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Abstract 

 

MORPHOLOGICAL AND ECOLOGICAL CAUSES OF INTERSPECIFIC AGGRESSION 

BETWEEN GOLDEN-WINGED AND CHESTNUT-SIDED WARBLERS  

 

John Anthony Jones 

A.S., Sandhills Community College 

B.S., Appalachian State University 

M.S., Appalachian State University 

 

Chairperson: Lynn Siefferman 

 

 

Interspecific aggression is widespread throughout the animal kingdom, yet research 

that documents the evolutionary and ecological consequences remains limited and unclear. 

Aggressive behaviors are often indicative of an ecological niche overlap between 

morphologically and ecologically similar species, which can cause interference competition 

between animals. Competition between interspecifics has the potential to significantly 

influence community structure, particularly if a competitively dominant species excludes the 

subordinate species from resources required for their reproductive success. Thus, for species 

of conservation concern, research focusing on interspecific behavioral interactions is critical. 

Golden-winged warblers (Vermivora chrysoptera) frequently engage in agonistic interactions 

with chestnut-sided warblers (Setophaga pensylvanica) in the southern Appalachian 

Mountains, yet these aggression between warblers has been undocumented to date. Although 

morphologically distinct in many regions, these species share a similar signaling space (i.e., 

yellow crown coloration). Here, I explore two potential explanations of interspecific 

aggression between these wood warblers (Aves: Parulidae): mistaken identity and 
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interspecific competition. I used museum and field data and used both ecological modeling 

and experimental field methods to investigate the cause of interspecific aggression. First, 

using museum specimens, I found that the crown plumages of both warblers are two distinct 

shades of yellow that both warbler species should theoretically be able to distinguish. Next, I 

studied these warblers for two field seasons. First, I investigated whether golden-winged 

warblers suffered fitness consequences of sympatry with high densities of chestnut-sided 

warblers (summer 2014). Second, I investigated whether each species was misidentifying 

heterospecific models as conspecific intruders (summer 2015). I found that golden-winged 

warblers were more aggressive when settling in areas of high chestnut-sided warbler density, 

but heterospecifics did not have a negative influence on their overall reproductive success. 

Instead, I found that the structure of territory habitat best predicted reproductive success. 

These results suggest that interspecific competition for limited resources is unlikely to be the 

cause of agonism between the two species. Next, using models of birds presented to 

territorial birds in the field, I found that both warblers were equally likely to attack the 

‘correct’ (conspecific) and ‘incorrect’ (heterospecific) model and that the individuals that 

were more likely to attack the heterospecific model displayed more aggressive phenotypes. 

These results suggest that, from the perspective of the golden-winged warbler, competition is 

unlikely to occur and interspecific aggression is a function of mistaken identity. Yet, without 

net gains from behaving as such, these behavioral traits between warblers may drive crown 

morphology to become more distinctive to reduce species recognition errors.  
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CHAPTER 1 

General Introduction 

 

Some of the greatest challenges facing modern conservation biologists are how to mitigate 

losses of biodiversity and prevent further population declines of at-risk species (reviewed in 

Cardinale et al. 2012). To effectively manage these species, examinations of how individuals 

interact with both biotic and abiotic factors within an ecosystem and potential behavioral 

interactions between heterospecific species are often warranted. Indeed, it has become 

increasingly clear that, for many animal conservation problems, behavioral research is 

imperative (reviewed in Linklater 2004). Although such research can better explain how 

animals persist in rapidly changing ecosystems, behavioral ecologists are often hesitant to 

combine their research agendas with that of conservation biologists (reviewed in Caro and 

Sherman 2013). Yet, when animal species are threatened with extinction, failure to examine 

their behavioral ecology may result in inadequate management practices that may be 

inadvertently detrimental to the recovery of that species (Anthony and Blumstein 2000). In 

particular, a better understanding of how behavioral characteristics influence community 

structure and the outcome of interspecific interactions could aid conservation efforts for 

species at-risk.  

In biological systems, three broad types of interactions can occur between species: 

competition, predation/parasitism, and mutualism (reviewed in Dhondt 2012). While the 

importance of predation, parasitism, and mutualism are generally accepted as major drivers 

of community structure, the evolutionary significance of interspecific competition is often 

debated and understudied (reviewed in Dhondt 2012, Grether et al. 2013). Yet, failure to 
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examine the ecological consequences of sympatry between threatened and abundant species 

may result in inadequate management practices, and ultimately, failure to restore or maintain 

populations. When interspecific aggression is common between sympatric animals, 

competition is often inferred; aggression is thought of as a product of intense competition for 

shared and limited resources (reviewed in Dhondt 2012; e.g., Martin and Martin 2001a, b). 

Indeed, aggressive behaviors (i.e., physical bouts comprised of dives, bites, etc.) associated 

with access to limited resources is the predominant mode of interference competition 

between animals (reviewed in Grether et al. 2013).  

Interspecific aggression is widespread in nature and is often as costly and intense as 

intraspecific aggression (Ords and Stamps 2009, Peiman and Robinson 2010). Thus, although 

not as widely studied as other interspecific interactions (e.g., mutualism), it is intuitive that 

interspecific aggression should yield important proximate and ultimate consequences 

(reviewed in Grether et al. 2013). For example, intense interspecific aggression exerted by 

competitively dominant taxa may result in the exclusion of subordinate taxa from required 

resources (e.g., Miller 1964, Murray 1981). As such, interference may drive selection of 

sympatric species such that (1) resource overlap is reduced (e.g., differences in temporal 

scale and/or habitat preference) or (2) traits associated with competitor recognition diverge 

(e.g., ornamentation, song; Peiman and Robinson 2007, Grether et al. 2009). Until recently, 

traits associated with species recognition and the ecological consequences of interspecific 

aggression have been largely understudied (but see Grether et al. 2009, Grether et al. 2013). 

Interspecific aggression may be a product of misdirected conspecific competition, 

such that animals mistakenly interact aggressively with heterospecifics because those 

individuals have similar cues used in conspecific interactions. However, because the costs 
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and benefits of appropriately responding with aggression towards heterospecifics are often 

species-specific, the adaptive nature of mistaken identity is unclear (Ord et al. 2011). For 

example, if two species are ecological competitors, then selection should act on sympatric 

animals to converge in characteristics associated with competitor recognition because it may 

be beneficial to more easily spot heterospecific competitors (Cody 1969, Grether et al. 2009), 

as seen in meadowlarks (Sturnella spp.; Rohwer 1973) and southern Appalachian Plethodon 

salamanders (Nishikawa 1985, 1987). In contrast, if species do not compete, but interact 

aggressively, the associated costs of mistaken identity may select for recognition traits to 

diverge (Lorenz 1962, Grether et al. 2009, 2013). Here, agonistic character displacement 

explains morphological divergence: to costs of intense interspecific aggression should result 

in selection for divergence in traits that influence the rate of mistaken identity (Grether et al. 

2009). This is analogous to ecological character displacement (Brown and Wilson 1956), but 

differs in the mechanism. Brown and Wilson (1956) suggested that ecological character 

displacement is a result of exploitative (indirect) competition, but that interference may 

evolve as an alternative to displacement. That is, they did not consider that selection would 

act to reduce the occurrence of agonism directly to accentuate species differences (reviewed 

in Grether et al. 2013). 

Understanding the stimulus of aggression is imperative for species that are of 

conservation concern. For example, the golden-winged warbler (Vermivora chrysoptera) is a 

songbird that is rapidly declining throughout eastern North America, and it often engages in 

physical confrontations with the morphologically similar (and comparatively abundant) 

chestnut-sided warbler (Setophaga pensylvanica). Both wood warblers initiate agonistic 

interactions, but these behaviors occur inconsistently; the two species are often observed 
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singing from adjacent perches (pers. obs.). Nonetheless, to date, behavioral interactions 

between these wood warblers have yet to be studied in a systematic function. This is 

perplexing because both warblers occupy nearly identical breeding ranges (Sauer et al. 2014) 

and have similar habitat requirements (Collins et al. 1982, Confer et al. 2011, Richardson and 

Brauning 2013). If interspecific aggression occurs because of competition for limited 

resources, then the failure to investigate these behavioral traits may hinder golden-winged 

warbler conservation efforts.  

Golden-winged warbler populations have declined significantly throughout most of 

the breeding range, but the Appalachian populations are experiencing the most precipitous 

declines (>40% decline since 1966; Sauer et al. 2014). In North Carolina, populations have 

declined by ~10.5% year-1. Thus, the golden-winged warbler is one of the most rapidly 

declining, non-federally endangered birds in eastern North America (Buehler et al. 2007). 

The majority of breeding populations (~90%) occur between southeastern Canada and the 

Great Lake regions, whereas fewer populations occur in the Appalachian Mountains, 

generally occurring at ≥900 m in the southern Appalachians (Confer et al. 2011, Roth et al. 

2012). The decline of the golden-winged warbler is largely attributed to habitat loss 

throughout their breeding and wintering range (Confer et al. 2011, Roth et al. 2012). Their 

nesting habitat is dependent on disturbance, but onset of forest regeneration and active fire 

suppression has limited such habitat types (Klaus and Buehler 2001). As early successional 

habitats are increasingly lost, aggressive behaviors may be increasingly to secure limited 

territories – assuming that warblers are competing for access to higher quality habitat types. 

Like the golden-winged warbler, chestnut-sided warblers nest in early successional 

habitats (Richardson and Brauning 2013). However, preliminary observations suggest that 
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chestnut-sided warblers are not as limited to specific patches of shrub as golden-winged 

warblers and may be more of a successional habitat generalist, although requirements for 

habitat selection in both species are suggested to be nearly identical (at the individual 

territory scale; Collins et al. 1982). Although chestnut-sided warblers are experiencing slight, 

but statistically significant, declines range-wide (annual declines: -1.4% year-1 from 1966-

2012; Sauer et al. 2014), they are an abundant species in the southern Appalachian 

Mountains, outnumbering golden-winged warblers by ≥5:1 (pers. obs.).  

Both species have markedly distinct song and plumage characteristics, with obvious 

color and pattern differences occurring across their backs, wings, faces, chins and the 

underside of their wings. However, to humans, the yellow coloration of the crown plumage 

of golden-winged and chestnut-sided warblers appears identical. It may be that the crown 

coloration is not obviously different from the bird’s perspective and causes these 

heterospecifics to misidentify each other as conspecifics. However, if plumage-based 

misidentification were to occur between birds, the colors would likely reflect light similarly 

across the avian visual spectrum. Yet, morphometrics alone may not be the only criteria for 

species discrimination; Ord et al. (2011) found that discrimination is dependent on context, 

and is guided by the cost-benefit ratio of responding aggressively towards either con- or 

hetero-specifics. 

Here, I focus on determining the stimulus of aggression between golden-winged and 

chestnut-sided warblers in the southern Appalachian Mountains of western NC and eastern 

TN. To answer this, I investigated whether aggression could be a product of mistaken 

identity based on crown plumage coloration (Chapter 2, 3) or interspecific competition 

(Chapter 3). I used a combination of reflectance spectrometry, avian vision models, and 
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model (i.e., dummy) birds to investigate the likelihood of mistaken identity. In the field, I 

monitored golden-winged warbler populations to determine if they suffered from sympatry 

with high densities of chestnut-sided warblers. Because aggression is a costly behavior 

(Moyer 1968), golden-winged warblers should experience selection to avoid aggression if 

there is no net benefit conveyed in behaving aggressively. However, if these species are 

competing, then my research could help develop management strategies to reduce sympatry 

and promote higher quality golden-winged warbler habitat. 
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CHAPTER 2 

Agonistic Behaviors between Chestnut-sided Warblers (Setophaga pensylvanica) and 

Golden-winged Warblers (Vermivora chrysoptera) are Unlikely a Result of Plumage 

Misidentification1 

 

ABSTRACT 

Plumage coloration within species is often a signal of competitive ability and can influence 

territorial aggression between males. Agonistic interactions among males of different co-

occurring species could result from misidentification (misdirected conspecific aggression). 

Reflectance spectrometry of plumage coupled with models of avian vision can be used to 

infer whether plumage color differences can be distinguished by birds. Here we investigate 

crown coloration similarity as a potential explanation for aggression between the imperiled 

Golden-winged Warbler (Vermivora chrysoptera) and the comparatively abundant Chestnut-

sided Warbler (Setophaga pensylvanica). Because the yellow crown coloration of the two 

species appears identical to humans, we hypothesized that misidentification of 

heterospecifics as conspecifics could escalate agonistic interactions. Using museum study 

skins, we tested whether the yellow crown coloration of the two species should be 

distinguishable to the birds. Spectral reflectance data demonstrate that plumage color differs 

between the two species and avian vision models suggest these color differences should be 

                                                        
1 Jones, JA and L Siefferman. 2014. Agonistic behaviors between chestnut-sided (Setophaga pensylvanica) and 

golden-winged warblers (Vermivora chrysoptera) are unlikely a result of plumage misidentification. Wilson 

Journal of Ornithology, 126(4):708-716. 
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easily discriminated. Thus, we conclude that plumage coloration similarity between these 

wood warblers is unlikely to cause misidentification of heterospecifics as conspecifics and 

may just be a result of phylogenic constraint. As populations of Golden-winged Warblers are 

experiencing accelerating declines, research focusing on the role interspecific competition 

plays on reduced productivity and survival is warranted.  

 

INTRODUCTION 

Plumage coloration often mediates agonistic interactions among conspecific males 

(Rohwer 1982, reviewed in Senar 2006). However, aggressive interactions among 

heterospecifics are more difficult to explain from an evolutionary perspective. Aggressive 

behaviors between two species are frequently used to infer ecological niche overlap (e.g., 

Heller 1971, Martin and Martin 2001). However, if males misidentify heterospecifics as 

conspecifics, occasional agonistic interactions would be expected, regardless of niche 

requirements between species. Indeed, two reviews suggest that some degree of 

heterospecific aggression may occur because of misdirected conspecific aggression across 

taxa (reviewed in Murray 1971, 1981). Morphometrics alone are not the only criteria for 

discriminating one species from another; Ord et al. (2011) found that discrimination is 

dependent on context, and is guided by the cost-benefit ratio of responding aggressively 

towards either con- or heterospecifics. Thus, if two species occupy similar habitats, use 

nearly identical resources, and display similar plumage colors, misdirected aggression may 

occur often. 

If plumage-based misidentification were to occur between birds, the colors would 

likely reflect light similarly across the avian visual spectrum. Although humans are 
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trichromatic and can perceive and discriminate colors better than most eutherian mammals 

(reviewed in Cuthill 2006), our color perception is not as acute and does not encompass as 

wide of a spectral range as birds. Indeed, there are three important distinctions between 

human and avian vision. First, birds have four types of single cones and one type of double-

cone that is not found in mammals (Cuthill et al. 2000, Hart 2001). Second, birds have lens, 

corneas, and aqueous and vitreous humors that are transparent to UV-A wavelengths (~315 

nm), and thus, see ultraviolet light (Burkhardt 1989, Cuthill 2006), while humans do not 

perceive wavelengths below 400 nm because of absorbance by the ocular media preceding 

human retinas (Douglas and Marshall 1999). Finally, at the expense of poor color vision in 

low levels of light (Vorobyev 2003), carotenoid-containing oil droplets in avian cones are 

responsible for increased color distinguishability between close wavelengths if optimal 

lighting is provided (Govardovskii 1983, Vorobyev 2003). Thus, the acuity of bird color 

vision is much higher than humans (reviewed in Cuthill 2006). To determine whether colors 

are distinguishable to birds, objective measures of plumage reflectance (Bennett et al. 1994, 

Cuthill et al. 1999) coupled with models of avian vision (Maia et al. 2013) are necessary. 

Focal observations have revealed complex interaction patterns between Golden-

winged Warblers (Vermivora chrysoptera) and morphologically similar Chestnut-sided 

Warblers (Setophaga pensylvanica) in the southern Appalachians. In 2013, we observed 

agonistic behaviors between Golden-winged and Chestnut-sided warblers, but these 

behaviors were not consistent. For example, we have noted aggressive altercations while the 

focal species were singing from adjacent perches, during targeted mist-netting attempts of 

both species, and after releasing an animal from banding. However, we have also noted no 

apparent aggressive behaviors between males of both species during each of these situations. 
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Further, other warbler species also occur in sympatry at our field site, yet we recorded no 

aggressive interactions among males of other species. Although Chestnut-sided Warblers 

exhibit markedly distinct plumage and song characteristics from Golden-winged Warblers, 

the yellow crown plumage of both warbler species appears identical to human observers, 

even when held in hand (JAJ and LS, pers. obs.). Indeed, the foraging and flight behaviors of 

both warblers are similar enough to fool researchers at our field site; at first glance, we often 

mistake one species for the other. Thus, the combination of similar morphology as well as 

behaviors may promote misidentification between species. We hypothesize that there are not 

differences in the coloration of crown feathers between species or that the warblers fail to 

perceive these differences in crown coloration. 

It is also possible, however, that interspecific competition over shared resources is the 

cause of aggressive interactions. Golden-winged and Chestnut-sided warblers defend 

territories and nest in early-to-mid successional habitats (Confer et al. 2011, Richardson and 

Brauning 2013) with nearly identical habitat requirements (Collins et al. 1982). Territories 

generally include mature hardwood forest adjacent to successional habitat (Confer et al. 

2011, Richardson and Brauning 2013), thus interspecific interactions likely occur in variable 

lighting conditions. Populations of Golden-winged Warblers are experiencing drastic 

declines (annual declines: -2.6% year-1 from 1966–2011, P <0.05), while Chestnut-sided 

Warbler declines are less extreme (-1.4% year-1 from 1966–2011; P <0.05; Sauer et al. 2012). 

In the southern Appalachian Mountains, Chestnut-sided Warblers outnumber Golden-winged 

Warblers by ≥5:1 (JAJ and LS, pers. obs.). 

Here, we use reflectance spectrometry coupled with models of avian vision to test 

whether birds should be able to discern color differences in the crown plumage of Golden-
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winged and Chestnut-sided warblers. To date, no study has quantitatively assessed aggressive 

behaviors between these warblers or their causes. This study represents a logical first step in 

understanding whether plumage-based misidentification is likely to occur between warblers 

or whether there is an underlying niche overlap. As Golden-winged Warbler populations are 

experiencing accelerating declines, increased research on species sympatry is needed to 

better understand potential causes of reduced productivity and survival. 

 

METHODS 

Data Collection.—Museum specimens are a valuable tool for researchers (Winker 

2004); reflectance spectra measured from plumage of museum specimens display similar 

variation to that found in wild birds (Doucet and Hill 2009), and thus, are appropriate for this 

study. From October–December 2013, we measured plumage reflectance of museum study 

skins of 59 after-hatch-year male Golden-winged and 70 after-hatch-year male Chestnut-

sided warblers collected during the breeding season (i.e., in the United States). We choose 

males that were collected during April–June, to ensure that we did not use hatch-year males 

in our study, as aggressive interactions between species has only been observed with birds 

that have survived at least one migration attempt to the breeding grounds. Thus, our final 

sample likely included second-year and after-second-year birds.  

The measurements were taken at the North Carolina Museum of Natural Sciences and 

additional study skins were shipped from the Field Museum of Natural History, American 

Museum of Natural Science, Academy of Natural Sciences, and Carnegie Museum. We 

avoided study skins that were noticeably dirty, likely because of collection in areas with 

increased coal production. Because museum specimens are subject to degradation over long 
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periods of time (Armenta et al. 2008, Doucet and Hill 2009), we recorded collection year. 

Moreover, because plumage color often varies with geography (Hill 1993, Johnston 1996, 

Doucet and Hill 2009), we recorded geographic region of collection and grouped the data 

into three categories: Northern Appalachian Mountains (PA and North), southern 

Appalachian Mountains (WV and South) and the Great Lakes regions (west of PA). Because 

of the scattered availability of  study skins for loan to North Carolina, the sample sizes per 

geographic region and era are varied (Table 1). 

 

Spectral Measurements.—We measured crown plumage reflectance with an Ocean 

Optics reflectance spectrometer (S2000: Range 250–880 nm: Dunedin, FL, USA) equipped 

with both a deuterium bulb (UV light source) and a tungsten-halogen light source (visible 

light source), using SpectraSuite software (Ocean Optics). We used a micron fiber-optic 

probe held from the sample at a 90° angle to the birds’ crown (Siefferman and Hill 2003). 

We generated reflectance measurements relative to a white standard (100% reflectance from 

300–700 nm; Labsphere, Inc.). To reduce electrical noise, each reading was from an average 

of 20 sequential reflectance curves (Siefferman and Hill 2003). This was replicated three 

times, measuring a different location of the yellow crown at least 1 mm apart for each 

sample. 

Carotenoid colors are represented often in wood warblers and these plumage patches 

are located in discrete regions that function in inter- and intraspecific communication 

(reviewed in Morse 1989, McNett and Marchetti 2005). Because we assume this yellow 

plumage is carotenoid based (reviewed in McGraw 2006, Owens 2006), we quantified the 

yellow crown color using the carotenoid chroma descriptor of reflectance spectra: carotenoid 
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chroma = (Rλ450 − Rλ700) / Rλ700, where Rλi is the percent reflectance at the ith wavelength (λi) 

(Montgomerie 2006).  

 

Vision Model Measurements.—To test whether the crown plumage is distinguishable 

between warblers, we ran the full-spectrum (300–700 nm) reflectance data through models of 

avian vision: Perceptual, Analysis, Visualization, and Organization of Spectral Color 

Package (pavo) in the R v.3.0.2 statistical program (Maia et al. 2013, R Core Team 2013). 

However, it is important to note that pavo does not take into account the year of collection, 

which is important for carotenoid based colors that fade over extended periods of time 

(Armenta et al. 2008, Doucet and Hill 2009). Spectral sensitivity has not been measured yet 

in wood warblers. However, as most bird species have ultraviolet sensitive (UVS) cones 

(reviewed in Cuthill 2006), we used the default average UV visual system function 

(avg.uv) in pavo; the avg.uv function is based on the average peak sensitivity found in 

birds that have the UV type of visual system (Endler and Mielke 2005; Maia, pers. comm.). 

To estimate distinguishability, we used two statistics in pavo. First, we used the 

voloverlap function to calculate the area of overlapping tetrahedral colorspace in both 

species. This function is useful for examining whether species occupy similar or different 

sensory systems by the amount of volume overlap exhibited (Stoddard and Prum 2008, 

Stoddard and Stevens 2011, Maia et al. 2013). Second, we used the color distance function, 

coldist, to calculate color distances with receptor noise based on the relative 

photoreceptor density between species (Vorobyev and Osorio 1998). To do this, we used 

relative cone abundances for the European Starling (Sturnus vulgaris; Hart et al. 1998, Maia 

et al. 2013) and set the Weber fraction to a value of 0.05 (Vorobyev and Osorio 1998, 
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Vorobyev et al. 1998). The coldist function calculates chromatic differences (i.e., shape 

of the curve [ΔS]) and achromatic differences (overall % reflectance [ΔL]). With a threshold 

value of 1.0, calculated color values that exceed the threshold will be more likely to be 

noticeably different (see Vorobyev and Osorio 1998, Vorobyev et al. 1998 for color 

calculations). Achromatic differences are calculated based on the double cones responsible 

for chromatic processing (Siddiqi et al. 2004); we used the double cone abundance for 

European Starlings in this study (Hart et al. 1998).  

This model incorporates information about ambient lighting conditions (i.e., blue-sky 

vs. forest shade vs. standard [D65] lighting). Because we found no significant difference 

between lighting, we examined all visual models under both the bluesky and 

forestshade light environments (Endler and Mielke 2005). Blue-sky represents a lighting 

condition that best mimics our field site where both warblers defend territories and 

aggressively interact with one another. Additionally, forest shade is a more conservative 

approach in this model but also represents approximately half of the field site, as territories 

are adjacent to mature forests (Confer et al. 2011, Richardson and Brauning 2013).  

 

Statistical Methods.—We categorized our study skins into three eras: pre-1920, 

1921–1980, and post-1980. To assess the importance of time and region on plumage 

coloration, we used a three-way ANOVA (proc glm, SAS Institute Inc. 2011) wherein 

species, era, and geographic region were the independent variables and carotenoid chroma 

was the dependent variable. Remaining statistical analysis and graphics for carotenoid 

chroma was performed in SPSS v.21 (IBM Corp. 2011). Vision model analyses were 

performed in R v.3.0.2 (R Core Team 2013) and were graphically represented using pavo 
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(Maia et al. 2013). We removed outliers from our analysis that were >2 standard deviations 

from the mean. 

 

RESULTS 

Spectral Reflectance Analysis.—We found no statistically significant interactions 

between the species type and geographical region of collection on carotenoid chroma (P = 

0.88), but there was a significant interaction between species and year (P < 0.001; Table 2). 

Thus, we removed geographical region from future analyses and accounted for era in our 

analysis. Independent samples t-test revealed that carotenoid chroma varied significantly 

between Golden-winged and Chestnut-sided warblers across all eras (P < 0.01; Table 3; Fig. 

1).   

 

Vision Model Analysis.—Golden-winged Warblers have greater reflectance of 

carotenoid chroma (450–700 nm) than Chestnut-sided Warblers but reflect less UV (Fig. 2). 

Using the voloverlap function, we determined the volume of spectral overlap between 

both warblers to be 32.2% under bluesky illumination (Fig. 3) and 33.2% under 

forestshade. Using coldist, we determined the just noticeable difference values for 

Chestnut-sided and Golden-winged warblers: bluesky: ΔS = 8.25 and ΔL = 1.73 (Fig. 2); 

forestshade: ΔS = 7.85 and ΔL = 2.49. 

 

DISCUSSION 

Two lines of evidence suggest that plumage-based misidentification is unlikely to 

occur between these two wood warbler species. First, carotenoid chroma differed between 
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the two species suggesting that the plumage coloration is not identical. Although there was 

an interaction between species carotenoid content and year of collection, Golden-winged 

Warblers reflected significantly more light across the yellow-red spectrum across all time 

frames, suggesting that these data will result in accurate results in pavo. Second, the results 

of the models of avian vision (Maia et al. 2013) suggest that species-specific differences in 

plumage coloration should be distinguishable to the warblers. We found only 32.2% of the 

volume of the colorspace overlapped between species crown color. Color distance analysis 

suggests that the chromatic distances (i.e., shape of reflectance curves) far exceed the 

threshold (1.0) for notably different color between warbler species in illumination settings 

that mimic a blue sky as well as forest cover. Additionally, achromatic differences (overall % 

reflectance) exceed threshold for notable differences in both settings, but even more so in 

shaded environments, suggesting that misidentification should be even less likely when under 

forest cover. Together, these results suggest that carotenoid-based yellow plumage is 

significantly different between warblers, and the birds should be able to distinguish the 

chromatic and achromatic differences between Chestnut-sided and Golden-winged warblers. 

Interpretation of our data necessitates that we assume that museum specimens 

represent color variation in wild birds. Indeed, Doucet and Hill (2009) found that differences 

between the plumage coloration of wild birds and museum skins are generally small. McNett 

and Marchetti (2005) found that wood warbler museum skins tend to be duller than wild 

birds, likely caused by a reduction in UV reflectance. Typical of yellow carotenoid-based 

plumage, the spectral reflectance of the crown of both Golden-winged and Chestnut-sided 

warblers reflects some UV wavelengths, but the yellow-red region reflects much more light 

(Fig. 2). 
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We attempted to account for factors that may influence our dataset, such as 

geographic variation, age at death, and age of the study skin; we included collection year, 

collection location into our analysis, and only measured after-hatch-year birds collected 

during the breeding season (Doucet and Hill 2009). First, there was no significant interaction 

between geographic region and species on reflectance across all eras, suggesting minimal 

geographic variation exists in these species. Second, our results are consistent with the 

findings of Armenta et al. (2008); less fading occurred in specimens collected within 50 

years. Our oldest study skins were among the most degraded, and showed the greatest 

variation in carotenoid chroma. However, although we saw increased variation in plumage 

coloration within the oldest era, in all eras, Golden-winged and Chestnut-sided warblers were 

distinguishable to birds. Finally, although we did not split our dataset by the bird’s age, we 

found that plumage coloration was always distinguishable between the two species. 

However, we caution that not having age data is a limitation of this study; it may be the 

32.2% overlap in spectral tetrahedral colorspace found between species are representative of 

the oldest (and assumed brightest) Chestnut-sided Warblers and the youngest (dullest) 

Golden-winged Warblers.  

This study represents the first attempt to understand the stimuli that promote agonistic 

interactions between Golden-winged and Chestnut-sided warblers. Our data suggest that 

agonistic interactions between Golden-winged and Chestnut-sided warblers are unlikely to be 

the result of plumage misidentification. However, misidentification based on similarity of 

behaviors may still exist, and thus promotes the aggressive responses (Ord et al. 2011). 

Moreover, although the majority of plumage between species is distinct, carotenoid-based 

crown feathers may play an important role in animal communication in wood warblers 
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(Morse 1989). Thus, although the plumage coloration should be distinguishable between 

species, these colors may play a role in competitive interactions.  

Alternatively, these aggressive behaviors may derive from competition associated 

with overlapping ecological niches. The breeding ranges (Sauer et al. 2012) and habitat 

requirements (Collins et al. 1982) of these two warblers overlap extensively. Chestnut-sided 

Warblers are mid-successional habitat generalists in the southern Appalachians (JAJ, pers. 

obs.), and occur in locations disturbed by humans as well as in areas with minimal human 

impact, whereas Golden-winged Warblers require specific early-to-mid successional habitat 

types (Confer et al. 2011) and rarely occur in areas disturbed by humans (JAJ, pers. obs.). 

Additionally, as agonistic behaviors between these two species are not consistent throughout 

our field sites, there may be ecological factors that influence the likelihood of aggressive 

behaviors when these in these wood warblers occur in sympatry. A field-based study is 

warranted to quantitatively examine how agonistic interactions correlate with the degree of 

niche overlap and to estimate the costs of coexistence. As habitats continue to change and/or 

decrease in abundance on breeding and wintering grounds, these wood warblers may be 

restricted to cohabitating identical territories, thus promoting increased aggression and 

potentially deleterious effects on the imperiled Golden-winged Warbler. 
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TABLES 

TABLE 1. Sample sizes of study skins of Golden-winged and Chestnut-sided warblers across 

geographic range and time. 

 

 Golden-winged Warbler Chestnut-sided Warbler 

 North 

App 

South 

App 

Great 

Lakes 

North 

App 

South 

App 

Great Lakes 

<1920 18 1 2 43 6 1 

1921–1980 10 1 0 10 2 1 

>1980 21 6 0 2 4 1 
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TABLE 2. Three-way analysis of variance table between Golden-winged Warblers and 

Chestnut-sided Warblers across era and geographic region. 

 

Source df SS MS F P 

Model 15 0.2489 0.0166 5.6 <0.001 

Species 1 0.1614 0.1614 54.8 <0.001 

Era 2 0.0279 0.0139 4.7 0.01 

Species*Era 2 0.0468 0.0234 8.0 <0.001 

Region 2 0.0096 0.0048 1.6 0.20 

Species*Region 2 0.0007 0.0003 0.1 0.89 

Era*Region 4 0.0010 0.0003 0.1 0.99 

Species*Era*Region 2 0.0015 0.0007 0.3 0.78 

Error 133 0.3326 0.0029 5.6 <0.001 
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TABLE 3. Comparison of carotenoid chroma ((Rλ450 − Rλ700) / Rλ700) derived from the 

spectral reflectance measurements of the crown plumage of Golden-winged (GWWA) and 

Chestnut-sided warblers (CSWA), separated by collection era. 

 

Era Mean %reflectance 

(SD): GWWA 

Mean %reflectance 

(SD): CSWA 

df t P 

<1920 0.914(0.05) 0.872(0.05) 67 3.09 0.003 

1921–

1979 

0.896(0.05) 0.832(0.02) 19 3.59 0.002 

>1980 0.952(0.03) 0.823(0.03) 31 9.04 <0.001 
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FIGURES 

 

 

FIG. 1. Comparison of carotenoid chroma ((Rλ450 − Rλ700) / Rλ700) derived from spectral 

reflectance of the crown coloration of Golden-winged (n = 58) and Chestnut-sided (n = 68) 

warblers. Samples are divided into the three most abundant time eras. Crowns belonging to 

Golden-winged Warblers reflect significantly more carotenoid chroma than those of 

Chestnut-sided Warblers across all eras (P <0.01). 
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FIG. 2. Mean (+ SE) reflectance spectra of crown plumage of Golden-winged (solid line) and 

Chestnut-sided (dashed line) warblers.  
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FIG. 3. Volume of overlapping colorspace between Golden-winged Warblers (red, top) and 

Chestnut-sided Warblers (blue, bottom). Both warblers overlap ~32.2% in tetrahedral 

colorspace; grey regions indicate overlapping regions.  
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CHAPTER 3 

A Case of Mistaken Identity: Understanding the Stimulus of Agonism between Two 

Wood Warblers 

ABSTRACT 

When multiple species occur sympatrically, divergence in morphological and behavioral 

traits associated with species recognition and resource use are expected. Individuals that 

engage in interspecific aggression often suffer fitness consequences if the benefits of 

securing resources do not outweigh the risks associated with agonism. In the southern 

Appalachians, interspecific aggression frequently occurs between chestnut-sided (Setophaga 

pensylvanica) and golden-winged (Vermivora chrysoptera) warblers, a species that is 

experiencing sharp declines in population numbers. Using a combination of correlative and 

experimental approaches, we explored two potential explanations for interspecific 

aggression: interspecific competition and mistaken identity. It is commonly inferred that 

aggressive interactions are the product of competition due to an ecological niche overlap. 

However, because these warblers have similar crown coloration and aggressive interactions 

appear stochastic, aggression may be a result of mistaken identity. First, in 2014, we 

documented spatial overlap of the two species and measured reproductive success and habitat 

preference (using remote sensing) of golden-winged warblers. We found that golden-winged 

warblers that settled among high densities of chestnut-sided warblers were more aggressive, 

but chestnut-sided warbler density did not negatively influence their reproductive success; 

rather, habitat structure best predicted reproductive success. Next, in 2015, we tested for 

misidentification using models of con- and hetero-specifics in simulated territorial intrusions. 

We found that the warbler species were equally likely to attack the con- and hetero-specific 
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models, and that the most aggressive individuals were more likely to attack models. Our data 

suggest that, from the golden-winged warbler’s perspective, sympatry is not detrimental and 

aggression is likely a function of mistaken identity. Yet, these behavioral interactions should 

be maladaptive, which may lead to the segregation of habitat types or divergence in crown 

morphology between species.  

 

INTRODUCTION 

When sympatric species interact aggressively, underlying resource overlap is often inferred 

and aggression is thought to be a product of interference competition for limited resources 

(e.g. Rice 1978, Catchpole and Leisler 1986, Martin and Martin 2001a, Peiman and Robinson 

2010, Grether et al. 2013). Heterospecifics can compete over food (e.g. Minot 1981, Pimm et 

al. 1985) and nesting locations (e.g. Harris and Siefferman 2014), and sympatry can lead to 

increased nest predation rates (e.g. Martin 1993, Martin and Martin 2001b). Despite the 

assumption that the intensity of intraspecific aggression is typically greater, aggression 

between species often yields equally intense and costly consequences (Duckworth 2006, Ord 

and Stamps 2009, Peiman and Robinson 2010, Grether et al. 2013). Aggressive interspecific 

competition for limited resources may undermine the realized habitat quality of a particular 

territory (Johnson 2007); selection may act on individuals to choose between territories that 

are either higher physical quality (e.g. more preferred vegetative structure) with high 

densities of interspecific competitors or areas with fewer competitors but in suboptimal 

habitat (e.g. Martin and Martin 2001b, Jones et al. 2014). Agonistic interactions resulting 

from interference competition should drive character displacement (reviewed in Grether et al. 

2009). That is, selection should drive divergence of traits associated with species recognition 
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until interspecific aggression is reduced (Orians and Wilson 1964, Grether et al. 2009). 

Indeed, a global analysis of avian plumage characteristics found that species that breed in 

sympatrically tend to show high levels of color divergence that follow patterns of character 

displacement (Martin et al. 2015). 

As the costs and benefits of aggression are context dependent (Moyer 1968, 

Andersson et al. 1980, Duckworth 2006), interspecific aggression is expected to be 

maladaptive when the aggressor gains no net benefit (reviewed in Ord and Stamps 2009, 

Grether et al. 2009). An alternate hypothesis to explain interspecific aggression is mistaken 

identity: (reviewed in Tinbergen 1936, Murray 1971, 1981): the lack of discriminatory ability 

promotes misdirected conspecific aggression (i.e. misidentification) between heterospecifics. 

Mistaken identity may be viewed as exaptive (Gould and Vrba 1981) or maladaptive; the 

benefits of misdirected aggression are dependent upon whether similar species are ecological 

competitors (Murray 1981, Nishikawa 1987). That is, if morphologically similar species 

behave similarly as well as use ecologically similar resources, misdirected aggression 

towards heterospecifics may convey a net benefit as if they were conspecific competitors. For 

example, Nishikawa (1985, 1987) documents evidence for both hypotheses in two 

salamanders (Plethodon jordani and P. glutinosus) of the southern Appalachian Mountains, 

suggesting that misidentification may be exaptive. Contrarily, Korner et al. (2000) found that 

Waterberg flat lizards (Platysaurus minor) misidentify orange-throated flat lizards (P. 

monotropis) as competing conspecifics despite the absence of competitive exclusion. 

However, mistaken identity should be maladaptive for submissive Waterberg flat lizards 

because orange-throated flat lizards are likely to win aggressive confrontations.  
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 With their high visual acuity (reviewed in Cuthill 2006), it seems perplexing that 

misidentification may be possible in bird taxa. Yet, Petrusková et al. (2008) document that 

meadow pipits (Anthus pratensis) misidentify tree pipits (A. trivialis), but only after 

excitation via conspecific song stimuli. That is, under normal circumstances (i.e. no apparent 

conspecific intruder), pipits do not appear to suffer from mistaken identity. Yet, when 

meadow pipits were experimentally stimulated with conspecific song, they attacked tree 

pipits, despite the absence of an ecological niche overlap. Their study suggests that species 

recognition is a product of both auditory and visual cues (Petrusková et al. 2008). Moreover, 

these results indicate that if interspecific aggression occurs under normal conditions between 

two morphologically and ecologically similar species despite the absence of competition, 

misidentification may be the stimulus. 

 In the southern Appalachian Mountains of western North Carolina (NC), agonistic 

interactions occur between golden-winged (Vermivora chrysoptera) and chestnut-sided 

warblers (Setophaga pensylvanica) and can be initiated by either species. Like many 

Neotropic migrants, both species are experiencing declines in overall population sizes 

(Homes 2007, Sauer et al. 2014). Yet, golden-winged warblers that breed in the Appalachian 

Mountains are experiencing particularly extreme declines (Buehler et al. 2007, Sauer et al. 

2014), and thus are a species of significant conservation concern (Roth et al. 2012). For 

example, in NC, Breeding Bird Survey data suggest that golden-wings have declined >45% 

over the past decade (Sauer et al. 2014). Despite recent restoration efforts, there has been 

little research, to date, that focuses on how golden-winged warbler behavioral characteristics 

influence reproductive success, habitat selection, and community structure (Confer and 

Larkin 1998, Confer et al. 2011). Several factors have been identified as potential 
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contributors to their decline, including habitat loss (Klaus and Buehler 2001, Buehler et al. 

2007) and hybridization with blue-winged warblers (V. cyanoptera; Vallender et al. 2009, 

Confer et al. 2011). However, an overlooked potential contributor to the decline of golden-

winged warblers may be interspecific competition with non-Vermivora species. For example, 

Martin and Martin (2001a, b) documented agonistic interactions between orange-crowned 

(Oreothlypis celata) and Virginia’s warblers (O. virginiae) and found fitness costs of 

coexistence that extend beyond competition solely for food resources. Interspecific 

competition may have similar consequences for golden-winged warbler populations when 

coexisting with an aggressive congener and it has not been considered a potential contributor 

of declines in this species (reviewed in Confer et al. 2011).  

Because interspecific aggression is inherently risky (reviewed in Moyer 1968, Ord 

and Stamps 2009, Ord et al. 2011), it is logical that aggressive interactions between golden-

winged and chestnut-sided warblers may result from competition for limited resources (e.g. 

Martin and Martin 2001a), and may thus exacerbate golden-wing declines. Indeed, there is 

extensive overlap in the breeding ranges of these two species (Sauer et al. 2014) and both 

warbler species use early-to-mid successional habitat (Confer et al. 2011, Richardson and 

Brauning 2013). At the territory-level, habitat characteristics (e.g. percent ground, shrub, and 

canopy cover) appear similar (Collins et al. 1982), but these species have different nesting 

requirements (i.e. substrate as well as height of nest placement) and food preferences at our 

field sites (JAJ unpubl data). Thus, assessments of territory-level habitat structure should 

help determine whether these warblers compete for limited resources or differ in habitat 

preference (i.e. niche partitioning). If these two warbler species compete for spatial habitat 

resources, then they may be increasingly limited to sympatry due to the loss of available 
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habitat in the southern Appalachian Mountains (Klaus and Buehler 2001). Increased 

sympatry could promote negative ecological and behavioral interactions (Martin and Martin 

2001a, b) and inform warbler management practices.  

The underlying cause of interspecific aggression between these warblers is not clear. 

First, whether these warblers compete for resources has not been tested. Second, the yellow 

crown coloration of these two species should be distinguishable by birds (Jones and 

Siefferman 2014; Supplemental Material, Fig. S1) but may still theoretically be the stimulus 

of misidentification. One limitation to the avian vision model (Maia et al. 2013) used by 

Jones and Siefferman (2014) is that it does not incorporate brief glimpses. Indeed, without an 

appropriate acoustic stimuli associated with the visual observation, field researchers 

frequently misidentify one species for the other when the focal bird is viewed briefly. 

Although humans have trichromatic vision (whereas birds have tetrachromatic vision) and 

lack the visual acuity that is found in many birds (reviewed in Cuthill 2006), it seems 

plausible that the same phenomena may occur between wood warblers.  

Here, we test whether aggressive behaviors between golden-winged and chestnut-

sided warblers are a product of competition for shared resources or misdirected conspecific 

aggression. In 2014, using a correlative approach, we investigated whether chestnut-sided 

warblers exert interspecific competition on golden-winged warblers by addressing three 

questions: (1) does aggression vary with interspecific density, (2) do chestnut-sided warblers 

influence reproductive success, and (3) do chestnut-sided warblers or habitat play a larger 

role in reproductive success? If competition occurs between warbler species, we predict that 

golden-wings would be more aggressive and suffer fitness consequences of sympatry when 

their territories encompassed high densities of chestnut-sided warblers. We also predicted 
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that heterospecific density and habitat characteristics would jointly play a significant role in 

reproductive success if competition occurs. Next, we experimentally tested for 

misidentification in 2015 by using a combination of conspecific simulated territorial 

intrusions and model (i.e. dummy) birds. We further investigated whether birds with more 

aggressive phenotypes would be more likely to attack the opposite species.  

 

METHODS 

Study Locations and General Field Methods  

From April to July 2014 and 2015, we investigated the potential for competition between 

both warblers in the Amphibolite and Roan ranges of the Appalachian Mountains (elevation: 

850-1,645 m) of northwestern NC (Watauga, Avery, and Ashe Co.) and eastern Tennessee 

(Carter Co.) across seven field sites that encompass a variety of early-to-mid successional 

habitats (e.g. grassland, shrubland, bog) adjacent to mature hardwood forests within field 

sites. Most fields are adjacent to each other; we found no statistical difference in behavioral 

response between all sites for both species and for both years of study (one way ANOVA; all 

P > 0.05). Thus, we combined data from all field sites for statistical analyses. Males of both 

species were captured via mist-nets and were marked with a numbered USGS band and a 

unique combination of color bands for remote identification.  

 

Assessment of Competition: 2014 Correlational Study 

Estimating Chestnut-sided Warbler Density 

In 2014, we focused on individual territory mapping to calculate mean heterospecific density 

per golden-winged territory (mean mapped points bird-1: 43 ± 21.5). We followed golden-
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winged warbler males and recorded GPS location data of perches. We obtained ≥30 mapped 

points per bird across ≥30 days to reliably estimate their territory size (Seaman et al. 1999, 

Barg et al. 2004). Spatial boundaries of each male’s territory was generated using the 

‘genmcp’ command in Geospatial Modelling Environment (Beyer 2009) and imported into 

ArcMap 10.1 (ERSI, Redlands, CA, USA).  

We conducted avian census surveys (hereafter: point counts) of chestnut-sided 

warblers while golden-winged warbler territory mapping was ongoing (May 9 – May 16, 

2014). In ArcMap 10.1, we delineated locations of our field sites that were classified as 

‘nesting habitat’ for golden-winged warblers (Roth et al. 2012); nesting habitat was defined 

as shrubby areas that were adjacent to forest cover throughout our field sites with a priori 

knowledge of vegetation structures in which golden-wings were likely to nest. To prioritize 

our efforts, we conducted point counts throughout the delineated nesting habitat because 

these areas were the most likely to have golden-winged warblers. 

We overlaid the nesting habitat layer with a 0.4 ha grid and assigned one random 

point count location per grid (points were set to be >30 m apart). At these locations, one 

researcher (JAJ) conducted 3 min passive point counts (i.e. no playback) and enumerated the 

number of chestnut-sided warblers heard from the point center. All point counts occurred 

between 0530-1130 EDT during fair weather conditions (i.e. no precipitation or substantial 

winds that would inhibit our ability to detect the birds). We used a natural neighbor spatial 

interpolation to create a mean chestnut-sided warbler density layer using the number of 

chestnut-sided warblers heard at each point count. Using the zonal statistics toolset in 

ArcMap, we calculated the mean number of chestnut-sided warblers (as defined by our 

spatial interpolation) per polygon that represented an individual golden-wing territory. 
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Using this approach, we were not attempting to quantify the total number of chestnut-

sided warblers within individual golden-winged warbler territories. Rather, our goal was to 

approximate mean chestnut-sided warbler density for any particular location within the 

mapped golden-winged warbler territory. That is, we were attempting to estimate how many 

chestnut-sided warblers a golden-wing would encounter at any particular location within his 

territory. Moreover, we stress that our aim with this methodology was not to make any 

management recommendations, as would be expected with traditional avian census measures 

(reviewed in Thompson 2002, McCallum 2005). Although it is possible that individuals were 

double-counted, because interpolation averages the number of chestnut-sided warblers within 

a golden-winged warbler territory, our mean density measures were unlikely to over- or 

under-estimating the number of chestnut-sided warblers. Golden-winged warbler territories 

are often adjacent to each other throughout our field site. Thus, given the small spatial scale 

of these questions, high density point counts necessary to tease apart fine differences in 

chestnut-sided warbler density. 

 

Aggressive Response towards Song Playback 

To estimate aggressive behaviors, we conducted simulated territorial intrusions (STIs) in 

which we recorded behavioral responses of male golden-winged warblers toward conspecific 

playbacks, under the assumption that the response to a conspecific STI will mirror that of an 

interspecific competitor similarly (e.g. Duckworth 2006); our preliminary field work showed 

that both warblers do not respond aggressively towards heterospecific playback. All STIs 

took place from May 4 to June 3, 2014, between 0530-1130 EDT. First, we located each 

territorial male the morning of the experiment and set up a speaker ~2 m high, adjacent to a 
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known (i.e. mapped) perch in the center of the territory. We flagged 5 m and 10 m from the 

speaker in each cardinal direction to visually estimate the distance between the focal bird and 

the speaker (Martin and Martin 2001a). We retreated to a distance of ≥40 m, initiated our 

playback sequence and observed the bird for 1 min of white noise (wind and local bird songs 

from a distance at a lower decibel than conspecific or control playbacks) and recorded initial 

behaviors. Next, we administered 10 min of conspecific playback, consisting of a mixture of 

the two song types in the bird’s repertoire (Confer et al. 2011, Richardson and Brauning 

2013). During each type of playback, we noted the following behaviors: latency to respond 

(attentiveness of their territory) to the song playback and latency to approach the playback 

source (<15 m); minimum distance to the playback source to the nearest meter; attack (dive) 

rate; number of songs the target species sang, distinguishing between type-1 (mate attraction) 

and type-2 (aggressive territorial defense) song types in golden-winged warblers (Ficken and 

Ficken 1967, Murray and Gill 1976). All song playbacks were obtained from “xeno-canto” 

(www.xeno-canto.org).  

 

Territory-Level Habitat Structure 

We used EarthExplorer (earthexplorer.usgs.gov) to download June 2012 National 

Agriculture Imagery Program (NAIP) imagery to classify habitat structure of individual 

golden-winged warbler territories; NAIP imagery is high resolution (1 m) and is 

georeferenced. Although higher resolution spatial data is available (e.g. LiDAR), NAIP 

imagery offers the highest resolution obtainable that also occurs within two years of our field 

study; despite that plant communities have changed since 2012, field assessment confirmed 

that the habitat structure depicted in the imagery is consistent with 2014 vegetation structure 
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(pers. obs.). We used five separate NAIP images to classify our seven field sites 

(Supplemental Material Table S1).  

Using the Image Classification toolbar in ArcGIS 10.1, we performed a supervised 

classification with maximum likelihood analysis to distinguish between four habitat 

characteristics based on a priori knowledge of vegetation structure for our field sites: (1) 

abiotic factors (e.g. roads, boulders); (2) grassland (defined as predominantly grassy, 

homogenous habitat without any woody vegetation); (3) forested/canopy cover, with no 

herbaceous vegetation; (4) shrubland (i.e. nesting habitat: defined as shrubs and saplings 

clumped with herbaceous vegetation). Next, using the ‘Extract by Mask’ tool, we calculated 

the percent cover of each habitat-cover type per individual golden-winged warbler territory 

(Supplemental Material Fig. S2) and used the total number of pixels per structure class to 

create a percent cover estimate of each class per bird territory.  

 

Golden-winged Warbler Reproductive Success 

Females generally arrive at our field sites ~1-2 weeks after the males arrive and typically 

begin nest building almost immediately (Buehler et al. 2007). We monitored and focused 

only on measures of golden-winged warbler reproductive success relative to chestnut-sided 

warbler abundance. Despite limiting our interpretation of the costs of sympatry between both 

warblers, we feel that an analysis of golden-wing fitness relative to chestnut-sided warbler 

density is relevant and is the most pressing conservation concern.  

Because of numerous stochastic events that may influence golden-winged warbler 

fitness during the breeding season (e.g. predation, inclement weather that destroyed the nest; 

pers. obs.), we used multiple proxies of reproductive success. We monitored golden-winged 
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warbler nests every three days and measured first egg date and clutch size. We used the 

laying date of the first egg (of the first nesting attempt) as a proxy of fitness, considering that 

reproductive success typically declines with later first egg dates in most migratory passerines 

(e.g. Alatalo et al.1984, Verhulst et al. 1995, Daunt et al. 1999). To ensure we used laying 

date of the first clutch, we limited nests used in analysis to dates prior to June 7, as this is the 

earliest date with which we could confirm a second nesting attempt had its first egg. Finally, 

we recorded the success/fail rate of each nest as well as enumerating offspring successfully 

fledged from the nest.  

 

Assessment of Mistaken Identity: 2015 Experimental Setup 

Golden-winged Warbler Behavioral Assays  

In our 2015 experiment, we prioritized conducting STIs of golden-winged over chestnut-

sided warblers for two reasons. First, although the two species of warblers arrive on the 

breeding grounds at approximately the same time, golden-winged warblers tend to exhibit 

territorial behaviors for a shorter timeframe than chestnut-sided warblers (pers. obs.) 

Secondly, there are far fewer breeding golden-winged compared to chestnut-sided warblers, 

so we aimed for the largest possible sample of territorial golden-wings. From May 10 to 23, 

one researcher (JAJ) conducted conspecific simulated territorial intrusions of golden-winged 

warblers between 0600-1200 EDT following the protocol outlined in 2014. However, we 

analyzed each STI in two 5 min segments: (1) 5 min of broadcasted conspecific song without 

a visual stimulus and (2) 5 min of conspecific song coupled with either a model of a golden-

winged or chestnut-sided warbler. During the first playback segment, the model bird was 

covered and then remotely revealed after 5 min. Each focal bird was presented with a model 
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of each species on separate dates (2-4 days separation) and in random order (responses were 

not influenced by order of trial). During each 5 min interval, we noted the following 

behaviors: (1) time to approach the playback source, (2) the number of dives/attacks, (3) the 

number of fly-throughs (defined as flying around the speaker/model, but not directly 

attacking it), (4) counter-singing (distinguishing between type-1 and type-2 songs), and (5) 

chipping rate. Golden-winged warblers often aggressively chip when stimulated by 

conspecific STI (JAJ pers. obs.) and we interpreted this behavior as a potential acoustic 

signal of aggressive intent. Mistaken identity was determined if the focal warbler attacked the 

model of the opposite species directly at least once during the 5 min behavioral assay.   

 

Chestnut-sided Warbler Behavioral Assays  

From May 19 to June 10 at between 0600–1200 EDT, we conducted STIs with focal 

chestnut-sided warblers. Because the population size of chestnut-sided warblers far exceeds 

golden-winged warblers in our field sites, each chestnut-sided warbler was only presented 

with one bird model (conspecific, heterospecific, or control (American goldfinch, Carduelis 

tristis)) to maximize sample size during the limited window of opportunity. Chestnut-sided 

warblers were presented with either a conspecific, heterospecific, or control bird following 

the 5 min behavioral analysis; models were selected randomly for individual birds. For 

chestnut-sided warblers, we recorded the same behavioral variables as golden-wings, 

excluding chipping rate. On occasion, we did observe female chestnut-sided warblers 

participating in attacking both heterospecific and conspecific models. However, these were 

often sporadic and unquantifiable, and for consistency between warblers, we only focus on 

male birds in this study.  
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Visual Stimuli 

 Wooden models of golden-winged and chestnut-sided warblers were hand-carved to 

be the approximate shape of a warbler and were colored modeling real birds using colored 

pencils. We found that colored pencils represented spectra that more closely resembled that 

of natural plumage. In addition, we also taped crown, bib (golden-wings only), and chestnut 

flank (chestnut-sided warblers only) feathers from birds captured in 2014 to the appropriate 

(i.e. conspecific) model bird to provide a more realistic model; spectral readings of the crown 

feathers fell within the natural range of crown plumage found by carotenoid-based pigments 

in these wood warblers (Jones and Siefferman 2014). The use of dummy birds also ensures 

each bird encounters a near-identical stimulus. Feathers we re-taped as the season progressed 

to ensure a full crown of feathers. The American goldfinch model was not hand-carved; 

rather, was made of Styrofoam and painted to resemble goldfinch coloration; however, there 

were no spectral abnormalities with this model. Although taxidermic mounts of each species 

would be more likely to elicit a stronger aggressive response, such models were not 

available. Moreover, because our focal warblers attacked the conspecific dummy models that 

we designed for this experiment, we are confident that these models are sufficient for our 

questions on misidentification. Unfortunately, we were unable to investigate how golden-

wings behave toward a STI with a conspecific song and an American goldfinch; after we had 

completed the second behavioral trial for each individual, golden-winged warblers were well 

into nest construction and at this time frame, golden-winged warblers tend to be significantly 

less territorial and aggressive at our field sites (pers. obs.). 
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It is important to note that we did not use a heterospecific song playback associated 

with the heterospecific bird model for two reasons for either focal warbler. First, our previous 

work shows that warblers do not aggressively respond to heterospecific song playback 

(unpubl. data) and their songs are quite distinct (Confer et al. 2011, Richardson and Brauning 

2013). Second, the scope of our study focuses on visually based misidentification. We expect 

that if golden-winged warblers are stimulated during natural conditions by a conspecific 

intruder, misdirected conspecific aggression may cause them to attack a chestnut-sided 

warbler. 

  

Statistical Analysis 

All statistical analyses were performed using SPSS v.22 (IBM 2013). Using a 

Pearson’s correlation, we investigated whether 2014 densities of chestnut-sided warblers 

correlated with aggressive responses of golden-winged warblers to STIs, vegetation structure 

upon settlement, and overall territory size. To condense our aggressive behaviors, we used a 

principal components analysis (PCA), which explained 70.3% of variance between two 

components (Supplemental Table S2). PC1-2014aggression loaded heavily on threatening 

behaviors (Supplemental Table S2), such that higher PC1-2014aggression scores were 

defined as greater counter-singing rates (type-1 song and total songs). PC2-2014aggression 

scores were more directly related to physical aggression, such that higher scores were birds 

that counter-sang more with their aggressive song type (i.e. type-2) as well as dove more 

often (Supplemental Table S2). Whether golden-winged warblers were paired or not was not 

related to behavioral response (defined by PC1-2014aggression (t33 = 0.24, P = 0.81) and 

PC2-2014aggression (t33 = 0.79, P = 0.44)), thus, we analyzed all males together. We used a 
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second PCA (PC1-habitat and PC2-habitat), which explained 80.8% of the variance between 

two components, to explore vegetation within an individual’s territory (Supplemental Table 

S3). Principal component 1-habitat loaded heavily on open habitat, such that high PC1-habitat 

scores are high cover of homogenous/grassy habitat with abiotic (vegetation-less) habitat 

associated with it (Supplemental Table S3). Principal component 2-habitat loaded with 

remaining vegetation, such that high PC2-habitat scores are associated with forested/canopy 

habitat whereas negative scores are shrubland habitats (Supplemental Table S3).  

Using laying date as a proxy of fitness, we used a generalized linear model, where 

laying date was the dependent variable and chestnut-sided warbler density and habitat (PC1-

habitat and PC2-habitat) were covariates. We ran an additional generalized linear model with 

clutch sizes as the dependent variable; because earlier laying dates are significantly related to 

larger clutch sizes in this population (r22 = 0.33, P = 0.002), we also included laying date as a 

covariate for this model. For each generalized linear model, we used the Finite Sample 

Corrected Akaike’s Information Criterion (AICC) model selection procedure to determine the 

best-fitting model (Burnham and Anderson 2002). All models were first tested for interaction 

terms and then were removed if interaction terms were not significant. Next, we ran an 

independent samples t-test between success/failure of the nest and chestnut-sided warbler 

density and habitat. Finally, we ran a Pearson’s correlation between the number of offspring 

successfully fledged from the nest and chestnut-sided warbler density and habitat.  

For 2015, we ran another PCA to explain flight behavior; the models produced one 

principal component per species (golden-wing: PC1-GWWA, variance = 58.2%; chestnut-

sided: PC1-CSWA, variance = 59.7%; Supplemental Table S4). In general, higher PC scores 

were associated with birds that were more aggressive (i.e. birds that arrive sooner and attack / 
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fly around the speaker more often; Supplemental Table S4). In addition, we ran a second 

PCA to condense acoustic behaviors of golden-winged warblers (Supplemental Table S5). 

Here, the number of type-1, type-2, soft songs, and aggressive chips created two principal 

components (PC1-accoustic and PC2-accoustic) explaining 76.4% of the variance. High PC1-

accoustic scores are associated with high amount of aggressive song types (i.e. type-2 and 

soft songs), whereas high PC2-accoustic scores are associated with high amounts of 

aggressive chips and less type-1 songs (Supplemental Table S5). We did not quantify 

differences between the chipping rate and the two chestnut-sided warbler song types; when 

total song rate was combined with soft songs in a PCA, the components resulted in identical 

extractions. Thus, we did not perform a PCA on chestnut-sided warbler vocal behaviors.  

We categorized misidentification of the dummy birds as yes/no data, and ran a chi-

square analysis to determine the likelihood the focal warbler would attack both the correct 

(conspecific) and incorrect (heterospecific) model. Additionally, we used Pearson’s cross-tab 

chi-squared tests to investigate whether the likelihood that the warblers attacked the model 

varied (yes/no) among species-specific and heterospecific models. Finally, we ran a 

generalized linear model (binary logistic regression) for both focal warblers with 

misidentification likelihood (yes/no) as the dependent variable and the principal components 

for flight and acoustic behaviors as covariates. 

 

Ethical Note 

We conducted this study in strict accordance to the Institutional Animal Care and Use 

Committee of Appalachian State University (#14-004.0). We handled every bird minimally 

and in such a fashion to reduce physical stress and harm. This study was carried out under 
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United States Fish and Wildlife master banding permits #23563 (L.S.) and #23218 (C.G.S.) 

and NC Wildlife Resource Commission #14-ES00385 (C.G.S.).  

 

RESULTS 

Assessment of Competition 

Relationship between Heterospecific Density, Aggression, and Habitat 

We conducted 343 point counts throughout seven field sites and reported chestnut-sided 

warblers in 94% of point counts whereas golden-winged warblers were detected in 61% of 

the point counts. Golden-winged warbler territory (N = 48) sizes were on average 2.47 (± 

1.72 SD) ha and contained on average, 1.88 (± 0.67 SD) chestnut-sided warblers per spatial 

unit within a mapped golden-winged warbler’s territory. We found no effect of chestnut-

sided warbler density on golden-winged warbler territory size (r48 = 0.15, P = 0.31).  

Chestnut-sided warbler densities did not significantly predict golden-wing aggressive 

behaviors defined by PC1-2014aggression (r35 = -0.26, P = 0.13), yet did significantly relate 

to PC2-2014aggression (r35 = 0.39, P = 0.02; Fig. 1); when golden-wings held territories in 

locations with high densities of chestnut-sided warblers, golden-winged warblers sang their 

aggressive song (type-2) and dove more often while singing their territorial song (type-1) less 

often.  

We found that the shrubland habitats made up the bulk of territory composition in 

golden-winged warblers (mean ± 1 SD: 48 ± 13%), followed by forest (30 ± 16%), grassland 

habitats (19 ± 16%) and finally abiotic components (i.e. roads; 3.0 ± 0.6%). When the density 

of chestnut-sided warblers was greater within individual golden-winged warbler territories, 

these locations had high PC1-habitat scores (greater percent cover of open habitat; r28 = 0.32, 
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P = 0.03). However, chestnut-sided warbler density did not correlate with PC2-habitat of 

golden-winged warbler territories (r28 = 0.10 P = 0.49).  

 

Golden-winged Warbler Reproductive Success 

After model selection, the best-supported model of laying date included chestnut-sided 

warbler density and PC2-habitat (likelihood X2
2, 24 = 9.15, P = 0.01, wi = 0.55; Fig. 2; Table 

1). However, the only main effect in the model that was significant was PC2-habitat: Golden-

winged warbler females laid eggs earlier in areas with greater shrubland cover relative to 

forested cover (Wald X2
1, 24 = 7.28, P = 0.01), but chestnut-sided warbler density did not 

contribute significantly to this model (Wald X2
1, 24 = 2.27, P = 0.13). In addition, PC2-habitat 

alone was a strong model in predicting earlier egg dates (i.e. ∆AICC <2; Table 1). Next, we 

found strong support for three models to best explain clutch size (i.e. ∆AICC <2). The best-

supported model to predict clutch size was laying date alone (likelihood X2
1, 24 = 10.61, P = 

0.001, wi = 0.26; Table 2). However, two other models were also supported: earlier egg dates 

were associated with first, increases in shrubland cover (PC2-habitat; ∆AICC = 0.41) and 

second, decreases to grassland cover (PC1-habitat; ∆AICC = 1.88; Table 2). Although 

chestnut-sided warbler densities were components in the first egg date model, heterospecific 

density alone was only a marginal influence on clutch size (likelihood X2
1, 24 = 3.05, P = 

0.08). However, we found no significant effect of either chestnut-sided warbler density or 

habitat PCs on nest fate (all P > 0.39) or fledgling number (all P > 0.42; Table 3). 
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Assessment of Mistaken Identify 

Golden-winged Warblers 

We found that golden-winged warblers were equally likely to (or not to) attack both the 

conspecific model (11 attacks of 28 trials; X2
1, 28 = 1.29, P = 0.26) and the heterospecific 

(chestnut-sided) model (12 attacks of 25 trials; X2
1, 25 = 0.40, P = 0.84) during STIs. Using 

the cross tab analysis, we found no statistical difference in the likelihood of attacking 

conspecifics over heterospecific models (Pearson X2
1, 23 = 2.54, P = 0.11). After model 

selection, the best supported model to predict the likelihood of a golden-winged warbler 

attacking a heterospecific model included both acoustic PCs (likelihood X2
2, 24 = 15.97, P < 

0.001, wi = 0.50; Fig. 3; Table 4). However, the only significant main effect in this model 

was PC2-accoustic: Golden-winged warblers that aggressively chipped and sang their type-1 

song less were more likely to attack the heterospecific model (Wald X2
1, 24 = 4.93, P = 0.03), 

but PC1-accoustic did not contribute significantly to the model (Wald X2
1, 24 = 1.88, P = 

0.17). Although we found support for another model (∆AICC <2; PC1-accoustic, PC2-

accoustic, PC1-GWWA; Table 4), PC2-accoustic was again the only significant main effect in 

the model. 

  

Chestnut-sided Warblers 

We found that chestnut-sided warblers were significantly less likely to attack the American 

goldfinch model (only 1 attack of 29 trials; X2
1, 29 = 25.14, P <0.001), but were equally likely 

to (or not to) attack the conspecific model (15 of 32 trials; X2
1, 32 = 1.25, P = 0.72) and the 

heterospecific (golden-winged) model (20 of 38 trials; X2
1, 38 = 0.11, P = 0.75) during STIs. 

Moreover, we found a marginally significant relationship suggesting that chestnut-sided 
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warblers were more likely to attack a conspecific models rather than a heterospecific 

(golden-winged warbler) model (Pearson X2
1, 32 = 3.14, P = 0.08). After model selection, we 

found that counter-singing rates the best predictor of attacking the heterospecific model 

(likelihood X2
1, 38 = 4.36, P = 0.04, wi = 0.89; Fig. 4a; Table 5); chestnut-sided warblers that 

counter sang less during STIs were more likely to attack the heterospecific model. Although 

not a well-supported model, flight behaviors (PC1-CSWA) were nonetheless a significant 

predictor of heterospecific attack (likelihood X2
1, 38 = 10.35, P = 0.001, wi = 0.08; Fig. 4b); 

chestnut-sided warblers that dove more often prior to exposure to the model were more likely 

to attack the heterospecific model. 

 

DISCUSSION 

Agonism is a costly behavior (reviewed in Moyer 1968, Grether et al. 2013) and golden-

wings are rapidly declining throughout the Appalachian Mountains (Sauer et al. 2014). 

Consequently, we concentrated our field efforts in understanding how sympatry with varying 

densities of chestnut-sided warblers influences behavior and reproductive success of golden-

winged warblers. Indeed, we found that when occupying areas with greater densities of 

chestnut-sided warblers, golden-winged warblers behaved more aggressively towards 

conspecific STIs (Fig. 1). Yet, it was habitat ‘shrubbiness’ (i.e. PC2-habitat scores; Fig. 2), 

rather than chestnut-sided warbler density, that predicted reproductive success of golden-

winged warblers. We expected shrubland cover to predict reproductive output; nesting 

locations for golden-winged warblers occur in our classification of shrubland (Confer et al. 

2011), and thus it is intuitive that these habitat parameters would influence first egg date and 

clutch size. Although chestnut-sided warbler densities were a main effect in the best-
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supported model for first egg dates, this parameter is likely spurious/uninformative; the 

difference between the two best supported models for first egg date was only one main effect 

(chestnut-sided warbler density), which was not significant (see Arnold 2010). In addition, 

we found that both species readily attacked the heterospecific model and that the most 

aggressive birds were the most likely to attack a heterospecific intruder. Together, these data 

suggest interspecific aggression is a function of misidentification rather than interspecific 

competition for shared resources and coexistence is likely not detrimental for golden-winged 

warblers.  

 Although golden-winged warblers are more aggressive when their territories 

encompass a greater density of chestnut-sided warblers, high heterospecific density does not 

lead to lower reproductive success. We offer several non-mutually exclusive hypotheses to 

explain this. First, intense intraspecific competition for higher quality habitat types may 

restrict lower quality golden-winged warblers to areas that are preferred by chestnut-sided 

warblers. Those lower quality males may use a strategy of high aggression to secure mates. 

For example, in house finches (Carpodacus mexicanus), aggressive behavior has been 

explained as a compensatory strategy whereby lower quality and less attractive males invest 

heavily in aggression to secure breeding success (Stoehr and Hill 2000, Hill 2002). Second, it 

is possible that high-density breeding sites increase predation risk (Martin 1988, Martin 

1993) and warblers that are more aggressive to STIs may be more aggressive towards 

predators, as seen in dark-eyed juncos (Junco hyemalis; Cain et al. 2011). Third, because 

agonism occurs between the two species, male golden-winged warblers with territories 

amongst many chestnut-sided warblers are likely challenged often. Increases in testosterone 

associated with heighted aggressive behaviors may explain these behavioral patterns. If 
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aggressive individuals respond with speed (i.e. quicker response time) rather than with 

accuracy in aggressive encounters (reviewed in Sih and Del Giudice 2012), this could explain 

why the more aggressive birds were more likely to attack heterospecific models.  

Nonetheless, it appears that, from the golden-wing perspective, coexistence is not 

detrimental towards reproductive success. An important caveat to our assessment of 

interspecific competition is that we did not test whether golden-winged warbler density 

influences chestnut-sided warbler reproductive output or behavior. More powerful tests of 

interspecific competition involve manipulating a resource or the presence of interspecific 

competitors (reviewed in Dhondt 2012; e.g. Martin and Martin 2001a). However, such 

removal experiments are ethically and logistically problematic, particularly for at-risk 

species. Because golden-wings are the more pressing conservation concern, the lack of 

fitness consequences of sympatry with chestnut-sided warblers is particularly relevant for 

their management. Throughout the southern Appalachians, golden-wings occur in much 

lower densities than do chestnut-sided warblers. Thus, if competition were to occur between 

these two species, golden-wings would likely suffer greater negative effects than would 

chestnut-sided warblers. 

We found that both warbler species were equally likely to attack the hetero- and con-

specific models (~50% of individuals of both warbler species incorrectly attacked the 

heterospecific model), showing support for the misidentification hypothesis (Murray 1971, 

1981), In addition, because chestnut-sided warblers tended to attack conspecific models more 

often than heterospecifics, they should be able to discern species. Only one chestnut-sided 

warbler attacked the goldfinch model; suggesting the warblers do not readily attack any 

interspecific species in the area. Rather, it seems likely that the yellow crown coloration is 
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the visual cue that triggers attack behavior. Indeed, golden-winged and chestnut-sided 

warblers are the only species with similar crown patches at our study sites. Models of avian 

vision (Maia et al. 2013) indicate that the shared signaling space (i.e. crown) should be 

visually distinctive (Jones and Siefferman 2014), but it may be that brief views do not allow 

for enough cognitive processing time to discriminate the colors that otherwise would be 

distinctive visually upon close examination. To our knowledge, neurological processing time 

has not been incorporated into models of avian color vision.  

Misidentification should be selected against. Individuals that are mistakenly identified 

as conspecifics should suffer; however, making identification mistakes should also be 

maladaptive, as there is likely no benefit to risky behaviors (Moyer 1968, King 1973). It is 

possible that selection pressures to avoid interspecific aggression may drive divergence of 

crown color (i.e. agonistic character displacement; Grether et al. 2009). Agonism associated 

with color driven misidentification could influence the evolution of plumage coloration in 

birds; closely related bird species tend to show greater divergence in color patterns when 

existing sympatrically (i.e. character displacement; reviewed in Martin et al. 2015). 

Importantly, as these warblers appear to peacefully coexist for the majority of the time, our 

findings do not suggest that warblers are entirely incapable of recognizing interspecifics. 

Indeed, we promoted aggression and likely triggered misidentification by using a conspecific 

playback accompanied by a heterospecific model. Because neither warbler species responds 

aggressively to heterospecific playback, it may be that the normal circumstances that 

promote misidentification are complex. This idea is supported by the findings of Petrusková 

et al. (2008); individuals behave aggressively towards neutral heterospecifics only after 

exposure to conspecific playback.  



 59 

The aggressiveness with which individuals of both warbler species responded to 

conspecific playback predicted the likelihood of attacking the heterospecific model. Yet, we 

were surprised that both species were equally likely to attack either the con- or hetero-

specific model when we expected species to attack the conspecific model more frequently. It 

may be that only certain individuals are stimulated by models or that aggressive individuals 

did not take adequate time to investigate and identify the models. Indeed, we observed that 

focal birds often ceased attacking after closer inspection of the model. There are two 

important limitations to our misidentification study however. First, we only used a control 

(goldfinch) model during chestnut-sided warbler STIs because of time constraints on 

fieldwork. Yet, our data demonstrate that both warblers responded behaviorally similar to 

heterospecific warbler models, suggesting that it seems likely that both species were 

misidentifying one another based on morphological similarity rather than attacking birds of 

any species in the area. Second, we do not have data to evaluation whether interspecific 

aggression is adaptive for chestnut-sided warblers. We suspect that golden-wings do not 

negatively influence their fitness, but further research is needed to verify this assumption. 

Nonetheless, because golden-wings do not suffer any fitness consequences, misidentification 

is the likely explanation, at least, from their perspective. 

In this study, we document the importance of integrating behavioral research with 

conservation biology and of studying how at-risk species interact with their community 

(Anthony and Blumstein 2000, Linklater 2004, Caro and Sherman 2013). Although we lack 

data from the chestnut-sided warbler perspective, we focused on addressing how interspecific 

interactions influence golden-winged warbler fitness because their declines are particularly 

extreme throughout the Appalachians (Sauer et al. 2014). Agonism does not appear to be a 
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product of interspecific competition, which may be viewed as good news for the future of 

golden-winged warblers. However, interspecific aggression with chestnut-sided warblers 

may still be a risky behavior for golden-winged warblers if no net benefit is conveyed 

(reviewed in Grether et al. 2013). Our study suggests that aggressive fighting between 

species is not always indicative of interspecific competition as is often assumed (and is often 

the case; e.g. Heller 1971, Morse 1974, Martin and Martin 2001a, b). Further research on the 

interactions between these warblers is needed if any management decisions are to be 

considered that may inadvertently harm one or the other (Anthony and Blumstein 2000).  

 

ACKNOWLEDGEMENTS 

This research would not have been possible without the help of our volunteer field crews in 

2014 (C.K. Avery, A.S. Dawson, E.H. Heetderks, B.P. Taylor, L.E. Williams) and 2015 

(D.S. Hardesty, J.M. Reed, C.L. Slaughter, and M.C. Ward). We also thank Z.G. West and 

J.J. Mitchell with GIS/remote sensing analysis. We are grateful to A.N. Albers, B.E. 

Ballentine, T. Billo, T.J. Boves, M.M. Gangloff, M.R. Harris, S.M. Lappan, M.W. Pugh, E.L. 

Walter, members of the Golden-winged Warbler Working Group and the Gangloff-

Siefferman lab at Appalachian State University for improving this manuscript. Finally, we 

thank the following individuals and agencies for their support and/or access to their land: B. 

Cochran, S. Wright, J. Rice, L. Campbell, L. Moretz, Southern Appalachian Highlands 

Conservancy (J. Leutze, C. Coxen, M. Crockette), NC Wildlife Resource Commission, TN 

Natural Heritage Program (L. Huff), Pisgah National Forest, Elk Knob State Park, and 

Grandfather Mountain State Park.  



 61 

Funding for our project was provided by a 2015 Hesse Award, awarded by the 

American Ornithologists’ Union (to J.A.J.), a Sigma Xi Grant-in-Aid of Research grant 

(#480757, J.A.J.), an award from Appalachian State’s Biology department, funded by the 

Wayne Richardson Family (J.A.J.) and the Office of Student Research of Appalachian State 

University (J.A.J. and J.L.T.). Additional funding for our 2014 golden-winged warbler 

population research was granted by the U.S. Natural Resource Conservation Service, through 

the Conservation Effects Assessment Project. None of the funders had any influence on the 

content of the submitted manuscript nor do they require approval of the final manuscript to 

be published.  

 

REFERENCES 

Alatalo, R., A. Lundberg, and K. Ståhlbrandt. (1984). Female mate choice in the pied 

flycatcher Ficedula hypoleuca. Behavioral Ecology and Sociobiology 14:253–261. 

Andersson, M., C. G. Wiklund, and H. Rundgren. (1980). Parental defense of offspring: A 

model and an example. Animal Behaviour 28:536–542.  

Anthony, L. L., and D. T. Blumstein. (2000). Integrating behaviour into wildlife 

conservation: The multiple ways that behaviour can reduce Ne. Biological Conservation 

95:303–315. 

Arnold, T. W. (2010). Uninformative parameters and model selection using Akaike’s 

information criterion Journal of Wildlife Management 74:1175–1178. 



 62 

Barg, J. J., J. Jones, and R. J. Robertson. (2004). Describing breeding territories of migratory 

passerines: Suggestions for sampling, choice of estimator, and delineation of core areas. 

Journal of Animal Ecology 74:139–149. 

Beyer, H. L. (2009). Geospatial Modelling Environment Version 0.7.2.1. Spatial Ecology 

LLC. http://www.spatialecology.com/gme/. 

Buehler, D. A., A. Roth, R. Vallender, and T. Will. (2007). Status and conservation priorities 

of golden-winged warbler (Vermivora chrysoptera) in North America. Auk 124:1439–

1445. 

Cain, K. E., M. S. Rich, K. Ainsworth, and E. D. Ketterson (2011). Two sides of the same 

coin? Consistency in aggression to conspecifics and predators in a female songbird. 

Ethology 117:786–795.  

Catchpole, C., and B. Leisler. (1986). Interspecific territorialism in reed warblers: A local 

effect revealed by playback experiments. Animal Behaviour 34:299–300. 

Collins, S., F. James, and P. Risser. (1982). Habitat relationships of wood warblers 

(Parulidae) in northern central Minnesota. Oikos 39:50–58. 

Confer, J.L. and J.L. Larkin. (1998). Behavioral interactions between golden-winged and 

blue-winged warblers. Auk 115:209-214. 

Confer, J.L., P. Hartman, and A. Roth. (2011). Golden-winged warbler (Vermivora 

chrysoptera), The Birds of North America Online (A. Poole, Ed.). Ithaca: Cornell Lab 



 63 

of Ornithology; Retrieved from the Birds of North America Online: 

http://bna.birds.cornell.edu/bna/species/020. 

Cuthill, I. C. (2006). Color perception. in Bird coloration: Mechanisms and measurements, 

Vol. 1. (Hill, G.E., and McGraw, K. J., eds.). pp. 3–44. Harvard University Press, 

Cambridge, MA, USA. 

Daunt, F., S. Wanless, M. P. Harris, and P. Monaghan. (1999). Experimental evidence that 

age-specific reproductive success is independent of environmental effects. Proceedings 

of the Royal Society B: Biological Sciences 266:1489–1493. 

Dhondt, A. A. (2012). Interspecific Competition in Birds. Oxford University Press, New 

York, NY, USA. 

Duckworth, R. A. (2006). Behavioral correlations across breeding contexts provide a 

mechanism for a cost of aggression. Behavioral Ecology 17:1011–1019. 

Ficken, M., and R. Ficken. (1967). Singing behaviour of blue-winged and golden-winged 

warblers and their hybrids. Behaviour 28:149–181. 

Gould, S. J., and E. S. Vrba (1982). Exaptation - a missing term in the science of form. 

Paleobiology 8:4–15. 

Grether, G. F., C. N. Anderson, J. P. Drury, A. N. G. Kirschel, N. Losin, K. Okamoto, and K. 

S. Peiman. (2013). The evolutionary consequences of interspecific aggression. Annals 

of the New York Academy of Sciences 1289:48–68. 



 64 

Grether, G. F., N. Losin, C. N. Anderson, and K. Okamoto. (2009). The role of interspecific 

interference competition in character displacement and the evolution of competitor 

recognition. Biological Reviews 84:617–635. 

Harris, M. R., and L. Siefferman. (2014). Interspecific competition influences fitness benefits 

of assortative mating for territorial aggression in eastern bluebirds (Sialia sialis). PLoS 

ONE 9:e88668. 

Heller, H. (1971). Altitudinal zonation of chipmunks (Eutamias): Interspecific aggression. 

Ecology 52:312–319. 

Hill, G. E. (2002). A red bird in a brown bag: The function and evolution of ornamental 

plumage coloration in the House Finch. Oxford University Press, New York, NY, 

USA. 

Holmes, R. T. (2007). Understanding population change in migratory songbirds: Long-term 

and experimental studies of Neotropical migrants in breeding and wintering areas. Ibis 

149:2–13. 

IBM Corp. (2013). IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM 

Corp.  

Johnson, M. D. (2007). Measuring habitat quality: A review. Condor 109:489–504.  

Jones, J. A., M. R. Harris, and L. Siefferman. (2014). Physical habitat quality and 

interspecific competition interact to influence territory settlement and reproductive 

success in a cavity nesting bird. Frontiers in Ecology and Evolution 2:71. 



 65 

Jones, J. A., and L. Siefferman. (2014). Agonistic behaviors between chestnut-sided 

(Setophaga pensylvanica) and golden-winged (Vermivora chrysoptera) warblers are 

unlikely a result of plumage misidentification. Wilson Journal of Ornithology 126:708–

716. 

King, J. A. (1973). The ecology of aggressive behavior. Annual Review of Ecology and 

Systematics 4:117–138. 

Klaus, N. A., and D. A. Buehler. (2001). Golden-winged warbler breeding habitat 

characteristics and nest success in clearcuts in the southern Appalachian Mountains. 

Wilson Bulletin 113:297–301. 

Korner, P., M. J. Whiting, J. Willem, and H. Ferguson. (2000). Interspecific aggression in 

flat lizards suggests poor species recognition. African Journal of Herpetology 49:139–

146.  

Maia, R., C. M. Eliason, P.-P. Bitton, S. M. Doucet, and M. D. Shawkey. (2013). Pavo: An R 

package for the analysis, visualization and organization of spectral data. Methods in 

Ecology and Evolution 4: 906–913. 

Martin, P. R., and T. E. Martin. (2001a). Ecological and fitness consequences of species 

coexistence: A removal experiment with wood warblers. Ecology 82:189–206. 

Martin, P. R., and T. E. Martin. (2001b). Behavioral interactions between coexisting species: 

Song playback experiments with wood warblers. Ecology 82:207–218. 



 66 

Martin, P. R., R. Montgomerie, and S. C. Lougheed. (2015). Color patterns of closely related 

bird species are more divergent at intermediate levels of breeding-range sympatry. 

American Naturalist 185:443–451. 

Martin, T. E. (1988). Nest placement: Implications for selected life-history traits, with special 

reference to clutch size. American Naturalist 132:900–910.  

Martin, T. E. (1993). Nest predation and nest sites. BioScience 43:423–532. 

McCallum, D. (2005). A conceptual guide to detection probability for point counts and other 

count-based survey methods. Bird conservation implementation and integration in the 

Americas: Proceedings of the third international Partners in Flight conference. US 

Forest Service General Technical Report PSW-GTR-149, Albany, California, USA pp. 

754–761. 

Minot, E. (1981). Effects of interspecific competition for food in breeding blue and great tits. 

Journal of Animal Ecology 50:375–385. 

Morse, D. (1974). Niche breadth as a function of social dominance. American Naturalist 

108:818–830. 

Moyer, K. E. (1968). Kinds of aggression and their physiological basis. Communications in 

Behavioral Biology 22:56–87. 

Murray, B. G. Jr. (1971). The ecological consequences of interspecific territorial behavior in 

birds. Ecology 52:414–423. 



 67 

Murray, B. G. Jr. (1981). The origins of adaptive interspecific territorialism. Biological 

Reviews 56:1–22. 

Nishikawa, K. C. (1985). Competition and the evolution of aggressive behavior in two 

species of terrestrial salamanders. Evolution 39:1282–1294. 

Nishikawa, K. C. (1987). Interspecific aggressive behaviour in salamanders: Species-specific 

interference or misidentification? Animal Behaviour 35:263–270. 

Ord, T. J., L. King, and A. R. Young. (2011). Contrasting theory with the empirical data of 

species recognition. Evolution 65:2572–2591 

Ord, T. J., and J. A. Stamps. (2009). Species identity cues in animal communication. 

American Naturalist 174:585–593. 

Orians, G., and M. Willson. (1964). Interspecific territories of birds. Ecology 49:398–404. 

Peiman, K. S., and B. W. Robinson. (2010). Ecology and evolution of resource-related 

heterospecific aggression. Quarterly Review of Biology 85:133–158.  

Petrusková, T., A. Petrusek, V. Pavel, and R. Fuchs. (2008). When an alien sings at a rival’s 

post: A passerine excited by conspecific stimulus may show aggressive behaviour 

towards heterospecific individuals. Folia Zoologica 57:201–211. 

Pimm, S., M. Rosenzweig, and W. Mitchell. (1985). Competition and food selection: Field 

tests of a theory. Ecology 66:798–807. 



 68 

Rice, J. C. (1978). Behavioural interactions of interspecifically territorial vireos. I. Song 

discrimination and natural interactions. Animal Behaviour 26:527–549. 

Richardson, M., and D. W. Brauning. (2013). Chestnut-sided warbler (Setophaga 

pensylvanica), The Birds of North America Online (A. Poole, Ed.). Ithaca: Cornell 

Lab of Ornithology; Retrieved from the Birds of North America Online: 

http://bna.birds.cornell.edu/bna/species/190. 

Roth, A. M., R. W. Rohrbaugh, T. C. Will, D. A. Buehler. (2012). Golden-winged warbler 

status review and conservation plan. www.gwwa.org/. 

Sauer, J. R., J. E. Hines, J. E. Fallon, K. L. Pardieck, D. J. Ziolkowski, Jr., and W. A. Link. 

(2014). The North American Breeding Bird Survey, Results and Analysis 1966 - 

2013. Version 01.30.2015 USGS Patuxent Wildlife Research Center, Laurel, MD 

Seaman, D. E., J. J. Millspaugh, B. J. Kernohan, and G. C. Brundige, K. J. Raedeke, and R. 

A. Gitzen. (1999). Effects of sample size on kernel home range estimates. Journal of 

Wildlife Management 63:739–747. 

Sih, A., and M. Del Giudice. (2012). Linking behavioural syndromes and cognition: A 

behavioural ecology perspective. Philosophical Transactions of the Royal Society B: 

Biological Sciences 367:2762–2772. 

Stoehr, A. M., and G. E. Hill (2000). Testosterone and the allocation of reproductive effort in 

male house finches (Carpodacus mexicanus). Behavioral Ecology and Sociobiology 

48:407–411.  



 69 

Tinbergen, N. (1936). The function of sexual fighting in birds; and the problem of the origin 

of “territory.” Bird-banding 7:1–8. 

Thompson, W. L. (2002). Towards reliable bird surveys: Accounting for individuals present 

but not detected. Auk 119:18–25. 

Vallender, R., S. L. Van Wilgenburg., L. P. Bulluck, A. Roth, R. Canterbury, J. Larkin, R. M. 

Fowlds, and I. J. Lovette. (2009). Extensive rangewide mitochondrial introgression 

indicates substantial cryptic hybridization in the golden-winged warbler (Vermivora 

chrysoptera). Avian Conservation and Ecology 4:4. 

Verhulst, S., J. Van Balen, and J. Tinbergen. (1995). Seasonal decline in reproductive 

success of the great tit: Variation in time or quality? Ecology 76:2392–2403. 

 

  

  



 70 

 

TABLES  

 

Table 1. Model selection for variables that influenced egg laying dates of golden-winged 

Warblers. Laying commenced earlier when golden-winged warblers had territories in areas of 

lower chestnut-sided warbler densities (CSWA) and had greater shrubland cover relative to 

canopy cover (PC2-habitat). Models are organized based on Akaike weights (wi); the best 

fitting model is in bolded print. 

 

Model AICC ∆AICC wi Likelihood X2 Model P 

CSWA, PC2-habitat  162.62 0.00 0.55 9.15 0.01 

PC2-habitat  163.99 1.37 0.28 6.98 0.01 

PC1-habitat, PC2-habitat  166.81 4.19 0.07 7.07 0.03 

CSWA, PC1-habitat, PC2-habitat 167.95 5.33 0.04 9.16 0.03 

CSWA 168.18 5.56 0.03 2.80 0.10 

PC1-habitat 169.15 6.53 0.02 0.62 0.43 

CSWA, PC1-habitat 170.94 8.32 0.01 2.94 0.23 
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Table 2. Model selection for variables that influenced golden-winged warbler first-attempt 

clutch sizes. Clutch sizes were larger when warblers commenced laying earlier in the season. 

Models are organized based on Akaike weights (wi); the best fitting model is in bolded print. 

 

Model AICC ∆AICC wi Likelihood X2 Model P 

FED 47.73 0.00 0.26 10.61 0.001 

FED, PC2-habitat 48.13 0.41 0.21 13.11 0.001 

FED, PC1-habitat 49.61 1.88 0.10 11.64 0.003 

FED, CSWA 49.83 2.10 0.09 11.42 0.003 

FED, CSWA, PC2-habitat 50.44 2.72 0.07 14.03 0.003 

FED, PC1-habitat, PC2-habitat 50.70 2.98 0.06 13.77 0.003 

PC2-habitat 50.83 3.11 0.06 7.51 0.01 

CSWA, PC1-habitat, PC2-habitat 51.11 3.38 0.05 10.03 0.18 

CSWA, PC2-habitat 51.49 3.77 0.04 9.75 0.01 

FED, CSWA, PC1-habitat 52.36 4.63 0.03 12.12 0.007 

PC1-habitat, PC2-habitat 53.01 5.28 0.02 8.24 0.02 

CSWA 55.47 7.75 0.01 2.89 0.09 

PC1-habitat 56.69 8.97 0.00 1.65 0.20 

CSWA, PC1-habitat 57.56 9.83 0.00 3.69 0.16 

 

FED = first egg date, CSWA = chestnut-sided warbler density 
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Table 3. Relationship between nest fate and fledgling numbers relative to Chestnut-sided 

Warbler density (CSWA) and habitat variables (PC1-habitat and PC2-habitat). 

 

  Nest fate Fledgling numbers 

 t P df r P N 

CSWA  0.25 0.80 22 -0.19 0.93 24 

PC1-habitat 0.79 0.44 22 -0.17 0.42 24 

PC2-habitat 0.88 0.39 22 -0.11 0.62 24 
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Table 4. Model selection for variables that best predicted whether or not golden-winged 

warblers would attack a heterospecific bird model. Golden-winged warblers that chipped 

more aggressively while singing fewer type-1 songs were more likely to attack the model 

chestnut-sided warbler. However, flight behaviors (PC1-GWWA) contributed little to their 

likelihood of attacking a heterospecific model. Models are organized based on Akaike 

weights (wi); the best fitting model is in bolded print. 

 

Model AICC ∆AICC wi Likelihood X2 Model P 

PC1-accoustic, PC2-accoustic 24.50 0.00 0.50 15.97 <0.001 

PC1-accoustic, PC2-accoustic, 

PC1-GWWA 

25.93 1.43 0.24 17.45 0.001 

PC2-accoustic 26.98 2.48 0.14 10.86 0.001 

PC2-accoustic, PC1-GWWA 27.46 2.97 0.11 13.01 0.001 

PC1-GWWA 34.48 9.98 0.00 1.17 0.28 

PC1-accoustic 37.99 13.50 0.00 1.63 0.20 

PC1-accoustic, PC1-GWWA 38.10 13.60 0.00 2.37 0.31 

 

 

  



 74 

Table 5. Model selection for variables that best predicted whether or not chestnut-sided 

warblers would attack a heterospecific bird model. Chestnut-sided warblers that sang less 

were more likely to attack the model golden-winged warbler. Although not the most 

supported model, chestnut-sided warblers that displayed more aggressive flight behaviors 

(PC1-CSWA) were more likely to attack the heterospecific model. Models are organized 

based on Akaike weights (wi); the best fitting model is in bolded print. 

 

Model AICC ∆AICC wi Likelihood  X2 Model P 

Counter-sing rate 41.80 0.00 0.89 4.36 0.04 

PC1-CSWA 46.57 4.77 0.08 10.35 0.001 

PC1-CSWA, counter-sing rate 48.65 6.85 0.03 10.63 0.005 
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FIGURES 

 

 

Figure 1. Golden-winged warbler aggressive behaviors (PC2-2014aggression) relative to 

densities of chestnut-sided warblers. Golden-winged warblers tend to be significantly more 

aggressive (increased diving rates and type-2 song calls) when territories occur with greater 

densities of chestnut-sided warblers. 

 



 76 

 

Figure 2. Nest commencement date for female golden-winged warblers relative to PC2-

habitat. Females that settled in territories with a greater proportion of shrubland habitat cover 

to forest cover lay their eggs earlier in the season. 
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Figure 3. Conspecific aggression in response to acoustic stimuli in golden-winged warblers 

that did or did not attack the heterospecific model after the playback trial.  

 

  



 78 

 

Figure 4. Conspecific aggression in response to acoustic stimuli in chestnut-sided warblers 

that did or did not attack the heterospecific model after the playback trial.   
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APPENDIX 

 

Supplemental Tables 

Table S1. NAIP imagery reference data for each field site. Entity ID refers to the imagery ID 

for EarthExplorer (earthexplorer.usgs.gov); coordinate locations represent the center point of 

the image; date refers to the date the image was captured. 

 

Location Entity ID: Coordinates Date 

Watauga, 

NC 

M_3608143_NW_17_1_20120627_2012

1018 

36.3437471 N 

-81.7187554 W 

6/27/2012 

Watauga, 

NC 

M_3608142_SE_17_1_20120627_20121

018 

36.2812499 N 

-81.7812554 W 

6/27/2012 

Ashe, NC M_3608135_SE_17_1_20120627_20121

018 

36.40625 N 

-81.6562583 W 

6/27/2012 

Avery, NC M_3608264_NW_17_1_20120629_2012

1018 

36.0937444 N 

-82.0937527 W 

6/29/2012 

Carter, TN M_3608256_SE_17_1_20120629_20121

018 

36.15625 N 

-82.0312554 W 

6/29/2012 
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Table S2. Principal component loading factors for each behavioral trait.  

 Component 

Behavioral response PC1-2014aggression PC2-2014aggression 

Respond latency -0.69 0.07 

Dive rate 0.36 0.57 

Total song rate 0.93 -0.07 

Type-1 song rate 0.61 -0.75 

Type-2 song rate 0.49 0.74 
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Table S3. Principal component loading factors for each vegetation class. 

 Component 

 Vegetation class PC1-habitat PC2-habitat  

Percent cover: Abiotic factors 0.521 0.495 

Percent cover: Grassland 0.920 -0.190 

Percent cover: Forested -0.726 0.661 

Percent cover: Shrubland -0.509 -0.780 
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Table S4. Principal component loading factors for individual flight behavioral assays for 

golden-winged (GWWA) and chestnut-sided (CSWA) warblers. 

 Component 

Flight behaviors PC1-GWWA PC1-CSWA 

Latency to respond -0.62 -0.64 

# Fly-throughs 0.79 0.83 

# Dives 0.85 0.84 
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Table S5. Principal component loading factors for golden-winged warbler vocal behaviors. 

 Component 

Vocal behaviors PC1-accoustic PC2-accoustic 

Type-1 song 0.32 -0.72 

Type-2 song 0.87 0.35 

Aggressive chips 0.03 0.85 

Soft songs 0.91 -0.11 
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Supplemental Figures 

 

 

Figure S1. Photograph demonstrating the plumage characteristics of the dorsal sides of 

golden-winged (top) and chestnut-sided warblers (bottom). 
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Figure S2. Examples of habitat classification of five territories of golden-winged warbler 

pairs. These territories were located on Snake Mountain, Watauga Co., NC.  
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