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Abstract
Logical relations are a fundamental and powerful tool for reasoning about programs in languages with 
parametric polymorphism. Logical relations suitable for reasoning about observational behavior in 
polymorphic calculi supporting various programming language features have been introduced in recent years. 
Unfortunately, the calculi studied are typically idealized, and the results obtained for them offer only partial 
insight into the impact of such features on observational behavior in implemented languages. In this paper we 
show how to bring reasoning via logical relations closer to bear on real languages by deriving results that are 
more pertinent to an intermediate language for the (mostly) lazy functional language Haskell like GHC Core. 
To provide a more fine-grained analysis of program behavior than is possible by reasoning about program 
equivalence alone, we work with an abstract notion of relating observational behavior of computations which 
has among its specializations both observational equivalence and observational approximation. We take 
selective strictness into account, and we consider the impact of different kinds of computational failure, e.g., 
divergence versus failed pattern matching, because such distinctions are significant in practice. Once 
distinguished, the relative definedness of different failure causes needs to be considered, because different 
orders here in-duce different observational relations on programs (including the choice between equivalence 
and approximation). Our main contribution is the construction of an entire family of logical relations, 
parameterized over a definedness order on failure causes, each member of which characterizes the 
corresponding observational relation. Although we deal with properties very much tied to types, we base our 
results on a type-erasing semantics since this is more faithful to actual implementations.
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1 Introduction

Typeful programming as identified by Cardelli [1] is currently one of the key
approaches to producing safe and reusable code. Types serve as documenta-
tion of functionality (even as partial specifications) and can help to rule out
whole classes of errors before a program is ever run. Typeful programming is
particularly effective for pure functional languages such as Haskell [2], where
it comes with powerful reasoning techniques connecting the types of functions
to their possible observable behaviors. One such technique is the use of logical
relations to reason about polymorphic programs.

Polymorphism is essential for reconciling strong static typing, which attempts
to prevent the use of code in unfit contexts by assigning types that are as
precise and descriptive as possible, with the goal of flexible reuse. Of the two
kinds of polymorphism identified by Strachey [3] — namely, parametric poly-
morphism and ad-hoc polymorphism — we are interested in the former here;
see the survey [4] for a refined taxonomy. Parametric polymorphism expresses
the requirement that a certain functionality is offered for arbitrary types in a
uniform manner. Intuitively, this means that the same algorithm is employed in
instantiations of a polymorphically typed function at different concrete types.
This intuitive uniformity condition was first formally captured by Reynolds [5]
through the introduction of the notion of relational parametricity, which in
turn rests on the concept of logical relations [6,7].

The fundamental idea underlying logical relations is to interpret types as rela-
tions (rather than as sets, possibly with additional structure). These relational
interpretations are built by induction, starting from specific relations for a lan-
guage’s base types (if any), and obtaining interpretations for compound types
by propagating relations along the type structure in an “extensional” manner.
The key result to be proved for every logical relation constructed in this way is
that every function expressible in the underlying language is related to itself by
the relational interpretation of its type. This parametricity theorem, or certain
generalizations of it, can then be used, for example, to derive useful algebraic
laws (so-called “free theorems”) about polymorphic functions solely from their
types [8], or to establish the semantic correctness of efficiency-improving pro-
gram transformations [9–13]. But for all such applications, the usefulness in
practice depends on a good fit between the semantics of the functional lan-
guage of interest and that of the typically reduced formal calculus for which
parametricity results are proved.



Indeed, the applicability to real programming languages of parametricity re-
sults obtained for idealized calculi cannot be taken for granted. Simply as-
suming such applicability is actually quite dangerous, as can be seen from
experience with the selective strictness feature of Haskell, a language which is
otherwise nonstrict. Denotationally specified via the polymorphic primitive

seq :: ∀α β. α → β → β

seq ⊥ b = ⊥

seq a b = b if a 6= ⊥

in the language definition [2], and routinely used by programmers to control
the time and space behavior of their programs, selective strictness was de-
termined early on to have detrimental effects on parametricity. Nevertheless,
reasoning about Haskell programs typically took place as if this were not an
issue. In fact, Haskell programs were automatically optimized by a compiler
using parametricity-based program transformations whose correctness in the
presence of selective strictness was a conjecture at best. In the worst case,
this means that the compiler can “optimize” a perfectly functioning program
into one that fails to terminate or terminates with a runtime error. Conditions
under which this can be avoided were first established in [14,15]. These con-
ditions were derived from a new logical relation for which the parametricity
theorem holds even with respect to (a naive, but standardly accepted denota-
tional model of) a sublanguage of Haskell which includes selective strictness.
A more thorough account in terms of a polymorphic lambda calculus simi-
lar to that used as intermediate language in the Glasgow Haskell Compiler
(GHC) was recently given in [16]. With the current paper we further advance
a line of research whose ultimate goal is the development of appropriate tools
for reasoning about parametricity properties of real programming languages
rather than toy calculi.

The first new aspect we consider is that of distinguishing different causes of
program failure. The notion of “undefined value” is, in some form, fundamen-
tal to any semantic treatment of both fixpoint recursion (which is actually the
first challenge when extending relational parametricity from Reynolds’ origi-
nal setting to more realistic languages; it is met by Wadler [8] and Pitts [17])
and selective strictness. For example, the notion of “undefined value” is cap-
tured by the notation ⊥ in the above specification for seq , where it stands
for a nonterminating computation or a runtime error, such as might be ob-
tained as the result of a failed pattern match. Indeed, it is quite common to
conflate these different failure causes into a single denotation or observation,
but in practice this is not satisfactory. For example, conflating different failure
causes means that a program transformation that is claimed to be semantics-
preserving may very well transform a nonterminating program into one that
instead terminates with a runtime error, and vice versa, or may confuse dif-
ferent kinds of runtime errors. If this happens automatically in a compiler, a



debugging nightmare ensues. And this issue is very real. In particular, Haskell
examples similar to the ones in [14,15] can be given for which the classical
foldr/build -fusion rule of Gill et al. [9] exhibits this behavior of transforming
one kind of error into another one. So it is completely unclear whether the
preconditions (on the arguments to foldr) found in earlier work to guarantee
total correctness of foldr/build-fusion in the presence of seq still do so when
considering different failure causes as semantically different. And even partial
correctness of foldr/build -fusion, in the sense that the program after trans-
formation at least semantically approximates the original one, is no longer
guaranteed. While in [14–16] it was established to hold unconditionally, the
aforementioned examples show that foldr/build -fusion may transform arbi-
trary different failures into each other in either direction. So, no matter how
different failure causes are ordered by our notion of semantic approximation,
some instance of foldr/build -fusion will violate that order, and thus not even
be partially correct.

Actually, this last observation raises an important question. Assuming we con-
sider different failure causes as semantically different, should there at least be
some semantic approximation order between them? For example, one might
have the intuition that nonterminating programs are strictly less defined than
programs that terminate with a runtime error, and that these are in turn
strictly less defined than those that terminate after computing a proper value.
On the other hand, one might prefer another order between different kinds
of failure or wish to leave them completely incomparable to each other with
respect to the approximation order. So the answer to the above question is a
conscious design decision that must precede any study of, say, partial correct-
ness of parametricity-based program transformations, and very much depends
on the usage scenario (e.g., debugging vs. production cycle). Since we do not
want to predetermine this design decision, we leave the precise ordering be-
tween different kinds of failure as abstract as possible throughout our technical
development. Thus, rather than developing a single new logical relation, we
instead develop an entire family of logical relations which is parameterized by
a suitable preorder embodying the various choices to be made here.

The parameterization of our family of logical relations has a further advantage,
since it allows us to deal with semantic equivalence and (either direction of)
semantic approximation in a unified manner. Previous work on logical rela-
tions for polymorphic languages has dealt exclusively with either an equational
setting [17–21] or an inequational one [14–16,22]. This has led to a certain rep-
etition in proofs of the key results about the relevant logical relations, as well
as in proofs of applications of these results. For example, two separate but sim-
ilar proofs are given in [16] for the two directions of semantic approximation
in the foldr/build -fusion rule. This inequational treatment is preferable to the
single (again similar) proof of semantic equivalence in [20], because it estab-
lishes one of the two directions of semantic equivalence without preconditions,



and so more insight is gained. But it comes with a cost in the form of proof
repetition. This cost can be avoided using the tools from the present paper,
given that a single proof parameterized by an abstract preorder suffices, and
results for equivalence and (different choices of) approximation can then be
read off by just instantiating this parameter in different ways according to the
above design decisions. The proof for foldr/build-fusion is given explicitly in
Section 6 precisely to allow this comparison. The same observations could, of
course, also be made for other applications of parametricity results, such as
Wadler’s free theorems.

The main technical innovation of this paper is the construction of our param-
eterized logical relation. To more faithfully model Haskell-like programming
languages, this relation is constructed on top of a type-erasing semantics. Let
us explain. We are interested in languages with strong static typing. For such
languages, types naturally play an important role both during programming
and in compilation. But at runtime, types serve no purpose at all, precisely
because “(originally) well-typed programs do not go wrong”. So there is no
need to carry type information through to the execution phase, and indeed
each and every Haskell compiler erases all type information (and language
constructs only dealing with types) from a program somewhere in the com-
pilation process. What might be perceived as just an implementation detail
actually has important semantic consequences with respect to polymorphic
functions. In Haskell, type generalization and specialization are implicit. That
is, they neither occur in the term syntax of the language, nor carry compu-
tational content. In contrast, parametricity theorems are typically (even nec-
essarily) proved for extensions of the Girard-Reynolds polymorphic lambda
calculus [23,24], in which type generalization and specialization are explicit
term formers. A semantic mismatch occurs as soon as the calculus allows fix-
point recursion and termination is made observable at polymorphic types. In
this case, a distinction can be made between two equally typed polymorphic
terms, the first of which is diverging, and the second of which is converging,
even while its instantiation at every type diverges. But such a distinction is
not observable in Haskell, not even with seq present. As a consequence of this,
using the logical relation from [16] to derive statements about functions in
the calculus under study there enforces extra convergence conditions on poly-
morphic arguments — conditions that were not found to be necessary on the
primarily intuitive level in [14,15], and indeed are not justifiable with respect
to the semantics of Haskell. 2 To prevent such a discrepancy in the current
paper, we work with a semantics defined on the type-erasure of terms. This is
in line with the treatment of the intermediate language found in GHC, which

2 Note that these conditions are not particular to selective strictness: the same kind
of extra conditions also surface in the purely strict settings of [19,21,22,25]. They
would also surface in the purely nonstrict setting of [17] if choosing to make whole
program termination observable at arbitrary, and thus also at polymorphic, types.



is an extension of the Girard-Reynolds calculus (which has full and explicit
typing), but whose dynamic semantics is type-erasing [26].

Specifically, the central contribution of this paper is the construction of a fam-
ily of logical relations for Core, a polymorphic lambda calculus which supports
fixpoint recursion, an algebraic data type with pattern matching, a strict-let
construct, and an explicit error primitive. The members of this family char-
acterize different notions, induced by a preorder parameter, of observational
equivalence or approximation with respect to a type-erasing operational se-
mantics. This result includes, even generalizes, the parametricity theorem for
each such logical relation. The general approach is similar to that in Pitts’
characterization of observational equivalence for the calculus PolyPCF [17].
However, it is not at all obvious that his machinery can be brought to bear
here. Apart from handling the additional language features, a particular chal-
lenge is posed by the interaction between the low-level semantics on the un-
typed level and the intended reasoning on a higher, typed level.

The remainder of this paper is structured as follows. Section 2 introduces the
syntax and (type-erasing operational) semantics of the calculus Core that is
the object of our study, and illustrates the use of its selective strictness and
finite failure constructs in example programs. It also introduces the (param-
eterized) notion of “respecting observable program behavior” that is central
to specifying observational relations on Core programs. Section 3 studies the
observable behavior of (type-erasures of) Core programs in context, and in
particular establishes key properties of selective strictness and fixpoint recur-
sion. Section 4 introduces (preorder-parameterized) restrictions on relations
to accommodate the fixpoint, selective strictness, and finite failure primitives,
and examines their interplay. It also defines our family of logical relations and
highlights one particularly fruitful source of appropriately restricted relations
to be used in applications. Section 5 proves our main technical result, namely
that the logical relation obtained for each preorder parameter does indeed
give rise to the intended observational relation. Section 6 proves an abstract
correctness result for foldr/build -fusion and looks at several interesting instan-
tiations of this result. Section 7 discusses related work. Section 8 concludes.
Throughout, proofs which are too technical for the main part of the paper are
deferred to Appendix A. The proofs in the appendix can safely be omitted
without disrupting the main ideas of the paper, but are included here for the
sake of completeness.



2 The Core Language

2.1 Syntax and Typing

Let N be the set of natural numbers including 0. We set N+ = N \ {0} and,
for a new element ∞, N∞ = N ∪ {∞} and N+,∞ = N+ ∪ {∞}.

The syntax of Core types and terms is given in Figure 1, where α and x range
over disjoint countably infinite sets of type variables and term variables, respec-
tively, and i ranges over N+. To reduce the need for brackets, function types
and function applications are read right- and left-associative, respectively, so
that τ1 → τ2 → τ3 means τ1 → (τ2 → τ3), while F A B means (F A) B. The
constructions ∀α.−, λx :: τ.−, Λα.−, case M of {nil ⇒ M ′; x : x′ ⇒ −},
and let! x = M in − are binders for α, x, and x′. We identify types and terms
up to renaming of bound (type and term) variables. The concept of a free vari-
able in a type or term is defined in the usual way. We write Typ for the set of
closed types, that is, those having no free variables. We use standard notation
for capture-avoiding substitution of types and/or terms for free occurrences
of variables.

Types τ ::= α | τ → τ | ∀α.τ | τ -list

Terms M ::= x term variable

| λx :: τ.M function abstraction

| M M function application

| Λα.M type generalization

| Mτ type specialization

| nilτ empty list

| M : M non-empty list

| case M of {nil ⇒ M ; x : x ⇒ M} pattern matching

| let! x = M in M selective strictness

| fix(M) fixpoint recursion

| errorτ (i) finite failure

Fig. 1. Syntax of the Core language.

Types are assigned to (some) terms according to the axioms and rules in Fig-
ure 2, where Γ ranges over typing environments of the form ~α, x1 :: τ1, . . . , xm ::
τm for a finite list ~α of distinct type variables, m ∈ N, a list ~x = x1, . . . , xm of
distinct term variables, and types τ1, . . . , τm whose free variables are in ~α. In a
typing judgement of the form Γ ⊢ M :: τ , with Γ as above, we require that the
free variables of the term M are in ~α, ~x and that the free variables of the type
τ are in ~α. The well-formedness conditions for typing environments and typing



judgements ensure that in the rule for let! in Figure 2, x does not occur in Γ
and thus is also not free in A. That is, the strict-let construct is nonrecursive.
The explicit type information in the syntax of function abstractions, empty
lists, and finite failures ensures that for every Γ and M there is at most one
τ with Γ ⊢ M :: τ . Given τ ∈ Typ, we write Term(τ) for the set of terms M
for which ∅ ⊢ M :: τ is derivable, where ∅ is the empty typing environment.
Further, we set Term =

⋃

τ∈Typ

Term(τ).

Γ, x :: τ ⊢ x :: τ Γ ⊢ nilτ :: τ -list Γ ⊢ errorτ (i) :: τ

Γ, x :: τ ⊢ M :: τ ′

Γ ⊢ (λx :: τ.M) :: τ → τ ′

α, Γ ⊢ M :: τ

Γ ⊢ Λα.M :: ∀α.τ
Γ ⊢ G :: ∀α.τ

Γ ⊢ Gτ ′ :: τ [τ ′/α]

Γ ⊢ F :: τ → τ ′ Γ ⊢ A :: τ
Γ ⊢ F A :: τ ′

Γ ⊢ H :: τ Γ ⊢ T :: τ -list
Γ ⊢ (H : T ) :: τ -list

Γ ⊢ L :: τ -list Γ ⊢ M1 :: τ ′ Γ, h :: τ, t :: τ -list ⊢ M2 :: τ ′

Γ ⊢ case L of {nil ⇒ M1; h : t ⇒ M2} :: τ ′

Γ ⊢ A :: τ Γ, x :: τ ⊢ B :: τ ′

Γ ⊢ let! x = A in B :: τ ′

Γ ⊢ F :: τ → τ
Γ ⊢ fix(F ) :: τ

Fig. 2. Core type assignment relation.

2.2 The New Features by Example

A typical example for the use of selective strictness in Haskell is the following
function:

foldl ′ :: ∀α β. (β → α → β) → β → [α] → β

foldl ′ f z [] = z

foldl ′ f z (h : t) = let z′ = f z h in seq z′ (foldl ′ f z′ t)

Here seq ensures that the accumulating parameter is computed immediately
in each recursive step rather than constructing a complex closure which would
be computed only at the very end.

The above function definition can be expressed in Core as the following element
of Term(∀α.∀β.(β → α → β) → β → α-list → β):

fix(λfoldl ′ :: ∀α.∀β.(β → α → β) → β → α-list → β.

Λα.Λβ.λf :: β → α → β.λz :: β.λl :: α-list .

case l of {nil ⇒ z; h : t ⇒ let! z′ = f z h in (foldl ′α)β f z′ t}).



This corresponds closely to the intermediate code produced for foldl ′ by GHC.
In particular, it is in line with the latter (and in contrast to the treatment
in [16]) regarding the avoidance of a duplication of the expression “f z h”
during translation of the call to seq . It also agrees with the modelling of
selective strictness in [27] and, for the Clean language, in [28].

A typical form of program failure other than nontermination is that of incom-
plete pattern matching, as in the following function:

init :: ∀α. [α] → [α]

init [h] = []

init (h : t) = h : init t

This function can be expressed in Core using the explicit error primitive as
follows:

fix(λinit :: ∀α.α-list → α-list .Λα.λl :: α-list .

case l of {nil ⇒ errorα-list(1);

h : t ⇒ case t of {nil ⇒ nilα; h′ : t′ ⇒ h : initα t}}).

This is again very similar to what GHC produces internally, except that in
Haskell more descriptive string arguments are used for finite failures (such as
“Prelude.init: empty list” instead of the 1 above). Of course, the abstraction
from strings to positive integers in our language does not change the nature
of the phenomena under study.

2.3 A Type-Erasing Operational Semantics

Our semantics for Core is defined on the type-erasure of terms. For this, we
need a notion of untyped terms, given by the following grammar:

M ::= x | λx.M | M M | nil | M : M | case M of {nil ⇒ M ; x : x ⇒ M} |

let! x = M in M | fix(M) | error(i).

The construction λx.− (now without the type information present in Core) is
an additional binder for x. As for typed terms, we identify untyped terms up to
renaming of bound (term) variables, and define the concept of a free variable in
the usual way. Capture-avoiding substitution on untyped terms is also defined
as in the typed case. Given a set X of term variables, we write Untyped(X)
for the set of untyped terms whose free variables are in X. Further, we set
Untyped = Untyped(∅), where ∅ is the empty set.

Typed terms are mapped to untyped terms using the type-erasure transfor-
mation [[·]]. It drops the type annotations in the binding occurrences of vari-



ables in function abstractions, eliminates all type generalizations and spe-
cializations, omits the type subscripts of empty lists and finite failures, but
leaves the input term otherwise unchanged. Note that type-erasure distributes
over term substitution and is invariant under type substitution. That is,
[[M [A/x]]] = [[M ]][[[A]]/x] and [[M [τ/α]]] = [[M ]].

The subset of Untyped whose elements (called values) respect the following
grammar is denoted by Value :

V ::= λx.M | nil | M : M.

We use a small-step approach to structural operational semantics, so we need
redex/reduct-pairs and a notion of reduction in context. The former are written
R ; R′ (with R, R′ ∈ Untyped) and listed exhaustively in the following table:

R R′

(λx.N) A N [A/x]

case nil of {nil ⇒ M ; h : t ⇒ M ′} M

case H : T of {nil ⇒ M ; h : t ⇒ M ′} M ′[H/h, T/t]

let! x = V in N N [V/x]

fix(F ) F fix(F )

Here x, h, and t are term variables, N ∈ Untyped({x}), A, H, M, T, F ∈
Untyped , M ′ ∈ Untyped({h, t}), and V ∈ Value. It is essential that V is a value
in the next-to-last pair, since the intended semantics of selective strictness
could not otherwise be ensured.

To describe reduction in context, we use the notions of evaluation frames and
evaluation stacks, given by the grammars

E ::= (− M) | (case − of {nil ⇒ M ; x : x ⇒ M}) | (let! x = − in M)

and

S ::= Id | S ◦ E ,

respectively, where each M ranges over untyped terms. If an evaluation stack
comprises a single evaluation frame E, then we denote it by E rather than
Id ◦ E. Moreover, given an evaluation frame E and an untyped term M , we
write E{M} for the untyped term that results from replacing “−” by M in
E. The concept of a free (term) variable in an evaluation frame or evaluation
stack is defined in the obvious way.

Now a transition (S1, M1)  (S2, M2) (with M1, M2 ∈ Untyped and S1, S2

being evaluation stacks without free variables) is possible for exactly the fol-



lowing combinations:

(S1, M1) (S2, M2) if

(S, E{N}) (S ◦ E, N) N /∈ Value

(S ◦ E, V ) (S, E{V }) V ∈ Value

(S, R) (S, R′) R ; R′

Here S is an evaluation stack, E is an evaluation frame, and the untyped terms
that occur in the table are subject to the restrictions recorded on the right.
Note that  is deterministic, but not terminating (due to fix). We denote by
t, with t ∈ N, the t-fold composition of , and by ∗ its reflexive, transitive
closure. The latter is used to describe (potential) evaluation of typed terms as
follows.
Definition 2.1. Given M ∈ Term, we write:

• M⇓ if there is some V ∈ Value with (Id , [[M ]]) ∗ (Id , V ),
• M i if there is some evaluation stack S with (Id , [[M ]]) ∗ (S, error(i)),

and
• M⇑ otherwise.

In the first case we say that M converges, in the second case that it fails
finitely, and in the last case that it diverges.

A pair consisting of an evaluation stack without free variables and an element
of Untyped is called an end configuration if it has one of the two forms reached
by ∗ in the first two items of Definition 2.1. We say that (S, M) leads to
an end configuration if there is an end configuration (S ′, M ′) with (S, M) ∗

(S ′, M ′). Note that this is not the case for every (S, M).
Observation 2.2. Let Ω = fix(λx.x) ∈ Untyped. There is no evaluation
stack S such that (S, Ω) leads to an end configuration.

The following lemma is proved in the appendix.
Lemma 2.3. For every evaluation stack S and M ∈ Untyped, if (S, M) leads
to an end configuration, then so does (Id , M).

Given an evaluation stack S, we define for every evaluation stack S ′ their
concatenation S @ S ′ by induction on the structure of S ′ via the equations
S @ Id = S and S @ (S ′′ ◦E) = (S @ S ′′) ◦E. Then the following observation
is straightforward from the definition of .
Observation 2.4. For every triple S1, S2, S3 of evaluation stacks without free
variables and M1, M2 ∈ Untyped, if (S1, M1) ∗ (S2, M2), then (S3 @ S1, M1)
∗ (S3 @ S2, M2).



2.4 Towards Observational Relations Between Programs

Any reasonable notion of program equivalence or approximation should at
least be a precongruence. More precisely, it should fulfill all four restrictions
introduced in the following definition.
Definition 2.5. Let the relation E comprise 4-tuples of the form (Γ, M, M ′, τ)
with Γ ⊢ M :: τ and Γ ⊢ M ′ :: τ . We write Γ ⊢ M E M ′ :: τ when the tuple
(Γ, M, M ′, τ) is in E , and we abbreviate this to M E M ′ if Γ = ∅ since τ is
then uniquely determined as the closed type of both M and M ′.
• If for every Γ, M , and τ with Γ ⊢ M :: τ , we have Γ ⊢ M E M :: τ , then E

is called reflexive.
• If E ; E ⊆ E , where relation composition E1; E2 is defined by

Γ ⊢ M (E1; E2) M ′ :: τ ⇔ ∃M ′′. Γ ⊢ M E1 M ′′ :: τ ∧ Γ ⊢ M ′′ E2 M ′ :: τ ,

then E is called transitive.
• If E is closed under the axioms and rules in Figure 3, then it is called

compatible.
• If E is closed under the rules in Figure 4, where Γ[τ ′/α] is the typing envi-

ronment obtained from Γ by replacing every x :: σ therein by x :: σ[τ ′/α],
then it is called substitutive.

Note that every compatible relation is also reflexive.

To further specify a notion of program equivalence or approximation, we need
to express the observations that can be made about a program and decide on a
concept of adequacy that somehow restricts the relation between the observed
behaviors for two programs supposed to be equivalent or in an approximating
relationship. The possible observations can be captured as follows.
Definition 2.6. For every M ∈ Term, we define ω(M) ∈ N∞ by

ω(M) =



















0 if M⇓

i if M i

∞ if M⇑.

Note that ω is well-defined. Indeed, the determinism of  ensures that at most
one of the potential end configurations under consideration in Definition 2.1
can actually be reached from (Id , [[M ]]). Also note that if [[M ]] ∈ Value, then
ω(M) = 0. Moreover, for every M, M ′ ∈ Term, if [[M ]] = [[M ′]], then ω(M) =
ω(M ′).

Instead of deciding on a particular notion of adequacy now, and thus restrict-
ing the further development to a specific notion of program equivalence or
approximation, we leave that choice as abstract as possible for the moment.
That is, given any binary relation 4 on N∞, we say that a relation E as in



Γ, x :: τ ⊢ x E x :: τ Γ ⊢ errorτ (i) E errorτ (i) :: τ

Γ ⊢ F E F ′ :: τ → τ
Γ ⊢ fix(F ) E fix(F ′) :: τ

Γ, x :: τ ⊢ M E M ′ :: τ ′

Γ ⊢ (λx :: τ.M) E (λx :: τ.M ′) :: τ → τ ′

Γ ⊢ F E F ′ :: τ → τ ′ Γ ⊢ A E A′ :: τ
Γ ⊢ (F A) E (F ′ A′) :: τ ′

α, Γ ⊢ M E M ′ :: τ

Γ ⊢ Λα.M E Λα.M ′ :: ∀α.τ
Γ ⊢ G E G′ :: ∀α.τ

Γ ⊢ Gτ ′ E G′
τ ′ :: τ [τ ′/α]

Γ ⊢ nilτ E nilτ :: τ -list Γ ⊢ H E H ′ :: τ Γ ⊢ T E T ′ :: τ -list
Γ ⊢ (H : T ) E (H ′ : T ′) :: τ -list

Γ ⊢ L E L′ :: τ -list Γ ⊢ M1 E M ′
1 :: τ ′ Γ, h :: τ, t :: τ -list ⊢ M2 E M ′

2 :: τ ′

Γ ⊢ (case L of {nil ⇒ M1; h : t ⇒ M2})

E (case L′ of {nil ⇒ M ′
1; h : t ⇒ M ′

2}) :: τ ′

Γ ⊢ A E A′ :: τ Γ, x :: τ ⊢ B E B′ :: τ ′

Γ ⊢ (let! x = A in B) E (let! x = A′ in B′) :: τ ′

Fig. 3. Compatibility properties.

α, Γ ⊢ M E M ′ :: τ

Γ[τ ′/α] ⊢ M [τ ′/α] E M ′[τ ′/α] :: τ [τ ′/α]

Γ, x :: τ ⊢ M E M ′ :: τ ′ Γ ⊢ N E N ′ :: τ

Γ ⊢ M [N/x] E M ′[N ′/x] :: τ ′

Fig. 4. Substitutivity properties.

Definition 2.5 is 4-adequate if for every τ ∈ Typ and M, M ′ ∈ Term(τ) with
M E M ′, we have ω(M) 4 ω(M ′).

There is a vast richness of choices available for the relation 4; some interesting
and natural ones, together with the computational intuition underlying them,
are given in Example 2.7 below. Our parameterized approach to adequacy thus
provides a uniform framework for studying a broad array of (potential) obser-
vational relations induced by choices for 4. The design decisions they capture
range from whether to observe computational equivalence or approximation,
to whether (and how) to distinguish or unify different causes of failure.
Example 2.7. Some interesting choices for 4 are given as follows.

(a) 4 = {(n, n) | n ∈ N∞}, depicted as:

0 1 2 3 · · · ∞

(b) 4 = {(0, 0)} ∪ N+,∞ × N+,∞, depicted as:



0 1 = 2 = 3 = · · · = ∞

(c) 4 = N+,∞ × N+,∞ ∪ N∞ × {0}, depicted as:

0

1 = 2 = 3 = · · · = ∞

(d) 4 = {(n, n) | n ∈ N∞} ∪ N+,∞ × {0}, depicted as:

0

1 2 3 · · · ∞

(e) 4 = {(n, n) | n ∈ N∞} ∪ N+,∞ × {0} ∪ {∞} × N, depicted as:

0

1 2 3 · · ·

∞

(f) 4 = {(n, n) | n ∈ N∞} ∪ {∞} × N, depicted as:

0 1 2 3 · · ·

∞

(g) 4 = {(n, n) | n ∈ N∞} ∪ N × {∞}, depicted as:
∞

0 1 2 3 · · ·

(h) 4 = N+ × N+,∞ ∪ {(0, 0), (0,∞), (∞,∞)}, depicted as:
∞

0 1 = 2 = 3 = · · ·

(i) 4 = N∞ × N+ ∪ {(0, 0), (∞,∞)}, depicted as:

1 = 2 = 3 = · · ·

0 ∞

(j) 4 = N∞ × N+ ∪ {(0, 0), (∞, 0), (∞,∞)}, depicted as:

1 = 2 = 3 = · · ·

0

∞

Intuitively, choice (a) will result in an observational equivalence relation ≡1

that distinguishes between convergence, divergence, and finite failure, and
also distinguishes different instances of finite failure from one another. In con-
trast, choice (b) gives an observational equivalence relation ≡2 that unifies
all different failure causes (but distinguishes them from convergence), while
choice (c) defines the corresponding observational approximation relation ⊑2.
Choices (d) and (e) are intended to describe observational approximation re-



lations that distinguish all different failure causes and consider each kind of
failure as strictly less defined than a converging behavior, where moreover
in (d) different failure causes are considered pairwise incomparable, while
in (e) a diverging term is considered strictly less defined than any finitely
failing one. Choice (f) describes an observational approximation relation ⊑3

that also distinguishes all different failure causes, with divergence considered
least defined, but considers convergence and finite failures as pairwise incom-
parable. Choice (g) naturally gives the corresponding inverse ⊒3. Choice (h)
describes a variant ⊒4 of ⊒3 in which all instances of finite failure are unified.
Finally, choice (i) describes an inverse observational approximation relation ⊒5

that unifies all instances of finite failure and considers them less defined than
both convergence and divergence, which in turn are incomparable. Choice (j) is
perfectly possible, but quite unintuitive since it makes one sort of failure more
defined, and at the same time makes another sort of failure less defined, than
computations that terminate properly. Further somewhat “bizarre” choices
are conceivable in which, for example, there is a strict linear order between
different instances of finite failure.

Our overall aim is to characterize, for a given choice of 4, the largest reflexive,
transitive, compatible, substitutive, and 4-adequate relation by induction on
the type structure of Core. Clearly, it is not to be expected that this is pos-
sible, or gives a meaningful result, for arbitrary 4. In fact, one merit of our
approach is to systematically identify “legal” choices of 4. Perhaps surpris-
ingly, choices (d) and (e) from Example 2.7 will be outlawed (but rightly and
explicably so, as later pointed out in Section 8). The next section, though, will
first collect some technical material that is independent of the choice of 4.

3 Typed Stacks and the ⊤-Function

While our operational semantics is defined via untyped terms and evaluation
frames, we want most of our reasoning to take place on the higher, typed level.
Hence, we need also a typed notion for the context in which a computation
takes place.

The grammars for typed frames and typed stacks are as those for evaluation
frames and evaluation stacks, except that the M now range over typed terms
and that there is an additional form −τ of frames (where τ is a type). In
other words, the typed frames are (− M), −τ , (case − of {nil ⇒ M ; x :
x ⇒ M}), and (let! x = − in M). A type assignment relation Γ ⊢ S ::
τ ⊸ τ ′ (where Γ again ranges over typing environments, with well-formedness
conditions similar to those for term typing judgements) assigns argument and
result types to some typed stacks in such a way that for every Γ, S, and τ there
is at most one suitable τ ′. It is given in Figure 5. Given τ, τ ′ ∈ Typ, we write



Stack(τ, τ ′) for the set of typed stacks S for which ∅ ⊢ S :: τ ⊸ τ ′ is derivable.
Given such an S and M ∈ Term(τ), the application (S M) ∈ Term(τ ′) is
defined by induction on the structure of S via the equations Id M = M and
(S ′ ◦ E) M = S ′ (E{M}). We also use a typed version of the concatenation
operation @, on typed stacks. And we set, for every τ ∈ Typ, Stack(τ) =

⋃

τ ′∈Typ

Stack(τ, τ ′).

Γ ⊢ Id :: τ ⊸ τ

Γ ⊢ S :: τ ′ ⊸ τ ′′ Γ ⊢ A :: τ
Γ ⊢ S ◦ (− A) :: (τ → τ ′) ⊸ τ ′′

Γ ⊢ S :: τ [τ ′/α] ⊸ τ ′′

Γ ⊢ S ◦ −τ ′ :: (∀α.τ) ⊸ τ ′′

Γ ⊢ S :: τ ′ ⊸ τ ′′ Γ ⊢ M1 :: τ ′ Γ, h :: τ, t :: τ -list ⊢ M2 :: τ ′

Γ ⊢ S ◦ (case − of {nil ⇒ M1; h : t ⇒ M2}) :: τ -list ⊸ τ ′′

Γ ⊢ S :: τ ′ ⊸ τ ′′ Γ, x :: τ ⊢ B :: τ ′

Γ ⊢ S ◦ (let! x = − in B) :: τ ⊸ τ ′′

Fig. 5. Typing typed stacks.

A key ingredient of Pitts’ approach to syntactic logical relations is a relation
expressing whether or not a particular term put into a particular context
described by a suitable stack leads to a (in some cases, particular) value in
the empty context. Since in our setting there are more possibly observable
behaviors than just convergence or divergence, we instead need a function
with more possible outcomes than just the “yes” or “no” outcomes provided
by relations. This motivates the following definition.
Definition 3.1. Let τ ∈ Typ, S ∈ Stack(τ), and M ∈ Term(τ). We define
⊤(S, M) ∈ N∞ to be:
• 0 if there is some V ∈ Value with ([[S]], [[M ]]) ∗ (Id , V ),
• i if there is some evaluation stack S ′ with ([[S]], [[M ]]) ∗ (S ′, error(i)), and
• ∞ otherwise.
Here the type-erasure transformation [[·]] from typed stacks to evaluation stacks
is the straightforward extension of the one on the term level. In particular, it
omits all frames of the form −τ .

From the definitions of ⊤ and ω, and the determinism of , we obtain the
following three observations.
Observation 3.2. For every M ∈ Term, ⊤(Id , M) = ω(M).
Observation 3.3. Let τ ∈ Typ, S, S ′ ∈ Stack(τ), and M, M ′ ∈ Term(τ). If
[[S]] = [[S ′]] and [[M ]] = [[M ′]], then ⊤(S, M) = ⊤(S ′, M ′).
Observation 3.4. Let τ ∈ Typ and S ∈ Stack(τ).
(a) For every τ ′ ∈ Typ, M ∈ Term(τ ′), and typed frame E with E{M} ∈

Term(τ), we have ⊤(S, E{M}) = ⊤(S ◦ E, M).
(b) For every R, R′ ∈ Term(τ) with [[R]] ; [[R′]], we have ⊤(S, R) = ⊤(S, R′).



We also obtain the following two corollaries of Observations 3.2 and 3.4(a),
and of Observations 3.2 and 3.4(b), respectively.
Corollary 3.5. For every τ ∈ Typ, S ∈ Stack(τ), and M ∈ Term(τ), we
have ⊤(S, M) = ω(S M).
Corollary 3.6. For every τ ∈ Typ and R, R′ ∈ Term(τ), if [[R]] ; [[R′]], then
ω(R) = ω(R′).

In order to later establish the compatibility of the logical relation(s) developed
in the next section, we need two key lemmas about the language constructs
for selective strictness and fixpoint recursion. The first one is reminiscent of
the denotational semantics definition of seq provided in the introduction. Its
proof, which requires some care, is given in the appendix.
Lemma 3.7. Let τ1, τ2 ∈ Typ, A ∈ Term(τ1), and S ∈ Stack(τ2). Let x be a
term variable and B be a typed term with x :: τ1 ⊢ B :: τ2. Then:

⊤(S, let! x = A in B) =







ω(A) if ω(A) 6= 0

⊤(S, B[A/x]) otherwise.

The second lemma, which is the key to properly handling fixpoint recursion,
has the common “unwinding” flavor. To formulate it, we need the notation
(F n A) ∈ Term(τ) for the n-fold application of F to A, given n ∈ N, τ ∈ Typ,
F ∈ Term(τ → τ), and A ∈ Term(τ). The following lemma is then proved in
the appendix.
Lemma 3.8. For every τ ∈ Typ, S ∈ Stack(τ), and F ∈ Term(τ → τ ),
there exists an n0 ∈ N such that for every n ≥ n0, we have ⊤(S,fix(F )) =
⊤(S, F n fix(λx :: τ.x)).

4 The Family of Logical Relations

Recall that so far we have left abstract the notion of adequacy inducing pro-
gram equivalence or approximation by parameterizing it over a binary relation
4 on N∞. We will continue to do so for the remainder of this and the next
section (i.e., up to the end of Section 5). As we go through the technical de-
velopment, though, we will notice that 4 cannot be completely arbitrary, but
instead must fulfill certain restrictions. Two very natural requirements on 4,
in order to ensure that the notion of program equivalence or approximation
it induces is reflexive and transitive, are that for every a ∈ N∞, a 4 a, and
that for every a, b, c ∈ N∞, a 4 b and b 4 c imply a 4 c. These two prop-
erties, making 4 itself a preorder, will henceforth be used without explicit



mention. 3 Two further restrictions are solely mandated by the presence of se-
lective strictness, and will be given closer to the place where they first become
relevant. Next, we discuss restrictions not on 4 but ones defined in terms of
4, restricting the relational interpretations of types.

4.1 4-Compliance and 44-Closedness

That relational interpretations of types, in particular ones used for interpreting
quantified type variables, must be restricted in certain ways is a recurring
theme in the study of parametricity for extensions of the Girard-Reynolds
calculus. The corresponding intuition for selective strictness, that is, for being
able to force “out of order” evaluation of any subterm of any type, is as follows.
The relative behavior as specified (for equally typed terms) by the relevant
notion of adequacy, which induces the observational relation of interest, must
also be reproduced by all relations (even ones between terms of different types)
surfacing in the inductive construction of the logical relation. In our current
abstract setting, this can be formalized as follows.

Given τ, τ ′ ∈ Typ, we define Rel(τ, τ ′) = P(Term(τ)×Term(τ ′)). We say that
r ∈ Rel(τ, τ ′) is 4-compliant if for every (M, M ′) ∈ r, we have ω(M) 4 ω(M ′).
The restriction of Rel(τ, τ ′) to 4-compliant relations is denoted by Rel4(τ, τ ′).
We set Rel =

⋃

τ,τ ′∈Typ

Rel(τ, τ ′) and Rel4 =
⋃

τ,τ ′∈Typ

Rel4(τ, τ ′).

Regarding an appropriate restriction for preserving parametricity in the pres-
ence of fixpoint recursion, we can follow the well-established closure oper-
ator approach of Pitts. So let τ, τ ′ ∈ Typ. Given r ∈ Rel(τ, τ ′), we define
r4 ⊆ Stack(τ) × Stack(τ ′) by

(S, S ′) ∈ r4 iff ∀(M, M ′) ∈ r. ⊤(S, M) 4 ⊤(S ′, M ′).

Similarly, given s ⊆ Stack(τ) × Stack(τ ′), we define s4 ∈ Rel(τ, τ ′) by

(M, M ′) ∈ s4 iff ∀(S, S ′) ∈ s. ⊤(S, M) 4 ⊤(S ′, M ′).

A relation r ∈ Rel is called 44-closed if r44 = r. Note that one inclusion
direction of the latter relation equality is always fulfilled by the first of the
following three properties (which are standard for order-reversing Galois con-
nections) for every τ, τ ′ ∈ Typ and r, r1, r2 ∈ Rel(τ, τ ′):

3 Just for the record: the first property is needed for Observation 4.8, Lem-
mas 5.3, 5.4, and 4.16, Theorem 5.5, and Corollary 4.15, while the second property
is needed for Lemmas 4.2 and 4.16 and Theorem 5.7.



r ⊆ r44 (1)

(r44)4 = r4 (2)

r1 ⊆ r2 ⇒ r44
1 ⊆ r44

2 . (3)

The following preservation lemma establishes a crucial connection between
4-compliance and 44-closure.
Lemma 4.1. For every r ∈ Rel4, we also have r44 ∈ Rel4.
Proof: For every (M, M ′) ∈ r ∈ Rel4, we have ⊤(Id , M) 4 ⊤(Id , M ′) by
Observation 3.2, and thus (Id , Id) ∈ r4. Consequently, for every (N, N ′) ∈
r44, we have ⊤(Id , N) 4 ⊤(Id , N ′), which is equivalent to ω(N) 4 ω(N ′) by
Observation 3.2. �

An important property of 44-closed relations is that they respect 4-adequate
and compatible relations.
Lemma 4.2. Let E be an 4-adequate and compatible relation, let τ, τ ′ ∈ Typ,
and let r ∈ Rel(τ, τ ′) be 44-closed. For every M1 ∈ Term(τ) and M2, M3 ∈
Term(τ ′), if (M1, M2) ∈ r and M2 E M3, then (M1, M3) ∈ r.
Proof: The desired (M1, M3) ∈ r follows from the 44-closedness of r and
the following reasoning for every (S, S ′) ∈ r4:

⊤(S, M1) 4 ⊤(S ′, M2) by (S, S ′) ∈ r4 and (M1, M2) ∈ r

= ω(S ′ M2) by Corollary 3.5

4 ω(S ′ M3)

= ⊤(S ′, M3) by Corollary 3.5.

Here ω(S ′ M2) 4 ω(S ′ M3) follows from M2 E M3, because E is compatible
and 4-adequate. �

The presence of the explicit error primitive in Core mandates no additional re-
striction on relations. It is already completely accounted for by 44-closedness,
as we will see in the proof of Lemma 5.4.

4.2 The Relational Actions

The key to parametricity results is to build relational interpretations of types
by induction on the type structure. Starting from an interpretation of type
variables by relations (between typed terms), this requires defining a relational
action for each of the ways of forming types. Such an action takes an appro-
priate number of relations and produces a new one as the interpretation for
the compound type.



The main characteristic of all logical relations in the literature is that for two
functions to be related they must map related arguments to related results.
Since, as motivated in the previous subsection, in our setting all relations
in the inductive construction should be 4-compliant, the following relational
action additionally enforces this requirement.
Definition 4.3. Given τ1, τ

′
1, τ2, τ

′
2 ∈ Typ, r1 ∈ Rel(τ1, τ

′
1), and r2 ∈ Rel(τ2,

τ ′
2), we define (r1 → r2) ∈ Rel(τ1 → τ2, τ

′
1 → τ ′

2) by

(F, F ′) ∈ (r1 → r2) iff ω(F ) 4 ω(F ′) ∧ ∀(A, A′) ∈ r1. (F A, F ′ A′) ∈ r2

for every F ∈ Term(τ1 → τ2) and F ′ ∈ Term(τ ′
1 → τ ′

2).

Interestingly, it turns out that no such explicit enforcement on the result of
the relational action is necessary for the one corresponding to ∀-types. That
is, the following definition is the standard one, except for the 4-compliance
condition on the quantified relations.
Definition 4.4. Let τ1 and τ ′

1 be types with at most a single free vari-
able, α say. Suppose R is a function that maps every τ2, τ

′
2 ∈ Typ and

r ∈ Rel4(τ2, τ
′
2) to an Rτ2,τ ′

2
(r) ∈ Rel(τ1[τ2/α], τ ′

1[τ
′
2/α]). Then we define

(∀R) ∈ Rel(∀α.τ1, ∀α.τ ′
1) by

(G, G′) ∈ (∀R) iff ∀τ2, τ
′

2 ∈ Typ, r ∈ Rel4(τ2, τ
′

2). (Gτ2 , G
′

τ ′

2

) ∈ Rτ2,τ ′

2
(r)

for every G ∈ Term(∀α.τ1) and G′ ∈ Term(∀α.τ ′
1). We also write ∀R as

∀r.R(r), suppressing reference to τ2 and τ ′
2.

The relational action for list types is also the standard one by structural lifting,
appropriately combined with 44-closure. That is, given τ, τ ′ ∈ Typ and r ∈
Rel(τ, τ ′), we define list(r) ∈ Rel(τ -list , τ ′-list) as the greatest (post-)fixpoint
(with respect to set inclusion) of the mapping s 7→ (1 + (r × s))44 for s ∈
Rel(τ -list , τ ′-list), where

1 + (r × s) = {(nilτ ,nilτ ′)} ∪ {(H : T, H ′ : T ′) | (H, H ′) ∈ r ∧ (T, T ′) ∈ s}

for every such s. The existence of the greatest fixpoint is guaranteed by mono-
tonicity of the mapping s 7→ (1 + (r × s))44 with respect to set inclusion,
which in turn follows from (3). Note that for every r ∈ Rel :

list(r) = (1 + (r × list(r)))44. (4)

Finally, the relational actions can be combined to define a logical relation by
induction on the structure of Core types. It maps a type and a list containing
relations as interpretations for the type’s free variables to a new relation.
Definition 4.5. For every type τ , n ∈ N, list ~α = α1, . . . , αn of distinct
type variables containing the free variables of τ , lists ~τ = τ1, . . . , τn and
~τ ′ = τ ′

1, . . . , τ
′
n of closed types, and list ~r = r1, . . . , rn with ri ∈ Rel(τi, τ

′
i)



for every 1 ≤ i ≤ n, we define ∆τ (~r/~α) ∈ Rel(τ [~τ/~α], τ [~τ ′/~α]) by induction on
the structure of τ as follows:

∆αi
(~r/~α) = ri (5)

∆τ ′→τ ′′(~r/~α) =∆τ ′(~r/~α) → ∆τ ′′(~r/~α) (6)

∆∀α.τ ′(~r/~α) =∀r.∆τ ′(~r, r44/~α, α) (7)

∆τ ′-list(~r/~α) = list(∆τ ′(~r/~α)). (8)

Note that without loss of generality the variable bound in the head of ∀α.τ ′

in clause (7) can be assumed to not occur in ~α.

4.3 Preservation of Restrictions

The task of this subsection is to establish that ∆τ (~r/~α) is 4-compliant and
44-closed provided every relation in ~r is. This entails showing how these
restrictions are pushed along the type structure by the relational actions. Due
to the explicit enforcement of 4-compliance in Definition 4.3, the following
observation is trivial.
Observation 4.6. For every r1, r2 ∈ Rel , we have (r1 → r2) ∈ Rel4.

In contrast, since no explicit enforcement takes place in Definition 4.4, the
corresponding statement regarding the relational action for ∀-types depends
on a precondition and requires an explicit proof.
Lemma 4.7. Let R be as in Definition 4.4. If Rτ2,τ ′

2
(r) ∈ Rel4 for some

τ2, τ
′
2 ∈ Typ and r ∈ Rel4(τ2, τ

′
2), then also (∀R) ∈ Rel4.

Proof: Let (G, G′) ∈ (∀R). Then (Gτ2 , G
′

τ ′

2

) ∈ Rτ2,τ ′

2
(r) and thus ω(Gτ2) 4

ω(G′

τ ′

2

), from which ω(G) 4 ω(G′) follows by the final observation in Defini-
tion 2.6. �

Regarding the relational action for list types, it suffices to note that for every
r ∈ Rel the relation 1+(r× list(r)) is 4-compliant since for every (L, L′) con-
tained in it, we have ω(L) = 0 = ω(L′). This immediately gives the following
observation by Lemma 4.1 and (4).
Observation 4.8. For every r ∈ Rel, we have list(r) ∈ Rel4.

Now we turn to 44-closedness.
Lemma 4.9. For every r1, r2 ∈ Rel, if r2 is 44-closed, then so is r1 → r2.
Proof: We have to show that (F, F ′) ∈ (r1 → r2)

44 implies (F, F ′) ∈ (r1 →
r2), i.e., ω(F ) 4 ω(F ′) and for every (A, A′) ∈ r1, (F A, F ′ A′) ∈ r2. The
former holds because (r1 → r2)

44 is 4-compliant by Observation 4.6 and
Lemma 4.1. The latter follows from 44-closedness of r2 if we can show that
(A, A′) ∈ r1 and (F, F ′) ∈ (r1 → r2)

44 together imply (F A, F ′ A′) ∈ r44
2 . To



do so, we reason for every (S, S ′) ∈ r4
2 as follows:

⊤(S, F A) = ⊤(S ◦ (− A), F ) by Observation 3.4(a)

4 ⊤(S ′ ◦ (− A′), F ′)

= ⊤(S ′, F ′ A′) by Observation 3.4(a).

Here ⊤(S ◦ (− A), F ) 4 ⊤(S ′ ◦ (− A′), F ′) holds by (F, F ′) ∈ (r1 → r2)
44 and

(S ◦ (− A), S ′ ◦ (− A′)) ∈ (r1 → r2)
4. The latter is established by reasoning

for every (N, N ′) ∈ (r1 → r2) as follows:

⊤(S ◦ (− A), N) = ⊤(S, N A) by Observation 3.4(a)

4 ⊤(S ′, N ′ A′)

= ⊤(S ′ ◦ (− A′), N ′) by Observation 3.4(a).

Here ⊤(S, N A) 4 ⊤(S ′, N ′ A′) holds by (S, S ′) ∈ r4
2 and (N A, N ′ A′) ∈ r2.

The latter follows from (N, N ′) ∈ (r1 → r2) and (A, A′) ∈ r1 by the definition
of r1 → r2. �

Lemma 4.10. Let R be as in Definition 4.4. If Rτ2,τ ′

2
(r) is 44-closed for

every τ2, τ
′
2 ∈ Typ and r ∈ Rel4(τ2, τ

′
2), then ∀R is also 44-closed.

We omit the proof, which is very similar to that of Lemma 4.9.

Now, the desired statement about the propagation of 4-compliance and 44-
closedness can easily be proved by induction on the structure of τ , using
Lemmas 4.1, 4.7, 4.9, and 4.10, Observations 4.6 and 4.8, and (2) and (4).
Lemma 4.11. Let τ , ~α, and ~r be as in Definition 4.5. If every relation in ~r
is 4-compliant and 44-closed, then so is ∆τ (~r/~α).

By similar inductions we easily obtain the following two results as well.
Observation 4.12. Let τ , ~α, and ~r be as in Definition 4.5. Moreover, let
r′ ∈ Rel and let α′ be a type variable not occurring in ~α (and hence not
occurring free in τ). Then ∆τ (~r, r

′/~α, α′) = ∆τ (~r/~α).
Observation 4.13. Let τ , ~α, and ~r be as in Definition 4.5. Moreover, let α′

be a type variable not occurring in ~α and let τ ′ be a type with free variables in
~α, α′. Then ∆τ ′[τ/α′](~r/~α) = ∆τ ′(~r, ∆τ (~r/~α)/~α, α′).

4.4 Manufacturing Permissible Relations

For later applications of the logical relation we need a source of appropriately
restricted relations, that is, ones that are 4-compliant and 44-closed. Such a
source is obtained by considering two dual notions of graphs of typed stacks
up to the logical relation. For every τ, τ ′ ∈ Typ and S ∈ Stack(τ, τ ′), we define



left-graphS ∈ Rel(τ, τ ′) by

(M, M ′) ∈ left-graphS iff (S M, M ′) ∈ ∆τ ′()

and right-graphS ∈ Rel(τ ′, τ) by

(M ′, M) ∈ right-graphS iff (M ′, S M) ∈ ∆τ ′().

To investigate whether (or when) left-graphS and/or right-graphS is 4-com-
pliant — that is, whether (S M, M ′) ∈ ∆τ ′() implies ω(M) 4 ω(M ′) in the
first case, and dually for the second case — it seems necessary to establish some
4-relationship between ω(M) and ω(S M). (Note that ∆τ ′() is 4-compliant
by Lemma 4.11, so a corresponding relation between ω(S M) and ω(M ′) is
already known in both cases.) For the case that M is not converging, the
following lemma is helpful.
Lemma 4.14. Let τ, τ ′ ∈ Typ, S ∈ Stack(τ, τ ′), and M ∈ Term(τ). If
ω(M) 6= 0, then ω(S M) = ω(M).
Proof: By Corollary 3.5, we have ω(S M) = ⊤(S, M). So we have to show that
for every i ∈ N+, ω(M) = i implies ⊤(S, M) = i, and that ω(M) = ∞ implies
⊤(S, M) = ∞. The former follows easily by combining Definitions 2.1, 2.6,
and 3.1 with Observation 2.4. For the latter, assume ⊤(S, M) 6= ∞. Then
([[S]], [[M ]]) must lead to an end configuration. By Lemma 2.3 this contradicts
ω(M) = ∞. �

Note that with S = (− A) and M = F , Lemma 4.14 implies the following
corollary, to be used later in Section 6.
Corollary 4.15. Let τ, τ ′ ∈ Typ, F ∈ Term(τ → τ ′), and A ∈ Term(τ). If
0 4 ω(F A), then 0 4 ω(F ). If ω(F A) 4 0, then ω(F ) 4 0.

But the real worth of Lemma 4.14 here is that it allows us to restrict our
attention in the above investigation to M with ω(M) = 0. For left-graphS,
we then have to ensure that ω(M) = 0 and ω(S M) 4 ω(M ′) imply ω(M) 4

ω(M ′). This motivates the following definition(s), as well as the following
lemma, whose proof essentially assembles the whole line of reasoning above.

Given τ ∈ Typ and S ∈ Stack(τ), we say that S is 4-upwards (or 4-
downwards) if for every M ∈ Term(τ) with ω(M) = 0, we have 0 4 ω(S M)
(or ω(S M) 4 0, respectively).
Lemma 4.16. Let τ, τ ′ ∈ Typ and S ∈ Stack(τ, τ ′). Then left-graphS and
right-graphS are 44-closed. Moreover, if S is 4-upwards, then left-graphS is
4-compliant. Also, if S is 4-downwards, then right-graphS is 4-compliant.
Proof: To prove the statement regarding 44-closedness for left-graphS, we
have to show that (M, M ′) ∈ (left-graphS)44 implies (S M, M ′) ∈ ∆τ ′().
By Lemma 4.11, ∆τ ′() is 44-closed, so it suffices to show that (M, M ′) ∈
(left-graphS)44 and (S ′, S ′′) ∈ (∆τ ′())4 imply ⊤(S ′, S M) 4 ⊤(S ′′, M ′). But



this follows from Corollary 3.5 and the following reasoning for every (N, N ′) ∈
left-graphS, which establishes (S ′ @ S, S ′′) ∈ (left-graphS)4 from (S ′, S ′′) ∈
(∆τ ′())4:

⊤(S ′ @ S, N) = ⊤(S ′, S N) by Corollary 3.5

4 ⊤(S ′′, N ′) by (S ′, S ′′) ∈ (∆τ ′())4 and (S N, N ′) ∈ ∆τ ′() ,

where (S N, N ′) ∈ ∆τ ′() follows from (N, N ′) ∈ left-graphS by definition. The
proof of the statement regarding 44-closedness for right-graphS is completely
analogous.

To prove the statement regarding 4-compliance for left-graphS, let (M, M ′) ∈
left-graphS, that is, (S M, M ′) ∈ ∆τ ′(). By Lemma 4.11 we then immediately
have ω(S M) 4 ω(M ′). So it suffices to show that ω(M) 4 ω(S M). But this
follows from 4-upwardness of S by Lemma 4.14. The proof of the statement
regarding 4-compliance for right-graphS is completely analogous. �

5 The Characterization Result

To characterize the largest reflexive, transitive, compatible, substitutive, and
4-adequate relation via the logical relation from Definition 4.5, we first have
to lift the latter from closed terms to a relation on terms possibly containing
free variables, that is, to a relation in the sense of Definition 2.5. This is done,
as usual, via closing substitutions.
Definition 5.1. Let n, m ∈ N, let ~α be a list of n type variables, ~x =
x1, . . . , xm be a list of term variables, τ1, . . . , τm be types, and Γ = ~α, x1 ::
τ1, . . . , xm :: τm. Given typed terms M and M ′ and a type τ with Γ ⊢ M :: τ
and Γ ⊢ M ′ :: τ , we write

Γ ⊢ M ∆ M ′ :: τ

if for every pair of lists ~σ = σ1, . . . , σn and ~σ′ = σ′
1, . . . , σ

′
n of closed types and

every list ~r = r1, . . . , rn of 44-closed ri ∈ Rel4(σi, σ
′
i), we have that for every

pair of lists ~N = N1, . . . , Nm and ~N ′ = N ′
1, . . . , N

′
m with (Nj , N

′
j) ∈ ∆τj

(~r/~α)
for every 1 ≤ j ≤ m, the following membership holds:

(M [~σ/~α, ~N/~x], M ′[~σ′/~α, ~N ′/~x]) ∈ ∆τ (~r/~α).

The first step to be taken now is to prove the fundamental property of the
logical relation, namely that it is reflexive. Actually, one proves the stronger
statement that ∆ is compatible. For this, a number of “compatibility lemmas”
are needed. Here we do not discuss those for term formers already present in
the Girard-Reynolds calculus and actually also omit the ones related to list
types, which are just as standard.



So let us first consider selective strictness. What we want is the following
lemma, where the choice of restrictions imposed on r1 and r2 is inspired by
Lemma 4.19 in [16].
Lemma 5.2. Let τ1, τ

′
1, τ2, τ

′
2 ∈ Typ, r1 ∈ Rel4(τ1, τ

′
1), r2 ∈ Rel(τ2, τ

′
2), and

(A, A′) ∈ r1. Let x be a term variable and B and B′ be typed terms such that
x :: τ1 ⊢ B :: τ2 and x :: τ ′

1 ⊢ B′ :: τ ′
2. If (B[A/x], B′[A′/x]) ∈ r2 and r2 is

44-closed, then (let! x = A in B, let! x = A′ in B′) ∈ r2.

It turns out, however, that a proof does not succeed if we do not at least
impose the following (further) two restrictions on 4:

∀a ∈ N+,∞. 0 4 a ⇒ ∀b ∈ N∞. b 4 a (9)

∀a ∈ N+,∞. a 4 0 ⇒ ∀b ∈ N∞. a 4 b (10)

Note that both quantifications for a exclude a = 0. Assuming from now on
that (9) and (10) hold for the relation 4 under consideration, we can prove
the above lemma as follows.
Proof of Lemma 5.2: Let (S, S ′) ∈ r4

2 . By Lemma 3.7 we have

⊤(S, let! x = A in B) =







ω(A) if ω(A) 6= 0

⊤(S, B[A/x]) otherwise

and

⊤(S ′, let! x = A′ in B′) =







ω(A′) if ω(A′) 6= 0

⊤(S ′, B′[A′/x]) otherwise.

By (A, A′) ∈ r1 ∈ Rel4, (S, S ′) ∈ r4
2 , and (B[A/x], B′[A′/x]) ∈ r2, we have

ω(A) 4 ω(A′) and ⊤(S, B[A/x]) 4 ⊤(S ′, B′[A′/x]). There are four cases to
consider.

Case a: ω(A) 6= 0 and ω(A′) 6= 0. Then ⊤(S, let! x = A in B) = ω(A)
and ⊤(S ′, let! x = A′ in B′) = ω(A′), and thus ⊤(S, let! x = A in B) 4

⊤(S ′, let! x = A′ in B′).

Case b: ω(A) = 0 and ω(A′) = 0. Then ⊤(S, let! x = A in B) = ⊤(S, B[A/x])
and ⊤(S ′, let! x = A′ in B′) = ⊤(S ′, B′[A′/x]), and thus ⊤(S, let! x = A in B)
4 ⊤(S ′, let! x = A′ in B′).

Case c: ω(A) = 0 and ω(A′) 6= 0. Then ⊤(S, let! x = A in B) = ⊤(S, B[A/x])
and ⊤(S ′, let! x = A′ in B′) = ω(A′). Moreover, ω(A) 4 ω(A′) and (9)
then imply that ⊤(S, B[A/x]) 4 ω(A′), and thus ⊤(S, let! x = A in B) 4

⊤(S ′, let! x = A′ in B′).

Case d: ω(A) 6= 0 and ω(A′) = 0. Then ⊤(S, let! x = A in B) = ω(A) and
⊤(S ′, let! x = A′ in B′) = ⊤(S ′, B′[A′/x]). Moreover, ω(A) 4 ω(A′) and (10)



then imply that ω(A) 4 ⊤(S ′, B′[A′/x]), and thus ⊤(S, let! x = A in B) 4

⊤(S ′, let! x = A′ in B′).

Since ⊤(S, let! x = A in B) 4 ⊤(S ′, let! x = A′ in B′) for every choice of
(S, S ′) ∈ r4

2 , we have (let! x = A in B, let! x = A′ in B′) ∈ r44
2 , from which

the desired statement follows by 44-closedness of r2. �

The rationale behind the restrictions (9) and (10), apart from that they make
the above proof go through, will be discussed in Section 8.

The key lemma for fixpoint recursion is the following induction principle.
Lemma 5.3. Let τ, τ ′ ∈ Typ, F ∈ Term(τ → τ ), F ′ ∈ Term(τ ′ → τ ′), and
r ∈ Rel(τ, τ ′). If r is 44-closed and for every (A, A′) ∈ r, we also have
(F A, F ′ A′) ∈ r, then (fix(F ),fix(F ′)) ∈ r.
Proof: By the definitions of ⊤ and [[·]] and Observation 2.2, we have ⊤(S,
fix(λx :: τ.x)) 4 ⊤(S ′,fix(λx :: τ ′.x)) for every (S, S ′) ∈ r4. Thus, we have
(fix(λx :: τ.x),fix(λx :: τ ′.x)) ∈ r44. Using the preconditions of the lemma,
it follows from this by induction on natural numbers that for every n ∈ N,
we have (F n fix(λx :: τ.x), F ′n fix(λx :: τ ′.x)) ∈ r. Now, let (S, S ′) ∈ r4. By
Lemma 3.8 there exists n ∈ N such that ⊤(S,fix(F )) = ⊤(S, F n fix(λx :: τ.x))
and ⊤(S ′,fix(F ′)) = ⊤(S ′, F ′n fix(λx :: τ ′.x)). By the above, this implies
⊤(S,fix(F )) 4 ⊤(S ′,fix(F ′)). Since this is so for every choice of (S, S ′) ∈ r4,
we have (fix(F ),fix(F ′)) ∈ r44, from which the desired (fix(F ),fix(F ′)) ∈ r
follows by 44-closedness of r. �

For finite failure, the required lemma is almost trivial.
Lemma 5.4. Let τ, τ ′ ∈ Typ, r ∈ Rel(τ, τ ′), and i ∈ N+. If r is 44-closed,
then (errorτ (i), errorτ ′(i)) ∈ r.
Proof: For every (S, S ′) ∈ r4, we have ⊤(S, errorτ (i)) = i = ⊤(S ′, errorτ ′(i)).
Together with 44-closedness of r, this suffices. �

We can now prove the following important theorem.
Theorem 5.5. The relation ∆ is compatible and substitutive. In particular,
for every τ ∈ Typ and M ∈ Term(τ), we have (M, M) ∈ ∆τ ().
Proof: We have to show that ∆ is closed under each of the axioms and rules
in Figures 3 and 4. The axiom Γ, x :: τ ⊢ x ∆ x :: τ is trivially satisfied due
to the way ∆ is defined. Also by that definition, to establish the rule

Γ ⊢ A ∆ A′ :: τ Γ, x :: τ ⊢ B ∆ B′ :: τ ′

Γ ⊢ (let! x = A in B) ∆ (let! x = A′ in B′) :: τ ′

it suffices to show that for Γ as in Definition 5.1, a term variable x not among
the ~x, types τ and τ ′, typed terms A, A′, B, and B′ with Γ ⊢ A :: τ , Γ ⊢ A′ :: τ ,
Γ, x :: τ ⊢ B :: τ ′, and Γ, x :: τ ⊢ B′ :: τ ′, lists ~σ = σ1, . . . , σn and ~σ′ =
σ′

1, . . . , σ
′
n of closed types, list ~r = r1, . . . , rn of 44-closed ri ∈ Rel4(σi, σ

′
i),

list ~N = N1, . . . , Nm of Nj ∈ Term(τj [~σ/~α]), and list ~N ′ = N ′
1, . . . , N

′
m of



N ′
j ∈ Term(τj [~σ

′/~α]),

(A[~σ/~α, ~N/~x], A′[~σ′/~α, ~N ′/~x]) ∈ ∆τ (~r/~α)

and

∀(N, N ′) ∈ ∆τ (~r/~α). (B[~σ/~α, ~N/~x, N/x], B′[~σ′/~α, ~N ′/~x, N ′/x]) ∈ ∆τ ′(~r/~α)

imply

((let! x = A in B)[~σ/~α, ~N/~x], (let! x = A′ in B′)[~σ′/~α, ~N ′/~x]) ∈ ∆τ ′(~r/~α).

But this is indeed so by Lemma 5.2, taking into account that by Lemma 4.11,
∆τ (~r/~α) is 4-compliant and ∆τ ′(~r/~α) is 44-closed. The remaining axioms
and rules are established in a similar fashion, additionally using (1) and (4),
Observation 4.13, Lemmas 4.1, 5.3, and 5.4, and the aforementioned additional
compatibility lemmas. �

One further important property that ∆ should have is 4-adequacy.
Lemma 5.6. The relation ∆ is 4-adequate.
Proof: Let τ ∈ Typ and M, M ′ ∈ Term(τ). If M ∆ M ′, then (M, M ′) ∈ ∆τ ()
by the definition of ∆. Since ∆τ () is 4-compliant by Lemma 4.11, this implies
ω(M) 4 ω(M ′). �

Our main theorem is that ∆ is not just any compatible, substitutive, and
4-adequate relation, but is actually exactly the one we are interested in.
Theorem 5.7. The relation ∆ is the largest compatible, substitutive, and 4-
adequate relation. It is also reflexive and transitive.
Proof: By Theorem 5.5 and Lemma 5.6, ∆ is compatible, substitutive, and
4-adequate. Since it is compatible, it is reflexive as well.

For the first statement of the theorem, it remains to prove that ∆ subsumes
every compatible, substitutive, and 4-adequate relation. Let E be such a rela-
tion, let Γ, M , M ′, and τ be as in Definition 5.1, and assume Γ ⊢ M E M ′ :: τ .
Further, let ~σ = σ1, . . . , σn and ~σ′ = σ′

1, . . . , σ
′
n be lists of closed types,

~r = r1, . . . , rn be a list of 44-closed ri ∈ Rel4(σi, σ
′
i), and ~N = N1, . . . , Nm

and ~N ′ = N ′
1, . . . , N

′
m be lists with (Nj , N

′
j) ∈ ∆τj

(~r/~α) for every 1 ≤ j ≤ m.
Since ∆ is reflexive, we have Γ ⊢ M ∆ M :: τ , which by Definition 5.1 implies
that

(M [~σ/~α, ~N/~x], M [~σ′/~α, ~N ′/~x]) ∈ ∆τ (~r/~α). (11)

Moreover, Γ ⊢ M E M ′ :: τ and the substitutivity of E imply that

M [~σ′/~α, ~N ′/~x] E M ′[~σ′/~α, ~N ′/~x]. (12)

Since (11) and (12) combine into (M [~σ/~α, ~N/~x], M ′[~σ′/~α, ~N ′/~x]) ∈ ∆τ (~r/~α)
by Lemmas 4.2 and 4.11, and since this is obtained independently of the



choice of the lists ~σ, ~σ′, ~r, ~N , and ~N ′ above, we indeed have the desired
Γ ⊢ M ∆ M ′ :: τ by Definition 5.1.

For the second statement of the theorem, it remains to prove that ∆ is tran-
sitive. It is easy to see that the collection of compatible, substitutive, and
4-adequate relations is closed under relation composition. This implies that
∆; ∆ is compatible, substitutive, and 4-adequate, and is thus subsumed by
the largest such relation, i.e., ∆; ∆ ⊆ ∆. �

Henceforth, we will use the reflexivity and transitivity of ∆ without explicit
mention.

Before moving on to a larger application in the next section, let us derive some
useful consequences of what we have learned about ∆. The first one tells us
that any notion of program equivalence or approximation induced by some 4

is closed under equality and small-step reductions (in either direction) of type
erasures.
Lemma 5.8. For every M, M ′ ∈ Term of the same type, if [[M ]] = [[M ′]] or
[[M ]] ; [[M ′]], then M ∆ M ′ and M ′ ∆ M .
Proof: By definition, we have to show that (M, M ′) ∈ ∆τ () and (M ′, M) ∈
∆τ (), where τ is the type of both M and M ′. By Lemma 4.11, ∆τ () is
44-closed and thus equal to (∆τ ())

44. Then it suffices to note that for
every (S, S ′) ∈ (∆τ ())

4, ⊤(S, M) = ⊤(S, M ′) and ⊤(S ′, M ′) = ⊤(S ′, M) by
Observation 3.3 or Observation 3.4(b), as well as ⊤(S, M ′) 4 ⊤(S ′, M ′) by
(S, S ′) ∈ (∆τ ())

4 and (M ′, M ′) ∈ ∆τ (), where the latter holds by Theo-
rem 5.5. �

Another interesting direction is to look at extensionality principles for arbi-
trary ∆. To consider the extensionality principle for ∀-types, let τ be a type
with at most a single free variable, α say. Then for every G, G′ ∈ Term(∀α.τ )
we have G ∆ G′ if and only if for every τ ′ ∈ Typ it holds that Gτ ′ ∆ G′

τ ′. The
proof, which uses Lemmas 4.1, 4.2, and 4.11 and Theorem 5.5, is identical to
that of Theorem 5.4 in [17]. In particular, no extra condition relating ω(G)
and ω(G′) appears in either the statement or the proof.

This is in contrast to Lemma 7.7 in [16], and also to the extensionality principle
for function types in the present setting, which goes as follows. Let τ1, τ2 ∈ Typ.
Then for every F, F ′ ∈ Term(τ1 → τ2) we have F ∆ F ′ if and only if ω(F ) 4

ω(F ′) and for every A ∈ Term(τ1) it holds that F A ∆ F ′ A. The proof,
which uses the 4-adequacy of ∆, Lemmas 4.2 and 4.11, and Theorem 5.5, is
analogous to that of Lemma 7.6 in [16].



6 Application to Short Cut Fusion

The Core equivalents of the Haskell functions foldr and build from [9] are as
follows:

foldr = Λα.Λβ.λc :: α → β → β.λn :: β.fix(λf :: α-list → β.λl :: α-list .

case l of {nil ⇒ n;

h : t ⇒ c h (f t)})

and

build = Λα.λg :: ∀β.(α → β → β) → β → β.gα-list (λh :: α.λt :: α-list .h : t) nilα.

Note that foldr ∈ Term(∀α.∀β.(α → β → β) → β → α-list → β) and build ∈
Term(∀α.(∀β.(α → β → β) → β → β) → α-list).

The foldr/build -rule for Core now says that for every τ, τ ′ ∈ Typ, G ∈
Term(∀β.(τ → β → β) → β → β), C ∈ Term(τ → τ ′ → τ ′), and N ∈ Term(τ ′),
(foldr τ )τ ′ C N (build τ G) should be transformed into Gτ ′ C N . Our concern
when considering (partial or total) correctness of this rule with respect to
a given notion of program equivalence or approximation is thus to find out
whether these two expressions are related by that notion, or whether there can
at least be given preconditions on N and C that guarantee the two expressions
to be so related.

To underscore the need for a very careful study here, and to set the scene for
eventual interpretation and evaluation of our results, we want to give a few,
perhaps surprising, examples of how selective strictness and different failure
causes interact with foldr/build -fusion. To this end, consider the Haskell func-
tion lastThatOrEmpty, defined as follows in terms of foldl ′ from Section 2.2:

lastThatOrEmpty :: ∀α. (α → Bool) → [α] → [α]

lastThatOrEmpty p = foldl ′ (λz h → if p h then [h] else z) []

Given a predicate p and an input list l, it returns the singleton list con-
taining the last element of l that satisfies p, or the empty list if no such
element exists. It can be expressed in Core as an element of Term(∀α.(α →
(∀β.β → β → β)) → α-list → α-list) as follows, where we use the Church
encoding of the boolean type, and at the same time employ build to abstract
from list constructors:

Λα.λp :: α → (∀β.β → β → β).

λl :: α-list .buildα (Λβ.λc :: α → β → β.λn :: β.

(foldl ′α)β (λz :: β.λh :: α.(p h)β (c h n) z) n l)



However, for the sake of intuitive reading, we will use the Haskell version
in the discussion here. In particular, we want to consider instances of fusion
involving the following two producer functions (with even being the obvious
predicate on the type Int of integers):

lastEvenOrEmpty :: [Int ] → [Int ]

lastEvenOrEmpty = lastThatOrEmpty even

and

lastOrEmpty :: ∀α. [α] → [α]

lastOrEmpty = lastThatOrEmpty (λx → True)

On the consumer side, we will use two functions expressed via foldr :

headOr :: ∀α. [α] → [α] → [α]

headOr = foldr (λh t → [h])

and

assertEmptyElse :: ∀α. (α → [α]) → [α] → [α]

assertEmptyElse f = foldr (λh t → f h) []

The first of these can be used to return a singleton list containing the head
element of a given list, with an alternative provided for the case that the input
list is empty. For example,

headOrEmpty :: ∀α. [α] → [α]

headOrEmpty = headOr []

returns the empty list in that case, while

headOrError :: ∀α. [α] → [α]

headOrError = headOr (error “empty list”)

produces an explicit error. The function assertEmptyElse checks that a given
list is empty, if so, returns the empty list, and otherwise does whatever the
argument function f tells it to do with the first list element. For example, the
function

assertEmptyElseError :: ∀α. Show α ⇒ [α] → [α]

assertEmptyElseError = assertEmptyElse (error · show)

then produces an explicit error mentioning the first element of the supposedly
empty list, while the function

assertEmpty :: ∀α. [α] → [α]

assertEmpty = assertEmptyElse (λh → [])



consumer · producer before after

headOrEmpty · lastEvenOrEmpty [2] [2]

headOrError · lastEvenOrEmpty [2] error “empty list”

assertEmptyElseError · lastOrEmpty error “2” error “1”

assertEmpty · lastOrEmpty [] []

Table 1
Results on the input list [1, 2] before and after foldr/build -fusion.

simply returns the empty list anyway. Let us now look at some combinations
of consumers and producers. We apply each of these combinations to the input
list [1, 2] of type [Int ], and report the computed result before and after per-
forming foldr/build -fusion in Table 1. The second and third lines are probably
not what the reader would have expected, certainly not without performing
foldr/build -fusion “by hand” and very carefully simulating the resulting pro-
gram while taking the subtle use of seq in the definition of foldl ′ into account.

These two lines show that it is both possible that an erstwhile normally termi-
nating program suddenly leads to a runtime error after fusion, and that differ-
ent runtime errors might get confused. Moreover, replacing headOrError by
headOr loop for any nonterminating computation loop in the second line shows
that it is also possible that a terminating program becomes nonterminating.
Similarly, examples can be given where runtime errors and nontermination get
confused. So at least two questions arise:

(a) Under what preconditions is foldr/build -fusion semantics-preserving, even
when taking different kinds of failures into account and considering them
as separate? Ideally, these conditions would explain why the first and
fourth lines in Table 1 are unproblematic.

(b) Under what preconditions do we at least get partial correctness with
respect to a chosen semantic approximation order, determined by its rel-
ative treatment of different failure causes? Ideally, this would allow us to
formulate guarantees such as that the use of headOrError , rather than
headOr loop, in the second line ensures that at least no nontermination
will be introduced.

Once one has some experience with Haskell’s selective strictness semantics, it
might be easy to answer questions like these for specific instances like those
in Table 1 by taking the definition of the producer function into account. But
we aim at general statements formulated in terms of the arguments to the
consuming foldr only. For later reference, Table 2 lists those arguments for
the fusion instances considered in Table 1.



consumer first arg. of foldr second arg. of foldr

headOrEmpty λh t → [h] []

headOrError λh t → [h] error “empty list”

assertEmptyElseError λh t → error (show h) []

assertEmpty λh t → [] []

Table 2
Arguments to foldr for different consumers.

For our formal investigation we switch back to using Core rather than Haskell.
And in the interest of maximal generality and reusability, we (again) refrain
from restricting attention to a particular notion of program equivalence or
approximation. Instead, we prove a more abstract statement that can then be
instantiated for each such notion individually.

So let 4 be a preorder on N∞ satisfying (9) and (10). To make more apparent
that the logical relation we are dealing with below depends on 4, we will
denote it as ∆4. For the sake of readability, though, we avoid using similar
indexing for the relational actions or the concept of left-graphs, even though
these notions of course also depend on 4.

In principle, the proof goes along similar lines as earlier proofs for more specific
(equational or inequational) statements for smaller extensions of the Girard-
Reynolds calculus; see, e.g., [16–18]. First, by Theorem 5.5 and Definition 4.5,
we obtain from the type of G alone that

(G, G) ∈ (∀r.(∆4
τ (r44/β) → (r44 → r44)) → (r44 → r44)).

By Definitions 4.3 and 4.4 and Observation 4.12 this implies that for every r ∈
Rel4(τ -list , τ ′), C1 ∈ Term(τ → τ -list → τ -list), C2 ∈ Term(τ → τ ′ → τ ′),
N1 ∈ Term(τ -list), and N2 ∈ Term(τ ′):

ω(C1) 4 ω(C2)

∧ (∀(A1, A2) ∈ ∆4
τ (). ω(C1 A1) 4 ω(C2 A2)

∧ ∀(B1, B2) ∈ r44. (C1 A1 B1, C2 A2 B2) ∈ r44)

∧ (N1, N2) ∈ r44

⇒ (Gτ -list C1 N1, Gτ ′ C2 N2) ∈ r44.

From the form of the foldr/build -rule (and from earlier experience) we know
that we want to instantiate C1 = λh :: τ.λt :: τ -list .h : t, C2 = C, N1 = nilτ ,
N2 = N , and

r = {(L, M) | L ∈ Term(τ -list) ∧ M ∈ Term(τ ′) ∧ ((foldr τ )τ ′ C N L) ∆4 M} ,



where the latter relation should be 44-closed and 4-compliant. To establish
that it is, we first note that by the definition of foldr , Lemma 5.8, and the
compatibility of ∆4, it equals left-graphS, where

S = case − of {nil ⇒ N ;

h : t ⇒ C h (fix(λf :: τ -list → τ ′.λl :: τ -list .

case l of {nil ⇒ N ;

h′ : t′ ⇒ C h′ (f t′)}) t)}.

To successfully apply Lemma 4.16, we need to know that S is 4-upwards.
For this, we need to consider ω(S M) for M with ω(M) = 0. Intuitively, it
is clear that for such M , that is, for converging M , the pattern matching in
the only frame of S will successfully reduce to one of its two branches. So to
guarantee 0 4 ω(S M) then (as required for S to be 4-upwards), it suffices to
require that 0 4 ω(N) and that for every A ∈ Term(τ) and B ∈ Term(τ ′), 0 4

ω(C A B). A more formal counterpart to this intuitive reasoning can be found
as Lemma A.4 in the appendix. Since under the specified conditions on N and
C we now know from Lemma 4.16 that r is 4-compliant and 44-closed, we
also know that the choice of r was justified (i.e., it really is in Rel4(τ -list , τ ′))
and that occurrences of r44 in the implication displayed above can be replaced
by r itself. Then the desired ((foldr τ )τ ′ C N (build τ G)) ∆4 (Gτ ′ C N) follows
from the definition of build , Corollary 3.6, Lemma 5.8, and the compatibility
of ∆4, provided we can establish that

0 4 ω(C) ,

that
∀A1 ∈ Term(τ). 0 4 ω(C A1) ,

that

∀(A1, A2) ∈ ∆4
τ (), B1 ∈ Term(τ -list), B2 ∈ Term(τ ′).

((foldr τ )τ ′ C N B1) ∆4 B2

⇒ ((foldr τ )τ ′ C N ((λh :: τ.λt :: τ -list .h : t) A1 B1)) ∆4 (C A2 B2) ,

and that
((foldr τ )τ ′ C N nilτ ) ∆4 N.

But the first two conditions follow by Corollary 4.15 from the condition im-
posed on C above, whereas the other two statements follow from the definition
of foldr , Lemma 5.8, and the compatibility of ∆4. So altogether we have proved
the following theorem.
Theorem 6.1. If 0 4 ω(N) and for every A ∈ Term(τ) and B ∈ Term(τ ′),
0 4 ω(C A B), then ((foldr τ )τ ′ C N (build τ G)) ∆4 (Gτ ′ C N).

By simply instantiating 4 to particular preorders on N∞ satisfying (9) and (10),
and using Theorem 5.7, we can now obtain partial and total correctness results



for foldr/build -fusion with respect to a variety of observational approximation
and equivalence relations without having to repeat any proof. We illustrate
this for some of the observational relations presented in Example 2.7.

Consider the observational equivalence relation ≡1 that semantically distin-
guishes between every pair of different failure causes. The underlying choice
for 4 is the one given under (a) in Example 2.7. For this 4, the conditions
0 4 ω(N) and 0 4 ω(C A B) in Theorem 6.1 are obviously equivalent to
ω(N) = 0 and ω(C A B) = 0, and thus to N⇓ and (C A B)⇓, respectively.
So we immediately get the following corollary.
Corollary 6.2. If N⇓ and for every A ∈ Term(τ) and B ∈ Term(τ ′), (C A B)⇓,
then ((foldr τ )τ ′ C N (build τ G)) ≡1 (Gτ ′ C N).

From choice (b) in Example 2.7 we get, via exactly the same reasoning, the
same result for the observational equivalence relation ≡2 that unifies all differ-
ent failure causes, and thus essentially corresponds to the one from [20]. The
corresponding partial correctness result from [16] is obtained from the inverse
of choice (c), that is, from 4 = N+,∞×N+,∞∪{0}×N∞, by simply observing
that in this case 0 4 ω(N) and 0 4 ω(C A B) are fulfilled unconditionally.
Corollary 6.3. ((foldr τ )τ ′ C N (build τ G)) ⊒2 (Gτ ′ C N)

Of the remaining observational relations from Example 2.7, we only give here
the immediate consequences of Theorem 6.1 for the 4-choices (g) and (i).
Corollary 6.4. If not N i for any i ∈ N+ and for every A ∈ Term(τ) and
B ∈ Term(τ ′), not (C A B) i for any i ∈ N+, then ((foldr τ )τ ′ C N (build τ G))
⊒3 (Gτ ′ C N).
Corollary 6.5. If not N⇑ and for every A ∈ Term(τ) and B ∈ Term(τ ′),
not (C A B)⇑, then ((foldr τ )τ ′ C N (build τ G)) ⊒5 (Gτ ′ C N).

So what have we gained, in addition to capturing in a single framework pre-
viously separate-but-related proofs of equational and inequational statements
for observational relations that unify different failure causes? What we have
gained is that we can now answer questions like those raised earlier in this
section. For example, question (a) from earlier in this section is answered by
Corollary 6.2:

• That corollary gives preconditions on foldr ’s arguments under which foldr/
build -fusion is totally correct even when considering different failure causes
as semantically different. Checking those preconditions for the entries in the
first and fourth lines in Table 2 would have allowed us to predict, without
having to look at the definitions of producer functions, that the first and
fourth lines in Table 1 are unproblematic instances of fusion.

Similarly, Corollaries 6.4 and 6.5 provide answers for question (b), which asked
for sufficient preconditions for partial correctness of foldr/build -fusion with
respect to semantic approximation orders that differ with respect to their



relative treatment of different failure causes:

• Corollary 6.5 allows us to formulate the desired guarantee, in advance, that
for the consumer/producer-combination in the second line in Table 1 no
nontermination can possibly be introduced via foldr/build -fusion. We sim-
ply need to check the entries in the second line in Table 2 against the
preconditions in Corollary 6.5, and observe from the definition of ⊒5 that
M ⊒5 M ′ with diverging M ′ is only possible if M is already diverging as well.
Of course, we have seen in Table 1 that for the same consumer/producer-
combination an introduction of finite failure is very well possible. But now
we also know that we could not have expected otherwise, given that the con-
suming foldr ’s arguments do not satisfy the preconditions of Corollary 6.4.

• Corollary 6.4 lets us establish that foldr/build -fusion cannot possibly intro-
duce or confuse finite failures when applied to headOr loop (lastEvenOrEmpty l)
for any l :: [Int ] and nonterminating computation loop.

• The same obviously is not true for the consumer/producer-combination in
the third line in Table 1. Again, this is easily explained by checking the
consuming foldr ’s arguments against the preconditions of Corollary 6.4.
Moreover, it turns out that for that combination it is not even possible to
guarantee nonintroduction of divergence. Starting from the observation that
the first argument in the third line in Table 2 does not fulfill the precondition
it should for successfully applying Corollary 6.5, it is not hard to find an
input list showing this.

The above kinds of analyses are exactly what we sought to enable with our
study of the interaction between selective strictness, different failure causes,
and foldr/build -fusion or, more generally, parametricity as such.

7 Related Work

This paper further advances a line of research whose ultimate goal is the
development of appropriate tools for reasoning about parametricity properties
of real programming languages rather than toy calculi. It builds on [14–17,25],
both in terms of technical approach and insights obtained. In this section we
describe in some detail the relationship of the present paper to these papers.
We also discuss other related work.

The language Core introduced in this paper is an extension of Pitts’ PolyPCF
[17] with a selective strictness construct and an explicit error primitive that
can be used at all types. But whereas our most closely related paper [16] uses
a seq-primitive to model selective strictness (and does not include any error
primitives), this paper instead uses a nonrecursive strict-let construct. As men-
tioned in Section 2.2, the strict-let formulation avoids duplicating expressions



during the translation of calls to seq in Haskell. A more essential difference
from [16] (and also [17]) is that the operational semantics given in Section 2.3
of this paper has no value of the form Λα.M and no redex/reduct-pair for type
instantiation. This is, of course, because our semantics is type-erasing, so that
neither type generalization nor specialization carries computational content.
This is just as in Haskell. It also accords with the situation in the more in-
formal (and finite-failure-unaware) setting of [14,15]. Since our semantics thus
allows no externally observable difference between a polymorphic term and
its instantiation at any type, the 4-compliance requirement in Definition 4.3
has no counterpart in Definition 4.4. The proof of Lemma 4.7 captures the
essence of why none is needed. That no explicit enforcement of 4-compliance
on the result of the relational action is necessary for Definition 4.4 is anal-
ogous to the situation in [14,15], but contrasts with that in [16]. Similarly,
the extensionality principle for ∀-types formulated after Lemma 5.8 does not
refer to 4, again in contrast with [16], but reflecting what we had intuitively
in the setting of [14,15]. The mismatch between what one has for ∀-types in
Haskell-like languages and what we had for ∀-types in PolySeq in [16] is thus
fully accounted for by the type-erasing semantics of Core.

A key ingredient in our technical development is the function ⊤(·, ·) express-
ing whether (the type-erasure of) a particular term in (the type-erasure of the
stack representation of) a particular context terminates in a value, terminates
in an error, or diverges. This function plays an important role in restricting
attention to relations that play well with parametricity in the presence of
fixpoint recursion. The key concept in this context is 44-closure, a general-
ization of Pitts’ well-known notion of ⊤⊤-closure which relates the outcomes of
⊤ for different stack-term pairs by 4, rather than by bidirectional implication
as in [17] or unidirectional implication as in [16].

The source of fully appropriate relations for quantification in the relational
action for ∀-types — i.e., of 4-compliant and 44-closed relations — that we
establish in Section 4.4 is inspired by [17]. There, such a source (with respect
to the relevant restriction) was identified by considering graphs of typed stacks
up to observational equivalence. In the inequational setting of [16] two dual (to
each other) graph notions were derived from this concept. Here we similarly
use two graph notions, but we define them directly in terms of the logical
relation. The 4-upwards and 4-downwards properties used to establish 4-
compliance of left- and right-graphs, respectively, in Lemma 4.16 are abstract
versions of the totality restriction on stacks from [16].

Many of the results reported in this paper are more abstract versions of cor-
responding ones in [16], and the same is true of their proofs. Lemma 4.2, for
example, generalizes Lemma 4.10 in [16], and its proof is structurally identical
to the corresponding proof given there. The differences between the proofs lie
entirely in the nature of ⊤ as a function here versus as a relation in [16], in the



use of 4 here versus the use of unidirectional implication in [16], and in the use
of equality (on N∞) here versus bidirectional implication in [16]. Statements
and proofs of some other lemmas in the present paper are similarly analogous
to proofs in [16] or in [17].

Our small-step and type-erasing semantics approach makes it especially easy
to modularize the constructions necessary to accommodate additional lan-
guage features. As a proof-of-concept, we have worked out the details of adding
general existential types [29] into our framework without breaking parametric-
ity or compromising our results in Section 6. Other logical relations for (purely
strict) polymorphic calculi with existential types built-in are given in, for ex-
ample, [22] and [25]. The main difference between our (analyses and thus our)
results and theirs is that ours are parameterized over 4. For the extension of
Core with existential types, as for Core itself, parameterization over 4 gives
generally applicable results that can be instantiated for particular observa-
tional relations of interest. We ultimately obtain an analogue of Theorem 5.7
for the extension of Core by existential types. Moreover, because our approach
is parameterized over 4, we can derive an abstract extensionality principle for
existential types that is in the spirit of the one from [25], but can be instan-
tiated for different notions of program equivalence or approximation.

More practical related work can be found in [27] and [30]. There, a semantic
setup is presented that deals with the pragmatic issues of allowing, distin-
guishing, and handling different kinds of failures in a compiler like GHC.
Those papers’ consideration of not only raising finite failures (in pure code),
but also catching them (in monadic code), is well beyond the scope of our
present work. Nevertheless, their treatment of the relative definedness of dif-
ferent failure causes allows for an interesting comparison with ours here. The
driving force in [27] and [30] is the desire to build a semantics that justifies as
many low-level compiler optimizations as possible, even when those optimiza-
tions potentially change the evaluation order of programs. For example, these
papers want to consider a transformation from

let! x = M in (let! y = N in P )

to

let! y = N in (let! x = M in P )

as semantics-preserving, even though M and N may lead to different errors.
The way to go then is to assign a set of failure causes to every nonconverging
expression. For example, in contrast to what one might expect, the result of
either of the above expressions in the nonconverging case is seen as the set of
all errors that any of M , N , and P can lead to. This requires evaluation of
P in a certain “exception-finding mode”, in order to detect errors occurring
in it independently of the (already failing) terms that get substituted for
its potentially free variables x and y. This rather complicates the semantics,



be they operational as in [27] or denotational as in [30], and indeed makes
it unclear how to integrate with the technical machinery we set up here to
deal with parametricity. A less technical, but very important motivational
difference is that [27] and [30] willingly trade precision of analysis for efficiency
of compiled code. In particular, “fictitious” errors may surface in their setting:
wherever a diverging term appears, one is forced to treat it, semantically, as
if it could also lead to any kind of finite failure. Put differently, any diverging
term is necessarily “below” any (finitely or infinitely) failing one of same type
with respect to the refinement and approximation orders of [27] and [30]. This
is an early commitment that we are not quite willing to make for our 4-induced
observational relations, as we think it would ultimately prevent us from getting
important results such as some of those reported in Section 6. There, we have,
for example, given a partial correctness result for foldr/build -fusion in which
we need not require convergence of foldr ’s arguments and yet can show that
fusion at least will not introduce divergence, even though it might introduce
finite failure. Key to that result (in Corollary 6.5) was the availability of an
appropriate choice for 4 that implies a semantic approximation order (or
inverse thereof, namely ⊒5) that would be outlawed by making the above
commitment.

8 Conclusion

In this paper we have shown how to bring reasoning via logical relations closer
to bear on real languages by deriving results that are pertinent to an inter-
mediate language like GHC Core for the (mostly) lazy functional language
Haskell. Specifically, we have constructed a family of logical relations for a
polymorphic lambda calculus which models several aspects of intermediate
languages for Haskell. This family is parameterized over a relative definedness
preorder on different failure causes, and each of its members is shown to ex-
actly characterize the notion of relating observational behavior of programs,
with respect to a type-erasing operational semantics, that is induced by its
preorder parameter. As a consequence, relational parametricity becomes avail-
able as reasoning principle in a much more realistic setting than before, and is
endowed with a high reuse potential. We have capitalized on this potential to
prove an abstract correctness result for short cut fusion which can be special-
ized to various concrete setups (both ones already considered in the literature
and new ones).

What remains to be discussed is the role of the restrictions (9) and (10) on the
preorder parameter, which were needed to accommodate selective strictness.
They outlaw choices (d) and (e) from Example 2.7, both of which seemed to
provide quite interesting ways of arranging the relative definedness of different
failure causes. So what, if anything, is wrong with an observational approxi-



mation relation distinguishing at least two different notions of program failure
that are both considered to approximate every term that evaluates to a proper
value? The answer can actually be given independently of any concern for
relational parametricity: such an observational approximation relation could
no longer be compatible. To see this, assume that the two relevant kinds of
program failure are nontermination, A = fix(λx :: (∀α.α)-list .x), and an ex-
plicit runtime error, B = error(∀α.α)-list(1). By assumption, we would have
A ⊑ nil∀α.α and B ⊑ nil∀α.α. But then by compatibility (or, equivalently,
monotonicity such as one would expect from every notion of semantic approx-
imation) we should also have that let! x = A in B ⊑ let! x = nil∀α.α in B
and let! x = B in A ⊑ let! x = nil∀α.α in A. Since in our semantic setup
always N ⊑ let! x = N in M for nonconverging N and arbitrary M of same
type, this would imply that A ⊑ B and B ⊑ A, which would contradict the
assumption that ⊑ distinguishes between A and B. So there is actually very
good reason to disallow the kind of approximation relations mentioned above.
For us, at least, that was an entirely unanticipated impact of selective strict-
ness on the semantics of Haskell-like languages, and we consider bringing it to
light an additional merit of our abstract approach. Of course, the phenomenon
observed above does not prevent the definition and study of various notions of
observational equivalence or approximation that relate different failure causes
in other computationally interesting and intuitive ways.
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A Proofs Appendix

We start with an auxiliary observation that is a consequence of  being
deterministic.
Observation A.1. For every triple S1, S2, S3 of evaluation stacks without free
variables, M1, M2, M3 ∈ Untyped, and t, t′ ∈ N, if (S1, M1) t (S2, M2),
(S1, M1) t′ (S3, M3), and (S3, M3) is an end configuration, then t ≤ t′ and
(S2, M2) t′−t (S3, M3).



Proof of Lemma 2.3: Fix S. We prove the more general statement that
for every M ∈ Untyped and evaluation stack S ′, if (S @ S ′, M) leads to an
end configuration, then so does (S ′, M), by induction on the number t of
steps required for the former. The induction base (t = 0) is straightforward,
using that (S @ S ′, M) being an end configuration implies either S ′ = Id
and M ∈ Value or M = error(i) for some i ∈ N+. For the induction step
(t → t+1), assume that (S @ S ′, M)  (S ′′, M ′) and (S ′′, M ′) leads to an end
configuration in t steps. If S ′ = Id and M ∈ Value, then the induction claim
holds trivially. Otherwise, a straightforward case distinction on the transition
(S @ S ′, M)  (S ′′, M ′) yields that there exists an evaluation stack S ′′′

with (S ′, M)  (S ′′′, M ′) and S ′′ = S @ S ′′′. Together with the induction
hypothesis for (S ′′, M ′) = (S @ S ′′′, M ′) this implies the induction claim. �

Proof of Lemma 3.7: By Observation 3.4(a) we have ⊤(S, let! x = A in B) =
⊤(S ◦ (let! x = − in B), A). We proceed by case distinction on ω(A).

Case a: ω(A) = 0. Then by Definitions 2.1 and 2.6 there exists a V ∈ Value
with (Id , [[A]]) ∗ (Id , V ). Together with Observation 2.4, we thus have:

([[S]] ◦ (let! x = − in [[B]]), [[A]]) ∗ ([[S]] ◦ (let! x = − in [[B]]), V )

 ([[S]], let! x = V in [[B]])

 ([[S]], [[B]][V/x]).

To establish ⊤(S ◦ (let! x = − in B), A) = ⊤(S, B[A/x]), we perform a further
case distinction on ⊤(S, B[A/x]). By Definition 3.1, it is:

• 0 if there is some V ′ ∈ Value with ([[S]], [[B]][[[A]]/x]) ∗ (Id , V ′),
• i if there is some evaluation stack S ′ with ([[S]], [[B]][[[A]]/x]) ∗ (S ′, error(i)),

and
• ∞ otherwise.

For the first two cases, the desired equality follows from the transition sequence
displayed above and from Lemma A.2, to be given and proved below. For the
last case, we show it by contradiction. Assume ⊤(S◦(let! x = − in B), A) 6= ∞.
Then ([[S]]◦(let! x = − in [[B]]), [[A]]) must lead to an end configuration. Given
that also ([[S]]◦(let! x = − in [[B]]), [[A]]) ∗ ([[S]], [[B]][V/x]), Observation A.1
implies that so does ([[S]], [[B]][V/x]). Combined with Lemma A.3, to be given
and proved below, this contradicts ⊤(S, B[A/x]) = ∞.

Case b: ω(A) = i for some i ∈ N+. Then there exists an evaluation stack
S ′ with (Id , [[A]]) ∗ (S ′, error(i)). By Observation 2.4 this implies ([[S]] ◦
(let! x = − in [[B]]), [[A]]) ∗ (([[S]]◦ (let! x = − in [[B]])) @ S ′, error(i)), and
thus ⊤(S ◦ (let! x = − in B), A) = i.

Case c: ω(A) = ∞. We show ⊤(S ◦ (let! x = − in B), A) = ∞ by contra-



diction. Assume ⊤(S ◦ (let! x = − in B), A) 6= ∞. Then ([[S]] ◦ (let! x =
− in [[B]]), [[A]]) must lead to an end configuration. By Lemma 2.3 this con-
tradicts ω(A) = ∞. �

Lemma A.2. Let x be a term variable and let A ∈ Untyped and V ∈ Value
be such that

(Id , A) ∗ (Id , V ). (13)

For every B ∈ Untyped({x}) and evaluation stack S without free variables,
if (S, B[A/x]) leads to an end configuration, then (S, B[V/x]) leads to an end
configuration of the same characteristic. 4

Proof: The proof uses the fact that from (13) follows that for every M ∈
Untyped({x}):

M 6= x ∧ M [V/x] ∈ Value ⇒ M [A/x] ∈ Value (14)

and

M [A/x] ∈ Value ⇒ M [V/x] ∈ Value. (15)

Actually, we prove a slightly more general statement, namely that for ev-
ery end configuration (S, M), B ∈ Untyped({x}), and evaluation stack S
whose free variables are in {x}, if (S[A/x], B[A/x]) leads to (S, M), then
(S[V/x], B[V/x]) leads to an end configuration of the same characteristic as
(S, M). 5 For every end configuration (S, M) we prove it by (strong) induc-
tion on the number t of steps required for (S[A/x], B[A/x]) to lead to (S, M).
The induction base (t = 0) is straightforward, using the facts that (S[A/x],
B[A/x]) = (S, M) implies either S = S = Id and B[A/x] = M ∈ Value
or B[A/x] = M = error(i) for some i ∈ N+, that B[A/x] ∈ Value implies
B[V/x] ∈ Value by (15), and that for every i ∈ N+, B[A/x] = error(i) im-
plies B = error(i), given that A 6= error(i) due to (13) and the definitions
of  and values. For the induction step (t → t + 1), we first note that we
can assume A 6= V , because for A = V the induction claim follows triv-
ially from (S[A/x], B[A/x]) t+1 (S, M). Then, if B = x, it follows from
(S[A/x], A) t+1 (S, M), (13), Observation 2.4, A 6= V , and Observation A.1
that (S[A/x], V ) t′ (S, M) for some t′ ≤ t, which together with the induction
hypothesis for t′ implies the induction claim. If B 6= x, then we proceed by case
distinction on the first transition in (S[A/x], B[A/x])  (S ′, B′) t (S, M)
as follows.

4 The notion of the characteristics of end configurations is defined as follows. An
end configuration of the form (Id , V ′) with V ′ ∈ Value is called of characteristic 0,
one of the form (S, error(i)) for some i ∈ N+ is called of characteristic i.
5 The notion of substitution in evaluation frames and evaluation stacks is defined as
follows. The result of substituting an untyped term M for all free occurrences of x
in an evaluation frame E is denoted by E[M/x]. Substitution in an evaluation stack
S, denoted by S[M/x], is by corresponding substitution in all evaluation frames
constituting S.



Case a: B[A/x] = E{B′} and S ′ = S[A/x]◦E, where E is an evaluation frame
and B′ /∈ Value . Then by B 6= x and the definition of evaluation frames,
clearly B = E ′{M} for some evaluation frame E ′ and M ∈ Untyped({x})
with E = E ′[A/x] and B′ = M [A/x]. If M = x, it follows from (S[A/x] ◦
(E ′[A/x]), A) t (S, M), (13), Observation 2.4, (S[A/x] ◦ (E ′[A/x]), V ) 

(S[A/x], (E ′[A/x]){V }), and Observation A.1 that (S[A/x], (E ′[A/x]){V }) t′

(S, M) for some t′ < t, which together with the induction hypothesis for t′ im-
plies the induction claim. If M 6= x, then since B′ = M [A/x] /∈ Value, by (14)
also M [V/x] /∈ Value holds. Thus, we then have that (S[V/x], B[V/x]) 

(S[V/x]◦ (E ′[V/x]), M [V/x]), which together with (S ′, B′) t (S, M) and the
induction hypothesis for t implies the induction claim.

Case b: S[A/x] = S ′ ◦ E and B′ = E{B[A/x]}, where E is an evaluation
frame and B[A/x] ∈ Value. Then clearly S = S ′′ ◦ E ′ for some evaluation
stack S ′′ and evaluation frame E ′ with S ′ = S ′′[A/x] and E = E ′[A/x].
Since B[A/x] ∈ Value, by (15) also B[V/x] ∈ Value holds. Thus, we have
that (S[V/x], B[V/x])  (S ′′[V/x], (E ′[V/x]){B[V/x]}), which together with
(S ′, B′) t (S, M) and the induction hypothesis for t implies the induction
claim.

Case c: S ′ = S[A/x] and B[A/x] ; B′. Note that A 6∈ Value, because
for A ∈ Value we get A = V by (13) and the definition of , in con-
tradiction to our assumption A 6= V . From B[A/x] ; B′, B 6= x, and
A 6∈ Value follows, by the definitions of ; and values, the existence of an
M ∈ Untyped({x}) such that B′ = M [A/x] and B[V/x] ; M [V/x]. Then
we have that (S[V/x], B[V/x])  (S[V/x], M [V/x]), which together with
(S ′, B′) t (S, M) and the induction hypothesis for t implies the induction
claim. This completes the case distinction, and thus the proof. �

Lemma A.3. Let x, A, V , B, and S be as in Lemma A.2. If (S, B[V/x])
leads to an end configuration, then so does (S, B[A/x]).
Proof: We prove the slightly more general statement that for every B ∈
Untyped({x}) and evaluation stack S whose free variables are in {x}, if (S[V/x],
B[V/x]) leads to an end configuration, then so does (S[A/x], B[A/x]). 6 We
prove it by induction on the number t of steps required for (S[V/x], B[V/x])
to lead to an end configuration. For the induction base (t = 0), we use
that (S[V/x], B[V/x]) being an end configuration implies either S = Id and
B[V/x] ∈ Value or B[V/x] = error(i) for some i ∈ N+. In the former case,
the claim follows from (13) if B = x, and from the fact that B[V/x] ∈ Value
implies B[A/x] ∈ Value by (14) from the proof of Lemma A.2 if B 6= x.
In the case B[V/x] = error(i) for some i ∈ N+, the claim follows from the
fact that for every i ∈ N+, B[V/x] = error(i) implies B = error(i) by

6 We use the notion of substitution in evaluation frames and evaluation stacks as
in Footnote 5.



the definition of values. For the induction step (t → t + 1), assume that
(S[V/x], B[V/x])  (S ′, B′) and (S ′, B′) leads to an end configuration in
t steps. If A ∈ Value , then A = V by (13) and the definition of , in
which case the induction claim follows trivially. Otherwise, a case distinction
on the transition (S[V/x], B[V/x])  (S ′, B′) as detailed below yields that
there exist M ∈ Untyped({x}) and an evaluation stack S ′′ whose free vari-
ables are in {x} with (S[A/x], B[A/x]) ∗ (S ′′[A/x], M [A/x]), S ′ = S ′′[V/x],
and B′ = M [V/x]. Together with the induction hypothesis for (S ′, B′) =
(S ′′[V/x], M [V/x]) this implies the induction claim.

Case a: B[V/x] = E{B′} and S ′ = S[V/x] ◦ E, where E is an evaluation
frame and B′ /∈ Value . Then by the definitions of values and evaluation frames,
clearly B = E ′{M} for some evaluation frame E ′ and M ∈ Untyped({x}) with
E = E ′[V/x] and B′ = M [V/x]. Consequently, B[A/x] = (E ′[A/x]){M [A/x]}.
Since B′ = M [V/x] /∈ Value, by (15) from the proof of Lemma A.2 also
M [A/x] /∈ Value holds. Thus, we have that (S[A/x], B[A/x])  (S[A/x] ◦
(E ′[A/x]), M [A/x]), which satisfies the requirements with S ′′ = S ◦ E ′.

Case b: S[V/x] = S ′◦E and B′ = E{B[V/x]}, where E is an evaluation frame
and B[V/x] ∈ Value. Then clearly S = S ′′ ◦ E ′ for some evaluation stack S ′′

and evaluation frame E ′ with S ′ = S ′′[V/x] and E = E ′[V/x]. If B = x,
then by (13) and Observation 2.4 we have (S[A/x], B[A/x]) ∗ (S ′′[A/x] ◦
(E ′[A/x]), V )  (S ′′[A/x], (E ′[A/x]){V }), which satisfies the requirements
with M = E ′{V }. If B 6= x, then by (14) from the proof of Lemma A.2,
B[V/x] ∈ Value implies B[A/x] ∈ Value, so that (S[A/x], B[A/x])  (S ′′[A/x],
(E ′[A/x]){B[A/x]}), which satisfies the requirements with M = E ′{B}.

Case c: S ′ = S[V/x] and B[V/x] ; B′. Then by the definitions of val-
ues and ;, there are two cases to consider. If B′ = M [V/x] for some M ∈
Untyped({x}) with B[A/x] ; M [A/x], then (S[A/x], B[A/x])  (S[A/x],
M [A/x]), which satisfies the requirements with S ′′ = S. If B = E{x} for
some evaluation frame E, then from B[V/x] ; B′ follows, by the definitions
of evaluation frames and ;, the existence of an M ∈ Untyped({x}) such that
B′ = M [V/x] and (E[A/x]){V } ; M [A/x]. Since A /∈ Value, we have that
(S[A/x], B[A/x])  (S[A/x] ◦ (E[A/x]), A) ∗ (S[A/x] ◦ (E[A/x]), V ) 

(S[A/x], (E[A/x]){V })  (S[A/x], M [A/x]), where the “∗”-part follows
from (13) by Observation 2.4. This satisfies the requirements with S ′′ = S. It
also completes the case distinction, and thus the proof. �

Proof of Lemma 3.8: We need the notions of the characteristics of end con-
figurations and of substitution in evaluation frames and evaluation stacks, as
defined in Footnotes 4 and 5. Further, we use the notation (F n A) also for
untyped terms. Recall Ω = fix(λx.x) ∈ Untyped from Observation 2.2.

Now, let F ∈ Untyped . We will use the fact that for every n ∈ N and N ∈



Untyped({x}):

N [(F n Ω)/x] ∈ Value ⇔ N [fix(F )/x] ∈ Value . (16)

First, we prove for every end configuration (S, M) the following statement by
induction on n ∈ N:

(I) For every t ∈ N, M ∈ Untyped({x}), and evaluation stack S whose free
variables are in {x}, if (S[(F n Ω)/x], M [(F n Ω)/x]) t (S, M), then
(S[(F n+1 Ω)/x], M [(F n+1 Ω)/x]) leads to an end configuration of the same
characteristic as (S, M) in t steps.

The induction step (n → n + 1) follows from S[(F n+1 Ω)/x] = S ′[(F n Ω)/x],
M [(F n+1 Ω)/x] = M ′[(F n Ω)/x], S[(F n+2 Ω)/x] = S ′[(F n+1 Ω)/x], and
M [(F n+2 Ω)/x] = M ′[(F n+1 Ω)/x], where S ′ = S[(F x)/x] and M ′ = M [(F x)
/x]. For the induction base (n = 0), we prove by induction on t ∈ N that for
every M ∈ Untyped({x}) and evaluation stack S whose free variables are in
{x}, if (S[Ω/x], M [Ω/x]) t (S, M), then (S[(F Ω)/x], M [(F Ω)/x]) leads to
an end configuration of the same characteristic as (S, M) in t steps. The induc-
tion base (t = 0) is straightforward, using the facts that (S[Ω/x], M [Ω/x]) =
(S, M) implies either S = S = Id and M [Ω/x] = M ∈ Value or M [Ω/x] =
M = error(i) for some i ∈ N+, that M [Ω/x] ∈ Value implies M [(F Ω)/x] ∈
Value by (16), and that M [Ω/x] = error(i) implies M = error(i). For the
induction step (t → t + 1), assume that (S[Ω/x], M [Ω/x])  (S ′, M ′) t

(S, M). Note that M 6= x, because otherwise (S[Ω/x], Ω) t+1 (S, M), which
would be in contradiction to Observation 2.2. A case distinction on the tran-
sition (S[Ω/x], M [Ω/x])  (S ′, M ′) as detailed below then yields that there
exist N ∈ Untyped({x}) and an evaluation stack S ′′ whose free variables
are in {x} with (S[(F Ω)/x], M [(F Ω)/x])  (S ′′[(F Ω)/x], N [(F Ω)/x]),
S ′ = S ′′[Ω/x], and M ′ = N [Ω/x]. Together with (S ′, M ′) t (S, M) and the
induction hypothesis for t, this implies the induction claim.

Case a: M [Ω/x] = E{M ′} and S ′ = S[Ω/x] ◦ E, where E is an eval-
uation frame and M ′ /∈ Value. Then by the definitions of Ω and evalua-
tion frames, clearly M = E ′{N} for some evaluation frame E ′ and N ∈
Untyped({x}) with E = E ′[Ω/x] and M ′ = N [Ω/x]. Thus, M [(F Ω)/x] =
(E ′[(F Ω)/x]){N [(F Ω)/x]}. Since M ′ = N [Ω/x] /∈ Value, by (16) we have
that N [(F Ω)/x] /∈ Value also holds. Thus, (S[(F Ω)/x], M [(F Ω)/x]) 

(S[(F Ω)/x] ◦ (E ′[(F Ω)/x]), N [(F Ω)/x]), which satisfies the requirements
with S ′′ = S ◦ E ′.

Case b: S[Ω/x] = S ′ ◦ E and M ′ = E{M [Ω/x]}, where E is an evaluation
frame and M [Ω/x] ∈ Value. Then clearly S = S ′′ ◦ E ′ for some evaluation
stack S ′′ and evaluation frame E ′ with S ′ = S ′′[Ω/x] and E = E ′[Ω/x]. Since
M [Ω/x] ∈ Value, by (16) also M [(F Ω)/x] ∈ Value holds. Thus, we have



(S[(F Ω)/x], M [(F Ω)/x])  (S ′′[(F Ω)/x], (E ′[(F Ω)/x]){M [(F Ω)/x]}),
which satisfies the requirements with N = E ′{M}.

Case c: S ′ = S[Ω/x] and M [Ω/x] ; M ′. From M 6= x and M [Ω/x] ; M ′

follows, by the definitions of Ω and ;, the existence of an N ∈ Untyped({x})
such that M ′ = N [Ω/x] and M [(F Ω)/x] ; N [(F Ω)/x], and consequently
(S[(F Ω)/x], M [(F Ω)/x])  (S[(F Ω)/x], N [(F Ω)/x]), which satisfies the
requirements with S ′′ = S. This completes the case distinction.

Now, using statement (I), we prove for every end configuration (S, M) the
following statement by induction on t ∈ N:

(II) For every M ∈ Untyped({x}) and evaluation stack S whose free variables
are in {x}, if (S[fix(F )/x], M [fix(F )/x]) t (S, M), then there exists an
n0 ∈ N such that for every n ≥ n0, (S[(F n Ω)/x], M [(F n Ω)/x]) leads to
an end configuration of the same characteristic as (S, M).

The induction base (t = 0) is straightforward, using the facts that (S[fix(F )/x],
M [fix(F )/x]) = (S, M) implies either S = S = Id and M [fix(F )/x] = M ∈
Value or M [fix(F )/x] = M = error(i) for some i ∈ N+, that M [fix(F )/x] ∈
Value implies M [(F n Ω)/x] ∈ Value for every n ∈ N by (16), and that for
every i ∈ N+, M [fix(F )/x] = error(i) implies M = error(i). For the induc-
tion step (t → t + 1), we proceed by case distinction on the first transition in
(S[fix(F )/x], M [fix(F )/x])  (S ′, M ′) t (S, M) as follows.

Case a: M [fix(F )/x] = E{M ′} and S ′ = S[fix(F )/x]◦E, where E is an eval-
uation frame and M ′ /∈ Value. Then by the definition of evaluation frames,
clearly M = E ′{N} for some evaluation frame E ′ and N ∈ Untyped({x})
with E = E ′[fix(F )/x] and M ′ = N [fix(F )/x]. By (S ′, M ′) t (S, M) and
the induction hypothesis for t, we then know that there exists an n0 ∈ N

such that for every n ≥ n0, (S[(F n Ω)/x] ◦ (E ′[(F n Ω)/x]), N [(F n Ω)/x])
leads to an end configuration of the same characteristic as (S, M). To es-
tablish the induction claim, it thus suffices to show that for every n ∈ N,
(S[(F n Ω)/x], M [(F n Ω)/x])  (S[(F n Ω)/x]◦ (E ′[(F n Ω)/x]), N [(F n Ω)/x]).
But this follows from M [(F n Ω)/x] = (E ′[(F n Ω)/x]){N [(F n Ω)/x]} and
N [(F n Ω)/x] /∈ Value , where the latter is established by (16) from M ′ =
N [fix(F )/x] /∈ Value.

Case b: S[fix(F )/x] = S ′ ◦ E and M ′ = E{M [fix(F )/x]}, where E is an
evaluation frame and M [fix(F )/x] ∈ Value. Then clearly S = S ′′ ◦ E ′ for
some evaluation stack S ′′ and evaluation frame E ′ with S ′ = S ′′[fix(F )/x]
and E = E ′[fix(F )/x]. By (S ′, M ′) t (S, M) and the induction hypoth-
esis for t, we then know that there exists an n0 ∈ N such that for every
n ≥ n0, (S ′′[(F n Ω)/x], (E ′[(F n Ω)/x]){M [(F n Ω)/x]}) leads to an end config-
uration of the same characteristic as (S, M). To establish the induction claim,
it thus suffices to show that for every n ∈ N, (S[(F n Ω)/x], M [(F n Ω)/x]) 



(S ′′[(F n Ω)/x], (E ′[(F n Ω)/x]){M [(F n Ω)/x]}). But this follows from the facts
that S[(F n Ω)/x] = S ′′[(F n Ω)/x]◦(E ′[(F n Ω)/x]) and M [(F n Ω)/x] ∈ Value ,
where the latter is established by (16) from M [fix(F )/x] ∈ Value.

Case c: S ′ = S[fix(F )/x] and M [fix(F )/x] ; M ′. If M = x, then we have
M ′ = F fix(F ) by the definition of ;. By (S ′, M ′) t (S, M) and the in-
duction hypothesis for t, we then know that there exists an n0 ∈ N such that
for every n ≥ n0, (S[(F n Ω)/x], F n+1 Ω) leads to an end configuration of
the same characteristic as (S, M), from which the induction claim follows by
statement (I). If M 6= x, then from M [fix(F )/x] ; M ′ follows, by the defini-
tion of ;, the existence of an N ∈ Untyped({x}) such that M ′ = N [fix(F )/x]
and M [(F n Ω)/x] ; N [(F n Ω)/x] for every n ∈ N. By (S ′, M ′) t (S, M)
and the induction hypothesis for t, we also know that given any such N , there
exists an n0 ∈ N such that for every n ≥ n0, (S[(F n Ω)/x], N [(F n Ω)/x])
leads to an end configuration of the same characteristic as (S, M). To es-
tablish the induction claim, it then suffices to show that for every n ∈ N,
(S[(F n Ω)/x], M [(F n Ω)/x])  (S[(F n Ω)/x], N [(F n Ω)/x]). But this follows
from M [(F n Ω)/x] ; N [(F n Ω)/x]. It also completes the case distinction.

Again using statement (I), we now prove for every n ∈ N the following state-
ment:

(III) For every M ∈ Untyped({x}) and evaluation stack S whose free variables
are in {x}, if (S[(F n Ω)/x], M [(F n Ω)/x]) leads to an end configuration,
then so does (S[fix(F )/x], M [fix(F )/x]).

The proof is by induction on the number t of steps required for the for-
mer. The induction base (t = 0) is straightforward, using the facts that
(S[(F n Ω)/x], M [(F n Ω)/x]) being an end configuration implies either S = Id
and M [(F n Ω)/x] ∈ Value or M [(F n Ω)/x] = error(i) for some i ∈ N+, that
M [(F n Ω)/x] ∈ Value implies M [fix(F )/x] ∈ Value by (16), and that for
every i ∈ N+, M [(F n Ω)/x] = error(i) implies M = error(i). For the induc-
tion step (t → t + 1), assume that (S[(F n Ω)/x], M [(F n Ω)/x])  (S ′, M ′)
and (S ′, M ′) leads to an end configuration in t steps. We proceed by case
distinction on the former transition as follows.

Case a: M [(F n Ω)/x] = E{M ′} and S ′ = S[(F n Ω)/x] ◦ E, where E is an
evaluation frame and M ′ /∈ Value. Then by the definitions of Ω and eval-
uation frames, there are two cases to consider. If M = E ′{N} for some
evaluation frame E ′ and N ∈ Untyped({x}) with E = E ′[(F n Ω)/x] and
M ′ = N [(F n Ω)/x], then M [fix(F )/x] = (E ′[fix(F )/x]){N [fix(F )/x]}. Since
by (16), M ′ = N [(F n Ω)/x] /∈ Value implies N [fix(F )/x] /∈ Value, we then
have (S[fix(F )/x], M [fix(F )/x])  (S[fix(F )/x]◦(E ′[fix(F )/x]), N [fix(F )/x]),
which together with the induction hypothesis for (S ′, M ′) = ((S◦E ′)[(F n Ω)/x],
N [(F n Ω)/x]) implies the induction claim. If M = x, n > 0, E = (− (F n−1 Ω)),



and M ′ = F , then since (S ′, M ′) = ((S[(F n Ω)/x] ◦ (− x))[(F n−1 Ω)/x],
F [(F n−1 Ω)/x]) leads to an end configuration in t steps and statement (I)
holds we know that ((S ◦ (− x))[(F n Ω)/x], F [(F n Ω)/x]) leads to an end
configuration in t steps. The induction claim then follows by the induction
hypothesis for this from (S[fix(F )/x],fix(F ))  (S[fix(F )/x], F fix(F )) 

(S[fix(F )/x] ◦ (− fix(F )), F ), where the second transition is valid due to
M ′ = F /∈ Value.

Case b: S[(F n Ω)/x] = S ′ ◦ E and M ′ = E{M [(F n Ω)/x]}, where E is an
evaluation frame and M [(F n Ω)/x] ∈ Value . Then clearly S = S ′′ ◦ E ′ for
some evaluation stack S ′′ and evaluation frame E ′ with S ′ = S ′′[(F n Ω)/x]
and E = E ′[(F n Ω)/x]. Since M [(F n Ω)/x] ∈ Value, by (16) we also have that
M [fix(F )/x] ∈ Value holds. Thus (S[fix(F )/x], M [fix(F )/x])  (S ′′[fix(F )/
x], (E ′[fix(F )/x]){M [fix(F )/x]}) holds. Together with the induction hypoth-
esis for (S ′, M ′) = (S ′′[(F n Ω)/x], (E ′{M})[(F n Ω)/x]), this implies the in-
duction claim.

Case c: S ′ = S[(F n Ω)/x] and M [(F n Ω)/x] ; M ′. If M = x, then we
have n > 0, because otherwise (S[(F n Ω)/x], Ω) leads to an end configuration,
which would be in contradiction to Observation 2.2. From M = x, n > 0, and
M [(F n Ω)/x] ; M ′ follows, by the definition of ;, that F = (λx.F ′) and
M ′ = F ′[(F n−1 Ω)/x] for some F ′ ∈ Untyped({x}). 7 Then by (S ′, M ′) =
((S[(F n Ω)/x])[(F n−1 Ω)/x], F ′[(F n−1 Ω)/x]) leading to an end configura-
tion in t steps and statement (I) we know that (S[(F n Ω)/x], F ′[(F n Ω)/x])
leads to an end configuration in t steps. The induction claim then follows by
the induction hypothesis for this from (S[fix(F )/x],fix(F ))  (S[fix(F )/x],
F fix(F ))  (S[fix(F )/x], F ′[fix(F )/x]). If M 6= x, then from M [(F n Ω)/x] ;

M ′ follows, by the definitions of Ω and ;, the existence of an N ∈ Untyped({x})
such that M ′ = N [(F n Ω)/x] and M [fix(F )/x] ; N [fix(F )/x]. Consequently,
then (S[fix(F )/x], M [fix(F )/x])  (S[fix(F )/x], N [fix(F )/x]). Together with
the induction hypothesis for (S ′, M ′) = (S[(F n Ω)/x], N [(F n Ω)/x]), this im-
plies the induction claim. This completes the case distinction.

Finally, the lemma is established by reasoning for every τ ∈ Typ, S ∈ Stack(τ),
and F ∈ Term(τ → τ) as follows. By Definition 3.1, ⊤(S,fix(F )) is:

• 0 if there is some V ∈ Value with ([[S]],fix([[F ]])) ∗ (Id , V ),
• i if there is some evaluation stack S ′ with ([[S]],fix([[F ]])) ∗ (S ′, error(i)),

and
• ∞ otherwise.

For the first two cases, the existence of an n0 ∈ N such that for every n ≥ n0,
⊤(S, F n fix(λx :: τ.x)) has the same outcome follows from statement (II). For

7 Note that we are free to assume here that the term variable bound in F is x,
because untyped terms are identified up to renaming of bound variables.



the last case, we show that for every n ∈ N, ⊤(S, F n fix(λx :: τ.x)) = ∞ as well,
by contradiction. Assume there is some n ∈ N with ⊤(S, F n fix(λx :: τ.x)) 6=
∞. Then ([[S]], [[F ]]n Ω) must lead to an end configuration. Combined with
statement (III) this contradicts ⊤(S,fix(F )) = ∞. Note that for the appli-
cations of (II) and (III) above we set M = x and use that [[S]] has no free
variables. �

Lemma A.4. Let τ, τ ′ ∈ Typ, L ∈ Term(τ -list), and M1 ∈ Term(τ ′). Let h
and t be term variables and M2 be a typed term such that h :: τ, t :: τ -list ⊢
M2 :: τ ′. If ω(L) = 0, then ω(case L of {nil ⇒ M1; h : t ⇒ M2}) = ω(M1)
or ω(case L of {nil ⇒ M1; h : t ⇒ M2}) = ω(M2[H/h, T/t]) for some
H ∈ Term(τ) and T ∈ Term(τ -list).
Proof: If ω(L) = 0, then by Definitions 2.1 and 2.6 there must be some
V ∈ Value with (Id , [[L]]) ∗ (Id , V ). By a general property of the type-
erasing semantics, there must then exist an L′ ∈ Term(τ -list) with [[L′]] =
V . In other words, by the definitions of [[·]] and values, either V = nil or
V = [[H ]] : [[T ]] for some H ∈ Term(τ) and T ∈ Term(τ -list). Moreover, for
S = (case − of {nil ⇒ [[M1]]; h : t ⇒ [[M2]]}) we have by Observation 2.4
that (S, [[L]]) ∗ (S, V ), and thus (S, [[L]]) ∗ (Id , [[M1]]) or (S, [[L]]) ∗

(Id , [[M2[H/h, T/t]]]). From this, the lemma follows by the determinism of ,
since by Observations 3.2 and 3.4(a) and Definition 3.1, ω(case L of {nil ⇒
M1; h : t ⇒ M2}) is:

• 0 if there is some V ′ ∈ Value with (S, [[L]]) ∗ (Id , V ′),
• i if there is some evaluation stack S ′ with (S, [[L]]) ∗ (S ′, error(i)), and
• ∞ otherwise. �




