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Dissimilarity in aflatoxin dose-response 

relationships between DNA adduct formation and 

development of preneoplastic foci in rat liver 

Martin Root a, Theodore Lange ,  T. Colin Campbell 

Abstract • 

Earlier work in this laboratory and that carried out by others demonstrated that after a 

single dose of aftatoxin B1 (AFB) the resulting liver AFB-DNA adduct levels were directly 

proportional to dose. Earlier work also showed that after ten daily doses the AFB dose 

response relationship with y-glutamyl transpeptidase (GGT) positive preneoplastic foci 

measured at 3 months was sublinear, with a threshold at a dose of about 150 µg/kg body 

weight/day. The objective of this study is to determine the factors influencing the shift in 

AFB dose-response between AFB-DNA adducts and GGT foci. Male Fisher 344 weanling 

rats were orally administered one or ten doses of AFB ranging from 50 to 350 µg/kg body 

weight/day. The animals were killed 2 or 24 h after the first AFB dose, or after the tenth 

AFB dose. The first and tenth doses were tritiated in these animals and 3H-AFB-guanine 

adducts isolated from liver DNA were measured by HPLC. Another group was killed 3 

months after receiving ten doses in order to measure GGT foci development. AFB-guanine 

adduct levels were directly proportional to dose after the first dose, but after the tenth dose 

were much lower in the 200-350 µg/kg groups than after a single dose. The GGT foci 

response confirmed earlier work concerning a sublinear response. Among the individual 

animals in the 200-350 µg/kg groups there was a positive relationship, after controlling for 

dose, between GGT foci development and weight gained both during dosing (P = 0.018) and 

also to a lesser extent during the early promotional period (P = 0.066). Enzyme activity levels 

of GGT in liver homogenates were higher in the highest dose groups and reflected biliary 

proliferation rather than histological GGT stained foci. Urinary levels of AFB metabolites 

changed proportions in the high dosage multiply dosed animals reflecting alteration in AFB 

metabolism or excretion. The differences between the linear adduct and the sublinear foci 

dose response curves may be the result of non adduct effects of higher multiple AFB doses 

on foci formation including acute cytotoxicity, altered AFB metabolism and disposition, 

enhanced weight gains, or shortened foci latency but not through enhanced guanine adduct 

levels. Other studies that showed a linear relationship between AFB dose and liver tumor 

development used continuous feeding of maximal doses an order of magnitude less than the 

lowest dose in this study and thus avoided acutely toxic effects. We hypothesize that liver 

tumor development may mirror foci response in a IO-dose AFB regimen with doses above 

100 µg/kg due to acute toxicity effects.  

Keywords: Aflatoxin; Carcinogenesis; Cytotoxicity; Dose-response 

1. Introduction



Cancer is a multistage disease. The initial insult is generally considered to be 

alteration of the DNA of a somatic cell. This alteration, if fixed through a cycle of 

cell division, may then be clonally expanded into a focus of cells of altered 

phenotype, then to a putatively neoplastic nodule, and finally progressing to tumor 

formation. Each of these stages is necessary but not sufficient for the subsequent 

stage. 

Aflatoxin B1 (AFB) is a potent hepatotoxin and hepatocarcinogen for certain 

experimental animal species [l]. AFB requires activation to the 8,9-epoxide to 
become carcinogenic. Other metabolic pathways yield primary and secondary 

metabolites of greatly reduced carcinogenic potency. The balance between activa 

tion and metabolism is critical to the process of carcinogenesis. Although AFB is 

highly carcinogenic, it has been shown that a single high dose produces more liver 
necrosis and other acutely toxic events while multiple smaller doses produce more 

tumor response and less liver necrosis and acute toxicity [2]. 

The formation of AFB- DNA adducts is linearly dose dependent over a wide 

range of AFB doses and in various experimental models [3-7]. In contrast to these 

linear dose response curves for AFB-DNA adducts, we have previously observed 

a sublinear dose-response curve for putatively preneoplastic y-glutamyl transpepti 

dase (GGT) positive foci 3 months after completion of 2 weeks of AFB dosing [8]. 

Foci only appear above a dose threshold of about 150 µg/kg body weight/day. 

Thus, even though there is a linear relationship between a single dose and adducts, 

there is a sublinear relationship between multiple doses and foci formation. 

There are several possible reasons for this disparity. Multiple AFB doses may 

yield disproportionately higher adduct levels at higher dosages through induction of 

AFB activating pathways. Multiple higher doses may also give rise to 

disproportionate levels of non-adduct effects such as increased liver necrosis, 

lower levels of DNA repair, or other non-genotoxic effects which promote 

carcinogenesis. Thus, the objective of this study was to determine possible 

mechanisms for the change in dose response curves between adducts and foci. 

2. Methods

2.1. Animals, chemicals, and diet 

Male Fisher-344 rats (50-75 g), purchased from Charles River Laboratories 

(Burlington, MA), were individually housed in suspended stainless steel cages 

with wire mesh bottoms. Upon receipt they were acclimated for 8 days in a room 

with controlled temperature, a 12-h photoperiodic cycle, and a relative humidity 

between 
40 and 60%. These conditions were  maintained throughout the study. Animals 
received food and water ad libitum. AFB was purchased from Calbiochem-

Behring (La Jolla, CA) and [G-3H]AFB (specific activity 10-20 Ci/mmol) from 
Moravek Biochemicals (City of Industry, CA). Aflatoxin P1 (AFP), and aflatoxin 

M 1 (AFM) were obtained from Sigma (St. Louis, MO). All other chemicals used 

in this study were of analytical or reagent grade. Purified AIN- 76A diet in 
pelleted form was prepared by Dyets, Inc. (Bethlehem, PA). 

2.2. Experimental protocol 



The rats were randomly assigned to treatment groups after acclimation (Fig. l 

). The treatments were planned on the basis of (a) dose of AFB administered 

(50, 100, 150, 200, 250, and 350 µg/kg body weight/day); (b) time of kill 
following dosing (2 h, 24 h, or 12 weeks after the last of ten doses), and (c) 

number of doses (one or ten). Groups for adduct quantification contained five 

animals each. Groups for GGT foci quantification contained ten animals each. 

Multiple-dose groups receiving 350 µg/kg body weight/day contained 40% more 

animals in anticipation of acute mortality. Both radioactive and non-radioactive 
AFB were prepared in tricaprylin for dosing. Sufficient crystalline  AFB for the 

entire experiment was dissolved in minimal chloroform and diluted in 

tricaprylin to a concentration of about 450 µg/ml. The chloroform was evaporated 

from the solution by stirring for 2 days in a fume hood. This stock solution was 
diluted with additional tricaprylin, and concentrated radioactive AFB in ethanol 

was added for the labeled doses, to the proper final concentrations such that the 

animals received tricaprylin at 1.0 ml/kg body weight. The absolute amount of 

radioactivity added to each labeled dosage was the same so that the specific 

activity was inversely proportional to the AFB concentration. Intubation 
commenced 8 days after receipt of  the animals. Groups A and B received single 

doses of tritiated AFB and were sacrificed 2 and 

24 h after dosing, respectively. The multiple-dose protocol groups (two adduct 

groups-groups C and D and one GGT foci group-group E) received  ten  daily 
doses over a 12-day period (with no dosing on the 2 middle days). The last dose 

for groups C and D were radiolabeled and animals were sacrificed 2 and 24 h after 

the last dose, respectively. Livers in all four adduct groups were immediately 

removed upon sacrificing and placed in ice-cold buffer (0.05 mol/l Tris-HCl pH 

7.0, 0.25 mol/l sucrose, 0.025 mol/l KCl, and 0.005 mol/l MgCl2). Animals in the 

GGT foci group were sacrificed 12 weeks after the last AFB dose. Two slices of 
liver were removed for each animal, frozen on dry ice, and stored at - 70°. The 

remainder of each liver was also stored at -70°. Two animals from each dosage of 

groups B and D were kept in metabolic cages during the overnight period 

between dosing and sacrifice. Complete 24 h collections of urine were obtained 
from groups B and D and were frozen at  - 70° until further analysis. 

2.3. Afiatoxin-DNA  adducts 

The method of Croy et al. [4] was used for the isolation of liver nuclei, the 

isolation of nuclear DNA, the hydrolysis of DNA, and the HPLC separation of 

AFB- DNA adducts. A Beckman model 334 HPLC (Fullerton, CA) with gradient 

capability and a Perkin-Elmer model LS95 UV-visible detector (Norwalk, CT) was 

used for adduct separation. The eluent was monitored at 360 nm and adducts were 

collected in l.0-ml fractions. Scintillation cocktail (10 ml) was added to each 

fraction  which  were  then  counted  in  a  Beckman  LS3133T  liquid  scintillation 
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counter. The AFB-N 7-guanine standard was prepared from an AFB-modified DNA 

sample according to the method of Groopman et al. [9]. The ring-open AFB-DNA 

adduct (8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl formamido)-9- 

hydroxyaflatoxin B1) was produced by first generating AFB- DNA according to 

Essigmann et al. [lO] then isolated by the method of Groopman et al [9]. The levels 

of the two products were summed. The original intention was to measure these two 

separately although an uncontrolled and random conversion of N7-guanine to the 

open-ring derivative during the DNA isolation and hydrolysis steps prohibited 

individual quantification [9]. Thus, the summation of both was used as a reliable 

measure  of total AFB- DNA adducts. 

 
2.4. Histochemical  GGT positive  liver foci 

 
The method of Dunaif and Campbell [8] was used. Four liver sections were 

prepared and stained for GGT according to the method of Rutenburg et al. [ll]. 

Foci were counted and average diameters were measured by light microscopy. The 

fraction of liver occupied by foci (as expressed as parts per million of liver volume) 

and the number of foci per cubic centimeter were obtained by mathematical models 

described by Campbell et al. [12] and Nychka et al. [13]. 

 
2.5. Biochemical liver homogenate GGT 

 

This method was a combination of the methods of Misslbeck et al. [14] and 

Cameron et al. [15]. A liver sample was prepared by homogenizing in a Polytron® 

homogenizer (Brinkman Instruments, Westbury, NY) about 0.5 g of frozen liver 

and 4 parts 0.1 mol/l Tris-HCI pH 8.0 (at 37°C). A 0.5-ml aliquot was placed in 

three 15 ml Corex® tubes in a shaking water bath at 37°C. Trichloroacetic acid (2.0 

ml of an 11% solution) was added immediately to one tube. After the tubes were 

warmed to temperature, 1.5 ml of substrate solution was added. The substrate 

solution was 4 mmol/l y-glutamyl-p-nitroanilide prepared daily by dissolution at 

60°C in a 50 mmol/l solution of glycylglycine and 0.1 mol/l Tris-HCI pH 8.0 (at 

37°C). The reaction tubes were agitated slowly for 20 min in the water bath. The 

reaction was stopped with the addition of trichloroacetic acid. The tubes were 

centrifuged at 3500 rpm in a SB-14 rotor in a Sorvall RC-5B centrifuge (Dupont, 

Wilmington, DE) for 20 min. After centrifugation 2.0 ml of supernatant was 

transferred to a 12 x 100 mm Pyrex® tube. To each tube 1.0 ml of 0.1% NaN02 was 

added. After 3 min 1.0 ml of 1.0% ammonium sulfamate was added. After another 

3 min, 1.0 ml of 0.052% naphthylethylenediamine was added and the tubes were 

shaken vigorously. The tubes were read immediately in the Beckman Instruments 

(Fullerton, CA) model 25 spectrophotometer at 540 nm. The activity was calculated 

using an molar absorptivity coefficient of 6218 for the reaction product, p-ni 

troanilide. If the activity was too high, a diluted sample of liver homogenate was 

used to repeat the assay. The protein content was determined and specific activity 

was calculated. Activity was expressed as µmol/min/mg protein. 



 

 

 
2.6. Urinary acids 

 
This method is a major modification of the method of Mattiuz et al. [16] for 

separating and quantifying an extensive profile of urinary acids. A urine sample was 

centrifuged in the Eppendorf micro-centrifuge (Brinkman  Instruments,  Westbury, 

NY) in a 1.5 ml Eppendorf capsule. An  amount of urine equivalent to the urinary 

excretion of 2 g of body weight was diluted to 200 µl with water. Then 100 µl was 

injected on the HPLC.  The HPLC was a Beckman model 334 with detectors and 

integrators in-line. The first was a Perkin-Elmer LS95 UV-Visible  detector  (Nor 

walk, CT) set at 280 nm attached to a Spectra Physics WINner® integration system 

(including  a  S/P4290  integrator)  (San  Jose,  CA). The  second  was  a  Bioanalytical 

Systems (West Lafayette, IN) electrochemical detector set at  + 900 mV attached to 

a Hewlett Packard model 3396 integrator (Palo Alto, CA). The third  was  a 

Beckman filter fluorometer with fluorescamine filters attached to a Hewlett Packard 

model  3390A integrator.  The column was a Phenomenex  (Torrance,  CA) Ultramex 

5 µm Cl8 250 x 4.6 mm with a 2-µm Upchurch (Oak Harbor, WA) in-line 

prefilter. The autosampler was a Perkin-Elmer model ISSlOO with a 250-µl sample 

loop. The starting solvent was 0.2 mol/l sodium phosphate buffer pH 2.3 and the 

flow rate was 1.0 ml/min. The timed gradient program was as follows. Injections 

were made at time 0. 

 
 

Program time Gradient of acetonitrile Duration of gradient 
(min) ( %as v/v) (min) 

 

0 0 6 

6 0 -6 59 

65 6 - l l 18 

83 11 -13 IO 

93 13- 20 21 

113 20 -35 15 

128 35 - 70 3 

148 70 -0 7 

200 Ready for next injection  

 

Each chromatogram was 145 min long. About 165 peaks eluted. 

 

2.7. . Urinary AFB products 

 
When the urine samples from AFB dosed animals  (Groups B and D) were 

subjected to the urinary acid analysis about a dozen small fluorescent peaks 

appeared late in the chromatogram (113-135 min). These same peaks contained 

radioactivity hence  it was concluded that these were aflatoxin (AF)-containing 

peaks. Authentic AF standards were run under identical conditions. AFM and AFP 



 

 

Table  I 

Animal growth rates during specific study periods and terminal body weightsa 
 

AFB dose Dosing Recovery Post-recovery Terminal  weight 

(µg/kg) (days 1-12) (days 13-23) (days 24-99)  
 

50 

JOO 

4.05 ± 0.43a 

3.89 ± 0.47a.b 

3.76 ± 0.6oa 

3.74 ± 0.79" 

1.90 ± o.19a 

J .98 ± 0.26a.b 

326 ± 17a 

327 ± 24a 

150 3.59 ± 0.64b.c 3.47 ± 0.54a 1.98 ± 0.23•.b 321 ± 24" 

200 3.61 ± 0.53b.c 3.62 ± 0.50" 2.02 ± 0.15"·b 330 ± 14" 

250 3.34 ± 0.54c 3.80 ± 0.56" 2.05 ± O. J2•·b 332 ± 13• 

350 2.94 ± 0.59d 2.88 ± 0.71b 2.10 ± 0.3J b 317 ± 30" 

Regrb P $;0.00 I P =0.002 P =0.027 P =0.4 

•Growth  rates  (g/day ± S.D.) represent  average  growth  rates  over  each  study  period.  Significantly 

different values (P<0.05) within a column are denoted by different letters. 

b The probability associated with a linear model of weight gain or terminal weight vs/ AFB dose. 

 
co-eluted in one peak. Other aflatoxin-containing peaks were  not identified. In 

order to confirm the identity of the combined AFM and AFP (AFM/P) peak, a 

modification of the method of Groopman et al. [17] was utilized. Samples and 

standards were prepared and injected into the HPLC in the same manner as for the 

urinary acids. 

 
2.8. Other analytical methods 

 

RNA was determined by the orcinol assay described by Ceriotti [18]. The method 

used to check the protein contamination of the DNA was that of Lowry et al. [19]. 

Liver homogenate protein determination for the GGT assay was with the Sigma 

Diagnostic Kit P5656. DNA was determined by the method of Burton  [20]. All 

statistical procedures including ANOVA, Student's t-tests, and regression analysis, 

were performed with the MINITAB 6.1.1 software package (State College, PA) 

implemented on a personal computer. 
 

 
3. Results 

 
AFB dosing caused a linear depression in weight gain with increasing AFB dose 

(R = -0.576, P < 0.001) (Table 1). This dose-dependent depression continued 

through the 1 week recovery period following dosing (P = 0.002). However, from 

the end of the recovery period until the end of the study, the higher dose animals 
gained significantly more weight than their lower dose counterparts. At the end of 
the study, body weights were not significantly related to dose. 

Fig. 2 shows the dose-response relationship of AFB-DNA adducts for the four 
adduct groups. A significant linear relationship existed between a single AFB dose 

and adducts both in animals killed 2 h post-dose (Fig. 2A) (R = 0.89) and in 

animals killed 24 h post-dose (Fig. 2B) (R = 0.92). The level of adducts was reduced 



 

 

 

by about half, between 2 and 24 h, in all dosage groups. Somewhat similar results 
were observed for the animals administered nine doses before the radiolabeled tenth 
dose (groups C and D) except that adduct levels were substantially reduced at the 
two highest dosage levels (Fig. 2C, D) when compared with the single dose animals 
(groups A and B) (P < 0.002). Furthermore, the dose-response slope also was 
considerably flattened by the prior administration of nine cold AFB doses. Adduct 
levels were unchanged, at the two lowest dosage levels, between the first and the 
tenth doses (P > 0.3). 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

A 24-h urinary excretion of total AFB products per gram of body weight (Fig. 3) 

produced a linear function of dose. Groups B and D were similar in their dose-

response (R = 0.95 for combined groups). The percentage of total radioactivity for 

each HPLC AFB metabolite peak varied significantly with dose and group. For 

example, the percentage of total radioactivity in the AFM/P peak (Fig. 4} showed 

a  flat  dose-response  relationship  in  group  B  (R = 0.13),  but  a  positive  linear 

 
Table 2 

Aflatoxin B 1 dose-response of y-glutamyl transpeptidase positive foci and y-glutamyl transpeptidase 

specific activity• 
 

AFB dose 

(µg/kg) 

Specific activity 

(µmol/min/mg 

protein) 

Foci incidence Foci number 

(no./cm3
 

) 

Foci diameter 

(µm) 

Foci volume 

(ppm) 

50 10 ± 4" 5/10 10 ± 16" 108 ± 52• 15 ± 21" 
100 12 ± 3•.b 4/10 10 ± 15" 99 ± 42" 16 ± 28" 

150 12 ± 3a.b 7/10 24 ± 21· 116 ± 56" 37 ± 46" 
200 14 ± 2a,b 5/10 10 ± 18° 207 ± 73a.b 115 ± 180" 

250 21 ± 7b 6/10 13 ± 16" 147 ± 150•,b 24 ± 36" 

350 37 ± 19c 10/14 25 ± 24° 233 ± 96b 678 ± 1008b 

• Values are group means ± S.D. Significantly different values within a column are denoted by different 

letters. For foci volume, differences were tested with fourth-root transformed values. 

 

 

 

 

 

 

 

 

 

 



 

 
 

response with AFB dose in group D (R = 0.63). A negative linear response was seen 

with other radioactive peaks (data not shown) after ten doses. Thus, among the 

multiply dosed animals receiving higher doses, AFM/P commanded an increasing 

share of the urinary AFB metabolites, at the expense of the remaining AFB 

metabolites. The limited group D data may also suggest a curvilinear response with 

a maximum percentage excretion at the 250 µg dose. 

At lower AFB doses GGT specific activities were about 10-12 µmol/min/mg 

protein, while at the two highest doses specific activities were elevated (Table 2). 

Histological observations were made of more extensive non-focal GGT staining, 

particularly biliary hyperplasia, in the higher dose groups. 

The number of foci-bearing animals in each group was not significantly related to 

AFB dose (P = 0.13 with weighted logistic regression). Foci  number  also did  not 

vary with dose. The mean diameter of foci among foci-bearing animals was 

positively and linearly related to dose although the difference between the highest 

and lowest group was small. Foci volume exhibited highly skewed within group 

distributions  and  showed an  irregular  but  positive  dose-response  relationship  (Fig. 

5). Transformation of these data to the fourth root produced more normally 

distributed residuals and also a more linear dose-response. There appeared to be a 

dose threshold between about 150 and 250 µg/kg. 

In the 50-150 µg/kg groups there was no correlation between body weight gain 

and any measure  of foci response among individual rats. In the 200-350 µg/kg 

groups there was a positive correlation between G'GT foci volume, after adjusting 
 

 
for dose, and body weight gained during the dosing period (P = 0.018) and also to 
a lesser extent with weight gained during the post-recovery period (P = 0.066). The 
relationship between weight gained during the dosing period and volume of foci 
was due primarily to weight gained during the last 2 days of dosing. Weight gained 
during dosing was also weakly correlated with number of foci (P = 0.086) but not 
with foci diameter. The relationship of foci volume with compensatory weight gain 
during the post recovery period was primarily due to weight gained during the third 



 

week post-dosing. The post-dosing weight gain was also correlated with foci 
diameters (P = 0.038) but not with number of foci. 

 

 

4. Discussion 

 

Two methodological shortcomings are evident in this report: the HPLC quantita 
tion of AFB-N7-guanine adducts and the HPLC separation of urinary AFB 
metabolites. Although the high variability of the adduct data must certainly be 
derived, in part, from the in vitro degradation of the closed ring N7-adduct to the 
open-ring form [9], we are confident in our summed data because they are in 
agreement with our earlier results with single dose adducts [3]. The development of 
the urinary acids method was incidental to this original project and the clear 
resolution of many AFB-containing peaks was unanticipated. Our inability to 
identify all of the urinary peaks or to resolve the excreted AFM and AFP does not 
detract from our simple assertion that these data probably reflect altered 
metabolism or disposition of AFB after multiple high doses of AFB. 

 



 

 

 

Earlier research demonstrated a linear dose-response relationship for AFB-in 

duced rat liver DNA adducts measured 2 h after a single dose in the range from l 

ng/kg to 1 mg/kg [3,7,21,22]. We confirm these earlier findings in the range of 

50-350 µg/kg. Our finding of a 50% decrease in adducts at 2 and 24 h post-dosing 

is less than was found by Croy et al., with 600 µg/kg administered i.p. [23]. 

However, at 3 h post-dosing, adduct levels from an oral dose are less than from an 

i.p. dose [24]. Other workers have measured the cumulative levels of DNA adducts 

after multiple dosing [7,21,23] and found an increase with the number of doses or 

the  size of  dose.  In  this  study  only  the  tenth  dose  was  radioactive  hence  we 

measured the effect of nine previous doses on the DNA adduction of the last dose. 

Prior exposure to high  levels (250-350 µg/kg/day) of AFB reduced  by about 

two-thirds adducts formed by the last dose compared to the first. Schrager et al. 

[25] measured AFB-N7-guanine adducts after ten doses of about 200-250 µg/kg/ 

day and found about a 50% decrease in accumulated adducts compared to adduct 
levels after a single dose. 

Previous studies have shown considerable variability in AFB-induced foci re 

sponse among identically treated rats [8,14,26,27]. The source of this variability is 
unknown but may be compensated for by a large number of animals per group. In 
spite of the decrease in adducts with multiple higher AFB doses, we observed a 

curvilinear increase in GGT foci at doses above about 150 µg/kg was supported by 
the results of this study in conjunction with earlier finding in this laboratory [8]. 
This suggests that factors other than specific AFB-DNA adduct formation en 

hance foci, and possibly tumor, development at higher multiple doses. Much recent 
research has elucidated an apparent linear relationship between AFB- DNA ad 

ducts and tumor formation. Previous work with a limited number of rats and 
impure AFB preparations showed an essentially linear relationship between loga 
rithm of dose and liver tumor incidence on a probit scale [28,29]; a similar finding 

was reported in trout [30]. Bechtel [31] has shown that rats and trout share an 
identical linear dose-response relationship between adduct levels and tumors. While 
AFB, aftatoxicol (a metabolite of AFB), AFM, and aftatoxicol M 1 have different 

potencies to cause liver tumors in trout, Bailey showed that when comparing AF-
DNA adducts and liver tumor response, the dose-response lines are nearly 

identical [32,33]) when expressed on a molecular basis. 
There are two differences between these earlier studies showing linear dose 

response relationship and these findings showing a curvilinear response. Here, we 
used a 10-dose regimen and a higher dose level. The highest dose in the Wogan et 

al., tumor study [28], fed continuously, was about 15 µg/kg/day, using the dietary 
to body weight dosing conversion of Zeise et al. [34], compared to our lowest dose 
of 50 µg/kg body weight/day. The highest dose in the Bechtel study [31] was a 

continuous feeding of about 3 µg/kg body weight/day. Poirier and Beland com 
pared nine biological models of adduct-tumor dose-responses and found only five 
that were linear [35]. They concluded that nonlinearity was a consequence of 
tissue-specific phenomena such as metabolic activation, cell proliferation, and/or 
cytotoxicity. These effects are accentuated at higher, more acutely toxic, doses. Lutz 

has suggested that, although DNA binding may be proportional to dose, cytotoxi- 



 

 

city-induced cell division induced disproportionately at higher doses may enhance 

tumor development [36,37]. Eaton and Gallagher also suggest that tumorigenic 

response does not necessarily follow linearity at all doses because of the cytotoxic 

effects of AFB at higher doses [38]. 

We observed suggestive evidence of all three enhancing factors described by 

Poirier and Beland [35]. The changing patterns of urinary AFB metabolites reflects 

an increased excretion of less active metabolites (AFM or AFP) at high doses 

possibly through induction of altered metabolic pathways in the liver. These 

findings are in agreement with the less than expected levels of AFB-DNA adducts 

in these groups. Among multiply high dose animals there is a correlation between 

weight gain, a crude reflection of cellular proliferation, and foci development. The 

homogenate GGT activity levels were highest in animals with clearly stained biliary 

proliferation, a result of fibrotic regeneration from cytotoxicity. 

In animal tumorigenesis models on nitrosamines, an inverse relationship between 

dose and time-to-response has been observed for foci [39] and tumor [40] formation. 

Animals administered low doses of a carcinogen take longer to develop foci than 

animals given higher doses. The possible carcinogenic-enhancing mechanisms at 

high doses observed in our study could shorten the time required for foci 

development, thereby enhancing the apparent threshold-dose nature of the dose-

response curve. 

In light of these and other findings, we suggest that AFB-induced GGT liver foci, 

and liver tumors, develop in a linear manner to multiple or continuous dosing at 

sub-toxic levels (below about 100-150 mg/kg). Above this level foci (and possibly 

tumors) develop in a curvilinear exponential manner at higher toxic AFB levels due 

to non-adduct metabolic, proliferative, and cytotoxic effects in spite of having 

reduced DNA adduct levels that were similar to adduct levels at much lower less 

acutely toxic doses. 
 

 

References 

 
[l] IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Aflatoxins, in:!ARC 

Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Naturally Occurring 

Substances: Food Items and Constituents, Heterocyclic Amines, and Mycotoxins. International 

Agency for Research on Cancer, Lyon, 1993. pp. 245-395. 

[2] G.N. Wogan, P.M. Newberne, Dose-response characteristics of aflatoxin B1 carcinogenesis in the 

rat, Cancer Res. 27 (1967) 2370-2376. 

[3] B.S. Appleton, M.P. Goetchius, T.C. Campbell, Linear dose-response curve for the hepatic 

macromolecular binding of aflatoxin B1 in rats at very low exposures, Cancer Res. 42 (1982) 

3659-3662. 

[4] R.G. Croy, J.M. Essigmann, V.N. Reinhold, G.N. Wogan, Identification of the principal aflatoxin 

B1-DNA adduct formed in vivo in rat liver, Proc. Natl. Acad. Sci. USA 75 (1978) 1745-1749. 

[5] J.D. Groopman, W.F. Busby, G.N. Wogan, Nuclear distribution of aflatoxin B1 and its interaction 
with histones in rat liver in vivo, Cancer Res 40 (1980) 4343-4351. 

[6] T.R. Irvin, G.N. Wogan, Quantitation of aflatoxin B1 adduction within the ribosomal RNA gene 

sequences of rat liver DNA, Proc. Natl. Acad. Sci. USA 81 (1984) 664-668. 



 

 
[7] P. Buss, M. Caviezel, W.K. Lutz, Linear dose-response relationship for DNA adducts in rat liver 

from chronic exposure to aflatoxin 81, Carcinogenesis 11 (1990) 2133-2135. 

[8] G.E. Dunaif, T.C. Campbell, Relative contribution of dietary protein level and aflatoxin B1 dose in 
generation of presumptive preneoplastic foci in rat liver, J. Natl. Cancer Inst. 78 (1987) 365-369. 

[9] J.D. Groopman, R.G. Croy, G.N. Wogan, In vitro reaction of aflatoxin Bl- adducted DNA, Proc. 

Natl. Acad. Sci. USA 78 (1981) 5445-5449. 

[10] J.M. Essigmann, R.G. Croy, A.M.  Nadzan, W.F. Busby Jr, V.N. Reinhold, G. Buchi, G.N. 

Wogan, Structural identification of the major DNA adduct formed by aflatoxin Bl in vitro, Proc. 

Natl. Acad. Sci. USA 74 (1977) 1870-1874. 

[l l] A.M. Rutenburg, K. Hwakyu, J.W. Fischbein, J.S. Hanker, H.L. Wasserkrug, A.M. Selegman, 

Histochemical and ultrastructural demonstration of y-glutamyl transpeptidase activity, J. His 

tochem. Cytochem. 17 (1969) 517-526. 

(12] H.A. Campbell, H.C. Pitot, V.R. Potter, B.A. Laishes, Application of quantitative stereology to the 

evaluation of enzyme-altered foci in rat liver, Cancer Res. 42 (1982) 465-472. 

(13] D. Nychka, T.D. Pugh, J.H. King, H. Koen, G. Wahba, J. Chover, S. Goldfarb, Optimal use of 

sampled tissue sections for estimating the number of hepatocellular foci, Cancer Res. 44 (1984) 

178-183. 

(14] N.G. Misslbeck, T.C. Campbell, D.A. Roe, Increase in hepatic y-glutamyl transferase (GOT) 

activity following chronic ethanol intake in combination with a high fat diet, Biochem. Phann. 35 

(1986) 399-404. 

(15] R. Cameron, J. Kellen, A. Kolin, A. Malkin, E. Farber, y-Glutamyl transferase in putative 

preneoplastic liver cell populations during hepatocarcinogenesis, Cancer Res. 38 (1978) 823-829. 

[16] E.L. Mattiuz, J.W. Webb, S.C. Gates, High resolution separation of urinary organic acids by high 

performance liquid chromatography, J. Liquid Chromatogr. 5 (1982) 2343-2357. 

(17] J.D. Groopman, P.R. Donahue, J. Zhu, J. Chen, G.N. Wogan, Afiatoxin metabolism in humans: 

detection of metabolites and nucleic acid adducts in urine by affinity chromatography, Proc. Natl. 

Acad. Sci. USA 82 (1985) 6492-6496. 

[18] G. Ceriotti, Determination of nucleic acids in animal tissues, J. Biol. Chem. 214 (1955) 59-70. 

[19] O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with the folin phenol 

reagent, J. Biol. Chem. 193 (1951) 265-275. 

[20] K. Burton, Study of the conditions and mechanisms of the diphenylamine reaction for the 

colorimetric estimation of deoxyribonucleic acid, Biochem. J. 62 (1956) 315-323. 

[21] C.P. Wild, R.C. Garner, R. Montesano, F. Tursi, Atlatoxin B1 binding to plasma albumin and liver 
DNA upon chronic administration to rats, Carcinogenesis 7 (1986) 853-858. 

(22] R.A. Bennett, J.M. Essigmann, G.N. Wogan, Excretion of an afiatoxin-guanine adduct in the urine 

of afiatoxin B1-treated rats, Cancer Res. 41 (1981) 650-654. 

[23] R.G. Croy, G.N. Wogan, Temporal patterns of covalent DNA adducts in rat liver after single and 
multiple doses of afiatoxin Bt> Cancer Res. 41 (1981) 197-203. 

[24] A.D. Salbe, L.F. Bjeldanes, Effect of diet and route of administration on the DNA binding of 

afiatoxin B1 in the rat, Carcinogenesis 10 (1989) 629-634. 

[25] T.F. Schrager, P.M. Newberne, A.H. Pikul, J.D. Groopman, Afiatoxin-DNA adduct formation in 
chronically dosed rats fed a choline-deficient diet, Carcinogenesis II (1990) 177-180. 

(26] D.A. Schulsinger, M.M. Root, T.C. Campbell, Effect of dietary protein quality on development of 

afiatoxin 81-induced hepatic preneoplastic lesions, J. Natl. Cancer. Inst. 81 (1989) 1241-1245. 
(27] Y. He, M.M. Root, R.S. Parker, T.C. Campbell, Effects of carotenoid-rich food extracts on the 

development of preneoplastic lesions in rat liver and on in vivo and in vitro antioxidant status, 

Nutr. Cancer 27 (1997) 238-244. 

[28] G.N. Wogan, S. Paglialunga, P.M. Newberne, Carcinogenic effects of low dietary levels of aflatoxin 

B1 in rats, Food Cosmetic Toxicol. 12 (1974) 681-685. 
(29] P.M. Newberne, Carcinogenicity of afiatoxin-contaminated peanut meal, in: G.N. Wogan (Ed.), 

Mycotoxins in Foodstuffs, MIT Press, Cambridge, MA, 1965, pp. 187-208. 

[30] R.H. Dashwood, D.N. Arbogast, A.T. Fong, C. Pereira, J.D. Hendricks, G.S. Bailey, Quantitative 
inter-relationships between aflatoxin B1 carcinogen dose, indole-3-carbinol anti-carcinogen dose, 

target organ DNA adduction and final tumor response, Carcinogenesis IO (1989) 175-181. 



[31] D.H. Bechtel, Molecular dosimetry of hepatic aflatoxin B1-DNA adducts: linear correlation with 

hepatic cancer risk, Regul. Toxicol. Pharmacol. 10 (1989) 74-81. 

[32] G.S. Bailey. Role of aflatoxin-DNA adducts in the cancer process, in: D.L. Eaton, J.D. Groopman 

(Eds.), The Toxicology of Aflatoxins: Human Health, Veterinary and Agricultural Significance. 

Academic Press, New York, 1994, pp.137-148. 

[33] G.S. Bailey, P.M. Loveland, C. Pereira, D. Pierce, J.D. Hendricks, J.D. Groopman, Quantitative 

carcinogenesis and dosimetry in rainbow trout for aflatoxin B1 and aflatoxicol, two aflatoxins that 

form the same DNA adduct, Mutat. Res. 313 (1994) 25-38. 

[34] L. Zeise, R. Wilson, E.A.C. Crouch, Dose-response relationships for carcinogens: a review, 

Environ. Health Perspect. 73 (1987) 259-308. 

[35] M.C. Poirier, F.A. Beland, DNA adduct measurements and tumor incidence during chronic 

carcinogen exposure in rodents, Environ. Health Perspect. I 02 (Suppl 6) (1994) 161-165. 

[36] W.K. Lutz, Quantitative evaluation of DNA-binding data in vivo for low-dose extrapolations, 

Arch. Toxic. Suppl 10 (1987) 66-74. 

[37] W.K. Lutz, Dose-response relationship and low dose extrapolation in chemical carcinogenesis, 

Carcinogenesis 11 (1990) 1243-1247. 

[38] D.L.  Eaton,  E.P. Gallagher,  Mechanisms  of aflatoxin carcinogenesis,  Annu.  Rev. Pharmacol. 

Toxicol. 34 (1994) 135-172. 

[39] M. Schwarz, D. Pearson, A. Buchmann, W. Kunz. The use of enzyme-altered foci for risk 

assessment of hepatocarcinogens, in: C.C. Travis (Ed.), Biological Based Methods for Cancer Risk 

Assessment. Plenum, New York, 1988, pp. 31-39. 

[40] R. Peto, R. Gray, P. Brantom, P. Grasso, Effects of 4080 rats of chronic ingestion of N-nitrosodi 

ethylamine or N-nitrosodimethylamine: a detailed dose-response study, Cancer Res. 51 (1991) 

6415-6451. 




