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Abstract:  

 

Context: Hip-joint laxity may be a relevant anterior cruciate ligament injury risk factor. 

With no devices currently available to measure hip laxity, it is important to determine if 

clinical measurements sufficiently capture passive displacement of the hip. 

Objective: To examine agreement between hip internal-external–rotation range of motion 

measured clinically (HIERROM) versus internal-external–rotation laxity measured at a fixed 

load (HIERLAX) and to determine their relationships with knee laxity (anterior-posterior 

[KAPLAX], varus-valgus [KVVLAX], and internal-external rotation [KIERLAX]) and general 

joint laxity (GJL). 

Design: Cross-sectional study. 

Setting: Controlled research laboratory. 

Patients or Other Participants: Thirty-two healthy adults (16 women, 16 men; age = 

25.56 ± 4.08 years, height = 170.94 ± 10.62 cm, weight = 68.86 ± 14.89 kg). 

Main Outcome Measure(s): Participants were measured for HIERROM, HIERLAX at 0° and 

30° hip flexion (−10 Nm, 7 Nm), KAPLAX (−90 N to 133 N), KVVLAX (±10 Nm), 

KIERLAX (±5 Nm), and GJL. We calculated Pearson correlations and 95% limits of 

agreement between HIERROM and HIERLAX_0° and HIERLAX_30°. Correlation analyses 

examined the strength of associations between hip laxity, knee laxity, and GJL. 

Results: The HIERROM and HIERLAX had similar measurement precision and were strongly 

correlated (r > 0.78). However, HIERROM was systematically smaller in magnitude than 

HIERLAX at 0° (95% limits of agreement = 29.0° ± 22.3°) and 30° (21.4° ± 19.3°). The 

HIERROM (r = 0.51–0.66), HIERLAX_0° (r = 0.52–0.69) and HIERLAX_30° (r = 0.53–0.76) 

were similarly correlated with knee laxity measures and GJL. The combinations of 

KVVLAX and either HIERROM, HIERLAX_0°, or HIERLAX_30° (R2 range, 0.42–0.44) were 

the strongest predictors of GJL. 

Conclusions: Although HIERROM and HIERLAX differed in magnitude, they were measured 

with similar consistency and precision and were similarly correlated with knee laxity and 

GJL measures. Individuals with greater GJL also had greater hip laxity. These findings are 
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relevant to clinicians and investigators conducting prospective risk factor studies, given the 

need for accessible, efficient, and low-cost alternatives for characterizing an individual's 

laxity profile. 
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Article:  
 

Key Points 

 

 Differences between measures of hip internal-external–rotation range of motion and 

laxity were large and systematic, even though the measures demonstrated comparable 

precision and were strongly correlated in relative magnitude. 

 

 Measures of hip internal-external–rotation range of motion and laxity were strongly 

correlated with measures of knee laxity and general joint laxity. 

 

 Clinical measurement of hip internal-external–rotation range of motion may be a reliable, 

efficient, and low-cost measure of passive hip-joint displacement. 

 

Anterior cruciate ligament (ACL)–injured patients tend to have greater general joint laxity (GJL) 

than uninjured controls.1–3 For example, in a prospective study by Uhorchak et al,2 individuals 

who scored 5 or greater on the Beighton and Horan Joint Mobility Index4 were 2.8 times more 

likely to tear their ACLs. However, the nature of this association is not entirely clear, as GJL has 

been reported at times to be poorly correlated with sagittal-plane knee laxity5,6 and has been 

associated with alterations in knee-joint biomechanics that are distinct from those of sagittal-

plane knee laxity.5 Because GJL represents a general condition of joint hypermobility across 

multiple joints,7–10 GJL may reflect associated laxities in other lower extremity joints that also 

contribute to injury risk (eg, hip). For instance, hip-joint conditions in children that are 

characterized by a more internally rotated hip are thought to develop secondarily to hip 

instability (hip acetabular dysplasia, congenital hip dislocation), which has been associated with 

greater GJL.9,11 Further, in a recent study,12 hip acetabular dysplasia was more prevalent in ACL-

injured females than uninjured controls, and this condition was also associated with greater 

magnitudes of anterior knee laxity and GJL. Collectively, these findings suggest that GJL (and 

knee laxity) may be capturing some aspect of hip-joint laxity, which may play an important role 

in ACL injury risk. 

 

In vivo joint-laxity testing assesses the combined passive resistance of the ligaments, muscles, 

and capsule to a displacing load. Although knee laxity and GJL have been commonly studied as 

ACL injury risk factors, hip-joint laxity has received little attention to date, despite the perceived 

importance of the proximal hip in controlling motion at the knee.13–16 This is likely due in large 

part to the lack of instrumented devices to measure laxity at the hip. However, limited research 

using a clinical measure of passive hip range of motion (hip internal-external–rotation range of 

motion [HIERROM] = range through which the joint can freely and painlessly move, based on the 

subjective judgment of passive resistance by the investigator)9,16–18 has identified associations 



between high-risk biomechanics16,19 and ACL injury risk,20 suggesting this is a worthy area of 

study. 

 

Biomechanical studies have revealed higher-risk landing biomechanics in those with less relative 

hip external-rotation motion (demonstrating greater frontal-plane knee excursion)16 and those 

with greater relative hip internal-rotation motion (demonstrating greater relative hip adduction 

and knee valgus and external rotation).19 Conversely, in a case-control study of male soccer 

players with ACL injuries from noncontact mechanisms,20 the ACL-injured cohort had, on 

average, 14° less total HIERROM (primarily driven by decreased hip internal-rotation motion) 

than the control group. Although these findings suggest that the magnitude of passive hip-joint 

motion may be associated with higher-risk hip and knee biomechanics and ACL injury potential, 

the directions of these associations are inconsistent. One reason for inconsistent findings could 

be the subjective nature of the measure, as the displacement is not performed at a standardized 

load. Authors16 of only 1 of the aforementioned studies reported reliability estimates for the 

measure, and although they noted strong reliability within a person, measurement precision was 

not quantified. Given the inherent large intersubject variability in passive hip motion (values 

ranging from 20°–60° and 13°–54° for internal and external range of motion, respectively16) and 

the fact that intraclass correlation coefficients can be inflated with large distributions in scores, 

quantifying measurement precision may be equally important. To date, we are not aware of any 

researchers who have compared the precision of this more clinical measure of HIERROM with an 

instrumented measure of hip-joint laxity where joint displacement is measured at a fixed load 

limit (HIERLAX). Such findings may inform future researchers who seek to examine the role of 

hip-joint laxity in functional lower extremity biomechanics and ACL injury risk and, 

subsequently, to identify appropriate clinical screening measures to assess injury risk potential. 

 

Also unknown is the extent to which measures of HIERROM or HIERLAX would provide unique 

information about an individual's laxity profile (and thus injury risk potential) that is not already 

captured through current clinical (eg, GJL) and instrumented (knee anterior-posterior, varus-

valgus, and internal-external–rotation) laxity measurements. Because of these unknowns, our 

purpose was 2-fold. First, we examined the reliability, precision, and level of agreement between 

a clinical measurement of HIERROM and an instrumented measure of HIERLAX at a fixed load. 

We hypothesized that agreement between HIERLAX and HIERROM would be good to moderate 

but greater precision of measurement would be afforded by HIERLAX, based on a more objective 

determination of end range of motion. Our secondary purpose was to examine relationships 

between HIERLAX and HIERROM with existing measures of GJL and knee laxity (anterior-

posterior [KAPLAX], varus-valgus [KVVLAX]), and internal-external rotation [KIERLAX]). We 

hypothesized that HIERLAX/HIERROM would be moderately correlated with both GJL and knee-

laxity measures but that HIERLAX/HIERROM would explain additional variance in GJL not 

accounted for by knee laxity. 

 

METHODS 
 

A total of 32 healthy participants (16 women, 16 men, age = 25.56 ± 4.08 years [range, 19–35 

years], height = 170.94 ± 10.62 cm, weight = 68.86 ± 14.89 kg) were measured for HIERROM, 

HIERLAX, measures of knee laxity (anterior knee laxity, KVVLAX, and KIERLAX), and GJL in a 

single session. Participants were recruited from the university and surrounding community, 



and healthy was operationally defined as no history of left hip or knee ligament injury or surgery 

and no medical conditions affecting the connective tissue (eg, muscle, ligament). Before 

enrolling, participants signed an informed consent form approved by the university institutional 

review board, which also approved the study. The order of testing for all participants was 

KVVLAX, KIERLAX, KAPLAX, HIERROM, GJL, HIERLAX_0°, and HIERLAX_30°. This order 

allowed us to change the setup of the Vermont Knee Laxity Device (University of Vermont, 

Burlington, VT) from knee- to hip-laxity testing while obtaining the clinical laxity 

measurements. The specific procedures for each measurement follow. 

 

Clinical Measurement Procedures 

The HIERROM was measured with the participant lying prone, knee flexed to 90°, and hip in 0° of 

hip abduction-adduction.17,21 The pelvis was stabilized against the table to ensure that motion 

was limited to the hip joint. With an inclinometer (Universal Inclinometer; Performance 

Attainment Associates, Saint Paul, MN) attached along the long axis of the tibia, the tibia was 

positioned perpendicularly to the table to establish an initial zero position, as confirmed by the 

inclinometer's vertical zero reference position. The hip was then rotated internally and externally 

until firm tissue resistance was felt, and the range of motion (degrees) in each direction was 

measured. Three measurements of internal-rotation and external-rotation range of motion were 

summed and then averaged, and the total internal-external–rotation motion was used for analysis. 

For the purposes of this study, we compared total motion with all subsequent laxity measures 

because prior work22 has shown these measures to be more reliable (owing to difficulty in 

identifying a true zero reference point with knee-laxity measures), and our goal was to simply 

determine the extent to which the magnitude of passive motion at one joint was related to the 

magnitude of passive motion at another joint. 

The GJL was assessed with the Beighton and Horan Joint Mobility Index4 and was scored from 0 

to 9, with 1 point for each of the following criteria: fifth finger extension > 90°, elbow 

hyperextension > 10°, thumb opposition to the forearm, knee hyperextension > 10° (all measured 

bilaterally), and placing the palms flat on the floor with the knees fully extended. 

Instrumented Knee- and Hip-Laxity Measures 

Anterior-posterior knee laxity (KAPLAX) was assessed with a knee arthrometer (model KT-2000; 

Medmetric Corporation, San Diego, CA) from a posterior-directed force of 90 N to an anterior-

directed force of 133 N with the participant lying supine with the knee flexed to 25° ± 5°, using 

methods previously described.23,24 Three consecutive measurements were averaged for analysis. 

The HIERLAX, KVVLAX, and KIERLAX were measured with the Vermont Knee Laxity Device. To 

measure force and displacement data, we applied clusters of 4 optical LED markers (IMPULSE 

Motion Capture System; PhaseSpace Inc, San Leandro, CA) to the pelvis, left thigh, and left 

shank and digitized joint centers by using centroid (knee and ankle)25 methods and those of 

Leardini et al.26 Kinematic (240 Hz) and kinetic (500 Hz) data were simultaneously captured 

during each laxity measurement by using an 8-camera optical system (IMPULSE) and 

MotionMonitor acquisition software (version 8.62; Innovative Sports Training Inc, Chicago, IL). 
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The KVVLAX and KIERLAX were measured by using procedures previously reported, with the 

participant lying supine, the knee flexed to 20° (confirmed by goniometry), and gravitational 

loads eliminated.22 The KVVLAX was measured as the total varus-valgus displacement while ±10 

Nm of valgus and varus torque was applied, whereas the KIERLAX was measured as the total 

internal-external displacement while ±5-Nm internal-external–rotation torque was applied. For 

each measure, a conditioning trial was followed by 2 test trials of 3 consecutive cycles. The last 

2 cycles of the 2 test trials were averaged for analysis. 

The HIERLAX was measured by attaching a wooden platform to the Vermont Knee Laxity Device 

to allow positioning of the pelvis and thigh for testing in neutral (Figure 1) and in 30° of hip 

flexion (Figure 2). We chose these test positions to account for the varying contributions of the 

hip capsular ligaments (ie, ischiofemoral ligament controlling internal rotation in flexion and 

extension, lateral iliofemoral ligament controlling internal and external rotation in flexion, and 

pubofemoral ligament with contributions from the medial and lateral iliofemoral ligaments 

controlling external rotation in extension).27 With the participant lying prone, the pelvis 

restrained to keep the torso parallel to the floor, and the left knee flexed to 90° and secured in the 

knee cradle, we positioned the hip in 0° of flexion, rotation, and abduction-adduction, consistent 

with HIERROM positioning. The nontest leg rested comfortably on a support. The participant was 

instructed to relax while internal-external–rotation torques of 10 Nm and 7 Nm, respectively, 

were applied to the hip joint. During pilot testing, these torques were determined to be the 

maximum participants could comfortably tolerate without muscle guarding or pain or elevating 

the pelvis. A conditioning trial was followed by 2 test trials of 3 consecutive internal-external–

rotation cycles. Hip laxity was first measured in neutral (HIERLAX_0°) and then in 30° of hip 

flexion, as confirmed by goniometry (HIERLAX_30°; Figure 2). For each measure, the total 

internal-external–rotation displacements of the last 2 cycles of the test trials were averaged for 

analysis. Internal- and external-rotation values were recorded for descriptive purposes. 



 
Figure 1. Participant placement in the Vermont Knee Laxity Device (University of Vermont, 

Burlington, VT) for measuring hip internal-external–rotation laxity in neutral position. 

 

 
Figure 2. Participant placement in the Vermont Knee Laxity Device (University of Vermont, 

Burlington, VT) for measuring hip internal-external–rotation laxity in 30° of hip flexion. 



Because this was the first study in which we obtained HIERLAX measures, we asked the first 10 

participants to return for a second session (24 to 48 hours later) to determine day-to-day 

HIERLAX measurement consistency and precision at 0° and 30° of hip flexion. For all other laxity 

measures, testers had previously established their measurement reliability and precision as part 

of their initial laboratory training. All reliability estimates are based on 10 healthy participants 

measured on 2 days spaced 24 to 48 hours apart (intraclass correlation coefficient [ICC 2,3] 

[standard error of the mean] for HIERROM = 0.97 [1.5°], for HIRROM = 0.97 [1.1°], for HERROM = 

0.98 [1.4°], for GJL = 0.99 [0.2 points], for KAPLAX = 0.98 [0.3 mm], for KVVLAX
22 = 0.91 

[0.87°], and for KIERLAX
22 = 0.75 [2.67°]). A single investigator (L.F.) with 5 years of clinical 

training and research experience obtained all clinical measures (HIERROM, GJL, KAPLAX), 

whereas a team of 2 investigators (due to instrumentation demands) obtained HIERLAX (L.F., 

T.J.C.) and KVVLAX/KIERLAX (T.J.C., A.J.T.) measures. For the latter 2 measures, the individual 

providing the force application (L.F. or A.J.T.) was consistent across all participants, and each 

examiner had at least 5 years of clinical training and research experience. 

 

Statistical Analysis 

 

To address the first hypothesis, we computed the ICC [2,k] and standard error of the 

measurement (SEM)28 by using the SPSS Statistics Package (version 18; IBM Corporation, 

Armonk, NY), and 68% and 95% limits of agreement by using Bland-Altman plots29(version 

12.2.1.0; MedCalc Statistical Software, Ostend, Belgium) to assess the day-to-day measurement 

consistency of HIERLAX_0° and HIERLAX_30° for the first 10 participants. (For comparative 

purposes, we included the 68% and 95% limits of agreement obtained for HIERROM on 10 

participants during the investigators' prior training). The SEM provides a unit of measurement 

precision that is based on the distribution in scores.30 Because our small sample of healthy 

individuals may not adequately reflect the distribution in scores of a larger population (or of 

other populations such as athletes), we also calculated the 95% limits of agreement, which do not 

depend on sample characteristics.29 As such, the 95% limits of agreement provide an unbiased 

estimate of the absolute error that may be expected and may further assist clinicians in 

determining if the magnitude of error is acceptable. 

 

We then used Pearson correlation coefficients and 95% limits of agreement to determine the 

level of association and agreement, respectively, between HIERROM, HIERLAX_0°, and 

HIERLAX_30° in the entire sample. For the 95% limits of agreement, we examined the raw data 

as opposed to a logarithmic transformation of the data. Although the logarithmic transformation 

is recommended to control for increasing differences between scores as the magnitude of the 

measure increases, results using the raw values are more clinically interpretable.29 Moreover, we 

believed it was important to identify these measurement concerns if present. 

 

To answer the second hypothesis, we calculated Pearson correlations to examine relationships 

between measures of hip laxity (HIERLAX_0°, HIERLAX_30°, and HIERROM), measures of knee 

laxity (KAPLAX, KVVLAX, and KIERLAX), and GJL. Correlations were interpreted as weak (r < 

0.25), fair (r = 0.26–0.50), moderate (r = 0.51–0.75), or strong (r > 0.76).30 Using this 

convention, we had 90% power to detect a moderate correlation with 32 participants.30 We then 

conducted backward stepwise linear regression analyses to determine the extent to which 

HIERLAX predicted GJL when knee-laxity variables were also accounted for (tolerance for 



removal from the model = P < .20).31 With a sample size of 32 participants, we had 60% to 85% 

power to detect an R2 value of 0.25 (considered a large effect),31 depending on the number of 

variables that remained in the model (from 4 to 1, respectively).30 Because 

GJL,2,24 HIERROM,17,21 and measures of knee laxity2,24 differ by sex, we also examined these 

associations within each sex. Significance was determined at P ≤ .05 by using a 1-tailed test 

(assuming associations would be positive in nature). 

 

RESULTS 

 

Descriptive data for all measured variables are provided in Table 1. Women had greater total 

laxity than men for all variables except KAPLAX (P = .09). However, greater values of total 

HIERROM, HIERLAX_0°, and HIERLAX_30° in women versus men were primarily due to women 

having greater magnitudes of hip internal rotation (P < .01) but not hip external rotation (P > 

.278). 

 

 
 

The reliability coefficients for HIERLAX_0°, HIERLAX_30°, and HIERROM are shown in Table 2, 

and the Bland-Altman plots for the test-retest measurement consistency appear in Figure 3. The 

ICC values were excellent for all 3 measures. The SEM and 68% and 95% limits of agreement 

indicated little systematic bias in measures across days and smaller SEMs and absolute errors (ie, 

better measurement precision) for HIERROM than for either HIERLAX_0° or HIERLAX_30°. 

However, this smaller absolute error appears to be largely a function of the smaller values and 

smaller dispersion among values when measuring HIERROM versus HIERLAX (Table 1). That is, 

when we compared the magnitude of the measurement error with the magnitude of the measure, 

the measurement error was relatively proportional to the respective average range of motion for 

each measure (eg, the 95% limits of agreement were 7.3%, 8.4%, and 8.0% of the mean values 

for HIERROM, HIERLAX_0°, and HIERLAX_30°, respectively). 

 



                       



Pearson correlation coefficients are provided in Table 3. Graphic depictions of the 95% limits-of-

agreement Bland-Altman plots examining the level of agreement between the clinically derived 

HIERROM and the 2 instrumented hip-laxity measures are available in Figure 4. The HIERLAX_0° 

(r = 0.78) and HIERLAX_30° (r = 0.79) were both strongly correlated with HIERROM, and these 

relationships held for both sexes (Table 4). However, Pearson correlations can be inflated with 

large distributions in participants' scores and are not sensitive to systematic differences between 

measurement methods. In this regard, the 95% limits of agreement (Figure 4) between 

HIERROM and HIERLAX_0° and between HIERROM and HIERLAX_30° clearly indicate that 

HIERROM was systematically smaller in magnitude than HIERLAX_0° (−29.0°) and HIERLAX_30° 

(−21.4°), with the actual mean differences falling between −6.7 and −51.2 and −2.1 and −40.8, 

respectively, in 95% of the cases. Further, the difference between measures tended to increase as 

the values became larger. When we compared HIERLAX_0° and HIERLAX_30° (Pearson r = 

0.96), the 95% limits of agreement indicated that HIERLAX_0° was systematically greater in 

magnitude than HIERLAX_30° (7.6°, 95% confidence interval = −1.9°, 17.0°), with the difference 

between measures increasing with higher magnitudes of laxity. 

 

 
 

We observed moderate correlations between hip laxity and measures of knee laxity and GJL, 

regardless of whether hip laxity was measured as HIERROM, HIERLAX_0°, or HIERLAX_30° 

(Table 3). Although these correlations generally held within each sex, relationships with hip 

laxity tended to be lower in women (fair) than in men (moderate) for KIERLAX and KAPLAX and 

tended to be lower in men (fair) than in women (moderate) for KVVLAX (Table 4). Results from 

the backward stepwise linear regression analyses indicate that when measures of knee laxity 

were accounted for, hip laxity in combination with KVVLAX was the strongest predictor of GJL 

(Table 5). This finding was consistent whether HIERROM (R2 = 0.42), HIERLAX_0° (R2 = 0.42), 

or HIERLAX_30° (R2 = 0.44) was entered into the model. However, because measures of 

HIERROM/HIERLAX were moderately correlated with KVVLAX, this combined model explained 

only 3% to 12% more variance than hip laxity (R2 range, 32.3% [HIERROM] to 41.0% 

[HIERLAX_30°]) or KVVLAX (R2= 36.6%) explained independently. When analyses were 

stratified by sex (thus, the sample size was smaller and statistical power was lower), typically 

HIERROM
/HIER

LAX or KVVLAX (but not both) remained in the model. 

 

 



 
 



 
 

DISCUSSION 
 

Our primary findings were large systematic differences between measures of HIERLAX and 

HIERROM, despite the fact that both measures were obtained with comparable precision and were 

strongly correlated in relative magnitude. The magnitude of error appears to be smaller for 

HIERROM than HIERLAX (based on both SEM and 95% limits-of-agreement calculations), but 

this largely reflects the smaller deviations in scores and magnitude of values for HIERROM. 

Consequently, we observed similar strengths of correlations between HIERLAX and 

HIERROM with measures of knee laxity and GJL. Once knee-laxity variables were also accounted 

for, the combination of either HIERROM or HIERLAX with KVVLAX was the strongest predictor of 

GJL, explaining about 40% of the variance. These findings were similar between sexes. 

 

When we compared our clinical HIERROM values with those of previous researchers, the average 

values we obtained (80.4° ± 9.7°) were quite similar to other reported measures in healthy adults 

(range, 73.9° ± 11.8° to 82.98° ± 18.22°),17,21,32,33 as was our finding of greater motion in women 

(driven by greater hip internal rotation).17,21,34 We were unable to locate instrumented hip-laxity 

measures with which to compare our values. We were somewhat surprised to obtain higher laxity 

values in 0° than in 30° of hip flexion (due primarily to greater hip external-rotation motion), 

given prior cadaveric work demonstrating greater hip internal-external–rotation motion and less 

change in motion with ligament dissection at 30° versus 0°.27 However, direct comparisons 

between our in vivo values with this study may not be valid, as the authors of the cadaveric study 



did not report a standardized load limit at which motion was measured for each condition and 

removed all musculature to isolate the ligamentous support. As previously noted, in vivo laxity 

testing represents the combined passive resistance of the ligaments, muscles, and capsule to a 

displacing load. Musculotendinous structures that cross the joint may differentially affect passive 

resistance to hip displacement when measured at these same joint positions. 

 

When comparing the clinical measurement of HIERROM versus instrumented measurement of 

HIERLAX, our hypotheses were only partially supported. Specifically, we found comparable 

levels of measurement precision and stronger associations between HIERLAXand HIERROM than 

we expected. However, despite these strong correlations, we obtained substantially larger values 

for HIERLAXthan for HIERROM, even though both measurements (HIERLAX_0° and HIERROM) 

were taken in similar test positions. Although this difference in magnitude may be attributed to a 

greater load at which end motion was determined for HIERLAX, it is important to note that the 

magnitude of difference between these measurements became systematically larger as the 

magnitude of the measure increased (Figure 4). Despite these systematic differences, we 

observed similar strengths of association between HIERROM with knee-laxity measures and GJL 

as we did with HIERLAX (Tables 3 and 4). Thus, even though the 2 measures clearly differed in 

magnitude, our results suggest that comparable consistency and precision can be achieved with 

either HIERROM or HIERLAX, and they may be equally representative of relative passive hip-joint 

displacement. Yet our results are limited to a single tester and a single measurement of 

instrumented hip laxity; further work is needed to establish the extent to which each of these 

measures represents true capsuloligamentous laxity of the hip or predictive ability in assessing 

injury risk potential. Continuation of this research may be particularly relevant to those 

conducting prospective risk factor studies who wish to screen a large group of individuals for 

passive hip-joint displacement, given the need for more accessible, efficient, and low-cost 

measurement methods to facilitate this type of research.35 Additionally, given the subjective 

nature of determining end motion for HIERROM, it will be important to determine if comparable 

values can be obtained by multiple testers to ensure valid comparisons across studies and 

collaborating centers. 

 

Our secondary purpose was to examine relationships between HIERLAX and HIERROM with 

measures of knee laxity and GJL. Our expectation that hip laxity would be a significant predictor 

of GJL was in large part supported. Associations between GJL and HIERROM, HIERLAX_0°, or 

HIERLAX_30° were consistently positive and moderate in strength (r = 0.44–0.66), and greater 

hip laxity (whether measured as HIERROM, HIERLAX_0°, or HIERLAX_30°) combined with 

greater frontal-plane knee laxity (KVVLAX) predicted the greatest variance in GJL (42%–44%). 

Collectively, these findings indicate that greater GJL, based on sagittal-plane thumb, wrist, 

elbow, and knee hyperextension and lumbar flexion mobility,4 also indicates greater transverse- 

and frontal-plane hip and knee laxity. Hence, individuals with greater GJL may have more 

challenges in stabilizing the hip and knee during sport activity, potentially explaining prior 

associations observed between GJL and ACL injury risk.1–3,12 

 

Similarly, the moderate to strong correlations between hip and knee laxity may clarify why 

females with greater magnitudes of transverse- and frontal-plane knee laxity had greater relative 

inward collapse at the hip and knee during landing36 and why individuals with greater hip 

internal rotation landed in greater relative knee valgus and external rotation.19 This suggestion is 



biomechanically plausible, as a greater magnitude of hip laxity in females is largely driven by a 

greater magnitude of passive hip internal rotation, which may lead to a more internally rotated 

hip position upon landing. The relative balance of internal versus external hip rotation and laxity 

may also be important, based on observations of greater frontal-plane knee excursion in those 

with less relative hip external-rotation motion.16 More work is needed to determine the extent to 

which hip-laxity characteristics influence lower extremity neuromechanics during tasks that 

mimic the mechanical demands commonly associated with ACL injury mechanisms.35 

 

Despite these associations, it is not yet clear whether the assessment of hip laxity would further 

discriminate injury potential beyond the laxity variables previously examined. To date, 

associations between joint laxity and ACL injury risk are largely based on sagittal-plane joint 

laxity (GJL, anterior knee laxity, genu recurvatum),1–3,37–41 with 1 study accounting for 

transverse-plane knee laxity42and none accounting for rotational hip laxity. Given the growing 

interest in the role of hip mobility and stability as a potential ACL injury risk factor12,16,19,20 and 

the associations we observed in this study, further research is warranted to determine if the 

assessment of hip-joint laxity would (1) increase the sensitivity of GJL in predicting injury risk 

potential, (2) be a stronger discriminator of injury risk potential (either alone or in combination 

with discrete knee-laxity measures), or (3) simply provide information redundant to that already 

provided by GJL and other laxity variables. To facilitate this work, clinically accessible and cost-

effective screening measures are needed. From this perspective, our findings suggest that the 

clinical measure of HIERROM can be used as a reliable, efficient, and low-cost measure of passive 

hip-joint displacement. Further, the moderate to strong correlations we observed between 

HIERROM and KVVLAX suggest that adding HIERROM to a generalized hypermobility assessment 

(if warranted) may capture additional aspects of transverse- and frontal-plane laxity while still 

maintaining the clinical utility of the examination. However, the current results are based on 

healthy individuals, and it will be important to examine these associations in athletic populations 

at risk for ACL and other lower extremity musculoskeletal injuries. Continuing efforts to identify 

the clinical assessments that best characterize an athlete's laxity profile and discriminate the 

injury risk potential are critical if we are to develop the most accurate clinical screening tools. 
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