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REFINING INDUCTIVE TYPES

ROBERT ATKEY, PATRICIA JOHANN, AND NEIL GHANI

1. Introduction

One of the key aims of current research in functional programming is to reduce the semantic
gap between what programmers know about computational entities and what the types of
those entities can express. One particularly promising approach to closing this gap is to
index types by extra information that can be used to express properties of their elements.
For example, most functional languages support a standard list data type parameterised
over the type of the data lists contain, but for some applications it is also convenient to be
able to state the length of a list in its type. This makes it possible, for instance, to ensure
that the list argument to the tail function has non-zero length — i.e., is non-empty —
and that the lengths of the two list arguments to zip are the same. Without this kind of
static enforcement of preconditions, functions such as these must be able to signal erroneous
arguments — perhaps using an error monad, or a built-in exception facility — and their
clients must be able to handle the cases in which an error is raised.

A data type that equips each list with its length can be defined in the dependently
typed language Agda 2 [34] using the following declaration:

http://creativecommons.org/about/licenses


data Vector (B : Set) : Nat -> Set where

nil : Vector B zero

cons : {n : Nat} -> B -> Vector B n -> Vector B (succ n)

This declaration1 inductively defines, for each choice of element type B, a data type Vector B

that is indexed by natural numbers and has two constructors: nil, which constructs a vector
of data with type B of length zero (here represented by the data constructor zero for the
natural numbers), and cons, which constructs from an index n, an element of B, and a
vector of data with type B of length n, a new vector of data with type B of length n+1 (here
represented by the application succ n of the data constructor succ for the natural numbers
to n). The inductive type Vector B can be used to define functions on lists with elements
of type B that are “length-aware” in a way that functions processing data of standard list
types cannot be. For example, it allows length-aware tail and zip functions to be given
via the following Agda 2 types and definitions:

tail : {B : Set} -> {n : Nat} -> Vector B (succ n) -> Vector B n

tail (cons b bs) = bs

zip : {B C : Set} -> {n : Nat} ->

Vector B n -> Vector C n -> Vector (B x C) n

zip nil nil = nil

zip (cons b bs) (cons c cs) = cons (b , c) (zip bs cs)

Examples such as these suggest that indexing types by computationally relevant information
has great potential. However, for this potential to be realised we must better understand
how indexed types can be constructed. Moreover, since we want to ensure that all the tech-
niques that have been developed for structured programming with and principled reasoning
about inductive types2 — such as those championed in the Algebra of Programming [8]
literature — are applicable to the resulting indexed types, we also want these types to be
inductive. This paper therefore asks the following fundamental question:

Can elements of one inductive type be systematically augmented with compu-
tationally relevant information to construct an indexed inductive type that
captures the computationally relevant information in their indices? If so,
how?

That is, how can we refine an inductive type to get a new type, called a refinement, that
associates to each element of the original type its index, and how can we ensure that the
resulting refinement is inductive?

1.1. A Naive Solution. One straightforward way to refine an inductive type is to use a
refinement function to compute the index for each of its elements and then to associate these
indices to their corresponding elements. To refine lists by their lengths, for example, we
would start with the standard list data type, which has the following Agda 2 declaration3:

1The {X : S} notation indicates that there is an implicit parameter of type S, named X. When applying
a function with an implicit argument, Agda 2 will attempt to infer a suitable value for it.

2Recall that an inductive data type is one that an be represented as the least fixed point µF of a functor
F on a category suitable for interpreting the types in a language.

3Agda 2 allows overloading of constructor names, so we reuse the constructor names nil and cons from
the Vector type defined above.



data List (B : Set) : Set where

nil : List B

cons : B -> List B -> List B

We would then define the following function length by structural recursion on elements of
List B :

length : {B : Set} -> List B -> Nat

length nil = zero

length (cons _ bs) = succ (length bs)

From these we would construct the following refinement of lists by the function length,
using a subset type:

ListWithLength B n ∼= {bs : List B | length bs = n} (1.1)

(alternatively, we could have also used a Σ-type to hold the list bs and the proof that
length bs = n.) Note that this construction is global in that both the data type and the
collection of indices exist a priori, and the refinement is obtained by assigning, post facto,
an appropriate index to each data type element. It also suffers from a serious drawback: the
resulting refinement — ListWithLength B here — is not presented as an inductive type, so
the naive solution is not a solution to the fundamental question posed above. (In addition,
the refinement ListWithLength B does not obviously have anything to do with the type
Vector B.) So the question remains: how do we get the inductive type Vector B from the
inductive type List B?

1.2. A Better Solution. When the given refinement function is computed by structural
recursion (i.e., by the fold) over the data type to be refined — as is the case for the function
length above and is often the case in practice — then we can give an alternative construction
of refinements that provides a comprehensive answer to the fundamental question raised
above. In this case we can construct, for each inductive type µF and each F -algebra α
whose fold computes the desired refinement function, a functor Fα whose least fixed point
µFα is the desired refinement. This construction is the central contribution of the paper.
Our characterisation of the refinement of µF by α as the inductive type µFα allows the
entire arsenal of structured programming techniques based on initial algebras to be brought
to bear on the resulting refinement. By contrast with the construction in (1.1) above,
our characterisation is also local, in that the indices of recursive substructures are readily
available at the time a structurally recursive program is written, rather than needing to
be computed by inversion at run time from the index of the input data structure to the
program.

For each functor F and F -algebra α, the functor Fα that we construct is intimately
connected with the generic structural induction rule for the inductive type µF , as presented
by Hermida and Jacobs [24] and by Ghani, Johann, and Fumex [22]. This is perhaps
not surprising: structural induction proves properties of functions defined by structural
recursion on elements of inductive types. If the values of such functions are abstracted
into the indices of associated indexed inductive types, then their computation need no
longer be performed during inductive proofs. In essence, work has been shifted away from
computation and onto data. Refinement can thus be seen as supporting reasoning by
structural induction “up to” the index of a term.



1.3. The Structure of this Paper. The remainder of this paper is structured as follows.
In Section 2 we introduce inductive types and recall their representation as carriers of initial
algebras of functors. We first recall that, for any functor F , the collection of F -algebras
forms a category, and then give a key theorem due to Hermida and Jacobs [24] relating
different F -algebras and, thereby, different refinements of µF . In Section 3 we define the
fibrational framework for refinements with which we work in this paper, and introduce
the important idea of the lifting of a functor. In Section 4 we show how liftings can be
used to refine inductive types, prove the correctness of our construction of refinements, and
illustrate our construction with some simple examples. In Section 5 we show how to refine
inductive types that are themselves already indexed, thus extending our construction to
allow refinement of the whole range of indexed inductive types available in dependently
typed languages. In Section 6 we further extend our basic refinement technique to allow
partial refinement, in which indexed types are constructed from inductive types not all
of whose elements have indices. Our motivating example here is that of expressions that
can fail to be well-typed. Indeed, we refine the type of possibly ill-typed expressions by
a type checker to yield the indexed inductive type of well-typed expressions. In Section 7
we extend the basic notion of refinement in yet another direction to allow refinement by
paramorphisms — also known as primitive recursive functions — and their generalisation
zygomorphisms. Perhaps surprisingly, this takes us from the world of indexed inductive
types to indexed induction-recursion, in which inductive types and recursive functions are
defined simultaneously. In Section 8 we conclude and discuss related and future work.

Throughout this paper, we adopt a semantic approach based on category theory because
it allows a high degree of abstraction and economy. More specifically, we develop our theory
in the abstract setting of fibrations [26]. Nevertheless, we specialise to the families fibration
over the category of sets in order to improve accessibility and give concrete intuitions;
Section 3 gives the necessary definitions and background. Moreover, carefully using only the
abstract structure of the families fibration allows us to expose crucial structure that might
be lost were a specific programming notation to be used. This structure both simplifies
our proofs and facilitates the iteration of our construction detailed in Section 5. It also
highlights the commonalities between the various constructions we present. In particular,
each of the refinement processes we discuss produces functors of the form J ◦ F̂ , where F̂
is the lifting of the functor F defining the data type µF to be refined. We are currently
investigating whether this observation leads to a more general theory of refinement, as
well as its potential use in structuring an implementation. A type-theoretic, rather than
categorical, answer to the fundamental question this paper addresses has already been given
by McBride [32] using his notion of ornaments for data types (see Section 8).

1.4. Differences from the Previously Published Version. This paper is a revised
and expanded version of the FoSSaCS 2011 conference version [4]. Additional explanations
have been provided throughout, examples have been expanded, and some of the material has
been reordered for clarity. Section 2.2, which explains in more detail the connection between
initial algebras and the indexed inductive types present in systems such as Agda 2, is entirely
new. Section 7, which discusses the connection between refinement by zygomorphisms and
indexed inductive-recursive definitions, is also completely new, and represents significant
further development of our basic refinement technique.



2. Inductive Types and F -algebras

A data type is inductive (in a category C) if it is the least fixed point µF of an endofunctor
F on C, in a sense to be made precise in Section 2.1 below. For example, if Set denotes the
category of sets and functions, Z is the set of integers, and + and × denote the coproduct
and product, respectively, then µFTree for the endofunctor FTreeX = Z + X × X on Set
represents the following data type of binary trees with integer data at the leaves:

data Tree : Set where

leaf : Integer -> Tree

node : (Tree x Tree) -> Tree

2.1. F -algebras. Our precise understanding of inductive types comes from the categorical
notion of an F -algebra. If C is a category and F is an endofunctor on C, then an F -algebra
is a pair (A,α : FA → A) comprising an object A of C and a morphism α : FA → A in
C. The object A is called the carrier of the F -algebra, and the morphism α is called its
structure map. We usually refer to an F -algebra solely by its structure map α : FA → A,
since the carrier is present in the type of this map.

An F -algebra morphism from α : FA → A to α′ : FB → B is a morphism f : A → B
of C such that f ◦ α = α′ ◦ Ff . An F -algebra α : FA → A is initial if, for any F -algebra
α′ : FB → B, there exists a unique F -algebra morphism from α to α′. If it exists, the
initial F -algebra is unique up to isomorphism, and Lambek’s Lemma further ensures that
the4 initial F -algebra is an isomorphism. Its carrier is thus the least fixed point µF of F .
We write inF : F (µF ) → µF for the initial F -algebra, and LαMF : µF → A for the unique
morphism from inF : F (µF ) → µF to any F -algebra α : FA → A. We write L−M for L−MF
when F is clear from context. Of course, not all functors have initial algebras. For instance,
the functor FX = (X → 2) → 2 on Set does not have an initial algebra.

In light of the above, the data type Tree can be interpreted as the carrier of the
initial FTree-algebra. In functional programming terms, a function α : Z + A × A → A is
an FTree-algebra, and the function LαM : Tree → A induced by the initiality property is
exactly the application to α of the standard iteration function fold for trees (actually, the
application of fold to an “unbundling” of α into replacement functions, one for each of
FTree’s constructors). More generally, for each functor F , the function L−MF : (FA→ A) →
µF → A is the standard iteration function for µF .

2.2. Indexed Inductive Types as F -Algebras. Indexed types can be inductive, and
this gives rise to the notion of an indexed inductive type. Such a type is also called an
inductive family of types [18]. Indexed inductive types can be seen as initial F -algebras for
endofunctors F on categories of indexed sets. For example, if B is a set of elements, then
we can define a functor FVectorB on the category of N-indexed sets whose least fixed point
represents the inductive data type Vector B from introduction. The two constructors nil
and cons are reflected in the definition of FVectorB as a coproduct, the individual arguments
to each constructor are reflected as products within each summand of this coproduct, and

4We identify isomorphic entities when convenient. When doing so, we write = in place of ∼=.



the implicit equality constraints on the indices are reflected as explicit equality constraints.
We define

FVectorB : (N → Set) → (N → Set)

FVectorB X = λn.{∗ | n = 0}+ {(n1 : N, a : B,x : Xn1) | n = n1 + 1}

where the notation {∗ | n = 0} denotes the set {∗} when n = 0 and the empty set
otherwise. The carrier of the initial algebra inFVectorB

: FVectorB (µFVectorB ) → µFVectorB of
this functor consists of the N-indexed family µFVectorB of sets of vectors with elements from
B, together with a function inFVectorB

that “bundles together” the constructors nil and
cons. In Section 4.2 below we show how FVectorB can be derived from the functor FListB
whose least fixed point is the inductive type of lists with elements from B, together with
the algebra lengthalg whose fold is the standard length function on lists.

In general, X-indexed inductive types can be understood as initial algebras of functors
F : (X → Set) → (X → Set). In Section 3 below we will see how the collection of
categories of indexed sets can be organised into the families fibration, in which we carry out
the constructions giving rise to our framework for refinement.

2.3. Categories of F -algebras. If F is an endofunctor on C, we write AlgF for the cate-
gory whose objects are F -algebras and whose morphisms are F -algebra morphisms between
them. Identities and composition in AlgF are taken directly from C. The existence of initial
F -algebras is equivalent to the existence of initial objects in the category AlgF .

In Theorems 3.3 and 6.2 below, we will have an initial object in one category of algebras
and want to show that applying a functor to it gives the initial object in another category of

algebras. We will use adjunctions to do this. Recall that an adjunction C
R

55⊥ D
L

vv
between

two categories C and D consists of a left adjoint functor L, a right adjoint functor R, and
an isomorphism natural in A and X between the set C(LA,X) of morphisms in C from LA
to X and the set D(A,RX) of morphisms in D from A to RX. We say that the functor L
is left adjoint to R, and that the functor R is right adjoint to L, and we write L ⊣ R. To
lift adjunctions to categories of algebras, we will make much use of the following theorem
of Hermida and Jacobs [24]:

Theorem 2.1. If F : C → C and G : D → D are functors, L ⊣ R, and F ◦L ∼= L◦G is a nat-

ural isomorphism, then the adjunction C
R

55⊥ D
L

vv
lifts to an adjunction AlgF

R′

22⊥ AlgG

L′

rr
.

In the setting of the theorem, if G has an initial algebra, then so does F since left adjoints
preserve colimits and in particular initial objects. To compute the initial F -algebra in
concrete situations we need to know that L′(k : GA → A) = Lk ◦ pA, where p is (one half
of) the natural isomorphism between F ◦ L and L ◦G. Then the initial F -algebra is given
by applying L′ to the initial G-algebra, i.e., inF = L′(inG), and hence µF = L′(µG).

3. A Framework for Refinement

We develop our theoretical framework for refinement in the setting of fibrational models
of extensional Martin-Löf type theory, which is a key theory underlying dependently typed



programming. Since the concepts and terminology of fibrational category theory will not be
familiar to most readers, we have taken care to formulate each of our definitions and main
theorems in the families fibration. The families fibration gives the archetypal semantics of
Martin-Löf type theory, in which indexed types are interpreted directly as indexed sets. In
this section we define the families fibration, and identify the parts of its structure that we
require for the rest of the paper. As readers who are familiar with the categorical notion
of fibration will observe, the terminology and structure that we identify comes from fibred
category theory. We take care to identify the particular properties of the families fibration
that are required for our results to hold, and refer to the literature for the formulation of
these properties in the general setting.

3.1. The Families Fibration. As is customary, we model indexed types in the category
Fam(Set). An object of Fam(Set) is a pair (A,P ) comprising a set A and a function
P : A→ Set; such a pair is called a family of sets. We denote a family (A,P ) as P : A→ Set
when convenient, or simply as P when A can be inferred from context. A morphism
(f, f∼) : (A,P ) → (B,Q) of Fam(Set) is a pair of functions f : A→ B and f∼ : ∀a. Pa→
Q(fa). From a programming perspective, a family (A,P ) is an A-indexed type P , where
Pa represents the collection of data with index a. An alternative, logical, view is that
(A,P ) is a predicate representing a property P of data of type A, and that Pa represents
the collection of proofs that a has property P . When Pa is inhabited, P is said to hold
for a. When Pa is empty, P is said not to hold for a. We will freely switch between the
programming and logical interpretations of families when providing intuition for our formal
development below.

The families fibration U : Fam(Set) → Set is the functor mapping each family (A,P )
to A and each morphism (f, f∼) to f . The category Set is referred to as the base category
of the families fibration and Fam(Set) is referred to as its total category. For each set A,
the category Fam(Set)A consists of families (A,P ) and morphisms (f, f∼) between them
such that f = idA. Such a morphism is said to be a vertical morphism. Similarly, a vertical
natural transformation is a natural transformation each of whose components is a vertical
morphism. We say that an object or morphism in Fam(Set)A is over A with respect to the
families fibration, and call Fam(Set)A the fibre of the families fibration over A. A function
f : A→ B contravariantly generates a reindexing functor f∗ : Fam(Set)B → Fam(Set)A for
the families fibration that maps (B,Q) to (A,Q ◦ f).

3.2. Truth and Comprehension. Each fibre Fam(Set)A has a terminal object (A,λa :
A. 1), where 1 is the canonical singleton set. In light of the logical reading of families
above, this object is called the truth predicate for A. The mapping of objects to their truth
predicates extends to a functor ⊤ : Set → Fam(Set), called the truth functor for the families
fibration. In addition, for each family (A,P ) we can define the comprehension of (A,P ),
denoted {(A,P )}, to be Σa : A.Pa, i.e., {(a, p) | a ∈ A, p ∈ Pa}. The comprehension
{(A,P )} packages elements a ∈ A with proofs p ∈ Pa. The mapping of families to their
comprehensions extends to a functor {−} : Fam(Set) → Set, called the comprehension
functor for the families fibration. Overall, we have the following pleasing collection of
adjoint relationships:



Fam(Set)

⊣ ⊣U
��

{−}

tt
Set

⊤

ZZ
(3.1)

The families fibration U is thus a comprehension category with unit [25, 26]. Like every
comprehension category with unit, U supports a natural transformation π : {−} → U such
that π(A,P )(a, p) = a for all (a, p) in {(A,P )}, projecting out the A component from a
comprehension. In fact, U is a full comprehension category with unit, i.e., the functor from
Fam(Set) to Set→ induced by π is full and faithful. Here, Set→ is the arrow category of
Set. Its objects are morphisms of Set and its morphisms from f : X → Y to f ′ : X ′ → Y ′

are pairs (α1, α2) of morphisms in Set such that f ′ ◦ α1 = α2 ◦ f . Fullness means that the
action of π on morphisms is surjective, and faithfulness means that it is injective. Fullness
will be used in the proof of Theorem 5.1 below, when we consider refinements of indexed
types.

3.3. Indexed Coproducts. For each function f : A→ B and family (A,P ), we can form
the family Σf (A,P ) = (B,λb. Σa∈A. (b = fa)×Pa), called the indexed coproduct of (A,P )
along f . The mapping of each family to its indexed coproduct along f extends to a functor
Σf : Fam(Set)A → Fam(Set)B which is left adjoint to the reindexing functor f∗ for the
families fibration. In the abstract setting of fibrations, a fibration with the property that
each re-indexing functor f∗ has a left adjoint Σf is called a bifibration, and the functors Σf
are called op-reindexing functors. A bifibration that is also a full comprehension category
with unit is called a full cartesian Lawvere category [25]. The families fibration is a full
cartesian Lawvere category.

The functors Σf are often subject to the Beck-Chevalley condition for coproducts, which
is well-known to hold for the families fibration. This condition ensures that, in certain
circumstances, op-reindexing commutes with re-indexing [26]. It is used in the proof of
Lemma 3.1.

At several places below we make essential use of the fact that the families fibration has
very strong coproducts, i.e., that in the diagram

{(A,P )}
{ψ}

//

π(A,P )

��

{Σf (A,P )}

πΣf (A,P )

��
A

f // B

(3.2)

where ψ is the obvious map of families of sets over f , {ψ} is an isomorphism. This notion
of very strong coproducts naturally generalises the usual notion of strong coproducts [26],
and imposes a condition that is standard in models of type theory.

3.4. Indexed Products. For each function f : A → B and family (A,P ) we can also
form the family Πf (A,P ) = (B,λb. Πa∈A.(b = fa) → Pa), called the indexed product of
(A,P ) along f . The mapping of each family to its indexed product along f extends to a
functor Πf : Fam(Set)A → Fam(Set)B which is right adjoint to the reindexing functor f∗



for the families fibration. Altogether we have the following collection of relationships for
each function f : A→ B:

Fam(Set)B
⊥

⊥
f∗ // Fam(Set)A

Σf

vv

Πf

jj

Like its counterpart for indexed coproducts, the Beck-Chevalley condition for indexed prod-
ucts is often required and indeed it holds in the families fibration. We do not make use of
this condition in this paper.

3.5. Liftings. The relationship between inductive types and their refinements can be given
in terms of liftings of functors. A lifting of a functor F : Set → Set is a functor F̂ :
Fam(Set) → Fam(Set) such that F ◦ U = U ◦ F̂ . A lifting is truth-preserving if there is a

natural isomorphism ⊤◦F ∼= F̂ ◦⊤. Truth-preserving liftings for all polynomial functors —
i.e., for all functors built from identity functors, constant functors, coproducts, and products
— were given by Hermida and Jacobs [24]. Truth-preserving liftings were established for

arbitrary functors by Ghani et al. [22]. Their truth-preserving lifting F̂ is defined on objects
by

F̂ (A,P ) = (FA, λx. {y : F{(A,P )} | Fπ(A,P )y = x})
= ΣFπ(A,P )

⊤(F{(A,P )})
(3.3)

Reading this definition logically, we can say that F̂ (A,P ) holds for x ∈ FA if P holds

for every a ∈ A “inside” x. Thus F̂ is a generic definition of the everywhere modality, as
defined for containers by Altenkirch and Morris [3]. This can be seen clearly by considering
the action of the lifting in (3.3) on polynomial functors:

Îd(A,P ) = (A,P )

K̂B(A,P ) = ⊤B = (B,λx. 1)

̂(F +G)(A,P ) =

(
FA+GA, λa.case a of

{
inl x⇒ F̂ (A,P )x

inr y ⇒ Ĝ(A,P )y

)

̂(F ×G)(A,P ) = (FA×GA, λ(a, b). F̂ (A,P )a × Ĝ(A,P )b)

The identity functor on Set does not contribute any new information to proofs that a
property holds for a given data element, so its lifting is the identity functor on Fam(Set).
For any B, the constantly B-valued functor KB on Set does not contribute any inductive
information to proofs, so its lifting is the truth predicate ⊤B for B. The lifting of a
coproduct of functors splits into two possible cases, depending on the value being analysed.
And a product of functors contributes proof information from each of its components.
Lifting is defined generically in terms of the functor F , and so it is possible to compute the
lifting of non-polynomial functors such as the the finite powerset functor. Ghani, Johann
and Fumex [22] give further examples of the lifting F̂ applied to non-polynomial functors.

Below, in Lemmas 3.1 and 3.2 and Sections 4, 5, 6 and 7, we will be interested in
the restriction of the lifting F̂ to fibres over particular sets A. Given an object (A,P ) of

Fam(Set)A, F̂ (A,P ) is an object of Fam(Set)FA. Therefore, if we restrict the domain of F̂

to Fam(Set)A, we get a functor F̂A : Fam(Set)A → Fam(Set)FA. The subscript A on F̂A
indicates that we have restricted the domain to Fam(Set)A.



The final expression in (3.3) is given in terms of the constructions of Sections 3.2 and
3.3, so the definition of a lifting makes sense in any full cartesian Lawvere category.

Under certain conditions, the lifting F̂ for any functor F is well-behaved with respect
to reindexing and op-reindexing. We make this observation precise in two lemmas that will
be used in our development of both our basic (Section 4) and partial refinement techniques
(Section 6). To state the first, we need the notion of a pullback; this notion will also be
used in Sections 5, 6, and 7 below. The pullback of the morphisms f : X → Z and
g : Y → Z consists of an object W and two morphisms i : W → X and j : W → Y such
that g ◦ j = f ◦ i. We indicate pullbacks diagrammatically by

W

i
��

j //
❴

✤

Y

g

��
X

f
// Z

Moreover, for any W ′, i′ : W ′ → X, and j′ : W ′ → Y such that g ◦ j′ = f ◦ i′, there exists
a unique morphism u : W ′ → W such that i ◦ u = i′ and j ◦ u = j′. When it exists, the
pullback of f and g is unique up to (unique) isomorphism. All container functors [1], and
hence all functors modelling strictly positive types, preserve pullbacks.

We can now state our lemmas.

Lemma 3.1. For any functor F : Set → Set that preserves pullbacks, lifting commutes with
reindexing, i.e., for all functions f : A → B, there exists a vertical natural isomorphism
F̂A ◦ f∗ ∼= (Ff)∗ ◦ F̂B.

Lemma 3.2. For any functor F : Set → Set, lifting commutes with op-reindexing, i.e., for
all functions f : A→ B, there exists a vertical natural isomorphism F̂B ◦Σf ∼= ΣFf ◦ F̂A.

More generally, Lemma 3.1 holds in any full cartesian Lawvere category satisfying the Beck-
Chevalley condition for coproducts, whereas Lemma 3.2 holds in any full cartesian Lawvere
category with very strong coproducts.

Since F̂ is an endofunctor on Fam(Set), the category AlgF̂ of F̂ -algebras exists. The

families fibration U : Fam(Set) → Set extends to a fibration UAlg : AlgF̂ → AlgF , called the

algebras fibration induced by U . Concretely, the action of UAlg is the same as that of U , so
that UAlg(k : F̂ P → P ) = (Uk : FUP → UP ) on objects and UAlg(h : (k1 : F̂P → P ) →

(k2 : F̂Q→ Q)) = Uh on morphisms. Moreover, writing ⊤Alg and {−}Alg for the truth and
comprehension functors for UAlg, respectively, the adjoint relationships from Diagram 3.1
all lift to give UAlg ⊣ ⊤Alg ⊣ {−}Alg. The two adjunctions here follow from Theorem 2.1

using the fact that F̂ is a truth-preserving lifting. That left adjoints preserve initial objects
can now be used to establish the following fundamental result, originally from Hermida and
Jacobs [24], and generalised by Ghani et al. [22]:

Theorem 3.3. ⊤(µF ) is the carrier µF̂ of the initial F̂ -algebra.

Theorem 3.3 can be generalised to any full cartesian Lawvere category. As shown by Her-
mida and Jacobs, and by Ghani et al., it can be used to give a generic structural induction
rule for any functor F having an initial algebra.



4. From Liftings to Refinements

In this section we show that the refinement of an inductive type µF by an F -algebra
α : FA→ A — i.e., the family

(A,λa : A. {x : µF | LαMx = a}) (4.1)

generalising the refinement in (1.1) — is inductively characterised as µFα, where Fα :
Fam(Set)A → Fam(Set)A is given by

Fα(A,P ) = (A,λa. {x : F{(A,P )} | α(Fπ(A,P )x) = a}) (4.2)

That is, Fα(A,P ) is obtained by first building the FA-indexed type F̂ (A,P ) from Equation 3.3,
and then restricting membership to those elements whose α-values are correctly computed
from those of their immediate subterms. More generally, we can express Fα in terms of the
constructions of Section 3 as

Fα = Σα ◦ F̂A (4.3)

Before we prove that the above construction of Fα is correct, we show that it yields
the refinement of lists by the length function given in (1.1).

Example 1. The inductive type of lists of elements with type B can be specified by the
functor FListBX = 1 + B × X. Writing Nil for the left injection and Cons for the right
injection into the coproduct FListBX, the FListB -algebra lengthalg : FListBN → N that
computes the lengths of lists is

lengthalg Nil = 0
lengthalg (Cons(b, n)) = n+ 1

In the families fibration, we can calculate the refinement of µFListB by the algebra lengthalg
as follows:

F lengthalg
ListB

(N, P )

= (N, λn.{x : FListB{(N, P )} | lengthalg(FListBπ(A,P )x) = n})

= (N, λn. {x : 1 | lengthalg(Nil) = n}
+
{x : B × {(N, P )} | lengthalg(Cons((B × π(N,P ))x)) = n})

The first equality holds by (4.3) and the expansion of this expression in the families fibration.
The second is obtained by unfolding the definition of FList as a coproduct, which allows
the refinement to be presented as a coproduct as well. In the first summand of the final
expression above, lengthalg(Nil) = 0, so that {x : 1 | lengthalg(Nil) = n} reduces to {∗ |
0 = n}. We can expand the product and comprehension parts of x in the second summand
to see that {x : B × {(N, P )} | lengthalg(Cons((B × π(N,P ))x)) = n} reduces to {b : B,n1 :
N, l : Pn1 | lengthalg(Cons(b, n1)) = n}. Since lengthalg(Cons(b, n1)) = n1 + 1, the whole
refinement can therefore be expressed as

F lengthalg
ListB

(N, P ) = (N, λn.{∗ | 0 = n}+ {b : B,n1 : N, l : Pn1 | n1 + 1 = n})

As we shall see in Theorem 4.6 below, the least fixed point µF lengthalg
ListB

of this functor exists
and is (N, λn. {x : µFListB | LlengthalgMx = n}), exactly as required. Moreover, the

expression for F lengthalg
ListB

derived here is exactly the same as the definition of the functor
FVectorB given in Section 2.2 whose least fixed point models the Agda 2 declaration of



Vector B given in the introduction. The derivation just completed therefore justifies this
definition of Vector B.

4.1. Correctness of Refinement. We now turn our attention to proving the correctness
of our refinement construction from (4.2). The proof makes good use of the relationship
between the category Fam(Set) and the categories Fam(Set)A for various sets A, as well as
of the lifting of this relationship to the categories AlgF̂ and AlgFα of algebras.

We begin with a simple, but key, observation, namely:

Lemma 4.1. Let (A,P ) and (B,Q) be objects in Fam(Set), and let f : A→ B be a function.
The set of morphisms h in Fam(Set) from (A,P ) to (B,Q) such that Uh = f is isomorphic
to the set of morphisms in Fam(Set)A from (A,P ) to f∗(B,Q).

Proof. This follows directly from the definitions. On the one hand, a morphism h in
Fam(Set) from (A,P ) to (B,Q) such that Uh = f is a pair (f, h∼), where h∼ : ∀a.Pa →
Q(fa). On the other, the definition of the re-indexing functor f∗, i.e. f∗(B,Q) = (A,Q◦f),
entails that a morphism in Fam(Set)A from (A,P ) to f∗(B,Q) is a pair (id , h∼), where
h∼ : ∀a.Pa→ Q(fa). There is clearly an isomorphism between these sets of morphisms.

To understand the relationship between the category of F̂ -algebras and the category of
Fα-algebras, it is convenient to define category of F̂ -algebras that are over the F -algebra
α with respect to the fibration UAlg defined at the end of Section 3.5.

Definition 4.2. For each F -algebra α : FA→ A, the category (AlgF̂ )α of F̂ -algebras over

α with respect to UAlg has as objects F̂ -algebras k : F̂ P → P such that Uk = α, and as
morphisms F̂ -algebra morphisms f : (k1 : F̂ P → P ) → (k2 : F̂Q→ Q) such that Uf = id .

Lemma 4.3. For each F -algebra α : FA → A, there is an isomorphism of categories
(AlgF̂ )α

∼= AlgFα.

Proof. We demonstrate only the isomorphism on objects here; the isomorphism on mor-
phisms is similar. An object of (AlgF̂ )α is a pair comprising a family (A,P ) and a morphism

k : F̂ (A,P ) → (A,P ) in Fam(Set) such that Uk = α. By Lemma 4.1, such morphisms k are

in one-to-one correspondence with the morphisms k′ : F̂ (A,P ) → α∗(A,P ) in Fam(Set)FA.
By the adjunction Σα ⊣ α∗, the latter morphisms are in one-to-one correspondence with
the morphisms k′′ : ΣαF̂ (A,P ) → (A,P ) in Fam(Set)A. By the definition of Fα, these
morphisms are exactly the Fα-algebras, i.e., the objects of AlgFα .

The next lemma shows that the reindexing and op-reindexing functors for UAlg : AlgF̂ →
AlgF are inherited from U : Fam(Set) → Set. We have:

Lemma 4.4. For every F -algebra morphism f : (α : FA→ A) → (β : FB → B), there are

functors f∗Alg : (AlgF̂ )β → (AlgF̂ )α and ΣAlg
f : (AlgF̂ )α → (AlgF̂ )β such that ΣAlg

f ⊣ f∗Alg.

Moreover, for any F̂ -algebra k : F̂ (A,P ) → (A,P ), the F̂ -algebra ΣAlg
f (k : F̂ (A,P ) →

(A,P )) has carrier Σf (A,P ), and for any F̂ -algebra k′ : F̂ (B,Q) → (B,Q), the F̂ -algebra

f∗Alg(k′ : F̂ (B,Q) → (B,Q)) has carrier f∗(B,Q).



Proof. By Lemma 4.3, we can treat (AlgF̂ )α as if it were AlgFα , and (AlgF̂ )β as if it
were AlgFβ . In Section 3, we noted that for any f : A → B, there are functors f∗ :
Fam(Set)B → Fam(Set)A and Σf : Fam(Set)A → Fam(Set)B such that Σf ⊣ f∗. The
lemma statement is now a consequence of Theorem 2.1, provided we can establish the
isomorphism F β ◦ Σf ∼= Σf ◦ F

α. But we can verify the existence of such an isomorphism
as follows:

Σf ◦ F
α

= Σf ◦ Σα ◦ F̂A by the definition of Fα

∼= Σβ ◦ ΣFf ◦ F̂A since f is an F -algebra morphism
∼= Σβ ◦ F̂B ◦Σf by Lemma 3.2
= F β ◦ Σf by the definition of F β

This is exactly as required.

We can now see that Lemma 4.1 generalises from the categories in the families fibration
to those in UAlg. This gives:

Lemma 4.5. Let let k1 : F̂ (A,P ) → (A,P ) and k2 : F̂ (B,Q) → (B,Q) be objects of
(AlgF̂ )α and (AlgF̂ )β , respectively, and let f : (α : FA → A) → (β : FB → B) be an

F -algebra morphism. The set of morphisms h in AlgF̂ from k1 : F̂ (A,P ) → (A,P ) to

k2 : F̂ (B,Q) → (B,Q) such that UAlgh = f is isomorphic to the set of morphisms in

(AlgF̂ )α from k1 : F̂ (A,P ) → (A,P ) to f∗Alg(k2 : F̂ (B,Q) → (B,Q)).

Proof. The proof is tedious but not difficult. The key point entails constructing from each
F̂ -algebra morphism h : (A,P ) → (B,Q) such that UAlgh = f another F̂ -algebra morphism
h′′ : (A,P ) → f∗(B,Q) such that UAlgh′ = id. This is made easier by observing that the
definition of f∗Alg : (AlgF̂ )β → (AlgF̂ )α obtained by applying Theorem 2.1 in the proof

of Lemma 4.4 is equivalent to the functor which on input k : F̂ (B,Q) → (B,Q) returns

φ ◦ (Ff)∗k ◦ F̂ (f, id), where φ : (Ff)∗β∗(B,Q) → α∗f∗(B,Q) is the isomorphism derived
from the fact that f is an F -algebra morphism.

Putting this all together, we can now give our explicit characterisation of µFα.

Theorem 4.6. The functor Fα has an initial algebra with carrier ΣLαM⊤(µF ), i.e., with
carrier (A,λa : A. {x : µF | LαMx = a}).

Proof. By Lemma 4.3, it suffices to show that the category (AlgF̂ )α has an initial object

with carrier ΣLαM⊤(µF ). We construct an initial object in (AlgF̂ )α from the initial F̂ -

algebra in F̂ : F̂ (⊤(µF )) → ⊤(µF ) from Theorem 3.3. Since UAlg is a left adjoint, it

preserves initial objects, so that UAlg(in F̂ : F̂ (⊤(µF )) → ⊤(µF )) is the initial F -algebra

inF : F (µF ) → µF . We can apply ΣAlg

LαM to the initial F̂ -algebra to get our candidate object

ΣAlg

LαM(in F̂ : F̂ (⊤(µF )) → ⊤(µF )). By Lemma 4.4, this candidate has carrier ΣLαM⊤(µF ), as

required.
To see that our candidate object is initial in (AlgF̂ )α, let k : F̂ (A,P ) → (A,P ) be any

object in (AlgF̂ )α. Then



(AlgF̂ )α(Σ
Alg

LαM(in F̂ : F̂ (⊤(µF )) → ⊤(µF )), (k : F̂ (A,P ) → (A,P )))
∼= (AlgF̂ )inF

((in F̂ : F̂ (⊤(µF )) → ⊤(µF )), LαM∗Alg(k : F̂ (A,P ) → (A,P )))
by Lemma 4.4

∼= {h : AlgF̂ ((in F̂ : F̂ (⊤(µF )) → ⊤(µF )), (k : F̂ (A,P ) → (A,P ))) | UAlgh = LαM}
by Lemma 4.5

Since in F̂ : F̂ (⊤(µF )) → ⊤(µF ) is the initial F̂ -algebra and UAlg takes LkM to LαM, the final
set in the above sequence has exactly one element. Thus there is exactly one morphism

from ΣAlg

LαM(in F̂ : F̂ (⊤(µF )) → ⊤(µF )) to (k : F̂ (A,P ) → (A,P )) in (AlgF̂ )α, and so our

candidate object is indeed initial in (AlgF̂ )α.

For readers familiar with fibred category theory, we briefly sketch how our definitions
and proofs may be generalised. We have been careful to state the definition of Fα in terms
of the abstract structure we identified in Section 3. It can therefore be generalised to any
full cartesian Lawvere category with very strong coproducts. Lemmas 4.4 and 4.5, as well
as Theorem 4.6, can also be generalised. As was shown by Hermida and Jacobs [24], for any

lifting F̂ , the obvious generalisation of the functor UAlg : AlgF̂ → AlgF is a fibration. The
generalisation of Lemma 4.3 is a result about the fibre categories of this fibration, and the
generalisation of Lemma 4.4 shows that it is a bifibration (i.e., that the re-indexing functors
have left adjoints). The generalisation of Theorem 4.6 then follows from the Proposition
9.2.2 of Jacobs’ book [26], which relates initial objects in the total category of a fibration
with initial objects in the fibres.

4.2. More Example Refinements. The following explicit formulas can be used to com-
pute refinements for polynomial functors with respect to the families fibration:

Idα(A,P ) = (A,λa.{x : {(A,P )} | α(π(A,P )x) = a})
= (A,λa.{a′ : A, p : Pa′ | αa′ = a})

Kα
B(A,P ) = (A,λa.{x : B | αx = a})

(G+H)α(A,P ) = (A,λa.{x : G {(A,P )} | α(inl(Gπ(A,P )x)) = a}
+ {x : H {(A,P )} | α(inr(Hπ(A,P )x)) = a})

= (A,λa. Gα◦inlPa+Hα◦inrPa)
(G×H)α(A,P ) = (A,λa. { x1 : G {(A,P )}, x2 : H {(A,P )} |

α(Gπ(A,P )x1,Hπ(A,P )x2) = a})

Refinements of the identity and constant functors are as expected. Refinement splits co-
products of functors into two cases, specialising the refining algebra for each summand. It
is not, however, possible to decompose the refinement of a product of functors G×H into
refinements of G and H, not even by algebras other than α. This is because α may need to
relate multiple elements to the overall index.

Example 2. We can refine µFTree by the FTree-algebra sumAlg given by

sumAlg : FTreeZ → Z
sumAlg (Leaf z) = z
sumAlg (Node (l, r)) = l + r

The fold of sumAlg sums the values stored at the leaves of a tree. It yields the refinement

µF sumAlg
Tree given by

F sumAlg
Tree (Z, P ) = (Z, λn. {z : Z | z = n}+ {l, r : Z, x1 : Pl, x2 : Pr | n = l + r })



By Theorem 4.6 and the definition of ΣLsumAlgM we have that the refinement µF sumAlg
Tree is

λn.{x : µFTree | LsumAlgMx = n}. This refinement indexes the elements of µFTree by the
sums of the values in their leaves. It corresponds to the Agda 2 declaration

data SumTree : Integer -> Set where

SumLeaf : (z : Integer) -> SumTree z

SumNode : (l r : Integer) -> SumTree l -> SumTree r -> SumTree (l + r)

Note that in the second summand of F sumAlg
Tree we have two recursive references to P , each

with a separate index, and that these indices are related to the overall index n as in the
second case of sumAlg . However, the basic refinement process developed in this section
cannot be used to require indices of subterms to be related to one another in particular
ways. For instance, it cannot enforce the requirement that the two subtrees sum to the
same value, or that the tree satisfy some balance property. Indeed, if such restrictions are
imposed, then some elements of the underlying data type may fail to be assigned an index.
We show how to treat this via partial assignment of indices in Section 6.

4.3. Limiting cases. The two limiting cases of refinement are deserving of attention. Re-
fining by the initial F -algebra inF : F (µF ) → µF gives a µF -indexed type inductively

characterised as the least fixed point of the functor F inF = ΣinF
F̂ . Since inF is an isomor-

phism, ΣinF
is as well. Thus F inF ∼= F̂ , so that µF inF = µF̂ = ⊤(µF ). Taking, for each

x : µF , the canonical singleton set 1 to be {x}, we can regard each element of µF is its
own index. By contrast, refinement by the final algebra ! : F1 → 1 gives a 1-indexed type
inductively characterised by F !. Since F ! ∼= F , the inductive type µF ! is actually µF . Since
1 is the canonical singleton set, all elements of µF have exactly the same index. Refining
by the initial F -algebra thus has maximal discriminatory power, while refining by the final
F -algebra has no discriminatory power whatsoever.

5. Starting with Already Indexed Types

The development in Section 4 assumes that the type being refined is the initial algebra of
an endofunctor F on Set. This seems to preclude refining an inductive type that is already
indexed. But since we carefully identified the abstract structure of Fam(Set) needed to
construct our refinements, our results can be extended to any fibration having that structure.
We now show that, in particular, we can refine already indexed types.

To this end, let A be a set, and suppose we want to refine an A-indexed type. As we
have seen, such types may be interpreted in the category Fam(Set)A. The carrier of an
F -algebra α with respect to which we want to refine an already A-indexed type will thus
be an A-indexed set B : A → Set, and the resulting refinement will be a type of the form
∀a.Ba→ Set, i.e., will be a family of sets that is doubly indexed by both A and B.

Just as the categories of indexed sets comprise the category Fam(Set) in Section 3, the
families indexed by A-indexed sets comprise a category Fam(Set)A ×Set Fam(Set). (Our
notation is derived from the pullback construction used to construct this category in the
general setting; see below.) Objects of Fam(Set)A ×Set Fam(Set) are pairs (B,P ), where
B : A → Set and P : ∀a.Ba → Set, and morphisms are pairs (f, f∼) : (B,P ) → (C,Q),
where f : ∀a.Ba→ Ca and f∼ : ∀a, b ∈ Ba.Pab→ Qa(fab). And just as there is a functor
U : Fam(Set) → Set defined by U(A,P ) = A on objects and U(f, F∼) = f on morphisms,
there is a functor UA : Fam(Set)A ×Set Fam(Set) → Fam(Set)A defined by UA(B,P ) = B



on objects and UA(f, f∼) = f on morphisms. We may now recreate each of the structures
we identified for the families fibration in Section 3 for the new fibration given by UA. We
have:

• Fibres: For each object B of Fam(Set)A, the fibre of (Fam(Set)A ×Set Fam(Set)) over
B is the category (Fam(Set)A ×Set Fam(Set))B consisting of objects of Fam(Set)A ×Set

Fam(Set) whose first component is B, and morphisms (f, f∼), where f = id . By abuse
of terminology, such morphisms are again said to be vertical.

• Reindexing: Given a morphism f : B → C in Fam(Set), we can define the re-indexing
functor f∗ : (Fam(Set)A×SetFam(Set))C → (Fam(Set)A×SetFam(Set))B by composition,
similarly to how reindexing is defined for the families fibration.

• Truth functor: For each set A, we can define ⊤A : Fam(Set)A → Fam(Set)A×SetFam(Set)
by ⊤A(B) = (B,λa b. 1). As in the families fibration, this mapping of objects to truth
predicates extends to a functor, called the truth functor for UA.

• Comprehension functor: For each set A, we can define {−}A : Fam(Set)A×SetFam(Set) →
Fam(Set)A by {(B,P )}A = λa.{(b ∈ Ba, p ∈ Pab)}. As in the families fibration, this
mapping of objects to their comprehensions extends to a functor, called the comprehension
functor for UA.

• Indexed coproducts: For any morphism f : B → C in Fam(Set)A, we can define Σf :
(Fam(Set)A ×Set Fam(Set))B → (Fam(Set)A ×Set Fam(Set))C by

Σf (B,P ) = (C, λa c.Σb∈Ba. (c = fab)× Pab).

• Indexed products: For any morphism f : B → C in Fam(Set)A, we can define Πf :
(Fam(Set)A ×Set Fam(Set))B → (Fam(Set)A ×Set Fam(Set))C by

Πf (B,P ) = (C, λa c.Πb∈Ba. (c = fab) → Pab)

Given these definitions, we can check by hand that they satisfy the same relationships from
Section 3 that their counterparts for the families fibration do. It is therefore possible to
re-state each of the definitions and results in Sections 3.5 and 4 for UA, and, thereby, to
derive refinements of already indexed inductive types. The constructions that we carry out
in the families fibration in Sections 6 and 7 can similarly be carried out in UA as well.

For readers familiar with fibred category theory, we now sketch how to generalise the
above construction to construct a suitable setting for indexed refinement from any full carte-
sian Lawvere category with products and very strong coproducts, provided these satisfy the
Beck-Chevalley condition for coproducts. For this we can use the change-of-base construc-
tion for generating new fibrations by pullback [26]. Indeed, if A is an object of E , then the
following pullback in Cat, the large category of categories and functors, constructs EA×B E :

EA ×B E //

UA

��

❴

✤

E

U
��

EA
{−}

// B

Instantiating E to Fam(Set) and U to the families fibration constructs Fam(Set)A ×Set

Fam(Set) as defined above, up to currying. Moreover, the following theorem shows that
all the structure we require for constructing refinements is preserved by the change-of-base
construction, and thus ensures that the change-of-base construction can be iterated as often
as desired.



Theorem 5.1. If U is a full cartesian Lawvere category with products and with very strong
coproducts satisfying the Beck-Chevalley condition for coproducts, then so is UA.

Proof. (Sketch) First, UA is well-known to be a fibration by its definition via the change-
of-base construction [26]. The truth functor for UA is defined for objects P in EA by
⊤AP = (P,⊤{P}), and the comprehension functor for UA is defined by {(P, Y )}A = ΣπP Y ,
where P ∈ EA and Y ∈ E{P}. Coproducts are defined directly using the coproducts of U .

Example 3. To demonstrate the refinement of an inductive type which is already indexed
we consider a small expression language of well-typed terms. Let T = {int, bool} be the
set of possible base types. The language is µFwtexp for the functor Fwtexp : Fam(Set)T →
Fam(Set)T given by

Fwtexp(T , P ) = (T , λt : T . {z : Z | t = int}
+ {b : B | t = bool}
+ {x1 : Pt, x2 : Pt | t = int}
+ {x1 : Pbool, x2 : Pt, x3 : Pt})

This specification of an inductive type corresponds to the following Agda 2 declaration,
where we write Ty for the Agda 2 equivalent of the set T :

data WTExp : Ty -> Set where

intConst : Integer -> WTExp Int

boolConst : Boolean -> WTExp Bool

add : WTExp Int -> WTExp Int -> WTExp Int

if : (t : Ty) -> WTExp Bool -> WTExp t -> WTExp t -> WTExp t

The type WTExp cannot be constructed by the process of refinement presented in Section 4.
Indeed, the indices of subexpressions, and not just the overall indexes, are constrained in
the types of the add and if constructors. This accords with the discussion at the end of
Section 4.2. Fortunately we can, and will, show in Section 6 how to extend the notion of
refinement to the situation where not every element of a data type can be assigned an index.

Meanwhile, in light of Theorem 5.1, we can refine the already indexed type µFwtexp. For
any t, write IntConst, BoolConst, Add, and If for the injections into (snd (Fwtexp(T , P ))) t.
Let B = {true, false} denote the set of booleans, and assume there exists a T -indexed family
T such that T int = Z and T bool = B. Then T gives a semantic interpretation of the types
from T that can be used to define an Fwtexp-algebra evalAlg whose fold specifies a “tagless”
interpreter. We have:

evalAlg : Fwtexp(T , T ) → (T , T )
evalAlg = (id , λx : T . λt : snd (Fwtexp(T , T ))x. case t of

IntConst z ⇒ z
BoolConst b ⇒ b
Add (z1, z2) ⇒ z1 + z2
If (b, x1, x2) ⇒ if b then x1 else x2)

The function LevalAlgM : ∀t. µFwtexpt → T t does indeed give a semantics to each well-
typed expression. Refining µFwtexp by evalAlg yields an object WTExpSem of Fam(Set)T ×Set

Fam(Set) over (T , T ), i.e, an object of Fam(Set) indexed by {(T , T )}. This {(T , T )}-indexed
data type associates to every well-typed expression that expression’s semantics. As an Agda
2 declaration, it can be expressed as follows, after applying a few type isomorphisms to make
the declaration more idiomatic:



data WTExpSem : (t : Ty) -> T t -> Set where

intConst : (z : Integer) -> WTExpSem Int z

boolConst : (b : Boolean) -> WTExpSem Bool b

add : (z1 z2 : Integer) ->

WTExpSem Int z1 ->

WTExpSem Int z2 -> WTExpSem Int (z1 + z2)

if : (b : Boolean) ->

(t : Ty) ->

(x1 x2 : T t) ->

WTExpSem Bool b ->

WTExpSem t x1 ->

WTExpSem t x2 -> WTExpSem t (if b then x1 else x2)

Here, we have assumed a standard if then else notation for eliminating booleans.

6. Partial Refinement

In Sections 4 and 5 we assumed that every element of an inductive type can be assigned
an index. Every list has a length, every tree has a number of leaves, every well-typed
expression has a semantic meaning, and so on. But how can an inductive type be refined if
only some data have values by which we want to index? For example, how can the inductive
type of well-typed expressions of Example 3 be obtained by refining a data type of untyped
expressions by an algebra for type assignment? And how can the inductive type of red-
black trees be obtained by refining a data type of coloured trees by an algebra enforcing
the well-colouring properties? As these questions suggest, the problem of refining subsets of
inductive types is a common and naturally occurring one. Our partial refinement technique,
which we now describe, can solve this problem.

6.1. Partial Algebras. To generalise our theory to partial refinements we move from
algebras to partial algebras. If F is a functor, then a partial F -algebra is a pair (A,α :
FA → (1 + A)) comprising a carrier A and a structure map α : FA → (1 + A). We write
ok : A→ 1+A and fail : 1 → 1+A for the injections into 1+A, and often refer to a partial
algebra solely by its structure map. The functor MA = 1 + A is (the functor part of) the
error monad.

Example 4. The inductive type of expressions is µFexp for the functor FexpX = Z + B +
(X ×X) + (X ×X ×X). Letting T = {int, bool} as in Example 3, and using the obvious
convention for naming the injections into FexpX, types can be inferred for expressions using
the following partial Fexp-algebra:

tyInfer : FexpT → 1 + T
tyInfer (IntConst z) = ok int

tyInfer (BoolConst b) = ok bool

tyInfer (Add (t1, t2)) =

{
ok int if t1 = int and t2 = int

fail otherwise

tyInfer (If (t1, t2, t3)) =

{
ok t2 if t1 = bool and t2 = t3
fail otherwise



Example 5. Let C = {R,B} be a set of colours. The inductive type of coloured trees is
µFctree for the functor FctreeX = 1+C×X ×X. We write Leaf and Br for injections into
FctreeX. Red-black trees [13] are coloured trees satisfying the following constraints:

(1) Every leaf is black;
(2) Both children of a red node are black;
(3) For every node, all paths to leaves contain the same number of black nodes.

We can check whether or not a coloured tree is a red-black tree using the following partial
Fctree-algebra. Its carrier C × N records the colour of the root in the first component and
the number of black nodes to any leaf, assuming this number is the same for every leaf, in
the second. We have:

checkRB : Fctree(C× N) → 1 + (C× N)
checkRB Leaf = ok (B, 1)

checkRB (Br (R, (s1, n1), (s2, n2))) =

{
ok (R, n1) if s1 = s2 = B and n1 = n2
fail otherwise

checkRB (Br (B, (s1, n1), (s2, n2))) =

{
ok (B, n1 + 1) if n1 = n2
fail otherwise

6.2. Using a Partial Algebra to Select Elements. We now show how, given a partial
algebra, we can use it to select some of the elements of an underlying type and assign them
indices. The key to doing this is to turn every partial F -algebra into a (total) F -algebra.
Let λ : F ◦M → M ◦ F be any distributive law for the error monad M over the functor
F . Then λ respects the unit and multiplication of M (see [6] for details). Every partial
F -algebra κ : FA → (1 + A) generates an F -algebra κ : F (1 + A) → (1 + A) defined by
κ = [fail, κ] ◦ λA, where [fail, κ] is the cotuple of the functions fail and κ.

We can use κ to construct the following global characterisation of the indexed type for
which we seek an inductive characterisation:

(A,λa. {x : µF | LκMx = ok a})

As in (1.1), we can consider this characterisation a specification; it is similar to the specifi-
cation in Section 4, except that the index generated by the algebra κ is required to return
ok a for some a ∈ A. We can rewrite this specification as follows, using the categorical
constructions from Section 3 and Theorem 4.6:

(A,λa. {x : µF | LκMx = ok a}) = ok∗ ◦ ΣLκM⊤(µF ) = ok∗µF κ (6.1)

Rewriting the specification in this way links partial refinements with the indexed inductive
type generated by the refinement process given in Section 4.

6.3. Construction and Correctness of Partial Refinement. Refining µF by the F -
algebra κ using the techniques of Section 4 would result in an inductive type indexed by
1+A. But our motivating examples suggest that what we actually want is an A-indexed type
that inductively describes only those terms having values of the form ok a for some a ∈ A.
Partial refinement constructs, from a functor F with initial algebra inF : F (µF ) → µF ,
and a partial F -algebra κ : FA→ 1 +A, a functor F ?κ such that µF ?κ ∼= (A,λa. {x : µF |
LκMx = ok a}) = ok∗µF κ. To this end, we define

F ?κ = ok∗ ◦ Σκ ◦ F̂A (6.2)



We note that, in the special case of the families fibration, this definition specialises to
F ?κ = (A,λa.{x : F{(A,P )} | κ(Fπ(A,P )x) = ok a}). Now, since left adjoints preserve

initial objects, we can prove µF ?κ ∼= ok∗µF κ by lifting the adjunction on the left below
(cf. Section 3.4) to an adjunction between AlgF ?κ and AlgFκ via Theorem 2.1:

Fam(Set)A
Πok

00⊥ Fam(Set)1+A

ok∗pp
⇒ AlgF ?κ 22⊥ AlgFκ

qq

To satisfy the precondition of Theorem 2.1, we must prove that F ?κ ◦ ok∗ ∼= ok∗ ◦ F κ. To
show this, we reason as follows:

ok∗ ◦ F κ

= ok∗ ◦ Σκ ◦ F̂A by definition of F κ

∼= ok∗ ◦ Σκ ◦ (F ok)∗ ◦ F̂A by Lemma 6.1 below
∼= ok∗ ◦ Σκ ◦ F̂1+A ◦ ok∗ by Lemma 3.1
= F ?κ ◦ ok∗ by definition of F ?κ

In these steps we have made use of two auxiliary results, relying on two assumptions. First,
in order to apply Lemma 3.1, we have assumed that F preserves pullbacks. Secondly, we
have made use of the vertical natural isomorphism ok∗ ◦ Σκ ∼= ok∗ ◦ Σκ ◦ (Fok)

∗. We may
deduce the existence of the latter if we assume that the following property, which we call
non-introduction of failure, is satisfied by the distributive law λ for the error monadM over
F : for all x : F (1 + A) and y : FA, λA x = ok y if and only if x = F ok y. This property
strengthens the usual unit axiom for distributive laws in which the implication holds only
from right to left, and ensures that if applying λ does not result in failure, then no failures
were present in the data to which λ was applied. Every container functor has a canonical
distributive law for M satisfying the non-introduction of failure property.

Lemma 6.1. If the distributive law λ satisfies non-introduction of failure, then ok∗ ◦Σκ ∼=
ok∗ ◦Σκ ◦ (Fok)

∗.

Proof. Given (F (1 +A), P : F (1 +A) → Set), we have

(ok∗ ◦ Σκ)(F (1 +A), P )

= (A,λa : A. {(x1 : F (1 +A), x2 : Px1) | [fail, κ](λAx1) = ok a})
∼= (A,λa : A. {x1 : FA, x2 : P (F ok x1) | κx1 = ok a})
∼= (A, ok∗ ◦Σκ ◦ (F ok)∗(F (1 +A), P ))

Here, we have instantiated the definitions in terms of the constructions from Section 3 for
the families fibration.

Putting everything together, we have shown the correctness of partial refinement:

Theorem 6.2. If λ is a distributive law for the error monad M over F with the non-
introduction of failure property, and if F preserves pullbacks, then F ?κ has an initial algebra
whose carrier is given by any, and hence all, of the expressions in (6.1).

In fact, Lemma 6.1, and hence Theorem 6.2, holds in the more general setting of a full
cartesian Lawvere category with products and very strong coproducts that satisfy the Beck-
Chevalley condition for coproducts, provided that the base category satisfies extensivity [10].



In the general setting, the non-introduction of failure property can be formulated as requir-
ing that the following square (which is the unit axiom for the distributive law λ) is a
pullback:

FA
Fok //

id

��

F (1 +A)

λA
��

FA
ok // 1 + FA

Moreover, Theorem 5.1 extends to show that extensivity is also preserved by change-of-base
provided all of the the fibres of the given full cartesian Lawvere category satisfy extensivity.
This ensures that the process of partial refinement can be iterated as often as desired.

7. Refinement by Zygomorphisms and Small Indexed Induction-Recursion

The refinement process of Section 4 allows us to refine an inductive data type by any
function definable as a fold. Despite this generality, the restriction to functions defined by
folds can be a burden. Consider, for example, the following structurally recursive function
on natural numbers that computes factorials:

factorial : Nat -> Nat

factorial zero = succ zero

factorial (succ n) = succ n * factorial n

This factorial function is not immediately expressible as a fold of an algebra on the
natural numbers; indeed, the right-hand side of the second clause uses both the result of
a recursive call and the current argument, but a fold cannot use the current argument
in computing its result. The style of definition exemplified by factorial is known as a
paramorphism [33]. As we recall in Section 7.1 below, such definitions can be reduced to
folds. However, reducing factorial to a fold and then refining as in Section 4 yields a (Nat
× Nat)-indexed type, i.e., a doubly indexed type that reveals the auxiliary data used to
define factorial as a fold. But rather than (Nat × Nat)-indexed type, what we actually
want is an inductive characterisation of the following Nat-indexed type:

FactorialNat n ∼= {x : Nat | factorial x = n} (7.1)

If we try to implement FactorialNat inductively in Agda 2, then we get stuck at the point
marked by ??? below:

data FactorialNat : Nat -> Set where

fnzero : FactorialNat (succ zero)

fnsucc : {n : Nat} ->

(x : FactorialNat n) ->

FactorialNat (succ ??? * n)

We’d like to put x in place of ???, but there is a problem. Indeed, if x : FactorialNat n,
then in (7.1) we know that x : Nat, so we can use the assertion factorial x = n. But in
the above Agda 2 code we cannot conclude that if x : FactorialNat n, then x : Nat, and
so we cannot use the fact that factorial x = n. What is required is a function forget of
type n : Nat -> FactorialNat n -> Nat that converts an element of FactorialNat n

into its underlying natural number. Unfortunately, we cannot first define the data type
FactorialNat and then define the function forget thereafter. Instead, as becomes evident



upon replacing ??? by forget x in the definition of FactorialNat, we must define both
simultaneously.

Fortunately, this can be done using the principle of definition by indexed induction-
recursion (IIR) due to Dybjer and Setzer [19, 20]. Agda 2 supports indexed induction
recursion, and so FactorialNat and forget can be defined (simultaneously) as follows:

mutual

data FactorialNat : Nat -> Set where

fnzero : FactorialNat (succ zero)

fnsucc : {n : Nat} ->

(x : FactorialNat n) ->

FactorialNat (succ (forget x) * n)

forget : {n : Nat} -> FactorialNat n -> Nat

forget fnzero = zero

forget (fnsucc x) = succ (forget x)

As we have already noted, it is possible to make sense of functions such as factorial in
terms of initial F -algebras by using the existing notion of a paramorphism and its general-
isation, a zygomorphism, but this gives incorrectly indexed types. Instead, making use of a
presentation of inductive-recursive definitions as initial algebras (Section 7.2), we show in
Section 7.3 that the definition of FactorialNat can be generalised to an inductive-recursive
type satisfying the analogue of (7.1) for all zygomorphisms (rather than just factorial)
and all initial algebras of functors (rather than just Nat).

7.1. Zygomorphisms and Paramorphisms. Zygomorphisms were introduced by Mal-
colm [31], and have as a special case the concept of a paramorphism [33]. Given a mor-
phism γ : F (D × A) → A and an F -algebra δ : FD → D we define the F -algebra
γ, δ : F (D × A) → D × A by 〈δ ◦ Fπ1, γ〉. The zygomorphism h associated with γ, δ is
defined to be π2 ◦ Lγ, δM : µF → A. It is the unique morphism satisfying the equation
h ◦ inF = γ ◦ F 〈LδM, h〉. Paramorphisms are a special case of zygomorphisms for which δ is
the initial F -algebra inF : F (µF ) → µF .

The factorial function above can be represented as a paramorphism (and hence as
a zygomorphism). Recalling that the carrier of the initial algebra for the functor FNatX =
1 +X is N, we can define

fact : FNat(N× N) → N
fact zero = 1
fact (succ (n, x)) = (n+ 1) ∗ x

(7.2)

Here, we have used zero and succ as suggestive names for the two injections into 1 + X.
Taking γ to be fact , the induced paramorphism from N to N is exactly the factorial function.

7.2. Initial Algebra Semantics of Indexed Small Induction-Recursion. Indexed
induction-recursion allows us to define a family of types X : A→ Set simultaneously with a
recursive function f : ∀a. Xa→ Da, for some A-indexed collection of potentially large types
Da. We are interested in the case when D does not depend on A, so that Da is D, and D is
small, i.e., D is a set. In this situation, the semantics of IIR definitions can be given as initial
algebras of functors over slice categories. We recall the definition of slice categories on Set.



Given a set D, the slice category Set/D on Set has as objects pairs (Z : Set, f : Z → D). A
morphism from (Z, f) to (Y, g) in Set/D is a function from h : Z → Y such that f = g ◦ h.
We write f for (Z, f) when Z can be inferred from context.

Noting that ∀a.Xa → D is isomorphic to (Σa.Xa) → D and that Σa.Xa = {(A,X)},
this leads us to consider the category SetA×SetSet/D each of whose objects is an A-indexed
setX together with a function from {(A,X)} toD. A morphism in this category from (X, f)
to (X ′, g) is a function φ : ∀a.Xa → X ′a such that ∀a : A. p : Xa. f(a, p) = g(a, φap). In
fact, this category is the following pullback:

SetA ×Set Set/D //

��

❴

✤

Set/D

π1

��
SetA

{−} // Set

The pair (FactorialNat, forget) can be interpreted as the carrier of the initial algebra
of the following functor on SetN ×Set Set/N:

FFactorialNat(X : SetN, f : {(N,X)} → N) =
(λn. {∗ | n = 1} + {(n1 : N, x : Xn1) | n = (n1 + 1) ∗ f(n1, x)},
λ(n, x). case x of

inl ∗ ⇒ 0
inr (n1, x) ⇒ f(n1, x) + 1)

(7.3)

The first component of FFactorialNat(X, f) defines the constructors of FactorialNat in a
manner similar to that described in Section 2.2. Note that this first component depends on
both X and f , which is characteristic of inductive-recursive, as well as of indexed inductive-
recursive, definitions. The second component of FFactorialNat(X, f) extends the function f
to the new cases given in the first component of FFactorialNat(X, f).

To develop refinement by zygomorphisms, we use a similar methodology to that in
Section 6. We first use the refinement process of Section 4 to generate a functor on SetD×A

which has an initial algebra, and then apply Theorem 2.1 with the adjoint equivalence in
the next theorem to produce the initial algebra for the functor on SetA ×Set Set/D that we
define in (7.6) below.

Theorem 7.1. There is an adjoint equivalence SetA ×Set Set/D ≃ SetD×A which is wit-
nessed by the following pair of functors:

Ψ : SetD×A → SetA ×Set Set/D
Ψ(X) = (λa. {(d, x) | d : D,x : X(d, a)}, λ(a, (d, x)).d)

Φ : SetA ×Set Set/D → SetD×A

Φ(X, f) = λ(d, a). {x : Xa | f(a, x) = d}

Proof. This is a simple consequence of the fact that, for any set X, SetX ≃ Set/X.

In light of the equivalence demonstrated in Theorem 7.1, we could use SetD×A, rather than
SetA×SetSet/D, as the appropriate category for refinement by zygomorphisms. Our reasons
for choosing the latter are twofold. First, as we noted in the introduction to this section, we
want an A-indexed type rather than a (D ×A)-indexed type. Secondly, we want to define
a function from that A-indexed type into D itself, rather than into a D-indexed type.



7.3. Refinement by Zygomorphisms. We now show how to refine an inductive type
by a zygomorphism to obtain an indexed inductive-recursive definition. Generalising the
example of FactorialNat above, we want to construct from an F -algebra δ : FD → D
and a morphism γ : F (D×A) → A an inductive-recursive characterisation of the following
A-indexed set and accompanying D-valued function:

(λa. {(d : D,x : µF ) | Lγ, δMx = (d, a)}, λ(a, (d, x)). d) : SetA ×Set Set/D (7.4)

Note that although the fold Lγ, δM applied to x produces a pair (d, a), the first component
of the pair in (7.4) is an A-indexed set, rather than an (A ×D)-indexed set. We can now
see that the object of SetA ×Set Set/D in (7.4) is isomorphic to

(λa. {x : µF | π2(Lγ, δMx) = a}, λ(a, x).LδMx) (7.5)

The first component of (7.5), and hence the first component of (7.4), is the refinement of µF
by the zygomorphism π2 ◦ Lγ, δM, and is thus is the A-indexed set we want to characterise
inductively. To do this, we characterise (7.4) inductively. More specifically, we prove in
Theorem 7.2 below that the least fixed point of the following functor on SetA ×Set Set/D
gives an inductive-recursive characterisation of (7.4):

F γ,δ(X, f) =
(λa. {x : F{(D ×A,Φ(X, f))} | γ(Fπ(D×A,Φ(X,f))x) = a},
λ(a, x). δ(Fπ1(Fπ(D×A,Φ(X,f))x)))

(7.6)

This definition makes use of the functor Φ : SetA×SetSet/D → SetA×D defined in Theorem 7.1.

The first component of F γ,δ(X, f) uses Φ to bundle up X and f into a (D×A)-indexed set,

and then applies Σγ ◦ F̂ as in the basic refinement construction in Section 4. The second

component of F γ,δ(X, f) extracts the underlying FD component of x and then applies δ.

Example 6. We instantiate the characterisation of F γ,δ in (7.6) for the factorial function
from the introduction to this section. That is, we consider the functor FNatX = 1+X, the
F -algebra inFNat

: FNatN → N, and the morphism fact : FNat(N × N) → N defined in (7.2).
Instantiating (7.6) gives

F
fact ,inFNat
Nat (X, f)

=
(λn.{x : FNat{(D ×A,Φ(X, f)}) | fact(FNatπ(D×A,Φ(X,f))x) = n},
λ(n, x).inFNat

(FNatπ1(FNatπ(D×A,Φ(X,f))x)))

=
(λn.{x : 1 + {(D ×A,Φ(X, f))} | fact((1 + π(D×A,Φ(X,f)))x) = n},
λ(n, x).inFNat

((1 + π1)((1 + π(D×A,Φ(X,f)))x)))

We can rewrite the first component of F
fact ,inFNat
Nat (X, f) to the following N-indexed set

depending on X and f :

λn.{∗ | fact(zero) = n}+ {(d, n1), x : Xn1 | f(n1, x) = d, fact(succ(d, n1)) = n}.

The d component in the second summand above is constrained to be f(n1, x), so we can
first remove all references to d and then rewrite according to the definition of fact to obtain

λn.{∗ | 1 = n}+ {n1, x : Xn1 | (f(n1, x) + 1) ∗ n1 = n}

Using this rewriting of the first component of the instantiation, we can rewrite the second

component of F
fact ,inFNat
Nat (X, f) to use pattern matching and normal arithmetic notation to

get

λ(n, x). case x of

{
zero ⇒ 0
succ(n1, x) ⇒ f(n1, x) + 1



We have thus derived the definition of FFactorialNat from (7.3) solely by way of a mechanical
process, using the components of the paramorphism that computes factorials. Moreover, by
Theorem 7.2 below, we know that this functor has an initial algebra, and that this initial
algebra represents the refinement of the natural numbers by the zygomorphism defining the
function factorial.

As described above, the correctness of refinement by a zygomorphism is a consequence
of Theorem 2.1 and the adjoint equivalence from Theorem 7.1. Indeed, we have:

Theorem 7.2. The functor F γ,δ : SetA×Set Set/D → SetA×Set Set/D defined in (7.6) has
an initial algebra whose carrier is given in (7.4).

Proof. Observe that the object of SetA ×Set Set/D in (7.4) is isomorphic to the result of
applying the functor Ψ defined in Theorem 7.1 to the result of refining µF by the algebra
(γ, δ) : F (D ×A) → D ×A. Indeed,

Ψ(µF γ,δ)

∼= Ψ(λ(d, a). {x : µF | Lγ, δMx = (d, a)})

= (λa. {(d : D,x : µF ) | Lγ, δMx = (d, a)}, λ(a, (d, x)).d)

The isomorphism in the first step above is by the refinement process from Section 4, and
the equality in the second is by definition of Ψ. Now, to apply Theorem 2.1 we must show

that F γ,δ ◦Ψ ∼= Ψ ◦ F γ,δ. So suppose X is in SetD×A. Then

F γ,δ(Ψ(X))

= (λa. {x : F{(D ×A,Φ(Ψ(X)))} | γ(Fπx) = a}, λ(a, x). δ(Fπ1(Fπx))})
∼= (λa. {x : F{(D ×A,X)} | γ(Fπx) = a}, λ(a, x). δ(Fπ1(Fπx))})

Here, we have used the fact that the functors Φ and Ψ form an adjoint equivalence by
Theorem 7.1. On the other hand,

Ψ(F γ,δX)

= Ψ(λ(d, a). {x : F{(D ×A,X)} | (γ, δ)(Fπx) = (d, a)})

= Ψ(λ(d, a). {x : F{(D ×A,X)} | γ(Fπx) = a, δ(Fπ1(Fπx)) = d})
∼= (λa. {(d : D,x : F{(D ×A,X)}) | γ(Fπx) = a, δ(Fπ1(Fπx)) = d}, λ(a, (d, x)). d)
∼= (λa. {x : F{(D ×A,X)} | γ(Fπx) = a}, λ(a, x). δ(Fπ1(Fπx)))

by the definition of γ, δ. So, by the comment after Theorem 2.1, Ψ(µF γ,δ) ∼= µF γ,δ. But

since Ψ(µF γ,δ) is the same as (7.4), we have that (7.4) can indeed be inductively charac-
terised as µF γ,δ.

It is also possible to state and prove a generalisation of Theorem 7.2 in the general
setting of a full cartesian Lawvere category with very strong coproducts, as defined in
Section 3. In this case, we make use of the category EA ×B B/D, which is defined by a
pullback construction similar to that in Section 7.2. The use of very strong coproducts is
essential to proving the generalised analogue of the adjoint equivalence in Theorem 7.1. In
the general fibrational setting, we have the following definition of F γ,δ:

F γ,δ(X, f) = (Σf (F̂D×A(Φ(X, f))), δ ◦ Fπ1 ◦ FπΦ(X,f))



The formulation of zygomorphic refinement in the general setting of a full cartesian
Lawvere category with very strong coproducts means that we can use the process described
in Section 5 to derive a fibration in which to perform zygomorphic refinement on indexed
inductive types.

Example 7. Example 6 illustrates refinement by a paramorphism, but does not use the full
generality of refinement by a zygomorphism. We now demonstrate the power of refinement
by a zygomorphism to mechanically derive an inductive characterisation of the data type
of lists of rational numbers indexed by their average.

We specialise the functor FListB from Example 1 to get the functor representing the
type of lists of rational numbers: FListQX = 1 + Q × X. We reuse the FListB -algebra
lengthalg : FListBN → N, also from Example 1, whose fold computes the length of a list.
We also consider the following FListQ-algebra sumalg , which is used to compute the sum of
the elements of a list:

sumalg : FListQQ → Q
sumalg Nil = 0
sumalg (Cons(q, s)) = q + s

By the standard construction of the product of two F -algebras, we combine lengthalg and
sumalg to produce the following single FListQ-algebra whose fold will simultaneously com-
pute the sum and length of a list of rational numbers:

sumlengthalg : FListQ(Q× N) → Q× N

This algebra will form the F -algebra component of the zygomorphism by which we will
refine µFListQ .

The morphism component of the zygomorphism by which we will refine µFListQ has
carrier 1 + Q. Here, the non-Q case caters for empty lists, for which the average is not
defined. We use empty and avg as mnemonics for the left and right injections into 1 + Q.
The morphism avg is defined by

avg : FListQ((Q × N)× (1 +Q)) → 1 +Q
avg Nil = empty

avg (Cons(q, ((s, l), ))) = avg( q+sl+1 )

Following a similar process to that in Example 6, we can now compute the refinement
of µFListQ by sumlengthalg and avg :

F avg ,sumlengthalg
ListQ

(X, f) =

(λa. {∗ | a = empty}+ {(q, a′, x : Xa′) | a = avg( q+π1(f(a
′,x))

π2(f(a′,x))+1)},

λ(a, x). case x of

{
Nil ⇒ (0, 0)
Cons(q, a′, x) ⇒ (q + π1(f(a

′, x)), π2(f(a
′, x)) + 1))

In this definition, we have used π1(f(a
′, x)) to obtain the sum of the list underlying x, and

have likewise used π2(f(a
′, x)) to obtain its length. Expressing this refinement in Agda 2

gives the following definition:

mutual

data AvgList : 1 + Rational -> Set where

nil : AvgList empty

cons : (q : Rational) ->

{a : 1 + Rational} ->



(x : AvgList a) ->

AvgList (avg ((q + sum x) / (length x + 1)))

sum : {a : 1 + Rational} -> AvgList a -> Rational

sum nil = 0

sum (cons q x) = q + sum x

length : {a : 1 + Rational} -> AvgList a -> Nat

length nil = 0

length (cons q x) = length x + 1

The fact we have generated small indexed inductive-recursive types by a process of
refinement by a zygomorphism leads to the interesting question of whether it is possible to
further refine small indexed inductive-recursive types by any sort of refinement process. A
thorough investigation of such processes should also involve large induction-recursion (recall
that a large inductive-recursive type entails the definition of a Set-valued recursive function
simultaneously with the inductive type). The setting of large inductive-recursive types is
much more complicated than small (indexed) inductive-recursive types, and so we leave
investigation of the refinement of general inductive-recursive types to future work. Recent
work by Malatesta, Altenkirch, Ghani, Hancock and McBride [30] has shown that a large
universe of small inductive-recursive types described by codes is equivalent to the universe
of indexed containers [3]. This work may point to a way to formulate the development of
this section in terms of codes for functors describing types rather than directly in terms of
the functors themselves.

Another interesting avenue for future work is to determine whether the partial re-
finement process of Section 6 can be combined with the zygomorphic refinement process
presented in this section.

8. Conclusions, Applications, Related and Future Work

We have given a clean semantic framework for deriving refinements of inductive types that
store computationally relevant information within the indices of the resulting refined types.
We have also shown how already indexed types can be refined further, how refined types
can be derived even when some elements of the original type do not have indices, and
how refinement by zygomorphisms entails the use of small indexed induction-recursion for
information hiding. In addition to its theoretical clarity, the theory of refinement we have
developed has potential applications in the following areas:

Dependently Typed Programming: Often a user is faced with a choice between building
properties of elements of data types into more sophisticated data types, or stating these
properties externally as, say, pre- and post-conditions. While the former is clearly preferable
because properties can then be statically type-checked, it also incurs an overhead which can
deter its adoption. Supplying the programmer with infrastructure to produce refined types
as needed can reduce this overhead.

Libraries: With the implementation of refinement, library implementers will no longer need
to provide comprehensive collections of data types, but instead only methods for defining
new data types. Our results also ensure that library implementers will not need to guess



which refinement types will prove useful to programmers, and can instead focus on providing
useful abstractions for creating more sophisticated data types from simpler ones.

Implementation: Current implementations of types such as Vector types store all index
information. For example, a vector of length 3 will store the lengths 3, 2, and 1 of its
subvectors. Since this can be very space-consuming, Brady et al. [9] have sought to de-
termine when this information need not be stored in memory. Our work suggests that a
refinement µFα can be implemented by simply implementing the underlying type µF , since
programs requiring indices can reconstruct these as needed. It could therefore provide a
user-controllable tradeoff between space and time efficiency.

8.1. Related Work. The work closest to that reported here is McBride’s work on orna-
ments [32]. McBride defines a type of descriptions of inductive data types, along with a
notion of one description “ornamenting” another. Despite the differences between our fi-
brational approach and his type-theoretic approach, the notion of refinement presented in
Sections 4 and 5 is very similar to McBride’s notion of an algebraic ornament. Ornamenta-
tion further allows for additional arbitrary data to be attached to constructors, something
that is not possible with any of the refinement processes that we have discussed in this
paper. On the other hand, ornamentation is restricted to inductive types and so does not
allow for the generation of indexed inductive-recursive types that we presented in Section 7.
The theory of ornamentation has been developed by Ko and Gibbons [28], who examine the
relationship between the ornamental versions of the “local” and “global” refinement that
we discussed in Section 1.2. More recently, Dagand and McBride [14] have described an
extension of McBride’s original definition of ornamentation which allows for the removal of
constructors. In our setting, the removal of constructors is possible with the use of partial
refinement (Section 6).

An interesting question for future work is to determine the relationship between func-
tions defined on data types and functions defined on refined versions of data types. This
question has been addressed in the setting of McBride’s work on ornaments by Ko and
Gibbons [28] and also by Dagand and McBride [14]. We have not considered the question
of refinement of functions in this paper, and we leave it as future work to determine whether
or not the fibrational approach taken here can provide any insight.

Chuang and Lin [12] present a way to derive new indexed inductive types from ex-
isting inductive types and algebras that is very similar to our basic refinement process in
Section 4. Chuang and Lin work in the setting of the codomain fibration, which makes some
calculations easier, but extensions to partial and zygomorphic refinement more difficult.

A line of research allowing the programmer to give refined types to constructors of
inductive data types was initiated by Freeman and Pfenning [21]. Freeman and Pfenning
defined a variant of ML that allowed programmers to define refinements of inductive types
by altering the types of constructors, or by disallowing the use of certain constructors.
Refinement of this sort did not require dependent types. This work was later developed by
Xi [37], Davies [15] and Dunfield [17] for extensions of ML-like languages with dependent
types, and by Pfenning [35] and Lovas and Pfenning [29] for LF. The work of Kawaguchi
et al. [27] is also similar. This research begins with an existing type system and provides
a mechanism for expressing richer properties of values that are well-typeable in that type
system. It is thus similar to the work reported here, although a major focus of the work
of Freeman and Pfenning and its descendants is on the decidability of type checking and



inference of refined types, which we have not considered in this paper. On the other hand,
we formally prove that each refinement is isomorphic to the richer, property-expressing data
type it is intended to capture, rather than leaving this to the programmer to justify on a
refinement-by-refinement basis.

Refinement types have been used in other settings to give more precise types to programs
in existing programming languages (but not specifically to inductive types). For example,
Denney [16] and Gordon and Fournet [23] use subset types to refine the type systems of
ML-like languages. Subset types are also used heavily in the PVS theorem prover [36].

Our results extend the systematic code reuse delivered by generic programming [2, 5, 7]:
in addition to generating new programs we can also generate new types from existing types.
This area is being explored in Epigram [11], with codes for data types being represented
within a predicative intensional system. This enables programs to generate new data types.
It should be possible to implement our refinement process using similar techniques.

In addition to the specific differences between our work and that discussed above, a
distinguishing feature of ours is the semantic methodology we use to develop refinement.
We believe that this methodology is new. We also believe that a semantic approach is
important: it can serve as a principled foundation for refinement, as well as provide a
framework in which to compare different implementations. Moreover, it may lead to new
algebraic insights into refinement that complement the logical perspective of previous work.
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