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         Given the increasing demands of subscore reports, various subscoring methods and 

augmentation techniques have been developed aiming to improve the subscore estimates, 

but few studies have been conducted to systematically compare these methods under the 

framework of computerized adaptive tests (CAT). This research conducts a simulation 

study, for the purpose of comparing five subscoring methods on score estimation under 

variable simulated CAT conditions. Among the five subscoring methods, the IND-UCAT 

scoring ignores the correlations among subtests, whereas the other four correlation-based 

scoring methods (SEQ-CAT, PC-MCAT, reSEQ-CAT, and AUG-CAT) capitalize on the 

correlation information in the scoring procedure. By manipulating the sublengths, the 

correlation structures, and the item selection algorithms, more comparable, pragmatic, 

and systematic testing scenarios are created for comparison purposes. Also, to make the 

best of the sources underlying the assessments, the study proposes a successive scoring 

procedure according to the structure of the higher-order IRT model, in which the test total 

score of individual examinees can be calculated after the subscore estimation procedure is 

conducted. Through the successive scoring procedure, the subscores and the total score of 

an examinee can be sequentially derived from one test.  

         The results of the study indicate that in the low correlation structure, the original 

IND-CAT is suggested for subscore estimation considering the ease of implementation in 

practice, while the suggested total score estimation procedure is not recommended given 



 

 
 

ii 

the large divergences from the true total scores. For the mixed correlation structure with 

two moderate correlations and one strong correlation, the original SEQ-CAT or the 

combination of the SEQ-CAT item selection and the PC-MCAT scoring should be 

considered not only for subscore estimation but also for total score estimation. If the post-

hoc estimation procedure is allowed, the original SEQ-CAT and the reSEQ-CAT scoring 

could be jointly conducted for the best score estimates. In the high correlation structure, 

the original PC-MCAT and the combination of the PC-MCAT scoring and the SEQ-CAT 

item selection are suggested for both the subscore estimation and the total score 

estimation. In terms of the post-hoc score estimation, the reSEQ-CAT scoring in 

conjunction with the original SEQ-CAT is strongly recommended. If the complexity of 

the implementation is an issue in practice, the reSEQ-CAT scoring jointly conducted with 

the original IND-UCAT could be considered for reasonable score estimates.  

         Additionally, to compensate for the constrained use of item pools in PC-MCAT, the 

PC-MCAT with adaptively sequencing subtests (SEQ-MCAT) is proposed for future 

investigations. The simplifications of item and/or subtest selection criteria in a simple-

structure MCAT, PC-MCAT, and SEQ-MCAT are also pointed out for the convenience 

of their applications in practice. Last, the limitations of the study are discussed and the 

directions for future studies are also provided.    
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CHAPTER I 

INTRODUCTION 

Background 

     Test scores are typically perceived as the informative evidence of reflecting the 

performance of examinees in a test and also as an important reference of predicting 

examinees’ future academic or career growth trajectory. Accordingly, the quality of the 

reported scores, which is mainly evaluated by the fairness, validity, and reliability of the 

scores, becomes a critical concern as the scoring procedure is implemented. These 

properties of test scores remarkably determine the significance and accountability of 

educational assessments. Nowadays, the rapid development of scoring techniques largely 

guarantees fair, valid and reliable total scores for the purpose of making high-stake 

decisions, such as college admission, promotion screening, and professional licensure. 

The total score of a test reflects summative assessment, which aims to evaluate the 

examinees’ overall performances in an entire test and differentiate their placements and 

proficiency levels on the general latent trait scale continuum. In the recent years, there 

has been a rising demand for subscores in the testing market. Subscores manifest 

formative/interim assessment, which seeks to monitor the performances of examinees at 

the level of some specific subscales or content areas and derive the diagnostic feedbacks 

on them for future learning and teaching modifications. 
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         In practice, most of modern large-scale assessments are intended to measure a 

general latent trait or a broad subject, which are always broken down to some particular 

content areas, instructional objectives, or subscale categories in a curriculum and test 

design. For instance, a state science achievement test may consist of four subtests 

covering four content areas, which are Nature of Science, Biological Sciences, Physical 

Sciences, and Earth and Space Sciences. This type of test construction structure is very 

common in educational and psychological assessments and is basically recognized as the 

hierarchical latent trait structure in the modern test theory. For such tests, the most widely 

used operational approach of deriving test scores is to apply a unidimensional item 

response theory (UIRT) model to estimate IRT general ability parameters and then 

convert them to interpretable scale scores, which are ultimately reported as total scores to 

the public. However, to ensure that students meet the standards of state assessments, 

teachers, students, parents and even school administration officers gradually show more 

concerns on subscore reports, which provide diagnostic information regarding different 

content areas or instructional objectives, in order to be aided in locating the strengths and 

weaknesses of students for future instructional and learning remediation.  

     Subscores are also known as domain scores, diagnostic scores, subscale scores, and 

objective-level scores (e.g., de la Torre & Song, 2009; Sinharay, Puhan, & Haberman, 

2010; Stone, Ye, Zhu, & Lane, 2010; Skorupski & Carvajal, 2010). For examinees, 

particularly failing candidates, subscores explicitly reflect their strengths and weaknesses 

and are of great benefit to them to accordingly adjust their future study directions. 

Subscores could also assist classroom teachers to plan individual remedial instructions 
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and to track down gaps between teaching and learning among different instructional 

objectives. Based on subscore reports, state educational institutions could evaluate the 

quality of their curriculum and the effectiveness of teaching and learning in a finer-

grained manner. Other than giving diagnostic information, subscores could also provide 

additional information in conjunction with total scores to some interested parties (e.g., 

admission or funding officials and company employers), allowing them to screen all 

qualified candidates for the one(s) with some unique strong skill(s) that can specifically 

complement their team (Monaghan, 2006). Therefore, the usefulness of subscores is 

apparent and non-negligible for different layers of interested parties. 

    In the National Research Council report “Knowing What Student Know” (2001), it 

was stated that “To do justice to the students in our schools and to support their learning, 

we need to recognize that the process of appraising them fairly and effectively requires 

multiple measures constructed to high standards. Useful and meaningful evidence 

includes profiling of multiple elements of proficiency, with less emphasis on overall 

aggregate scores” (p. 313). The report also encouraged assessment developers to fully 

exploit the advanced technology “to assess what students are learning at fine levels of 

detail, with appropriate frequency, and in ways that are tightly integrated with instruction” 

(p. 306). The No Child Left Behind (NCLB) Act of 2001 (U.S. Department of Education, 

2002) addressed that the state academic assessments required to “produce individual 

student interpretive, descriptive, and diagnostic reports” (§1111. p. 1451) for teachers, 

parents, and principals to better specify academic needs of students. Such reports, 

currently circulated in different states, were refined by Goodman and Hambleton (2004) 
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as two primary categories. One is to present the assessment outcomes (e.g. raw scores or 

percentile rank scores) in terms of the students’ attainable knowledge or skills on some 

subdomains. The other is to enumerate the specific knowledge or cognitive skills required 

to be improved in the future. The subscores investigated in this study belong to the 

former. 

     In 2010, the release of the Common Core standards for mathematics and English 

language arts (the National Governors Association (NGA) and the Council of Chief State 

School Officers (CCSSO), 2010) marked a new start of standards-based education reform 

in the United States. Across diverse state curricula, the standards specify and describe the 

skills and knowledge that students are expected to acquire within the subjects of 

mathematics and English language art at each grade level. Inspired by the Common Core 

Standards, subscore reports on specific skills or knowledge are anticipated to be more 

highly desirable in the near future. There is no doubt that as subscore reports are 

increasingly demanded as an important assessment outcome, attentions to the quality of 

subscores must be growing. Currently, some large-scale testing programs such as ACT, 

LSAT, and SAT provide subscore reports to examinees. However, in the face of the 

present testing circumstances, the development and extensive applications of subscoring 

are still very restricted due to some potential challenges.  

     In policy, Standard 5.12 in the Standards for Educational and Psychological Testing 

(American Educational Research Association, American Psychological Association, & 

National Council for Measurement in Education, 1999) clearly illustrates that “Scores 

should not be reported for individuals unless the validity, comparability, and reliability of 

http://en.wikipedia.org/wiki/National_Governors_Association
http://en.wikipedia.org/wiki/Council_of_Chief_State_School_Officers
http://en.wikipedia.org/wiki/Council_of_Chief_State_School_Officers
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such scores have been established” (p.65). The National Research Council report 

“Knowing What Student Know” (2001) also emphasizes that “Assessment designers 

should explore ways of using sets of tasks that work in combination to diagnose student 

understanding while at the same time maintaining high standards of reliability” (p.306).  

     In practice, some crucial studies addressed the potential crisis that some reported 

subscores, such as raw scores, proportion correct scores, or percentile rank scores 

(Crocker & Algina,  1986), might be inaccurate, unreliable, and even somewhat 

meaningless, especially when the original test specifications were not designed for 

subscoring (e.g., Goodman & Hambleton, 2004; Haberman, 2008; Dorans, 2005; Tate, 

2004; Sinharay & Haberman, 2008). If such subscores are reported, they may mislead test 

users and audiences and result in misinterpretation of examinees’ performance in subtests. 

Specifically speaking, a test evaluating examinees on a general ability or subject may 

consist of a test battery that includes several subtests measuring different subscales or 

content areas. The intended use of such assessments is typically to rank examinees on the 

general ability scale instead of on the subscales. One of the principles considered when 

these tests are designed is to ensure valid and reliable total scores on the basis of cost 

efficiency. The considerations on the cost and time invested result in a dilemma that the 

items used in each subtest for measuring specific content areas or subscales are very 

limited. As a consequence, subscores, when estimated by traditional scoring methods, are 

not adequately reliable and accurate and must be reported and interpreted with caution.       

         Confronted with these challenges, a large number of studies focused their attention 

on improving and developing subscore estimation approaches. Under the framework of 
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classical test theory (CTT), some researchers predicted the true subscore by regressing it 

on the observed subscores or observed total scores or both (Wainer et al., 2001; 

Haberman, 2008). Wainer et al. (2000, 2001) applied a similar regression approach on 

different types of IRT scale scores and developed the augmented subscores (AUG) 

through borrowing information from the other subtests. Another empirical Bayes (EB) 

subscoring procedure is known as Objective Performance Index (OPI; see Yen, 1987), 

which combines the informative prior ability distribution obtained from the entire test to 

the observed subscore estimates.  

          Furthermore, given the fact that multiple subscales are measured in one test, some 

researchers embedded the subscoring procedure to the multidimensional IRT (MIRT) 

models by using Markov Chain Monte Carlo (MCMC) estimation techniques (de la Torre 

& Patz, 2005; Sheng & Wikle, 2007). Based on the nature of the hierarchical latent trait 

structure in the test, the higher-order IRT (HO-IRT) model was developed, which can 

simultaneously estimate total scores and subscores (de la Torre & Song, 2009; Huang, 

Wang, Chen, & Su, 2013). There were some other studies considering ancillary 

information such as demographic factors to improve the accuracy of IRT subscore 

estimates (de la Torre, 2009). In addition, a few studies examined the efficiency of some 

subscoring methods on polytomous item responses (de la Torre, 2008; Yen, Sykes, Ito, & 

Julian, 1997; Shin, 2007; Wang & Chen, 2004).   

         Looking over all the methods mentioned above, the core concept mainly focuses on 

how to make full use of the information collateral to the other subtests, so as to realize the 

improvement of the subscore estimation in the target subtest. The rationale of doing this 
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rests on the fact that the collateral information could, to some extent, compensate for 

short subtest length and improve the accuracy and reliability of subscores. Substantial 

studies have verified the argument and asserted that these methods outperform the 

traditional classical and IRT subscoring approaches that do not utilize collateral 

information, such as the proportion-correct (PC) observed subscores and multiple 

independent UIRT subscore estimation (Edwards & Vevea, 2006; Wainer et al., 2001; 

Kahraman & Kamata, 2004; Yen, 1987; Dwyer, Boughton, Yao, Lewis, & Steffen, 2006; 

DeMars, 2005).  

Motivation of the Study 

         To further examine the performance of these methods, numerous studies were 

implemented aiming to evaluate their relative performances as some relevant influential 

factors alter. Table 1 presents some subscoring approaches that were primarily included 

in the comparison for the paper-and-pencil (P&P) tests in the literature. It is apparent that 

Wainer’s AUG (which refers to Wainer et. al’s AUG for brevity in this study), Yen’s OPI, 

and MIRT estimation are the most widely acknowledged subscoring methods  in P&P 

tests, while the PC subscoring is usually treated as the representative of traditional 

estimation approaches and the baseline method. The most recent study (de la Torre, Song, 

& Hong, 2011) also added the higher-order IRT model into the comparison, based on the 

fact that the hierarchical latent trait structure is often adopted in the design of modern 

assessments. In the meantime, some crucial factors that may affect subscore estimation 

were investigated in most of the previous simulation studies, which are listed in Table 2. 

Typically, they refer to the number of content areas or instructional objectives, subtest  
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Table 1  

Primary Comparison Studies on Subscore Estimation Approaches for P&P Tests in the Literature  

 

 

Author 

 

Model for Data Generation 

or Item Calibration 

Methods for Comparison 

 

Wainer et. al's AUG 

Yen's 

OPI 

 

MIRT 

 

Other Methods 

DeMars (2005) 3PL MIRT model  √   √ Bi-factor model and   

independent UIRT models.  

Dwyer et al.(2006)
a 

UIRT  √  √  √ PC subscores. 

Edwards & Vevea 3PL UIRT model  

  

√ (AUG on observed 

summed scores and 

IRT scale scores for 

summed scores) 

      

(2006) 

Shin (2007) 3PL UIRT model and the 

generalized partial credit 

model  

√ √   The Bock’s method (1997), the 

Shin’s method (2005), and PC 

subscores. 

Yao & Boughton (2007) 3PL MIRT model and 

multidimensional partial 

credit model  

  √ √ PC subscores, UIRTOJSS, 

MIRTPSS, BMIRTSS, 

BMIRTDS (2007) 

Stone et al. (2009)
a 

Not mentioned  √ √ √   

Fu & Qu (2010) Multidimensional partial 

credit model  

√  Adjusted 

OPI 

√ PC observed subscores, 

PCM_SUB, PCM_ALL (2010)  

Skorupski & Carvajal 

(2010) 

3PL UIRT model  

  

√ (AUG on CTT raw 

scores & AUG on 

IRT raw scores) 

    A Bayesian IRT with  

Informative Priors Approach. 

de la Torre et al. (2011)
a 

 Higher-order IRT model √ √ √ Higher-order IRT models. 

Note. 
a
For the sake of space in the table, only the first author in their study is listed. Please check the reference list for detailed 

information.  
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Table 2  

Primary Factors Affecting Subscore Estimation Investigated for P&P Tests in the Literature 

 

Author 

number of 

subtests 

 

Test length 

Subscale 

correlations 

 

Sample size 

Simula-

tion 

number of 

replication 

Real 

data 

DeMars 

(2005) 

2 20 for one subtest and 

15 for the other 

0.81 2,552 in real data and 

2,500 for simulation 

√ 100 √ 

Dwyer et al. 

(2006)
a 

Uni-data: 

Reading: 4; 

Mathematics: 7 

Multi-data: 5 

Uni-data: Reading: 32 altogether for 4 

subtests; Mathematics: 31 altogether for 7 

subtests. 

Multi-data: 5 & 10 for each subtest 

 Uni-data: Reading: 

1,983 

Mathematics: 

1,430 

Multi-data: 6,000 

   

 

√ 

Edwards & 

Vevea (2006) 

2 & 4 Different combinations of 5, 10, 20, & 40 

items for each subtest  

(See p. 245) 

0.3, 0.6, & 0.9 2,000 √ 100  

Shin (2007)
b 

Not mentioned 6, 12, & 18 for each subtest 0.5, 0.8, & 1.0 250, 500, & 1,000 √ 100  

Yao & 

Boughton 

(2007) 

4 

 

60 dichotomous and polytomous items 

altogether for 4 subtests 

0, 0.1, 0.3, 0.5, 

0.7, & 0.9 

1,000, 3,000, & 6,000 √  

20 

 

Stone et. al 

(2009)
a 

4 59 dichotomous and polytomous items 

altogether for 4 subtests 

 10,545   √ 

Fu & Qu 

(2010) 

2 a combination of number of in-scale items 

(5, 10, 20, and 30) and number of out-scale 

items(5, 10, 20, and 30) 

0.1, 0.5, & 0.9 2,000 √ 50 or 100  

Skorupski & 

Carvajal 

(2010) 

4 52 items for 4 subtests 

(15, 12, 14 and 11 respectively) 

 17,226   √ 

de la Torre 

(2011)
a 

2 &5 10, 20, & 30 for each subtest 0, 0.4, 0.7 & 0.9 1,000 √   

4 90 altogether for 4 subtests 

(25, 20, 20, and 25 respectively) 

About 0.75 

averagely 

2,255   √ 

Note. 
a
 For the sake of space in the table, only the first author in their study is listed. Please check the reference list for detailed 

information. 
b
The ratio of constructed-responses (CR) items to multiple-choice (MC) items was also considered as a factor in 

the study.   
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lengths, correlations between subscales, and sample sizes. By comparison, a vast number 

of studies, not limited to the ones cited in Tables 1 and 2, provided sound and solid 

evidence on the advantages of these improved subscoring methods. By examining the 

methods in different testing conditions, some valuable guidelines were also addressed as 

future references in the studies.    

         As a matter of fact, regarding the critical challenges of subscore reporting, Edwards 

and Vevea declared three possible solutions in their study in 2006, which were (1) to 

increase the subtest length, (2) to adopt collateral information derived among subtests, 

and (3) to consider the computerized adaptive testing (CAT) for customized test 

assembling. The subscoring methods mentioned above led to their second solution and 

have achieved the intended purposes to a large extent. In terms of the other two solutions, 

the first one is unrealistic because time and testing resources are limited and total scores 

are always of the most importance and interest for the majority of assessments. Adding 

more items in each subtest may supply redundant information when total scores are 

estimated and also increase the undesirable testing time and cost.  

         In the recent decades, the last solution, also suggested by Wainer et al. (2001), 

becomes more and more promising and feasible because many large-scale assessments 

gradually adopt computerized adaptive testing (CAT) as their testing format with the aid 

of advanced testing and computer technology. As widely recognized, the most 

advantageous characteristic of CAT, compared to the conventional P&P tests, is that it 

assembles a real-time test tailored by the just-in-time performance of examinees in the 

course of a test, and provides relatively more accurate and reliable ability parameter 
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estimates right after the test is completed. Moreover, under the condition of ensuring the 

comparable accuracy and reliability of estimates, CAT requires a shorter test length than 

the P&P tests, which is even applicable to the examinees with extreme abilities if item 

pools are fully constructed. Considering this advantage, CAT may potentially provide a 

resolution to the less accurate and reliable subscore estimates that always result from 

insufficient items in the subscoring procedure.  

         In addition, formal assessments for Common Core Standards (2010) are expected to 

launch during the 2014-2015 school year. One of the testing formats is adaptive online 

tests. By then, in order to meet the standards and enhance the readiness of high school 

graduates for the future, it is foreseeable that CAT subscoring mechanism will be in great 

demand from participating states for its diagnostic values. In the meantime, test 

developers must be aware that additional assessments particularly designed for diagnostic 

purposes are not very adoptable in practice considering the incremental testing frequency 

and expenses. The optimal alternative therefore turns to the possibility of pulling the 

diagnostic information out of the conventional large-scale assessments as well as 

maintaining the original test purposes and specifications. In other words, attempts should 

be made to figure out some approaches of deriving both total scores and subscores from 

the same large-scale assessments at one time and simultaneously achieving the desirable 

accuracy and reliability of both types of scores. For the subscoring methods listed in 

Table 1, only Yen’s (1987) and de la Torre & Song’s (2009) methods can provide both 

scores at the same time in one test. 
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         Besides, another concern points to the fact that all the subscoring approaches 

mentioned previously were developed on the traditional P&P testing format. Their 

extensions and applications in CAT could be very desirable. With the growing popularity 

of CAT, the MIRT model has been expanded to the CAT framework and is 

correspondingly developed as the multidimensional adaptive testing (MCAT, Segall, 

1996). Moreover, given the specific operational features of CAT, van der Linden (2010) 

proposed an estimation algorithm to improve subscore estimates by adaptively 

sequencing subtests in a test battery (SEQ-CAT). Recently, he continued developing this 

algorithm by maximally utilizing the information derived from the complete response 

pattern and correlation structure (reSEQ-CAT; W. J. van der Linden, personal 

communication, July 30
th

, 2013). Through the investigations of some studies, these 

computer-based adaptive scoring methods have been identified as more efficient and 

reliable score estimation approaches, compared to the conventional unidimensional 

adaptive test (UCAT) scoring and multiple independent UCAT (IND-UCAT) scoring 

(Luecht, 1996; Segall, 2001; Li & Schafer, 2005; Yao, 2012; van der Linden, 1999; van 

der Linden, 2010).  

         In addition, Luo, Diao, and Ren (2014) applied Wainer’s AUG to the simulated 

CAT tests (AUG-CAT). As one of the most widely accepted subscoring methods in P&P 

tests, the augmentation technique developed in Wainer’s AUG indubitably deserves 

special attentions and endeavors as it is combined with the adaptive testing algorithm. 

More importantly, it demands for relatively simpler computation compared to MCAT, 

SEQ-CAT and reSEQ-CAT, and consequently might be more applicable to the 
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operational tests if it could ensure the quality of subscore estimates as the other three 

methods do. Therefore, aside from an interest in the application of Wainer’s AUG in 

CAT tests, comparing it with the other three CAT subscoring methods is also worth 

considerable attentions, which, to date, has not yet been presented in the literature.  

         As another widely-recognized subscoring method in P&P tests, Yen’s OPI seems 

very promising to be developed to the CAT and also indispensable to compete with the 

other CAT subscoring methods in the study. However, under the CAT framework, OPI’s 

original design constrains its application to CAT tests. More precisely, Yen’s OPI in P&P 

tests is defined as the mean of the posterior distribution of the true proportion-correct 

subscore 
( )i d , which is estimated by 

( )

( )

( ) 1( )

1 ˆ( )
d

d

d

J

ij i

jd

P
J




 . 
( )

ˆ( )
dij iP   is the probability of a 

correct response to item j in subtest d for examinee i with the general ability estimate of 

ˆ
i , and 

( )dJ  is the test length of subtest d. In a P&P test, all the items in each subtest 

completed by individual examinees are fixed and identical. Therefore, the prior 

proportion-correct subscore estimates 
( )i d  are comparable among all examinees. 

However, in a CAT test, the items optimally measuring the real-time ability estimate are 

adaptively selected from the item pool for individual examinees. That is, the items 

selected for each examinee might be very different depending on their just-in-time 

performance during the test. Given this characteristic of CAT, the use of the proportion-

correct subscores to distinguish examinees is totally inappropriate because the probability 

of a correct response to an item that matches the provisional ability estimate in CAT is 
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always approximate to 0.50 regardless of the placement of examinees on the ability scale. 

Considering this limitation, Yen’s OPI is not included in the study.  

Purpose of the Study 

         Based on the discussion above, the primary objective of the study is to compare 

some CAT subscoring methods by evaluating their subscore estimation on 

dichotomously-scored items in CAT tests, as has been conducted in the P&P tests in the 

literature. The subscoring methods mentioned above are considered for comparison. 

However, in order to make the comparisons more comparable and realistic, the study 

modifies the conventional MCAT as the pool-constrained MCAT (PC-MCAT), which is 

described in more detail in the 2
nd

 section of Chapter 3. Namely, the study includes IND-

UCAT, AUG-CAT, SEQ-CAT, reSEQ-CAT, and PC-MCAT in the comparisons, in 

which IND-UCAT is treated as the baseline subscoring method. Some relevant factors 

listed in Table 2 for P&P tests are also crucial to CAT tests, and therefore their effects on 

CAT subscore estimation are worth investigating. Two of the factors, subtest length and 

the correlations between subtests, are considered in the study.  

         Also, in most large-scale assessments, each subtest usually measures a particular 

subscale or content area, which implies a simple structure that each item loads only on 

one subscale or content domain. In the study, all the items are derived from real existing 

subpools and they all exhibit a simple structure. In addition, as the methods originally 

designed for CAT tests, IND-UCAT, SEQ-CAT, and PC-MCAT have their own item 

selection algorithms, which demonstrate different capacities of exploiting the collateral 

information in the item selection procedure and may agitate the comparability of these 
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scoring methods. Therefore, the three item selection algorithms are also taken into 

consideration in the study, and are individually conducted along with all the five scoring 

methods. As a byproduct of this consideration, the performances of these three item 

selection algorithms on improving score estimates are also demonstrated in the study.   

         Furthermore, as indicated in Wainer et.al’s study (2001), tests are most commonly 

used for ranking and diagnosis. In practice, most large-scale assessments are designed 

merely for the first purpose, aiming to seek the standings of examinees on a common 

general ability scale. To ensure the validity and fairness of ranking, the assessments need 

to cover a wide range of contents or subscales within a subject or a general ability to 

align with test specifications and also to avoid favoring certain groups of examinees. 

Recall that a wide coverage of a test on contents or subscales can lead to inadequate items 

in each subtest, and thus prompts big challenges for subscore estimation that is typically 

the derivation of diagnostic information. However, given the increasing voices for 

subscore reports in the market, large-scale standardized tests are imperatively expected to 

hold capabilities of serving for both purposes at no expense of testing cost and time. 

Under the circumstance, this study takes advantage of the hierarchical latent trait 

structure and suggests an approach of calculating the total scores based on the subscores 

estimated by the subscoring methods described. This approach is applicable to both P&P 

and CAT testing formats, of which the latter is the focus of the study, and provides 

subscore and total score estimates successively from one test.  
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Research Questions 

         To accomplish the purposes of the study, a simulation study is designed to mimic 

different CAT testing conditions. The following five aspects of research questions are 

addressed in the study: 

1. How well do the other four subscoring methods perform in improving the 

accuracy of subscore estimates under various CAT testing conditions compared to 

the baseline method of the multiple independent UCAT (IND-UCAT) scoring 

procedure? 

2. How comparatively efficient are the other four subscoring methods in subscore 

estimation under various CAT testing conditions other than IND-UCAT? 

3. How do the investigated factors, including subtest length and the correlations 

between subtests, influence the performance of the five subscoring methods?  

4. How well does the suggested successive scoring approach perform in recovering 

the true total scores under various CAT testing conditions? 

5. How well do the three item selection algorithms perform under various CAT 

testing conditions? Which combination of the scoring method and the item 

selection method performs the best under the conditions? 
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CHAPTER II 

LITERATURE REVIEW 

         The discussion above, especially the summary in Table 1, exhibits some existing 

subscore estimation approaches for P&P and CAT testing formats in the modern 

assessment realm. In the last few decades, a number of the P&P subscoring methods have 

been widely accepted, thoroughly compared and some even applied to the real P&P tests 

by measurement researchers and practitioners. For the study, five primary subscoring 

methods fitting in the CAT testing environments are compared. Correspondingly, the 

studies regarding their rationale, applications and comparisons are theoretically and 

technically described in this chapter. Before jumping to the details of these five 

subscoring methods, some components relevant to the implementation of a CAT test are 

first introduced, which are employed across all the five subscoring methods. They 

primarily include the types of estimated IRT ability parameters, item selection criteria, 

and the methods of constraint imposition. For comparison purposes, the use of the 

consistent components across all methods is prerequisite and vital. In addition, the 

higher-order IRT model is briefly described for a reason that the structural phase in HO-

IRT model provides a clue for the study to calculate the general ability scores.  

Maximum A Posterior (MAP) Estimates 

         Maximum a posterior (MAP, see Samejima, 1969) estimates are developed from 

Bayesian estimation philosophy, for which the ability parameter estimation is relatively 
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precise, efficient and feasible, especially when higher ability dimensionality and extreme 

response patterns are involved (e.g. Bock & Aitken, 1981; Bock & Mislevy, 1982; Lord, 

1986, Swaminathan & Gifford, 1986; Segall, 1996; Chen, 2009). Conceptually speaking, 

the Bayesian estimation is implemented by incorporating the previous knowledge (the 

prior distribution) into the data analysis process (the likelihood function) to shape the 

new evidence (the posterior density function) on the target parameters. It constantly 

updates the beliefs on all the uncertain quantities including unobserved parameters by 

utilizing the newly-input information from the data. One of the advantages of Bayesian 

estimation is that unobserved parameters that might be poorly estimated based on the data 

can be improved in conjunction with the proper informative prior distribution. The prior 

distribution is often elicited from modeling the previous studies and the beliefs from 

experts. The posterior density function is, by definition, expressed as 

                                             
( ) ( ) ( )

( ) ( )

( )

( | ) ( )
( | )

( )

i d d d

d i d

i d

L f
f

f

 
 

u
u

u
                                     (1) 

                                  
( | ) ( )

( | )
( )

i

i

i

L f
f

f


u
u

u

 
 ,                                                (2) 

in which, for the unidimensional IRT case (Equation 1), 
( )d  refers to the ability 

parameter in subtest d while for the multidimensional IRT case (Equation 2),   refers to 

a vector of ability parameters in all subtests; 
( )i du  or iu  respectively represents the 

observed response pattern of examinee i in subtest d or in an entire test; 
( ) ( )( | )i d dL u  or 

( | )iL u   is respectively the likelihood function of the observed responses 
( )i du  or iu ; 
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( )( )df   is the prior distribution of 
( )d  while ( )f   is the multivariate prior distribution 

of  ; and 
( )( )i df u  or ( )if u  is respectively the marginal probability density function of 

( )i du  or 
iu , which plays as a constant for normalization.  

         Based on the assumption of local independence, the likelihood functions in 

Equations (1) and (2) for the first k -1 items administered in CAT are accordingly defined 

as 

                                      ( ) ( )

( ) ( )
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1
1

1
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d d

d d
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
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,                                           (4) 

where 
( ) ( ) )dj dP   or )jP   is respectively the probability of a correct response to item j in 

subtest d or in a test measuring multiple abilities; 
1

( )

k

i d


u  or 1k

i


u  represents the response 

pattern to the first k-1 items administered in subtest d or in a test for examinee i; and 
( )diju  

or 
iju  is the response to item j in subtest d or in a test for examinee i. 

         In general, MAP estimates, also known as Bayes modal estimates (BMEs), are the 

values of ability parameters corresponding to the maximum point of the posterior density 

function. They occur when the first derivative(s) of the posterior density function is (are) 

equal to 0. For the sake of computational convenience, the natural logarithm of the 
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posterior distribution is usually used. In the unidimensional CAT case, the MAP subscore 

1

( )
ˆk

i d   for examinee i estimated from the first k-1 selected items in subtest d is known as 
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and is the updated posterior distribution of 
( )d  after counting in the (k-1)th response in 

subtest d. By Equation (5), 1

( )
ˆk

i d 
 is approximately obtained by 

                                                       1

( ) ( )

( )

ln ( | ) 0k

d i d

d

f 






u .                                           (7) 

In the multidimensional CAT case, the MAP subscores 
1ˆk

i

  for examinee i, estimated 

from the first k-1 selected items in a test, are the approximation to the IRT scale scores 

that maximize the natural logarithm of the posterior density function 1( | )k

if 
u  in the 

multiple-dimensional space (Segall, 1996). That is, 

                                                                1 1ˆ arg ma l ( | )x n }{
i

k

i

k

i f   u


 .                                           (8)                 

Mathematically, they are the solutions to a set of D simultaneous equations 
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and D is the total number of the subscales measured by a test. In the study, because all the 

items exhibit a simple structure, D is also the total number of subtests included in the test 

battery. The individual partial derivative with respect to each subscale in Equation (10) 

could be further expressed as 

                                1 1

( ) ( ) ( )

ln ( | ) ln ( | ) ln ( )k k

i i

d d d

f L f
  

   
 

  
u u   .                (11) 

         Because there are no closed form solutions to Equations (11), some iterative 

numerical procedure is required. Suppose that 
( )ˆ m  represents the mth approximation to 

the values of   that maximize 1ln ( | )k

if 
u . Then the next approximation 

( 1)ˆ m , which 

could produce larger 1ln ( | )k

if 
u , is given by 

                                                          
( 1) ( ) ( )ˆ ˆm m m     ,                                                 (12) 
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in which 
( )m  is a 1D  vector, denoted as 

                                        ( ) ( ) 1 ( ) 1ˆ[ ( ) ln ( | )] m k

i

m m f 
 


uH  


.                                  (13) 

For the Newton-Raphson iterative procedure, ( )ˆ( )m
H   in Equation (13), known as 

Hessian matrix, is a D D  symmetric matrix with elements of second derivatives 

evaluated at 
( )ˆ m , which is 
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The elements in ( )ˆ( )m
H   are more specifically written as 
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.  

By Equations (12) and (13), the approximation process is repeated until the elements in 

( )m  become very small. The final approximation is accordingly treated as the MAP 

subscore estimates 
1ˆk

i

  for examinee i after taking the first k-1 items. Sometimes, the 

iterative procedure may not be converged when the selection of the initial values of 
( )ˆ m  

does not fall near the true global maximum. For such a situation, Segall (1996, 2010) 

suggested to use Fisher’s scoring method to avoid non-convergence, which is to replace 

( )ˆ( )m
H   in Equation (13) by 
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                                               ( ) ( )ˆ ˆE[ ( )] , )(m mp IH  ,                                              (15) 

where ( )ˆ )( ,p m
I    is negative the expected ( )ˆ( )m

H   and known as the Fisher’s posterior 

information matrix evaluated at 
( )ˆ m , which is described in detail in the section of MCAT 

of this chapter. 

         After obtaining the MAP estimates 
1ˆk

i

  based on the first k-1 items, the test 

proceeds to consecutively select the next few optimal items until some stopping rule is 

satisfied. The values of ˆ
i  that maximize the last updated posterior density function 

ln ( | )if u  are regarded as the ultimate MAP subscore estimates. As a matter of fact, the 

iterative procedure used in the multidimensional CAT can also be applied to the 

unidimensional CAT such that the solution to Equation (7) can be faster obtained. The 

Newton-Raphson procedure in UCAT is demonstrated as 
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        In this study, the MAP ability estimation is adopted primarily for two reasons. First, 

compared to maximum likelihood estimates (MLE), IRT Bayesian ability score estimates, 

mainly referred to as MAP estimates and expected a posterior (EAP) estimates, are 



 

24 
 

2
4
 

obtainable for the examinees with extreme response patterns, which include the null and 

perfect response patterns. Also, the Bayesian estimates are relatively more precise and 

efficient for the fact that they yield lower standard error (SE) in CAT tests, especially in 

short tests (Warm, 1989; Wang & Vispoel, 1998). As discussed previously, insufficient 

items used for subscoring in each subtest may lead to unreliability and imprecision of 

subscore estimates. Under the framework of Bayesian estimation, the insufficiency of 

items can be somewhat compensated by adding the prior knowledge on the (multivariate) 

distribution of the ability (abilities) on the subscale (subscales). Second, the MAP 

estimation demands much less computation than the EAP estimation when a large 

number of subscales are involved in a CAT test and thus turns out to be more feasible for 

some computer programs (Segall, 1996; Chen, 2009). For EAP estimation, the quadrature 

points are often used to obtain the approximation to the integration. If thirty quadrature 

points are applied to each ability dimension, multiple combinations of thirty points across 

dimensions could exponentially increase as the number of dimensions increases. 

Therefore, as the number of subscales is large, the time for computation would be a very 

critical issue, which largely impairs the advantages of CAT in practice.    

Maximum Posterior-Weighted Information (MPI) For Item Selection in UCAT 

         Over the conventional linear tests, a major advantage of CAT is the real-time item 

selection, which indicates a procedure of searching the following item that optimally 

measures the current ability score estimate. That is, as the ability score estimate is 

updated, only the items right tailored for individual examinees enter the test. A variety of 

item selection criteria are developed for the framework of UCAT, which primarily 
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include the maximum-information criterion (Weiss, 1982), the Bayesian criterion (van 

der Linden, 1998) and the Kullback-Leibler information criterion (Chang & Ying, 1996). 

Distinguished from Owen’s (1975) approximate Bayesian criterion, van der Linden’s 

(1998) Bayesian criteria is a fully Bayesian procedure that implements item selection 

based on the full posterior, and is mainly referred to as the criteria of maximum posterior-

weighted information (MPI), maximum expected information, minimum expected 

posterior variance, and maximum expected posterior weighted information (van der 

Linden, 1998). The first approach, MPI, is used as the item selection criterion for all the 

UCAT subscoring methods in the current study, which also aligns with the original 

design of SEQ-CAT (van der Linden, 2010). 

         Maximum posterior-weighted information (MPI) criterion is essentially a 

reformulation of the maximum information criterion within the framework of Bayesian 

inferences, which is an algorithm of seeking the following item with the maximum 

expected information over the posterior distribution. This item selection criterion allows 

for the integration of empirical data and the updated knowledge of the posterior 

distribution. Moreover, it permits the inclusion of the neighboring ability score estimates 

yielding considerable likelihoods in the course of item selection.  

         For instance, in terms of MAP scale scores, as the (k-1)th item in subtest d is 

completed, the new response is thereafter used to update the posterior distribution 

1

( ) ( )( | )k

d i df  
u  by Equation (6) and then the new MAP estimate 

1

( )
ˆk

i d 
 is obtained. For the 

MAP ability scores employed in the study, the corresponding Fisher’s posterior 

information function 
1

( ) ( )
ˆ( , )k

d d

pI   
 is denoted as 
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,                  (18) 

where 
1

) )( (( , ˆ )k

d dI  
 is the Fisher’s information function regarding maximum-likelihood 

estimates (MLEs); 
( )

'

( )( )
dj dP   is the first derivative of 

( ) ( )( )
dj dP  ; and 

2

( )( )d 
 is the 

reciprocal of the variance of the prior distribution. Because the second term on the right 

of Equation (18) is constant for all items in subpool d, the Fisher’s information function, 

regardless of the types of UIRT scale scores, is considered when selecting the next item 

in a CAT test, as opposed to the Fisher’s posterior information function.   

        As for the maximum-information criterion, the Fisher’s information function at a 

single point estimate of the ability parameter (say, 
1

( )
ˆk

i d 
) is the only determinant for the 

next-item selection. Specifically speaking, when selecting the kth item in subtest d from 

the remaining of subpool 
( )k dR , the item that maximizes the Fisher’s information function 

evaluated at 
1

( )
ˆk

i d   would be selected. That is, 

                                      
( )

( ) ( ) ( ) ( )

1

' ( )
ˆarg m { ; }x (a )

ik d

ik d i d ik d k d

k

k i d
j

j j RI    , .                            (19) 

Based on the assumption of conditional independence given 
( )i d , the Fisher’s 

information function is additive. By notation, that is 
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                                       1

( ) (( ) ( )) ( ) ( )
ˆ ˆ( , ) )( , , )(k k

i d i di d i d i d ik dI I uI    .                             (20) 

Because the first term on the right of Equation (20) holds constant for 
( )k dR , Equation (19) 

is equivalent to 

                                      
( )

( ) '( )

1

( ) ( )' ( )( ); }ˆarg max{
ik d

k

k i dik d ik d ik d k d
j

j u jI R  , ,                          (21) 

where '( )

1

' ( )( ˆ )k

ii d dk kuI  
,  is the information of the candidate of the kth item evaluated at 

1

( )
ˆk

i d 
. 

         Regarding the MPI criterion, when the kth item in subtest d is to be selected from 

( )k dR , the item that maximizes the expected Fisher’s information over the updated 

posterior distribution would be selected. It is denoted as 

                          ( )

1

( ) '( ) ( ) ( ) ( ) ( ) (' ( ) )( ) (arg max{ | ) ; }
ik d

k

ik d k d dk d
j

i d d ik d k dj u f j RI d    , u
,         (22) 

which demonstrates that the information produced by any candidate item from 
( )k dR  is 

weighed by the posterior distribution of 
( )d . The weights are a function of the likelihood 

and the prior distribution over the entire ability scale continuum. It implies that the item 

that optimally measures a narrow ability interval rather than an ability point estimate is 

most likely selected as the next item by the MPI criterion. The considerations on the other 

likely ability points in the neighborhood can be of great benefit to efficiently select the 

items that most likely match the true ability score. By contrast, the maximum-information 

criterion for MAP scores simply considers the item with the largest maximum 

information evaluated at a single ability point estimate. However, at the early stage of a 
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test, the likelihood function is typically flat and has less impact on the posterior 

distribution. As a result, the posterior distribution will be very approximate to the initial 

prior distribution, so no significant differentiation is expected between the new MAP 

score estimate and the initial ability score. Under such a circumstance, selecting an item 

with maximum information evaluated at a single ability estimate may slow down the 

posterior distribution converged at the true point.  

Shadow Test 

         As discussed above, Fisher’s information function plays an important role in CAT 

item selection. However, the item selection procedure simply depending on the 

information function may, in practice, result in some nonstatistical violations of test 

specifications, such as unbalanced content areas, disproportional answer keys, or item 

over-exposure. In order to ensure test specifications, some pertinent constraints are 

always imposed during the process of selecting each item. With the constraints imposed, 

the selected item needs simultaneously to guarantee the maximization of statistical 

information. The algorithm accomplishing both goals was named constrained sequential 

optimization in van der Linden’s study (2010). Prior to his study, some methods had been 

developed to implement the constrained sequential optimization, which involved 

maximum priority index method (Cheng & Chang, 2009), item-pool partitioning 

(Kingsbury & Zara, 1991), weighted-deviation method (Swanson & Stacking, 1993), and 

multistage testing (Adema, 1990), etc. However, the results from the investigations on 

these methods showed that these methods might lead to a dilemma, either violations of 

some constraints or suboptimal adaptation at the end of a test (van der Linden, 2005).  
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         The shadow test proposed by van der Linden and Reese (1998) breaks through the 

dilemma and fulfills the optimal adaptation and the realization of all constraints 

simultaneously. Also, note that the shadow test is not a common-sense test for 

administration, but an algorithm of a real-time test assembly. It starts with assembling a 

full-length test (the first shadow test) that includes the first few items with the maximum 

information at the initial ability estimate, under the condition that all the constraints are 

satisfied. Then the item providing the maximum information is selected from the first 

shadow test, instead of from the item pool, and is administered. Thereafter the ability 

estimate is updated, and then a new shadow test is correspondingly assembled not only 

with both goals achieved but also with the earlier administered item included. It continues 

until some stopping rule is satisfied. In the current study, the last shadow test would 

contain all the actually administered items and simultaneously meet all the constraints.  

         In principle, the shadow test is a composition of the maximization of statistical 

information and the realization of nonstatistical specifications (van der Linden, 2010).  It 

is implemented by maximizing the objective function with decision variables 

manipulated, so that the constraints depending on the test specifications could be imposed 

and the eligible items with maximum information could be selected into the shadow test. 

For instance, to make the subscores estimated by different methods comparable, the 

current study employs the fixed subtest length across the compared methods (and 

therefore the total test length is also fixed). To meet this specification, in the case of 

UCAT with MPI criterion and MAP scores, when the kth item is selected for subtest d, 

the objective function for the kth shadow test is expressed as 
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 
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subject to 

                                                           
( )

( )

( )

( )

1

d

d

d

N

n d

n

x J


                                                     (24) 

                                                 
( ) ( )( ) ( 1)1,
d dn d kx for all n S                                          (25) 

                                                
( ) ( ) ( ){0,1}, 1,2,...,
dn d dx n N  ,                                      (26) 

where 
( )dN  is the total number of items in subpool d ; 

( )dJ  is the test length of subtest d; 

( )dnx  is the binary decision variable for the selection of item 
( ) ( ) ( ), 1,2,...,d d dn n N ; and 

( )( 1) dkS   is the set of the first (k-1) selected items in the shadow test from subpool d.  

         As such, with the sublength constrained in MCAT that adopts the item selection 

criterion of the Bayesian version of D-optimality (for more details, see the section of 

MCAT of this chapter), when the kth item is selected, the objective function for the kth 

shadow test is expressed as 

                                          
1

1

1 1ˆ ˆmaximize det( ( , ,) ) )(
N

in n

n

k k u x 



 
   I I                      (27) 

subject to 

                                                                 A x J                                                          (28) 
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( 1)1,n kx for all n S                                             (29) 

                                                       {0,1}, 1,2,...,nx n N  ,                                         (30) 

where N is the total number of items in the item pool and 
( )

1

D

d

d

N N


 ; A  is a D N  

matrix with binary elements of either 0 or 1, reflecting the mapping of all items in the 

entire pool; x  is a vector including the binary decision variables for the selection of 

items from 1 to N; J  is a vector with elements of 
(1) (2) ( ), ,..., DJ J J , 

(1) (2) ( )... DJ J J    

in the study, and 
( )

1

D

d

d

J J


 , where J  is the total number of items administered in a 

MCAT test. 

         Equations (24) to (26) and Equations (28) to (30) represent the constraints requested 

in the test specifications in the current study. The numbers of items from each subscale 

are constrained by Equations (24) and (28). Another constraint of Equations (25) and (29) 

indicates the inclusion of all the k-1 items that have been administered into the kth 

shadow test. The decision variable 
( )dnx  or nx  is constrained as a binary variable of either 

0 or 1 by Equations (26) and (30), in which item 
( )dn  or n is selected into the shadow test 

if 
( )dnx  or nx  is equal to 1 and otherwise item 

( )dn  or n is not selected. Basically, how to 

determine the values of the decision variables becomes the core of accomplishing the 

constrained sequential optimization problem in a shadow test. Their proper values should 

simultaneously solve equations (24) through (26) in UCAT or equations (28) through (30) 

in MCAT. Just as van der Linden stated, “A solution to the optimization problem is a 
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vector of zeros and ones for the decision variables that identifies the set of items that 

meets the constraints and has a maximum value for the objective function” (2010, p.108).  

         To locate the values of decision variables, a 0-1 integer linear programming (ILP) is 

always adopted. A powerful solver to the ILP model can efficiently find out the solutions 

based on branch-and-bound (BAB) or some other methods. In addition, aside from the 

constraints mentioned above, some other categorical, quantitative, or even logical 

attributes of an item can also be constrained, such as word counts, item format, or enemy 

items. Imposing other constraints in ILP models is discussed in more detail by van der 

Linden (2010).   

Wainer’s Augmented Subscoring (AUG) and AUG-CAT 

         Wainer’s augmented subscoring procedure (AUG, see Wainer et al, 2001) is a 

regression-based empirical Bayes subscore estimation approach, currently applied only to 

the P&P operational testing format. Its augmentation algorithm behaves like a multiple 

regression of a true subscore on all the observed deviation subscores in a test. The 

observed group mean of a target subtest is included as the intercept in the regression 

function. The regression coefficients are largely determined by the reliabilities of subtests 

and their correlations to the target subtest. That is, the subtests with high reliabilities and 

high correlations to the target subtest are more likely to be granted larger weights on 

estimating the true target subscore. Thus, a subscore estimate is augmented by exploiting 

the collateral information from all the other subtests, other than simply depending on the 

information observed within one subtest.  



 

33 
 

3
3
 

         Wainer’s AUG was originally derived from Kelley’s (1927, 1947) regressed 

equation for a true score, which is shown as 

                                                            
' '(1 )ˆ

xx xxx      ,                                                               (31) 

where the augmented true score estimate ̂  is calculated by regressing the observed score 

x toward the test group mean   to an extent depending on the magnitude of the test 

reliability 
'xx . The test reliability 

'xx  is estimated by 2 2

true obsS S , in which 2

trueS  and 2

obsS  

are respectively the estimated true variance and the observed variance from the sample. 

Kelley’s regressed equation can also be rewritten as 

                                                               '
ˆ ( )xx x      .                                                                  (32) 

         Considering a test composed of a test battery, Wainer et al. (2001) generalized 

Kelley’s equations to the multivariate form under the same assumption that true scores 

and observed scores all follow a (multivariate) normal distribution. By sample notation, 

Wainer’s multivariate regressed equation is expressed as 

                                                              
1

= )

ˆ

(

  

 

（ ） Bx B X

X B x X
,                                                                  (33) 

where ̂  is a vector of augmented true subscore estimates; X  and x  are the vectors of 

subtest means and observed subscores; and B is the reliability-related coefficient matrix.  

         The coefficient matrix B contains the weights for all the linear combinations of 

deviation subscores. These linear combinations are actually the equations of estimating 
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all the true target subscores. The matrix B is determined by the reliabilities and 

intercorrelations of subtests and is calculated by 1

true obsS S
 . In alignment with the 

counterpart of reliability 2 2

true obsS S  in the univariate case, 
trueS  and 

obsS  are respectively 

the estimated true covariance matrix and the observed covariance matrix from the sample. 

When B is an identity matrix implying perfect reliability and independence of subscores, 

Wainer’s AUG estimates are reduced as observed subscores; When the subscores depart 

from perfect reliability implying the occurrence of measurement errors, the information 

contributed by the other subtests is added to the true target subscore estimation; When 

B=0 implying absolutely independent and unreliable subscores, Wainer’s AUG estimates 

are reduced as subscore means.    

         By Equation (33), the augmentation procedure in Wainer’s AUG is obviously 

demonstrated, which is to weigh the information from all the other subtests on the target 

subscore estimation, according to their reliabilities and the correlations to the target 

subtest. Wainer’s augmented subscoring procedure is applicable to the classical observed 

scores and IRT scale scores. Since MAP estimates are used in the study, the following 

discussion focuses on the derivation of Wainer’s augmented subscore estimates from IRT 

MAP scale scores.  

         As demonstrated in Section 1 of this chapter, MAP scale scores ( )
ˆ
i d , calculated by 

Equations (5) and (6), are already augmented by shrinking the likelihoods towards the 

priorly-known population mean. In order to calculate obsS  from the original unaugmented 

observed score estimates, the shrinkage toward the prior distribution mean should be 
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removed from MAP scale scores. That is, MAP scale scores ( )
ˆ
i d  should be converted to 

the unaugmented IRT score estimates *

( )
ˆ
i d . Under the assumptions that the measurement 

errors across all the MAP scale scores are constant and MAP scale scores within each 

subtest have a zero mean, the conversion equation could be established as 

                                                     
*

( ) ( ) ( )
ˆ ˆ /i d i d d   ,                                                                   (34) 

in which 
( )d  is the reliability of subtest d and is defined as 

                                    
2

( )

( )
2 2

( ) ( )( )

ˆ( )

ˆ ˆ( ) |( )

d

d

dd d

 


   


 u
,                                            (35) 

where 
2

( )
ˆ( )d   is the variance of MAP subscore estimates in subtest d and

2

( ) ( )|ˆ( )d d  u  

is the average of the posterior variances of MAP subscores in subtest d. Also, the 

conversion equation (34) is transformed from the equation of *

( ) ( ) ( )
ˆ ˆ
i d d i d   , which is 

analogous to Kelley’s regression equation (Equation (31)).  

         By means of Equations (34) and (35), 
*

( )
ˆ
i d  is calculated for each examinee in each 

subtest and the matrix of obsS  with respect to all the values of 
*

( )
ˆ
i d  could also be 

calculated. Then, the matrix of trueS  for true subscores is estimated from  

                                                                true obsS S D  ,                                                                      (36)  
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 where D  is a diagonal matrix with the dth diagonal element as ( )(1 ) dd

o sd bs  in which 

dd

obss  is the observed sample variance of subtest d. Given 
trueS  and 

obsS , the matrix 
*

B  for 

unaugmented IRT score estimates is obtained from 1

true obsS S
 . According to Equation (33), 

Wainer’s MAP augmented subscore estimates are, therefore, given by 

                                               

* * * *

* * * *

ˆ ˆ ˆ(1 )

ˆ ˆ ˆ( )

AUG

i i

i

  

  

  

  

B B

B

,                                               (37) 

where ˆAUG

i  is a vector of Wainer’s augmented subscore estimates for examinee i; 
*̂  is 

the mean vector of unaugmented IRT subscore estimates; 
*ˆ
i  is a vector of unaugemented 

IRT subscore estimates for examinee i. 

         In order to evaluate the performance of Wainer’s AUG, Wainer et. al (2001) applied 

their augmented subscoring method on three different types of observed subscores 

(classical standardized summed subscores, MAP subscores for response patterns, and 

EAP subscores for summed scores) in three operational tests (a certificate exam, a 

computer skill test, and an end-of-grade mathematics test). Among these three tests, the 

certificate exam appeared to be obviously unidimensional, whereas the computer skill test 

tended to be multidimensional. Regarding the end-of-grade mathematics test, the near-

collinearity occurred.  

         Comparatively speaking, when what all subtests measured was homogenous, 

subscores estimated by Wainer’s AUG were much more stable than the observed 

subscores. Nevertheless, these augmented subscores could not provide much diagnostic 
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information distinguishable from the total score for individual examinees. Rather than 

basically replicating the total score as they do in unidimensional tests, Wainer’s 

augmented subscores might be more discriminable in the case of multidimensional tests. 

That is, the largest weight in B or *
B  is assigned to the target subtest and simultaneously 

the collateral information from the other subtests is borrowed to an extent depending on 

their reliabilities and intercorrelations manifested in B or *
B . In the meantime, the 

stability of Wainer’s augmented subscores remained substantially the same as it is in 

unidimensional tests.  

         Under some conditions, the stability could be breached, for which Wainer et. al 

(2001) suggested to increase the lengths of some or even all subtests. It was worth noting 

that adding more items in one subtest could also simultaneously enhance the reliabilities 

of subscores in other subtests. Moreover, Wainer’s AUG treated the other subtests 

separately by assigning them different weights. In this aspect, it was more suitable and 

flexible than Yen’s OPI when the test was essentially multidimensional. Yen’s OPI 

procedure was principally established under the assumption of unidimensionality of the 

entire test. However, as a regression-based empirical Bayes subscoring approach, 

Wainer’s AUG was vulnerable and dysfunctional when the collinearity occurred. The 

negative impacts were manifested as inconsistency of weights in B or *
B  across test 

forms and aberrance of weights assigned to some observed target subscores. To reduce 

the existence of high correlations between some subtests, Wainer et. al (2001) 

reorganized the test by splitting or combining subtests.  
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           In addition, a simulation study (Edwards & Vevea, 2006) was also conducted on 

the traditional summed scores and EAP summed scores under different simulated testing 

conditions. The number of subtests, subtest lengths, and correlations between subtests 

were manipulated in the study. Compared to the unaugmented subscores, Wainer’s AUG 

procedure globally improved subscore estimates by means of yielding lower RMSE, 

higher reliability, and more accurate classifications. The similar result regarding 

improved reliability was also found in Skorupski and Carvajal’s (2010) empirical study. 

In the meantime, Edwards and Vevea (2006) indicated that the magnitude of the 

improvement varied as the correlations between subtests and subtest lengths altered. 

Among a variety of simulated conditions, they stressed that the largest improvement was 

accomplished under conditions that the correlations between subtests were high, the 

reliability of observed target subscores was low, but the reliability of observed subscores 

in the other subtests was high.  

         As mentioned in Chapter 1, Luo, Diao, and Ren (2014) expanded Wainer’s AUG to 

the CAT framework (AUG-CAT). According to their study, the augmentation techniques 

of Wainer’s AUG were actually implemented after all the original MAP subscores were 

obtained. That is, prior to the augmentation procedure, the test was administered as a 

conventional CAT test consisting of a test battery, in which the examinees took the 

subtests one after the other in a fixed predetermined sequence. The administration of a 

CAT test battery in AUG-CAT exactly followed the same procedure as it is in the 

multiple independent UCAT (IND-UCAT). During the administration of each subtest, the 

MPI criterion and the MAP scoring algorithm (if the current study was considered) were 
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employed for item selection and subscore estimation procedures. When an examinee 

completed a subtest, his/her MAP subscore for that subtest was correspondingly obtained. 

Then the examinee moved forward to the next subtest and the process described was 

repeated until the examinee finished all the subtests. Once the entire test was completed, 

all the MAP subscores of that examinee were obtained. Thereafter, the augmentation 

procedure regarding Wainer’s AUG described previously was implemented on the MAP 

subscores estimated by IND-UCAT. 

Subscoring by Adaptively Sequencing A Test Battery (SEQ-CAT) and reSEQ-CAT   

         Subscoring by adaptively sequencing a test battery (SEQ-CAT, see van der Linden, 

2010) is an empirical Bayes subscoring approach, which primarily consists of a two-stage 

adaptive testing procedure in conjunction with the multilevel IRT modeling. It is one of 

the subscoring methods initially designed under the framework of computerized adaptive 

tests. For SEQ-CAT, the two-stage adaptive testing procedure indicates (1) the between-

subtest adaptation determining the sequence of subtests administered to each examinee, 

and (2) the within-subtest adaptation determining the sequence of items administered to 

each examinee in a selected subtest.  

         The adaptation in the between-subtest stage reveals the principal difference between 

SEQ-CAT and IND-UCAT on the administration of a test battery, which may further 

enhance the testing efficiency of a CAT test. In IND-UCAT, the sequence of 

administering subtests is always predetermined and fixed to all examinees. By contrast, 

the optimal sequence of subtests is administered to individual examinees in SEQ-CAT. 

That is, each examinee may be provided with different orders of subtests according to 
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their performance in the preceding subtests. The principle to optimize the sequence of 

subtests in SEQ-CAT is to screen each of the unadministered item subpools for the one 

with the largest sum of the prior expected Fisher’s information across the intended 

subtest length. The prior expected Fisher’s information is calculated by integrating the 

information function for each unadministered subtest over its own predictive posterior 

distribution, which is the updated joint marginal distribution by the responses from all the 

previous subtests.   

         The multilevel IRT modeling in SEQ-CAT refers to any applicable IRT models as 

first-level models and the specification of the joint distribution of all subscale parameters 

as a second-level model. The IRT models in the first level can be different, but not 

necessarily different for multiple unidimensional item subpools. The joint distribution in 

the second level contains the information on the associations between subscales, which is 

of great value to subscore estimation. Once the joint distribution of all subscale 

parameters 
(1) (2) ( )( , ,..., )Df     is specified, any marginal distribution or joint marginal 

distribution of the target subscales can be obtained by integrating the joint distribution of 

all subscales over all the other subscale dimensions. When each subtest is completed, the 

relevant joint marginal distribution is updated by the responses from all the preceding 

subtests, and is converted to the posterior distribution for the corresponding candidate 

subtest by integrating it over all the preceding subtest dimensions. The relevant joint 

marginal distribution refers to the joint distribution of all the administered subtests and 

any candidate subtest out of the unadministered subtests. The posterior distributions, also 

called the predictive posterior distributions mentioned above, are hereafter treated as 
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prior distributions for selecting the next optimal subtest from all the unadministered 

subtests.  

         This procedure described above manifests the empirical Bayes algorithm in SEQ-

CAT, which is the shifting process from the posterior distribution to the prior distribution 

by exploiting the collateral information obtained from the response vectors in all previous 

subtests. Once a subpool is identified, its posterior distribution is also used as the prior 

distribution for selecting the first item from that subpool. Then this prior distribution is 

continuously updated right after each selected item is completed by the examinee, so that 

the next optimal item could be selected until the prespecified subtest length or the 

accuracy criterion is reached. This item selection procedure used in SEQ-CAT reflects 

the MPI criterion, which is discussed in Section 2 of this chapter. 

         More precisely, as the second-level model in SEQ-CAT, the joint distribution of all 

subscale parameters should be specified in advance. For example,  

                                            
(1) (2) ( )( , ,..., ) MVN( , )Df      θ ,                                   (38) 

by which the joint distribution is assumed to be a multivariate normal distribution, which 

is typically estimated from the field test. As described above, the selection of the optimal 

subtest over the other subtests is determined by the sum of the prior expected Fisher’s 

information over the intended subtest length. As no subtest is administered yet, the 

respective marginal distribution 
( )( )df   of Equation (38) is used as the prior distribution 

for each subscale to compute the prior expected Fisher’s information for each item from 

its own subpool, which is written as 
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                                                     ( ) ( )( ( ))( ) ( )d j d d du fI d  , .                                          (39) 

For comparing the sum of the prior expected Fisher’s information across the intended 

subtest length among subpools, a shadow test is calculated for each subpool so that the 

items with the largest prior expected Fisher’s information within each subpool can be 

selected, and also some constraints can be simultaneously satisfied. In the study, the 

length of each subtest is identical and fixed. Therefore, as the first subtest is to be 

selected, the objective function of the shadow test for subpool d is expressed as 

                                               
( )

( ) ( )

( )

( ) ( ) ( )

1

maximize ( ) ( )
d

d d

d

N

n d d n

n

d u f d xI   


 
   ,                               (40) 

subject to 

                                                               
( )

( )

( )

( )

1

d

d

d

N

n d

n

x J


                                                    (41) 

                                                   
( ) ( ) ( ){0,1}, 1,2,...,
dn d dx n N  .                                      (42) 

         By Equations (40) to (42), the first subpool 
1d  is identified and then the item that 

has the maximum prior expected information in the shadow test is administered as the 

first item from subpool 
1d . Its response is correspondingly utilized to update the prior 

distribution 1( )
( )

d
f   by Equation (6) and the posterior distribution 1 1( ) ( )

( | )
d i d

f u  is 

thereafter obtained. Then the posterior distribution is to fit into Equation (23) to calculate 
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the second shadow test for subscale 
1d , and the item with the maximum information is 

again selected to be administered, whose response is also used to update the posterior 

distribution. The process continues as described in the sections of MPI criterion and 

shadow test for UCAT of this chapter. For legible guidance, Equations (23) to (26) for 

selecting the kth item from subpool 
1d  is generalized as    

                                            

1( )

1 1 11
1 1( ) ( )

1( )

1

( ) ( )( )) (
1

maximize ( ) ( | )
d

d d

d

N

k

n nd i d d
n

d
u f d xI   



 
   , u                (43) 

subject to 

                                                             

1( )

1
1( )

1( )

( )
1

d

d

d

N

n d
n

x J


                                                    (44) 

                                                  1
1 1( ) ( )

( 1)( )
1,

d d
n kd

x for all n S                                         (45) 

                                                 1 1
1( )

( ) ( )
{0,1}, 1,2,...,

d
n d d

x n N  .                                      (46) 

When the subtest 
1d  reaches the predetermined length, the final updated posterior 

distribution is used to estimate the MAP score of subtest 
1d , which is the solution to 

Equation (47),   

                                                   1 1

1

( ) ( )

( )

ln ( | ) 0
d i d

d

f 






u .                                           (47) 
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         As the second subtest is to be selected, the prior distribution 
( )( )df   in Equation 

(40) is updated as the posterior distribution 1( ) ( )
( | )d i d

f  u  (
1d d ), which is the relevant 

joint marginal distribution for any candidate subtest updated by the responses from the 

first administered subtest and integrated over the same subtest dimension (see the first 

step in Equation (48)). That is, there are still D-1 unadministered subtests and therefore 

altogether D-1 posterior distributions would be calculated. For the sake of clarification, 

the posterior distributions used for selecting the next optimal subtest are deducted from 

                               

1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( | ) ( , | )

( | ) ( | )

( | ) ( ) ( | )

( ) ( | )

d di d d i d d

d d d i d d

d d d i d d d

d d i d d d

f f d

f f d

f f L d

f L d

   

   

    

   

















u u

u

u

u

,              (48) 

where 
1d d  (van der Linden, 2010). The second step in Equation (48) reflects the 

assumption of conditional independence of 
( )d  and 1( )i d

u  given 1( )d
 , and the fact that 

1( ) ( )
( | )d i d

f  u  is actually the predictive posterior distribution by marginalizing 

1( ) ( )
( | )d d

f    over the posterior distribution of 1( )d
  given 1( )i d

u . In the meantime, the last 

step provides a clue to compute 1( ) ( )
( | )d i d

f  u  in a more straightforward manner. By 

compared 1D  shadow tests obtained from Equations (40) to (42), the second subpool 

2d  can be identified. Likewise, the posterior distributions fitting to Equation (40) for 

selecting the third subtest follows the same deduction and are denoted as 
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     1 2 1 2 1 1 2 2 1 2( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( | , ) ( , ) ( | ) ( | )d di d i d d d i d d i d d d d

f f L L d d         u u u u ,   (49) 

where 
1 2d d d  . 

         As for the administration of the selected subtests, the process holds the same as 

implemented within the first selected subtest, except for substituting the posterior 

distribution 2 1( ) ( )
( | )

d i d
f  u  or 3 1 2( ) ( ) ( )

( | , )
d i d i d

f  u u  for the prior distribution 1( )
( )

d
f   by 

Equation (6), after the first response in subtest 
2d  or 

3d  is obtained. As such, the 

following responses continuously update that posterior distribution for the next optimal 

item selection. For example, 2 2 1

1

( ) ( ) ( )
( | , )k

d i d i d
f  

u u  and 3 3 2 1

1

( ) ( ) ( ) ( )
( | , , )k

d i d i d i d
f  

u u u  are 

respectively the posterior distributions updated by the (k-1)th selected item in subtests 
2d  

and 
3d . These posterior distributions are then fitted into Equations (43) to (46) to select 

the kth item for subtests 
2d  and 

3d .   

         To evaluate the efficiency of SEQ-CAT, a simulation study was conducted under 

the conditions of different subtest lengths and content constraint impositions, in contrast 

to the baseline method of IND-UCAT (van der Linden, 2010). The results indicated that 

the adaptive subtest sequencing could improve the accuracy of subscore estimates, even 

for the short test, by comparison to the baseline method. Also, the information borrowed 

from the earlier subtests was greatly beneficial to the ability estimation in the later 

subtests for the examinees at the two extreme ends of the ability scale. In addition, the 

constraints did not have a strong impact on the subscore estimation when the shadow test 

was conducted to impose the constraints in the study. 
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         On the other hand, a concern may arise in SEQ-CAT. That is, the later the subtests 

are selected and administered, the more information they may take advantage of for 

subscore estimation. It is because more responses and the relevant joint marginal 

distribution involving more subscales are included for subscore estimation as the test 

proceeds, which is especially true compared to the very early administered subtests. With 

respect to this issue, van der Linden further developed SEQ-CAT and raised the post-hoc 

fully Bayesian subscore estimation of reSEQ-CAT (W. J. van der Linden, personal 

communication, July 30
th

, 2013). That is, when all the subtests are completed by an 

examinee, the subscores estimated by incomplete response patterns and the relevant joint 

marginal distribution are reestimated by reformulating their prior distribution. These 

subscores refer to the subscores in all subtests except the last subtest.  

         Specifically, the prior distribution of subtest d is reformulated with the joint 

distribution of all subscales updated by the responses from all the other subtests and then 

integrated over these subscales, as is conducted in Equations (48) and (49). The MAP 

score of subtest d is then reestimated by the solution to Equation (50),  

                                              
( ) (1)

(

(2) ( )

)

| , ,ln ( ) 0...,d D

d

f 






u u u ,                                (50) 

where 
( ) (1) (2) ( )| , ,...,( )d Df  u u u  is the posterior distribution for subscale d, which is 

derived from the reformulated prior distribution and all the responses in subtest d. Since 

the last administered subtest has utilized the information provided by all the responses 

and the joint distribution of all subscales, its subscores do not require to be reestimated in 
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reSEQ-CAT. Likewise, the EAP score of subtest d can also be obtained by the following 

equations:  

                                      

(1) (1) (1) (1) (2) ( ) (1)

( 1) ( 1) ( 1) (1) (2) ( ) ( 1)

ˆ ( | , ,..., )

ˆ ( | , ,..., )

D

D D D D D

f d

f d

   

      









u u u

u u u

.                         (51) 

As in AUG-CAT, reSEQ-CAT is also applicable in both P&P tests and CATs. Following 

the instructions from van der Linden, Liu, Li, and Choi (2014) applied reSEQ-CAT in 

their study by contrast to SEQ-CAT. The findings from their study showed that reSEQ-

CAT could produce more accurate subscore estimates compared to SEQ-CAT as the 

correlations among subscales were medium or high. In the meantime, the total scores 

were calculated based on the reSEQ-CAT subscore estimates in their study. Those total 

scores were also recovered to a greater extent.  

Subscoring by Multidimensional Adaptive Testing (MCAT) 

          Multidimensional adaptive testing (MCAT, see Segall, 1996) is an adaptation of 

the conventional multidimensional IRT (MIRT) subscoring method in the CAT testing 

environments. As in MIRT Bayesian scoring procedure, MCAT enhances the 

measurement efficiency simultaneously on multiple subscales by adding the information 

on the correlations among subscales to the score estimation procedure, in contrast to 

IND-UCAT that ignores the unique source of information underlying these subscales. 

Also, compared to the MIRT Bayesian scoring procedure, given the characteristics of 

adaptive tests, the measurement efficiency in MCAT intends to be further enhanced by 

customizing a real-time test corresponding to the performance of an examinee on all 
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previous items. The improvement on score estimation is also validated even when MCAT 

demonstrates a simple structure unless the prior joint distribution of subscales is a 

diagonal matrix, for which MCAT is reduced and equivalent to IND-UCAT.    

         Regarding the scoring procedure in MCAT, the MAP subscore estimates have been 

discussed in the section of MAP estimates of this chapter. Another absolutely necessary 

procedure in MCAT is to specify the item selection criterion, which in the literature 

mainly includes maximizing the determinant of Fisher’s information matrix or Fisher’s 

posterior information matrix (D-optimality or a Bayesian version of D-optimality, see 

Luecht, 1996; Segall, 1996), minimizing the trace of the inverse of Fisher information 

matrix (A-optimality, see van der Linden, 1999), and maximizing the posterior expected 

Kullback-Leibler information (KLI, see Chang & Ying, 1996; Veldkamp & van der 

Linden, 2002). In line with the counterpart adopted in UCAT, the focus of the MCAT 

item selection criterion in the study lays on the Bayesian version of D-optimality, which 

possesses widespread recognition in the literature (Luecth, 1996; Li & Schafer, 2005; 

Wang & Chen, 2004; Lee, Ip, & Fuh, 2008; Allen, Ni, & Haley, 2008; Mulder & van der 

Linden, 2009). 

         Conceptually speaking, D-optimality is a criterion of selecting an item that most 

largely reduces the volume of the credibility ellipsoid from the rest of an item pool R. For 

a multivariate normal distribution, the volume of the credibility ellipsoid after 

administering the kth item is defined as 

                                                               1/2| |k   ,                                                           (52) 
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where 

                                                                 
/2 2 /2

1
2

2 [ ( )]
=

( )

D D

D p

D D

 



                                                 (53) 

and k  is the covariance matrix calculated after the kth item is administered. In Equation 

(53), ( )   is the gamma function and 2 ( )D p  is the quantile function of a chi-squared 

distribution, 2

D , with D degrees of freedom for probability p . In other words, 2 ( )D p  is 

the value of 2

D  at the 100p  percentile. Equation (53) shows that   is merely a 

function of D and p , so it always holds constant across items in a test. Therefore, the 

decrement 
kV  on the volume of the credibility ellipsoid only depends on the decrement 

from 1k  to k . To be more explicit, 

                                                    

1 1/2 1/2

1 1/2 1/2

| | | |

(| | | | )

k k

k

k k

V  







   

   
.                                          (54) 

         For the IRT maximum likelihood estimates, the covariance matrix could be 

approximated by the inverse of Fisher’s information matrix ˆ( ),I   . Also, the 

determinant of the inverse of a matrix is algebraically equal to the reciprocal of the 

determinant. Therefore, Equation (54) can be rewritten as 

                                           

1/2 1/2

(1/2) (

1 1 1

1/2)1

ˆ ˆ) )

ˆ ˆ) )

| ( , | | ( , |

| ( , | | ( , |

k k

k k

kV  

 

  

  

 

 

I I

I I

  

  
,                           (55) 

http://en.wikipedia.org/wiki/Chi-squared_distribution
http://en.wikipedia.org/wiki/Chi-squared_distribution
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where 
1

1 1

1

ˆ ˆ( , ) )( ,
k

k k

j

ju


 



I I  . Since the information function is additive within a test,  

                                              
1 1ˆ ˆ ˆ)( , ( ) ), ( ,k k k

ku  I I I    .                                   (56) 

In Equations (55) and (56), the first term on the right hand side is all constant for all the 

remaining items in the pool kR  and therefore the magnitude of 
kV  is determined only by 

1( ˆ ),k

i ku
I  . Apparently, 

kV  can be maximized by an item that maximizes the determinant 

of Equation (56), that is, 

                                           1 1argmax{det( ( , ˆ ˆ) ))( , }
k

i k
k

k k

i i
R

u


 I I  .                               (57) 

         Furthermore, MAP estimates obtained from a multivariate posterior distribution 

correspond to the item selection criterion of the Bayesian version of D-optimality, for 

which Equations (55) to (57) are also applicable. For ease of exposition, Equation (55) 

for a multivariate posterior distribution is rewritten as 

                                               

1 1/2 1/2

1 1/2 1/2

| | | |

(| | | | )

k k

k i i

k k

i i

C  







 

 

W W

W W
,                                           (58) 

where kC  is the decrement on the volume of the posterior credibility ellipsoid and 1k

i


W  

is the posterior covariance matrix calculated after the (k-1)th item is administered. 

Similarly, the posterior covariance matrix 1k

i


W  can be approximated by the inverse of 

Fisher’s posterior information matrix 
1ˆ, )( kp

i i


I  , which is given by 
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1 1 1( , ( ,ˆ ˆ) )k k

i

p

i ii

    I I   ,                                      (59) 

where   is the prior covariance matrix. According to Equations (55) and (56), 1k

i


W  in 

Equation (58) is substituted by Equation (59). Therefore,  

                      

(1/2) (1/2)

(1/2) (1/2)

1 1 1

1 1 1 1

| ( , | | ( , ( , |

| ( , | | ( , ( ,

ˆ ˆ ˆ) ) )

ˆ ˆ ) ) |ˆ)

p p

k i i k

p

i

k k k

i i i

k k

k

k

i i ii

C u

u

 

 

  

   

 

 

 





  

I I I

I I I

  

 



 




.            (60) 

Because the first term in Equation (60) is constant for all the remaining items in the pool 

kR , 
kC  is maximized by selecting an item that could maximize the second determinant in 

the equation, that is, 

                                 1 1 1argmax{de ˆ ˆ) ) )t( ( , ( , }
k

k

i k
k

k

i
R

i u 



 I I   .                                (61) 

         By comparing Equations (61) and (57), it shows that the Bayesian version of D-

optimality is expected to outperform the conventional D-optimality, because more 

information from the prior distribution is provided and utilized for item selection in 

MCAT. However, this finding is not applicable to a simple-structure MCAT test, which 

is further explained in the fourth section of Chapter 5. On the other hand, as indicated by 

Segall (1996), the item selection under the D-optimality may lead to indefinable or poorly 

definable ability estimates, which is especially validated in a simple-structure test battery. 

Given the feature of simple structure that each item loads only on one subscale, when the 

first item is to be selected by D-optimality criterion, the information matrix produced by 

any individual item out of the pool R (Equation (56)) is a diagonal matrix with only one 
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diagonal element nonzero. It means that the elements in the other two rows are all zeros. 

Theoretically, the determinant of such an information matrix is always zero, which 

implies that the determinants of the information matrices yielded by all the individual 

items in the pool are all zero. This non-distinction of determinants among all the items 

results in the deadlock of the item selection procedure, and therefore the provisional 

ability estimates are indefinable. Under such a circumstance, the efficiency of MCAT 

will be appallingly impeded, unless the first three items (if the current study is considered) 

are enforced to be selected from three different subscales or the simplified item selection 

criterion is applied, which is described in the fourth section of Chapter 5.     

         Generally speaking, by contrast with UCAT, the increase of measurement 

efficiency in MCAT is primarily manifested as greater precision, shorter test length and 

higher score reliability. As demonstrated in Segall’s (1996) study, MCAT could provide 

equal or higher precision by saving about one-third items compared to UCAT when 

moderate to high correlations existed among subtests. Also, MCAT achieved 

considerably greater improvement in reliability when holding the same test length as 

UCAT. The findings were also aligned with the results of Luecht’s (1996) study in which 

complex content constraints were imposed.  

         For some circumstances, imposing content constraints facilitates implanting 

subscoring mechanism in MCAT, especially when the discriminating power and 

difficulty levels of items among subpools are not balanced. First, content constraints 

ensure that examinees could reach the items from all content areas that are required in 

test specifications. Second, without much compromise of adding items that may be 
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resourceful to some subtest, but redundant or non-informative to the other subtests as it 

does in UIRT and UCAT, an optimal item from any subtest in MCAT could provide 

information for estimating and updating all subscores to some extent, depending on the 

dependencies among subscales or content areas unless the dependencies never exist. 

Third, content constraints can reduce a large discrepancy on the number of items from 

each content area, which may result from the confounding between contents and item 

difficulties. In practice, according to the test specifications, some other constraints can 

also be imposed such as word counts, item exposure control, and test length.     

         Li and Schafer (2005) applied MCAT to a test battery involving Reading and Math 

in a real testing program. They pointed out that compared to IND-UCAT, MCAT can 

increase the rate of item utilization in the pool and yield more accurate subscore estimates, 

even for the examinees at the extreme ability levels. Wang and Chen (2004) conducted a 

simulation study to investigate the measurement efficiency of MCAT on polytomous 

items and complex-structure items. They concluded that MCAT performed more 

efficiently than UCAT and IND-UCAT as the correlations between subtests, the number 

of subtests, and the number of scoring levels increased. As a matter of fact, comparing 

the five subscoring methods in this study essentially reflects how UCAT and MCAT 

differ in utilizing the collateral information in subscore estimation. In principle, IND-

UCAT, AUG-CAT, SEQ-CAT, and reSEQ-CAT are actually the different manifestations 

of UCATs, and PC-MCAT is a modified MCAT. In addition, among these four types of 

UCATs, different fashions of adding collateral information to subscore estimation are 

also demonstrated in the study.   
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Higher-Order IRT Model (HO-IRT) 

         The one-factor higher-order IRT model (HO-IRT, see de la Torre & Song, 2009) is 

usually adopted for modeling the item response data with a hierarchical latent trait 

structure in modern assessments. As discussed in Chapter 1, the hierarchical latent trait 

structure exhibits a two-order structure with multiple subscale abilities as the first order 

and a general ability as the second order. The multiple subscale abilities are, in general, 

measured by a test battery, which contains multiple subtests, each targeted at some 

specific content or skill. For such response data, the use of a unidimensional IRT model 

on the entire test will violate the assumption of unidimensionality. Conducting multiple 

independent UIRT models (IND-UIRT) will ignore the associations among subscales. 

Considering a MIRT model will overlook the hierarchical structure between subscale 

abilities and the general ability. As the most complex model among the models 

mentioned above, the HO-IRT model can fairly account for the multidimensionality, the 

correlations among subscales, and the hierarchy between different levels of latent traits as 

a whole in one model.  

         Also, the HO-IRT model allows for the applicability of multiple identical or 

different conventional unidimensional IRT models to the multidimensional response data, 

which are directly dominated by multiple first-order abilities. This application procedure 

of estimating the first-order abilities is conducted in the measurement phase of the HO-

IRT model. In the meantime, a large amount of variance shared by the first-order 

subscale abilities is accounted for by the second-order general ability, which can also be 

estimable at the structure phase of the HO-IRT model. The nature of integrating two 
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levels of latent traits in one model determines that the parameters for the first-order and 

second-order latent traits can be estimated simultaneously in the HO-IRT model. These 

parameters are then converted to some certain scale scores, which are operationally 

reported as subscores and the total score respectively. 

 

                          Figure 1. Example of the One-Factor Higher-Order IRT Model. 

         Figure 1 above presents an example of the one-factor HO-IRT model. In the model, 

the second-order latent trait, which is referred to as the general ability 
iG  in the study, 

typically follows a standard normal distribution ~ (0,1)iG N  in educational assessments. 

It demonstrates the modeling of the joint distribution of the first-order latent traits, which 

are referred to as subscale abilities 
( )i d  in the study. The loading 

( )d  of subscale d on 

the general ability reflects its correlation to the general ability and is also viewed as the 

regression coefficient of subscale d on the general ability in the linear function. That is, 

each subscale ability in HO-IRT model is linearly correlated to the general ability and can 

be expressed by a linear function of the general ability 

G

(1)
(2)

1 2 3

(3)

1(1)I

Second-order

First-order

2(1)I 1(2)I 2(2)I 1(3)I 2(3)IItems
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                                                           ( ) ( )i d d iG i d    
,                                               (62) 

where | | 1d   and is always expected to be nonnegative in most cases due to the nature 

of the relationships among abilities in reality. Also, 
( )i d  is the disturbance for subscale d 

with the distribution of 
2

( ) ~ (0,1 )i d dN   and is independent of other disturbances and 

all abilities.  

         Note that the constraints on the magnitude of 
d  are very necessary in the HO-IRT 

model because they can make the general ability and all the subscale abilities estimated 

on the same scale. In other words, under the constraints, the marginal distribution of each 

subscale ability all follows the standard normal distribution, 
( ) ~ (0,1)d N , as with the 

distribution of the general ability. In addition, the product of two loadings reflects the 

correlation between two subscale abilities. Therefore, the correlation matrix of the 

subscale abilities in the model of Figure 1 is shown as 

                                                       

(1) (2) (3)

(1)

(2) 1 2

(3) 1 3 2 3

1

1

1

  



  

    

 
 
 
  

.                                              (63) 

Furthermore, conditional on the general ability iG , the subscales are independent of each 

other and each follows the distribution of 
2

( ) | , ~ ( ,1 )i d iG d d iG dN      . Because the 

unidimensionality exists in each subtest due to the simple structure, the conventional 

UIRT model (i.e. 1PL, 2PL, or 3PL UIRT model) can be applied in each subtest.  
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         Given the structure of the HO-IRT model, all the unknown parameters of interest 

can be estimated jointly including item parameters, the general ability parameter, 

subscale ability parameters, and the regression coefficients (the loadings). However, due 

to its complexity and high ability dimensionality involved, the joint estimation of all the 

parameters have to be conducted by using MCMC algorithm based on the hierarchical 

Bayesian formulation (Sheng & Wikle, 2007; de la Torre & Hong, 2010; Huang, Wang, 

Chen, & Su, 2013).  Although many studies have provided strong supports on the HO-

IRT model regarding their accuracy on parameter estimates compared to IND-UIRT (de 

la Torre & Song, 2009; de la Torre & Hong, 2010; de la Torre, Song, & Hong, 2011), the 

demands of intensive computations on MCMC estimation for the HO-IRT model largely 

confine its application in practice, especially their use in the routine scoring procedure. 

By taking advantage of the hierarchical latent trait structure in the HO-IRT model, the 

current study suggests a successive scoring procedure to calculate the total scores based 

on the subscores estimated by the five compared subscoring methods. This suggested 

procedure requires much less computation by assuming that all the loadings are known, 

which is described in detail in Section 3 of Chapter 3.  

Primary Comparison Studies on Some Subscoring Methods 

         To better evaluate the performance of the existing subscoring methods, substantial 

comparison studies were conducted in the context of both simulated data and empirical 

data in the recent decade. The findings from these studies provided some constructive and 

practical guidelines for future research and the operational uses of these methods. Tables 

1 and 2 in the first chapter enumerated the primary comparison studies related to the 
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subscoring methods discussed above, and all of these studies apparently focused only on 

the P&P tests. Despite the discrepancy in testing formats, the studies can still provide 

very instructive perspectives on the implementation of the comparison study in the CAT 

framework. 

          Some of the comparison studies, partly listed in Tables 1 and 2, employed the 

multiple independent unidimensional IRT model (IND-UIRT) as the baseline method, so 

as to demonstrate the effects of utilizing the collateral information among subscales on 

subscore estimation (DeMars, 2005; Yao, 2010; van der Linden, 2010). Some other 

studies adopted the proportion-correct (PC) subscoring as the baseline method, which is 

virtually a classical version of IND-UIRT (Dwyer, Boughton, Yao, Lewis, & Steffen, 

2006; Shin, 2007; Yao & Boughton, 2007). There were also a few studies using both as 

the baseline method (Edwards & Vevea, 2006; Fu & Qu, 2010). Numerous previous 

studies have suggested that the classical scoring method has many limitations on 

estimating ability parameters compared to the IRT scale scoring such as low reliability 

and sample dependence. Consequently, use of the PC subscoring as the baseline method 

may introduce some more disturbances to the comparison, such as the differences of the 

augmented IRT subscores (i.e. MAP or EAP estimates) versus the classical unaugmented 

PC subscores.  

          Furthermore, all of the comparison studies adopted either a simulation design or 

empirical data or both as listed in Table 2. For simulation studies, if the MIRT or HO-

IRT model were involved in the comparison, either the 3-parameter logistic (3PL) MIRT 

model or the higher-order IRT model or both were employed to generate the response 
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patterns (DeMars, 2005; Yao, 2010; Yao & Boughton, 2007; de la Torre, Song, & Hong, 

2011). Otherwise, the unidimensional IRT model was used, which was always the 3PL 

model (Edwards & Vevea, 2006; Shin, 2007; van der Linden, 2010). As a matter of fact, 

the 3PL MIRT or UIRT model was also largely used in empirical studies to estimate 

subscores (DeMars, 2005; Dwyer, Boughton, Yao, Lewis, & Steffen, 2006; Stone, Ye, 

Zhu, & Lane, 2010; Skorupski & Carvaljal, 2010). The item parameters adopted in the 

simulations studies were typically drawn from the real item pool (DeMars, 2005; Shin, 

2007; van der Linden, 2010; Yao, 2010; de la Torre, Song, & Hong, 2011) and only a few 

studies simulated item parameters for their own use (Edwards & Vevea, 2006; Fu & Qu, 

2010).  For the former case, the item parameters were assumed to be known so that the 

studies were dedicated to the subscoring procedure. There were also a number of studies 

that estimated both item parameters and subscores after they simulated the responses. The 

reason for doing it was because they intended to take the errors from both estimations 

into account (DeMars, 2005; Edwards & Vevea, 2006; Yao & Boughton, 2006; Fu & Qu, 

2010; Yao, 2010).   

         Regarding the empirical studies, both unidimensional and multidimensional real 

data were investigated for comparisons of the subscoring methods (Dwyer, Boughton, 

Yao, Lewis, & Steffen, 2006; Stone, Ye, Zhu, & Lane, 2010). Also, a simple structure of 

items in MIRT was assumed across the empirical and simulation studies when the MIRT 

subscoring method was compared to other methods (Dwyer, Boughton, Yao, Lewis, & 

Steffen, 2006; Yao & Boughton, 2007; Stone, Ye, Zhu, & Lane, 2010; Fu & Qu, 2010; 

Yao, 2010; de la Torre, Song, & Hong, 2011). Moreover, a variety of studies evaluated 



 

60 
 

6
0
 

the subscoring methods on dichotomous items (DeMars, 2005; Edwards & Vevea, 2006; 

Skorupski & Caravajal, 2010; de la Torre, Song, & Hong, 2011) and some were 

conducted on the mixed item type with both dichotomous and polytomous items included 

in each subtest (Dwyer, Boughton, Yao, Lewis, & Steffen, 2006; Shin, 2007; Yao & 

Boughton, 2007; Stone, Ye, Zhu, & Lane, 2010; Yao, 2010). Root mean square error 

(RMSE)  and bias (absolute bias, bias, or conditional bias) were the most commonly-used 

outcome measures to evaluate the recovery of subscale scores in almost all of the 

simulation studies listed in Tables 1 and 2. Empirical studies typically adopted the 

descriptive statistics like the mean and the standard deviation (SD) of the subscore 

estimates as outcome measures (DeMars, 2005; Stone, Ye, Zhu, & Lane, 2010; de la 

Torre, Song, & Hong, 2011). Some of the studies also employed the reliability or/and the 

correlations between true subscores and estimated subscores as additional outcome 

measures (DeMars, 2005; Edwards & Vevea, 2006; Shin, 2007; Skorupski & Caravajal, 

2010). 

         DeMars (2005) compared three subscoring models (bifactor models, MIRT models, 

and Wainer’s AUG) to the IND-UIRT model and indicated that compared to the IND-

UIRT model, the three subscoring methods produced comparably low bias and RMSE 

when the highly-correlated subscale abilities were measured by a test with moderately 

short subtest length (15-20 items) and when these subtests were administered at one time. 

Some other studies also reached the similar conclusion when they compared different 

subscoring methods (MIRT, HO-IRT, SEQ-CAT, and AUG) to the baseline method 

(either the IND-UIRT model or/and the PC method) (Dwyer, Boughton, Yao, Lewis, & 



 

61 
 

6
1
 

Steffen, 2006; Shin, 2007; Fu & Qu, 2010;Yao, 2010; van der Linden, 2010).  These 

findings strongly suggested that the proper use of the collateral information could 

improve or at least not impair the subscore estimates. 

         DeMars (2005) also pointed out that MIRT and AUG produced relatively smaller 

standard errors and less bias on estimated subscores, which was aligned with the results 

regarding MIRT models in Yao’s (2010) study, in which a test with longer subtest length 

(34 to 57 items) measured multiple subscales with low or zero correlations by mixed item 

types. Yao (2010) also found that HO-IRT models and MIRT models performed 

comparably well on the recovery of subscores and total scores compared to bifactor 

models. As a matter of fact, when AUG, MIRT, and HO-IRT were selected for 

comparison, substantial studies suggested that they always outperformed over the other 

methods (e.g. OPI and bifactor models) on subscore estimation and that the differences 

between these three methods were minor (Dwyer, Boughton, Yao, Lewis, & Steffen, 

2006; Shin, 2007; Fu & Qu, 2010; Yao, 2010; de la Torre, Song, & Hong, 2011). For 

examinees with extreme abilities, MIRT and HO-IRT performed even better (de la Torre, 

Song, & Hong, 2011). However, AUG may attract more favorable attention in practice 

due to its relatively unsophisticated computations. In addition, OPI could actually 

perform comparably to AUG and MIRT on subscore estimation when the correlations 

between subscale abilities were high, whereas OPI might also produce even larger RMSE 

than both of the baseline methods (IND-UCAT and PC subscoring) as the correlations 

were low (Yao & Boughton, 2007; Fu & Qu, 2010; de la Torre, Song, & Hong, 2011).          
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         Regarding the factors affecting subscore estimation, Shin (2007) indicated that the 

subtest length and the correlations between subscales could affect the magnitude of 

RMSE, SD, bias, and reliability. High correlations between subscales and the increase of 

subtest length would improve the accuracy of ability parameter estimation for the 

subscoring methods, especially for OPI (Fu & Qu, 2010). In addition, an increase of 

subtest length could, to some extent, offset the negative impact imposed from low 

correlations between subscales (Yao, 2010). The sample size is not an influential factor in 

subscore estimation if item parameters are assumed to be known in the studies, but it is 

crucial to item parameter estimation in the item calibration process (Shin, 2007; Yao & 

Boughton, 2007; de la Torre, Song, & Hong, 2011).  de la Torre, Song, and Hong (2011) 

implemented the only study that investigated the effect of the number of subtests on 

subscore estimates among four subscoring methods (MIRT, HO-IRT, AUG, and OPI). 

They pointed out that more subtests in a test battery could improve the correlations 

between true subscores and estimated subscores, but did not demonstrate a noticeable 

impact on reducing RMSE. Despite the same factor also investigated by Edwards and 

Vevea (2006), their study placed more focus on the comparisons of different subscore 

types (summed scores versus the IRT scale scores for summed scores) for Wainer’s AUG, 

instead of the comparisons of different subscoring methods.   
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CHAPTER III 

RESEARCH METHODOLOGY 

         With reference to the previous comparison studies on subscoring methods in P&P 

tests, a simulation study was designed and conducted to evaluate the performance of five 

subscoring methods in CAT, of which the conventional MCAT was modified as the pool-

constrained MCAT (PC-MCAT) for more realistic comparisons. A variety of testing 

conditions, depending on the combinations of different levels of two primary factors, 

were also simulated for the purpose of investigating their effects on subscore estimation. 

In the meantime, each component consisting of a CAT test was specified in detail and 

remained consistent across all the five compared methods. Finally, the suggested total 

score estimation approach was illustrated as the second stage of the successive scoring 

procedure proposed in the study.   

Simulation Design 

         In the study, five different CAT subscoring methods, AUG-CAT, SEQ-CAT, 

reSEQ-CAT, PC-MCAT, and IND-UCAT, were examined, of which IND-UCAT was 

adopted as the baseline method. PC-MCAT is a modified MCAT, which is further 

described in the next section of this chapter. Also, the subscoring procedures 

implemented in AUG-CAT and reSEQ-CAT are actually the same as their applications in 

P&P tests. These two methods were suffixed with “CAT” merely because they were 

applied in the CAT tests in the study. As the post-hoc subscoring methods, their 



 

64 
 

6
4
 

estimation algorithms are only conducted after an entire test is completed, which implies 

that they do not intervene in any stage of the CAT testing process such as the item 

selection and MAP subscoring procedures. On the other hand, because IND-UCAT, 

SEQ-CAT, and PC-MCAT are initially designed under the CAT framework, they possess 

their own algorithm for item selection while conducting the just-in-time subscoring 

procedure. Given that the intent of the study concentrated on the comparisons of different 

subscoring procedures among the five methods, the differences on the item selection 

procedures should be ruled out for more convincing comparisons. As a consequence, the 

five subscoring methods were respectively paired with each of the three item selection 

algorithms. That is, three sets of items selected by IND-UCAT, SEQ-CAT, and PC-

MCAT were individually scored by each of the five subscoring methods. Because the 

sample size is not influential to the subscore estimation in this study design, only one 

sample size ( 1,000I  ) was considered. In addition, a three-subtest ( 3D  ) test battery 

was investigated in the study. 

                                    Table 3  

                                    Loadings in Three Correlation Structures 

Correlation 
1( )λ  

2( )λ  
3( )λ  

Low .45 .50 .55 

Mixed .50 .95 .80 

High .93 .95 .98 

 

         As mentioned previously, two primary factors were varied in the study: subtest 

length (J = 10 and 20) and the correlations between subtests. In terms of the last factor, 
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three different correlation structures (low, mixed, and high) were considered. In HO-IRT, 

the magnitudes of the correlations 
( )dd'  among subtests are determined by the loadings 

( )d  of these subtests on the general ability. The specific values of the loadings shown in 

Table 3 were all arbitrarily assumed in the study. According to Equation (63), the 

corresponding correlation matrices for the levels of low, mixed, and high are respectively 

expressed as 

                         

(1) (2) (3)

(1)

(2)

(3)

1

.23 1

.25 .28 1

  







 
 
 
  

,      

(1) (2) (3)

(1)

(2)

(3)

1

.48 1

.40 .76 1
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





 
 
 
  

,      

(1) (2) (3)

(1)

(2)

(3)

1

.88 1

.91 .93 1

  







 
 
 
  

.        (64) 

         In the study, the HO-IRT model was employed to generate different orders of the 

true ability parameters (subscale ability parameters and the general ability parameters). In 

addition, the hierarchical structure of abilities in HO-IRT provides the possibility of 

conducting the successive scoring procedure proposed in the study, which is elaborated in 

Section 3 of this chapter. Assume that the distribution of the general ability for the 

population of examinees was a standard normal distribution. 1,000 examinees with 

different levels of the general ability were randomly drawn from ~ (0,1)G N . As 

described in Section 7 of Chapter 2, given the general ability iG  of examinee i, his/her 

subscale parameters were correspondingly generated from 
2

( ) | , ~ ( ,1 )i d iG iGN     . 

Table 4 and Figure 2 below present the descriptive summary and the distributions of 

different orders of ability parameters simulated in the study, which were considerably 
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aligned with the simulation design. Because the scoring procedure is the primary interest 

in the study, item parameters and the loadings were assumed to be known, which was 

also in line with the operational scoring procedure. In practice, the item calibration and 

the loading estimation are usually conducted in field tests before the formal operational 

test administration. Regarding the calibration and loading estimation procedure in HO-

IRT, a number of studies can be reviewed as detailed references (Sheng & Wikle, 2007; 

de la Torre & Song, 2009; de la Torre & Hong, 2010; de la Torre, Song, & Hong, 2011; 

Huang, Wang, Chen, & Su, 2013). 

                Table 4  

       Descriptive Summary of Different Orders of Simulated Ability Parameters 

Correlation Parameter Mean Var Min Max 

 General_Theta -0.017 1.032 -3.610 3.245 

Low Subtheta_1 0.031 1.008 -2.904 3.203 

 Subtheta_2 -0.013 1.030 -3.516 2.987 

 Subtheta_3 -0.027 1.016 -3.096 2.897 

Mixed Subtheta_1 0.011 1.073 -3.981 3.701 

 Subtheta_2 -0.009 1.049 -3.424 3.894 

 Subtheta_3 0.021 1.058 -3.527 3.319 

High Subtheta_1 -0.021 0.999 -3.980 3.309 

 Subtheta_2 -0.013 1.051 -3.557 3.388 

 Subtheta_3 -0.020 1.041 -3.577 3.141 
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              Figure 2. Boxplots of Ability Parameters Simulated in the Study. 

         After generating different orders of ability parameters, a UIRT model must be 

specified for the simulation of responses in HO-IRT. As summarized in the last section of 

Chapter 2, the 3PL UIRT model (Lord, 1980) was always employed in the previous 

studies and was also widely used in the item calibration of operational tests, which is 

denoted as 

                           
( ) ( ) ( ) ( )

( ) ( ) ( )

1
) (1 )

1 exp[ 1.7 ( )]dij i d j d j d

j d i d j d

P c c
a b




  
  

,               (65) 
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where 
( )j da  is the discrimination parameter of item j in subtest d; 

( )j db  is the difficulty 

parameter of item j in subtest d; and 
( )j dc  is the pseudo-guessing parameter of item j in 

subtest d. In the study, these item parameters were directly pulled out of three operational 

item pools, each representing a subtest in a test battery and elaborately illustrated in the 

next section of this chapter. Because the 3PL UIRT model was used to calibrate these 

item pools in practice, it was adopted to simulate responses in the study.  

         Also, distinct from the other simulation studies in CAT, the responses were not to 

be generated during the implementation of a simulated CAT test, but an item response 

pool including the responses for all the subpools was established for all examinees in 

advance. That is, assuming that each examinee needed to answer all the items in each of 

the three subpools, the responses to all the items were simulated by accordingly 

substituting his/her subscale parameters and all the item parameters in three subpools to 

the 3PL UIRT model (Equation 65). Consequently, the simulated item response pool 

would be a ( )I J D   matrix. The purpose of building up the item response pool in 

advance was to eliminate the chance of producing contradictory responses for an 

examinee once the same item was selected by three different algorithms (IND-UCAT, 

SEQ-CAT, and PC-MCAT). In this way, it was more feasible to compare subscore 

estimates and the usability of items in each subpool across different item selection 

algorithms. Note that the simulated response data is also expected to be suitable for the 

MIRT subscore estimation because the 3PL MIRT model is reduced to the 3PL UIRT 

model due to the simple structure of all items. Therefore, the model fit of MCAT to the 

response data is not inferior to the other methods.  
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         In summary, this study implemented a 3 (item selection algorithms)   5 

(subscoring algorithms)   2 (subtest length)   3 (correlation structures of subscales) 

fully crossed simulation design with 90 conditions. Replications were not considered in 

the current study based on the fact that no replications were conducted in the literature if 

the overall performance of CAT algorithms across ability levels was of interest, of which 

the current study is such a case (Huang, Chen, & Wang, 2012; Deng, Ansley, & Chang, 

2010; Barrada, Olea, Ponsoda, & Abad, 2008). The response data simulation, the item 

selection procedure, the subscoring procedure, the total score estimation, and the final 

summary analyses were all conducted by the programming language R (R Development 

Core Team, 2008). 

Pool-Constrained MCAT (PC-MCAT) and CAT Components 

         The conventional MCAT is a well-recognized scoring method in the literature, 

which has been included in a number of comparison studies. However, under the 

subscoring mechanism, the item context effect may arise during the implementation of a 

MCAT test. It can lead examinees to a more anxious and confused testing mode when 

they confront the alternate item contents in a short time period (Segall, 1996). To avoid 

this effect, the study modified the traditional MCAT and conducted the pool-constrained 

MCAT (PC-MACT), of which the item selection and scoring procedures are equivalent 

to the traditional MCAT. The only difference was the item pool used for the item 

selection procedure.  

         To be more specific, each item in a traditional MCAT is selected from the entire 

item pool, which is a mixture of items from all subpools. It may often be the case that an 
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item on math may be followed by an item on reading. The shift of item contents may 

make examinees more anxious and even get lost. PC-MCAT constrains the item selection 

to be conducted within each subpool. That is, the items are first selected from the first 

subpool until the fixed sublength is reached. Then the item selection moves forwards to 

the second subpool. It continues until the item selection procedure is completed in the last 

subpool. In other words, the entry of subpools for item selection in PC-MCAT is identical 

to the one in IND-UCAT in the study, in which each entire subpool is sequentially 

utilized. Aside from the entry of subpools, PC-MCAT follows the same procedures of 

item selection and scoring in MCAT. In terms of the shadow test, for the PC-MCAT with 

MAP scores and the item selection criterion of the Bayesian version of D-optimality, 

when the kth item is selected for subtest d, the objective function of the kth shadow test in 

Equation (23) is substituted by 

                                     
( )

( ) ( )

( )

1 1 1

1

ˆ ˆ)maximize det ( ) )( ( , ,
d

d d

d

N

n n

n

k k u x 



 





 I I  .                (66) 

         Regarding PC-MCAT, Kroehne, Goldhammer, and Partchev (2014) conducted a 

small-scale comparison study in which PC-MCAT (called constrained MAT (CMAT) in 

their study) was included for comparisons to IND-UCAT and MCAT with different 

content balancing techniques. In their study, the item selection algorithms of IND-UCAT 

and MCAT were also considered by being paired with two scoring methods of IND-

UIRT and MIRT. Different from the current study, the maximum information criterion 

was employed as the item selection algorithm for IND-UCAT in their study. The results 



 

71 
 

7
1
 

of their study showed favorable supports of the conventional MCAT, except for under the 

conditions that the items selected by IND-UCAT were scored by MIRT and the subtests 

in PC-MCAT were administered in some particular sequences. In the meantime, they also 

pointed out that future studies were required on the different configurations of subpools 

with different patterns of correlations among subtests. The current study is one realization 

of their suggestions. 

         To summarize, a CAT procedure is typically comprised of five key components, 

which are (1) the item pool, (2) the first-item entry rule, (3) the item selection criterion, 

(4) the scoring algorithm, and (5) the test stopping rule (Weiss & Kingsbury, 1984). With 

respect to the first component, an operational item pool was employed in the study, which 

includes three item subpools, each representing a subscale in a test battery. The test 

battery consists of three subtests— Language Art (LA), Applied Math (AM), and Math 

Computation (MC), each of which was individually used as Subtest1 to Subtest 3 in the 

study. After screening the items, three subpools respectively involve 281(Subtest 1 : LA), 

154 (Subtest 2 : AM), and 320 (Subtest 3 : MC) dichotomously-scored items. Altogether, 

the study has 755 (=281 + 154 + 320) items in the entire item pool. Table 5 and Figure 3 

below present the descriptive summary and the distributions of three item parameters in 

each subpool respectively.  
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                    Table 5  

                     Descriptive Summary of Three Item Parameters in Each Subpool 

Parameter Subpool Mean SD Min Max 

a LA 1.124 0.414 0.355 2.229 

 AM 1.029 0.325 0.415 2.003 

 MC 1.140 0.415 0.335 2.446 

b LA 0.019 0.837 -2.766 2.020 

 AM 0.172 1.337 -3.410 3.862 

 MC -0.447 1.355 -3.935 3.516 

c LA 0.214 0.031 0.160 0.363 

 AM 0.206 0.030 0.123 0.308 

 MC 0.156 0.026 0.095 0.266 

 

 

                   Figure 3. Boxplots of Three Item Parameters in Each Subpool.  
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         Regarding the first-item entry rule, for PC-MCAT, the initial ability estimate for 

each examinee started from the average level of the first subtest, which was a scalar of 0 

for LA in the study. The prior distribution for all subscales in PC-MCAT was specified as 

a multivariate normal distribution with a mean vector of  0 0 0  and a D D  covariance 

matrix that is the same as Equation (64) for the corresponding simulated test conditions. 

Given the information provided above, the item that satisfied Equation (61) in the LA 

subpool was selected as the first item for all examinees in PC-MCAT. For IND-UCAT 

and SEQ-CAT, if the maximum information criterion is chosen as the item selection 

criterion, the item that provides the maximum information on the average ability level, a 

scalar of 0, is typically selected as the first item for each examinee. However, in the study, 

the maximum posterior-weighted information (MPI) criterion was adopted for item 

selection. For this criterion, the prior distribution for either each subtest or the entire test 

must be specified in advance. Once it is specified, the item that provides the maximum 

information integrated over the prior distribution is selected as the first item. In the study, 

the prior distributions of all subtests were identically assumed to be the marginal 

distribution of any subscale, which was a standard normal distribution ( (0,1)N ). The 

specification of all the prior distributions was further used in the MAP scoring procedure 

after the first selected item was completed and thereby the first provisional ability 

estimate was obtained. 

         Once the first item was selected and completed by an examinee, the response would 

update the prior distribution for IND-UCAT and SEQ-CAT. The MPI criterion and the 

MAP scoring algorithm for the 3PL UIRT model was subsequently implemented, for 
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which the detailed information can be found in Sections 1, 2, and 5 of Chapter 2. Note 

that when the first item was to be selected in each of the subtests in IND-UCAT, the prior 

distribution was always a standard normal distribution ( (0,1)N ) due to the fact that no 

collateral information was used. For PC-MCAT, after the first selected item was 

completed, the first group of provisional ability parameters for all three subscales was 

then estimated, which was a vector with three elements. Based on these provisional 

ability estimates, the Bayesian version of D-optimality and the MAP scoring algorithm 

for the 3PL MIRT model was thereafter conducted for selecting the following items and 

obtaining the next few groups of provisional ability estimates, a process which is depicted 

in Sections 1 and 6 of Chapter 2. Note that a shadow test was calculated every time an 

item or a subtest was selected in the five compared methods, which is also addressed in 

Section 3 of Chapter 2 and the current section.  

         In terms of the test stopping rule, the fixed subtest length was employed for the 

convenience of comparison, and therefore the total test length was correspondingly fixed. 

As a consequence, the content constraint was imposed so that the number of items from 

each subscale could be balanced and the fixed subtest length could be satisfied. In 

addition, item security is not always a critical concern for low-stake diagnostic 

assessments and therefore the item exposure control was not considered in the study (van 

der Linden, 2010). Once the test was completed, the subscore estimates from IND-UCAT, 

SEQ-CAT, and PC-MCAT were all obtained. In the meantime, all the items selected by 

IND-UCAT, SEQ-CAT, and PC-MCAT were also recorded individually and then scored 
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by the other four subscoring methods including two post-hoc subscoring methods, which 

are AUG-CAT and reSEQ-CAT. 

Total Score Estimation Procedure 

         To make the best of the sources underlying the assessments, the study proposed a 

successive scoring procedure according to the structure of the higher-order IRT model, in 

which the test total score of individual examinees can be calculated after the subscore 

estimation procedure is conducted. Through the successive scoring procedure, the 

subscores and the total score of an examinee can be sequentially derived from one test. 

The successive scoring procedure is comprised of two consecutive stages. The subscoring 

procedures described in Chapter 2 belong to the first stage, at which point the subscores, 

either augmented or unaugmented, are obtained in the measurement phase of the HO-IRT 

model. Based on these subscore estimates, the total score estimation procedure suggested 

below is conducted in the structural phase of the HO-IRT model, which is regarded as the 

second stage.  

         At the first stage (the measurement phase), the subscore estimates 

( (1) (2) ( ), , , andˆ ˆ ˆ
i i i D   ) for individual examinees are obtained through some subscoring 

procedure. The estimation procedure then continues to the second stage (the structural 

phase). As addressed in Section 7 of Chapter 2, the general ability iG  has a linear 

relationship with subscales 
( )i d , given by Equation (62). Conditional on the general 

ability, the distributions of the subscale parameters are correspondingly defined as 

2

( ) | , ~ ( ,1 )i d iG d d iG dN      . This association, on the other hand, illustrates that the 



 

76 
 

7
6
 

variability of the given general ability estimate can be accounted for by the associated 

subscale distributions when the subscores are used for estimating the given general ability. 

As described previously, given 
iG , the subscales, 

(1) (2) ( ), , , andi i i D   , are independent 

of each other. By assuming that the subscores estimated by the five subscoring methods 

are from the distribution of 
2

( ) | , ~ ( ,1 )i d iG d d iG dN      , the likelihood function is 

therefore obtained as 

                                        
(1) (2) ( ) ( )

1

( , , , | ) ( | )
D

i i i D iG i d iG

d

L f   



,                          (67) 

where  

                                    

2

( )

( ) 22

( )1
| ) exp( )

2(1 )2 (1

ˆ

)
(

i d d iG

i d iG

dd

f



 


 


 


.                    (68) 

In practice, the natural logarithm of Equation (68), called the log-likelihood, is often used 

for convenience of computation. That is, 

                                      
(1) (2) ( ) ( )

1

ln ( , , , | ) ln( ( | ))
D

i i i D iG i d iG

d

L f    


 .                    (69) 

Conceptually speaking, the estimated maximum-likelihood (ML) total score ˆML

iG  for 

examinee i is defined as  

                                        
(1) (2) ( )

(ˆ , )

arg max(ln ( , , , | )ˆ )
iG

ML

iG i i i D iGL


    
  

 .                         (70) 
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That is, solve  

                                              
(1) (2) ( )ln ( , , , | )

0
i i i D iG

iG

L   







                                     (71) 

for the ML total score estimate ˆML

iG . Finally, 

                                                    
2

( )

2 2
1 1

ˆ
1 1

D D
i d dML d

iG

d dd d








 


 

  .                                       (72) 

         As a matter of fact, the MAP and EAP total score estimates can also be obtained by 

conducting the Bayesian estimation procedure, which is to integrate the likelihood 

function in Equation (67) to the prior distribution of the general ability. That is, 

                         

(1) (2) ( )

(1) (2) ( )

(1) (2) ( )

(1) (2) ( )

( , , , | ) ( )
( | , , , )

( , , , )

( , , , | ) ( )

i i i D iG iG

iG i i i D

i i i D

i i i D iG iG

L f
f

f

L f

  
  

  

 

 


 





,               (73) 

where 
(1) (2) ( )( | , , , )iG i i i Df      is the posterior distribution of the given 

iG . The prior 

distribution ( )iGf   was assumed as a standard normal distribution in the study. 

Correspondingly, the EAP total score estimates are defined as 

                                         (1) (2) ( )( | ,ˆ , , )EAP

iG iG iG i i i D iGf d      .                              (74) 

The MAP total score estimates, which are of interest in the study and are denoted as ˆ
iG  

in the following chapters for consistency, are defined as 
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(1) (2) ( )

ˆ ( , )

arg max( ( | , , , ))ˆ

iG

MAP

iG iG i i i Df


   
  

 .                            (75) 

Similarly, solve  

                                     
(1) (2) ( )ln ( , , , | ) ln ( )

0
i i i D iG iG

iG iG

L f  







 
 

 
                         (76) 

 for the MAP total score estimates ˆMAP

iG . Finally, 

                                            

2
( )

2 2
1 1

ˆ 1
1 1

D D
i d dMAP d

iG

d dd d

 

 




 

 
  

  
  .                                    (77) 

         This successive scoring procedure is applicable to both P&P tests and CAT tests. It 

avoids the sophisticated MCMC algorithm by assuming the regression coefficients, 

which can be estimated from the field tests in advance, are known, and provides total 

scores and subscores at one time from the same test. Moreover, the total score estimation 

at the second stage is fairly computable and understandable and thus holds considerable 

potential for future operational use. On the other hand, the successive scoring approach 

does not account for the estimation errors of subscore estimates in the total score 

estimation. However, as long as the validity and reliability of subscores are guaranteed, 

the estimation errors of subscores will have little impact on the accuracy of total score 

estimates. In this study, the proposed successive scoring approach was applied to the five 

compared methods so that the total scores and subscores were all provided for 

comparison. 
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Outcome Measures 

         As discussed in the last section of Chapter 2, the most commonly used outcome 

measures include the correlation, the root mean square error (RMSE), and the bias in 

comparison studies in the literature. In the study, these three indices were also adopted. 

They were separately calculated for comparisons of the recovery of total scores estimated 

by subscores, subscores from each subtest, and subscores from the combined three 

subtests (Sub_COMB). The outcome measures of Sub_COMB were utilized to evaluate 

the overall performance of each subscoring method on estimating the subscores across all 

subtests.  

         The correlations for the three types of scores were respectively referred to as 

( ) ( )
ˆ( , )i G i Gcor   , ( ) ( )

ˆ( , )i d i dcor   , and (1,2,..., ) (1,2,..., )
ˆ( , )i D i Dcor   .The biases are individually 

denoted as 

                                                    1

ˆ( )
I

i i

ibias
I

 







;                                                 (78) 

                                                   
( ) ( )

1

ˆ( )
I

i d i d

ibias
I

 







;                                             (79) 

                                                  
( ) ( )

1 1

ˆ( )
D I

i d i d

d ibias
D I

 
 







.                                          (80) 
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Moreover, the RMSEs are expressed as  

                                                   

2

1

ˆ( )
I

i i

iRMSE
I

 







;                                                (81) 

                                                 

2

( ) ( )

1

ˆ( )
I

i d i d

iRMSE
I

 







;                                           (82) 

                                               

2

( ) ( )

1 1

ˆ( )
D I

i d i d

d iRMSE
D I

 
 







.                                         (83) 

         After these outcome measures were calculated for all the five CAT subscoring 

methods in 90 conditions, they were tabled and plotted for the convenience of 

comparison. Strong correlations, small RMSE values, and zero biases are expected in the 

final results for each condition in order to justify the measurement efficiency of these 

subscoring methods on score estimation. Weak correlations usually reflect the large 

discrepancies between the score estimates and the true scores, but may not necessarily 

lead to large bias values. Also, correlations are negatively proportional to the RMSE 

values. Under the condition that no hugely discrepant cases occur between the estimates 

and the true values across the ability levels, positive biases could represent an 

overestimation pattern while negative biases represent an underestimation pattern. 

Compared to the RMSE and bias values in IND-UCAT, the effects of the post-hoc 
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augmentation techniques in AUG-CAT and reSEQ-CAT as well as the subscoring 

advantages of PC-MCAT and SEQ-CAT can be demonstrated by relatively lower 

absolute values. On the other hand, the changes of the RMSE and bias values, as the 

factor levels investigated in the study change, also reflect how these factors impact the 

score estimation among the five methods.  
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CHAPTER IV 

RESULTS 

         Based on the simulation design described in Chapter 3, a simulation study was 

correspondingly conducted and the results are presented in this chapter. For the 

convenience of generalization, the results of the comparison are individually illustrated 

from three primary perspectives, which are the three levels of the correlation structures 

(low, mixed, and high) as shown in Equation (64). The outcome measures (correlation, 

bias, and RMSE) were calculated on each type of score estimates (subscores from 

separate subtests, subscores from the combined three subtests (Sub_COMB), and total 

scores estimated from subscores) for all the conditions within each correlation structure 

and then all were tabled and plotted in Tables 7 to 15 and Figures 4 to 9 for 

straightforward visualization. They were compared in and across each simulated 

condition with the purpose of evaluating the performance of the five subscoring methods 

and the effects of the crucial factors examined in the study. Also, the depictions of 

collateral information in the previous chapters reflect that the collateral information 

utilized in the study primarily refers to the correlations among subtests. Therefore, the 

scoring methods that exploit the collateral information on score estimation (SEQ-CAT, 

PC-MCAT, reSEQ-CAT, and AUG-CAT) are generally called the correlation-based 

scoring methods in the study.   



 

83 
 

8
3
 

         As mentioned previously, the item selection and scoring procedure of IND-UCAT 

was regarded as the baseline method for each type of score estimates, to which the other 

four scoring methods along with individual item selection algorithms were compared. 

Thus, the original values of its outcome measures are all displayed and highlighted in 

Tables 7 to 15. The values shown in the tables for the other methods are actually the 

differences from the baseline. That is, by comparison to the values of the baseline, the 

positive implies a larger absolute value and the negative implies a smaller absolute value. 

For example, the original values of correlations and RMSEs are always positive for all 

the methods. In Table 8, the first value in the first row is 0.915, which was highlighted 

for the total scores of the baseline scoring method of IND-UCAT conducted within the 

IND-UCAT item selection. The second value of 0.001 implies that the correlation 

between true total scores and total scores estimated by the SEQ-CAT scoring on the items 

selected by IND-UCAT was 0.001 larger than the baseline correlation of 0.915. On the 

other hand, the original values of biases could be either positive or negative, which reflect 

how much on average the scores, estimated by each method, are positively or negatively 

deviated from zero. For the purpose of comparison, the bias is evaluated by examining 

which method produces the smallest absolute values, which implies the closest to zero. 

For instance, the second value of the first row in Table 10 is -0.001, which means that the 

bias yielded by the SEQ-CAT scoring on the items selected by IND-UCAT was 0.001 

closer to zero than the baseline bias. In short, by contrast to the highlighted baseline value, 

a positive difference value on correlation represents relative better performance whereas 
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relative better performance reflected on bias and RMSE is represented by a negative 

difference value.  

         The item selection methods existing among the five subscoring methods were 

separately applied and investigated in the study, representing the item selection 

algorithms of IND-UCAT, SEQ-CAT, and PC-MCAT. Their performances were 

evaluated by comparing the outcome measures across the conditions of the three methods. 

Also, the difference values of the IND-UCAT subscoring in the item selections of SEQ-

CAT and PC-MCAT reveal the changes of subscore estimates resulted from the use of 

the collateral information in the item selection algorithms rather than in the subscoring 

procedure. Additionally, the similarity of the items selected by these three methods was 

examined as well, which is shown in Table 6. The comparisons among them may provide 

a clue of which method could best exploit the collateral information on item selection 

under varied conditions.  

    Table 6  

    Percent on the Similarity of Items Selected by IND-UCAT, SEQ-CAT, and PC-MCAT 

Sublength Low Mixed High 

10 items  .806 .760 .684 

20 items  .888 .859 .811 

 

         Besides, the comparisons among the original designs of IND-UCAT, SEQ-CAT, 

and PC-MCAT, namely the subscoring procedure in conjunction with their own item 

selection algorithm, were conducted by evaluating the values on the diagonal of the 

corresponding submatrices within each score type in Tables 7 to 15. For instance, 
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regarding the total score estimates in a 10-item sublength of Table 7, the elements on the 

diagonal of the submatrix consisting of the first three rows and the first three columns 

respectively represent the correlation (=0.698) of true total scores and total scores 

estimated by the original IND-UCAT and the difference values (= -0.001 and -0.002) of 

the original SEQ-CAT and the original PC-MCAT on correlation compared to the 

original IND-UCAT. In addition, the reSEQ-CAT scoring and the AUG-CAT scoring are 

both post-hoc score estimation approaches, which are applied after a conventional CAT 

test, such as the original IND-UCAT or the original SEQ-CAT, is completed. The 

comparisons between them were achieved by evaluating the values in the corresponding 

submatrix, such as a submatrix consisting of the first three rows and the last two columns 

if the example described above is also applied in this case. Also, the improvements on 

score estimates that these two approaches might achieve upon the three original CAT 

tests (the original IND-UCAT, SEQ-CAT, and PC-MCAT) were found by comparing 

their difference values in each row to the diagonal element in the corresponding 

submatrix of the three original CAT tests in the same row.       

Conditions with Low Correlation Structure 

         In each of the conditions with the low correlation structure, the performances of the 

five subscoring methods were very comparable on estimating all types of scores, 

especially regarding the measures of correlation and RMSE. The comparability is 

manifested not only by the five overlapped lines in each cell of the first row of Figures 4 

to 9, but also by quite small and similar difference values in each row of Tables 7, 10, 

and 13. For example, the difference values in the third row of Table 7 are all -0.002 for a 
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10-item sublength and the values in the fourth row are either 0 or 0.001for the same 

sublength. These values in each row are very close to or equal to zero, which implies that 

the scores estimated by the five scoring methods were approximate to each other and also 

to the highlighted baseline score within each item selection algorithm for all score types. 

Likewise, the comparability was further enhanced, particularly on bias, as the subtest 

length increased from 10 to 20. It is demonstrated by nearly no gaps between the lines in 

each cell of the first row of Figure 7 compared to the counterparts in Figure 6 as well as 

by more consistent and smaller values in each row of a 20-item sublength compared to 

the counterparts of a 10-item sublength in Tables 7, 10, and 13. Relatively speaking, as 

opposed to the difference values in Subtest 3, the measure of bias had slightly larger 

margins among the difference values for all the other score types, especially in a 10-item 

sublength. This was confirmed primarily by the fairly larger discrepancy, from 0.003 to 

0.009 at the maximum across rows of Table 10, between the AUG-CAT scoring and the 

other scoring methods in a 10-item sublength. By contrast, the differences among the 

other scoring methods within each item selection were only 0 to 0.003 at the maximum in 

a 10-item sublength. It implies that AUG-CAT might produce, on average, larger or 

slightly larger positive biases within each item selection when the sublength was short 

and the correlations among subtests were low. 

         Regarding the item selection algorithms, about 81% and 89% of the total number of 

items (30 and 60 items) were identically selected, but perhaps not in the same sequence, 

by IND-UCAT, SEQ-CAT, and PC-MCAT out of the three subpools for a 10-item 

sublength and a 20-item sublength. It also appeared that the use of the collateral 
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information into the item selection made no contribution to the improvements of the 

score estimates yielded by the five scoring methods. In some conditions, it even 

demolished the performances of these scoring methods, which is indicated by many 

negative difference values in Table 7 and many positive difference values in Tables 10 

and 13 within the rows of the item selection methods of SEQ-CAT and PC-MCAT.  

         In short subtests (10 items), by comparing the difference values in each column 

within each score type in Tables 7, 10, and 13, it shows that the demolishment from the 

SEQ-CAT item selection algorithm was negligible due to its values approximate to the 

counterparts of the IND-UCAT item selection. For example, the differences between the 

counterparts of the two item selections on bias only ranged from 0 to 0.006. On the other 

hand, these small differences indicate that the adaptive selection of subtests in SEQ-CAT 

did not play a role in improving the score estimates when a test battery with a low 

correlation structure was administered. Comparatively, PC-MCAT performed the worst 

on the item selection for almost all score types in a 10-item sublength, especially with 

respect to the bias. The differences between the counterparts of IND-UCAT and PC-

MCAT on bias ranged from 0.006 to 0.019 in a 10-item sublength. The big differences 

can also be identified from the first row of Figure 6, on which the PC-MCAT item 

selection positively increased the biases in all the scoring methods and the AUG-CAT 

scoring was most largely impacted. Consequently, the impact might lead to higher RMSE 

values, which are presented as some positive difference values in the rows of the PC-

MCAT item selection method in Table 13. However, no matter which item selection 

method was adopted, the demolishment vanished as the sublength increased from 10 to 
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20 items. Therefore, when the correlations among subtests were low and the sublength 

was short, the scores estimated by the five scoring methods on the items selected by PC-

MCAT were, on average, overestimated by a larger amount across the ability scales, 

compared to the other two selection algorithms. Under this situation, the PC-MCAT item 

selection could even aggravate the overestimation produced by AUG-CAT.  

         On the top rows of Figures 4 to 9, it shows that the large divergences of the total 

score estimates from the true total scores were very noticeable. Also, as the number of the 

items in each subtest increased, the divergences were not obviously reduced even though 

the subscore estimates were globally improved (see the values for Sub_COMB in Tables 

7, 10, and 13 regarding a 10-item sublength versus a 20-item sublength). It is primarily 

manifested that as the sublength increased from 10 to 20 items, the correlations for the 

subscores across all the scoring methods were on average increased by 0.029 and RMSEs 

were on average decreased by 0.099 whereas the corresponding values for the total scores 

were only 0.013 and 0.015. However, the increased sublength appeared to have some 

comparable influence on the bias of both scores. As the sublength increased, the positive 

biases across all the scoring methods were, on average, reduced by 0.018 for subscore 

estimates and 0.017 for total score estimates. The influence was even reinforced in the 

PC-MCAT item selection and the AUG-CAT scoring because their biases made almost 

no difference to the biases from the other scoring and item selection methods in a 20-item 

sublength. The results described above were summarized by comparing the top row of 

Figure 6 to the counterparts of Figure 7 and also examining the values in Table 10.   
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         Besides, as mentioned previously, the original IND-UCAT, SEQ-CAT, and PC-

MCAT were compared by evaluating the diagonal elements in their corresponding 

submatrices in Tables 7, 10, and 13. It shows that when the correlation structure was low, 

the original IND-UCAT and SEQ-CAT exhibited very comparable performances on 

score estimation. The values of these two original methods in the tables demonstrate quite 

similar patterns regarding the three outcome measures, of which the differences were no 

more than 0.001 on correlation and RMSE and at most 0.004 on bias. Also, as observed 

above, the original PC-MCAT, on average, overestimated the subscores and total scores 

more than the original IND-UCAT and SEQ-CAT. Its difference values on bias to the 

original IND-UCAT ranged from 0.008 to 0.016. However, the distinction was 

eliminated to 0.005 at the maximum as the sublength increased.  

         Also, in terms of the measures of correlation and RMSE, reSEQ-CAT and AUG-

CAT, both as the post-hoc subscore estimation method, performed in a quite similar 

manner on the recovery of total scores and subscores within each item selection 

algorithm. The differences between them were no more than 0.002 on both measures. 

However, unlike AUG-CAT on bias, reSEQ-CAT produced slightly lower positive biases 

than all the other scoring methods for all score types within each item selection, 

especially in a 10-item sublength. It also appeared that the combination of either method 

with the original IND-UCAT was much more advantageous on score estimation than 

their combination with the original PC-MCAT because the three measures from the 

former combination exhibited the best pattern among all the combinations. Additionally, 

as the extension of SEQ-CAT, reSEQ-CAT did not make an evident improvement on 
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score estimation within each item selection compared to SEQ-CAT. The differences 

between SEQ-CAT and reSEQ-CAT were only 0.003 at the maximum on the three 

outcome measures.  

Conditions with Mixed Correlation Structure 

         The mixed correlation structure in the study represents the mixture of the moderate 

and high correlations existing among subtests, which included the moderate correlations 

(0.48 and 0.40) of Subtest 1 (LA) with Subtest 2 (AM) and with Subtest 3 (MC) and also 

the high correlation (0.76) of Subtest 2 (AM) with Subtest 3 (MC). This type of the 

correlation structure occurs more often in operational tests, in which the correlations 

among subtests may not be at the same level. Under the conditions with the mixture of 

moderate and high correlations among subtests, some distinctions on the performance of 

score estimation were gradually presented not only among the scoring methods but also 

among the item selection algorithms. 

         Regarding the measures of correlation and RMSE within each item selection 

algorithm, the correlation-based scoring methods performed slightly better or better than 

the IND-UCAT scoring on all the score types. It is demonstrated in the middle row of 

Figures 4, 5, 8, and 9 and within each row of Tables 8 and 14. As the sublength increased 

from 10 to 20 items, their discrepancies to the IND-UCAT scoring became smaller, 

especially on the correlation, of which the changes, from 0 to 0.005 in a 20-item 

sublength of Table 8, were too small to be counted on. On RMSE, their discrepancies to 

IND-UCAT were reduced, but still noticeable, of which the maximum ranged from 0.004 

to 0.018 in a 20-item sublength. Aside from the IND-UCAT scoring, the SEQ-CAT 
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scoring had a poorer performance than PC-MCAT, reSEQ-CAT, and AUG-CAT in all 

the item selections except in its own item selection. It was especially validated on RMSE, 

of which its maximum difference to the other three scoring methods reached 0.026 across 

the item selections of IND-UCAT and PC-MCAT in a 10-item sublength and 0.015 in a 

20-item sublength. However, this distinction was almost dissolved as the test proceeded, 

which is demonstrated by the approximate difference values between the SEQ-CAT 

scoring and the other three scoring methods in Subtest 3 of Tables 8 and 14. On the other 

hand, within its own item selection, the SEQ-CAT scoring performed very comparably to 

the other three scoring methods. Also, as the extension of SEQ-CAT and a post-hoc score 

estimation approach, the reSEQ-CAT scoring totally compensated for the weaknesses of 

SEQ-CAT on all score types and performed as well as PC-MCAT and AUG-CAT 

regardless of the item selection algorithms. 

         With respect to the measure of bias within each item selection algorithm, as in a 10-

item sublength of the low correlation structure, the AUG-CAT scoring, on average, 

produced the largest positive bias for almost all score types compared to the other scoring 

methods, which is shown in the middle row of Figure 6. It is also shown in Table 11 that 

its maximum differences to the other scoring methods ranged from 0.005 to 0.011 in a 

10-item sublength. From the counterparts of Figure 7, the increase of the sublength could 

most largely reduce the difference between AUG-CAT and the other scoring methods on 

bias, which is also evidently presented by comparing a 10-item sublength to a 20-item 

sublength in Table 11. Other than AUG-CAT, for a 10-item sublength the PC-MCAT 

scoring, on average, produced slightly larger positive bias than SEQ-CAT and reSEQ-
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CAT and even than IND-UCAT in some conditions. Similarly as in the low correlation 

structure, the reSEQ-CAT scoring, on average, had the lowest positive bias, but very 

approximate to SEQ-CAT. When the sublength increased to 20 items, all these 

discrepancies among the scoring methods became negligible.  

         Also, apart from the IND-UCAT scoring that does not exploit the collateral 

information, the disparity of the correlation levels between subtests differentiated the 

score estimation among the subtests for the other four scoring methods. As described 

above, Subtest 1 had moderate correlations with the other two subtests whereas the 

correlation between Subtest 2 and Subtest 3 was strong. It implies that when the 

subscores in these three subtests were to be estimated, the amount of information from 

the other subtests was limited to Subtest 1, but not to Subtest 2 and Subtest 3. Therefore, 

compared to the baseline scoring of IND-UCAT, the improvements on score estimates by 

all the other scoring methods in Subtest 1 were expected to be smaller than the 

improvements in the other two subtests. The hypothesis is fully verified by comparing the 

difference values in Subtest 1 within each item selection to the counterparts of Subtest 2 

and Subtest 3 in Tables 8, 11, and 14.  

        It is also worth noting that the difference values between Subtest 1 and the other two 

subtests in the SEQ-CAT item selection were not so deviated as they were in the item 

selections of IND-UCAT and PC-MCAT, especially regarding the measure of correlation 

and RMSE. This might be attributable to the adaptive sequence of subtests administered 

in the SEQ-CAT item selection, which was Subtest 3, Subtest 1, and then Subtest 2 for all 

the simulated examinees in the conditions with the mixed correlation structure. The 
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different sequence of subtests administered in the SEQ-CAT item selection, in some 

degree, counterbalanced the impacts of the unbalanced correlations among subtests on 

score estimation and significantly contributed to the overall performance of the SEQ-

CAT item selection in this case (see the difference values among the three item selections 

in the “Sub_COMB” score type in Tables 8, 11, and 14). Likewise, as the sublength 

increased, the influence of the disparity of correlations between subtests was much 

reduced and the differences on the improvements between Subtest 1 and the other two 

subtests became smaller for all the item selections.  

         Besides, the percent on the similarity of items selected by IND-UCAT, SEQ-CAT, 

and PC-MCAT was 76% for a 10-item sublength and 85% for a 20-item sublength. The 

evaluation of the scoring methods among the three item selection algorithms for each 

score type indicated that the use of the collateral information in the item selection 

algorithms tended to play a role in improving the score estimates, which was mostly 

reflected by the SEQ-CAT item selection in a 10-item sublength. It also appeared that the 

PC-MCAT item selection in a 10-item sublength made a big improvement on score 

estimation for the subtests that had high correlations to the other subtests. It is manifested 

by comparing the row of Subtest 1 to the rows of Subtest 2 and Subtest 3 in the PC-

MCAT item selection of Tables 8, 11, and 14. On the other hand, it indicates that the 

moderate correlation among subtests was still not strong enough for the PC-MCAT item 

selection to improve the score estimation in a short subtest. As a consequence, the 

moderate correlations in the correlation structure neutralized the overall performance of 

the PC-MCAT item selection in a test battery with short subtests. It is reflected by 
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comparing the difference values of the PC-MCAT item selection to the difference values 

of the IND-UCAT and SEQ-CAT item selection within the score type of Sub_COMB in 

Tables 8, 11, and 14.  

         By comparison, the overall performance of the PC-MCAT item selection was very 

approximate to the IND-UCAT item selection. In the score type of “Sub_COMB”, the 

distinction on the difference values between these two selection methods was on average 

0.016, whereas the distinction between the SEQ-CAT and IND-UCAT item selections 

was on average 0.090 across all the three outcome measures. Comparatively speaking, 

the SEQ-CAT item selection was more sensitive to the moderate correlation among 

subtests and exhibited the best overall performance when the subtest was short in the 

study. As such, when the subtest was long enough, the differences among the three item 

selections were diminished to some extent, but were still conspicuous, particularly on 

bias and RMSE.  

         Compared to the low correlation structure, when the correlations among subtests 

were moderate or above, the total score estimates were very largely improved, especially 

regarding the measures of correlation and RMSE, although there was no such big 

improvements achieved for the subscore estimates from which the total scores were 

estimated. This is verified by comparing the middle row to the top row in Figures 4, 5, 8, 

and 9. Also, the increase of the number of items in each subtest not only improved the 

total score estimates, but also distinctly curtailed the differences on total score estimation 

both among the scoring methods and among the item selection algorithms, particularly in 

terms of the bias and RMSE within each item selection. When the subtest was short, the 
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differentiated performances among the subscoring methods and among the item selection 

algorithms on the subscore estimation accordingly resulted in their differentiated 

performances on the total score estimation, which demonstrated a similar pattern as they 

were on the subscore estimation.  

         Specifically speaking, by evaluating the difference values in the score type of 

“Total” for a 10-item sublength in Tables 8, 11, and 14 and also the plots in the middle 

rows of Figures 4, 6, and 8, it indicates that the SEQ-CAT item selection performed the 

best on the total score estimation among the three selection algorithms for all the scoring 

methods. Within each item selection, the scoring methods of AUG-CAT and PC-MCAT, 

on average, produced larger positive bias of total score estimates whereas the reSEQ-

CAT scoring produced the smallest. However, regarding the measures of correlation and 

RMSE within the item selections of IND-UCAT and PC-MCAT, the scoring methods of 

PC-MCAT, reSEQ-CAT, and AUG-CAT performed very comparably better than IND-

UCAT and SEQ-CAT on estimating total scores.  

         In terms of the comparisons of the original IND-UCAT, SEQ-CAT, and PC-MCAT, 

the original SEQ-CAT made the best performances on almost all score types when the 

correlation structure consisted of two moderate correlations and one strong correlation 

and the subtest was short. As the subtest was spun enough, the performances of the 

original SEQ-CAT and the original PC-MCAT were comparably better although the 

latter produced relatively larger positive bias. Both of the results can be found by 

comparing the diagonal elements of the corresponding submatrices in Tables 8, 11, and 

14. Also, like the performances in the low correlation structure, two post-hoc estimation 
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methods, AUG-CAT and reSEQ-CAT, still performed very distinctly on bias within each 

item selection. However, the distinction was much reduced for a test battery with longer 

subtests. Otherwise, concerning the correlation and RMSE, they were very comparable 

on score estimation regardless of the number of items in each subtest. Additionally, for a 

test battery with short subtests and a mixed correlation structure, it occurred that AUG- 

CAT and reSEQ-CAT performed the best in conjunction with the original SEQ-CAT.  

Conditions with High Correlation Structure 

         Strong correlations among subtests imply that more of the information collateral to 

the other subtests could be provided by these subtests and be utilized for the estimation of 

the target subscores. It allows more possibility of improvements on the score estimation. 

However, different scoring and item selection methods may exhibit different capabilities 

of making use of the information. Therefore, in the conditions with a high correlation 

structure, the correlation-based scoring and item selection methods became more 

functional and performed superiorly over the baseline method of IND-UCAT. Their 

performances also turned out to be more distinguishable from each other, especially on 

the measure of bias.  

         Within each item selection algorithm, all the correlation-based scoring methods 

performed consistently better than the IND-UCAT scoring for all the score types. 

Although the AUG-CAT scoring still, on average, produced the largest positive bias of 

all the other scoring methods in each item selection, the difference to the IND-UCAT 

scoring, from 0.001 to 0.007 in a 10-item sublength and from 0 to 0.001 in a 20-item 

sublength, became inconsequential. Also, when the correlations among subtests were all 
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strong in a test, great changes on average bias occurred to the PC-MCAT scoring, of 

which the biases in the item selections of IND-UCAT and PC-MCAT were only 

positively larger than the reSEQ-CAT scoring that always yielded the smallest average 

bias among all the scoring methods. The average biases provided by the SEQ-CAT 

scoring were relatively moderate in the IND-UCAT and PC-MCAT item selections. They 

were, however, considerably reduced as the test continued.  

         Take the SEQ-CAT scoring in the IND-UCAT item selection for a 10-item 

sublength as an example. On bias, the difference of SEQ-CAT to reSEQ-CAT in Subtest 

1 was 0.018 whereas the difference decreased to 0 in Subtest 3. On the other hand, 

associated with its own item selection, the SEQ-CAT scoring produced average bias as 

low as the reSEQ-CAT scoring for almost all score types. The differences to the reSEQ-

CAT scoring ranged from 0 to 0.005 in a 10-item sublength whereas the differences 

vanished in a 20-item sublength. Also, as the sublength increased, the big distinctions on 

bias became small among all the scoring methods, which was indicated by the maximum 

difference of 0.051 for a 10-item sublength versus 0.016 for a 20-item sublength. All the 

results described above are accordingly presented in the bottom row of Figures 6 and 7 

and in Table 12.   

         Despite the large discrepancies among all the scoring methods on average bias, the 

performances of the correlation-based scoring methods were fairly homogenous within 

each item selection regarding the measures of correlation and RMSE. Generally speaking, 

they performed uniformly better than the IND-UCAT scoring and comparably to each 

other, which is evidently reflected in the bottom row of Figures 4, 5, 8, and 9 and in 
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Tables 9 and 15. As demonstrated on bias, the performance of the SEQ-CAT scoring was 

comparatively weaker in the IND-UCAT and PC-MCAT item selections and was, 

however, remarkably improved as the test proceeded. Within its own item selection, the 

SEQ-CAT scoring performed better than in the other item selections, but still slightly 

worse than the other correlation-based scoring methods, especially regarding the total 

score estimates.  

         When the number of items in each subtest was adequately large, the differences 

among all the scoring methods on correlation became insignificantly small, of which the 

maximum values ranged from 0.001 to 0.014 for a 20-item sublength. Then in terms of 

RMSE, the reSEQ-CAT and PC-MCAT scoring methods performed relatively better than 

the other scoring methods, especially in short subtests, in which the absolute difference 

value of reSEQ-CAT could be as large as 0.121. Although the gaps between the IND-

UCAT scoring and the other scoring methods on RMSE were shrunk for all score types 

when the sublength was increased from 10 to 20 items, the differences were still 

conspicuous and should not be ignored for each item selection method, of which the 

maximum values ranged from 0.007 to 0.05.  

         Regarding the item selection algorithms, only 68% of the items were identically, 

but non-synchronously, selected by IND-UCAT, SEQ-CAT, and PC-MCAT for a 10-

item sublength and 81% for a 20-item sublength. The low percentage on the similarity of 

the selected items in short subtests may imply the large divergences among the 

performances of the three item selection methods on score estimation. When the subtest 

was short, the biases produced by all the scoring methods within the IND-UCAT item 
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selection tended to be more deviated from each other, but on average lower than the 

biases within the PC-MCAT item selection. This can be verified by comparing the 

difference values between the IND-UCAT item selection and the PC-MCAT item 

selection in the score types of “Total” and “Sub_COMB” of Table 12.  

         The bias in the SEQ-CAT item selection was relatively more compact among all the 

scoring methods and was also, on average, the lowest for all the scoring methods 

compared to the counterparts in the item selections of IND-UCAT and PC-MCAT. This 

can be verified by comparing the difference values of the SEQ-CAT item selection to the 

ones of the IND-UCAT and PC-MCAT item selections for all score types in Table 12. 

However, for a test battery with long subtests, the differences among the scoring methods 

and among the item selections on bias were simultaneously reduced for all score types. 

These results could be found by comparing the bottom row of Figure 6 to the counterpart 

of Figure 7 as well as by evaluating the difference values in a 10-item sublength versus in 

a 20-item sublength in Table 12. 

         As for the measure of correlation, the differences among the three item selection 

methods ranged from 0.001 to 0.009 for all the scoring methods, which are shown for the 

score types of “Total” and “Sub_COMB” in Table 9. It indicates that there were, on 

average, almost no big differences among the three item selection methods across the two 

sublengths. On the other hand, with respect to RMSE, the large difference values 

occurred to the item selection methods of SEQ-CAT and PC-MCAT, especially for the 

correlation-based scoring methods in short subtests. This can be detected by comparing 

the difference values in the item selections of SEQ-CAT and PC-MCAT to the ones in 
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the IND-UCAT item selection for a 10-item sublength of all score types in Table 15. As 

the sublength increased, the differences among the three item selection methods 

decreased, of which the maximum absolute difference value across the item selection 

methods of SEQ-CAT and PC-MCAT decreased from 0.121 in a 10-item sublength to 

0.059 in a 20-item sublength compared to the IND-UCAT item selection. Also, the 

maximum difference between the SEQ-CAT and PC-MCAT item selections occurred in 

Subtest 1 and decreased from 0.094 in a 10-item sublength to 0.054 in a 20-item 

sublength. All of the values above are derived from Table 15.  

         Besides, by comparing the three outcome measures on the “Total” score type to the 

counterparts on the “Sub_COMB” score type in Tables 9, 12, and 15, it is of great 

interest to find that all the scoring methods demonstrated a slightly better performance on 

the total score estimation than they did on the subscore estimation when the correlations 

among subtests were all strong. Generally speaking, for a test battery with short subtests, 

the PC-MCAT and reSEQ-CAT scoring methods performed relatively better than the 

other scoring methods in each item selection algorithm regarding the measures of 

correlation and RMSE. As the sublength increased, the differences among the scoring 

methods, from 0.001 to 0.008, became negligible. 

         On the other hand, the increase of sublength could not totally eliminate, but reduced 

the large disparities among the scoring methods on bias, of which the maximum dropped 

from 0.017 in a 10-item sublength to 0.008 in a 20-item sublength. Among all the scoring 

methods, the reSEQ-CAT scoring always produced the lowest average biases of total 

score estimates, from 0 to 0.017, across the three item selections and two sublengths 
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whereas the AUG-CAT scoring produced the largest biases, from 0.004 to 0.032, 

comparably to the IND-UCAT scoring as they did in the subscore estimation. 

Comparatively, all the scoring methods in the PC-MCAT item selection performed 

consistently better than they did in the other two item selections with regard to the 

measures of correlation and RMSE of total score estimates. However, regarding the 

measure of bias, they performed the best in the SEQ-CAT item selection and the 

differences among them were also more condensed. As the sublength increased, all the 

discrepancies among the item selections on the three measures, from 0.001 to 0.005 in a 

20-item sublength, became insignificantly small.     

         As for the three original scoring methods, the original SEQ-CAT and the original 

PC-MCAT both performed better than the original IND-UCAT on the score estimation, 

which is revealed by comparing the diagonal elements in the corresponding submatrices 

in Tables 9, 12, and 15. It also suggests that the original PC-MCAT should be employed 

for estimating all types of scores in either a 10-item sublength or a 20-item sublength. 

The reason for the use of the original PC-MCAT is because the original SEQ-CAT 

exhibited a weaker performance on the total score estimation, particularly in a test battery 

with short subtests. The weaknesses were primarily manifested by the measures of 

correlation and RMSE of total score estimates, for example, 0.009 lower on correlation 

and 0.032 higher on RMSE in a 10-item sublength compared to the original PC-MCAT. 

         In addition, of the two post-hoc score estimation methods, the performance of the 

reSEQ-CAT scoring exhaustively exceeded the AUG-CAT scoring for all score types in 

all item selections of both sublengths. It was further validated when both methods were 
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implemented jointly with the original PC-MCAT. Relatively speaking, the AUG-CAT 

scoring performed better in conjunction with the original SEQ-CAT than with the 

original PC-MCAT. However, the improvements still could not surpass the 

improvements achieved by the reSEQ-CAT scoring within the item selections of SEQ-

CAT and PC-MCAT. It is also very interesting to find that the reSEQ-CAT scoring 

combined to the original IND-UCAT sometimes performed comparably to or even better 

than some correlation-based scoring methods in the other two item selections, such as the 

AUG-CAT and SEQ-CAT scoring methods in the PC-MCAT item selection in a 10-item 

sublength. As always, the score estimates from the SEQ-CAT scoring were improved to a 

large degree by the reSEQ-CAT scoring, particularly when the sublength was short.   
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Figure 4. Correlation between   and ̂  for All the Conditions with A 10-Item Sub-length. 
Note. The three columns represent the three item selection algorithms; The three rows represent the three correlation structures; The five 

lines in each cell represent the five scoring methods, which may be overlapped if the values are all equal or too close; The y-axis in each 

cell represents the scale of the correlation; The five points on the x-axis of each cell represent the five score types; Sub_COMB refers to 

the combination of all the three subtests as one test for calculation.   
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Figure 5. Correlation between   and ̂  for All the Conditions with A 20-Item Sub-length. 
Note. The three columns represent the three item selection algorithms; The three rows represent the three correlation structures; The five 

lines in each cell represent the five scoring methods, which may be overlapped if the values are all equal or too close; The y-axis in each 

cell represents the scale of the correlation; The five points on the x-axis of each cell represent the five score types; Sub_COMB refers to 

the combination of all the three subtests as one test for calculation.   
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Table 7  

Correlation (Difference Values) between   and ̂  for All Conditions with A Low Correlation Structure 

 

 

Test 

 

Item Selection 

Method 

10-Item Sublength  20-Item Sublength 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

Total IND-UCAT .698 .000 .000 .000 .000  .711 .000 .000 .000 .000 

 SEQ-CAT -.001 -.001 -.001 -.001 -.001  .000 .000 .000 .000 .000 

 PC-MCAT -.002 -.002 -.002 -.002 -.002  -.001 -.001 -.001 -.001 -.001 

Sub_COMB IND-UCAT .942 .000 .001 .001 .001  .971 .000 .000 .000 .000 

 SEQ-CAT .000 .000 .000 .000 .000  .000 .000 .000 .000 .000 

 PC-MCAT -.001 -.001 .000 .000 -.001  .000 .000 .000 .000 .000 

Subtest 1 IND-UCAT .942 .000 .001 .001 .000  .971 .000 .000 .000 .000 

 SEQ-CAT -.001 .000 .000 .000 .000  -.001 .000 .000 .000 -.001 

 PC-MCAT -.004 -.004 -.003 -.003 -.003  .000 .000 .000 .000 .000 

Subtest 2 IND-UCAT .925 .000 .002 .001 .002  .962 .001 .001 .000 .000 

 SEQ-CAT -.001 .000 .001 .000 .001  .000 .000 .000 .000 .000 

 PC-MCAT .002 .003 .003 .003 .003  .000 .000 .000 .000 .000 

Subtest 3 IND-UCAT .958 .001 .001 .001 .000  .979 .000 .000 .000 .000 

 SEQ-CAT .000 .000 .001 .001 .000  .000 .000 .000 .000 .000 

 PC-MCAT -.002 -.001 -.001 -.001 -.001  .000 .000 .000 .000 .000 

Note. The highlighted values are the original values of the correlation between   and ̂  estimated by the baseline method of the IND-

UCAT scoring in the IND-UCAT item selection algorithm; The other values are the differences between the scoring method and the 

baseline method on correlation; Positive difference values mean higher than the highlighted values and negative difference values mean 

lower than the highlighted values; Sub_COMB refers to the combination of all the three subtests as one test for calculation; If some 

discrepancies occurred between this table and Table 17, they were caused by rounding errors.  
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Table 8  

Correlation (Difference Values) between   and ̂  for All Conditions with A Mixed Correlation Structure 

 

 

Test 

 

Item Selection 

Method 

10-Item Sublength  20-Item Sublength 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

Total IND-UCAT .915 .001 .006 .004 .006  .933 .000 .003 .003 .003 

 SEQ-CAT .005 .010 .010 .010 .010  .002 .004 .004 .004 .004 

 PC-MCAT .000 .001 .006 .006 .005  .001 .002 .004 .004 .004 

Sub_COMB IND-UCAT .940 .003 .007 .006 .006  .969 .001 .003 .003 .002 

 SEQ-CAT .005 .008 .010 .010 .010  .001 .002 .003 .003 .003 

 PC-MCAT .001 .002 .006 .006 .006  .001 .001 .003 .003 .003 

Subtest 1 IND-UCAT .941 .000 .002 .002 .002  .969 .000 .001 .001 .001 

 SEQ-CAT .004 .005 .006 .006 .005  .002 .002 .002 .003 .002 

 PC-MCAT -.007 -.007 -.005 -.005 -.005  -.001 -.001 .000 .000 .000 

Subtest 2 IND-UCAT .929 .003 .012 .010 .011  .960 .001 .005 .005 .005 

 SEQ-CAT .010 .019 .019 .019 .019  .002 .005 .005 .005 .005 

 PC-MCAT .003 .005 .014 .014 .013  .001 .002 .005 .005 .005 

Subtest 3 IND-UCAT .951 .005 .006 .005 .005  .977 .002 .002 .002 .001 

 SEQ-CAT .000 .000 .006 .006 .006  .000 .000 .002 .002 .001 

 PC-MCAT .008 .010 .011 .010 .011  .002 .003 .003 .003 .003 

Note. The highlighted values are the original values of the correlation between   and ̂  estimated by the baseline method of the IND-

UCAT scoring in the IND-UCAT item selection algorithm; The other values are the differences between the scoring method and the 

baseline method on correlation; Positive difference values mean higher than the highlighted values and negative difference values mean 

lower than the highlighted values; Sub_COMB refers to the combination of all the three subtests as one test for calculation; If some 

discrepancies occurred between this table and Table 18, they were caused by rounding errors. 
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Table 9  

Correlation (Difference Values) between   and ̂  for All Conditions with A High Correlation Structure 

 

 

Test 

 

Item Selection 

Method 

10-Item Sublength  20-Item Sublength 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

Total IND-UCAT .961 .004 .005 .005 .002  .976 .000 .001 .001 .000 

 SEQ-CAT .002 -.001 .007 .007 .004  .000 .000 .001 .001 .001 

 PC-MCAT .006 .005 .008 .008 .006  .001 .001 .002 .002 .001 

Sub_COMB IND-UCAT .937 .015 .025 .024 .020  .967 .004 .009 .009 .008 

 SEQ-CAT .009 .020 .028 .028 .025  .002 .008 .010 .010 .009 

 PC-MCAT .007 .015 .028 .028 .024  .000 .004 .010 .010 .008 

Subtest 1 IND-UCAT .946 .000 .017 .017 .015  .969 .000 .009 .009 .007 

 SEQ-CAT .009 .018 .021 .021 .019  .002 .009 .010 .010 .008 

 PC-MCAT -.006 -.006 .020 .020 .013  -.003 -.003 .008 .008 .005 

Subtest 2 IND-UCAT .916 .025 .037 .037 .031  .957 .008 .014 .014 .013 

 SEQ-CAT .019 .041 .042 .042 .040  .004 .015 .015 .015 .015 

 PC-MCAT .013 .027 .040 .040 .039  .001 .008 .014 .014 .013 

Subtest 3 IND-UCAT .950 .018 .018 .018 .015  .977 .005 .005 .005 .004 

 SEQ-CAT .000 .000 .020 .020 .016  .000 .000 .005 .005 .005 

 PC-MCAT .014 .022 .022 .022 .021  .002 .006 .006 .006 .006 

Note. The highlighted values are the original values of the correlation between   and ̂  estimated by the baseline method of the IND-

UCAT scoring in the IND-UCAT item selection algorithm; The other values are the differences between the scoring method and the 

baseline method on correlation; Positive difference values mean higher than the highlighted values and negative difference values mean 

lower than the highlighted values; Sub_COMB refers to the combination of all the three subtests as one test for calculation; If some 

discrepancies occurred between this table and Table 19, they were caused by rounding errors. 
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Figure 6. Bias of ̂  for All the Conditions with A 10-Item Sub-length. 
Note. The three columns represent the three item selection algorithms; The three rows represent the three correlation structures; The five 

lines in each cell represent the five scoring methods, which may be overlapped if the values are all equal or too close; The y-axis in each 

cell represents the scale of the bias; The five points on the x-axis of each cell represent the five score types; Sub_COMB refers to the 

combination of all the three subtests as one test for calculation.   
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Figure 7. Bias of ̂  for All the Conditions with A 20-Item Sub-length. 
Note. The three columns represent the three item selection algorithms; The three rows represent the three correlation structures; The five 

lines in each cell represent the five scoring methods, which may be overlapped if the values are all equal or too close; The y-axis in each 

cell represents the scale of the bias; The five points on the x-axis of each cell represent the five score types; Sub_COMB refers to the 

combination of all the three subtests as one test for calculation.  
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Table 10  

Bias (Difference Values) of ̂  for All Conditions with A Low Correlation Structure 

 

 

Test 

 

Item Selection 

Method 

10-Item Sublength  20-Item Sublength 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

Total IND-UCAT .034 -.001 .000 -.001 .002  .021 .000 .000 -.001 .000 

 SEQ-CAT .002 .002 .003 .002 .005  .000 .000 .000 -.001 .000 

 PC-MCAT .012 .012 .012 .010 .015  .003 .003 .003 .003 .003 

Sub_COMB IND-UCAT .024 -.001 .000 -.001 .003  .010 .000 .000 -.001 .001 

 SEQ-CAT .003 .003 .003 .002 .005  .000 -.001 .000 -.001 .001 

 PC-MCAT .012 .012 .013 .011 .016  .003 .004 .003 .003 .004 

Subtest 1 IND-UCAT .020 .000 .002 -.001 .005  .011 .000 -.001 -.002 .002 

 SEQ-CAT .003 .003 .004 .003 .008  .000 -.001 -.001 -.002 .002 

 PC-MCAT .014 .014 .014 .012 .021  .003 .003 .003 .003 .006 

Subtest 2 IND-UCAT .038 .000 .000 -.002 .004  .018 .001 .001 -.001 .000 

 SEQ-CAT .005 .004 .006 .004 .009  .000 .000 .001 .000 .001 

 PC-MCAT .017 .016 .016 .014 .023  .004 .006 .005 .004 .005 

Subtest 3 IND-UCAT .013 -.002 -.001 -.002 -.001  .002 .000 .001 .000 -.001 

 SEQ-CAT .000 .000 -.001 -.002 -.001  .000 .000 .001 .000 -.001 

 PC-MCAT .006 .006 .008 .006 .005  .001 .002 .002 .002 .000 

Note. The highlighted values are the original values of the bias of ̂  estimated by the baseline method of the IND-UCAT scoring in the 

IND-UCAT item selection algorithm; The other values are the differences between the scoring method and the baseline method on bias; 

Positive difference values mean higher than the highlighted values and negative difference values mean lower than the highlighted values; 

Sub_COMB refers to the combination of all the three subtests as one test for calculation; If some discrepancies occurred between this table 

and Table 20, they were caused by rounding errors. 
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Table 11  

Bias (Difference Values) of ̂  for All Conditions with A Mixed Correlation Structure 

 

 

Test 

 

Item Selection 

Method 

10-Item Sublength  20-Item Sublength 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

Total IND-UCAT .057 -.002 .000 -.006 .005  .032 .000 .001 -.001 .001 

 SEQ-CAT -.010 -.009 -.005 -.010 -.007  -.006 -.005 -.004 -.006 -.006 

 PC-MCAT -.005 -.004 -.001 -.007 -.001  .000 .001 .002 -.001 .001 

Sub_COMB IND-UCAT .039 -.003 .000 -.004 .005  .018 -.001 .001 -.001 .001 

 SEQ-CAT -.002 -.002 .000 -.004 .002  -.002 -.002 -.001 -.003 -.001 

 PC-MCAT .002 .001 .004 .000 .007  .003 .003 .004 .002 .005 

Subtest 1 IND-UCAT .046 .000 .002 .001 .006  .029 .000 .001 .001 .002 

 SEQ-CAT .007 .007 .008 .006 .014  .003 .001 .002 .001 .005 

 PC-MCAT .013 .013 .014 .012 .020  .010 .010 .009 .008 .013 

Subtest 2 IND-UCAT .044 -.001 .001 -.006 .005  .020 .000 .002 .000 .001 

 SEQ-CAT -.014 -.011 -.006 -.011 -.011  -.008 -.007 -.005 -.007 -.008 

 PC-MCAT -.007 -.006 -.003 -.008 -.003  -.001 .000 .001 -.001 .000 

Subtest 3 IND-UCAT .027 -.007 -.002 -.007 .004  .006 -.003 -.001 -.003 .001 

 SEQ-CAT .000 .000 -.003 -.007 .004  .000 .000 -.001 -.003 .001 

 PC-MCAT .000 -.004 .000 -.004 .003  .001 .000 .001 .000 .002 

Note. The highlighted values are the original values of the bias of ̂  estimated by the baseline method of the IND-UCAT scoring in the 

IND-UCAT item selection algorithm; The other values are the differences between the scoring method and the baseline method on bias; 

Positive difference values mean higher than the highlighted values and negative difference values mean lower than the highlighted values; 

Sub_COMB refers to the combination of all the three subtests as one test for calculation; If some discrepancies occurred between this table 

and Table 21, they were caused by rounding errors. 

 

  



 

 
 

1
1
2
 

Table 12  

Bias (Difference Values) of ̂  for All Conditions with A High Correlation Structure 

 

 

Test 

 

Item Selection 

Method 

10-Item Sublength  20-Item Sublength 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

Total IND-UCAT .023 -.008 -.008 -.016 .001  .007 -.002 -.003 -.006 .000 

 SEQ-CAT -.008 -.017 -.015 -.021 -.008  -.002 -.006 -.004 -.006 -.003 

 PC-MCAT .008 .001 .002 -.006 .009  .003 -.001 -.001 -.005 .002 

Sub_COMB IND-UCAT .035 -.009 -.015 -.022 .002  .015 -.003 -.007 -.010 .000 

 SEQ-CAT -.013 -.026 -.023 -.028 -.012  -.003 -.012 -.009 -.012 -.004 

 PC-MCAT .003 -.003 -.008 -.015 .006  -.001 -.004 -.007 -.010 -.001 

Subtest 1 IND-UCAT .036 .000 -.013 -.018 .002  .020 .000 -.009 -.012 .000 

 SEQ-CAT -.013 -.025 -.021 -.025 -.013  -.004 -.014 -.012 -.014 -.004 

 PC-MCAT .009 .009 -.007 -.014 .012  -.001 -.001 -.010 -.012 -.001 

Subtest 2 IND-UCAT .063 -.023 -.036 -.044 .007  .028 -.009 -.015 -.019 .001 

 SEQ-CAT -.026 -.053 -.048 -.054 -.023  -.006 -.022 -.019 -.022 -.006 

 PC-MCAT -.016 -.030 -.035 -.042 -.012  -.009 -.017 -.020 -.024 -.009 

Subtest 3 IND-UCAT .005 -.003 .005 -.003 -.001  -.003 -.001 -.002 -.001 .001 

 SEQ-CAT .000 .000 .000 -.005 -.001  .000 .000 -.003 .000 .001 

 PC-MCAT .017 .011 .018 .011 .017  .001 -.002 .002 -.002 .001 

Note. The highlighted values are the original values of the bias of ̂  estimated by the baseline method of the IND-UCAT scoring in the 

IND-UCAT item selection algorithm; The other values are the differences between the scoring method and the baseline method on bias; 

Positive difference values mean higher than the highlighted values and negative difference values mean lower than the highlighted values; 

Sub_COMB refers to the combination of all the three subtests as one test for calculation. ; If some discrepancies occurred between this 

table and Table 22, they were caused by rounding errors. 
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Figure 8. RMSE of ̂  for All the Conditions with A 10-Item Sub-length. 
Note. The three columns represent the three item selection algorithms; The three rows represent the three correlation structures; The five 

lines in each cell represent the five scoring methods, which may be overlapped if the values are all equal or too close; The y-axis in each 

cell represents the scale of RMSE; The five points on the x-axis of each cell represent the five score types; Sub_COMB refers to the 

combination of all the three subtests as one test for calculation.   
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Figure 9. RMSE of ̂  for All the Conditions with A 20-Item Sub-length. 
Note. The three columns represent the three item selection algorithms; The three rows represent the three correlation structures; The five 

lines in each cell represent the five scoring methods, which may be overlapped if the values are all equal or too close; The y-axis in each 

cell represents the scale of RMSE; The five points on the x-axis of each cell represent the five score types; Sub_COMB refers to the 

combination of all the three subtests as one test for calculation. 
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Table 13  

RMSE (Difference Values) of ̂  for All Conditions with A Low Correlation Structure 

 

 

Test 

 

Item Selection 

Method 

10-Item Sublength  20-Item Sublength 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

Total IND-UCAT .729 -.001 -.001 -.001 -.001  .715 .000 .000 .000 .000 

 SEQ-CAT .001 .000 .000 .000 .000  .000 -.001 .000 .000 -.001 

 PC-MCAT .003 .002 .002 .002 .002  .001 .001 .001 .001 .001 

Sub_COMB IND-UCAT .341 -.001 -.003 -.003 -.002  .244 -.001 -.002 -.002 -.001 

 SEQ-CAT .001 .000 -.001 -.001 .000  .001 .000 -.001 .000 .000 

 PC-MCAT .006 .005 .003 .003 .004  .000 .000 -.001 -.001 -.001 

Subtest 1 IND-UCAT .339 .000 -.002 -.002 -.001  .243 .000 -.002 -.002 -.001 

 SEQ-CAT .002 .001 .001 .000 .002  .003 .002 .001 .002 .003 

 PC-MCAT .014 .014 .011 .011 .013  .000 .000 -.001 -.001 .000 

Subtest 2 IND-UCAT .388 -.001 -.004 -.004 -.004  .279 -.002 -.002 -.002 -.001 

 SEQ-CAT .002 -.001 -.001 -.001 .000  .000 -.002 -.002 -.002 -.001 

 PC-MCAT -.002 -.004 -.005 -.005 -.004  .001 .000 -.001 .000 .000 

Subtest 3 IND-UCAT .290 -.002 -.002 -.002 -.001  .204 -.001 -.001 -.001 .000 

 SEQ-CAT .000 .000 -.002 -.002 -.001  .000 .000 -.001 -.001 .000 

 PC-MCAT .006 .005 .004 .005 .006  -.002 -.002 -.002 -.002 -.002 

Note. The highlighted values are the original values of the RMSE of ̂  estimated by the baseline method of the IND-UCAT scoring in the 

IND-UCAT item selection algorithm; The other values are the differences between the scoring method and the baseline method on RMSE; 

Positive difference values mean higher than the highlighted values and negative difference values mean lower than the highlighted values; 

Sub_COMB refers to the combination of all the three subtests as one test for calculation; If some discrepancies occurred between this table 

and Table 23, they were caused by rounding errors. 
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Table 14  

RMSE (Difference Values) of ̂  for All Conditions with A Mixed Correlation Structure 

 

 

Test 

 

Item Selection 

Method 

10-Item Sublength  20-Item Sublength 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

Total IND-UCAT .417 -.003 -.017 -.014 -.015  .366 -.001 -.009 -.009 -.008 

 SEQ-CAT -.015 -.028 -.029 -.030 -.027  -.005 -.012 -.011 -.012 -.012 

 PC-MCAT -.003 -.005 -.018 -.019 -.016  -.004 -.004 -.010 -.010 -.010 

Sub_COMB IND-UCAT .354 -.008 -.019 -.018 -.017  .257 -.003 -.011 -.011 -.009 

 SEQ-CAT -.014 -.024 -.031 -.031 -.029  -.004 -.010 -.013 -.014 -.012 

 PC-MCAT -.004 -.008 -.019 -.019 -.017  -.003 -.005 -.011 -.011 -.010 

Subtest 1 IND-UCAT .356 .000 -.006 -.007 -.005  .260 .000 -.005 -.006 -.003 

 SEQ-CAT -.011 -.014 -.016 -.017 -.014  -.006 -.009 -.010 -.010 -.008 

 PC-MCAT .021 .021 .015 .015 .016  .004 .004 .000 .000 .002 

Subtest 2 IND-UCAT .384 -.007 -.033 -.027 -.029  .288 -.003 -.018 -.017 -.016 

 SEQ-CAT -.030 -.055 -.054 -.055 -.054  -.006 -.020 -.020 -.020 -.020 

 PC-MCAT -.008 -.013 -.038 -.039 -.034  -.005 -.008 -.019 -.020 -.019 

Subtest 3 IND-UCAT .320 -.019 -.018 -.019 -.016  .219 -.008 -.009 -.008 -.006 

 SEQ-CAT .000 .000 -.021 -.020 -.017  .000 .000 -.009 -.010 -.006 

 PC-MCAT -.028 -.036 -.036 -.036 -.036  -.011 -.014 -.015 -.014 -.014 

Note. The highlighted values are the original values of the RMSE of ̂  estimated by the baseline method of the IND-UCAT scoring in the 

IND-UCAT item selection algorithm; The other values are the differences between the scoring method and the baseline method on RMSE; 

Positive difference values mean higher than the highlighted values and negative difference values mean lower than the highlighted values; 

Sub_COMB refers to the combination of all the three subtests as one test for calculation; If some discrepancies occurred between this table 

and Table 24, they were caused by rounding errors. 
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Table 15  

RMSE (Difference Values) of ̂  for All Conditions with A High Correlation Structure 

 

 

Test 

 

Item Selection 

Method 

10-Item Sublength  20-Item Sublength 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

Total IND-UCAT .295 -.023 -.029 -.031 -.017  .226 -.002 -.008 -.008 -.005 

 SEQ-CAT -.010 -.008 -.038 -.039 -.027  -.002 -.002 -.010 -.010 -.007 

 PC-MCAT -.022 -.028 -.040 -.041 -.031  -.006 -.005 -.012 -.013 -.010 

Sub_COMB IND-UCAT .358 -.043 -.076 -.077 -.060  .258 -.018 -.040 -.040 -.033 

 SEQ-CAT -.028 -.063 -.090 -.090 -.079  -.009 -.035 -.044 -.044 -.039 

 PC-MCAT -.020 -.043 -.088 -.090 -.074  -.002 -.016 -.041 -.041 -.035 

Subtest 1 IND-UCAT .331 .000 -.058 -.059 -.046  .250 .000 -.041 -.042 -.028 

 SEQ-CAT -.030 -.063 -.075 -.076 -.062  -.010 -.040 -.044 -.044 -.034 

 PC-MCAT .018 .018 -.067 -.069 -.036  .010 .010 -.036 -.036 -.022 

Subtest 2 IND-UCAT .416 -.066 -.102 -.104 -.080  .300 -.030 -.053 -.053 -.047 

 SEQ-CAT -.051 -.119 -.120 -.121 -.114  -.014 -.058 -.059 -.059 -.055 

 PC-MCAT -.032 -.072 -.113 -.115 -.106  -.004 -.030 -.053 -.054 -.050 

Subtest 3 IND-UCAT .319 -.064 -.062 -.064 -.049  .217 -.023 -.024 -.023 -.022 

 SEQ-CAT .000 .000 -.069 -.070 -.055  .000 .000 -.025 -.025 -.024 

 PC-MCAT -.046 -.081 -.079 -.081 -.075  -.012 -.031 -.031 -.031 -.030 

Note. The highlighted values are the original values of the RMSE of ̂  estimated by the baseline method of the IND-UCAT scoring in the 

IND-UCAT item selection algorithm; The other values are the differences between the scoring method and the baseline method on RMSE; 

Positive difference values mean higher than the highlighted values and negative difference values mean lower than the highlighted values; 

Sub_COMB refers to the combination of all the three subtests as one test for calculation; If some discrepancies occurred between this table 

and Table 25, they were caused by rounding errors. 
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CHAPTER V 

CONCLUSIONS AND DISCUSSION 

         In this study, a simulation study was conducted with the primary purposes of 

comparing five subscoring methods on score estimation under variable simulated 

conditions in computerized adaptive tests. Among the five subscoring methods, the IND-

UCAT scoring ignores the correlations among subtests, whereas the other four methods 

(SEQ-CAT, PC-MCAT, reSEQ-CAT, and AUG-CAT) are the correlation-based scoring 

methods, which implies that they capitalize on the correlation information in the scoring 

procedure. By manipulating the sublengths, the correlation structures, and the item 

selection algorithms, more comparable, pragmatic and systematic testing scenarios were 

created for comparison purposes, so that the comprehensive conclusions could be reached 

through comparisons in the study. Also, some particular features presented in the study 

may benefit or impede the exertions of some subscoring methods on score estimation. 

Therefore, these features should be pointed out in this chapter as attentive references for 

future studies and practical applications.            

Conclusions Regarding the Research Questions 

         Based on the purposes of the study, five research questions were correspondingly 

raised in Chapter 1 and were exhaustively resolved in Chapter 4. Through comparisons, 

the results of the study demonstrated unambiguous answers to all the research questions 

and also provided evident support to the performances of the correlation-based scoring 
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methods over the IND-UCAT scoring when the correlation structure was moderate or 

above. In addition, given different correlation structures, these correlation-based scoring 

methods exhibited their own weaknesses and strengths in estimating scores. Therefore, 

their applications will largely depend on their feasibility and efficiency to the demands 

and objectives of test users. 

         First, for the low correlation structure, by comparison to the baseline method of 

IND-UCAT, the utilization of the information on the correlations among subtests does 

not provide a visible improvement on subscore estimates for either the correlation-based 

subscoring methods or the correlation-based item selection methods. Conversely, it may, 

on average, lead to larger positive bias of subscore estimates, unless the number of items 

in each subtest is adequately large. This finding is especially validated for AUG-CAT, 

the PC-MCAT item selection, and their combination. As a method of exploiting the 

collateral information, the SEQ-CAT scoring and item selection perform very 

approximately to the baseline methods of the IND-UCAT scoring and item selection no 

matter which sublength (10 or 20 items) is applied. Under this situation, considering the 

ease of implementation in practice, the original IND-UCAT should be considered for use 

when the subscores are to be estimated. Also, in order to achieve an acceptable accuracy 

of subscore estimates for all the subscoring methods, at least 20 items in each subtest are 

needed. Regarding the total score estimation, as the second stage of the successive 

scoring procedure proposed in the study, the approach of estimating total scores is not 

suggested when the correlations among subtests are low. The aberrant values on all the 
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three outcome measures mirror the very large discrepancy of the total score estimates 

from the true total scores regardless of the magnitude of the sublengths. 

         Second, when the correlation structure is comprised of two moderate correlations 

and one high correlation, the correlation-based item selection and scoring methods, to 

some extent, exhibit their advantages of estimating scores over the baseline method of 

IND-UCAT. The subscores and total scores estimated by these methods are all improved. 

The improvements are particularly pronounced for these scoring methods conducted 

within the SEQ-CAT item selection. On the other hand, the AUG-CAT and PC-MCAT 

scoring, the PC-MCAT item selection, and their combinations still, on average, produce 

larger positive bias for all score types. However, the discrepancies to the other methods 

on bias are largely reduced or even eliminated as the sublength increases. Also, when the 

correlations among subtests are moderate or above, the total score estimates are 

remarkably improved to a relatively acceptable level of accuracy, especially for a test 

battery with sufficient items in each subtest. Given the results, the original SEQ-CAT or 

the combination of the SEQ-CAT item selection and the PC-MCAT scoring are 

recommended not only for subscore estimation but also for total score estimation. If time 

and cost allow the post-hoc estimation procedure, the original SEQ-CAT and the reSEQ-

CAT scoring could be jointly conducted for the best score estimates for a test with the 

mixed correlation structure. Again, longer subtests are always preferred in these 

conditions.  

         Last but not least, for the conditions with a high correlation structure, the increased 

amount of the collateral information among subtests leads to the large discrepancy 
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between the IND-UCAT scoring and the other scoring methods on the score estimation. 

In the meantime, the disparities among the correlation-based scoring methods also 

become more distinct, especially regarding the measure of bias and RMSE. Generally 

speaking, the scoring methods of reSEQ-CAT and PC-MCAT perform better than the 

other scoring methods in all the three item selections. The performance of the SEQ-CAT 

scoring is not ideal on score estimation, especially on the total score estimation. Although 

the differences among the subscoring methods across the item selections could be 

reduced by the increased sublength, they are still noticeable in a 20-item sublength. The 

total score estimation is greatly achieved and is even globally better than the subscore 

estimation for both sublengths when the correlation structure is high. Another interesting 

finding points to some correlation-based scoring methods (e.g. PC-MCAT or reSEQ-

CAT) within the IND-UCAT item selection, of which the quality of the score estimates 

are even better than the one obtained by some correlation-based scoring methods (e.g. 

AUG-CAT or SEQ-CAT) conducted within the SEQ-CAT or PC-MCAT item selection. 

As a matter of fact, this phenomenon may also occur in some conditions with a mixed 

correlation structure. Based on all the findings above, the original PC-MCAT and the 

combination of the PC-MCAT scoring and the SEQ-CAT item selection are suggested for 

both the subscore estimation and the total score estimation. If the post-hoc score 

estimation is allowed, the reSEQ-CAT scoring in conjunction with the original SEQ-CAT 

is strongly recommended. If the complexity of the implementation is an issue, the reSEQ-

CAT jointly conducted with the original IND-UCAT can be considered for reasonable 

score estimates.    
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Some Thoughts on Subscore Estimation 

         As indicated above, the IND-UCAT subscoring in the IND-UCAT item selection 

(the original IND-UCAT) does not exploit the collateral information in the subscoring 

and item selection procedure, and therefore its performance on subscore estimation is not 

impacted by the levels of the correlation structures in all the conditions. Consequently, 

the subscores estimated by IND-UCAT should be quite similar across the three 

correlation structures. If some divergences occur, it is mostly attributable to the sampling 

and estimation errors. In the comparisons of the study, the effects of these errors have 

been ruled out by calculating the difference values for the other subscoring methods to 

the highlighted baseline values within their own correlation structure on the same sample. 

         Also, as one of the correlation-based subscoring methods, the SEQ-CAT scoring 

takes advantages of the correlation information in the subscoring procedure, which 

greatly facilitates its subscore estimation. As described in Section 5 of Chapter 2, all the 

correlation information among subtests is reflected by the joint distribution of all subscale 

parameters in the second-level model of SEQ-CAT. However, at the very beginning of 

the subtest selection and subscoring procedure, only the relevant joint marginal 

distribution is used and updated to select the items from the optimally selected subtests, 

which implies that there is less correlation information exploited in the SEQ-CAT 

subscoring at the early stage. It is particularly validated to the first selected subtest. In 

fact, when the first subtest is to be selected in SEQ-CAT, the respective marginal 

distribution for each subtest is actually its initial prior distribution (
( )( ) (0,1)df N   ), 

which is the same across all the subtests in the study. As a result, the subscoring 
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procedure in the first selected subtest is equivalent to the subscoring procedure of IND-

UCAT in the same subtest, which indicates that the subscores estimated by IND-UCAT 

and SEQ-CAT are totally identical in that subtest. It is obviously manifested by some 0 

difference values between SEQ-CAT and IND-UCAT in some subtests of Tables 7 to 15.  

         Consequently, compared to the other correlation-based subscoring methods in the 

study, the SEQ-CAT subscoring does not utilize all the collateral information in at least 

one subtest, which partly impairs its overall performance on subscore estimation, 

especially when the number of subtests is small and the correlation structure is high. 

However, as the test proceeds, the relevant joint marginal distribution in SEQ-CAT is 

expanded by the later selected subtests and is also updated by the responses in the later 

selected subtests. The subscores in the later subtests accordingly become more and more 

accurate. For the first selected few selected subtests, the increase of the sublength can 

curtail the discrepancy between SEQ-CAT and the other correlation-based subscoring 

methods on the subscore estimates. On the other hand, the newly-developed reSEQ-CAT 

subscoring method (W. J. van der Linden, personal communication, July 30th, 2013) 

possesses the capacity of utilizing all the collateral information to estimate the subscores 

in all the subtests, and therefore exhibited the best performance among all the subscoring 

methods, particularly when the correlation structure was moderate or above.  

         Furthermore, it is not hard to find that all the subscoring methods tend on average to 

overestimate the subscores, which is demonstrated by almost all the positive bias values 

shown in Tables 19 to 21 for each condition. In order to better examine the subscore 

estimates and explain the phenomenon, the conditional biases were also investigated and 
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calculated within each segment over the general ability scale and each subscale. Twelve 

segments were divided with almost a 0.5 unit in-between on each scale, namely, 

(- -2.5]， , (-2.5 2]， , …, (2.5 )， , and all the values of conditional biases were 

plotted in Figures 11 to 16 of APPENDIX D. Figures 11 to 16 show that the biases 

produced by all the five subscoring methods were deviated far from 0 for the extreme 

abilities on the two ends, unless the subpools were well constructed such as Subpool 3. 

Subpool 3 included the largest number of items and more items measuring the extreme 

abilities as shown in Table 5 and Figure 3. Therefore the average biases in Subtest 3 

presented in Tables 10 to 12 were the lowest and most positively close to 0 among the 

three subtests. Due to the lack of items measuring the negative extreme abilities in 

Subpool 1 and Subpool 2, as shown in Figures 11 to 16, the biases produced by all the 

subscoring methods in these two subtests were much more deviated from 0 on the 

negative end than on the positive end over the ability scale, and therefore most of the 

biases are shown as positive values in Tables 10 to 12. When the correlation structure 

was low, the distinctions among all the subscoring methods were too small (at most 0.009) 

to be presented in Figures 11 and 12. As the correlations among subtests increased, the 

distinctions became more evident on the two ends, particularly for the high correlation 

structure, which is shown in Figures 15 and 16.  

         When the correlation structure was high, Figures 15 and 16 show that the biases 

yielded by the subscoring methods of IND-UCAT, SEQ-CAT, and AUG-CAT were 

relatively larger than the biases of PC-MCAT and reSEQ-CAT on both ends. However, 

as indicated above, the SEQ-CAT subscoring in the first selected subtest is equivalent to 
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the IND-UCAT subscoring. Therefore, the large biases on both ends yielded by SEQ-

CAT mostly occur in the first administered or selected subtest. As the test proceeds and 

the correlation information is involved in the subscore estimation, the biases produced by 

the SEQ-CAT scoring become comparably as small as the biases of PC-MCAT and 

reSEQ-CAT on both ends, particularly within its own item selection. Also, based on the 

results of this study, the increase of the sublength improves the bias and the conditional 

bias, but does not change the general pattern demonstrated by the five scoring methods. 

         Overall, among the five subscoring methods, IND-UCAT represents the 

implementation of multiple UCAT subtests, which are totally independent to each other 

and administered in a fixed and prespecified sequence. In IND-UCAT, the prior 

information for the MAP scoring procedure in each subtest ( ( )
ˆ
i d ) is only associated with 

its own subscale ability distribution (
( )( )df  ), so no information on the correlations 

among subtests is involved in the scoring procedure. By contrast, the MAP scores in all 

the subtests of PC-MCAT are simultaneously derived from the updated prior distribution. 

The initial prior distribution (
(1) (2) ( )( , ,..., )Df    ) is typically a multivariate normal 

distribution ( MVN( , ) θ ), which involves the information on the entire correlation 

structure, and is consecutively updated by the responses from each subtest. The sequence 

of subtests to be administered is also fixed and predetermined in PC-MCAT.  

         SEQ-CAT reflects a two-level empirical Bayes scoring approach, of which the 

relevant joint marginal distribution (i.e. 2 1( ) ( )
( )

d d
f   ) regarding the current selected 

subtest ( 2( )d
 ) is updated by the responses in all the preceding subtests ( 1 1( ) ( )

( | )
i d d

f u ), 
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and then the updated posterior predictive distribution ( 2 1( ) ( )
( | )

d i d
f  u ) is used as the prior 

information to estimate the MAP scores in the selected subtest. In other words, other than 

the responses to the items within its own subtest, the MAP scores in each subtest of SEQ-

CAT are impacted not only by the correlation information among subtests but also by the 

responses in the previous subtests. The information provided by both regards also 

influences the entry of subtests into the administration, so the sequence of subtest 

administrations is adaptive to the performance of an examinee in the previous subtests. 

However, as opposed to PC-MCAT, the entire correlation structure is not exploited along 

with the responses in all the previous subtests for the SEQ-CAT scoring procedure until 

the last subtest is selected, which impedes the efficiency of SEQ-CAT to some extent, 

especially when the correlation structure is moderate or above.  

         The three methods mentioned above are all just-in-time subscoring methods, which 

are implemented during the administration of a CAT test. Apart from them, the other two 

subscoring methods (AUG-CAT and reSEQ-CAT) possess post-hoc augmentation 

algorithms and are implemented after a conventional CAT test. AUG-CAT is conducted 

on the subscores, which are estimated by the conventional CAT scoring procedure, 

whereas reSEQ-CAT is conducted on the items, which are selected and completed by a 

conventional CAT test. More precisely, the augmentation in AUG-CAT is achieved by a 

multivariate regression function, of which the regression coefficients regarding all the 

subscore estimates are determined by both the reliabilities of subscore estimates and the 

correlations between subtests. If the subscore estimates obtained from a CAT test are 
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Bayesian version, they need to be converted as unaugmented subscores by excluding the 

prior information from these Bayesian score estimates. 

         Distinct from AUG-CAT, the augmentation in reSEQ-CAT is achieved by 

reimplementing the MAP scoring procedure with the prior distribution reformulated by 

all the items that are selected by a conventional CAT test. Compared to SEQ-CAT, 

reSEQ-CAT is a fully Bayesian estimation approach by assuming that the prior 

distribution of each subscale, which is obtained by marginalizing the other subscales out 

of the updated joint distribution, is known. Also, for a simple-structure test battery, the 

final posterior density function of each subscale in reSEQ-CAT is essentially 

proportional to the marginal density function of the corresponding subscale given all the 

responses in PC-MCAT, which is demonstrated as below. For convenience, all the 

formulae below are expressed based on the design of the study. However, they can be 

easily generalized to the cases with more simple-structure subscales. By Equation (2), the 

final posterior distribution of PC-MCAT is written as 

(1) (1) (2) (2) (3) (3) (1) (2) (3)

(1) (2) (3) (1) (2) (3)

( | ) ( | ) ( | ) ( , , )
( , , | , , )

i i i

i i i

A

L L L f
f

C

     
   

u u u
u u u ,   (84) 

where AC  represents the normalizing constant in PC-MCAT. Then the marginal 

distribution of Subscale 1 is denoted as 

(1) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2)

(1) (1) (2) (2) (3) (3) (1) (2) (3) (2) (3)

( | , , ) ( , , | , , )

( | ) ( | ) ( | ) ( , , )

i i i i i i

i i i

A

f f d d

L L L f d d

C

     

       









u u u u u u

u u u .   (85) 
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As such, the marginal distribution of the other subscales can be obtained in the same 

manner.  

         On the other hand, reSEQ-CAT reimplements the MAP scoring procedure using the 

reformulated prior distribution for each subscale. For instance, the prior distribution of 

Subscale 1, which was selected as the second subtest for most of the examinees in SEQ-

CAT, is given by Equation (49) as 

   
1 2 3 1 1 3 3 1 3

2 1 3

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( , ) ( | ) ( | )
( | , )

d d d i d d i d d d d

d i d i d
B

f L L d d
f

C

      
 

  u u
u u ,   (86) 

where 
BC  represents the normalizing constant for 2 1 3( ) ( ) ( )

( | , )
d i d i d

f  u u , and 2 1,d d  and 

3d  correspond to Subtest 1, Subtest 3, and Subtest 2 respectively for most examinees in 

PC-MCAT. Then the posterior distribution of Subtest 1 in reSEQ-CAT is expressed as   

      

2 1 2 3

2 2 1 1 3 3 1 2 3 1 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( | , )

( | ) ( | ) ( | ) ( , )

d i d i d i d

i d d i d d i d d d d d d d

C B

f

L L L f d d

C C



       




u u u

u u u ,    (87) 

where CC  is the normalizing constant for 2 1 2 3( ) ( ) ( ) ( )
( | , )

d i d i d i d
f  u u u . Similarly, the 

posterior distribution of the other subscales in reSEQ-CAT can be denoted in the same 

fashion. By comparing Equation (85) to Equation (87), it is obviously shown that these 

two functions are proportional, which implies that the maximum of these two 

distributions is expected to point to the same solution.     
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         In addition, for better evaluating the performances of PC-MCAT, the comparison 

between PC-MCAT and MCAT was also conducted, of which the results are shown in 

APPENDIX E. In principle, there are no differences regarding the scoring procedure 

between PC-MCAT and MCAT. Both of them adopt the MAP scoring procedure in a 

multivariate distribution. However, the items selected by both methods might be different 

due to the different pool(s) used, which may therefore lead to different subscore estimates. 

This regard is discussed in the fourth section of this chapter. 

Some Thoughts on Total Score Estimation 

         The total score estimation approach suggested in the study is established on the 

theoretical principle of the likelihood function, given that all the loadings/regression 

coefficients (
d ) are known and all the subscores are given. In Chapter 4, the results 

showed that the total score estimates were astonishingly deviated from the true total 

scores when the correlation structure was low. The MAP total scores are adopted in the 

study and denoted as Equation (77). Algebraically, Equation (77) addresses that the MAP 

total score estimates are primarily determined by the magnitudes of the loadings and the 

subscore estimates. The loadings play a role of weights for each subscore estimate in 

Equation (77) for the calculation of a total score estimate.  

         In the low correlation structure, the subscore estimates yielded by all the subscoring 

methods were not sufficiently accurate as shown in Chapter 4. The values of all the 

loadings (from 0.45 to 0.55) were small, reflecting the weak associations between the 

general ability and all the subscales. As the primary sources for total score estimation, 

there is no doubt that the inaccurate subscore estimates in conjunction with small 
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loadings would lead to the huge departures of total score estimates. Also, small loadings 

indicate large variances of subscores given the Equation of 
2

( ) | , ~ ( ,1 )i d iG d d iG dN       

and accordingly lead to much larger standard errors of total score estimates. There were 

only three subtests for total score estimation in the study. When the number of subtests is 

not sufficient, the true distribution of the general ability is hard to approximate. 

         Based on the same logic, for the mixed correlation structure that included two 

moderate correlations (0.40 and 0.48) and one strong correlation (0.76), the loadings 

became as large as 0.80 and 0.95, and the subscore estimates were also improved 

compared to the ones in the low correlation structure. Some large loadings reflect the 

strong associations between the general ability and some of the subscales, and imply 

better use of the information from subtests by giving more weights to the subscore 

estimates. In particular, a large weight (0.80) was given to the subscores in Subtest 3 that 

were the most accurately estimated among the three subtests. As a consequence, although 

they were still not as good as the subscore estimates regarding the three outcome 

measures, the total score estimates were dramatically improved to an acceptable level by 

comparison to the ones in the low correlation structure.  

         For the high correlation structure, all the loadings were larger than 0.90 and one of 

them (=0.98) was even close to 1. It implies that very strong correlations exist between 

the general ability and all the subscales and the largest amount of information from 

subtests can contribute to the total score estimation. Furthermore, in addition to the most 

improved subscore estimates, the large loadings indicate the very small variance of the 

subscores and also very small standard errors of total score estimates. The true 
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distribution of the general ability can be the most approximately estimated even if the 

number of subtests is small. In this optimal condition, the total score estimates could be 

statistically and algebraically improved to the fullest, of which the three outcome 

measures exhibited an even better pattern than the ones for the subscore estimates in the 

study.  

                     Table 16 

Three Outcome Measures Regarding the Total Score Estimates 

                      When True Subscores Are Applied 

 Correlation Bias RMSE 

Low 0.722 0.011 0.702 

Mixed 0.963 0.014 0.274 

High 0.988 -0.001 0.154 

 

         In order to better demonstrate the total score estimation under the structure of 

higher-order IRT model, the true values of all subscores were applied in Equation (77), 

and the three outcome measures were accordingly calculated, which are shown in Table 

16 above. In this way, the measurement errors produced in the measurement phase of the 

HO-IRT model were ruled out. By comparing these outcome measures to the 

corresponding values in Tables 7 to 15, the total scores estimated by true subscores were 

considerably improved on bias in all the three correlation structures, which implies that 

the majority of biases in total score estimates result from the biases produced in subscore 

estimates. In terms of correlation and RMSE shown in Table 16, there was a huge jump 

(improvement) from the low correlation structure to the mixed correlation structure. 

Holding subscores true in both structures, it is concluded that the aberrant total score 
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estimates in the low correlation structure are largely attributed to the small loadings 

between subscales and the general ability rather than the estimation errors of subscores.                        

         On the other hand, the combination of three subtests possesses three times the 

number of items in each subtest. It is commonsense in IRT that when item parameters are 

known, the more items used for estimating ability parameters, the more accurate these 

parameter estimates should be. Oddly, regardless of the sublengths in the low and mixed 

correlation structures of the study, the three outcome measures regarding subscore 

estimates always demonstrated better patterns than the values regarding total score 

estimates. The increase of the sublength from 10 to 20 items greatly improved the 

subscore estimates far more than the total score estimates. These findings also aligned 

with the results of de la Torre and Song’s study (2009), which were found in the similar 

conditions. This oddity, in fact, emphasizes the properties of the HO-IRT model. First, 

the structural phase of the HO-IRT model reflects the causal relations among the 

unobservable latent traits, in which the total score estimation approach suggested in the 

study is conducted. Second, the subscore estimates conditional on a total score are 

assumed to be the observed samples from the distribution of 

2

( ) | , ~ ( ,1 )i d iG d d iG dN      . The distribution is primarily determined by the 

magnitudes of the loadings, as is demonstrated by the results in Table 16.  

         When the loadings and the number of observations are small, the distribution of the 

total score is poorly approximated based on the principle of likelihood function. As 

illustrated above, the number of observations refers to the number of subscores for each 

examinee in the study. Moreover, the increase of the sublength can improve the total 
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score estimates to some extent, but not as straightforwardly and significantly as the 

increase of the number of subtests in a test. Therefore, to improve the total score 

estimates in the low or mixed correlation structure, it is suggested that more subtests, 

rather than more items in each subtest, should be included in a test battery, which can 

more approximately estimate the true distribution of the total score. This finding was also 

justified in de la Torre and Song’s study (2009) by their conclusion that “in improving 

the overall ability estimates, the number of dimensions had greater impact than the 

number of items” (p. 627).   

         Additionally, as suggested previously, in the optimal condition/high correlation 

structure, the SEQ-CAT subscoring is not recommended on score estimation, especially 

on total score estimation, even within its own item selection when the number of subtests 

is small. That is because one of the three subscores that are used to estimate the total 

score in SEQ-CAT is identical to the subscore of IND-UCAT in the same subtest, which 

is estimated without the collateral information, and therefore is less accurate compared to 

the subscores estimated by the other correlation-based subscoring methods. This 

weakness of the SEQ-CAT subscoring becomes relatively detrimental when the 

correlations among subtests are all high. In the meantime, the small number of subtests 

allows more credits to be granted to each subscore on the total score estimation, and thus 

one inaccurate subscore may largely deviate the accuracy of the total score estimate. 

         Under the same optimal condition, it appeared that the PC-MCAT subscoring and 

item selection methods demonstrated stronger capabilities for taking advantage of the 

collateral information in the subscoring and item selection procedure, compared to their 
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performances in the low and mixed correlation structures and SEQ-CAT. However, the 

impact of the weakness of SEQ-CAT is expected to be less critical as the number of 

subtests increases. One reason is that the large number of subtests can contribute most 

approximately to the true total score distribution. The other reason is that more subtests 

are expected to neutralize the negative impacts of the first few selected subtests in SEQ-

CAT. Also, adding more items in SEQ-CAT would not be considered as one of the 

solutions to efficiently and significantly offset the negative impact.             

Some Thoughts on Item and Subtest Selection Algorithms 

         As opposed to the two post-hoc estimation methods (AUG-CAT and reSEQ-CAT), 

the other three subscoring methods have their own item selection algorithm. IND-UCAT 

ignores the collateral information existing among subtests and merely uses the prior 

information (
( )( )df  ) regarding its own distribution for the adaptive MPI item selection. 

SEQ-CAT gradually adds more and more collateral information to the prior distribution 

( 1( )
( )

d
f   first, then 2 1( ) ( )

( | )
d i d

f  u , and then 3 1 2( ) ( ) ( )
( | , )

d i d i d
f  u u , and so on) for the MPI 

item selection as the test proceeds. As for PC-MCAT, the item selection conducted in the 

study adopted the Bayesian version of D-optimality for each subtest, which involves the 

prior covariance matrix that reflects the associations among all subtests underlying 

(1) (2) ( )( , ,..., )Df    . 

         Similarly in the SEQ-CAT subscoring, the items selected by SEQ-CAT in the first 

selected subtest are identical to the ones selected by IND-UCAT in the same subtest, and 

therefore the subscores estimated by SEQ-CAT and IND-UCAT in that subtest are totally 

identical. As discussed above, this weakness of SEQ-CAT could impede the overall 
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performance of the SEQ-CAT subscoring and item selection, especially for the high 

correlation structure. By comparison, the PC-MCAT item selection exhibited the best 

performance on score estimation in the high correlation structure, which might lead to the 

conclusion that it possesses the best capability of utilizing the collateral information in 

item selection, when the correlations among subtests are sufficiently strong.  

         However, a weakness may not actually be “weak” in some conditions. In the low 

correlation structure, the performance of the SEQ-CAT item selection on subscore 

estimation was not largely demolished by comparison to the PC-MCAT item selection, 

given the results in Chapter 4 that its performance was very comparable to the IND-

UCAT item selection. It believes that the subscore estimation in SEQ-CAT employs less 

collateral information in the first few subtests and it most likely dilutes the demolishment.  

         Additionally, the SEQ-CAT item selection appears more sensitive to the moderate 

correlations among subtests compared to the PC-MCAT item selection. In the mixed 

correlation structure with two moderate correlations and one strong correlation, Subtest 1 

had a relatively weaker and moderate correlation with the other two subtests in the study. 

For Subtest 1, the PC-MCAT item selection demonstrated a similar pattern as it did in the 

low correlation structure and performed much worse than the SEQ-CAT item selection. 

Also, Subtest 1 was the first administered subtest in IND-UCAT and PC-MCAT, but not 

the first selected subtest in SEQ-CAT. For all of the examinees, it was the second 

selected subtest for administration in SEQ-CAT, which means that part of the collateral 

information from the first selected subtest (Subtest 3) was used for the SEQ-CAT item 

selection in Subtest 1. Although merely a moderate correlation (=0.40) was involved in 
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the relevant joint marginal distribution, it contributed to the best performance of the SEQ-

CAT item selection in Subtest 1 in comparison to the IND-CAT and PC-MCAT item 

selections.     

         Furthermore, another distinguishable characteristic of SEQ-CAT is the adaptive 

subtest selection. That is, the sequence of subtests administered in the other two methods 

is fixed and prespecified from Subtest 1 to Subtest 3, whereas the sequence of subtests in 

SEQ-CAT is adaptive to the performance of examinees in the proceeding subtests. It is 

worth noting that the adaptive subtest selection in SEQ-CAT is determined not only by 

the SEQ-CAT subtest selection algorithm, but also by the configurations of subpools, of 

which the latter became the primary determinant in the study.  

         As depicted in Chapter 3, three subpools from an operational testing program were 

adopted in the study. Among the three subpools, Subpool 3 had the largest number of 

items (320 items) and then Subpool 1 had the second largest (281 items) whereas 

Subpool 2 had only 154 items. Other than the unbalanced number of items in each 

subpool, the three IRT item parameters individually demonstrated different distributions 

among the three subpools, which are presented in Table 5 and Figure 3. As a 

consequence, the test information functions for each subpool were remarkably distinct, as 

is shown in Figure 10 below.  
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                Figure 10. Test Information Function for Each Subpool. 

         Figure 10 shows that Subtest 3 could provide the largest amount of test information 

across nearly the entire ability scale, whereas the largest amount of test information 

provided by Subtest 1 primarily concentrated on the medium-level abilities. 

Comparatively, the test information provided by Subtest 2 was much lower than the other 

two subtests across the entire ability scale, aside from the small areas around the two ends.   

Because of this fact, the sequence of subtests selected by SEQ-CAT was almost the same 

for all the examinees, which was Subtest 3, Subtest 1, and Subtest 2. The only exception 
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occurred in the high correlation structure, in which a few examinees (around 2.4% of 

examinees) had Subtest 2 as the second administered subtest in SEQ-CAT.           

         As indicated in Chapter 2, the subtest selection adaptation in SEQ-CAT can 

customize a test battery corresponding to the performance of individual examinees in the 

previous subtests, and may therefore improve the subscore estimates by optimizing the 

subtest assembly. However, the uniform sequence of subtests in SEQ-CAT of this study 

partly constrained the effects of the particular adaptation of SEQ-CAT on subscore 

estimation. That is, the configurations of the subpools from the operational testing 

program did not give lots of play for SEQ-CAT to adaptively select the subtests. On the 

other hand, the uniform sequence of subtests in SEQ-CAT still reflected the adaptation of 

SEQ-CAT in subtest selection because it was different from the fixed sequence in IND-

UCAT and PC-MCAT. It was still determined by the criterion that the subtest providing 

the maximum sum of the information to the current ability estimate of an examinee 

should be selected. As a consequence, this uniform, but adaptive, subtest sequence 

provided the SEQ-CAT item selection the possibility of performing better than the PC-

MCAT item selection in the mixed correlation structure.  

         Specifically speaking, Subpool 3 was relatively well-constructed, and therefore was 

selected as the first administered subtest for all the examinees in SEQ-CAT. Although 

there was no collateral information available for the SEQ-CAT item selection in Subtest 

3, the well-constructed subpool still provided more appropriate items measuring the 

current ability estimate, which resulted in nearly no differences among the three item 

selections in Subtest 3, particularly for the correlation-based subscoring methods. As the 
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test proceeded to administer the second subtest (Subtest 1), the sensitivity of the SEQ-

CAT item selection to the moderate correlation between Subtest 1 and Subtest 3 

facilitated its subscore estimation in Subtest 1. This facilitation was manifested by the 

large discrepancies on the three outcome measures between the SEQ-CAT and PC-

MCAT item selections. In the last administered subtest (Subtest 2), the utilization of the 

entire correlation structure in the SEQ-CAT item selection made it competitive enough to 

outperform the PC-MCAT item selection. Therefore, the SEQ-CAT item selection 

achieved the overall best performance on subscore estimation in the mixed correlation 

structure. 

         In addition, other than the three item selection algorithms, the differences between 

PC-MCAT and the conventional MCAT were also investigated, and the results are shown 

in APPENDIX E. Figures 17 to 19 of APPENDIX E show that both methods exhibited 

very homogeneous trends regarding correlation and RMSE. The differences regarding 

bias appeared to be relatively large in short sublength. However, as the sublength 

increased, the differences became negligible. Theoretically, due to the different sizes of 

the pool(s) they adopted, the differences between PC-MCAT and MCAT were totally 

attributed to the different series of items selected by both methods. The simple structure 

in MCAT does not imply that the items providing the maximum information in Equation 

(59) will consecutively selected from the same subpool as they will in PC-MCAT. Once 

an item is selected from another subpool, it will update the entire MCAT provisional 

subscale estimate vector by a different amount, which departs the item selection process 

towards a different direction from PC-MCAT.  



 

140 
 

1
4
0
 

         In this study, at least 80% of the items selected by both methods (shown in Table 26) 

were identical, but might not be in the same sequence in the crossed conditions of three 

correlation structures and two sublengths. The remarkable homogeneity of the selected 

items by both methods most likely led their performances on subscore estimation to the 

general homogenous results. Therefore, it might conclude that the constrained use of 

pools is of less importance to a simple-structure CAT test battery. However, as 

mentioned in the PC-MCAT section of Chapter 3, Kroehne, Goldhammer, and Partchev 

(2014) arrived at a different conclusion in some of their conditions. They indicated that 

more systematic investigations were required in the future for examining the effects of 

various configurations of item pools and correlation structures on the performances of 

both methods. They also pointed out that the performance of PC-MCAT was sequence-

dependent and could be comparable to the performance of the conventional MCAT if the 

optimal sequence of subtests was identified. Given the results of PC-MCAT in this study, 

the sequence of subtest administration predetermined in the study might be coincidentally 

the optimal sequence, which probably led the performance of PC-MCAT to be 

comparable to MCAT. Other than the sequence of subtests, some other factors, such as 

the distinct configurations of subpools, could also contribute to the comparable 

performances between PC-MCAT and MCAT.  

         Given the discussion above, the optimal sequence appears to be crucial to the 

performance of PC-MCAT. With reference to the adaptation of subtest selection in SEQ-

CAT, it is very feasible to adaptively determine the optimal sequence of subtests for each 

examinee in PC-MCAT, which was also suggested by Kroehne et al. in their study (2014). 
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In other words, the subtest to be administered in PC-MCAT can be adaptively selected 

for each examinee corresponding to his/her performance in the previously selected 

subtest(s). The PC-MCAT with adaptively sequencing subtests is called SEQ-MCAT in 

this study, in order to be differentiated from PC-MCAT. More precisely, as conducted in 

SEQ-CAT, when the first subtest is to be selected, all the subpools will be screened by 

comparing shadow tests for the one that can maximize the sum of the determinants of 

Fisher’s posterior information matrix over the intended sublength. The objective function 

of the shadow test for SEQ-MCAT in subpool d can be obtained by substituting Equation 

(88) for Equation (40),  

                                               
( )
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         As the first subpool 1d  is identified, the item that maximizes the determinant of 

Fisher’s posterior information matrix in 1d  is selected to be the first item for 

administration. After that, the scoring procedure, described in the MAP section of 

Chapter 2, and the adaptive item selection procedure, described in the PC-MCAT section 

of Chapter 3, are routinely conducted in 1d . Once the fixed sublength of  1d  is reached, 

the second subtest is to be selected from the rest of subpools by the following objective 

function 
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which is substituted for Equation (88). In Equation (89), 
1d d , and 

1( )ˆ d
J

  refers to the 

vector of the provisional subscale parameter estimates obtained after the first selected 

subtest is completed. Following the same logic, the test proceeds until all the subpools are 

selected. Once the last subtest is completed, the MAP subscores of all the subtests can be 

simultaneously estimated from the final updated posterior distribution by Equations (8) to 

(10).       

         As a matter of fact, the subtest and item selection procedure discussed above for 

SEQ-MCAT can be further simplified. For a simple-structure test battery, the magnitude 

of the determinant of Fisher’s posterior information matrix is totally determined by the 

changes of the diagonal elements, each denoted as 

                                                       ( )

1

( )( , ˆ ) [ , ]i di dI d d    .                                                (90) 

where 1[ , ]d d  represents the dth diagonal element in the inverse of the prior 

covariance matrix. 1[ , ]d d  is always constant for all the items in subpool d, and thus 

the first term in Equation (90) determines the change of each diagonal element as an item 

is added in the test. Since the subtest and item selection procedure in SEQ-MCAT always 

concentrates on one subpool, it implies that only one element on the diagonal is changed 

every time a subpool or an item is selected. The largest change on that element at one 

time implies that the largest determinant of the matrix is obtained. That is, to seek the 

item(s) that maximize(s) the change of ( ) ( )( , ˆ )i di dI   is the purpose of the objective 

functions (88) and (89).  
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         As a consequence, the adaptive selection of the first subtest represented by Equation 

(88) for SEQ-MCAT can be simplified as 
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The adaptive selection for the second subtest represented by Equation (89) for SEQ-

MCAT is simplified as  
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where 
1( )

( )
ˆ d

J

i d  refers to the provisional subscale parameter estimate for subtest d, which is 

one of the estimates obtained after the first selected subtest is completed. According to 

the same logic, Equation (91) is also the simplified Equation (66) for PC-MCAT and 

SEQ-MCAT to adaptively select the item in subpool d. In fact, this simplification is 

likewise applicable to the item selection procedure in the conventional simple-structure 

MCAT if D-optimality or a Bayesian version of D-optimality is adopted. That is, the 

entire pool (the combination of all subpools) in MCAT is screened for the kth item 

providing the largest amount of information evaluated at the provisional subscore 

estimate 
1

( )
ˆk

i d 
 if the item is selected from subpool d.  

         The discussion above reveals at least the following three facts for a simple-structure 

test battery. First, D-optimality and the Bayesian version of D-optimality conducted in a 

variety of MCAT tests (MCAT, PC-MCAT, and SEQ-MCAT) can be largely simplified, 
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from operating the posterior information matrices to seeking an item with maximum 

information in a unidimensional space (either three subpools separately or three subpools 

consecutively). Second, the simplified item selection criteria can avoid the deadlock of 

the item selection that arises when D-optimality is employed to select the first few (three 

or more in this study) items in a variety of MCAT tests. Third, the Bayesian version of D-

optimality for these three types of MCATs actually does not capitalize on any collateral 

information during the item and subtest selection procedure. Although the inverse of the 

covariance matrix is one of the components in the posterior information matrix, it does 

not play any role on adaptively selecting an item and a subtest for a simple-structure test 

battery. 

         Consequently, the finding in terms of the good performance of the PC-MCAT item 

selection in the high correlation structure was totally attributed to the MIRT MAP scoring 

procedure, as opposed to the allegation of use of collateral information in the PC-MCAT 

item selection procedure. More precisely, by adding the collateral information via the 

prior distribution, the MIRT MAP scoring procedure in the high correlation structure 

could most efficiently approach the true ability parameters among all the scoring methods. 

Correspondingly, a series of items that most approximately and optimally measured the 

true ability parameters were sorted out by PC-MCAT from the subpools.   

         In addition, regarding the conditions involving the IND-CAT and SEQ-CAT item 

selections in the study, there were no differences between the PC-MCAT and MCAT 

scoring because both of the scoring methods adopt the MIRT MAP scoring algorithms, 

and both of the item selection algorithms concentrate the item selection in one subpool 



 

145 
 

1
4
5
 

until the subscores in that subpool are all obtained. Also, other than the original PC-

MCAT and MCAT compared in the study, the other two original CAT scoring methods 

(IND-UCAT and SEQ-CAT) are more often investigated in the CAT studies. For future 

handy references, the results of these four original methods are presented in the same 

plots and tables in APPENDIX F, so that the discrepancies among these four original 

methods on score estimation can be more straightforwardly demonstrated. 

Significance of the Study 

         As conducted in the P&P tests in the literature, the study is dedicated to examine 

how the five CAT subscoring methods perform in the CAT testing environment as 

subtest lengths and the correlations between subtests are varied. Also, to ensure the high 

comparability among the five subscoring methods, the distinctions on the item selection 

algorithms are considered. By making comparisons in this study, the advantages and 

disadvantages of the five subscoring methods are demonstrated and generalized under 

varied testing conditions. From the statistical standpoint, the differences may not be very 

momentous. Nevertheless, some systematical guidelines relevant to practice can still be 

provided for their future applications, especially in empirical studies and operational 

CAT testing programs. In the literature, there are no comprehensive and thorough 

comparison studies for these CAT subscoring methods, and therefore this study would 

contribute valuable sources to the literature for the interested audience. 

         In the study, two post-hoc subscore estimation methods, AUG-CAT and reSEQ-

CAT, are also investigated along with the other three CAT-based subscoring methods. 

Their application to the CAT framework greatly enriches the CAT subscoring mechanism 
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and may make it possible to implement the subscoring procedure in operational CAT 

tests with more ease. Relatively speaking, AUG-CAT is easy to compute and reSEQ-

CAT is ideal for accurate subscores. Both methods are applicable not only in CAT tests 

but also in P&P tests, because they are always implemented after a conventional test 

regardless of the testing formats. This flexibility, on the other hand, allows for a new 

insight into the implementation of subscoring in a test, which is to consider the feasibility 

of some augmentation techniques after a conventional CAT test is administered. One of 

the benefits of the post-hoc augmentation is that the quality of the subscore estimates is 

guaranteed under the condition that the traditional unsophisticated CAT test is not 

interfered. 

         Also, as mentioned above, three item selection algorithms are separately 

implemented by being paired with the individual subscoring methods. On the one hand, it 

ensures that these subscoring methods are compared under more comparable conditions. 

On the other hand, it gives more possibilities of improving the subscore estimates, 

depending on how the collateral information is added into the item selection procedure, 

besides simply developing more efficient subscoring methods. These three item selection 

algorithms either ignore the collateral information or manifest the approach of 

capitalizing on the collateral information during the item selection procedure. Through 

the above-noted comparisons, the item selection methods that achieve the largest 

improvement on score estimates can be considered for future applications by being paired 

with the corresponding subscoring method.  
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         Moreover, the study adopts PC-MCAT instead of MCAT as one of the subscoring 

methods for comparison. It is a trade-off between avoidance of item context effects and 

constrained use of item pools. It is also, in some sense, more applicable and comparable 

to apply the other subscoring methods on the items selected by PC-MCAT instead of by 

MCAT. However, although the performance of PC-MCAT and MCAT are comparable in 

this study, this compromise may most likely make the performance of PC-MCAT inferior 

to MCAT in some other conditions. To compensate for the negative impacts of the 

constrained use of item pools, this study proposes the PC-MCAT with adaptively 

sequencing subtests (SEQ-MCAT) for future investigations. In the meantime, the 

simplified item selection criteria in a simple-structure MCAT, PC-MCAT, and SEQ-

MCAT are suggested by the study. The simplifications can not only avoid the deadlock 

of the indefinable ability estimates in MCAT mentioned by Segall (1996), but also 

facilitate the applications of MCAT, PC-MCAT, and SEQ-MCAT in practice.       

         Last but not least, based on the hierarchical latent trait structure, the successive 

scoring procedure suggested in the study could provide interested parties with both 

subscores and total scores from one test, and thus achieve the testing purposes of ranking 

and diagnosis at the same time. This procedure is easy to conduct, and the guidelines of 

its use are also given in the study in order to help determine under what conditions and 

how this procedure could be applied. In addition, to better fit the requirements of 

subscoring, this successive scoring procedure may provide a new clue and possibility of 

adjusting the item calibration system. For example, when Wainer’s AUG (2001) was 

used to estimate subscores in studies and operational P&P tests, the bank of item 
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parameters was actually established from test-based item calibration instead of subtest-

based item calibration, which means that all the items in each subtest were assembled and 

calibrated as a whole, as also implemented in van der Linden’s (2010) study for SEQ-

CAT. The item parameters calibrated in this way are more suitable to estimate total 

scores rather than subscores. Otherwise, the subtest-based item calibration is required. 

Currently, according to the successive scoring procedure, if the item bank is calibrated 

based on the higher-order IRT model, the item parameters are appropriate to the 

estimation of both total scores and subscores.  

Limitations and Future Directions 

         Given the simulation design and the corresponding results, there are a few 

limitations in the study. First, this study investigated a test battery with only three 

subtests. The small number of subtests may largely constrict the performances of the 

subscoring and item selection methods. For example, as mentioned previously, the SEQ-

CAT subscoring and item selection methods take less advantage of the collateral 

information for the first few subtests compared to the other correlation-based methods. 

The results in Chapter 4 imply that this characteristic of SEQ-CAT may either favor or 

impair its performances depending on the correlations among subtests. However, if the 

number of subtests increases, it is open to doubt that whether the improvement or the 

impairment attributed to this characteristic is still validated by the change of the 

correlation structures. It is also called in question that the discrepancy between SEQ-CAT 

and the other methods resulted from this characteristic tends to be even larger or smaller. 

For the total score estimation, if more subtests are included in a test, each subscore will 
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become less influential to the total score estimate, and the negative impact of this 

characteristic in SEQ-CAT may also become insignificant for the high correlation 

structure.  

         Other than the impact on SEQ-CAT, the number of subtests also has a strong 

impact on the total score estimation for all the other subscoring methods. Based on the 

properties of the likelihood function, the more subtests included in a test battery, the more 

accurate the total score estimate will be. Correspondingly, if there are sufficient subtests 

in the low correlation structure, more subscores used to estimate the total score may 

compensate for less collateral information being accessible to total score estimation. 

Therefore, the total score estimation procedure suggested by the study may be 

reconsidered to apply for the conditions of the low correlation structure. In addition, as 

depicted for the high correlation structure, the total score estimation of all the methods 

demonstrated a better performance than their subscore estimation. There is some 

possibility that the increase of the number of subtests may further enhance their 

performance on total score estimation in the high correlation structure, and therefore 

guarantee the quality of total scores for test users to make high-stake decisions.       

         Also, the study employed three subpools from an operational testing program and to 

some extent, took account of the reflection of the real testing realm. However, these three 

subpools were not originally constructed for implementing the subscoring procedure as a 

whole. As described in Chapter 3, the number of items and the distributions of item 

parameters were considerably different among the three subpools, so that the 

performances of the subscoring methods and the item and subtest selection methods 
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heavily depended on the nature of the subpools. For instance, all of the subscoring 

methods exhibited the best performance in Subtest 3 in all the conditions because of its 

superior construction. This impact was particularly critical to SEQ-CAT, which was 

demonstrated by the adaptive, but uniform sequence of subtest selection for all the 

examinees in almost all the correlation structures. This adaptive sequence was primarily 

determined by the large discrepancy on the properties of subpools, instead of on the 

performances of individual examinees in the previous selected subtests. The restricted 

subtest selection in SEQ-CAT correspondingly influenced the performances of the SEQ-

CAT subscoring and item selection algorithms. Aside from SEQ-CAT, the impact was 

relatively less crucial to the other subscoring and item selection methods in the study, 

because their performances on score estimation were not closely associated to the 

sequence of subtest administration, and also all of them were compared primarily within 

each subtest rather than between subtests.  

         On the other hand, the sequence of subtest administration in PC-MCAT is 

predetermined and fixed, which was identical to the sequence in IND-UCAT of the study. 

Although PC-MCAT competed with MCAT in the study, the sequence of administering 

subtests is influential to the performance of PC-MCAT based on the findings of Kroehne, 

Goldhammer, and Partchev’s study (2014). If the optimal sequence of subtest 

administration can be identified for PC-MCAT, the constrained use of item pools in PC-

MCAT might be largely compensated for. Therefore, SEQ-MCAT proposed in the study 

is worth investigating, in which the sequence of subtest administration is adaptively 

searched for PC-MCAT.  
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         Besides, in the mixed correlation structure, the high correlation emerged between 

Subtest 2 and Subtest 3, which was advantageous to the performance of the PC-MCAT 

item selection. However, the good construction of Subpool 3 partly shrunk the 

distinctions between the PC-MCAT item selection and the other two item selections in 

Subtest 3. On the other hand, the PC-MCAT item selection was insensitive to the 

moderate correlations between Subtest 1 and the other two subtests. Therefore, the 

overall performance of the PC-MCAT item selection on subscore estimation might be 

attenuated because of this pattern of correlations in the mixed correlation structure. If the 

high correlation emerges between Subtest 1 and Subtest 2, it will be in question that the 

SEQ-CAT item selection outperforms the PC-MCAT item selection in the mixed 

correlation structure. Also, there are many other possibilities regarding the configurations 

of subpools in practice, which may provide different patterns of the performances of 

these subscoring and item selection methods. For example, the same number of items is 

included in some subpools, of which the maximum test information functions center at 

different ability levels.  

         Furthermore, as illustrated previously, three item selection algorithms were 

separately paired with each subscoring method in order to fulfill high comparability. That 

is, the original IND-CAT, SEQ-CAT, and PC-MCAT were individually implemented, 

and then all the other four subscoring methods were applied to the items selected by these 

three methods. In this way, all the subscoring methods were compared based on the same 

collection of items. Due to the purpose of comparison, this is the defined combination of 

the subscoring methods and item selection algorithms in the study, which is actually a 
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post-hoc combination. As a matter of fact, this attempt, on the other hand, triggers 

another way of thinking, which could be perceived as the just-in-time combination of the 

subscoring method and the item selection algorithm. More precisely, the combination is 

to use one subscoring method (e.g. PC-MCAT) to obtain the real-time score estimate, and 

then to use another item selection algorithm (e.g. SEQ-CAT) to select the most 

appropriate item measuring that real-time score estimate. 

         Additionally, three different levels of the correlation structures were considered in 

the study, which cannot fully represent the correlation patterns among subtests in practice. 

The limited number of subtests especially provides few possibilities to demonstrate more 

patterns of correlations, such as the mixture of low and moderate correlations or the 

mixture of three levels of correlations in one correlation structure. In the study, the 

collateral information exploited for score estimation mainly referred to the correlation 

information among subtests. In fact, some other in-test and/or out-of-test collateral 

information, such as some demographic variables, can be considered for use and 

comparisons. As is known, the total scores are always employed for high-stake decisions. 

To ensure this purpose of the scoring, it is still required to conduct substantive studies 

relevant to the total score estimation approach suggested in the study. Besides, more item 

formats can be considered to apply in conjunction with these subscoring and item 

selection methods.      

         To sum up, there are a few possible directions in the future: (1) to increase the 

number of subtests; (2) to employ the subpools with the configurations distinct from the 

current study; (3) to examine the performances of SEQ-MCAT proposed in this study by 
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comparison to PC-MCAT and MCAT; (4) to investigate the feasibility and efficiency of 

the just-in-time combination of the subscoring method and the item selection algorithm; 

(5) to explore the different patterns of the correlation structures; (6) to exploit some other 

sources of collateral information, such as the demographic information, in the subscoring 

procedure for comparison; (7) to apply the subscoring and item selection methods 

investigated in the study to other item formats (e.g. polytomously-scored items) in a CAT 

test; (8) to conduct more studies on the total score estimation procedure suggested in the 

study.           
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APPENDIX A 

TABLES OF THE CORRELATION (ORIGINAL VALUES) BETWEEN   AND ̂  

Table 17  

Correlation (Original Values) between   and ̂  for All Conditions with A Low Correlation Structure 

 

 

Test 

 

Item Selection 

Method 

10-Item Sublength  20-Item Sublength 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

Total IND-UCAT 0.698 0.698 0.698 0.698 0.698  0.711 0.711 0.711 0.711 0.711 

 SEQ-CAT 0.697 0.697 0.697 0.697 0.697  0.711 0.711 0.711 0.711 0.711 

 PC-MCAT 0.696 0.696 0.696 0.696 0.696  0.710 0.71 0.710 0.710 0.710 

Sub_COMB IND-UCAT 0.942 0.942 0.943 0.943 0.942  0.971 0.971 0.971 0.971 0.971 

 SEQ-CAT 0.941 0.942 0.942 0.942 0.942  0.970 0.971 0.971 0.971 0.971 

 PC-MCAT 0.940 0.941 0.941 0.941 0.941  0.971 0.971 0.971 0.971 0.971 

Subtest 1 IND-UCAT 0.942 0.942 0.943 0.943 0.942  0.971 0.971 0.971 0.971 0.971 

 SEQ-CAT 0.941 0.942 0.942 0.942 0.942  0.970 0.970 0.971 0.970 0.970 

 PC-MCAT 0.938 0.938 0.939 0.939 0.939  0.971 0.971 0.971 0.971 0.971 

Subtest 2 IND-UCAT 0.925 0.925 0.926 0.926 0.927  0.962 0.962 0.962 0.962 0.962 

 SEQ-CAT 0.924 0.925 0.925 0.925 0.925  0.962 0.962 0.962 0.962 0.962 

 PC-MCAT 0.927 0.927 0.928 0.928 0.928  0.962 0.962 0.962 0.962 0.962 

Subtest 3 IND-UCAT 0.958 0.959 0.959 0.959 0.959  0.979 0.980 0.980 0.980 0.979 

 SEQ-CAT 0.958 0.958 0.959 0.959 0.959  0.979 0.979 0.980 0.980 0.979 

 PC-MCAT 0.957 0.957 0.957 0.957 0.957  0.980 0.980 0.980 0.980 0.980 

Note. Sub_COMB refers to the combination of all the three subtests as one test for calculation; If some discrepancies occurred between 

this table and Table 7, they were caused by rounding errors.  
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Table 18  

Correlation (Original Values) between   and ̂  for All Conditions with A Mixed Correlation Structure 

 

 

Test 

 

Item Selection 

Method 

10-Item Sublength  20-Item Sublength 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

Total IND-UCAT 0.915 0.916 0.922 0.920 0.921  0.933 0.934 0.937 0.936 0.936 

 SEQ-CAT 0.921 0.925 0.926 0.926 0.925  0.935 0.938 0.937 0.937 0.937 

 PC-MCAT 0.916 0.916 0.921 0.922 0.921  0.935 0.935 0.937 0.937 0.937 

Sub_COMB IND-UCAT 0.940 0.943 0.947 0.946 0.947  0.969 0.969 0.971 0.971 0.971 

 SEQ-CAT 0.945 0.948 0.951 0.951 0.950  0.970 0.971 0.972 0.972 0.972 

 PC-MCAT 0.942 0.943 0.947 0.947 0.946  0.970 0.970 0.971 0.971 0.971 

Subtest 1 IND-UCAT 0.941 0.941 0.943 0.944 0.943  0.969 0.969 0.970 0.970 0.970 

 SEQ-CAT 0.946 0.946 0.947 0.947 0.947  0.970 0.971 0.971 0.971 0.971 

 PC-MCAT 0.934 0.934 0.937 0.936 0.936  0.968 0.968 0.969 0.969 0.969 

Subtest 2 IND-UCAT 0.929 0.932 0.941 0.939 0.940  0.960 0.961 0.965 0.965 0.965 

 SEQ-CAT 0.939 0.948 0.948 0.948 0.948  0.961 0.965 0.965 0.965 0.965 

 PC-MCAT 0.932 0.934 0.943 0.943 0.942  0.961 0.962 0.965 0.965 0.965 

Subtest 3 IND-UCAT 0.951 0.956 0.957 0.956 0.956  0.977 0.979 0.979 0.979 0.978 

 SEQ-CAT 0.951 0.951 0.957 0.957 0.957  0.977 0.977 0.979 0.979 0.978 

 PC-MCAT 0.959 0.961 0.962 0.961 0.962  0.979 0.980 0.980 0.980 0.980 

Note. Sub_COMB refers to the combination of all the three subtests as one test for calculation; If some discrepancies occurred between 

this table and Table 8, they were caused by rounding errors. 
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Table 19  

Correlation (Original Values) between   and ̂  for All Conditions with A High Correlation Structure 

 

 

Test 

 

Item Selection 

Method 

10-Item Sublength  20-Item Sublength 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

Total IND-UCAT 0.961 0.965 0.966 0.966 0.963  0.976 0.976 0.977 0.977 0.976 

 SEQ-CAT 0.963 0.960 0.968 0.968 0.965  0.976 0.976 0.977 0.977 0.977 

 PC-MCAT 0.966 0.966 0.968 0.969 0.966  0.977 0.976 0.978 0.978 0.977 

Sub_COMB IND-UCAT 0.937 0.952 0.962 0.961 0.957  0.967 0.972 0.977 0.977 0.976 

 SEQ-CAT 0.946 0.957 0.965 0.965 0.962  0.970 0.976 0.978 0.977 0.977 

 PC-MCAT 0.944 0.952 0.965 0.965 0.961  0.968 0.971 0.977 0.977 0.976 

Subtest 1 IND-UCAT 0.946 0.946 0.963 0.963 0.961  0.969 0.969 0.978 0.978 0.976 

 SEQ-CAT 0.955 0.964 0.967 0.967 0.965  0.971 0.978 0.979 0.979 0.977 

 PC-MCAT 0.940 0.940 0.966 0.966 0.959  0.966 0.966 0.977 0.977 0.974 

Subtest 2 IND-UCAT 0.916 0.941 0.953 0.953 0.948  0.957 0.965 0.971 0.970 0.970 

 SEQ-CAT 0.935 0.957 0.958 0.958 0.956  0.961 0.972 0.972 0.972 0.971 

 PC-MCAT 0.929 0.943 0.956 0.956 0.955  0.958 0.965 0.971 0.971 0.970 

Subtest 3 IND-UCAT 0.950 0.969 0.969 0.969 0.965  0.977 0.982 0.982 0.982 0.982 

 SEQ-CAT 0.950 0.950 0.970 0.970 0.966  0.977 0.977 0.982 0.982 0.982 

 PC-MCAT 0.964 0.973 0.973 0.973 0.971  0.980 0.983 0.983 0.983 0.983 

Note. Sub_COMB refers to the combination of all the three subtests as one test for calculation; If some discrepancies occurred between 

this table and Table 9, they were caused by rounding errors. 
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 APPENDIX B 

TABLES OF THE BIAS (ORIGINAL VALUES) OF ̂  

Table 20  

Bias (Original Values) of ̂  for All Conditions with A Low Correlation Structure 

 

 

Test 

 

Item Selection 

Method 

10-Item Sublength  20-Item Sublength 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

Total IND-UCAT 0.034 0.034 0.034 0.033 0.037  0.021 0.021 0.021 0.020 0.021 

 SEQ-CAT 0.037 0.037 0.037 0.036 0.039  0.021 0.020 0.021 0.020 0.021 

 PC-MCAT 0.046 0.046 0.047 0.045 0.050  0.024 0.024 0.024 0.024 0.024 

Sub_COMB IND-UCAT 0.024 0.023 0.024 0.022 0.026  0.010 0.011 0.011 0.009 0.011 

 SEQ-CAT 0.026 0.026 0.027 0.026 0.029  0.010 0.010 0.010 0.010 0.011 

 PC-MCAT 0.036 0.036 0.036 0.035 0.040  0.013 0.014 0.014 0.013 0.014 

Subtest 1 IND-UCAT 0.020 0.020 0.022 0.020 0.026  0.011 0.011 0.010 0.009 0.013 

 SEQ-CAT 0.023 0.024 0.025 0.024 0.029  0.010 0.010 0.010 0.009 0.013 

 PC-MCAT 0.035 0.035 0.035 0.032 0.042  0.014 0.014 0.014 0.014 0.017 

Subtest 2 IND-UCAT 0.038 0.038 0.038 0.036 0.041  0.018 0.020 0.019 0.018 0.019 

 SEQ-CAT 0.043 0.042 0.044 0.042 0.047  0.019 0.018 0.019 0.018 0.019 

 PC-MCAT 0.054 0.054 0.054 0.052 0.060  0.022 0.024 0.023 0.023 0.023 

Subtest 3 IND-UCAT 0.013 0.011 0.012 0.011 0.012  0.002 0.002 0.003 0.002 0.001 

 SEQ-CAT 0.013 0.013 0.012 0.011 0.012  0.002 0.002 0.003 0.002 0.001 

 PC-MCAT 0.019 0.019 0.021 0.019 0.018  0.003 0.003 0.004 0.003 0.002 

Note. Sub_COMB refers to the combination of all the three subtests as one test for calculation; If some discrepancies occurred between 

this table and Table 10, they were caused by rounding errors.  
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Table 21  

Bias (Original Values) of ̂  for All Conditions with A Mixed Correlation Structure 

 

 

Test 

 

Item Selection 

Method 

10-Item Sublength  20-Item Sublength 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

Total IND-UCAT 0.057 0.055 0.057 0.050 0.062  0.032 0.032 0.034 0.032 0.033 

 SEQ-CAT 0.046 0.048 0.051 0.047 0.050  0.026 0.027 0.028 0.027 0.027 

 PC-MCAT 0.052 0.052 0.055 0.050 0.056  0.032 0.033 0.034 0.032 0.033 

Sub_COMB IND-UCAT 0.039 0.036 0.040 0.035 0.044  0.018 0.018 0.019 0.018 0.020 

 SEQ-CAT 0.037 0.038 0.039 0.035 0.041  0.017 0.017 0.017 0.016 0.018 

 PC-MCAT 0.041 0.040 0.043 0.039 0.046  0.022 0.022 0.022 0.021 0.023 

Subtest 1 IND-UCAT 0.046 0.046 0.048 0.047 0.051  0.029 0.029 0.030 0.030 0.032 

 SEQ-CAT 0.053 0.052 0.053 0.051 0.059  0.032 0.030 0.031 0.030 0.034 

 PC-MCAT 0.059 0.059 0.059 0.058 0.066  0.039 0.039 0.038 0.038 0.042 

Subtest 2 IND-UCAT 0.044 0.044 0.045 0.038 0.049  0.020 0.020 0.022 0.019 0.020 

 SEQ-CAT 0.031 0.033 0.038 0.033 0.034  0.012 0.013 0.015 0.013 0.012 

 PC-MCAT 0.038 0.039 0.042 0.036 0.042  0.019 0.020 0.021 0.018 0.019 

Subtest 3 IND-UCAT 0.027 0.020 0.026 0.020 0.032  0.006 0.004 0.005 0.004 0.008 

 SEQ-CAT 0.027 0.027 0.025 0.021 0.032  0.006 0.006 0.005 0.004 0.008 

 PC-MCAT 0.027 0.023 0.027 0.023 0.031  0.007 0.006 0.007 0.006 0.008 

Note. Sub_COMB refers to the combination of all the three subtests as one test for calculation; If some discrepancies occurred between 

this table and Table 11, they were caused by rounding errors. 

 

  



 

 
 

1
6
5
 

Table 22  

Bias (Original Values) of ̂  for All Conditions with A High Correlation Structure 

 

 

Test 

 

Item Selection 

Method 

10-Item Sublength  20-Item Sublength 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

Total IND-UCAT 0.023 0.015 0.015 0.007 0.024  0.007 0.005 0.004 0.001 0.006 

 SEQ-CAT 0.015 0.006 0.008 0.002 0.015  0.005 -0.001 0.002 0.000 0.004 

 PC-MCAT 0.031 0.024 0.025 0.017 0.032  0.009 0.006 0.006 0.002 0.009 

Sub_COMB IND-UCAT 0.035 0.026 0.020 0.013 0.037  0.015 0.012 0.008 0.005 0.015 

 SEQ-CAT 0.022 0.008 0.012 0.006 0.022  0.012 0.003 0.006 0.003 0.011 

 PC-MCAT 0.038 0.031 0.027 0.020 0.040  0.014 0.011 0.008 0.005 0.014 

Subtest 1 IND-UCAT 0.036 0.036 0.023 0.018 0.038  0.020 0.020 0.011 0.008 0.020 

 SEQ-CAT 0.023 0.011 0.015 0.011 0.023  0.016 0.006 0.009 0.006 0.016 

 PC-MCAT 0.045 0.045 0.029 0.022 0.048  0.020 0.020 0.011 0.009 0.020 

Subtest 2 IND-UCAT 0.063 0.039 0.026 0.019 0.070  0.028 0.018 0.013 0.009 0.029 

 SEQ-CAT 0.036 0.009 0.015 0.009 0.040  0.022 0.006 0.009 0.006 0.022 

 PC-MCAT 0.046 0.033 0.028 0.021 0.051  0.019 0.011 0.008 0.004 0.019 

Subtest 3 IND-UCAT 0.005 0.002 0.010 0.002 0.004  -0.003 -0.002 0.001 -0.002 -0.004 

 SEQ-CAT 0.005 0.005 0.006 0.000 0.004  -0.003 -0.003 0.000 -0.003 -0.004 

 PC-MCAT 0.022 0.017 0.024 0.017 0.022  0.005 0.002 0.006 0.002 0.004 

Note. Sub_COMB refers to the combination of all the three subtests as one test for calculation; If some discrepancies occurred between 

this table and Table 12, they were caused by rounding errors. 
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APPENDIX C 

TABLES OF THE RMSE (ORIGINAL VALUES) OF ̂  

Table 23  

RMSE (Original Values) of ̂  for All Conditions with A Low Correlation Structure 

 

 

Test 

 

Item Selection 

Method 

10-Item Sublength  20-Item Sublength 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

Total IND-UCAT 0.729 0.728 0.728 0.728 0.728  0.715 0.715 0.715 0.715 0.714 

 SEQ-CAT 0.730 0.729 0.729 0.729 0.729  0.715 0.714 0.714 0.714 0.714 

 PC-MCAT 0.732 0.732 0.731 0.731 0.731  0.716 0.716 0.716 0.716 0.716 

Sub_COMB IND-UCAT 0.341 0.340 0.338 0.338 0.339  0.244 0.243 0.242 0.242 0.243 

 SEQ-CAT 0.343 0.341 0.340 0.340 0.342  0.245 0.244 0.243 0.243 0.244 

 PC-MCAT 0.347 0.346 0.344 0.344 0.346  0.244 0.244 0.243 0.243 0.243 

Subtest 1 IND-UCAT 0.339 0.339 0.336 0.336 0.338  0.243 0.243 0.241 0.241 0.242 

 SEQ-CAT 0.341 0.340 0.339 0.339 0.341  0.246 0.244 0.244 0.244 0.245 

 PC-MCAT 0.353 0.353 0.349 0.349 0.352  0.243 0.243 0.242 0.242 0.243 

Subtest 2 IND-UCAT 0.388 0.387 0.384 0.385 0.384  0.279 0.277 0.277 0.277 0.277 

 SEQ-CAT 0.390 0.388 0.387 0.388 0.388  0.279 0.277 0.277 0.277 0.278 

 PC-MCAT 0.386 0.385 0.383 0.383 0.384  0.280 0.279 0.278 0.279 0.279 

Subtest 3 IND-UCAT 0.290 0.287 0.288 0.287 0.288  0.204 0.203 0.203 0.203 0.204 

 SEQ-CAT 0.290 0.290 0.288 0.288 0.288  0.204 0.204 0.203 0.203 0.204 

 PC-MCAT 0.296 0.294 0.294 0.294 0.295  0.202 0.202 0.202 0.202 0.202 

Note. Sub_COMB refers to the combination of all the three subtests as one test for calculation; If some discrepancies occurred between 

this table and Table 13, they were caused by rounding errors.  
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Table 24  

RMSE (Original Values) of ̂  for All Conditions with A Mixed Correlation Structure 

 

 

Test 

 

Item Selection 

Method 

10-Item Sublength  20-Item Sublength 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

Total IND-UCAT 0.417 0.414 0.399 0.403 0.401  0.366 0.365 0.358 0.358 0.358 

 SEQ-CAT 0.402 0.388 0.388 0.387 0.389  0.361 0.354 0.355 0.354 0.355 

 PC-MCAT 0.414 0.412 0.399 0.397 0.401  0.362 0.362 0.356 0.356 0.356 

Sub_COMB IND-UCAT 0.354 0.346 0.335 0.337 0.337  0.257 0.254 0.246 0.246 0.248 

 SEQ-CAT 0.340 0.331 0.323 0.323 0.325  0.253 0.247 0.244 0.243 0.245 

 PC-MCAT 0.351 0.346 0.335 0.335 0.337  0.254 0.252 0.245 0.246 0.247 

Subtest 1 IND-UCAT 0.356 0.356 0.350 0.349 0.351  0.260 0.260 0.254 0.254 0.257 

 SEQ-CAT 0.345 0.342 0.340 0.339 0.342  0.254 0.251 0.250 0.249 0.251 

 PC-MCAT 0.377 0.377 0.371 0.371 0.372  0.264 0.264 0.259 0.259 0.261 

Subtest 2 IND-UCAT 0.384 0.376 0.351 0.356 0.354  0.288 0.285 0.270 0.270 0.271 

 SEQ-CAT 0.354 0.329 0.329 0.329 0.330  0.282 0.268 0.268 0.268 0.268 

 PC-MCAT 0.375 0.370 0.346 0.344 0.350  0.283 0.280 0.269 0.268 0.269 

Subtest 3 IND-UCAT 0.320 0.302 0.302 0.302 0.304  0.219 0.211 0.210 0.211 0.213 

 SEQ-CAT 0.320 0.320 0.300 0.300 0.303  0.219 0.219 0.210 0.209 0.213 

 PC-MCAT 0.293 0.284 0.284 0.284 0.284  0.208 0.205 0.203 0.205 0.205 

Note. Sub_COMB refers to the combination of all the three subtests as one test for calculation; If some discrepancies occurred between 

this table and Table 14, they were caused by rounding errors. 
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Table 25  

RMSE (Original Values) of ̂  for All Conditions with A High Correlation Structure 

 

 

Test 

 

Item Selection 

Method 

10-Item Sublength  20-Item Sublength 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

IND-

UCAT 

SEQ-

CAT 

PC-

MCAT 

reSEQ-

CAT 

AUG-

CAT 

Total IND-UCAT 0.295 0.272 0.266 0.264 0.279  0.226 0.224 0.218 0.217 0.221 

 SEQ-CAT 0.286 0.287 0.258 0.257 0.268  0.224 0.224 0.216 0.216 0.219 

 PC-MCAT 0.273 0.267 0.256 0.254 0.264  0.219 0.220 0.214 0.213 0.216 

Sub_COMB IND-UCAT 0.358 0.315 0.282 0.281 0.298  0.258 0.240 0.218 0.218 0.225 

 SEQ-CAT 0.330 0.295 0.268 0.267 0.279  0.249 0.223 0.214 0.214 0.219 

 PC-MCAT 0.338 0.314 0.270 0.268 0.284  0.256 0.242 0.217 0.217 0.223 

Subtest 1 IND-UCAT 0.331 0.331 0.273 0.272 0.285  0.250 0.250 0.209 0.208 0.222 

 SEQ-CAT 0.301 0.268 0.256 0.255 0.268  0.240 0.210 0.206 0.206 0.216 

 PC-MCAT 0.349 0.349 0.263 0.262 0.294  0.260 0.260 0.214 0.214 0.228 

Subtest 2 IND-UCAT 0.416 0.350 0.314 0.312 0.336  0.300 0.270 0.248 0.248 0.253 

 SEQ-CAT 0.365 0.297 0.295 0.295 0.302  0.286 0.242 0.242 0.242 0.246 

 PC-MCAT 0.384 0.344 0.302 0.300 0.310  0.296 0.270 0.247 0.247 0.250 

Subtest 3 IND-UCAT 0.319 0.255 0.257 0.255 0.270  0.217 0.193 0.193 0.193 0.194 

 SEQ-CAT 0.319 0.319 0.250 0.249 0.264  0.217 0.217 0.192 0.192 0.193 

 PC-MCAT 0.273 0.238 0.240 0.238 0.244  0.205 0.186 0.185 0.186 0.186 

Note. Sub_COMB refers to the combination of all the three subtests as one test for calculation; If some discrepancies occurred between 

this table and Table 15, they were caused by rounding errors.  
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APPENDIX D 

FIGURES OF THE CONDITIONAL BIAS OF ̂  

 

Figure 11. Conditional Bias of ̂  for All the Conditions with A Low Correlation Structure and A 10-Item Sub-length. 
Note: The five columns represent the score types; The three rows represent the three item selection algorithms; The five lines in each cell 

represent the five scoring methods, which may be overlapped if the values are all equal or too close; The y-axis in each cell represents the 

scale of the conditional bias; The points on the x-axis of each cell represent the segmented theta scale intervals; Sub_COMB refers to the 

combination of all the three subtests as one test for calculation.    
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Figure 12. Conditional Bias of ̂  for All the Conditions with A Low Correlation Structure and A 20-Item Sub-length. 
Note: The five columns represent the score types; The three rows represent the three item selection algorithms; The five lines in each cell 

represent the five scoring methods, which may be overlapped if the values are all equal or too close; The y-axis in each cell represents the 

scale of the conditional bias; The points on the x-axis of each cell represent the segmented theta scale intervals; Sub_COMB refers to the 

combination of all the three subtests as one test for calculation.     
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Figure 13. Conditional Bias of ̂  for All the Conditions with A Mixed Correlation Structure and A 10-Item Sub-length. 
Note: The five columns represent the score types; The three rows represent the three item selection algorithms; The five lines in each cell 

represent the five scoring methods, which may be overlapped if the values are all equal or too close; The y-axis in each cell represents the 

scale of the conditional bias; The points on the x-axis of each cell represent the segmented theta scale intervals; Sub_COMB refers to the 

combination of all the three subtests as one test for calculation.    
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Figure 14. Conditional Bias of ̂  for All the Conditions with A Mixed Correlation Structure and A 20-Item Sub-length. 
Note: The five columns represent the score types; The three rows represent the three item selection algorithms; The five lines in each cell 

represent the five scoring methods, which may be overlapped if the values are all equal or too close; The y-axis in each cell represents the 

scale of the conditional bias; The points on the x-axis of each cell represent the segmented theta scale intervals; Sub_COMB refers to the 

combination of all the three subtests as one test for calculation.    
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Figure 15. Conditional Bias of ̂  for All the Conditions with A High Correlation Structure and A 10-Item Sub-length. 
Note: The five columns represent the score types; The three rows represent the three item selection algorithms; The five lines in each cell 

represent the five scoring methods, which may be overlapped if the values are all equal or too close; The y-axis in each cell represents the 

scale of the conditional bias; The points on the x-axis of each cell represent the segmented theta scale intervals; Sub_COMB refers to the 

combination of all the three subtests as one test for calculation.    
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Figure 16. Conditional Bias of ̂  for All the Conditions with A High Correlation Structure and A 20-Item Sub-length. 
Note: The five columns represent the score types; The three rows represent the three item selection algorithms; The five lines in each cell 

represent the five scoring methods, which may be overlapped if the values are all equal or too close; The y-axis in each cell represents the 

scale of the conditional bias; The points on the x-axis of each cell represent the segmented theta scale intervals; Sub_COMB refers to the 

combination of all the three subtests as one test for calculation.   
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APPENDIX E 

OUTCOME MEASURES BETWEEN PC-MCAT AND MCAT 

 

Figure 17. Correlation between   and ̂  Yielded by PC-MCAT and MCAT for All the Conditions. 
Note. The three columns represent the three correlation structures; The two rows represent the two sublengths; The two lines in each cell 

represent the PC-MCAT and MCAT scoring methods, which may be overlapped if the values are all equal or too close; The y-axis in each 

cell represents the scale of the correlation; The five points on the x-axis of each cell represent the five score types; Sub_COMB refers to 

the combination of all the three subtests as one test for calculation.    
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Figure 18. Bias of ̂  Yielded by PC-MCAT and MCAT for All the Conditions. 
Note. The three columns represent the three correlation structures; The two rows represent the two sublengths; The two lines in each cell 

represent the PC-MCAT and MCAT scoring methods, which may be overlapped if the values are all equal or too close; The y-axis in each 

cell represents the scale of the correlation; The five points on the x-axis of each cell represent the five score types; Sub_COMB refers to 

the combination of all the three subtests as one test for calculation.   
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Figure 19. RMSE of ̂  Yielded by PC-MCAT and MCAT for All the Conditions. 
Note. The three columns represent the three correlation structures; The two rows represent the two sublengths; The two lines in each cell 

represent the PC-MCAT and MCAT scoring methods, which may be overlapped if the values are all equal or too close; The y-axis in each 

cell represents the scale of the correlation; The five points on the x-axis of each cell represent the five score types; Sub_COMB refers to 

the combination of all the three subtests as one test for calculation.   
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                                              Table 26 

Percent on the Similarity of Items Selected by PC-MCAT and MCAT 

 Low Mixed High 

10 items .917 .852 .801 

20 items .956 .922 .893 
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APPENDIX F 

OUTCOME MEASURES AMONG THE FOUR ORIGINAL CAT SCORING METHODS 

 

Figure 20. Correlation between   and ̂  Yielded by the Four Original CAT Scoring Methods for All the Conditions. 
Note. The three columns represent the three correlation structures; The two rows represent the two sublengths; The four lines in each cell 

represent the four original CAT scoring methods, which may be overlapped if the values are all equal or too close; The y-axis in each cell 

represents the scale of the correlation; The five points on the x-axis of each cell represent the five score types; Sub_COMB refers to the 

combination of all the three subtests as one test for calculation.    
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Figure 21. Bias of ̂  Yielded by the Four Original CAT Scoring Methods for All the Conditions. 
Note. The three columns represent the three correlation structures; The two rows represent the two sublengths; The four lines in each cell 

represent the four original CAT scoring methods, which may be overlapped if the values are all equal or too close; The y-axis in each cell 

represents the scale of the correlation; The five points on the x-axis of each cell represent the five score types; Sub_COMB refers to the 

combination of all the three subtests as one test for calculation.   
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Figure 22. RMSE of ̂  Yielded by the Four Original CAT Scoring Methods for All the Conditions. 
Note. The three columns represent the three correlation structures; The two rows represent the two sublengths; The four lines in each cell 

represent the four original CAT scoring methods, which may be overlapped if the values are all equal or too close; The y-axis in each cell 

represents the scale of the correlation; The five points on the x-axis of each cell represent the five score types; Sub_COMB refers to the 

combination of all the three subtests as one test for calculation.   
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Table 27  

Correlation (Difference Values) between   and ̂  Yielded by the Four Original CAT Scoring Methods for All Conditions 

 

 

               

10-Item Sublength  20-Item Sublength 

Total Sub_ 

COMB 

Subtest 

1 

Subtest 

2 

Subtest 

3 

 Total Sub_ 

COMB 

Subtest 

1 

Subtest 

2 

Subtest 

3 

             

 

Low 

IND-CAT .698 .942 .942 .925 .958  .711 .971 .971 .962 .979 

SEQ-CAT -.001 .000 .000 .000 .000  .000 .000 .000 .000 .000 

PC-MCAT -.002 .000 -.003 .003 -.001  -.001 .000 .000 .000 .000 

MCAT -.005 .001 -.002 .006 -.002  -.001 .000 .000 .000 .000 

 

 

Mixed 

IND-CAT .915 .940 .941 .929 .951  .933 .969 .969 .960 .977 

SEQ-CAT .010 .008 .005 .019 .000  .004 .002 .002 .005 .000 

PC-MCAT .006 .006 -.005 .014 .011  .004 .003 .000 .005 .003 

MCAT .008 .007 -.002 .017 .007  .004 .002 .000 .005 .002 

 

 

High 

IND-CAT .961 .937 .946 .916 .950  .976 .967 .969 .957 .977 

SEQ-CAT -.001 .020 .018 .041 .000  .000 .008 .009 .015 .000 

PC-MCAT .008 .028 .020 .040 .022  .002 .010 .008 .014 .006 

MCAT .009 .030 .023 .043 .023  .002 .011 .010 .015 .006 

Note. The highlighted values are the original values of the correlation between   and ̂  estimated by the original IND-UCAT. The other 

values are the differences between the other three original CAT scoring methods and the original IND-UCAT on correlation; Positive 

difference values mean higher than the highlighted values and negative difference values mean lower than the highlighted values; 

Sub_COMB refers to the combination of all the three subtests as one test for calculation; If some discrepancies occurred between this table 

and Table 30, they were caused by rounding errors.  
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Table 28  

Bias (Difference Values) of ̂  Yielded by the Four Original CAT Scoring Methods for All Conditions 

 

 

               

10-Item Sublength  20-Item Sublength 

Total Sub_ 

COMB 

Subtest 

1 

Subtest 

2 

Subtest 

3 

 Total Sub_ 

COMB 

Subtest 

1 

Subtest 

2 

Subtest 

3 

             

 

Low 

IND-CAT .034 .024 .020 .038 .013  .021 .010 .011 .018 .002 

SEQ-CAT .002 .003 .003 .004 .000  .000 -.001 -.001 .000 .000 

PC-MCAT .012 .013 .014 .016 .008  .003 .003 .003 .005 .002 

MCAT .012 .011 .008 .014 .012  .003 .003 .001 .004 .003 

 

 

Mixed 

IND-CAT .057 .039 .046 .044 .027  .032 .018 .029 .020 .006 

SEQ-CAT -.009 -.002 .007 -.011 .000  -.005 -.002 .001 -.007 .000 

PC-MCAT -.001 .004 .014 -.003 .000  .002 .004 .009 .001 .001 

MCAT -.007 .001 .015 -.010 .000  -.001 .002 .008 -.001 -.002 

 

 

High 

IND-CAT .023 .035 .036 .063 .005  .007 .015 .020 .028 -.003 

SEQ-CAT -.017 -.026 -.025 -.053 .000  -.006 -.012 -.014 -.022 .000 

PC-MCAT .002 -.008 -.007 -.035 .018  -.001 -.007 -.010 -.020 .002 

MCAT -.010 -.020 -.020 -.046 .007  -.001 -.007 -.012 -.018 .003 

Note. The highlighted values are the original values of the bias of ̂  estimated by the original IND-UCAT; The other values are the 

differences between the other three CAT scoring methods and the original IND-UCAT on bias; Positive difference values mean higher 

than the highlighted values and negative difference values mean lower than the highlighted values; Sub_COMB refers to the combination 

of all the three subtests as one test for calculation; If some discrepancies occurred between this table and Table 31, they were caused by 

rounding errors. 
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Table 29  

RMSE (Difference Values) of ̂  Yielded by the Four Original CAT Scoring Methods for All Conditions  

 

 

               

10-Item Sublength  20-Item Sublength 

Total Sub_ 

COMB 

Subtest 

1 

Subtest 

2 

Subtest 

3 

 Total Sub_ 

COMB 

Subtest 

1 

Subtest 

2 

Subtest 

3 

             

 

Low 

IND-CAT .729 .341 .339 .388 .290  .715 .244 .243 .279 .204 

SEQ-CAT .000 .000 .001 -.001 .000  -.001 .000 .002 -.002 .000 

PC-MCAT .002 .003 .011 -.005 .004  .001 -.001 -.001 -.001 -.002 

MCAT .004 .000 .007 -.011 .007  .001 -.002 -.002 -.001 -.002 

 

 

Mixed 

IND-CAT .417 .354 .356 .384 .320  .366 .257 .260 .288 .219 

SEQ-CAT -.028 -.024 -.014 -.055 .000  -.012 -.010 -.009 -.02 .000 

PC-MCAT -.018 -.019 .015 -.038 -.036  -.010 -.011 .000 -.019 -.015 

MCAT -.023 -.021 .008 -.049 -.024  -.010 -.010 .000 -.019 -.012 

 

 

High 

IND-CAT .295 .358 .331 .416 .319  .226 .258 .250 .300 .217 

SEQ-CAT -.008 -.063 -.063 -.119 .000  -.002 -.035 -.040 -.058 .000 

PC-MCAT -.040 -.088 -.067 -.113 -.079  -.012 -.041 -.036 -.053 -.031 

MCAT -.046 -.097 -.079 -.123 -.084  -.012 -.046 -.043 -.059 -.032 

Note. The highlighted values are the original values of the RMSE of ̂  estimated by the original IND-UCAT; The other values are the 

differences between the other three CAT scoring methods and the original IND-UCAT on RMSE; Positive difference values mean higher 

than the highlighted values and negative difference values mean lower than the highlighted values; Sub_COMB refers to the combination 

of all the three subtests as one test for calculation; If some discrepancies occurred between this table and Table 32, they were caused by 

rounding errors. 
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Table 30  

Correlation (Original Values) between   and ̂  Yielded by the Four Original CAT Scoring Methods for All Conditions 

 

 

               

10-Item Sublength  20-Item Sublength 

Total Sub_ 

COMB 

Subtest 

1 

Subtest 

2 

Subtest 

3 

 Total Sub_ 

COMB 

Subtest 

1 

Subtest 

2 

Subtest 

3 

             

 

Low 

IND-CAT .698 .942 .942 .925 .958  .711 .971 .971 .962 .979 

SEQ-CAT .697 .942 .942 .925 .958  .711 .971 .970 .962 .979 

PC-MCAT .696 .941 .939 .928 .957  .710 .971 .971 .962 .980 

MCAT .693 .942 .940 .930 .957  .710 .971 .971 .962 .980 

 

 

Mixed 

IND-CAT .915 .940 .941 .929 .951  .933 .969 .969 .96 .977 

SEQ-CAT .925 .948 .946 .948 .951  .938 .971 .971 .965 .977 

PC-MCAT .921 .947 .937 .943 .962  .937 .971 .969 .965 .980 

MCAT .923 .948 .939 .946 .958  .937 .971 .969 .965 .980 

 

 

High 

IND-CAT .961 .937 .946 .916 .950  .976 .967 .969 .957 .977 

SEQ-CAT .960 .957 .964 .957 .950  .976 .976 .978 .972 .977 

PC-MCAT .968 .965 .966 .956 .973  .978 .977 .977 .971 .983 

MCAT .970 .967 .969 .959 .974  .978 .978 .978 .972 .984 

Note. Sub_COMB refers to the combination of all the three subtests as one test for calculation; If some discrepancies occurred between 

this table and Table 27, they were caused by rounding errors. 
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Table 31  

Bias (Original Values) of ̂  Yielded by the Four Original CAT Scoring Methods for All Conditions 

 

 

               

10-Item Sublength  20-Item Sublength 

Total Sub_ 

COMB 

Subtest 

1 

Subtest 

2 

Subtest 

3 

 Total Sub_ 

COMB 

Subtest 

1 

Subtest 

2 

Subtest 

3 

             

 

Low 

IND-CAT .034 .024 .020 .038 .013  .021 .010 .011 .018 .002 

SEQ-CAT .037 .026 .024 .042 .013  .020 .010 .010 .018 .002 

PC-MCAT .047 .036 .035 .054 .021  .024 .014 .014 .023 .004 

MCAT .046 .035 .028 .052 .025  .024 .013 .012 .022 .005 

 

 

Mixed 

IND-CAT .057 .039 .046 .044 .027  .032 .018 .029 .020 .006 

SEQ-CAT .048 .038 .052 .033 .027  .027 .017 .030 .013 .006 

PC-MCAT .055 .043 .059 .042 .027  .034 .022 .038 .021 .007 

MCAT .049 .041 .060 .034 .028  .031 .020 .037 .018 .004 

 

 

High 

IND-CAT .023 .035 .036 .063 .005  .007 .015 .020 .028 -.003 

SEQ-CAT .006 .008 .011 .009 .005  -.001 .003 .006 .006 -.003 

PC-MCAT .025 .027 .029 .028 .024  .006 .008 .011 .008 .006 

MCAT .013 .015 .016 .017 .012  .006 .008 .008 .010 .006 

Note. Sub_COMB refers to the combination of all the three subtests as one test for calculation; If some discrepancies occurred between 

this table and Table 28, they were caused by rounding errors. 
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Table 32  

RMSE (Original Values) of ̂  Yielded by the Four Original CAT Scoring Methods for All Conditions 

 

 

               

10-Item Sublength  20-Item Sublength 

Total Sub_ 

COMB 

Subtest 

1 

Subtest 

2 

Subtest 

3 

 Total Sub_ 

COMB 

Subtest 

1 

Subtest 

2 

Subtest 

3 

             

 

Low 

IND-CAT .729 .341 .339 .388 .290  .715 .244 .243 .279 .204 

SEQ-CAT .729 .341 .340 .388 .290  .714 .244 .244 .277 .204 

PC-MCAT .731 .344 .349 .383 .294  .716 .243 .242 .278 .202 

MCAT .734 .341 .346 .377 .297  .716 .242 .241 .278 .202 

 

 

Mixed 

IND-CAT .417 .354 .356 .384 .320  .366 .257 .26 .288 .219 

SEQ-CAT .388 .331 .342 .329 .320  .354 .247 .251 .268 .219 

PC-MCAT .399 .335 .371 .346 .284  .356 .245 .259 .269 .203 

MCAT .394 .333 .364 .335 .296  .356 .247 .260 .269 .207 

 

 

High 

IND-CAT .295 .358 .331 .416 .319  .226 .258 .250 .300 .217 

SEQ-CAT .287 .295 .268 .297 .319  .224 .223 .210 .242 .217 

PC-MCAT .256 .270 .263 .302 .240  .214 .217 .214 .247 .185 

MCAT .249 .261 .252 .292 .235  .214 .212 .207 .242 .185 

Note. Sub_COMB refers to the combination of all the three subtests as one test for calculation; If some discrepancies occurred between 

this table and Table 29, they were caused by rounding errors. 


