2, determines the ratio of output

voltage to input voltage.

Figure 3.2: Incremental Conductance MPPT Algorithm [2]

3.3 Dispatchable Power Level Estimation

An estimate as to how much power can be efficiently dispatched is predicted for each dispatching

hour using the solar irradiation and temperature data from ORNL [3]. The estimated dispatchable

power for each hour is referred to as the grid reference power (PGrid,ref ) and will be used as a

9



Figure 3.3: Simulink Model of PVES Control System

Figure 3.4: Simulink PVES Average DC/DC Converter Model

target power level for the PVES and HESS to provide to the utility grid. PGrid,ref is calculated by

estimating the average power that the PVES is capable of providing over each one-hour dispatching

period. The PV array module in Matlab/Simulink provides power-voltage characteristic curves

based on user-input parameters such as solar cell type, number of cells in parallel, and number

of cells in series. This information provides estimated power curves for discrete solar irradiation,

measured in W/m2, levels at a set cell temperature of 25◦C shown in Fig. 3.5 and discrete cell

temperatures, measured in ◦C, at a set solar irradiation level of 1000kW/m2 shown in Fig. 3.6.

Figure 3.5: P-V Characteristics of Array at 25◦C [2]
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Figure 3.6: P-V Characteristics of Array at 1kW/m2 [2]

The maximum power points (MPP’s) are indicated as circles located at the maximum

power point of their respective curves in Figs. 3.5 and 3.6. By interpolating the MPP’s from

Fig. 3.5, one curve is created to which the average irradiation for one hour can be mapped and

a corresponding power estimate for PVES can be made. The interpolated plot of MPP’s for PV

array at 25◦C is shown in Fig. 3.7. Likewise, by interpolating the MPP’s from Fig. 3.6, one curve

is created to which the average temperature for one hour can be mapped and a corresponding

efficiency for PVES can be made. The conversion from the y-axis, power (W), from Fig. 3.6 to the

y-axis, efficiency (%) of Fig. 3.8 is done by assigning 0◦C to be 110% efficiency, 25◦C to be 100%

efficiency, 50◦C to be 85% efficiency, 75◦C to be 75% efficiency, and 100◦C to be 65% efficiency.

This assignment was designed around setting 100kW to be 100% efficiency and 0kW to be 0%

efficiency.

The resolution of the solar irradiation data from ORNL is one sample/minute. A better

approximation to the average irradiation can be made if the the resolution of the data set is

higher. Cubic spline interpolation is performed to create a set of solar irradiation data samples

with a resolution of one sample every half second or 120 samples/minute. For each dispatching

hour, the average irradiation is calculated by performing the mean operation and then mapped to

the interpolated plot of MPP’s for PV array at 25◦C in Fig. 3.7. The power level estimated from

the average irradiation is referred to as PPV ES,est.. Likewise, the average temperature for each

dispatching hour is calculated by performing the mean operation to the interpolated temperature

data set and is then mapped to the interpolated plot of MPP’s for PV array at 1kW/m2 in

11



Figure 3.7: Interpolated plot of MPP’s for PV array at 25◦C [2]

Figure 3.8: Interpolated plot of MPP’s for PV array at 1kW/m2 [2]

Fig. 3.8. The efficiency estimate provided by the average temperature is referred to as ηPV ES,est..

The final estimated power dispatchable by PVES is PPV ES,est. adjusted by ηPV ES,est. multiplied

by a constant factor of 0.95 shown in Eq. (3.1). The 0.95 factor is an estimated compensation for

12



the inefficiency of IncCond MPPT.

PGrid,est. = 0.95× PPV ES,est.(kW )× ηPV ES,est.(%) (3.1)

Figure 3.9: PGrid,ref calculation for simulation

In order to mitigate errors that could propagate through a longer simulation and could

lead to the battery bank’s SOC that is too high or too low (i.e. above or below 80%) before

entering a new dispatching period, the PGrid,est. is also adjusted at the start of each dispactching

period. The adjustment factor to PGrid,est. directly corresponds to the BESS SOC at the end

of each dispatching period. This is done by a rule based control algorithm that creates bounds

represented by 10% SOC ranges that correspond to a multiplying factor. The ranges are from

an SOC of 60% to 100% because of the 40% DOD mentioned in Section 2.3. The SOC and

corresponding multiplying factors are shown in Table. 3.1. The resulting adjusted power level is

referred to as the grid reference power (PGrid,ref ) and is the target power level for the entire system

to provide the utility grid for the entire duration of the one-hour dispatching period. Table 3.1

is a representation of the function block shown in Fig. 3.9 used to calculate PGrid,ref ; the power

expected to be dispatched.
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Table 3.1: PGrid,ref calculated from adjusting PGrid,est. with BESS SOC
BESS Multiplying Factor

100% ≥ SOC > 92% 1.10
92% ≥ SOC > 84% 1.05
84% ≥ SOC > 76% 1.00
76% ≥ SOC > 68% 0.95
68% ≥ SOC ≥ 60% 0.90

3.4 Control of HESS

The HESS is responsible for maintaining the system’s power injected into the utility grid, following

the control framework proposed by Zheng et. al [12] while the GCC maintains a constant DC

Bus voltage of 500V . So, the reference power for the HESS (PHESS,ref ) is the difference between

PPV ES and PGrid,ref as shown in Eq. (3.2).

PHESS,ref = PGrid,ref − PPV ES (3.2)

A low-pass filter (LPF) with a time constant of 60 seconds, or a cutoff frequency of 0.0167

Hz, is used to provide the BESS with a power reference referred to as PBESS,ref . The power refer-

ence for the SESS, referred to as PSESS,ref is the difference between PHESS,ref and PBESS,ref and

is comprised of the high frequency components of PHESS,ref . A rule based algorithm, represented

by the ”Rule-Based DOD” function in Fig. 3.10, is used to prevent the BESS SOC from going

above 100% SOC or below it’s DOD of 40%, which is an SOC of 60%. The ”Rule-Based DOD”

function declares that if the SOC of BESS is at 100% and PBESS,ref from the LPF is negative,

meaning the demand on BESS is to charge, then the PBESS,ref signal to BESS will be to provide

0W to the system. Otherwise, PBESS,ref is the output signal from the LPF. Likewise, if the SOC

of BESS is at 60% and PBESS,ref from the LPF is positive, meaning the demand on BESS is to

discharge, then the PBESS,ref signal to BESS will be to provide 0W to the system. Otherwise,

PBESS,ref is the output signal from the LPF.

The reference signals for the BESS and SESS are compared with their current output

powers to determine the change in duty ratio, which controls the ratio of output to input voltage

ratio, necessary to mitigate the proportional error and integral error. This controller is referred

to as a proportional and integral, or PI, controller. The model mask for the BESS PI controller
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Figure 3.10: Simulink HESS Reference Model

and the SESS PI controller are shown in Fig. 3.11 with the inputs being the reference power and

current power and the output is the control signal to their respective DC/DC converters.

Figure 3.11: Simulink HESS PI Controls

The PI controllers for the BESS and SESS are modeled as shown in Figs. 3.12 and 3.13. The

delays (1
z
) in these figures are added to break algebraic loops and improve simulation execution

speed. The difference between the reference power and the current power, as shown in Eq. (3.3),

is used to calculate the PI control signal using Eq. (3.4) [14]. The overshoot of the response

from the converter is controlled by the proportional gain constant KP , which is based on the

present error. The larger KP becomes, the more sensitive the system will be and will result in

stronger overshoots [2]. The settling time of the response from the converter is controlled by the

integral gain constant KI , which is based on the integral error, or accumulating error. The larger

KI becomes, the response will settle faster and will result in less residual steady-state error [2].

However, as KI becomes larger the response has a stronger overshoot that leads to further tuning

of KP to be needed in order to obtain the desired response from the converter.

e(t) = Pactual(t)− Pref (t) (3.3)
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Figure 3.12: Simulink BESS PI Controller Model [2]

Figure 3.13: Simulink SESS PI Controller Model

PI(t) = KP × e(t) +KI

∫ t

0

e(τ)dτ (3.4)

The proportional gain constant KP and the integral gain constant KI for both the BESS

and the SESS converter were found through manual tunning and observing the response of the

converters to reaching PBESS,ref and PSESS,ref respectively with minimal overshoot and quick

settling time. For the BESS PI controller, KP is 6e − 4 and KI is 5e − 3. For the SESS PI

controller, KP is 1e− 3 and KI is 5e− 1.

The PI control signal is adjusted by an initial value Dinit to mitigate initial transients from

the converter’s response caused by a drastic change in duty ratio. Such drastic initial transients

of the PI control signal can harm the energy storage system (ESS). Dinit for both PI controllers

is determined by the initial voltage of the ESS and is set to initialize the output voltage to 500V ,

the DC bus voltage, resulting in an initial reference power level to be 0W . The battery bank’s

initial SOC is 80%, as explained in Section 2.3, which means the battery bank’s initial voltage is

254V based on Simulink model. The battery bank’s voltage is considered the input voltage (254V )
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Table 3.2: BESS PI Controller Limits where DC Bus is 500V
SOC Battery Bank Voltage Duty Ratio
100% 272V 0.54
80% 254V 0.508
60% 250V 0.5017

to the converter and the DC bus voltage (500V ) is considered the output voltage. Theoretically

speaking based on the average model used, when ESS is in charge mode DC/DC converters operate

in buck mode, when ESS is in discharge mode the converters operate in boost mode. According

to the average model of a boost converter, the control signal must be a signal of 1−D where D is

a duty ratio, and the PI controller produces only a duty ratio signal D then the equation shown

in Eq. (3.5) can be simplified to Eq. (3.6). The Dinit for an input voltage of 254V is calculated

to be 0.508.

Vout
Vin

=
1

1−D
(3.5)

=
1

1− (1−D)

Vin
Vout

= D (3.6)

Following the same procedure to find Dinit for the BESS PI controller, Dinit for the SESS

PI controller can be calculated. The input voltage is the supercapacitor bank at it’s initial SOC

of 80%, as mentioned in Section 2.3 that is 216V and the output voltage is the DC bus voltage

that is 500V . Therefore Dinit for the SESS PI controller is calculated to be 0.4315.

In order to prevent the BESS or the SESS from damage caused by a PI control signal

outside of the operating voltage range, mentioned in Section 2.3, a limiter module is placed at the

end of the PI controller model. The limit of the PI controller for the BESS is from 0.6 to 0.4 and

for the SESS is from 0.6 to 0.3. The limits of the PI controllers were found using the operating

range limitations shown in Tables 3.2 and 3.3.

The DC/DC converters being used to control power flow into and out of the BESS and

the SESS are power converters with bidirectional power flow. The change in power flow from the

17



Table 3.3: SESS PI Controller Limits where DC Bus is 500V
SOC SC Bank Voltage Duty Ratio
100% 270V 0.54
80% 216V 0.4315
60% 162V 0.324

ESS to the DC bus or vice-versa is done by an adjustment to the duty ratio that either lowers

or raises the voltage on the current port (ESS side) below or above the current voltage held by

either the battery bank or supercapacitor bank. So, if the battery bank is currently 250V and the

duty ratio is set by the PI controller to be 0.508 than the voltage on the battery bank will rise to

254V essentially charging the BESS with power from the DC bus. The BESS and SESS average

models of a DC/DC converter are shown in Figs. 3.14 and 3.15.

Figure 3.14: BESS Bidirectional DC/DC Converter Average Model [2]

Figure 3.15: BESS Bidirectional DC/DC Converter Average Model [2]

3.5 Power Spectral Density

Once the power signals of the HESS are generated through simulations in Ch. 4, signal processing

is used to analyze the relative effectiveness of the SESS at absorbing high frequency components
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from the HESS. Fourier analysis, which is the decomposition of a time series signal into a sum

of sinusoidal components of different frequencies as explained by Bloomfield [15], can be used

to show the magnitude of various frequencies demanded of the HESS. The nonparametric power

spectral density (PSD) of the SESS and the BESS can be obtained by treating the demand of

HESS signal as a deterministic signal and using the Fourier Transform, which can be done in

Matlab using the Fast Fourier Transform (FFT) command, to convert the signal from the time

domain to the frequency domain. The nonparametric PSD estimate is then calculated as shown

in Eq. (3.7), (3.8), and (3.9). The PSD signal’s amplitude is a scaled factor multiplied by the

absolute square of the FFT. Because the HESS signal in the frequency domain is real-valued and

symmetric, only half of the power estimates need to be calculated and can then be multiplied by

2, to conserve the total power. The exceptions to this are for the zero frequency 0Hz and the

Nyquist frequency
(
N
2

)
Hz shown in Eq. (3.7) and (3.8), which are not repeated and therefore

don’t need to be multiplied by 2 [16]. N is the length of the signal in the time domain. The

frequency range of the signal is from 0Hz to Fs

2
in steps of Fs

N
.

PSD (0Hz) =
1

Fs ×N
× |x (0Hz)|2 (3.7)

PSD

(
N

2
Hz

)
=

1

Fs ×N
×
∣∣∣∣x(N2 Hz

)∣∣∣∣2 (3.8)

PSD

(
0Hz :

N

2
Hz

)
=

2

Fs ×N
×
∣∣∣∣x(0Hz :

N

2
Hz

)∣∣∣∣2 (3.9)

Spectrogram analysis is used to analyze the PSD over specified intervals. This allows

for analysis of the change in magnitudes of discrete frequencies by applying Short-Time Fourier

Transform (STFT) to the signal using a specified windowing method. The spectrogram analysis

that will be presented in Ch. 4 will use the Kaiser window of length 256 samples and shape

parameter β = 5, contain 220 samples of section-to-section overlap, 512 discrete Fourier transform

(DFT) points, and a sampling frequency (fs) of 40 Hz. The sampling frequency is derived from

Eq. (3.10) observing a one hour dispatching period.
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fs = 144000samples/hour × 1

3600
hour/sec (3.10)

= 40samples/sec

= 40Hz
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CHAPTER 4: RESULTS

4.1 One-Hour Detailed Analysis

The simulation model shown in Fig. 4.1 is used in Simulink to demonstrate the ability of the

system to dispatch solar power for one dispatching period on June 9th, 2015 from 11:00 (11 AM)

to 12:00 (12 PM). The system is designed based on the content mentioned in Ch. 3. The PVES,

DC-Link, GCC, and Utility Grid models originated from the 100kW grid-connected PV array

example from Giroux et. al [17].

Figure 4.1: Solar Farm with HESS Matlab Simulink Model

The simulation uses the irradiance and temperature as mentioned in Section 3.2 and is

shown in Fig. 4.2. PGrid,est level as mentioned in Section 3.3 is calculated prior to the start of the

simulation using the given solar data. The average irradiance, shown in Fig. 4.3, is multiplied

by the average efficiency determined by the average temperature, shown in Fig. 4.4 to provide

PGrid,est. The one-hour simulation does not account for factoring the 0.95 coefficient mentioned

in Section 3.3 or any adjustment to the estimate during the simulation so PGrid,est = PGrid,ref and

is calculated as shown in Eq. (4.1).
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Figure 4.2: Solar Data for June 9th, 2015 from 11:00 to 12:00 [2]

Figure 4.3: Interpolated Plot of MPP’s for PV array at 25◦C [2]

PGrid,ref = 76.16kW × 97.7% = 74.4535kW (4.1)

The results in Fig. 4.5 show accurate dispatching for the entire dispatching period, besides

initial transients. The PPV ES signal appears to be thick in some places during the dispatching

period as a result of oscillations around the MPP caused by the IncCond algorithm. The PGrid

signal is almost completely flat and maintains an error of about 0.6% calculated by Eq. (4.2).
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Figure 4.4: Interpolated plot of MPP’s for PV array at 1kW/m2 [2]

Figure 4.5: PVES, HESS, and Grid Power for June 9th, 2015 from 11:00 to 12:00 [2]

Error(%) =
PGrid,ref − PGrid

PGrid,ref

× 100 (4.2)

Using spectrogram analysis of the HESS, as mentioned in Section 3.5, it is revealed that

the SESS absorbs the high frequency components of the HESS. The spectrogram of the HESS is

shown in Fig. 4.6 and contains large magnitudes of both high and low frequency components. By

comparing the magnitudes of high frequency components from the spectrogram of the SESS in
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Figure 4.6: Spectrogram Analysis of HESS for June 9th, 2015 from 11:00 to 12:00

Figure 4.7: Spectrogram Analysis of SESS for June 9th, 2015 from 11:00 to 12:00

Fig. 4.7 to the spectrogram of the BESS in Fig. 4.8, the observation of absorption by the SESS of

high frequency components can be made. Conversely, the spectrogram of the BESS shows that

most of the low frequency components of the HESS are absorbed by the BESS because of the

first-order low pass filter.
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Figure 4.8: Spectrogram Analysis of BESS for June 9th, 2015 from 11:00 to 12:00

4.2 Full Day Dispatching

The simulation model from Fig. 4.1 is used again to demonstrate the ability of the system to

dispatch solar power for 15 consecutive hours, from sunrise to sunset. The simulation uses the

irradiance and temperature as mentioned in Section 3.2 from June 9th, 2015 from 5:00 (5 AM) to

20:00 (8 PM) and is shown in Fig. 4.9. PGrid,est as mentioned in Section 3.3 is calculated prior to

the start of the simulation using the given solar data and is shown in Fig. 4.10.

The reference power for the system PGrid,ref is an adjusted value of the PGrid,est made during

the simulation as mentioned in Section 3.3. The output from the system PGrid and PGrid,ref are

shown in Fig. 4.11. The error, measured in %, of PGrid from PGrid,ref is measured by the equation

Error(%) =
|PGrid,ref−PGrid|

PGrid,ref
and is shown in Fig. 4.12. During peak hours of the day the error is

below 1% and during non-peak hours the error is below 16%.

The other power profiles observed through simulation are from the PVES (PPV ES), BESS

(PBESS), and SESS (PSESS). Their power outputs, along with the dispatched power PGrid are

shown in Fig. 4.13. The thicker part of PPV ES is a direct result of the IncCond MPPT algorithm

as mentioned in Section 2.3.

Observing the SOC of the BESS show that the adjustments made to PGrid,est were effective.

Consistency of the capacity available from the BESS at the start of each dispatching period is
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Figure 4.9: Solar Data for June 9th, 2015 from 5:00 to 20:00 [3]

Figure 4.10: PGrid,est for June 9th, 2015 from 5:00 to 20:00

vital to its reliability. The SOC of the BESS for June 9th, 2015 from 5:00 to 20:00 is shown in

Fig. 4.14.

Some further investigation into the power profile of the BESS revealed that the minimum

26



Figure 4.11: Dispatched Power in Comparison to it’s Reference for June 9th, 2015 from 5:00 to
20:00

Figure 4.12: Error of Dispatched Power for June 9th, 2015 from 5:00 to 20:00

capacity required of the lead-acid battery bank to be appropriately functioning component of the

solar dispatching system. First, the absolute maximum amount of energy, measured in kWhr,

used by the BESS during each dispatching period is calculated and compared amongst the other
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Figure 4.13: PVES, HESS, and Grid Power for June 9th, 2015 from 5:00 to 20:00

Figure 4.14: BESS SOC for June 9th, 2015 from 5:00 to 20:00

periods’ maximum energies by integrating the power curve over one hour. The maximum of these

maximums is the minimum amount of total energy capacity the lead-acid battery bank can be,

i.e. oversizing the lead-acid battery bank is any capacity greater than the MinimumEnergyBESS.
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The energy in kWhr used by the BESS is shown in Fig. 4.15.

Figure 4.15: BESS Energy used for June 9th, 2015 from 5:00 to 20:00

The absolute maximum amount of energy used by the BESS over all dispatching periods

is 8.956kWhr. However, because the DOD of the lead-acid battery bank is 40% the minimum

amount of capacity required is 8.956kWhr from 100% SOC to 80% SOC and 8.956kWhr from 80%

SOC to 60% SOC. This results in the minimum capacity sizing for the BESS to be ≈ 45kWhr.

The size of the BESS used in this simulation was 50kWhr.

An attempt at solving for the optimum size of the SESS was made by first finding the

maximum amount of energy, in terms of kWhr, required of the SESS by integrating the power

profile over each dispatching period. The integration method used on the SESS is the same as

the one used to calculate the minimum capacity needed for the BESS. The maximum amount

of energy used by the SESS was 2.2935kWhr and is therefore the minimum amount of energy

capacity required for the SESS to have. Next, to relate the energy of a capacitor to some capacity

measured in Farads, the conversion from kWhr to Joules is calculated using Eq. (4.3) and can

then be used in Eq. (4.4) to be converted to Farads. V in Eq. (4.4) is set to 216V , which is

assumed to be an SOC for the SESS of 80%.
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Energy (Joules) = Energy (kWh)× 3.6e6 (4.3)

Minimum EnergySESS = 2.2935 kWh× 3.6e6

Minimum EnergySESS = 8.2566e6 Joules

Capacity (Farads) =
2× Energy (Joules)

(V )2
(4.4)

Minimum CapacitySESS =
2× 8.2566e6 Joules

(216V )2

Minimum CapacitySESS ≈ 352 Farads

A simulation using the SESS with a nominal voltage of 270V and a capacitance of 352F ,

resulted with a failure of the supercapacitor bank to maintain enough charge to successfully

complete the dispatching period. Therefore, a capacitance of 700F was used for the successful

simulation presented in this section. Further research should be done into properly calculating

the optimal size of the SESS to create an optimally sized HESS for solar power dispatching.

As mentioned in Section 2.3, mitigation of high frequency components and the number of

charge/discharge cycles in the BESS will help to improve the lifespan of the lead-acid battery bank.

By running the same system mentioned earlier in this section without the SESS, a comparison

can be done to determine the magnitude of mitigation to the number of charge/discharge cycles

by the BESS without the SESS to absorb the high frequency components of the HESS. With the

SESS present the BESS encountered 77 charge/discharge cycles. Without the SESS the BESS

encountered 119 charge/discharge cycles. The results were a 45% reduction in charge/discharge

cycles with the SESS included in the HESS.
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CHAPTER 5: CONCLUSION AND FUTURE WORK

In conclusion, the HESS provided the necessary power to provide a constant and reliable

renewable power source from intermittent solar power. Also, the integrated supercapacitor bank to

the HESS provided a relief to the lead-acid battery bank by absorbing high frequency components

and mitigating the number of charge/discharge cycles. The optimization of sizing to the BESS

could prove helpful in the future of designing affordable and reliable energy storage systems for

solar power.

The minimum capacity size the BESS in this system was found to be a lead-acid battery

bank with the nominal voltage of 250V and 200Ahr. However, size optimization should be done

for SESS in future work. The progress made towards an optimal size calculation for the SESS is

mentioned in Section 4.2 and could be a good start for further research into size optimization of the

HESS for solar power dispatching. Optimizing the size of the SESS would allow this research to

become feasible with regards to being able to perform cost analysis of the system. Cost analysis

would include return on investment (ROI) analysis to validate or reject the hypothesis that a

HESS consisting of lead-acid batteries and supercapacitors is an effective method to reduce long

term costs of dispatching solar power through an HESS.

Furthermore, obeying charging and discharging rate requirements are essential to optimize

the efficiency of the storage systems. Future work may also include implementing a three stage

battery charging mechanism to charge the lead-acid battery [18]. This advanced charging system,

known as Double Float Charging System is intended to prolong the lifespan and efficiency of the

battery. The first stage (Constant Current) charges the battery at a constant current, allowing

the voltage to rise, until the SOC reaches 70%. The second stage (Constant Voltage) charges the

battery at a constant voltage at the voltage level reached at the end of the first charging state,

allowing the current to decrease, until the SOC reaches 90%. The third stage (Float Charge)

compensates for self-discharge of the battery by pulsing small amounts of current into the battery

maintaining an SOC between 91% and 100%. It should be noted that although implementing

this charging method would increase the lifespan of the battery bank, it would also increase the
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required capacity size of the supercapacitor bank and therefore would significantly increase the

cost of the HESS.
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APPENDIX A: SOURCE CODE

1 clc; clear all;
2 %% Pre-Simulation Code
3 % 15-Hour Dispatch
4 % 05:00 (5AM) to 20:00 (8PM) on June 9th, 2015
5

6 STH = 15; % SimTime in hours
7 ST = 3600*STH; % 3600s = 60mins = 1hr, 30hrs = 108000
8

9 % Step 1: Input Actual Irradiance and Temperature Data
10 % Step 2: Interpolate Data
11 % Step 3: Find Average Irradiance and Temperature
12 % Step 4: Plot Irradiation and Temperature
13 % Step 5: Estimate Average PV Output Power
14 % Step 6: Clear Unnecessary Variables
15 % Misc: Data Source Information
16

17

18 %% Step 1: Input Actual Irradiance and Temperature
19

20 % Irradiance (Ir) measured in W/mˆ2 was sampled every minute
21 Ir = [...] % Insert Irradiance from ORNL
22 % Time axis of Ir (Irt) is converted from mins to secs
23 Irt = 0:60:ST;
24

25 % Temperature (Temp) measured in degrees C was sampled every minute
26 Temp = [...] % Insert Temperature from ORNL
27 % Time axis of Temp (Tempt) is converted from mins to secs
28 Tempt = 0:60:ST;
29

30 % Irradiance data and time saved as structure
31 Irradiance.signals.values = Ir';
32 Irradiance.time = Irt';
33 save('Irradiance.mat','Irradiance');
34

35 % Temperature data and time saved as structure
36 Temperature.signals.values = Temp';
37 Temperature.time = Tempt';
38 save('Temperature.mat','Temperature');
39

40

41 %% Step 2: Interpolate Data
42 t2 = 0:0.5:ST;
43 SpHr = (1/(0.5))*60*60;
44

45 % Interpolate (Connect missing data points) of original Ir data to new time ...
axis

46 Ir2 = interp1(Irt,Ir,t2,'cubic');
47 Irradiance Interp.signals.values = Ir2';
48 Irradiance Interp.time = t2';
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49 save('Irradiance Interp.mat','Irradiance Interp');
50

51 % Interpolate (Connect missing data points) of original Temp data to new ...
time axis

52 Temp2 = interp1(Tempt,Temp,t2,'cubic');
53 Temperature Interp.signals.values = Temp2';
54 Temperature Interp.time = t2';
55 save('Temperature Interp.mat','Temperature Interp');
56

57

58 %% Step 3: Find Average Irradiance and Temperature
59

60 % Irradiation
61 Ir Avg(1) = mean(Ir2(1,SpHr+1));
62 for i = 2:STH
63 Ir Avg(i) = mean(Ir2((i-1)*SpHr+2:i*SpHr+1));
64 end
65

66 % Temperature
67 Temp Avg(1) = mean(Temp2(1,SpHr+1));
68 for i = 2:STH
69 Temp Avg(i) = mean(Temp2((i-1)*SpHr+2:i*SpHr+1));
70 end
71

72

73 %% Step 4: Estimate Average PV Output Power
74 % Based on Solar Cell Characteristics in Matlab Simulink
75

76 % Irradation versus Power Model
77 Irr Model = [0 250 500 750 1000]; % x = Irr Model
78 Irr Power Model = [0 22.68 48.75 74.25 100.73]; % y = Irr Power Model
79 Irr Model interp = 0:0.01:1000; % xx = Irr Model interp
80 Irr Power Model interp = spline(Irr Model,Irr Power Model,...
81 Irr Model interp); % yy = Irr Pow Model interp
82

83 % Temperature versus Efficiency Model
84 Temp Model = [0 25 50 75 100]; % x = Temp Model
85 Temp Power Model = [1.1 1.0 0.85 0.75 0.65]; % y = Temp Power Model
86 Temp Model interp = 0:0.01:100; % xx = Temp Model interp
87 Temp Power Model interp = spline(Temp Model,Temp Power Model,...
88 Temp Model interp); % yy = Irr Pow Model interp
89

90 % Estimate Average PV Output Power
91 for i = 1:STH
92 P(i) = Irr Power Model interp(round(length(Irr Power Model interp)...
93 *Ir Avg(i)/Irr Model interp(end)));
94 T(i) = Temp Power Model interp(round(length(Temp Power Model interp)...
95 *Temp Avg(i)/Temp Model interp(end)));
96 P Grid Est(i) = 0.95*P(i)*T(i);
97 end
98 save('P Grid Est.mat','P Grid Est');
99

100

101 %% Step 6: Clear Unnecessary Variables
102 clc; clear all;
103 load('P Grid Est.mat');
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104 load('Irradiance.mat');
105 load('Temperature.mat');
106

107

108 %% Misc: Source Information
109 % Oak Ridge National Laboratory (ORNL)
110 % Rotating Shadowband Radiometer (RSR)
111 % Oak Ridge, Tennessee
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1 %% Grid Reference Power Factor
2

3 function mult = fcn(SOC)
4

5 if SOC ≤ 100 && SOC > 92
6 mult = 1.1;
7 elseif SOC ≤ 92 && SOC > 84
8 mult = 1.05;
9 elseif SOC ≤ 84 && SOC > 76

10 mult = 1.00;
11 elseif SOC ≤ 76 && SOC > 68
12 mult = 0.95;
13 elseif SOC ≤ 68 && SOC ≥ 60
14 mult = 0.90;
15 else
16 mult = 1.00;
17 end
18

19 end

40



1 %% IncCond MPPT
2

3 function D = IncCond(Param, Enabled, V, I)
4

5 % MPPT controller based on the Incremental Conductance algorithm.
6

7 % D output = Duty cycle of the boost converter (value between 0 and 1)
8 %
9 % Enabled input = 1 to enable the MPPT controller

10 % V input = PV array terminal voltage (V)
11 % I input = PV array current (A)
12 %
13 % Param input:
14 Dinit = Param(1); %Initial value for D output
15 Dmax = Param(2); %Maximum value for D
16 Dmin = Param(3); %Minimum value for D
17 ∆D = Param(4); %Increment value used to increase/decrease the duty cycle D
18 % ( increasing D = decreasing Vref )
19 %
20

21 persistent Vold Iold Dold;
22

23 dataType = 'double';
24

25 if isempty(Vold)
26 Vold=0;
27 Dold=Dinit;
28 Iold=0;
29 end
30

31 dV = V - Vold;
32 dI = I - Iold;
33

34 if dV 6= 0 && Enabled 6=0
35 if dI/dV 6= (-1*I/V)
36 if dI/dV < (-1*I/V)
37 D = Dold - ∆D;
38 else
39 D = Dold + ∆D;
40 end
41 else
42 D = Dold;
43 end
44 else
45 if dI 6= 0
46 if dI > 0
47 D = Dold + ∆D;
48 else
49 D = Dold - ∆D;
50 end
51 else
52 D = Dold;
53 end
54 end
55

56 if D ≥ Dmax | | D ≤ Dmin
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57 D = Dold;
58 end
59

60 Dold = D;
61 Vold = V;
62 Iold = I;
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1 %% Rule Based DOD for BESS
2

3 function y = fcn(SOC,u)
4

5 if u ≥ 0 % Discharge
6 if SOC > 60
7 y = u;
8 else
9 y = 0;

10 end
11 else % u < 0 = Charge
12 if SOC < 100
13 y = u;
14 else
15 y = 0;
16 end
17 end
18

19 end
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1 %% POST-SIMULATION CODE
2 % 15-Hour Dispatch
3 % 05:00 (5AM) to 20:00 (8PM) on June 9th, 2015
4

5 D Hours = 15;
6

7 %% Save
8 save('Power.mat','P Out','P PVES','P BESS','P SESS','P Grid Ref',...
9 'P Grid Ref Factor');

10 save('Battery.mat','Bat V','Bat I','Bat SOC');
11 save('SC.mat','SC V','SC I','SC SOC');
12 save('Duty.mat','OMD BESS','OMD SESS');
13 TM = 0:D Hours/(length(Time)-1):D Hours;
14 TM2 = 0:D Hours/(length(Irradiance.time)-1):D Hours;
15 save('Time.mat','Time','TM','TM2');
16 save('Grid Ref.mat','P Grid Est','P Grid Ref Factor','P Grid Ref');
17

18 Error = P Grid Ref - P Out;
19 ErrorP = ((P Grid Ref - P Out)./(P Grid Ref)).*100;
20 save('Error.mat','Error','ErrorP');
21

22 %% Load
23 % load('Power.mat');
24 % load('Battery.mat');
25 % load('SC.mat');
26 % load('Duty.mat');
27 % load('Time.mat');
28 % load('Grid Ref.mat');
29 % load('Error.mat');
30

31

32 %% Step 1: Plot Output Power
33 figure(1)
34 plot(TM,P PVES,TM,P BESS,TM,P SESS,TM,P Grid Ref,TM,P Out,'LineWidth',1);
35 xlabel('Time (Hours)','FontSize',24); ylabel('Power (kW)','FontSize',26);
36 legend('P {Grid,Ref}','P {Grid}','P {PVES}','P {BESS}','P {SESS}'...
37 ,'FontSize',18);
38 set(gca,'fontsize',18)
39 grid on;
40

41

42 %% Step 2: Plot Battery Characteristics (Voltage, Current, and SOC)
43 figure(2)
44 subplot(311);
45 plot(TM,Bat V);
46 title('Battery: Voltage');
47 xlabel('Time (Hours)','FontSize',24); ylabel('Voltage (V)','FontSize',26);
48 set(gca,'fontsize',18)
49 grid on;
50

51 subplot(312);
52 plot(TM,Bat I);
53 title('Battery: Current');
54 xlabel('Time (Hours)','FontSize',24); ylabel('Current (A)','FontSize',26);
55 set(gca,'fontsize',18)
56 grid on;
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57

58 subplot(313);
59 plot(TM,Bat SOC);
60 title('Battery: SOC');
61 xlabel('Time (Hours)','FontSize',24); ylabel('SOC (%)','FontSize',26);
62 set(gca,'fontsize',18)
63 grid on;
64

65

66 %% Step 3: Plot SC Characteristics (Voltage, Current, and SOC)
67 figure(3)
68 subplot(311);
69 plot(TM,SC V);
70 title('SC: Voltage');
71 xlabel('Time (Hours)','FontSize',24); ylabel('Voltage (V)','FontSize',26);
72 set(gca,'fontsize',18)
73 grid on;
74

75 subplot(312);
76 plot(TM,SC I);
77 title('SC: Current');
78 xlabel('Time (Hours)','FontSize',24); ylabel('Current (A)','FontSize',26);
79 set(gca,'fontsize',18)
80 grid on;
81

82 subplot(313);
83 plot(TM,SC SOC);
84 title('SC: SOC');
85 xlabel('Time (Hours)','FontSize',24); ylabel('SOC (%)','FontSize',26);
86 set(gca,'fontsize',18)
87 grid on;
88

89

90 %% Step 4: Plot Error
91 figure(4)
92 plot(TM,ErrorP);
93 title('Error');
94 xlabel('Time (Hours)','FontSize',24); ylabel('Error (%)','FontSize',26);
95 set(gca,'fontsize',18)
96 grid on;
97

98

99 %% Step 5: Plot one min D
100 figure(5)
101 subplot(211)
102 plot(TM,OMD BESS);
103 title('Battery Duty Ratio');
104 xlabel('Time (Hours)','FontSize',24); ylabel('1-D','FontSize',24);
105 set(gca,'fontsize',18)
106 grid on;
107

108 subplot(212)
109 plot(TM,OMD SESS);
110 title('SC Duty Ratio');
111 xlabel('Time (Hours)','FontSize',24); ylabel('1-D','FontSize',26);
112 set(gca,'fontsize',18)
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113 grid on;
114

115

116 %% Step 6: Plot Grid Reference Power
117 figure(6)
118 plot(TM,P Grid Est,'*-',TM,P Grid Ref,'LineWidth',2);
119 title('Grid Reference Power');
120 xlabel('Time (Hours)','FontSize',24); ylabel('Power (kW)','FontSize',26);
121 legend('P {Grid,Est}','P {Grid,Ref}','FontSize',18);
122 set(gca,'fontsize',18)
123 grid on;
124

125

126 %% Step 7: Plot Irradiation and Temperature
127 figure(7)
128 [ax,p1,p2] = plotyy(TM2,Irradiance.signals.values,TM2...
129 ,Temperature.signals.values,'plot'); % Plot Ir2 and Temp2 on same graph
130 ylabel(ax(1),'Irradiance (W/mˆ2)'); % y1-axis = Irradiance
131 ylabel(ax(2),'Temperature (C)'); % y2-axis = Temperature
132 legend('Irradiance (W/mˆ2)','Temperature (C)');
133 set(gca,'fontsize',18)
134 grid on;
135 title('Irradiation and Temperature');
136 xlabel(ax(1),'Time (Hours)'); % x-axis = time
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1 %% Capacity Requirements for Hybrid Energy Storage System
2

3 %% Table of Contents
4 % Initial Parameters
5 % Section 1: HESS Capacity
6 % Figure 1: HESS Capacity vs. Time
7 % Section 2: BESS Capacity
8 % Figure 2: BESS Capacity vs. Time
9 % Section 3: SESS Capacity

10 % Figure 3: SESS Capacity vs. Time
11

12 %% Initial Parameters
13 clc; clear all; close all;
14 load('Power.mat'); load('Time.mat');
15

16 Total Hours = 15;
17

18 Time mins = 0:round(Time(end)/60)/(length(Time)-1):round(Time(end)/60);
19 P HESS = P Out - P PVES;
20

21 %% Section 1: HESS Capacity
22 % Integrate
23 N = (length(P HESS)-1)/Total Hours;
24

25 for i = 0:Total Hours-1
26 k = 1 + i*(length(P Out)-1)/Total Hours; % starting point of integration
27

28 sum(k) = P HESS(k)/N;
29 for j = k+1:k+N-1
30 sum(j) = sum(j-1) + P HESS(j)/N;
31 end
32 sum(k+N) = sum(k+N-1) + P HESS(j)/N;
33

34 bounds(i+1,:) = [abs(min(sum(k:k+N))) abs(max(sum(k+N)))];
35 HESS Capacity(i+1) = max(bounds(i+1,:));
36 end
37

38 % Figure 1: HESS Capacity vs. Time
39 figure(1)
40 [ax,p1,p2] = plotyy(HOD,P HESS,HOD,sum); % Plot Ir2 and Temp2 on same graph
41 xlabel(ax(2),'Time (Hour of Day)'); % x-axis = time
42 ylabel(ax(1),'HESS Power (kW)'); % y1-axis = Irradiance
43 ylabel(ax(2),'HESS Capacity (kW/Hour)'); % y2-axis = Temperature
44 p1.LineWidth = 2; % Irradiance line is width = 2
45 p2.LineWidth = 2; % Temperature line is width = 2
46 set(ax(1),'YLim',[-50 50]);
47 set(ax(1),'YTick',[-50:10:50]);
48 set(ax(1),'fontsize',14);
49 set(ax(2),'YLim',[-10 10]);
50 set(ax(2),'YTick',[-10:2:10]);
51 set(ax(2),'fontsize',14);
52 legend('HESS Power (kW)','HESS Capacity Calculated (kW/Hour)');
53 grid on;
54 title('HESS Power and Capacity');
55

56
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57 %% Section 2: BESS Capacity
58 % Integrate
59 N = (length(P BESS)-1)/Total Hours;
60

61 for i = 0:Total Hours-1
62 k = 1 + i*N; % starting point of integration
63

64 sum(k) = P BESS(k)/N;
65 for j = k+1:k+N-1
66 sum(j) = sum(j-1) + P BESS(j)/N;
67 end
68 sum(k+N) = sum(k+N-1) + P BESS(j)/N;
69

70 bounds(i+1,:) = [abs(min(sum(k:k+N))) abs(max(sum(k+N)))];
71 BESS Capacity(i+1) = 5*max(bounds(i+1,:));
72 end
73

74 % Figure 2: BESS Capacity vs. Time
75 figure(2)
76 [ax,p1,p2] = plotyy(HOD,P BESS,HOD,sum); % Plot Ir2 and Temp2 on same graph
77 xlabel('Time (Hour of Day)'); % x-axis = time
78 ylabel(ax(1),'BESS Power (kW)'); % y1-axis = Irradiance
79 ylabel(ax(2),'BESS Capacity (kW/Hour)'); % y2-axis = Temperature
80 p1.LineWidth = 2; % Irradiance line is width = 2
81 p2.LineWidth = 2; % Temperature line is width = 2
82 set(ax(1),'YLim',[-50 50]);
83 set(ax(1),'YTick',[-50:10:50]);
84 set(ax(1),'fontsize',18);
85 set(ax(2),'YLim',[-10 10]);
86 set(ax(2),'YTick',[-10:2:10]);
87 set(ax(2),'fontsize',18);
88 legend('BESS Power (kW)','BESS Capacity Calculated (kW/Hour)');
89 grid on;
90 % title('BESS Power and Capacity');
91

92

93 %% Section 3: SESS Capacity
94 % Integrate
95 N = (length(P SESS)-1)/Total Hours;
96

97 for i = 0:Total Hours-1
98 k = 1 + i*N; % starting point of integration
99

100 sum(k) = P SESS(k)/N;
101 for j = k+1:k+N-1
102 sum(j) = sum(j-1) + P SESS(j)/N;
103 end
104 sum(k+N) = sum(k+N-1) + P SESS(j)/N;
105

106 bounds(i+1,:) = [abs(min(sum(k:k+N))) abs(max(sum(k+N)))];
107 SESS Capacity(i+1) = 2*max(bounds(i+1,:));
108 end
109

110 % Figure 3: SESS Capacity vs. Time
111 figure(3)
112 [ax,p1,p2] = plotyy(HOD,P SESS,HOD,sum); % Plot Ir2 and Temp2 on same graph
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113 xlabel(ax(2),'Time (Hour of Day)'); % x-axis = time
114 ylabel(ax(1),'SESS Power (kW)'); % y1-axis = Irradiance
115 ylabel(ax(2),'SESS Capacity (kW/Hour)'); % y2-axis = Temperature
116 p1.LineWidth = 2; % Irradiance line is width = 2
117 p2.LineWidth = 2; % Temperature line is width = 2
118 set(ax(1),'YLim',[-50 50]);
119 set(ax(1),'YTick',[-50:10:50]);
120 set(ax(1),'fontsize',14);
121 set(ax(2),'YLim',[-10 10]);
122 set(ax(2),'YTick',[-10:2:10]);
123 set(ax(2),'fontsize',14);
124 legend('SESS Power (kW)','SESS Capacity Calculated (kW/Hour)');
125 grid on;
126 title('SESS Power and Capacity');
127

128

129 %% Section 4: Output Results
130 fprintf('HESS required capacity is: %g kW/hr \n',max(HESS Capacity));
131

132 fprintf('If BESS starts at an SOC of 80%%,\n');
133 fprintf('then the minimum required capacity is: %g kW/hr ...

\n',max(BESS Capacity));
134

135 fprintf('If SESS starts at an SOC of 50%%,\n');
136 fprintf('then the minimum required capacity is: %g kW/hr ...

\n',max(SESS Capacity));
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1 %% Compare Charge/Discharge Cycles of BESS With SESS vs. Without SESS
2 % 15-Hour Dispatch with SESS vs. without SESS
3 % 05:00 (5AM) to 20:00 (8PM) on June 9th, 2015
4

5 load('Power.mat'); load('Power Without SESS.mat'); load('Time.mat');
6

7

8 %% Charge/Discharge: WITH SESS
9 N = (length(P BESS)-1)/Total Hours;

10 Charge wSESS = zeros(1,Total Hours+1);
11 Discharge wSESS = zeros(1,Total Hours+1);
12

13 for i = 0:Total Hours-1
14 k = 1 + i*N; % starting point of integration
15

16 for j = k+1:k+N
17 if P BESS(j-1) ≤ 0 && P BESS(j) > 0
18 Charge wSESS(i+1) = Charge wSESS(i+1) + 1;
19 elseif P BESS(j-1) ≥ 0 && P BESS(j) < 0
20 Discharge wSESS(i+1) = Discharge wSESS(i+1) + 1;
21 end
22 end
23

24 end
25

26 %% Charge/Discharge: NO SESS
27 N = (length(P BESS No SESS)-1)/Total Hours;
28 Charge wSESS No SESS = zeros(1,Total Hours+1);
29 Discharge wSESS No SESS = zeros(1,Total Hours+1);
30

31 for i = 0:Total Hours-1
32 k = 1 + i*N; % starting point of integration
33

34 for j = k+1:k+N
35 if P BESS No SESS(j-1) ≤ 0 && P BESS No SESS(j) > 0
36 Charge wSESS No SESS(i+1) = Charge wSESS No SESS(i+1) + 1;
37 elseif P BESS No SESS(j-1) ≥ 0 && P BESS No SESS(j) < 0
38 Discharge wSESS No SESS(i+1) = Discharge wSESS No SESS(i+1) + 1;
39 end
40 end
41

42 end
43

44

45 TH = 0:Total Hours;
46

47 figure();
48 plot(TH,Charge wSESS,TH,Charge wSESS No SESS);
49 legend('Charges','Charges No SESS');
50 title('Charges with vs. w/out SESS')
51 xlabel('Hour'); ylabel('Number of Cycles');
52

53 figure();
54 plot(TH,Discharge wSESS,TH,Discharge wSESS No SESS);
55 legend('Discharges','Discharges No SESS');
56 title('Disharges with vs. w/out SESS')
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57 xlabel('Hour'); ylabel('Number of Cycles');
58

59 clear sum;
60

61 CandD wSESS = sum(Charge wSESS) + sum(Discharge wSESS');
62 CandD NO SESS = sum(Charge wSESS No SESS) + sum(Discharge wSESS No SESS);
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1 clc; clear all;
2 %% Pre-Simulation Code
3 % 1-Hour Dispatch
4 % 11:00 (11AM) to 12:00 (12:00PM) on June 9th, 2015
5

6 STH = 1; % SimTime in hours
7 ST = 3600*STH; % 3600s = 60mins = 1hr
8

9 % Step 1: Input Actual Irradiance and Temperature Data
10 % Step 2: Interpolate Data
11 % Step 3: Find Average Irradiance and Temperature
12 % Step 4: Plot Irradiation and Temperature
13 % Step 5: Estimate Average PV Output Power
14 % Step 6: Clear Unnecessary Variables
15 % Misc: Data Source Information
16

17

18 %% Step 1: Input Actual Irradiance and Temperature
19

20 % Irradiance (Ir) measured in W/mˆ2 was sampled every minute
21 Ir = [...] % Insert Irradiance from ORNL
22 % Time axis of Ir (Irt) is converted from mins to secs
23 Irt = 0:60:ST;
24

25 % Temperature (Temp) measured in degrees C was sampled every minute
26 Temp = [...] % Insert Temperature from ORNL
27 % Time axis of Temp (Tempt) is converted from mins to secs
28 Tempt = 0:60:ST;
29

30 % Irradiance data and time saved as structure
31 Irradiance.signals.values = Ir';
32 Irradiance.time = Irt';
33 save('Irradiance.mat','Irradiance');
34

35 % Temperature data and time saved as structure
36 Temperature.signals.values = Temp';
37 Temperature.time = Tempt';
38 save('Temperature.mat','Temperature');
39

40

41 %% Step 2: Interpolate Data
42 t2 = 0:0.5:ST;
43 SpHr = (1/(0.5))*60*60;
44

45 % Interpolate (Connect missing data points) of original Ir data to new
46 % time axis
47 Ir2 = interp1(Irt,Ir,t2,'cubic');
48 Irradiance Interp.signals.values = Ir2';
49 Irradiance Interp.time = t2';
50 save('Irradiance Interp.mat','Irradiance Interp');
51

52 % Interpolate (Connect missing data points) of original Temp data
53 % to new time axis
54 Temp2 = interp1(Tempt,Temp,t2,'cubic');
55 Temperature Interp.signals.values = Temp2';
56 Temperature Interp.time = t2';
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57 save('Temperature Interp.mat','Temperature Interp');
58

59

60 %% Step 3: Find Average Irradiance and Temperature
61

62 % Irradiation
63 Ir Avg(1) = mean(Ir2(1:SpHr+1));
64 % for i = 2:STH
65 % Ir Avg(i) = mean(Ir2((i-1)*SpHr+2:i*SpHr+1));
66 % end
67

68 % Temperature
69 Temp Avg(1) = mean(Temp2(1:SpHr+1));
70 % for i = 2:STH
71 % Temp Avg(i) = mean(Temp2((i-1)*SpHr+2:i*SpHr+1));
72 % end
73

74

75 %% Step 4: Estimate Average PV Output Power
76 % Based on Solar Cell Characteristics in Matlab Simulink
77

78 % Irradation versus Power Model
79 Irr Model = [0 250 500 750 1000]; % x = Irr Model
80 Irr Power Model = [0 22.68 48.75 74.25 100.73]; % y = Irr Power Model
81 Irr Model interp = 0:0.01:1000; % xx = Irr Model interp
82 Irr Power Model interp = spline(Irr Model,Irr Power Model...
83 ,Irr Model interp); % yy = Irr Pow Model interp
84

85 % Temperature versus Efficiency Model
86 Temp Model = [0 25 50 75 100]; % x = Temp Model
87 Temp Power Model = [1.1 1.0 0.85 0.75 0.65]; % y = Temp Power Model
88 Temp Model interp = 0:0.01:100; % xx = Temp Model interp
89 Temp Power Model interp = spline(Temp Model,Temp Power Model...
90 ,Temp Model interp); % yy = Irr Pow Model interp
91

92 % Estimate Average PV Output Power
93 for i = 1:STH
94 P(i) = Irr Power Model interp(round(length(Irr Power Model interp)...
95 *Ir Avg(i)/Irr Model interp(end)));
96 T(i) = Temp Power Model interp(round(length(Temp Power Model interp)...
97 *Temp Avg(i)/Temp Model interp(end)));
98 P Grid Est(i) = 0.95*P(i)*T(i);
99 end

100 save('P Grid Est.mat','P Grid Est');
101

102

103 %% Step 6: Clear Unnecessary Variables
104 clc; clear all;
105 load('P Grid Est.mat');
106 load('Irradiance.mat');
107 load('Temperature.mat');
108

109

110 %% Misc: Source Information
111 % Oak Ridge National Laboratory (ORNL)
112 % Rotating Shadowband Radiometer (RSR)
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113 % Oak Ridge, Tennessee
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1 %% POST-SIMULATION CODE
2 % 1-Hour Dispatch
3 % 11:00 (11AM) to 12:00 (12:00PM) on June 9th, 2015
4

5 D Hours = 1;
6

7 %% Save
8 save('Power.mat','P Out','P PVES','P BESS','P SESS','P Grid Ref'...
9 ,'P Grid Ref Factor');

10 save('Battery.mat','Bat V','Bat I','Bat SOC');
11 save('SC.mat','SC V','SC I','SC SOC');
12 save('Duty.mat','OMD BESS','OMD SESS');
13 TM = 0:D Hours/(length(Time)-1):D Hours;
14 TM2 = 0:D Hours/(length(Irradiance.time)-1):D Hours;
15 save('Time.mat','Time','TM','TM2');
16 save('Grid Ref.mat','P Grid Est','P Grid Ref Factor','P Grid Ref');
17

18 Error = P Grid Ref - P Out;
19 ErrorP = ((P Grid Ref - P Out)./(P Grid Ref)).*100;
20 save('Error.mat','Error','ErrorP');
21

22 %% Load
23 % load('Power.mat');
24 % load('Battery.mat');
25 % load('SC.mat');
26 % load('Duty.mat');
27 % load('Time.mat');
28 % load('Grid Ref.mat');
29 % load('Error.mat');
30

31

32 %% Step 1: Plot Output Power
33 figure(1)
34 plot(TM,P Grid Ref,TM,P Out,TM,P PVES,TM,P BESS,TM,P SESS,'LineWidth',2);
35 xlabel('Time (Hours)','FontSize',24); ylabel('Power (kW)','FontSize',26);
36 legend('P {Grid,Ref}','P {Grid}','P {PVES}','P {BESS}','P {SESS}'...
37 ,'FontSize',18);
38 set(gca,'fontsize',18)
39 grid on;
40

41

42 %% Step 2: Plot Battery Characteristics (Voltage, Current, and SOC)
43 figure(2)
44 subplot(311);
45 plot(TM,Bat V);
46 title('Battery: Voltage');
47 xlabel('Time (Hours)','FontSize',24); ylabel('Voltage (V)','FontSize',26);
48 set(gca,'fontsize',18)
49 grid on;
50

51 subplot(312);
52 plot(TM,Bat I);
53 title('Battery: Current');
54 xlabel('Time (Hours)','FontSize',24); ylabel('Current (A)','FontSize',26);
55 set(gca,'fontsize',18)
56 grid on;
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57

58 subplot(313);
59 plot(TM,Bat SOC);
60 title('Battery: SOC');
61 xlabel('Time (Hours)','FontSize',24); ylabel('SOC (%)','FontSize',26);
62 set(gca,'fontsize',18)
63 grid on;
64

65

66 %% Step 3: Plot SC Characteristics (Voltage, Current, and SOC)
67 figure(3)
68 subplot(311);
69 plot(TM,SC V);
70 title('SC: Voltage');
71 xlabel('Time (Hours)','FontSize',24); ylabel('Voltage (V)','FontSize',26);
72 set(gca,'fontsize',18)
73 grid on;
74

75 subplot(312);
76 plot(TM,SC I);
77 title('SC: Current');
78 xlabel('Time (Hours)','FontSize',24); ylabel('Current (A)','FontSize',26);
79 set(gca,'fontsize',18)
80 grid on;
81

82 subplot(313);
83 plot(TM,SC SOC);
84 title('SC: SOC');
85 xlabel('Time (Hours)','FontSize',24); ylabel('SOC (%)','FontSize',26);
86 set(gca,'fontsize',18)
87 grid on;
88

89

90 %% Step 4: Plot Error
91 figure(4)
92 plot(TM,ErrorP);
93 title('Error');
94 xlabel('Time (Hours)','FontSize',24); ylabel('Error (%)','FontSize',26);
95 set(gca,'fontsize',18)
96 grid on;
97

98

99 %% Step 5: Plot one min D
100 figure(5)
101 subplot(211)
102 plot(TM,OMD BESS);
103 title('Battery Duty Ratio');
104 xlabel('Time (Hours)','FontSize',24); ylabel('1-D','FontSize',24);
105 set(gca,'fontsize',18)
106 grid on;
107

108 subplot(212)
109 plot(TM,OMD SESS);
110 title('SC Duty Ratio');
111 xlabel('Time (Hours)','FontSize',24); ylabel('1-D','FontSize',26);
112 set(gca,'fontsize',18)
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113 grid on;
114

115

116 %% Step 6: Plot Grid Reference Power
117 figure(6)
118 plot(TM,P Grid Est,'*-',TM,P Grid Ref,'LineWidth',2);
119 title('Grid Reference Power');
120 xlabel('Time (Hours)','FontSize',24); ylabel('Power (kW)','FontSize',26);
121 legend('P {Grid,Est}','P {Grid,Ref}','FontSize',18);
122 set(gca,'fontsize',18)
123 grid on;
124

125

126 %% Step 7: Plot Irradiation and Temperature
127 figure(7)
128 [ax,p1,p2] = plotyy(TM2,Irradiance.signals.values,TM2...
129 ,Temperature.signals.values,'plot'); % Plot Ir2 and Temp2 on same graph
130 ylabel(ax(1),'Irradiance (W/mˆ2)'); % y1-axis = Irradiance
131 ylabel(ax(2),'Temperature (C)'); % y2-axis = Temperature
132 legend('Irradiance (W/mˆ2)','Temperature (C)');
133 set(gca,'fontsize',18)
134 grid on;
135 title('Irradiation and Temperature');
136 xlabel(ax(1),'Time (Hours)'); % x-axis = time
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1 %% Solar Power Density Analsyis
2 % Jordan Chaires
3 % December 8, 2015
4 % ET 645
5

6 %% Table of Contents
7 % Initial Parameters
8 % Section 1: Time Domain
9 % Figure 1: Power vs. Time Plot

10 % Figure 2: Histogram
11 % Section 2: HESS Frequency Domain
12 % Power Spectral Density (PSD) Analysis
13 % Integration of low frequency components of PSD
14 % Integration of high frequency components of PSD
15 % Section 3: BESS Frequency Domain
16 % Power Spectral Density (PSD) Analysis
17 % Integration of total PSD
18 % Section 4: SESS Frequency Domain
19 % Power Spectral Density (PSD) Analysis
20 % Integration of total PSD
21 % Section 5: Results
22 % Command Window: PSD for HESS, BESS, & SESS
23 % Figure 3: PSD for low frequency components of HESS, BESS, & SESS
24 % Figure 4: PSD for high frequency components of HESS, BESS, & SESS
25 % Figure 5: Spectrogram for HESS
26 % Figure 6: Spectrogram for BESS
27 % Figure 7: Spectrogram for SESS
28

29

30 %% Initial Parameters
31 clc; clear all; close all;
32 load('System Data.mat');
33

34 Ts = 0.025; % Sampling Time
35 Fs = 1/Ts; % Sampling Frequency
36 Fc = 1/60; % Cutoff Frequency - 1st Order LPF
37

38

39 %% Section 1: Time Domain
40 % Figure 1: Power vs. Time Plot
41 figure(1);
42 plot(Time mins,P HESS,'k'); hold on;
43 plot(Time mins,P BESS,'g');
44 plot(Time mins,P SESS,'r');
45 grid on
46 title('Hybrid Energy System Demand');
47 xlabel('Time (Minutes)'); ylabel('Power (kW)');
48 legend('HESS','BESS','SESS');
49

50 % Figure 2: Histogram
51 figure(2);
52 subplot(131);
53 hist(P HESS,30);
54 title('HESS Histogram')
55 xlabel('Power (kW)'); ylabel('Occurrences');
56 ylim([0,5e4]); xlim([-60 60]); grid on;
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57

58 subplot(132)
59 hist(P BESS,30);
60 title('BESS Histogram')
61 xlabel('Power (kW)'); ylabel('Occurrences');
62 ylim([0,5e4]);xlim([-60 60]); grid on;
63

64 subplot(133)
65 hist(P SESS,30);
66 title('SESS Histogram')
67 xlabel('Power (kW)'); ylabel('Occurrences');
68 ylim([0,5e4]); xlim([-60 60]); grid on;
69

70

71 %% Section 2: HESS Frequency Domain
72 % Power Spectral Density (PSD) Analysis
73 x = P HESS;
74 N = length(x);
75 xdft = fft(x);
76 xdft = xdft(1:N/2+1);
77 psdx HESS = (1/(Fs*N)) * abs(xdft).ˆ2;
78 psdx HESS(2:end-1) = 2*psdx HESS(2:end-1);
79 freq HESS = 0:Fs/length(x):Fs/2;
80

81 % Integration of low frequency components of PSD
82 % Trapezoidal Method: Uniform Grid
83 a = 1;
84 [row,col] = find(freq HESS > Fc,1,'first');
85 b = col;
86 sum = psdx HESS(a);
87 for i = a+1:b-1
88 sum = sum + 2*psdx HESS(i);
89 end
90 sum = sum + psdx HESS(b);
91 Low Freq Power HESS = ((b-a)/(2*N))*sum;
92

93 % Integration of high frequency components of PSD
94 a = b + 1;
95 b = length(psdx HESS);
96 sum = psdx HESS(a);
97 for i = a+1:b-1
98 sum = sum + 2*psdx HESS(i);
99 end

100 sum = sum + psdx HESS(b);
101 High Freq Power HESS = ((b-a)/(2*N))*sum;
102

103

104 % Total? 3.1773e+03
105 % trapz = 1.9015e+06
106

107

108

109 %% Section 3: BESS Frequency Domain
110 % Power Spectral Density (PSD) Analysis
111 x = P BESS;
112 N = length(x);
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113 xdft = fft(x);
114 xdft = xdft(1:N/2+1);
115 psdx BESS = (1/(Fs*N)) * abs(xdft).ˆ2;
116 psdx BESS(2:end-1) = 2*psdx BESS(2:end-1);
117 freq BESS = 0:Fs/length(x):Fs/2;
118

119 % Integration of total PSD
120 % Trapezoidal Method: Uniform Grid
121 a = 1;
122 b = length(psdx BESS);
123 sum = psdx BESS(a);
124 for i = a+1:b-1
125 sum = sum + 2*psdx BESS(i);
126 end
127 sum = sum + psdx BESS(b);
128 Power BESS = ((b-a)/(2*N))*sum;
129

130

131 %% Section 4: SESS Frequency Domain
132 % Power Spectral Density (PSD) Analysis
133 x = P SESS;
134 N = length(x);
135 xdft = fft(x);
136 xdft = xdft(1:N/2+1);
137 psdx SESS = (1/(Fs*N)) * abs(xdft).ˆ2;
138 psdx SESS(2:end-1) = 2*psdx SESS(2:end-1);
139 freq SESS = 0:Fs/length(x):Fs/2;
140

141 % Integration of total PSD
142 % Trapezoidal Method: Uniform Grid
143 a = 1;
144 b = length(psdx SESS);
145 sum = psdx SESS(a);
146 for i = a+1:b-1
147 sum = sum + 2*psdx SESS(i);
148 end
149 sum = sum + psdx SESS(b);
150 Power SESS = ((b-a)/(2*N))*sum;
151

152

153 %% Section 5: Results
154 % Command Window: PSD for HESS, BESS, & SESS
155 fprintf('HESS: \n');
156 fprintf('Low-Freq. Power Density is %g\n',Low Freq Power HESS);
157 fprintf('High-Freq. Power Density is %g\n',High Freq Power HESS);
158 fprintf('\n');
159

160 fprintf('BESS: \n');
161 fprintf('Total Power Density is %g\n',Power BESS);
162 fprintf('\n');
163

164 fprintf('SESS: \n');
165 fprintf('Total Power Density is %g\n',Power SESS);
166 fprintf('\n');
167

168
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169 % Figure 3: PSD for low frequency components of HESS, BESS, & SESS
170 FN1 = 30; % Limit frequency range of PSD in Fig. 3
171 psd limy1 = 6e5; % Limit dB/Hz range in Fig. 3
172

173 figure(3);
174 subplot(1,3,1)
175 plot(freq HESS(1:FN1),psdx HESS(1:FN1))
176 grid on
177 title('HESS PSD (Low Freq.)')
178 xlabel('Frequency (Hz)')
179 ylabel('Power/Frequency (dB/Hz)')
180 ylim([0,psd limy1])
181

182 subplot(1,3,2)
183 plot(freq BESS(1:FN1),psdx BESS(1:FN1))
184 grid on
185 title('BESS PSD (Low Freq.)')
186 xlabel('Frequency (Hz)')
187 ylabel('Power/Frequency (dB/Hz)')
188 ylim([0,psd limy1])
189

190 subplot(1,3,3)
191 plot(freq SESS(1:FN1),psdx SESS(1:FN1))
192 grid on
193 title('SESS PSD (Low Freq.)')
194 xlabel('Frequency (Hz)')
195 ylabel('Power/Frequency (dB/Hz)')
196 ylim([0,psd limy1])
197

198

199 % Figure 4: PSD for high frequency components of HESS, BESS, & SESS
200 FN2 = 72001; % Limit frequency range of PSD in Fig. 4
201 psd limy2 = .5; % Limit dB/Hz range in Fig. 4
202

203 figure(4);
204 subplot(1,3,1)
205 plot(freq HESS(1:FN2),psdx HESS(1:FN2))
206 grid on
207 title('HESS PSD (High Freq.)')
208 xlabel('Frequency (Hz)')
209 ylabel('Power/Frequency (dB/Hz)')
210 ylim([0,psd limy2])
211

212 subplot(1,3,2)
213 plot(freq BESS(1:FN2),psdx BESS(1:FN2))
214 grid on
215 title('BESS PSD (High Freq.)')
216 xlabel('Frequency (Hz)')
217 ylabel('Power/Frequency (dB/Hz)')
218 ylim([0,psd limy2])
219

220 subplot(1,3,3)
221 plot(freq SESS(1:FN2),psdx SESS(1:FN2))
222 grid on
223 title('SESS PSD (High Freq.)')
224 xlabel('Frequency (Hz)')
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225 ylabel('Power/Frequency (dB/Hz)')
226 ylim([0,psd limy2])
227

228

229 % Figure 5: Spectrogram for HESS
230 figure(5);
231 spectrogram(P HESS,kaiser(256,5),220,512,Fs,'power','yaxis');
232 colormap winter
233 view(-45,65)
234 title('Spectrogram of HESS');
235

236

237 % Figure 6: Spectrogram for BESS
238 figure(6);
239 spectrogram(P BESS,kaiser(256,5),220,512,Fs,'power','yaxis');
240 colormap winter
241 view(-45,65)
242 title('Spectrogram of BESS');
243

244

245 % Figure 7: Spectrogram for SESS
246 figure(7);
247 spectrogram(P SESS,kaiser(256,5),220,512,Fs,'power','yaxis');
248 colormap winter
249 view(-45,65)
250 title('Spectrogram of SESS');
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