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Synthesis analysis of regression models with a continuous outcome 

Xiao-Hua Zhou,†, Nan Hu, Guizhou Hu and Martin Root

SUMMARY 

To estimate the multivariate regression model from multiple individual studies, it would be challenging 
to obtain results if the input from individual studies only provide univariate or incomplete multivariate 
regression information. Samsa et al. (J. Biomed. Biotechnol. 2005; 2:113–123) proposed a simple method 
to combine coefficients from univariate linear regression models into a multivariate linear regression 
model, a method known as synthesis analysis. However, the validity of this method relies on the normality 
assumption of the data, and it does not provide variance estimates. In this paper we propose a new 
synthesis method that improves on the existing synthesis method by eliminating the normality assumption, 
reducing bias, and allowing for the variance estimation of the estimated parameters. 
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1. INTRODUCTION

Meta-analysis is a statistical technique for amalgamating, summarizing, and reviewing previous 

quantitative research. A typical meta-analysis is to summarize all the research results on one topic 

and to discuss reliability of this summary. It is based on the condition that each individual study 

reports the same finding for the same research question. The potential advantage of meta-analysis 

is the increase in the sample size and the validity of statistical inference. It would be difficult to 

utilize meta-analysis methodologies if individual studies only provide partial findings. 

In a practical example, meta-analysis could be used to build a comprehensive  and  multi- variate 

prediction model for the risk of chronic diseases such as coronary heart disease (CHD). A wide 

range of CHD risk factors have been reported in the literature, but a comprehensive multivariate 

CHD prediction model has yet to be found. The Framingham CHD model is widely considered 

the most comprehensive model, although many well-known CHD risk factors, such as 

body mass index (BMI), family history of CHD, and c-reactive protein, are not included in the 

model [1–3]. 
We propose a new process to solve several of the problems presented above. This novel multi- 

variate meta-analysis modeling method is called synthesis analysis. Using multiple study results 

reported in the scientific and medical literature, the objective of our synthesis analysis is to estimate 

the multivariate relations between multiple predictors (X s) and an outcome variable (Y ) from the 

univariate relation of each X with Y and the two-way correlations between each pair of X s. All 

the inputs may come from various studies in the literature, while a cross-sectional population 

survey may provide correlations of all X s. We reported the first method of synthesis analysis (the 



 

 

Samsa–Hu–Root or SHR method) in which the partial regression coefficients were calculated using 

the following matrix equation: 
 

B = (R−1
(Bu#S))/S 

where B is the vector of partial (excluding the intercept, B0) regression coefficients, Bu is the vector 

of univariate regression coefficients, R is the vector of Pearson correlation coefficients among all 

independent variables, S is the vector of standard deviations of the independent variables, # stands 

for element-wise multiplication, and/stands for element-wise division. The intercept, B0, can be 

calculated using the resulting multivariate formula, the mean of the predictors and outcome, and 

the newly calculated partial regression coefficient for each predictor. 

In the present study, we propose an improvement to the existing synthesis analysis. Compared 

with the  previous  method,  this  method  has  at  least  two  advantages:  (1)  it  includes  a  method 

to compute the variances for predicted outcomes and estimated regression coefficients and (2) 

the estimates of predicted outcomes and regression coefficients can be more robust when the 

independent variables are not normally distributed. 

Our paper is organized as follows. In Section 2, we describe our new method. In Section 3, 

we report a simulation study on finite-sample performance of the proposed method in comparison 

with the existing synthesis method. In Section 4, we illustrate the use of the proposed method 

in a real-life example from the 1999–2000 National Health and Nutritional Examination Survey. 

Finally, in Section 5, we conclude our paper with a discussion on some extensions. 

 

 
 

2. NEW METHOD FOR SYNTHESIS ANALYSIS 

 
2.1. Estimation of synthesized parameters 

Suppose that we know the individual relationships between an outcome Y and each of p risk 

factors, X1, X2, ...,  and X p , which are given as follows: 

 

 

where i = 1, 2, ...,  p. In addition, we assume that we know the mean relationships between any 
two pairs among the p risk factors: 

 

i j i j   

 
where i, j = 1, 2, ...,  p and i ∗= 

j . 

E [X j |X i  ]= a0 +a1  Xi  (2) 

The goal of synthesis analysis is to determine the multivariate linear regression model between 
Y  and the p risk factors: 

 

 

 

 



 

 

 

 

Note that the linear regression assumption (1) automatically holds under assumptions (2) and (3). 

Taking the conditional expectation of the both sides of (3) given  Xi , we obtain the following 

equation: 

 
 

 

 



 

 

 

Using Cramer’s rule, we can easily solve the above  p simultaneous linear equations. Let us 

define the following determinants: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cramer’s rule gives us the following unique solution to the system of equations (8): 
 

 
(8) 

 

where k = 1, ...,  p. 

After obtaining estimates of the vector of slope parameters, f3, we can derive an estimate for 
the intercept parameter, f30, using any one of the  p equations given in (6). Hence, we have the 

following p equations for the unknown intercept parameter f30: 
 

 

 

 

Although there are p equations for the parameter f30, we show that the solution of f30 is unique in 

Appendix A. We give a detailed description of our solution for the two-covariate case in Appendix B, 

and in Appendix C, we give an explicit formula for our synthesized parameters in cases with three 

and four covariates. 

 

 

 

 



 

 

 
 
 
 

 

2.2. Variance estimation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is the covariance matrix of the estimated parameters c( 

The synthesized parameter estimates are functions of a’s and y’s, which can 

be expressed mathematically as: 

f3 = g(x, c) 

If the function g is differentiable, then the delta method gives the asymptotic variance of f3 as 

follows: 

 (9) 

where Vg(a, c) is the vector of derivatives of function g with respect to b= (B0,B 1,..., f3 p). 

We give an explicit formula for Vg(a, c) when p = 2 in Appendix B. Many programs, such as 
Mathematica, can perform derivatives symbolically, thereby making the variance calculation much 

easier, since the derivation of the exact form of the Vg is not required before the calculation. 

 

2.3. Variance of predicted value 

Once the estimates of parameters and their variances have been derived, we can calculate the 

covariance matrix of predicted values as follows: 

where XT  is the transpose of the X matrix, and I.f3 is the 

covariance matrix of f3, given by (9). 
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2.4. Mean-squared error of the predicted value and correlation between predicted and observed 

values 

The mean-squared error (MSE) of the predicted value is given by 

 

 

 

 

where Ŷ i  and Yi  are the predicted and observed value of subject i , respectively. The correlation 
coefficient between Y Yi , p, can be calculated by 

 

 

 

where  is the covariance between predicted and observed values. 

 
3. SIMULATION  STUDY 

 
We conducted a simulation study to assess the performance of the proposed method in comparison 

with our previous method [5], denoted by SHR. We simulated data with two, three, and four 
predictor variables. For simplicity of presentation, we only reported the results for the two-predictors 

here, because the results for three-predictor and four-predictor cases are similar to those in the 
two-predictor case. 

In each of these cases, we simulated independent variables from (1) a multivariate normal 

distribution, (2) a multivariate log-normal distribution, (3) a multivariate exponential distribution, 

and (4) a multivariate gamma distribution. We chose the variances of all the independent variables 

to be 1 and correlations for pairs of the independent variables to be 0.5. After simulating the 

independent variables X , we generated the dependent variable Y by adding random normal errors 

to the mean model: 

 (10) 

 

 

where a is a random error following the standard normal distribution. 

We set the true regression parameters as follows: (B0, B1, B2) = (−5, 5, 3) for the two-variable 

setting, (B0, B1, B2, B3) = (−5, 1, 3, 5) for the three-variable setting, and (B0, B1, B2, B3, B4) = (−5, 5, 

4, 3, 1) for the four-variable setting. We divided each data set into   subsets 

with equal sample sizes. Here, C 
p+1  

denoted the total number of combinations of choosing 2 

items from  ( p +1)  items. In  simulated data,  each  subset contained  only one  pair of  variables 
chosen from Y, X1, ...,  X p . The sample size (the total number of observations) used in simulation 

was 300 and 3000 (with equal size for each subset). For each of the above settings, we simulated a 
total number of 1000 data sets. As the results for the data from the skewed log-normal distribution 

were similar to those from the other skewed distributions, we only reported the results for the 

 

 

 



 

 

normal and log-normal distributions. We reported the mean bias and MSE for estimated parameters 

in Tables I and II. 

In order to evaluate the accuracy of predicted values using the new model, we simulated two data 

sets with equal sample sizes. One was used as the training set for model derivation, while the other 

 

Table I. Mean bias and MSE of estimated regression parameters with two independent 
variables following a normal distribution. 

 

 

 

 

 

 

 

 

 

Table II. Mean bias and MSE of estimated regression parameters with two independent 
variables following a log-normal distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

was used as the validation data set. To evaluate prediction performance, we reported mean bias, 

MSE, and the mean of standard error estimates (SEEs) for predicted values in Tables III and IV. 

The SEEs were derived using the method developed in Sections 2.2 and 2.3. The correlations 

between predicted and observed values were also reported in the two tables. 

Simulation results for the regression parameters showed that the mean bias and MSE of the 

estimated regression parameters using our new method were, in general, better than those using 

the SHR method, across all of the distributions and sample sizes considered here. The results also 

indicated that when the distributions of independent variables X were heavily skewed (log-normal 

distribution), the bias and MSE of the estimated regression parameters using both methods were 

large, especially when sample sizes were small. Nonetheless, the results from our new method 

were much better than those from the SHR method under this situation. 

The results for predicted values indicated that both the new method and the SHR method had 

similar correlations between observed and predicted values across all sample sizes and distributions. 

 

 



 

 

 

Table III. Mean bias, MSE, correlation and SE for predicted values with two independent variables 
following a normal distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Correlation is the mean correlation between observed and predicted values across simulations. SEE is 
the mean of standard error estimates for predicted values. 
∗The sample size for subset with only outcome Y and predictor X1. 
†The sample size for subset with only outcome Y and predictor X2. 
‡The sample size for subset with only predictors X1 and X2. 

 

However, mean bias and MSE for predicted values derived from our new method were much 

smaller than those from the SHR method. 

 

 
4. EXAMPLE 

 
In this section, we analyzed a real-world example and compared the results using our new synthesis 

method and the SHR method. The data came from the 1999–2000 National Health and Nutritional 

Examination Survey [6]. There were five variables in this data set, including one outcome Y , 
systolic blood pressure, and four predictors, X1, X2, X3, and X4, which represented age, body mass 

index (BMI), serum total cholesterol level, and the natural log of serum triglycerides, respectively. 

First, we fitted a multivariate regression model to this data set, which would serve as the gold 

standard for this analysis. Next, we randomly divided the data set into the five mutually exclusive 

subsets with approximately equal sample sizes. The first four subsets included the outcome Y 

 



 

 

 

Table V. Parameter estimates (SE) for the NHANES blood pressure example. 
 

 

 

 

 

 

 

 

 

∗Cannot calculate SE using this method. 

 

 
 

and each of the four covariates, X1, X2, X3, and X4, respectively. The last subset contained all 

four covariates, which was used to derive pairwise correlations among the covariates. We applied 

the two synthesis methods to these five subsets to obtain estimated parameters in the multivariate 

regression model and reported the results in Table V. For comparison purposes, we also included the 

estimated parameters in the multivariate regression models obtained by the gold standard model in 

Table V. 

The estimated parameters and their standard  errors  (SEs)  from  the  gold  standard  and  from 

both our new method and SHR method were listed in Table V (SE was not available by the 

SHR method). From these results,  we observed that the new method produced the coefficient 

estimates that were comparable to those derived using the gold standard. However, the estimates 

for Intercept and LOGTRIG from the SHR method were varied somewhat from those derived using 

the gold standard method. As an illustration, the predicted value for a 65-year-old subject with 

the BMI of 19, the serum total cholesterol level of 190, and the serum triglycerides of 160 would 

be 134, 135, and 136, using the gold standard method, the new method, and the SHR method, 

respectively. 

 

 
 

5. DISCUSSION 

 
In this paper, we provided several enhancements to the existing SHR synthesis analysis method- 

ology. These improvements allow for more robust estimates of the regression parameters and 

predicted values when covariates are not normally distributed. Additionally, the new method allows 

for estimation of the variance of the resulting parameters and predicted outcomes. 

Both the previously reported SHR method and our improved method allow for the building 

of multivariate regression models using univariate regression coefficients and two-way correla- 

tion coefficient data that are derived from different data sources. The underlying assumption is 

that each individual study  is  representative  of  the  target  population.  However,  the  validity  of 

the previously reported SHR synthesis  analysis  methodology  relies  on  the  normality  assump- 

tion of the data. Although synthesis analysis is related to both meta-analysis  and  analysis  of 

missing data, it is also different from  these  two  traditional  analyses  in  two  important  ways. 

First, while the goal of traditional meta-analysis is to combine the multivariate regression models 

with the same covariates from different studies, the goal of synthesis analysis is to create a 

multivariate linear regression model from univariate linear regression models on different covari- 

ates. Although the statistical problem that synthesis analysis address may be considered as one 
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particular type of missing-data  problem,  unlike  a  traditional  analysis,  synthesis  analysis  does 

not require individual level data; rather, synthesis analysis only requires coefficient estimates of 

univariate linear regression models between the outcome and a covariate and between any two 

covariates. 

Although the proposed method was developed to synthesize different univariate linear regression 

models with different covariates into multivariate linear regression models, it can be easily extended 

to the setting in which several studies are available for some (or all) of the univariate regression 

models. In this case, there would be variation among the parameter estimates. For example, if 

there are five studies available for the linear model, E(Y | X1),  and  six  studies  for  the  linear 

model, E(X1 | X2), then we would have the five sets of estimates for the intercept and slope of 
the linear model of Y on X , denoted by y 

j 1  
and y 

j 1
, for  j = 1, ...,  5, and the six sets of estimates 

0 1 

for  the  intercept  and  slope  of  the  linear  model  of  X1   on  X2,  denoted  by  ak21
 and ak21, for 

k = 1, ...,  6. 
In this case, we propose to first combine the results on the same univariate regression model 

from different studies into the one univariate regression model using the weighted mean of a 
jk 

 

and y 
j 
, with the weight being the inverse sample size; that is, 

 

 

 

 

where N j  is the sample size for the j th univariate model between Y and X1 , and  

 

Then, we apply the proposed synthesis method in Section 2 to obtain the multivariate regression 
model. 

We performed a simulation study to assess the performance of the modified method in the two 

independent variables case, with one independent variables following a normal distribution and 

another following a log-normal distribution. We also compared this modified method with other 

combining methods, including mean, median, minimum, and maximum of multiple estimates for a 

same regression parameter. From these simulation results, we concluded that parameter estimates 

using the weighted mean had the smallest bias and MSE, and were very close to the bias and 

MSE using the gold standard. In addition, the predicted value using the weighted mean had the 

smallest bias, MSE, and SEE. We give a detailed description on our simulation study and results 

in Appendix D. The computer software for implementing the proposed method is available at 

http://faculty.washington.edu/azhou. 
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APPENDIX A: SKETCH PROOF FOR UNIQUENESS OF INTERCEPT 

COEFFICIENT 

 

Here we show that there is a unique solution for the intercept term f30  with the  p equations (5), 

meaning that we need to show that the following p solutions are equivalent: 

 

 

 

 

 

 

 

 

Without losing generality, we only show that the solutions of the first two equations are equal, 

that is,  . The proof for other solutions is similar. 0

In order to show 
 

 

 

 

 

we add E(X1)B1 + E(X2)f32 +·· · + E(X p)B p to both sides of (A1), and then the left side of (A1) 

becomes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
APPENDIX B: SOLUTION FOR TWO PREDICTORS CASE 

 

 

 

 



 

 

 
 

When p = 2, we can also have an explicit formula for the derivative of b= g(a, c) with respect to 
a and y, Vg(a, c), for the two independent variables case. Here, Vg(a, c) is used to calculate the 

variance of b and predicted values. 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

APPENDIX C: SOLUTION FOR THREE AND FOUR PREDICTORS 
 

When there are three predictors in the model, D and Di  (i = 1, 2, 3) are given as follows: 
 

 
 
 
 

 
D1 = y2

 
1 a23 

= (y1a33  
 

 
 32 33 

y1 12 13

1 a1 a1 

   
 

 

 



 

 

 

 

 

 

 



 

 

APPENDIX D: SIMULATION STUDY ON THE MODIFIED SYNTHESIS 

 
We performed a simulation study to assess the performance of the modified method, as described 

in the discussion section, for the two independent-variable case when the vector of two covariates 

follows  a  bivariate  normal  distribution  or  bivariate  log-normal  distribution.  We  also  compared 

this modified method with the other combining methods, including mean, median, minimum, and 
maximum of multiple estimates for a same regression parameter. For each of the three univariate 

linear models, E(Y | X1) , E(Y | X2) , and E(X1 | X2), there were the estimates from five different 
studies. We selected the sample size for each of the five studies for each univariate model to be equal 

(1000 and 100) or unequal (100, 200, 500, 1200, 3000) or (10, 20, 50, 120, 300). We assessed the 

 

Table DI. Bias and MSE for estimated parameters with equal sample sizes. 
 

 Bias    MSE  

Method B0 B1 B2  B0 B1 B2 

Total sample size N = 1000×3×5 (equal sample size) = 15000 
Weighted mean (Mean) 0.0023 0.0005 −0.0005  0.2126 0.0026 0.0068 
Median −0.0055 −0.0016 0.0007  0.3792 0.0099 0.0183 

Minimum 0.0219 0.0075 −0.0036  0.5250 0.0140 0.0266 
Maximum −0.0428 −0.0084 0.0083  0.8344 0.0214 0.0399 

Total sample size N = 100×3×5 (equal sample size) = 1500 
Weighted mean (Mean) 0.1066 0.0107 −0.0272  2.8586 0.0708 0.1509 
Median 0.1781 0.0286 −0.0433  4.2857 0.1156 0.2228 

Minimum −0.2240 −0.0181 0.0502  5.4686 0.1158 0.2820 
Maximum 0.1285 −0.0037 −0.0373  11.4781 0.3338 0.5221 

 
Table DII. Mean Bias, MSE, Correlation and SEE for predicted values with equal sample sizes. 

 
 

Method Mean bias MSE Correlation SEE 
 

 

Total sample size N = 1000×3×5 (equal sample size) = 15000 
Weighted mean (Mean) 0.0019 0.0301 0.9998 0.9109 

Total sample size N = 100×3×5 (equal sample size) = 1500 
Weighted mean (Mean) 0.0126 0.3741 0.9956 3.0272 

Table DIII. Bias and MSE for estimated parameters with unequal sample sizes. 
 

 Bias    MSE  

Method B0 B1 B2  B0 B1 B2 

Total sample size N = (100+200+500+1200+3000)×3 = 15000 
Weighted mean 0.0196 0.0049 −0.0056  0.5540 0.0251 0.0496 
Mean −0.0231 0.0067 −0.0076  0.8445 0.0567 0.0875 
Median 0.0208 0.0073 −0.0082  0.6676 0.0680 0.0329 
Minimum −0.0538 0.0211 −0.0103  3.0387 0.0733 0.1526 
Maximum −0.0236 0.0040 −0.0123  5.8060 0.1549 0.2748 

Total sample size N = (10+20+50+120+300)×3 = 1500 
Weighted mean 0.1147 0.0268 −0.0283  3.0217 0.3488 0.3621 
Mean 0.2007 0.0234 0.0322  4.4266 0.3396 0.4212 



 

 

Median 0.1583 0.0283 −0.0379  7.2861 0.4095 0.3714 

Minimum −2.8130 −0.4905 0.6229  73.6571 2.0423 3.8998 
Maximum −0.5346 0.1130 0.0830  529.7432 96.6978 61.0214 

Table DIV. Mean Bias, MSE, Correlation and SEE for predicted values with unequal sample sizes. 
 

 

Method Mean bias MSE Correlation SEE 
 

 

Total sample size N = (100+200+500+1200+3000)×3 = 15000 
Weighted mean 0.0201 0.0994 0.9886 1.1105 
Mean −0.0219 0.1134 0.9825 1.2773 

Total sample size N = (10+20+50+120+300)×3 = 1500 
Weighted mean −0.0158 0.3394 0.9900 4.1135 
Mean 0.1993 0.3550 0.9789 4.3768 

 
performance of the modified synthesis method using the weighted mean, mean, median, minimum, 

and maximum of combing results from the five studies. 

Since our results on the simulated data from the bivariate normal distribution are similar to 

those on the simulated data from the bivariate log-normal distribution, we only report the results 

on the bivariate normal distribution case. Tables DI–DIV show the bias and MSE for each of the 

regression parameters f30, f31, and f32  as well as the mean bias, MSE, correlation, and SEE (mean 

of SE estimates) for the predicted values. 
 

 
ACKNOWLEDGEMENTS 

We would like to thank Vicki Ding and Hua Chen for their help in preparing this manuscript. Xiao-Hua 
Zhou, PhD, is presently a Core Investigator and Biostatistics Unit Director at the Northwest HSR&D 
Center of Excellence, Department of Veterans Affairs Medical Center, Seattle, WA. The views expressed 
in this article are those of the authors and do not necessarily represent the views of the Department of 
Veterans Affairs.  

 
 

REFERENCES 

1. Hackam DG, Anand SS. Emerging risk factors for atherosclerotic vascular disease. A critical review  of  the 

evidence. Journal of the American Medical Association 2003; 290:932–940. 

2. Fruchart-Najib J, Bauge E, Niculescu LS, Pham T, Thomas B, Rommens C, Majd Z, Brewer B, Pennacchio LA, 

Fruchart JC. Mechanism of triglyceride lowering in mice expressing human apolipoprotein. Biochemical and 

Biophysical Research Communications 2004; 319:397–404. 
3. Vasan RS. Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation 2006; 

113:2335–2362. 

4. Casella G, Berger RL. Statistical Inference (2nd edn). Thomson Learning: Pacific Grove, CA, 2002. 

5. Samsa G, Hu G, Root M. Combining information from multiple data sources to create multivariable risk models: 

illustration and preliminary assessment of a new method. Journal of Biomedicine and Biotechnology 2005; 2:113–

123. 

6. National Center for Health Statistics. National Health and Nutrition Examination Survey (NHANES), 1999–2000. 

Available from: http://www.cdc.gov/nchs/about/major/nhanes/. 

http://www.cdc.gov/nchs/about/major/nhanes/



