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Abstract 
 

SHORT TERM TEMPORAL TRENDS IN GENE EXPRESSION IN SENSITIVE AND 
TOLERANT SOYBEAN GENOTYPES EXPOSED TO OZONE 

 
 

Tongji Xing  
B.S., Shanxi University 

M.S., Appalachian State University 
 
 

Chairpersons: Howard S. Neufeld, Ph.D. & Ted Zerucha, Ph.D. 
 
 

 Current ground-level ozone concentrations ([O3]) are high enough to damage crops 

and are projected to increase. Soybean (Glycine max), one the four major global food crops, 

is particularly sensitive to O3. Though considerable genetic variation exists in its sensitivity, 

the mechanistic basis for these differences remain poorly understood. My work aimed to 

identify molecular mechanisms associated with the differential tolerance to O3 among 

tolerant (Fiskeby III) and sensitive (Mandarin Ottawa) soybean genotypes.  Short-term 

changes in gene expression (< 48 hrs post O3 exposure) were investigated using quantitative 

real-time polymerase chain reaction (qPCR) techniques to determine whether there were 

rapid differences between the tolerant and sensitive soybean genotypes in either amount or in 

which genes were expressed. Plants were exposed from 9 am to 5 pm either at 19.3 + 0.43 

ppb (target was 25 ppb) or 63.6 + 0.43 ppb (target was 75 ppb) O3. A single leaflet from the 

fifth mature leaf was collected just prior to exposure, and then at 1, 2, 4, 8, 12, 24, and 48 

hours post-exposure. Visible leaf injuries were quantified according to a leaf bronzing score. 
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Sampled leaflets were immediately frozen in liquid N2 and stored until processing for RNA 

extraction and purification, cDNA construction and qPCR. Gas exchange measurements 

under standard conditions were made on the third mature leaf on each plant at the end of the 

exposures to determine if there were changes due to O3 exposure and/or genotype. The 

photosynthetic rate was not significantly different between the treatments or genotypes. 

However, stomatal conductance (gs) was significantly higher in Mandarin than Fiskeby under 

both O3 conditions. Glutathione reductase 2 (GR2) expression in both genotypes under high 

O3 treatment was upregulated in a similar fashion with the expression peaks both shifted an 

hour earlier, and to a similar extent. Protein D1 (pD1) expression was downregulated in 

Mandarin but was not affected in Fiskeby III, maybe due to the larger gs in Mandarin and 

subsequently higher dose. An improved understanding of the molecular factors influencing 

O3 sensitivity could help guide breeders to develop O3 tolerant genotypes so that yields can 

be maintained at or above current levels should ambient O3 continue to increase globally. 
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Introduction 

O3 is present in both the troposphere and stratosphere, but it is the tropospheric O3 

that is damaging to plants and human health.  In fact, O3 is known to be among the most 

phytotoxic air pollutants (Krupa and Manning, 1988; Chameides et al., 1994; Ahmadov et 

al., 2014).  While stratospheric O3 has a known role in protecting the earth from ultraviolet 

radiation, tropospheric O3 can occur naturally from stratospheric incursions, lightning, and 

fires (Edwards, 2003). However, its abundance is augmented by being a secondary byproduct 

of photochemical reactions involving anthropogenic nitrogen oxides (NOx), carbon monoxide 

(CO) and volatile organic compounds (VOCs) (Fishman and Crutzen, 1978).  As emissions 

of O3 precursors rise in many parts of the world there is an excessive increase in ambient O3 

concentrations (Dentener et al., 2006) . This was originally thought to be limited to urban 

regions, nearby power plants, and locations downwind of these areas. However, the problem 

has increased in scale during the past few decades as a result of rising population densities, 

expanding industrialization, and ensuing pollution in large parts of the world, especially in 

the developing countries (Fiscus et al., 2005). 

Annual average tropospheric O3 has more than doubled during the past century 

(Staehelin et al., 1994), and it is the most damaging gaseous pollutant to crop yields, forest 

growth, and species composition (Ashmore, 2005). Crop losses from O3 damage were 

estimated to be in the range of $1.8- $3.9 billion in the United States and $3.0- $5.5 billion in 

China (Dingenen et al., 2009). The projected 25% increase in background O3 for the next 30 

to 50 years may cause even greater losses to world agriculture (Vingarzan and Thomson, 

2004; Meehl and Stocker, 2007). A meta-analysis combined from 406 experimental 

observations revealed that current [O3] (compared to base [O3]) has led to yield losses 
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ranging from 5% to 19% of the world major crops including potato, wheat, barley, rice, bean 

and soybean (Feng and Kobayashi, 2009). Therefore, understanding how crops respond to 

increasing O3 pollution is essential for meeting the growing demands for sustainable food 

systems as the world faces increasing population, urbanization, and climate change. 

In the 1970s through the 2000s, a number of world forest and crop research 

organizations, including the United States Department of Agriculture, conducted studies of 

the response of vegetation to O3 using open-top exposure chambers (OTCs) (Amthor, 1988; 

Bortier et al., 2000; Elagöz and Manning, 2005; Fuhrer et al., 1989; Heagle and Philbeck, 

1979; Heagle et al., 1973; Krupa and Manning, 1988; Mulchi et al., 1992; Pleijel et al., 

1991). Results from these studies showed significant reductions in yield at ambient levels of 

O3 despite potential “chamber effects” that may have occurred in those experiments and 

which could have biased the results (Elagöz and Manning, 2005).  

Soybeans are one of the world’s staple food crops according to the world production 

ranking in 2012 (Food and Agriculture Organization, 2012). Soybeans serve not only as a 

good source of proteins for the human diet and for feeding livestock, but also increasingly as 

a biodiesel resource (Masuda and Goldsmith, 2009). Soybeans were, to a great extent, more 

sensitive to O3 when compared to other major food crops such as wheat, corn and sorghum, 

(Heck et al., 1983; Emberson et al., 2009). MOZART (The Model for Ozone and Related 

Chemical Tracer) was used to simulate changes of O3 and showed a reduction in global 

soybean yields of 8.5% to 14% in 2000 (Avnery et al., 2011). Recent results from Free Air 

CO2 Enrichment experiments on soybean with elevated O3 (chamberless exposure systems) 

have found similar yield losses, thus validating the studies conducted in the OTCs 

(Ainsworth and Long, 2005; Betzelberger et al., 2010).  
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O3 damage to plants can occur without any visible signs macroscopically when given 

chronic exposure at low levels of O3 ([O3]<100 ppb), but there is visible injury 

microscopically. This is evidenced by the sparse distribution of dead cells among palisade 

mesophyll or around the stomatal cavity in an O3-tolerant Phaseolus vulgaris L. genotype but 

which are not visible at the macroscopic level (Faoro and Iriti, 2005). In contrast, severely 

affected plants do show visible symptoms on leaves as a result of acute O3 exposure (high O3 

dose exposure within a short time frame when [O3]>100 ppb), including chlorophyll loss, 

adaxial leaf bronzing, and even development of necrotic spots, which is more generally an 

indicator of pathogen invasion, but which can be mimicked by exposure to O3 (Robinson and 

Britz, 2000; Fiscus et al., 2005; Chen et al., 2009; Emberson et al., 2009; Betzelberger et al., 

2010).  

Previous research has indicated that there has been no selection for increased 

tolerance to O3 in soybean genotypes over the past 30 years (Betzelberger et al., 2010). 

However, there are significant genotype differences in the response to O3, with some more 

affected by O3 than others with respect to the development of foliar injury, reduced growth, 

and lowered seed yield (Lee et al., 1984; Foy and Lee, 1995; Robinson and Britz, 2000; 

Cheng et al., 2007). By analyzing hundreds of soybean genotypes, 30 ancestral lines of 

soybean were found that together represented 92% of the North American soybean genome 

(Gizlice et al., 1994). These ancestor lines were then screened for tolerance to salt, 

aluminum, drought and high O3 levels. Fiskeby III and Mandarin (Ottawa) were selected as 

two soybean genotypes classified as O3-tolerant and O3-sensitive, respectively (Burkey and 

Carter, 2009).  
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O3 causes crop yield losses through a number of different mechanisms, such as 

variable stomatal uptake, antioxidant capabilities once inside the leaf, either or both of which 

may be modulated initially by differential gene expression. O3 uptake occurs mainly through 

the stomata (Long and Naidu, 2002), so differences in stomatal conductance (gs) can have 

large effects on the ability of species to tolerate O3.  Species with high gs will take up more 

O3 than those with lower gs. At the cellular level, a larger stomatal aperture, higher stomatal 

density and prolonged stomatal opening during the day may all contribute to a higher gs and 

greater uptake (dose), resulting in a higher O3 sensitivity (Grulke et al., 2007a). For example, 

increased O3 sensitivity in new introductions of Greek wheat genotypes (Triticum aestivum) 

has been attributed in part to higher gs (Pleijel et al., 2006). Furthermore, multiple modeling 

studies show that plant injury is more closely associated with dose rather than measured 

concentrations (exposure) (Fuhrer et al., 1997; Massman, 2004; Pleijel and Danielsson, 

2004).   

Mesophyll resistance (gm) is another important limiting factor for O3 diffusion into a 

leaf for the reason that the amount of cell surface available to interact with O3 can alter its 

effectiveness at a given dose. Oksanen et al. (2001) found that palisade and spongy 

mesophyll thicknesses, as well as their ratios, were lower in O3-sensitive aspen clones 

(Populus tremuloides) than in O3-tolerant clones. In addition, cell wall thickness can 

influence the residence time of O3 by increasing diffusional resistance and by providing 

larger pools of antioxidants (Turcsanyi, 2000; Cheng et al., 2007).  

Upon entering the leaves through the stomata, O3 rapidly breaks down into various 

reactive oxygen species (ROS) (Fiscus et al., 2005). ROS are chemically reactive molecules 

containing oxygen and typically include superoxide (·O2
-), singlet oxygen (1O2), hydroxyl 
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radical (·OH), and hydrogen peroxide (H2O2).  Both H2O2 and ·O2
- can act as molecular 

signals and cause damage to cells (Mühlenbock et al., 2008, Gordon et al., 2012). Depending 

on the nature of the ROS, some are highly toxic and therefore are rapidly scavenged by 

cellular antioxidant mechanisms. However, an excessive generation of ROS can overwhelm 

the antioxidant quenching capacity of both the symplast and apoplast, leading to known O3 

effects such as decreases in photosynthetic rates, chlorosis and eventual cell death (Fiscus et 

al., 2005). In a general sense, O3 effects on plant cells and tissues are not the result of O3 

itself, which reacts almost immediately with internal cell surfaces and is destroyed, but are 

caused by the excessive amount of ROS produced by the plant after exposure to the O3 

(Tausz et al., 2007). This burst of ROS is known as the hypersensitive response and shares 

many of the biochemical pathways associated with pathogen attack on plants. Differential 

antioxidant capacity is directly associated with O3 sensitivity (Iglesias et al., 2006); therefore,  

it is another important factor affecting the sensitivity of plants to O3.  

Both non-enzymatic and enzymatic mechanisms are employed by the cell to 

scavenge excess ROS. Non-enzymatic antioxidants include carotenoids, tocopherol and 

flavonoids, ascorbic acid (AA) and reduced glutathione (GSH), the last two of which are 

believed to be the central redox buffering molecules that function to scavenge ROS (Foyer 

and Noctor, 2009, 2011). Availability and redox status of AA is controlled by ascorbate 

oxidase localized in the cell wall, which oxidizes AA to dehydroascorbate (DHA) (Pignocchi 

2003; Pignocchi et al., 2006). Such dynamic inter-conversion between AA and DHA 

maintains the apoplast antioxidant capacity and has been found to correlate with O3 

sensitivity in many plant species including Arabidopsis low vitamin C mutants (Conklin, 

1996), white clover (Trifolium repens) (D’haese et al., 2005), wheat (Triticum aestivum L.) 
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(Feng et al., 2010), snap bean (Phaseolus vulgaris) (Guri, 1983) and soybean (Glycine max 

L.) (Cheng et al., 2007). An abnormal apoplastic ROS burst caused by elevated O3 exposure 

may lead to perturbations in the extracellular redox balance and, consequently, in the 

intracellular redox metabolism. This includes alterations in the glutathione level and the ratio 

between GSH and glutathione disulfide (GSSG), which play essential roles in ROS mediated 

signaling pathways upon O3 exposure (Foyer and Noctor, 2011). For example, mutants with 

decreased GSH content are hypersensitive to a variety of stressors (Creissen et al., 1999).   

GSH and AA act in accordance with other enzymes such as ascorbate peroxidase 

(APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) to modulate the 

cellular redox status (Alscher and Hess, 1993; Chernikova et al., 2000). Removing ROS also 

involves other well-defined enzymes such as superoxide dismutase (SOD), catalases (CAT) 

and peroxidases (PX). Multiple isoforms of SOD are distributed throughout the cell including 

in the cytosol, mitochondria and chloroplasts; and these organelles can convert superoxide 

radical into H2O2. PX has a similar distribution as SOD while CAT is primarily found in 

peroxisomes; however, they share functionality in further converting H2O2 to H2O 

(Kangasjärvi and Talvinen, 1994; Inzé and Montagu, 1995). Glutathione S-transferase (GST) 

also displays peroxidase activity and plays a crucial role in detoxifying the products of lipid 

peroxidation by facilitating the conjugation of detrimental electrophilic compounds with 

GSH and then purging them out of the cytosol (Marrs, 1996). Of the numerous studies 

reporting effects of O3 on the antioxidant defense systems, a majority observed increased 

concentrations of antioxidants or elevated defense enzyme activities upon O3 exposure 

(Gupta et al., 1991; Bortier et al., 2000; Venkateswarlu et al., 2012; Kumari et al., 2015). 
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Interestingly, a higher basal level of ROS and glutathione were both found to contribute to 

the greater oxidative stress tolerance of an Arabidopsis genotype atr7 (Mehterov et al., 2012). 

While a number of early researchers focused on the potential toxicity of ROS, recent 

studies have emphasized their signaling role in plants faced with oxidative stress such as O3 

exposure. The earliest O3-derived signaling events, such as protein phosphorylation or 

dephosphorylation and calcium (Ca2+) influx, can occur within a few minutes of exposure 

(Vaultier and Jolivet, 2014). These changes are followed by the production of several 

signaling compounds including various ROS, ethylene (ET), salicylic acid (SA) and jasmonic 

acid (JA) (Overmyer et al., 2003). Mittler et al. (2011) summarized several advantages of 

ROS as signaling molecules. These include the rapid and dynamic changes in ROS levels,  

which allow the cell to respond quickly and specifically to stressors, the highly specific 

spatial control enabled by a tight regulation over the subcellular localization of ROS signals 

in cells, the ability of ROS to serve as rapid long distance signals travelling throughout the 

plant, and most importantly, the ability of ROS signaling to cross talk with the above 

mentioned signaling pathways including Ca2+, phytohormones and protein phosphorylations 

as a part of the network.  

ET and SA accumulate in O3-exposed plants and high levels of these phytohormones 

appear responsible for the formation of leaf lesions and even programmed cell death (PCD) 

(Overmyer et al., 2000; Overmyer et al., 2005; Yoshida et al., 2009). These studies also 

demonstrated that ET and SA likely amplify the oxidative signal generated by ROS, thereby 

promoting lesion formation. However, by analyzing the O3-induced transcriptome of 

Arabidopsis mutants, Tamaoki et al. (2003a) indicated that low levels of ET production 

could stimulate the expression of defense genes, rather than promoting PCD which occurs 



 8 

when ET production is high. As in the case of ethylene, O3-induced SA seems to have a dual 

function that depends on its production level (Rao and Davis, 1999). In addition,  plant 

exposure to O3 not only results in activation of the biosynthetic pathways of ET, JA and SA, 

but also increases the expression of genes related to the signal transduction pathways (Tosti 

et al., 2006).  These results suggest that depending on the concentrations, O3-induced 

production of ET and SA may either activate the PCD pathway or serve to induce antioxidant 

defense responses.  

By using JA-deficient mutants of various plants, JA was shown to be involved in the 

repression of ROS-dependent lesion development in O3-exposed leaves, in contrast to the 

effects elicited by ET and SA (Overmyer et al., 2000; Ren et al., 2015; Sasaki-Sekimoto et 

al., 2005). Further illustrating the complexity of interactions involved in the O3 response, SA 

and ET accumulation in response to O3 is negatively regulated by JA signaling (Kanna, 2003; 

Rao, 2000).  

Abscisic acid (ABA) has been investigated for its role in regulating stomatal aperture 

and also for its contribution to signaling pathways in plants. The role of ABA and the 

interaction between ABA and H2O2 in O3-induced stomatal closure was described in the 

2006 Ozone Air Quality Criteria Document (U.S. EPA, 2006), suggesting that the presence 

of O3-derived H2O2 increases the sensitivity of guard cells to ABA and, therefore, results in 

more sensitive control of stomatal closure. Ludwików et al., (2009) used Arabidopsis ABI1td 

mutants, in which a key negative regulator of ABA action (abscisic acid insensitive1 protein 

phosphatase 2C) had been knocked out, to compare the transcription of O3 responsive genes 

to the Arabidopsis O3 tolerant Col-0 ecotype/genotype. They suggested a role for ABI1 in 

negatively regulating the synthesis of both ABA and ET in O3-treated plants (350 ppb O3 for 
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9 hours). Additionally, ABI1 may stimulate JA-related gene expression, providing evidence 

for an antagonistic interaction between ABA and JA signaling pathways. 

Once the O3 stress signal has been relayed and perceived at the cellular level, it is 

transmitted to the nucleus, which leads to transcription reprogramming. Changes in global 

gene expression in response to the primary and secondary signals eventually alter the 

metabolism and physiology of plants and lead to their response to the environmental stimuli. 

The rapid development in various analytical and biological approaches has facilitated the 

transcriptomic identification of plant gene expression profiles in response to O3 stress 

(Mahalingam and Gomez-Buitrago, 2003). DNA microarrays including oligonucleotide and 

cDNA micro- and macro- arrays have been frequently used to identify O3-inducible genes in 

different plant species including Arabidopsis thaliana (Li et al., 2006; Mahalingam and Shah 

2005; Tamaoki et al., 2003a; Tosti et al., 2006), soybean (Whaley et al., 2015), rice (Oryza 

sativa) panicle and seed tissues (Cho et al., 2013), pepper (Capsicum annuum) (Lee and Yun 

2006), clover (Medicago truncatula) (Puckette et al., 2008), Phillyrea latifolia (Paolacci et 

al., 2007), poplar (Populus) (Street et al., 2011) and European beech (Fagus sylvatica) 

(Olbrich et al., 2010). Species, O3 concentration, exposure duration and sampling times 

considerably varied in these studies. However, particular expression profiles of several gene 

functional categories were identified under O3 exposure and were roughly similar across this 

diverse set of plants. Genes with upregulated expression were linked to signaling and defense 

categories. Conversely, downregulated expression was related to photosynthesis and energy 

capture and use categories (Lee and Yun 2006; Li et al., 2006; Olbrich et al., 2010; Tamaoki 

et al., 2003b; Tosti et al., 2006). Furthermore, the sensitivity to O3 stress is suggested to be a 

function of the differential regulation of these two classes of genes in plants (Lee and Yun 
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2006; Li et al., 2006; Puckette et al., 2008). However, relevant investigations at the 

molecular level are still in their beginning stages, especially with regard to soybeans, and 

more firm conclusions cannot be drawn at this time. 

Differences in gene expression between sensitive and tolerant plants in response to 

O3 have been evaluated by transcriptomic analysis (Lee and Yun, 2006; Puckette et al., 

2008). Approximately two-thirds (67%) of the 180 O3 stress-related genes in pepper were 

differentially regulated in the sensitive and tolerant genotypes. At 0 and 48 hours into a 3-day 

exposure (8 hrs/day) at 150 ppb, O3 responsive genes were either upregulated or 

downregulated more significantly in the sensitive than in the tolerant genotype (Lee and Yun, 

2006). Differences in timing and extent of changes were also shown in gene expression 

between contrasting clover genotypes. Acute exposure (300 ppb O3 for 6 hours) led to the 

production of an oxidative burst in both clovers (Puckette et al., 2008). However, the 

sensitive Jemalong genotype showed a downregulation of defense response genes 12 hours 

after the onset of exposure, while the tolerant JE 154 accession exhibited much more rapid 

and large-scale transcriptome changes (Puckette et al., 2008).  The inability for Jemalong to 

upregulate defense response genes might have contributed to its O3 sensitivity.  

Chronic O3 concentration (1.2X ambient for 8-12 days) was used to study the 

changes to gene expression in Arabidopsis sensitive genotype WS and tolerant genotype  

Col-0 (Li et al., 2006). The WS genotype showed a significantly greater number of changes 

in gene expression than the Col-0. In another study using an acute O3 exposure (300 ppb for 

6 hours), a rapid induction of genes such as proteases led to cell death in the WS genotype, 

and again, downregulation of cell signaling genes, indicating an ineffective defense response 

(Mahalingam, 2006). 
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The Arabidopsis Col-0 genotype was also used to study the temporal response to 

acute O3 exposure (350 ppb during 6 hours and for 6 hours after the exposure) by conducting 

a time course microarray experiment (Mahalingam and Shah, 2005). Two hundred genes 

were identified and significantly expressed and grouped into three different gene expression 

profiles: early upregulated (81 genes), late upregulated (60 genes), and downregulated (59 

genes). The results demonstrated that genes associated with signaling pathways and 

transcription regulation were in the early regulated group, while genes linked with redox 

homeostasis and defense were in the late regulated class (Mahalingam and Shah, 2005).  

Transcriptomic changes of woody plant species in response to long term chronic O3 

exposure have also been conducted. Long-term exposures (100 ppb O3 for 90 days), in 

contrast to short-term exposures, resulted in the upregulation of genes associated with 

secondary metabolites, such as isoprenoids, polyamines and phenylpropanoids in 2-year-old 

seedlings of the Mediterranean shrub Phillyrea latifolia (Paolacci et al., 2007). In 3-year-old 

European beech saplings exposed to O3 for 20 months (with the monthly average twice 

ambient O3 concentrations ranging from 11 to 80 ppb), O3-induced changes in gene 

expression were similar to those observed for herbaceous species (Olbrich et al., 2009). 

Genes encoding proteins associated with plant stress response, including ET biosynthesis, PR 

proteins and enzymes detoxifying ROS, were upregulated. Some genes associated with 

primary metabolism, cell structure, cell division and cell growth were also reduced (Olbrich 

et al., 2009). A similar study using adult European beech trees determined that the magnitude 

of the transcriptional changes described above was far greater in the saplings than in the adult 

trees exposed to the same O3 concentrations for the same time period (Olbrich et al., 2010).  

This suggests that changes occur at the molecular level in O3 sensitivity between 
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seedling/sapling sized trees and large adult trees.  Similar differences in sensitivity have also 

been found at the physiological level.  The bases for these differences may reside in 

differences in stomatal behavior that alter uptake (Grulke et al., 2007a) as well as in leaf 

structural differences between young and mature trees that affect internal diffusion and 

antioxidant capabilities (Chappelka and Samuelson, 1998; Pritsch et al., 2007), both of which 

could result in alterations in gene expression. 

Proteome analyses in rice, poplar, European beech, wheat and soybean supports the 

results from the above transcriptome studies. Exposure of soybean to 120 ppb O3 for 12h/day 

for 3 days resulted in decreases in the quantity of proteins associated with photosynthesis, 

while proteins involved in carbon metabolism increased (Ahsan et al., 2010). Young poplar 

plants exposed to 120 ppb O3 in a growth chamber for 35 days also showed significant 

changes in proteins involved in carbon metabolism (Bohler et al., 2007). Declines in 

enzymes associated with carbon fixation, the Calvin cycle and photosystem II were 

measured, while APX and enzymes associated with glucose catabolism increased in 

abundance (Bohler et al., 2007). In another study to determine the impacts of O3 on both 

developing and fully expanded poplar leaves, young poplars were exposed to 120 ppb O3 for 

13-h/day for up to 28 days (Bohler et al., 2010). Impacts on protein quantity only occurred 

after the plants had been exposed to O3 for 14 days, and at this point in time, several Calvin 

cycle enzymes were reduced in quantity, while the effects on the light reactions appeared 

later, at 21 days after beginning treatment. Some of the antioxidant enzymes increased in 

abundance with O3 treatment, while others (APX) did not. O3 did not affect protein quantity 

until leaves had reached full expansion, after about 7 days (Bohler et al., 2010). 



 13 

Valuable information about O3 effects on plants has been provided by transcriptome 

and proteome studies, which allows for simultaneous analysis of changes in the expression 

patterns of many different genes and proteins, and which generally show between O3-

sensitive and -tolerant plants. However, earlier studies mostly focused on either an O3-

tolerant or an O3-sensitive line but did not compare the two lines within a species.  In 

addition, they often examined changes in gene expression at just one point in time. One study 

did examine the total and thiol-redox proteomes of leaf and root tissues from soybean grown 

under different O3 concentrations, and that has provided a basis for choosing target 

antioxidant genes in my study (Galant et al., 2012).   

To determine if differential sensitivity of Fiskeby III and Mandarin (Ottawa) exists 

at the cellular or molecular level, my research included two parts: 

First, I examined whether stomatal density and stomatal conductance differed 

between the two genotypes and whether these differences (if any exist) were associated with 

differential O3 sensitivity. My hypothesis was that Mandarin (Ottawa) had greater gs than 

Fiskeby III, which could contribute to its greater sensitivity to O3 because this would result 

in a higher does in this genotype compared to Fiskeby III. 

Second, I performed a time course analysis of changes in gene expression in 

response to increased O3 treatment and examined the molecular bases for resistance to O3 

among the two genotypes. In particular, I wanted to investigate the following hypotheses: 

H1: That the tolerant Fiskeby III genotype upregulates defensive genes sooner and/or to a 

greater extent than the sensitive Mandarin (Ottawa) genotype; and,  

H2: That the sensitive Mandarin (Ottawa) genotype, conversely, downregulates 

photosynthetic genes sooner and/or to a greater extent than the tolerant Fiskeby III genotype. 
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Materials and Methods 

Plant growth, ozone treatment and sampling 

Fiskeby III and Mandarin Ottawa were selected for this study due to their divergent 

responses to ozone stress. Plants were cultivated in a greenhouse with charcoal-filtered air in 

6 L pots containing Fafard #2 Pro Mix (Fafard, Anderson, SC, USA), supplemented with    

15 g slow release fertilizer (Osmocote Plus, Scotts-Sierra Horticultural Products, Marysville, 

OH, USA). Plants were maintained in a vegetative state throughout the experiment using 

supplemental lighting for 20 hrs/day. At 14 d after planting, seedlings were thinned to one 

plant per pot and treated with Marathon systemic insecticide according to the product label 

(OHP, Inc., Mainland, PA, USA).  

At 28 days after planting, plants were moved into 12 continuously stirred tank 

reactors (CSTRs) (Rogers and Jeffries, 1977; Heck et al., 1978) to acclimate for 2 days 

before exposure to ozone. Three biological replications, each in an independent CSTR, were 

randomly assigned to a block of 4 CSTRs, with two CSTRs in each block receiving square-

wave exposures from 09:00 to 17:00 h over two days set to either 25 ppb O3 (control plants) 

or 75 ppb O3 (high O3 plants) (Figure 1). Each CSTR contained 8 randomly placed plants (4 

of Fiskeby III and 4 of Mandarin) that were sampled at four different time points (Figure 2). 

The fifth trifoliate was sampled from each plant at 0, 1, 2, 4, 8, 12, 24 and 48 hours after the 

start of treatment. Plants were permanently removed for sampling from each CSTR to 

prevent any volatile signals from these plants affecting the remaining plants. The leaflets 

were detached using a razor blade and immediately frozen in a 50 mL centrifuge tube filled 

with liquid nitrogen and then stored in a freezer at -80˚C. Whole leaf samples from 

corresponding time points were later ground and pooled for qPCR experiments (the 3 
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biological replicates were separated throughout the experiments but the expression data post 

qPCR were combined for analysis). 

Foliar injury assessment and gas exchange measurement 

The percentage foliar injury was assessed at 9 am for the first to sixth trifoliate leaf 

at 24 and 48 h plants after exposure using the protocol described by Burkey and Carter 

(2009). Net photosynthesis (An), dark respiration (rd) and stomatal conductance (gs) of leaves 

at position 3 were measured 48 hrs from the start of the ozone exposures, using a Li-6400xt 

portable gas exchange system (LI-COR, Inc., Lincoln, NE, USA) equipped with the 2 x 3 cm 

LED cuvette. Environmental conditions (mean + range) in the cuvette during gas exchange 

measurements for photosynthetic photon flux density (PPFD), leaf temperature, leaf-to-air 

vapor pressure deficit (VPDleaf), RH, and CO2 concentration were: (1500 + 1 µmol m-2 s-1, 35 

oC + 1 oC, 2.62 + 1 kPa, 53% + 10%, 400 + 15 ppm). 

RNA isolation and purification 

Frozen leaf tissue was removed from the -80˚C freezer and immediately placed in 

liquid nitrogen and ground thoroughly. Total RNA was isolated from approximately 200 mg 

of the tissue powder using QIAGEN RNeasy plant mini kit (Qiagen, Hilden, Germany) 

according to the protocol provided by the manufacturer, with minor adjustments (at step 9,  

25 ul of RNase-free water was used twice to elute the RNA, instead of using 50 ul RNase-

free water once). For removal of proteins and most of the free nucleotides, the RNAs were 

diluted with RNase free water (Thermo Fisher Scientific, Rockford, IL, USA) and treated 

with an equal volume of phenol: chloroform solution. After the mixture was vortexed and 

centrifuged at 14,000 g for 5 min, the resulting supernatant was precipitated with 1/10 

volume NaOAc (3 M, pH 5.2) and 3 volumes of cold 99% ethanol and stored at -80 ˚C 
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overnight. The RNA precipitate was pelleted by centrifugation at full speed for 30 minutes at 

4 ˚C and washed using 80% ethanol. The washed RNA pellet was solubilized in RNase free 

water. The purity and concentration of solubilized total RNA was assessed by measuring 

sample absorbance at 260/280 nm using spectroscopy (Nanodrop 2000, Thermo Fish 

Scientific, Rockford, IL, USA).  

cDNA synthesis 

First strand cDNA synthesis was performed using 2 µg of the total RNA with a High 

Capacity RNA-to-cDNA kit (Applied Biosystems, Foster City, CA, USA). This was 

performed in a 20 µl reaction system according to the manufacturer’s supplied protocol.  

Quantitative real-time polymerase chain reaction (qPCR) 

Quantitative real-time polymerase chain reactions (qPCRs) were performed in 96-

well plates using SYBR® Select Master Mix (Applied Biosystems, Foster, CA, USA) on a 

7500 Real-Time PCR System (Applied Biosystems, Foster, CA) to determine the threshold 

cycle (Ct) for each sample. Primer sets (Table 1) (0.2 µM final concentrations for each 

primer) were used in a final volume of 10 µl per well. The 60s ribosomal protein L30 

(Irsigler et al., 2007; Le et al., 2012; Tamang et al., 2014) was used as an endogenous control 

for the 2-ΔΔCt method (Pfaffl, 2001). Each sample was analyzed in triplicate using 100 ng of 

template cDNA. The thermal profile of the qPCRs was set initially at 95˚C for 10 min, then 

40 cycles at 95˚C for 15 s each and finally at 60˚C for 1 min. Amplification of the desired 

product was confirmed using melt curve analysis. Analysis of relative mRNA expression 

using the 2-ΔΔCt method was conducted using Microsoft Excel 2010. 
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Statistical analysis  

Gas exchange 

Because both genotypes were co-located in the same chambers, they could not 

technically be regarded as independent samples.  Therefore the differences in An, rd, and gs 

between genotypes within a chamber were analyzed using either a paired t-test or a one-way 

ANOVA of the differences between genotypes in the same chamber with ozone as the main 

effect.  Analyses were conducted using SigmaPlot 12.5 (Systat Software Inc., San Jose, CA, 

USA), and differences were considered statistically significant if p < 0.05 and marginally so 

if p < 0.1.  However, I also compared each genotype individually for either a time or ozone 

effect, using t-tests because of the problem of non-independence within the chambers and the 

fact that doing an analysis on differences could mask some effects due to random differences 

between individual plants.  For gene expression over time, a repeated measures analysis was 

not required because individual plants were not sampled more than once.  
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Results 

Ozone Exposures 

 The actual O3 treatment levels attained during the two-day exposure period were 

lower than the set points of 25 ppb and 75 ppb.  Over the two day exposure period, the 8 hr 

exposures (9 am to 5 pm) averaged 19.3 + 0.43 ppb and 63.6 + 0.43 ppb (mean + se, n = 6).  

There were no statistical differences in exposure between day 1 and day 2 (paired t-test, p = 

0.841 and p = 0.456 for the low and high O3 treatments, respectively).   

 Individual chambers had some slight variations in exposure.  On day one the low O3 

treatment ranged from 16.2 ppb to 23.3 ppb, and the high O3 treatment chambers varied from 

57.9 ppb to 65.7 ppb.  On day 2, these same chambers ranged from 17.3 ppb to 21.7 ppb and 

56.2 ppb to 63.6 ppb, respectively.  Five of the six low O3 treatment chambers and three of 

the six high O3 treatment chambers had two-day means within their respective 95% 

confidence intervals.  However, those chambers outside the confidence interval were within 

0.1 to 0.4 ppb of the interval boundaries, so there was fairly good replication of the O3 

treatments across chambers over both exposure days. 

Foliar injury 

The injury was averaged for 3 biological replicates of the first to sixth leaves 

assessed. No injured or senesced leaves were found in the Fiskeby genotype in either the 

control or high O3 treatment at either 24 or 48 hours after the fumigation (Table 2). However 

there was abundant foliar injury observed in the Mandarin genotype under high O3 treatment 

at both harvest times, especially after 48 hrs (Table 2).  After 24 hrs from the beginning of 

the O3 exposures, the fourth mature leaf (the leaf just below the one harvested for gene 

regulation analysis) had a mean leaf injury of 22.5 + 7.31 % while it was only 11.7 + 8.03% 
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for the slightly younger fifth leaf.  However, by 48 hrs after the start of exposures, only one 

Mandarin plant in the low O3 treatment showed any signs of injury (20% on one leaf), 

whereas for Mandarin plants in the high O3 treatment, leaves 2 through 5 all showed 

substantially more injury than they did at 24 hrs.  A one-way ANOVA showed that there 

were no differences (p = 0.7207) among leaf maturity levels; so all five leaves were averaged 

together to obtain the final leaf injury assessment, which was 38.0 + 15.28%. 

Gas exchange and stomatal conductance 

Dark respiration was measured immediately following the photosynthesis 

measurements, but at 0 PPFD.  VPDleaf was significantly lower by ~0.6 kPa (p = 0.045) and 

RH higher by ~7% (p = 0.016) in the cuvette when illuminated at 1500 µmol m-2 s-1 for 

leaves of Mandarin compared to Fiskeby.  In the dark, RH was still higher by 6% (p = 

0.034), but VPDleaf was no longer different (p = 0.112).  No other environmental parameters 

differed between the genotypes or ozone treatments.  Steady-state measurements were 

obtained in less than two minutes from the time of insertion into the cuvette, which would be 

too quick for stomata to react to the difference that was found in VPDleaf between Mandarin 

and Fiskeby leaves, which resulted from differences in the magnitude of gs between the two 

genotypes (see below for more details).   

In the genotype effects analysis, a paired t-test (O3 treatments are combined so n = 6) 

was used to compare Mandarin to Fiskeby across both O3 treatments to see if there was a 

genotype difference in either An or rd. Genotype differences for An or rd within a chamber 

(Mandarin response – Fiskeby response) showed no ozone effect (p = 0.109, p = 0.156, 

respectively, Table 3). There were highly significant differences between genotypes for gs, 

both in the light and in the dark (p = 0.0002, p = 0.0016, respectively, Table 3).  Stomatal 
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conductance in Mandarin was more than double that in Fiskeby (2.4X higher) in the light, 

and double in the dark (2.1X higher). The An/gs ratio is sometimes used to indicate the 

sensitivity to ozone, where higher ratios are often correlated with lowered sensitivity due to 

supposed production of photosynthates for antioxidant defenses and cellular repair 

mechanisms (Skelly et al., 1996). This ratio is significantly higher (p =0.004, Table 3) for 

Fiskeby then for Mandarin, which suggests a greater tolerance to O3 stress.  

To analyze ozone treatment effects within each genotype, a t-test (n=3) was used to 

compare the control treatment to the high O3 treatment for each genotype separately.  There 

were no differences in any gas exchange parameters between the control and high ozone 

treatments for either genotype (Table 4). 

Gene expressions 

Each data point for gene expression is the average of three experimental replicates 

(Figure 5).  A few of the data points had overly large coefficients of variance (>73%), usually 

due to an abnormal replicate. I adjusted these data points by taking out the aberrant replicate 

(for glutathione in 25 ppb at 4 h in Mandarin, and for pD1 under 75 ppb at 2,4,6 h in 

Mandarin, Figure 4, Figure 6, Table 5-6). Removal of these outliers did not alter the 

biological interpretation of the patterns, either with respect to genotypic differences or O3 

treatment effects.  Rather, they simply reduced the standard errors for those data points. 

Therefore the discussion is mainly based on adjusted data (Figure 4, Figure 6, Table 5-6). 

Relative quantification (RQ) is arbitrarily determined and is the ratio of gene expression 

relative to four times the expression of GR2 for Fiskeby at 0 h under 25 ppb (Figure 3-6). 

The RQ is used because some of the original data are smaller than 1, making it hard to 
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differentiate from each other, especially when plotting the data. The expression of GR2 for 

Fiskeby at 0 h under 25 ppb times four has RQ=1.  

GR2 expression in Mandarin was anomalously high (p = 0.0164, Table 5) for 

reasons unknown, and the effects was highly significant at 2h of exposure (p = 0.0104, Table 

5). In contrast, the effects were marginally significant in Fiskeby at 2h (p = 0.0533, Table 5). 

pD1 expression was barely affected by high O3 treatment in Mandarin across all time points 

and was only upregulated in Fiskeby at 2 h (p = 0.0390, Table 5).   

There were few differences under control 25 ppb O3 except for higher pD1 

expression in Mandarin at 0 h (p = 0.041, Table 6) and 1 h (p = 0.0208, Table 6). Under high 

O3, the GR2 expression at 0 h (p = 0.0297, Table 6) and 2 h (p = 0.00227, Table 6) was 

significantly greater in Mandarin then in Fiskeby. The temporal trends of relative expression 

for GR2 and pD1 are represented in Figure 3-6.  
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Discussion 

 
Researchers have postulated that differential gene expression may be responsible in 

part for determining differences in the sensitivity of plants to ozone (Paolacci et al., 2007; 

Puckette et al., 2008; Cho et al., 2013). In particular, antioxidant genes tend to be 

upregulated in response to O3 exposure while metabolic genes are downregulated (Lee and 

Yun, 2006; Tosti et al., 2006; Olbrich et al., 2010; Whaley et al., 2015), and higher 

expression of the former genes may be characteristic of ozone-tolerant plants, whereas higher 

expression of the latter genes may indicate higher ozone sensitivity. Those studies that 

examined changes in plant gene expression under O3 stress using microarrays mostly focused 

on either an O3-tolerant or O3-sensitive genotype within a species but did not compare the 

two types.  In addition, changes in gene expression were often examined at just one point in 

time and often several hours after exposure.  Also, many gene expression studies have used 

excessively high O3 concentrations during their exposures, which are not realistic in terms of 

the current ozone conditions found in most areas where soybeans are grown.  I could find 

few studies that investigated responses at exposure times as short as just one hour of O3 

exposure except Volkov et al., (2006).   

My study is unique in that it has addressed these short comings by measuring 

tolerant and sensitive genotypes within the species Glycine max (soybean) with exposures as 

short as one hour and as long as 24 hrs. In this study, there were only minor differences in 

gene expression of an antioxidant gene GR2 and a metabolic gene pD1 between a sensitive 

soybean genotype (Mandarin (Ottawa)) and a less sensitive genotype (Fiskeby III) (Tables 5 

and 6). Although two genes are too small of a number to adequately represent other genes in 

the same category, it is also possible that some of the lack of differences in gene expression 
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is due to different O3 uptake patterns, since the sensitive genotype Mandarin had a higher 

stomatal conductance than the tolerant genotype Fiskeby.  Thus, when leaves are sampled at 

similar times, it would be expected that the dose would be higher in Mandarin than Fiskeby, 

and any differential gene expression could be due to this, rather than some inherently higher 

sensitivity to this pollutant.   

Glutathione Reductase 2 (Glyma02g16010) 

Three GR genes (GR1, GR2 and GR3) have been identified in different plant species 

including Arabidopsis thaliana, rice, kimchi cabbage and Phragmites communis (Marty et 

al., 2005; Mhamdi et al., 2010; Trivedi et al., 2013; Kim et al., 2015; Wu et al., 2015; Zhang 

et al., 2015). These genes code for the GR isoforms: GR1 targets the cytosol, while GR2 and 

GR3 both dually target chloroplasts and mitochondria (Chew et al., 2003; Mhamdi et al., 

2010; Kim et al., 2015; Wu et al., 2015). Arabidopsis GR2 mutants are embryo-lethal 

(Tzafrir et al., 2004), while GR1 knockout mutants show no phenotypic alterations, but a 30–

60% reduction in extractable enzyme activity (Marty and Siala, 2009; Mhamdi et al., 2010). 

GR1 and GR3 are upregulated by both biotic and abiotic stresses (Mhamdi et al., 2010; Wu 

et al., 2015). However, in a study using the microarray database Genevestigator, organellar 

GR2 was not up-regulated by cold, salt or osmotic stresses (Zimmermann et al., 2004; 

Trivedi et al., 2013). Ideally, GR1 would have been a better gene to investigate since it is 

known to be upregulated by a wide variety of stresses. However, I used the soybean GR2 

gene (Glyma02g16010) due to the convenience of primer design.  

Previous research has shown that glutathione (GSH) content (Schupp and 

Rennenberg, 1988) and GR activity (Kocsy and Owttrim, 1997) both follow a light-

dependent diurnal pattern. The GSH concentration is high in midday and low during the 
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night, whereas GR activity increases in the dark and starts to decrease during the light period. 

It is possible that this pattern results from dealing with daily patterns of oxidative stress. In 

my study, GR2 expression gradually increased in similar proportion within each of the two 

genotypes and reached a peak at 2 h (11:00 h) under control O3 (Figure 4), which is probably 

just the expression pattern coincident with the diurnal ryhthm for GSH and GR enzyme 

activity. When each genotype was exposed to the high O3 treatment, expression peaks (at 1 h, 

Figure 4) were elevated when compared with the peak at 2 h for corresponding control 

samples, as well as shifted to an hour earlier in both genotypes. It is worth noting that the 

GR2 expression in Mandarin at high O3 at 0 h was significantly higher than its control at 0 h 

(Table 6), and for Fiskeby in either the control or high O3 treatment at this time. This is hard 

to explain because all the 0 h samples for both the Mandarin and Fiskeby genotypes should 

presumably have similar amounts of GR expression.  Nonetheless, both genotypes were more 

upregulated by high O3 at 1 hr (Figure 4), but there is no significant difference in either the 

extent or rate of upregulation between the two genotypes. Whaley et al. (2015) performed a 

RNA-seq analysis which showed an increased expression of glutathione genes in both 

genotypes after exposure to 75 ppb O3 for 5-7 hours (Whaley et al., 2015). However, in 

another study by Chutteang et al., (2015) exposure to 70 ppb O3 did not alter GR activities or 

leaf GSH content in the same two soybean genotypes after 4 days of exposure. They did 

observe a 22% higher (p ≤ 0.001) leaf GR activity in the Mandarin genotype than in the 

Fiskeby genotype, which is consistent with my finding that the GR2 expression in Mandarin 

was greater under high O3 at 0 h and 2 h (Figure 4). 

The GR diurnal pattern described above dampened out with time in both genotypes 

and in both the control and high O3 treatments and was not observed after 4 h (Figure 4). This 
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could explain why Chutteang et al. (2015) did not find any treatment effects at 4 days.  It is 

also possible that 4 hours constitutes a metabolic cycle and since the other time points were 

multiples of 4 h (8 h, 12 h and 24 h), they might all be timed at the nadir of the cycle and so 

no daily patterns were able to be observed after 4 h.  It is also possible that the first 4 hours is 

an adjustment period after the sudden “shock” of O3 fumigation. The accumulating mRNAs 

may have reached optimal amount at which point no further transcription was needed and the 

intracellular redox status had approached some sort of a homeostatic equilibrium (Foyer and 

Noctor, 2009; Bilgin et al., 2010). A third possibility is that the role GR played to reduce 

GSSG back to GSH was taken over by other antioxidative enzymes or GSH synthesis 

enzymes such as adenosine 5′-phosphosulphate (APS) reductase and γEC synthetase (Kocsy 

et al., 2001). This process may also involve hormone regulation with feedbacks that regulate 

GR and other antioxidative enzymes (Overmyer et al., 2003; Kovacs et al., 2015).  

In summary, the results from the first four hours support the idea that changes in 

antioxidative gene expression can happen very rapidly in response to the quick ROS burst 

that is elicited after sudden exposure to high O3. As an example, a ROS peak was detected 4 

hours after 300 ppb O3 treatment in a sensitive Arabidopsis ecotype (Mahalingam, 2006). 

H2O2 was found to increase 2.3-fold within 15 min in Arabidopsis, but the return to basal 

levels took a few hours (Volkov et al., 2006). These responses may be stress-, dose- and 

species- specific, however they should attract future attention to investigate earlier and 

potentially more robust stress responses.  

Photosystem II protein D1 (Glyma13g15560.1)             
 

There was little significant differential gene expression between the two genotypes 

for pD1 after exposure to O3. Mandarin had a higher basal level of pD1 at 0 h and 1 h than 
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Fiskeby under control O3 (Figure 6).  The reason for this is unknown at present but could 

represent a higher susceptibility to light stress in the Mandarin genotype, necessitating 

greater synthesis and repair of the pD1 protein than in the Fiskeby genotype. pD1 expression 

in both genotypes responded similarly across all time points with one exception where 

Mandarin showed marginal treatment effects (p =0.1289) at 1 h (Table 5).   

Photosystem II (PSII) is the water splitting protein-pigment complex in the chain of 

oxygenic photosynthesis. It is located in the thylakoid membranes of chloroplasts in plants 

and captures photons to extract electrons from water molecules and eventually produce ATP 

through the process of chemiosmosis. The reaction core of PSII is formed as a heterodimer 

with proteins D1 (also known as PsbA) and D2 (PsbD), which receive the excitation energy 

from antenna proteins CP43 (PsbC) and CP47 (PsbB) and then initiate the energy conversion 

process (Raymond and Blankenship, 2004).  The stability of PSII is challenged by light-

induced damage that especially targets its reaction center (Murata et al., 2007). Each PSII 

complex is presumed to be damaged for every 10-100 million photons received (Eckert et al., 

1991; Tyystjärvi and Aro, 1996). Therefore, photodamage to PSII occurs irrespective of light 

intensities but the rate and scope of damage is proportional to light intensity (Tyystjärvi, 

2008). This phenomenon is generally referred to as photoinhibition (Foyer et al., 1994), and 

it is determined by the rates of photodamage and repair of PSII (Murata et al., 2007). Repair 

involves the degradation and re-synthesis of the damaged D1 protein (Murata et al., 2007) 

and the constant demand for new protein copies may explain the high (103~104) RQ scale  of 

pD1 expression compared to the much lower (~101) scale for GR2 expression. This may also 

lead to the peak of pD1 mRNA synthesis at 2 h (10:00 h) in Mandarin exposed to control O3 

because 10:00 h is when the plants start to get exposed to much higher light and therefore 
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could begin to experience photoinhibition (Figure 6). However, there was no significant 

upregulation of pD1 in Fiskeby at the same time (at 2 h) under control O3 (Figure 6), the 

cause for which requires further investigation. Perhaps the D1 protein complex is more stable 

in Fiskeby or, due to its lower stomatal conductance, and reduced O3 uptake, its regulation is 

less affected by exposure. But even at 4 h, there was still no impact of O3 exposure in this 

species, and even in the more sensitive Mandarin, expression was reduced after 2 h and 

showed no further sensitivity due to O3 exposure (Figure 6).  

Photoinhibition can be enhanced by environmental stresses, such as cold, heat, salt 

and oxidative stresses (Nishiyama and Yamamoto, 2001; Yin et al., 2010; Gaur and Sharma, 

2014; Sui and Han, 2014). Takahashi & Murata (2008) suggested that the enhanced damage 

by these stressors is not due to promotion of photodamage, but rather due to inhibition of the 

repair of PSII by downregulating D1 protein synthesis. Such inhibition was associated with 

failed elongation of peptides during the D1 protein translation step in studies using 

cyanobacteria (Nishiyama and Yamamoto, 2001; Allakhverdiev and Murata, 2004).  In my 

study, the expression peak of pD1 at 1h for Mandarin was marginally reduced (p =0.1289, 

Table 5) by exposure to elevated O3, probably because that treatment inhibited the repair of 

PSII. This suggests that O3 somehow prevented the expression of this gene at the level of 

transcription rather than at translation, maybe through epistatic effects (interacting effects of 

other genes). However, Fiskeby maintained a steady level of pD1 expression under both 

control and high ozone treatment across all time points (Figure 6), either due to its lower 

uptake, which may have resulted in minimal alterations to its redox status, and hence 

regulation of gene expression, or because its PSII complex is for some reason more resistant 

to oxidative stress. Similar to the above result, Chutteang et al. (2015) found that the 
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efficiency of energy conversion and photosynthetic electron transport was reduced in 

Mandarin under 70 ppb O3 by comparing quantum yield, electron transport rate and 

photochemical quenching, all of which are affected by degradation of the D1 protein.  

Overall, Fiskeby exhibited smaller changes in expression for either GR2 or pD1 

compared to Mandarin. Similar to the trend I found, Whaley et al. (2015) discovered that 

Fiskeby is less responsive than Mandarin in expression for those genes commonly associated 

with oxidative stress. They found two patterns in general for the gene regulations by 

comparing the transcriptome of the two genotypes: the timing of differentially expressed 

gene as expected in the two genotypes are different, with the expression of a majority 

delayed in Fiskeby; a small number of genes lacked response in Fiskeby during the whole 

time-course when compared to Mandarin. This can be explained, in part, as due to less O3 

uptake because of lower stomatal conductance in Fiskeby than in Mandarin. Given the 

difference in stomatal conductance between Fiskeby and Mandarin, the same O3 exposure 

would result in a lower “dose” and hence, less effect in Fiskeby than in Mandarin.  However, 

in my study, if the expression for both GR2 and pD1 of Fiskeby at 2 h is compared with that 

of Mandarin at 1 h, which would somewhat equalize the dosages, there was still no 

expression response observed in Fiskeby. Thus, even when Fiskeby accumulates the same 

dose, it does not respond similarly to Mandarin, which suggests either that Fiskeby has 

inherently greater resistance at the molecular level than Mandarin, or, that exposure to the 

same dose, but applied in a chronic (low rate of uptake) manner over a longer time period, 

does not elicit the same molecular or physiological response as exposure to acute O3 (high 

rate of uptake) for a shorter time period (Grulke et al., 2007b; Chen et al., 2009).  
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As discussed before, the impact of ozone on plants is determined by the O3 

concentration and duration of exposure. Chronic exposures to low levels of ozone can be 

found worldwide (Kangasjärvi et al., 2005). In contrast, acute exposures occur less often, 

except in heavily polluted urban or industrial areas where the air quality is a major concern 

(Long and Naidu, 2002). However, initial studies at the molecular level have generally 

applied short acute O3 exposures to investigate elevated O3 effects on plants, because such 

experimental settings are easier to manipulate and the responses are more guaranteed under 

such conditions than after exposure to chronic fumigation (Kangasjärvi et al., 2005). The 75 

ppb O3 chosen for the exposure concentration in my study was selected because it is near the 

naturally occurring elevated O3 concentrations currently found in the Piedmont of North 

Carolina in recent years. If the expression of stress responsive genes was not simply delayed 

in Fiskeby until it accumulated a higher dose, it might be because that level of exposure is 

only a chronic concentration for Fiskeby but an acute concentration for Mandarin, because of 

its higher uptake rate and maybe greater molecular sensitivity.  Since acute and chronic O3 

exposures may induce distinct response mechanisms within the leaves, the single exposure 

experiment I conducted may only be looking at one part of the ozone tolerance syndrome.  

It was reported that while ET and methyl jasmonate are associated with signaling 

pathways triggered by acute O3, they are not involved in mediating responses to chronic O3 

in Pima cotton (Grantz and Vu, 2012). Chen et al. (2009)  found that both types of exposures 

could decrease leaf photosynthetic CO2 uptake and photosystem II (PSII) efficiency (Fv/Fm) 

by similar percentages compared with controls, but the acute treatment induced a more 

spatially heterogeneous reduction, which might be due to the heterogeneous stomatal 

conductances across the leaf (Mott and Buckley, 2000). In my study, the response of the 
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whole leaf regarding gas exchange and photosynthesis was measured and therefore the actual 

response of the cells might have been neutralized, which means effects on highly damaged 

cells were obscured by other regions of the leaf that remained highly functional.  Sawada and 

Kohno (2009) examined leaf visible damage and grain yield reduction in different rice 

cultivars and discovered that distinct mechanisms exist for inducing acute leaf injury and 

chronic yield reduction.  

Based on the above knowledge, it is reasonable to further investigate whether 

Mandarin and Fiskeby would take up the same amount of O3 across different time points. If 

not, then an experiment should be designed that provides an equivalent “dose” over a similar 

time period for both genotypes.  This can be done by adjusting the O3 concentration such that 

the fluxes ([O3] x gs) are made equivalent. Only in this way can one be sure that the 

experiment is testing molecular responses that truly reflect the innate characteristics in regard 

to oxidative stress defense, signaling and metabolism within the tolerant and sensitive 

genotypes. 
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Table 1. Specific primers used for relative quantification of GR2 and pD1 mRNA expression 

by qPCR. 

Primers Functions Glyma ID Tm 
(T°) Sequence 

60s ribosomal 
protein L30 Glyma17g05270 60.0 5’AAAGTGGACCAAGGCATATCGTCG3’ 

Glutathione 
Reductase 2 

(GR2) 

glutathione 
reductase Glyma02g16010 60.1 5’GGATGTGTGCCGAAGAAGTT3’ 

Protein D1 
(pD1) 

photosystem 
II reaction 

center 
protein A 

Glyma13g15560 60.0 5’TCCCGCTACTGCTGTTTTCT3’ 
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Table 2. Percent leaf area with stipple 24 and 48 hours after the onset of O3 fumigation. 

Values are means + se. n=3.  No statistical analysis for a genotype effect was required 

because of the absence of injury in all Fiskeby plants.  Values for the Mandarin plants refer 

to the mean of the fourth and fifth leaves at 24 hrs, and the second through fifth leaves at    

48 hrs.   

Genotype [O3] Harvest time % leaf injury 

Mandarin 
25 ppb 24 h 0 

48 h 1.3 + 1.33  

75 ppb 24 h 17.1 + 7.31 
48 h 38.0 + 15.28 

Fiskeby 
25 ppb 24 h 0 

48 h 0 

75 ppb 24 h 0 
48 h 0 
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Table 3. Gas exchange comparisons between genotypes across O3 treatments. A leaflet on the 

3rd mature leaf (the leaf sampled for gene regulation analysis) was used for the gas exchange 

measurements.  Bolded p values indicate significance at p < 0.05. *Ratio uses gs measured in 

the light. Values are means + se. n = 6. 

Parameter Mandarin Fiskeby p value 

Photosynthesis (An) 
(umol m-2 s-1) 16.2 + 1.71 11.8 + 1.57 0.109 

Dark Respiration (rd) 
(umol m-2 s-1) -1.9 + 0.35 -1.9 + 0.03 0.156 

Stomatal Conductance (gs) 
(mol m-2 s-1) in light 0.474 + 0.028 0.201 + 0.037 <0.001 

gs-dark in dark 
(mol m-2 s-1) 0.365 + 0.04 0.175 + 0.03 0.002 

An/gs* 
(umol/mol) 34.2 58.7 0.004 
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Table 4. Gas exchange comparisons between O3 treatments for each genotype. A leaflet on 

the 3rd mature leaf (the leaf sampled for gene regulation analysis) was used for the gas 

exchange measurements.  Bolded p values indicate significance at p < 0.05. Values are 

means + se. n=3. 

Genotypes Parameters Low O3 High O3 p value 

Fiskeby 

Photosynthesis (An) 
(umol m-2 s-1) 11.2 + 2.24 12.4 + 2.63 0.750 

Dark Respiration (rd) 
(umol m-2 s-1) -1.4 + 0.41 -1.9 + 0.04 0.359 

Stomatal Conductance(gs) 
(mol m-2 s-1) 0.221 + 0.066 0.182 + 0.044 0.643 

gs-dark in Dark 
(mol m-2 s-1) 0.184 + 0.059 0.165 + 0.039 0.796 

Mandarin 

Photosynthesis (An) 
(umol m-2 s-1) 18.2 + 2.99 14.3 + 1.29 0.289 

Dark Respiration (rd) 
(umol m-2 s-1) -1.9 + 0.03 -2.3 + 0.28 0.340 

Stomatal Conductance(gs) 
(mol m-2 s-1) 0.541 + 0.072 0.407 + 0.070 0.253 

gs-dark in Dark 
(mol m-2 s-1) 0.412 + 0.045 0.295 + 0.050 0.206 
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Table 5.  Gene expression comparison over time between the two genotypes across the low 

and high O3 treatment. Bolded p values indicate significance at p < 0.05. n = 3. * indicates 

marginal significance. For definitions of GR2 and pD1 refer to Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene Genotypes Hours p value  

GR2 

Mandarin 
 

0 0.0164 
1 0.1644 
2 0.0104 
4 0.5882 
8 0.2069 
12 0.6194 
24 0.8844 

Fiskeby 
 

0 0.2760 
1 0.1320 
2 *0.0533 
4 0.4963 
8 0.1363 
12 0.7306 
24 0.2079 

pD1 

Mandarin 
 

0 0.5645 
1 *0.1289 
2 0.3414 
4 0.5283 
8 0.4166 
12 0.5258 
24 0.9753 

Fiskeby 
 

0 0.2696 
1 0.8710 
2 0.0390 
4 0.5448 
8 0.8927 
12 0.7447 
24 0.4183 
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Table 6. Gene expression comparison over time between the low and high O3 treatment 

across the two genotypes. Bolded p values indicate significance at p < 0.05. n = 3. For 

definitions of GR2 and pD1 refer to Table 1. 

Gene O3 
Treatment Hours p valued 

for t-test 

GR2 

Low O3 
 

0 0.156 
1 0.235 
2 0.200 
4 0.829 
8 0.383 
12 0.178 
24 0.910 

High O3 
 

0 0.030 
1 0.484 
2 0.002 
4 0.946 
8 0.294 
12 0.528 
24 0.145 

pD1 

Low O3 
 

0 0.041 
1 0.021 
2 0.268 
4 0.224 
8 0.133 
12 0.448 
24 0.128 

High O3 
 

0 0.233 
1 0.200 
2 0.214 
4 0.112 
8 0.489 
12 0.944 
24 0.432 
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Figure 1. Greenhouse layout. Each circle represents a CSTR chamber. Day 1 and day 2 

chambers contain the plants that would be harvested at 0/1/2/4 h and 8/12/24/48 h after the 

onset of O3 fumigation, respectively. Yellow and green circles represent high/low O3 

chambers, respectively. Positions of the chambers within each block (rows) are randomized.  
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Figure 2. Example plant positions inside chamber 1. Positions were randomized for the other 

CSTR chambers. 
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Figure 3. GR2 expression over a one-day period in the two genotypes under control and high 

O3 treatments (with original data). The data points that have high coefficients of variation are 

indicated in green. 
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Figure 4. Adjusted GR2 expression over a one-day period in the two genotypes under control 

and high O3 treatments (with adjusted data). Adjusted data points are indicated in green. 
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Figure 5. pD1 expression over a one-day period in the two genotypes under control and high 

O3 treatments (with original data). The data points that have high coefficients of variation are 

indicated in green. 
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Figure 6. Adjusted pD1 expression over a one-day period in the two genotypes under control 

and high O3 treatments (with adjusted data). Adjusted data points are indicated in green. 
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