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Abstract 

 

This study compares the relative performance of several well-known models in the forecasting of 

REIT volatility. Overall our results suggest that long-memory models (ARFIMA & FIGARCH) 

provide the best forecasts. Using either a large sample or some statistically justified small 

subsamples, we find that long memory models consistently outperform their short-memory 

counterparts (GARCH & Stochastic Volatility models) over a variety of forecast horizons. We 

also find that asymmetric models (EGARCH & FIEGARCH) are the worst performers among all 

models. Our study complements and extends a recent study of Cotter and Stevenson (2008) 

which demonstrates the usefulness of long-memory models in modeling REIT volatility. We 

conclude that in addition to modeling REIT volatility, long-memory models should also be 

adopted to forecast REIT volatility.  
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Introduction 

 

Real estate investment trusts (REITs) have evolved since the early 1990s to become an important 

asset class. As published by the National Association of Real Estate Investment Trusts 

(NAREIT), the market capitalization of real estate investment trusts (REITs) in the U.S. has 

grown from $8.7 billion in 1990, to $124.3 billion in 1999, and to $312 billion in 2007. 

Consequently, an increasing amount of research has been devoted to this asset class. In particular, 

substantial focus has been placed on analyzing the return characteristics of REITs and the 

relationship between REITs and the direct real estate markets and more broadly the capital 

market (e.g. Barkham and Geltner, 1995; Li and Wang, 1995; Ling and Naranjo, 1999; Liu et al. 

1990; Liu and Mei, 1992; Mei and Lee, 1994; Myer and Webb, 1994; Seiler et al.1999, etc.). In 

contrast, the literature on the volatility behavior of REIT returns remains very thin. Only a few 

papers have examined issues related to REIT volatility. For instance, Devaney (2001) studied the 

sensitivity of REIT returns and volatility to interest rates. Bredin et al. (2007) analyzed how 

unanticipated changes in the Fed Funds rates affect REIT volatility. Stevenson (2002) explored 

volatility spillovers across different REIT sectors and between REITs and the equity and fixed-

income sectors. Winniford (2003) investigated the seasonality in REIT volatility. Cotter and 

Stevenson (2006) examined the return and volatility linkages both within the REIT sectors and 

between REITs and mainstream equities. Cotter and Stevenson (2008) tested for the persistence 

or long memory in REIT volatility.  

 

An understanding of REIT volatility is very important to academics, policy makers, and 

investors. This is because volatility, as a measure of risk, plays a critical role in portfolio 
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diversification, derivatives pricing, hedging and financial risk management. REIT, due to its 

significant growth in market capitalization and trading volume, has received greater attention 

from security analysts and pension fund managers in the execution of their investment plans. For 

example, REIT has become a popular investment vehicle to be included in a well-diversified 

portfolio because of its improved liquidity and imperfect covariance with publicly traded equities 

and bonds (Chandrashekaran, 1999). Because expectations are always important for making 

investment decisions, the success of the aforementioned investment activities depends on our 

ability to correctly predict volatility. As will be discussed later, REIT volatility has been 

increasing over time with the most pronounced upswing occurring in recent years. In light of this, 

the need for accurate volatility forecasts is expected to be growing. REITs have long been 

considered to be an asset class that gains its popularity through stable return and low volatility. 

But such a perception has been impacted due to the recent bout of high volatility. Those 

investors that have traditionally invested in the REIT sector now face challenges of how to 

minimize their risks in the current climate. One important input to their decision making is 

precise forecasts of REIT volatility, which is the subject of this study.  

 

To our best knowledge, all existing studies have just concentrated on modeling REIT volatility. 

No one has yet attempted to forecast REIT volatility. This study aims to fill this void. 

Specifically, we want to identify, among a variety of models, which one is most appropriate to 

predict REIT volatility. The models examined here cover a varying degree of complexity, 

ranging from the GARCH-class models to the post-GARCH class of models. As for the 

GARCH-class models, we consider both a simple symmetric GARCH model and an asymmetric 

GRACH model (i.e. Exponential GARCH or EGARCH). Since the GARCH model has been 
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extensively used in the literature to model time-varying conditional volatility of financial time 

series, it is treated as the benchmark model in this study. In addition to the GARCH-class models, 

we also consider post-GARCH class of models including the stochastic volatility (SV), 

Fractionally Integrated GARCH (i.e. FIGARCH), Fractionally Integrated Exponentially GARCH 

(i.e. FIEGARCH), and Fractional Integrated ARMA (i.e. ARFIMA). The SV model, proposed by 

Taylor (1982, 1986), provides an alternative formalization of the time-varying conditional 

volatility in comparison to the GARCH-class models. It differs from GARCH in that it models 

the conditional volatility as an unobserved component following a stochastic process whereas 

GARCH restricts conditional volatility to be a deterministic function of lagged squared residuals 

and lagged conditional volatility. The SV model has been found to outperform GARCH models 

in some applied forecasting situations (see, for example, So et al., 1999 and Yu, 2002). Hence, it 

is worthwhile to investigate the relative merits of SV models in forecasting REIT volatility. 

Besides the SV model, we also include FIGARCH, FIEGARCH, and ARFIMA into our 

comparisons. These models are commonly referred to as long memory models in the financial 

economics literature because in these models the autocorrelation in volatility exists at significant 

levels and persists over long lags. In contrast, the autocorrelation exhibits a fast decay pattern in 

those aforementioned models (GARCH, EGARCH & SV). Hence these models are classified as 

short memory models. Long memory or persistence in volatility has been widely documented in 

the general financial literature and thus established as a stylized feature of asset volatility (see, 

for example, Anderson and Bollerslev, 1997a, 1997b; Baillie et al., 1996; Ding et al. 1993; 

Lobato and Savin, 1998). When it comes to the REIT sector, a recent study of Cotter and 

Stevenson (2008) confirmed that long-memory also exist in REIT volatility. Such a finding 

serves as further motivation for us to examine how long memory models fare in forecasting 
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REIT volatility. To this end, we consider three models—FIGARCH, FIEGARCH, and ARFIMA. 

These models have been found to have considerable success in capturing the long memory 

feature of financial volatility (e.g. Baillie et al. 1996, Bollerslev and Mikkelsson 1996, Granger 

and Joyeux 1980).  

 

To carry out the forecast comparisons, we use daily REIT total return indices obtained from 

FTSE for the period of 01/05/1999 to 04/30/2008. The forecasting accuracy is measured with 

traditional statistical criteria such as root mean squared error (RMSE) and mean absolute error 

(MAE). Six forecast horizons (1-, 5-, 10-, 15-, 20-, and 25-day-ahead) are tried. Overall our 

finding suggests that long memory models (ARFIMA & FIGARCH) outperform their short 

memory counterparts (GARCH & SV) in the forecasting of REIT volatility. More specifically, 

ARFIMA model provides the most accurate forecasts among all models. FIGARCH ranks 

second except at the 1-day horizon when it loses to SV. SV ranks third for all longer horizons (5-

day and beyond). Following SV is the fourth-ranked GARCH—the benchmark model in this 

study. Asymmetric volatility models (EGRACH & FIEGARCH) rank last. This pattern of 

ranking holds for both evaluation criteria. To check on the robustness of our findings, we divide 

the full sample into three subsamples based on statistically justified break points in the proxies of 

REIT volatility process. We then conduct REIT volatility forecasting for each subsample. The 

results from all three subsamples are strikingly consistent with those from the full sample. That is, 

ARFIMA is the best performer at all forecast horizons and FIGARCH is the second best except 

at the 1-day forecast in subsample I at which it gets beat by SV and GARCH.  So overall our 

study suggests that long memory models are superior to short memory models in predicting 

REIT volatility and this finding is independent of the sample size and forecast periods. The 
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success of long memory models can be attributed to their ability to approximate the true data 

generating process of REIT volatility. As Poon (2005) pointed out, the performance of a 

volatility model depends on the characteristics of empirical data that it tries to capture and 

predict. Given the strong evidence of long memory found for REIT volatility here and in Cotter 

and Stevenson (2008), we believe that long memory is a genuine feature of REIT volatility. This 

helps to explain the superiority of long memory models in forecasting REIT volatility.  

 

The reminder of this paper is organized as follows. The following section outlines the various 

models used to forecast REIT volatility. The third section presents the data. The empirical 

findings and their implications for financial practices are discussed in the fourth section. The 

final section concludes. 

 

Models for Forecasting REIT Volatility 

 

1. GARCH(p, q) Model 

 

In our analysis of forecasting REIT volatility, the benchmark model is the generalized 

autoregressive conditional heteroscedastic (GARCH) model proposed by Bollerslev (1986). 

GARCH models are particularly useful for modeling time-varying volatility and have been 

extensively used by both researchers and practitioners. It is well known that many financial time 

series display volatility clustering whereby volatility is likely to be high when it has recently 

been high and volatility is likely to be low when it has recently been low. GARCH models 

address the issue of volatility clustering by specifying the conditional variance to be linearly 
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dependent on the past behavior of the squared residuals and a moving average of past conditional 

variances. Specifically, a GARCH(p, q) model assumes a form of:  
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2. EGARCH(p, q) Model 

 

The exponential GARCH (i.e. EGARCH) model is built upon the GARCH model with an 

intention to capture the asymmetric impacts of good news and bad news on volatility. It is well 

believed that negative innovations to the return may generate higher volatility than positive 

innovations of the same magnitude. This asymmetric effect, also referred to as leverage effect, 

led Nelson (1991) to introduce the EGARCH model with a specific variable that distinguishes 

between good news volatility and bad news volatility. An EGARCH (p, q) model takes the 

following form:  
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where all variables and parameters are defined the same way as in the GARCH models, except 

that jB and iB  are backshift operators defined as: jt

j

t xBx  , and ))(()( 21 tttt Eg    

with 1  and 2  being new parameters.  

 

In the EGARCH (p,q) model, if 1 , the coefficient of t , is negative, then bad news shocks will 

have a greater impact on volatility than good news shocks of the same magnitude.  

 

3. Stochastic Volatility (SV) Model 

 

The stochastic volatility (SV) model developed by Taylor (1982, 1986) provides an alternative 

way to model time-varying conditional volatility. In contrast to the GARCH-type models which 

restrict the time-varying volatility to be deterministically dependent on past information, the SV 

model treats the volatility as an unobserved component that follows a stochastic process. 

Volatility by nature is stochastic. Besides the past information such as lagged squared residuals 

and lagged conditional variances, many other factors like economic information, political 

information, and investors’ behaviors would also affect volatility. Therefore, volatility is 

believed to contain some random components. The SV model explicitly includes an unobserved 

random shock into the characterization of the volatility dynamics and allows the volatility to 

follow some latent stochastic process. A basic stochastic volatility model is given below: 
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where all variables and parameters are defined the same way as in the GARCH models, except 
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that th is the logarithm of 2

t , t  is a white noise uncorrelated with t ,  is a constant,   is a 

parameter representing the persistence in the log-volatility of th , and  is the volatility of th . In 

this model, th is specified as a latent stochastic process and it follows a stationary process 

when 1 , and t  stands for the random shock occurring to the log-volatility process.  

 

The SV model is theoretically attractive but empirically challenging because the unobserved 

volatility process ( th ) enters the model in a non-linear fashion which leads to the likelihood 

function without a closed-form solution (for a detailed discussion, see Ghysels et al. 1996 and 

Shephard 1996). A number of methods have been proposed to estimate the SV model. Such 

methods include quasi-maximum likelihood (QML) (Ruiz, 1994), simulated maximum 

likelihood (SML) (Danielsson, 1994), generalized method of moments (GMM) (Andersen and 

Sorensen, 1996), and Markov Chain Monte Carlo (MCMC) (Kim et al, 1998). The various 

methods differ in ease and speed of estimation. In this study, the MCMC method is chosen 

because it is simple to implement and reliable. We use the MCMC method to estimate the 

parameters (  , ,  ) and filter the unobserved volatility T

tt 1

2}{  . Given the estimates—( ̂ ,̂ , 

̂ ) and T
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4.    FIGARCH(p,q) Model  

 

As mentioned earlier, it has become a stylized fact that many financial time series display high 

persistence in their volatility. The autocorrelation in various measures of volatility exist at 
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significant levels and persists over long lags. This property, also referred to as long memory in 

volatility, has been extensively documented in the financial economics literature (e.g. Anderson 

and Bollerslev, 1997a, 1997b; Baillie et al. 1996; Ding et al. 1993; Lobato and Savin, 1998). A 

recent study of Cotter and Stevenson (2008) also found strong evidence for long memory in 

REIT volatility. Therefore, it is worthwhile to explore whether long memory models produce 

better forecasts than the baseline GARCH model. To this end, the Fractionally Integrated 

GARCH (i.e. FIGARCH) model proposed by Baillie et al.  (1996) is used here. A FIGARCH(p,q) 

model can be written as:  
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where all variables and parameters are defined the same way as in the GARCH models, except 

jB and iB are backshift operators defined as: jt

j

t xBx  , and d is the fractional differencing 

parameter.  

 

The FIGARCH(p,q) model captures the long memory feature of financial volatility through the  

fractional differencing parameter (d). As shown in Baillie et al.(1996), for 10  d  the 

conditional volatility— 2

t  will decay at a slow hyperbolic rate which is a typical symptom of 

long memory.  

 

5.   FIEGARCH(p,q) Model 

 

The FIGRACH model can be easily expanded to allow for asymmetric effects of good and bad 
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news on volatility. The resulting model is called Fractionally Integrated Exponential GARCH (i.e. 

FIEGARCH). The FIEGARCH model was first proposed by Bollerslev and Mikkelsson (1996).  

A FIEGARCH(p,q)  model  is given below:  
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where all variables and parameters are defined the same way as in the FIGARCH models, except  

d now is a real number in (-0.5, 0.5), and ))(()( 21 tttt Eg    with 1  and 2  being 

new parameters. As in the EGARCH model, 1  measures the leverage effect. It is worth noting 

that in contrast to FIGARCH, d here does not have to satisfy any nonnegative constraint in order 

to capture the long memory feature. As pointed out by Bollerslev and Mikkelsen (1996), d only 

needs to satisfy: 1d but 0d . Note that 0d  implies the conventional EGARCH.  

 

6. ARFIMA Model 

 

The Fractionally Integrated ARMA (i.e. ARFIMA) model, introduced by Granger and Joyeux 

(1980) and Hosking (1981), presents a parametric alternative to modeling long-memory for 

financial time series. ARFIMA models originate from ARMA models and extend the ARMA 

models by introducing a fractional differencing parameter to account for the high persistence in 

time series. A prototypical ARFIMA model is given below:   
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where ty  is the value of a financial time series at time t , d is the fractional differencing parameter, 

p

pBBB   11)( and q

pBBB   11)( are the autoregressive and moving 

average polynomials in the lag operator B respectively, and t  is white noise.  

 

The properties of the ARFIMA process depend on the value of the differencing parameter d.  

The process is stationary and invertible if 5.0d  while it becomes non-stationary if 5.0d as 

it has infinite variance. When 5.0d , the process is said to exhibit (i) long memory or long-

range dependence if 5.00  d ; (ii) anti-persistence or long-range negative dependence 

if 05.0  d ; and (iii) short memory if 0d  (in this case, ARFIMA reduces to ARMA). The 

parameters of the ARFIMA model can be estimated by exact maximum likelihood (Sowell, 1992) 

and the k-step ahead forecasts of ty  can be computed from the AR representation of the process 

(see Brockwell and Davis, 1991).  

 

The ARFIMA model differs from the FIGARCH and FIEGARCH models in that it is a 

conditional mean model in which only one equation is specified while for FIGRACH and 

FIEGARCH two equations are specified (one for the mean and the other for the variance). So in 

order for ARFIMA to be used to model the volatility process, the common practice is to first 

generate a measure of volatility and then plug it into the equation (namely, replaces ty ). For this 

purpose, we employ a popular measure of volatility—the squared returns of REITs. Apparently, 

this modeling strategy is different than that of the GARCH-type models in which the volatility is 

treated as unobserved and estimated from the asset returns.  
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Data 

 

The data for this study consists of daily total return indices (including dividends) for REIT. The 

data set is obtained from FTSE and covers the period from 01/05/1999 to 04/30/2008 with a total 

of 2363 observations. The daily total return indices are transformed into continuously 

compounded rates of returns, )/ln(100 1 ttt SSr , where tS is the end-of-day closing total return 

index and 1tS is the previous end-of-day closing index.  

 

Figure 1 presents the time-series plot of daily returns. As shown in the figure, the returns are 

time varying with volatility clusters. It is also quite apparent that the volatility of REITs returns 

has been increasing over the sample period. Several factors are thought to contribute to the 

noticeable upswing in REIT volatility. One is the introduction of REIT-based derivatives. As 

Horng and Wei (1999) noted, we have witnessed increasing uses of derivatives in the REIT 

market in the last decade.
1
 These new financial tools have since been utilized by hedge funds and 

day traders to make profits. When they short-sell a stock or bet heavily on a company, the price 

of REITs can fluctuate greatly. As a result, we observe increased volatility. Two is the growth in 

the trading volume of REITs since 1990s. In the literature growing volume has been seen as an 

important driver for the increasing volatility. Lamoureux and Lastrapes (1990) explained that 

trading volume of stocks reflects the dependence in information flows to the market that feeds 

directly into price volatility. Cotter and Stevenson (2008) endorsed this point for the REIT 

market. Finally, as well documented in the literature (e.g. Nelson, 1989), the volatility of 

securities returns is also related to macroeconomic fluctuations in a way that high volatility 

usually occurs during economic downturns. As shown in Figure 1, the highest volatility arises 
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towards the end of data sample. Obviously, this is caused by the ongoing subprime mortgage 

crisis and the consequent global financial crisis which is widely believed to dwarf any financial 

crises since World War II.  

 

Table 1 reports some descriptive statistics of daily REIT returns. During the study period, REIT 

generates a positive average return of 0.00049. The average return is very close to the median 

return. But the standard deviation of 1.04 is much higher. The REIT returns display some 

evidence of skewness and kurtosis. They are skewed slightly to the right, suggesting that positive 

returns are more likely to occur than negative returns. REIT returns also show significant excess 

kurtosis, indicating the presence of fatter tails in comparison with the standard normal 

distribution. A comparison between the density of REIT returns and normal distribution is 

displayed in Figure 2.
2
    

 

Empirical Results 

 

In order to evaluate the accuracy of forecasts produced by the different models, two popular 

measures—root mean square error (RMSE) and mean absolute error (MAE) are used. The two 

measures are defined as follows:  
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where 2̂ is the forecast of volatility, 2  is the true volatility, M is the total number of forecasts.   
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In practice, the true volatility ( 2 ) is unobserved. It remains an ongoing debate regarding the 

appropriate proxy of 2 with which to evaluate the forecasting performance for different models. 

In the empirical literature, some studies (e.g. Evans and McMillan, 2007; Yu, 2002) simply used 

the pre-estimated volatility from a model to proxy 2  and then plugged in the forecasts ( 2̂ ) 

from the same model to compute RMSE and MAE. This practice is problematic because 

different models could lead to different proxies of 2 . To avoid this problem, we adopt the 

method of Gospodinov et al. (2006) in which 2  is proxied by realized volatility (RV) and 

historical volatility (HV) calculated from REIT returns. By doing so, the forecasts from different 

models are compared to a common 2 . Following their method, we construct a rolling sample for 

realized volatility from overlapping data using the expression  
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For example, the first sample point of realized volatility is computed as a sample average of the 

squared REIT returns from observation 2 to observation 23; the second sample point of realized 

volatility uses data from observation 3 to observation 24 etc. The historical volatility is 

constructed in a similar fashion using expression 
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As a preliminary step to forecast REIT volatility, we need to determine p and q in the 

GARCH(p,q), EGARCH(p,q), FIGARCH(p,q), FIEGARCH(p,q), and ARFIMA(p,d,q) models. 

To this end, we experiment with different orders of p and q for each model using the full data 

sample (01/05/1999-04/30/2008). The estimation results are presented in Table 2 and 3.
3
 As 
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shown in the tables, there are only slight differences in the values of likelihood function. 

Therefore, the need for choosing the most parsimonious model leads us to pick GARCH(1,1), 

EGARCH(1,1), FIGARCH(1,1), FIEGARCH(1,1) and ARFIMA (1,d,1) to perform forecasting. 

In practice, these parsimonious models have been found to be adequate in many applications. For 

example, Bollersev (1986) reported that GARCH(1,1) is an appropriate model to characterize the 

volatility behavior for the general U.S. stock market. In the REIT literature, Stevenson (2002), 

Cotter and Stevenson (2006), Jirasakuldech et al. (2009) showed that GARCH(1,1) is adequate to 

model REIT volatility. Cotter and Stevenson (2008) also used FIGARCH(1,1) and 

FIEGARCH(1,1) to model the persistence in REIT volatility. 

 

Once the appropriate orders for the models are determined, we need to choose a period for 

estimating the parameters and a period for predicting volatility. In this paper, we estimate the 

models using a fixed window size of 2100 observations. The estimation period is then rolled 

forward by adding one new day and dropping the most distant day. In this way, the sample size 

used in estimating the models stays at a fixed length and the forecasts do not overlap. For 

instance, to produce the first 1-day ahead forecast, the first 2100 observations (01/05/1999 to 

04/30/2007) of the data sample is used. By doing so, the first 1-day ahead forecast is obtained for 

05/01/2007. As the window is rolled over, the models are re-estimated and sequential 1-day 

ahead forecasts are made. At the end, we generate a total of 250 1-day ahead forecasts ranging 

from 05/01/2007 to 04/11/2008.
4
 Forecasts for longer horizons (5-, 10-, 15-, 20-, and 25-day) are 

produced in a similar fashion.
5 
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The focus of the paper is the evaluation of forecasts from the models. Table 4 reports the 

evaluation results based on the full sample. Six forecast horizons (1-, 5-, 10-, 15-, 20-, and 25-

day) are tried. We first look at Panel A where realized volatility (RV) is used as the proxy for the 

true volatility. By defining the best forecast as having the minimum RMSE and MAE statistics, 

we find that among all models, ARFIMA model provides the best forecasts for REIT volatility 

over all forecast horizons and for both evaluation criteria. FIGARCH ranks second except at the 

1-day horizon when it loses to SV. SV ranks third for all longer horizons. Following SV is the 

fourth-ranked GARCH which is our benchmark model. This leaves the asymmetric models 

(EGRACH & FIEGARCH) to be the worst performers. The same pattern of models’ ranking 

holds in Panel B where historical volatility (HV) is used as the proxy for the true volatility. As 

shown there, the dominance of long memory models is well observed except for the 1-day 

forecast when SV barely beats FIGARCH but not ARFIMA.  

 

 

Interested readers may notice that our data sample spans from 1999 to 2008. As discussed in the 

data section, this is a long period during which REIT volatility has experienced dramatic changes. 

As such, a question may arise: how the long memory models fare if we use a small data sample 

and consequently forecast for a different period?
6
 To answer such a question, we first need to 

define the small sample. For this purpose, we resort to structural breaks. It is well known that 

structural breaks may take place in the REIT market. A number of studies have been devoted to 

the examination of occurrence of structural breaks in the REIT sector. See, for example, Chui et 

al. (2003), Ewing and Payne (2005), Jirasakuldech et al. (2009), Kim et al. (2007), and Okunev 

et al. (2000). If structural breaks did occur, we could divide the full sample into several 
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subsamples based on the estimated break dates. By doing so, we can investigate how the long 

memory models fare in the presumably small subsamples.   

 

To explore the occurrence of structural breaks in REIT volatility, we adopt the procedure 

proposed by Bai & Perron (1998). This procedure is designed to detect and locate multiple 

breaks points with unknown break dates for time series models.  As shown in Bai & Perron 

(1998), their procedure is capable of producing consistent estimates of the break dates and can 

successively estimate each break point.  This is a distinctive advantage over other methods (e.g. 

Liu et al. 1997). Empirical applications of the procedure (e.g. Bai and Perron, 2003 and Zeileis et 

al. 2007) have met with considerable success. Thanks to Zeileis et al. (2007), the procedure can 

now be easily implemented in R. Here we apply the procedure to the series of realized volatility 

(RV) which by construction proxies the true volatility ( 2 ). The results indicate two break 

points: 6/7/2002 and 5/11/2006.
7
 Generally speaking, the two break points correspond 

approximately to some well known events that cause volatile market conditions: the technology 

bubbles that got started during 2002 and then caused great turbulence in the equity market, and 

the onset of the ongoing subprime mortgage crisis. Based on the two break points, we divide the 

full sample (1/5/1999-4/30/2008) into three subsamples: subsample I (1/5/1999-6/7/2002), 

subsample II (6/8/2002-5/11/2006), and subsample III (5/12/2006-4/30/2008). We then forecast 

REIT volatility based on the three subsamples. Except for a smaller size of the rolling window 

the forecasting methodology for each subsample is similar to the one used for the full sample. 

The forecasting results based on the three subsamples are presented in Table 5-7.
8
 As can be seen 

there, barring the 1-day forecast from subsample I long memory models always produce the best 

forecasts for REIT volatility. This is consistent with our findings from the full sample. So 

http://en.wikipedia.org/wiki/Subprime_mortgage_crisis
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generally speaking, our paper suggests that the long memory models outperform their short 

memory counterparts in the forecasting of REIT volatility.  

 

The reason for the superiority of long memory models in predicting REIT volatility can be 

attributed to their ability to approximate the true data generating process. As Poon (2005) 

pointed out, the success or failure of volatility models depends on the characteristics of empirical 

data that they try to capture and predict. In other words, the models which best describe the true 

data generating process of REIT volatility should produce the most accurate forecasts. Given the 

strong evidence of long memory found for REIT volatility here and in Cotter and Stevenson 

(2008), we believe that long memory is a genuine property of REIT volatility. This helps to 

explain the above findings. However, it is worth noting that when the forecast horizon is short 

(i.e.1-day) long memory models do not necessarily generate better forecasts than their short 

memory counterparts. This can be seen in Table 4 &5. The reason is that the strength of long 

memory models lies in its ability to capture long term dependence in volatility and such a  

strength may not factor into short-term forecasts. And yet we are not the only one to report such 

a finding. For instance, Zumbach(2004) generates only 1-day ahead volatility forecasts for the 

USD/CHF exchange rates and finds no difference among the performance of GARCH and 

FIGRACH models.   

 

The findings of this study have important implications for financial practices because volatility is 

a critical input to many investment decisions. First, it helps to improve portfolio diversifications. 

For many portfolio managers, they have certain levels of risk which they can bear. Good 

forecasts of the volatility of asset returns over the investment holding period are key to assessing 

investment risks. The longer the holding period, the more benefits of portfolio allocations may 
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receive from using long memory models to forecast REIT volatility. The assessment of 

investment risks becomes more relevant considering the recent turbulence in the REIT market. 

As mentioned earlier, REITs have traditionally been considered one of the less volatile 

investment vehicles. Their income-producing and diversification attributes have added to their 

popularity in long term investments such as retirement plans, in part serving as a dampener for 

the total portfolio’s level of volatility. However, the recent increase of REITs volatility could 

lessen their appeal in this regard. Those long-term investors that have traditionally invested in 

the REIT sector now seek to reevaluate the weight of REITs in their portfolios.  One important 

factor affecting their decision making is precise forecasts of REIT volatility, which is the subject 

of this study.  

 

In addition to the portfolio diversification, our findings are also beneficial to the implementation 

of derivative pricing and hedging. Volatility is the most important variable in derivative pricing 

(Poon and Granger, 2003). For example, the well known Black-Scholes formula indicate that the 

pricing of a U.S. call option is a function of volatility. To price an option, we need to predict the 

volatility of the underlying asset from now until the option expires. The long memory models 

better fit this need than their short-memory counterparts. Actually, some attempts have been 

made to incorporate volatility long memory into derivative pricing for the stock market (e.g. 

Bollerslev and Mikkelsen, 1996 & 1999). Their analyses suggest that the average pricing errors 

from long memory models are less than those from short memory models, especially over 

moderate to long maturity times. The incorporation of long memory into the pricing of REIT-

based derivatives has become more important because, as we mentioned earlier, a significant 

number of REIT-based derivatives have hit the market in the last decade. Since hedging is the 
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most basic use of derivatives, it is natural to take account of volatility long memory in the 

estimation of optimal hedging ratios. A report of NAREIT-Features (May/June 2007) delineates 

some interesting cases in which the REIT-based derivatives can be used to manage risks. For 

instance, pension and hedge funds can use the derivatives to hedge either property type or 

geographic risk, or to achieve for portfolio diversification that's easier and less costly than direct 

real estate investment. Lenders, such as banks and insurance firms can use the derivatives to 

guard against downside risk on their loan portfolios. Finally, our findings could also lead to 

improved decision making for financial risk management. Since the establishment of the Basel 

Committee and Banking Supervision (1996), financial risk management has been assuming 

increasing importance. Financial institutions like banks are required to put aside a sufficient 

amount of capital as a cushion against adverse market movements. The amount of capital is 

usually measured by Value-at-Risk (VaR) which is defined as the maximal loss of a financial 

position during a given time period for a given probability. Computations of VaR require 

volatility forecasts. As such, accurate volatility forecasting just becomes a compulsory risk-

management excise for many financial institutions.  

 

Conclusions 

 

As a consequence of significant growth in market capitalization and trading volume, REIT has 

recently become a more important asset class that warrants greater attention from practitioners, 

policy makers, and academics. In contrast to the extensive literature on the return behavior of 

REIT, only a few papers examine REIT volatility and even worse none of them have yet 

attempted to identify the best model to forecast REIT volatility. This study attempts to fill the 
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gap. With the increasing REIT volatility in recent years, the need for precise forecasts of REIT 

volatility is expected to be growing as many investors seek to reevaluate the REITs’ place in 

their investment plans.  

 

In this study, using a large sample of daily data from FTSE we compare the performance of six 

alternative models for forecasting REIT volatility. The competing models include both short-

memory models such as GARCH, EGARCH and SV models and long-memory models such as 

FIGARCH, FIEGARCH and ARFIMA models. Overall our findings suggest that the long-

memory models (ARFIMA & FIGARCH) dominate over their short-memory counterparts 

(GARCH & SV) in forecasting REIT volatility over a variety of forecast horizons and the 

asymmetric models (EGARCH & FIEGARCH) are not very useful for predicting REIT volatility.  

The same findings hold when we conduct the forecasting based on small subsamples defined by 

statistically justified break points in the proxies of REIT volatility process. Based on these 

findings, we conclude that the long-memory models should be used not only to model REIT 

volatility, as argued by Cotter and Stevenson (2008), but also to forecast volatility. Since 

volatility forecasts are important inputs to portfolio selections, derivative pricing and hedging, 

and financial risk managements, our findings have important implications for these financial 

activities. 
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Notes:  

 

1. For instance, in February 2007 the Chicago Board of Trade launched its new futures contract 

based on the Dow Jones U.S. Real Estate Index (DJUSRE). As of March 31, 2007, the DJUSRE 

Index included 91 constituents, of which 85 were REITs. The DJUSRE Index futures contract 

trades electronically six days a week, and has a value equal to 100 multiplied by the value of the 

DJUSRE. 

 

2. The distribution of REIT returns is estimated using the Kernel density estimation method.   

 

3. In this paper, we use the Ox software to estimate the models and perform the forecasting. 

 

4. The forecast period ends on 04/11/2008. Due to the construction method, the last RV that can 

be generated is for 04/11/2008, which is 22 days prior to 04/30/2008, the ending date of our data 

sample.  

 

5. There are only 246 5-day ahead forecasts (05/04/2007-04/11/2008) because the first forecast 

we can obtain is for 05/04/2007. It occurs when the rolling window is fixed at the first 2100 

observations (01/05/1999 to 04/30/2007). In a similar reasoning, for 10-, 15-, 20-, and 25-day 

horizons, we generate 241, 236, 231, and 226 forecasts, respectively.  

 

6. We are indebted to an anonymous reviewer for bringing attention to this point.  
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7. Applying this procedure to the historical volatility (HV) also yields two break points—

6/7/2002 and 5/11/2006. Compared with the two break points generated from realized volatility 

(RV), the first one is very close and the second one is actually the same. 

 

8. Using the three subsamples defined by the two break points generated from the historical 

volatility (HV), we obtain very similar forecasting results. To conserve space, they are not shown 

here but are available upon request. 
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Table 1 Descriptive statistics of daily REIT returns  

 
 
 

                   Mean                                                   0.00049                                                          

                   Median                                          0.00051                                                          

                   Variance                                                1.07754        
 

                   Standard Deviation                                1.03805    

                   Skewness                                               0.02270                                                                                                                                                   

                   Kurtosis                                                  5.33180                                                                                                                     

                   Maximum                                              0.08058                                  

                   Minimum                                            -0.05611 

                   Range                                                        0.13669                          

      
Notes: This table reports the summary statistics for daily REIT returns from 01/05/1999 to 04/30/2008. The 

skewness and kurtosis statistics have a value of zero for a normal distribution  

 

 

 

 

Table 2 Experimentations with different orders of p and q for the GARCH-related Models 
 
 

Models                0              1            2            1            2           1             2            d̂           Likelihood 

 
GARCH(1,1)       0.000002        0.136                            0.850                                                                                     7887.1 

                           (0.000001)      (0.019)                         (0.019)              

 

GARCH(2,1)       0.000002       0.183         -0.067         0.872                                                                                     7888.8 

                           (0.000001)     (0.035)       (0.039)       (0.021)              

                       
GARCH(1,2)       0.000003       0.201                            0.214          0.563                                                                   7891.0 

                           (0.000001)     (0.027)                         (0.101)       (0.096)         

 
GARCH(2,2)      0.000004        0.171         0.077          -0.055         0.781                                                                   7892.4 
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                           (0.000001)     (0.023)      (0.025)        (0.041)      (0.034)           

 
EGARCH(1,1)      9.590          -0.036                            0.921                          -0.063         0.371                                7830.6                      

                            (0.184)         (0.134)                          (0.008)                        (0.022)       (0.501) 

  

EGARCH(2,1)      9.290          -0.325         0.360          0.913                         -0.056          0.374                                7829.1                                                                                                     

                             (0.167)        (0.149)       (0.140)        (0.10)                         (0.022)       (0.050) 

 

EGARCH(1,2)      7.601         -0.742                            -0.004         0.838       -0.062          0.392                                7831.9      

                            (0.194)        (0.135)                           (0.060)       (0.054)     (0.022)        (0.040) 

 

EGARCH(2,2)     9.182          -0.285          0.354          0.874         0.035        -0.056         0.374                                7829.1       

                            (0.289)         (0.411)       (0.145)        (0.361)      (0.331)      (0.022)       (0.050) 

 

FIGARCH(1,1)  0.000002       0.290                             0.624                                                                0.504              7894.1                                    

                          (0.000001)    (0.071)                           (0.089)                                                            (0.093)          

 

FIGARCH(2,1)  0.000004       0.062         -0.103          0.331                                                                0.443              7895.3                                  

                          (0.000002)    (0.220)       (0.058)        (0.270)                                                             (0.080)          

 
FIGARCH(1,2)  0.000005       -0.352                           -0.067        0.226                                               0.459              7896.0                               

                          (0.000002)     (0.299)                          (0.316)      (0.850)                                            (0.078)          

 
FIGARCH(2,2)  0.000005       -0.657        0.206          -0.328        0.546                                               0.503              7897.6                              

                          (0.000002)     (0.075)      (0.073)        (0.096)      (0.091)                                            (0.091)          

 
FIEGARCH(1,1)  5.837         -0.026                            0.931                          -0.078          0.352         -0.048              7850.6         

                            (0.157)         (0.136)                         (0.009)                        (0.023)        (0.049)       (0.011) 

 
FIEGARCH(2,1)  5.492         -0.303          0.352         0.922                          -0.075          0.355         -0.048              7848.5      

                            (0.128)        (0.150)       (0.142)       (0.010)                        (0.021)        (0.048)       (0.008) 

  
FIEGARCH(1,2)  4.418        0.772                              0.013         0.864        -0.080          0.376         -0.053               7858.4       

                             (0.130)      (0.138)                          (0.065)       (0.060)      (0.021)        (0.039)       (0.008) 

 
FIEGARCH(2,2)  4.932         0.085          0.316          0.574         0.322        -0.074          0.352         -0.049               7849.1         

                             (0.148)      (0.411)       (0.168)       (0.326)       (0.303)      (0.021)        (0.048)       (0.008) 

      
Notes: This table reports the estimation results obtained by trying different orders of p an q for various 

GARCH-related models using the full data sample (01/05/1999-04/30/2008). The numbers in parentheses are 

standard errors of the estimated coefficients.    

 

 

 

 

Table 3 Experimentations with different orders of p and q for the ARFIMA Model 

 
 
 

Models                                1                    2                   1                    2                    d̂                 Likelihood 

 
ARFIMA(1,d,1)                    0.254                                           -0.611                                          0.409                   16054.7          

                                            (0.047)                                             (0.058)                                      (0.045)  

 

ARFIMA(2,d,1)                    -0.081                 -0.129               -0.200                                          0.340                   16057.1          

                                            (0.193)                  (0.049)              (0.223)                                        (0.039) 
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ARFIMA(1,d,2)                   -0.379                                             0.067               -0.237                 0.370                  16058.6         

                                            (0.185)                                           (0.198)              (0.057)              (0.040) 

 

ARFIMA(2,d,2)                   -0.703                  0.179                  0.367               -0.533                0.370                   16061.5         

                                            (0.059)                 (0.056)                (0.071)             (0.071)              (0.040) 

 

Notes: This table reports the estimation results obtained by trying different orders of p an q for ARFIMA 

model using the full data sample (01/05/1999-04/30/2008). The numbers in parentheses are standard errors of 

the estimated coefficients.    

 

 

 

 

 

Table 4 Evaluations of REIT volatility forecasts based on the full sample 
 

                  Forecast Horizons 

Models   1-day    5-day   10-day   15-day    20-day   25-day 

 

Panel A: realized volatility (RV) as proxy 

 

I. RMSE as the evaluation criterion 

GARCH(1,1) 0.0065(4) 0.0073(4) 0.0084(4) 0.0095(4) 0.0106(4) 0.0117(4) 

EGARCH(1,1) 0.0079(6) 0.1167(5) 0.4431(5) 0.7235(5) 0.9372(5) 0.9384(5) 

SV 0.0058(2) 0.0062(3) 0.0068(3) 0.0074(3) 0.0080(3) 0.0086(3) 

FIGARCH(1,1) 0.0061(3) 0.0061(2) 0.0066(2) 0.0070(2) 0.0073(2) 0.0078(2) 

FIEGARCH(1,1) 0.0075(5) 0.1631(6) 0.7936(6) 1.5575(6) 2.0645(6) 2.2901(6) 

ARFIMA(1,d,1) 0.0057(1) 0.0059(1) 0.0061(1) 0.0064(1) 0.0067(1) 0.0070(1) 

       

II. MAE as the evaluation criterion 

GARCH(1,1) 0.0054(4) 0.0061(4) 0.0071(4) 0.0084(4) 0.0096(4) 0.0109(4) 

EGARCH(1,1) 0.0064(6) 0.1156(5) 0.4426(5) 0.7233(5) 0.9372(5) 0.9384(5) 

SV 0.0048(2) 0.0052(3) 0.0057(3) 0.0064(3) 0.0070(3) 0.0076(3) 

FIGARCH(1,1) 0.0049(3) 0.0051(2) 0.0055(2) 0.0059(2) 0.0064(2) 0.0067(2) 

FIEGARCH(1,1) 0.0060(5) 0.1616(6) 0.7926(6) 1.5571(6) 2.0643(6) 2.2898(6) 

ARFIMA(1,d,1) 0.0047(1) 0.0050(1) 0.0051(1) 0.0054(1) 0.0057(1) 0.0060(1) 

 

Panel B: historical volatility (HV) as proxy 

 

I. RMSE as the evaluation criterion 

GARCH(1,1) 0.0039(4) 0.0049(4) 0.0064(4) 0.0083(4) 0.0101(4) 0.0116(4) 

EGARCH(1,1) 0.0072(6) 0.1171(5) 0.4436(5) 0.7234(5) 0.9375(5) 0.9386(5) 

SV 0.0032(2) 0.0039(3) 0.0051(3) 0.0063(3) 0.0074(3) 0.0083(3) 

FIGARCH(1,1) 0.0038(3) 0.0038(2) 0.0049(2) 0.0059(2) 0.0067(2) 0.0074(2) 

FIEGARCH(1,1) 0.0068(5) 0.1635(6) 0.7941(6) 1.5579(6) 2.0649(6) 2.2904(6) 

ARFIMA(1,d,1) 0.0029(1) 0.0033(1) 0.0041(1) 0.0050(1) 0.0059(1) 0.0065(1) 
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II. MAE as the evaluation criterion 

GARCH(1,1) 0.0031(4) 0.0041(4) 0.0059(4) 0.0076(4) 0.0092(4) 0.0106(4) 

EGARCH(1,1) 0.0059(6) 0.1163(5) 0.4432(5) 0.7238(5) 0.9375(5) 0.9386(5) 

SV 0.0024(2) 0.0032(3) 0.0044(3) 0.0055(3) 0.0065(3) 0.0073(3) 

FIGARCH(1,1) 0.0030(3) 0.0031(2) 0.0041(2) 0.0050(2) 0.0057(2) 0.0063(2) 

FIEGARCH(1,1) 0.0055(5) 0.1623(6) 0.7931(6) 1.5575(6) 2.0646(6) 2.2901(6) 

ARFIMA(1,d,1) 0.0023(1) 0.0026(1) 0.0033(1) 0.0042(1) 0.0050(1) 0.0056(1) 

 
Notes: This table evaluates the performance of different models in the forecasting of REIT volatility based on the full 

sample (01/05/1999-04/30/2008). The forecast period is 05/01/2007 to 04/11/2008 and a fixed rolling window of 2100 

observations is used. RMSE is root mean square error. MAE is mean absolute error. The numbers in parentheses are the 

relative ranking of each model for the corresponding evaluation criterion.     
 

 

 

 

Table 5 Evaluations of REIT volatility forecasts based on subsample I 
 

                                   Forecast Horizons 

Models    1-day     5-day      10-day      15-day     20-day     25-day 

 

Panel A: realized volatility (RV) as proxy 

 

I. RMSE as the evaluation criterion 

GARCH(1,1) 0.0052(3) 0.0067(4) 0.0078(4) 0.0081(4) 0.0081(4) 0.0086(4) 

EGARCH(1,1) 0.3818(5) 0.9976(5) 0.9929(5) 0.9928(5) 0.9927(5) 0.9924(5) 

SV 0.0049(2) 0.0049(3) 0.0055(3) 0.0059(3) 0.0059(3) 0.0064(3) 

FIGARCH(1,1) 0.0234(4) 0.0031(2) 0.0036(2) 0.0037(2) 0.0037(2) 0.0040(2) 

FIEGARCH(1,1) 0.5744(6) 1.3289(6) 1.2404(6) 1.2058(6) 1.1835(6) 1.1670(6) 

ARFIMA(1,d,1) 0.0034(1) 0.0029(1) 0.0034(1) 0.0036(1) 0.0036(1) 0.0039(1) 

       

II. MAE as the evaluation criterion 

GARCH(1,1) 0.0040(3) 0.0775(4) 0.0838(4) 0.0849(4) 0.0855(4) 0.0875(4) 

EGARCH(1,1) 0.3817(5) 0.9988(5) 0.9964(5) 0.9964(5) 0.9963(5) 0.9962(5) 

SV 0.0037(2) 0.0630(3) 0.0656(3) 0.0665(3) 0.0667(3) 0.0692(3) 

FIGRACH(1,1) 0.0078(4) 0.0455(2) 0.0469(2) 0.0483(1) 0.0483(2) 0.0506(2) 

FIEGARCH(1,1) 0.5744(6) 1.1528(6) 1.1137(6) 1.0981(6) 1.0879(6) 1.0803(6) 

ARFIMA(1,d,1) 0.0021(1) 0.0432(1) 0.0459(1) 0.0483(1) 0.0478(1) 0.0502(1) 

 

Panel B: historical volatility (HV) as proxy 

 

I. RMSE as the evaluation criterion 

GARCH(1,1) 0.0035(3) 0.0056(4) 0.0059(4) 0.0060(4) 0.0059(4) 0.0058(4) 

EGARCH(1,1) 0.3825(5) 0.9981(5) 0.9941(5) 0.9941(5) 0.9942(5) 0.9943(5) 

SV 0.0034(2) 0.0038(3) 0.0034(3) 0.0034(3) 0.0033(3) 0.0032(3) 

FIGARCH(1,1) 0.0234(4) 0.0013(2) 0.0014(2) 0.0014(2) 0.0014(2) 0.0014(2) 

FIEGARCH(1,1) 0.5752(6) 1.3295(6) 1.2416(6) 1.2072(6) 1.1850(6) 1.1689(6) 

ARFIMA(1,d,1) 0.0012(1) 0.0010(1) 0.0012(1) 0.0013(1) 0.0013(1) 0.0015(1) 
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II. MAE as the evaluation criterion 

GARCH(1,1) 0.0031(3) 0.0738(4) 0.0762(4) 0.0766(4) 0.0763(4) 0.0753(4) 

EGARCH(1,1) 0.3825(5) 0.9991(5) 0.9970(5) 0.9971(5) 0.9971(5) 0.9972(5) 

SV 0.0029(2) 0.0583(3) 0.0553(3) 0.0550(3) 0.0541(3) 0.0528(3) 

FIGARCH(1,1) 0.0065(4) 0.0321(2) 0.0335(2) 0.0341(2) 0.0344(2) 0.0354(2) 

FIEGARCH(1,1) 0.5752(6) 1.1530(6) 1.1143(6) 1.0987(6) 1.0886(6) 1.0812(6) 

ARFIMA(1,d,1) 0.0010(1) 0.0287(1) 0.0310(1) 0.0332(1) 0.0337(1) 0.0347(1) 

 
Notes: This table evaluates the performance of different models in the forecasting of REIT volatility based on 

subsample I (01/05/1999-06/07/2002). The forecast period is 06/07/2001 to 06/07/2002 and a fixed rolling window 

of 612 observations is used. RMSE is root mean square error. MAE is mean absolute error. The numbers in 

parentheses are the relative ranking of each model for the corresponding evaluation criterion.  
 

 

 

 

Table 6 Evaluations of REIT volatility forecasts based on subsample II 
 

                                 Forecast Horizons 

Models     1-day       5-day       10-day      15-day       20-day       25-day 

 

Panel A: realized volatility (RV) as proxy 

 

I. RMSE as the evaluation criterion 

GARCH(1,1) 0.0030(4) 0.0055(4) 0.0059(4) 0.0069(4) 0.0077(4) 0.0084(4) 

EGARCH(1,1) 0.0126(6) 0.2985(6) 0.7440(6) 0.9242(5) 0.9732(5) 0.9852(5) 

SV 0.0025(3) 0.0044(3) 0.0044(3) 0.0046(3) 0.0049(2) 0.0051(3) 

FIGARCH(1,1) 0.0018(2) 0.0033(2) 0.0031(2) 0.0029(2) 0.0028(1) 0.0025(2) 

FIEGARCH(1,1) 0.0099(5) 0.2674(5) 0.7407(5) 0.9705(6) 1.0395(6) 1.0548(6) 

ARFIMA(1,d,1) 0.0014(1) 0.0032(1) 0.0029(1) 0.0027(1) 0.0027(1) 0.0024(1) 

       

II. MAE as the evaluation criterion 

GARCH(1,1) 0.0658(4) 0.0697(4) 0.0740(4) 0.0790(4) 0.0843(4) 0.0892(4) 

EGARCH(1,1) 0.1073(6) 0.5461(6) 0.8625(6) 0.9614(5) 0.9865(5) 0.9926(5) 

SV 0.0606(3) 0.0601(3) 0.0599(3) 0.0622(3) 0.0650(3) 0.0678(3) 

FIGARCH(1,1) 0.0538(2) 0.0519(2) 0.0492(2) 0.0485(2) 0.0463(2) 0.0435(2) 

FIEGARCH(1,1) 0.0935(5) 0.5168(5) 0.8606(5) 0.9851(6) 1.0196(6) 1.0271(6) 

ARFIMA(1,d,1) 0.0530(1) 0.0502(1) 0.0474(1) 0.0462(1) 0.0456(1) 0.0426(1) 

 

Panel B: historical volatility (HV) as proxy 

 

I. RMSE as the evaluation criterion 

GARCH(1,1) 0.0030(4) 0.0038(4) 0.0048(4) 0.0056(4) 0.0066(4) 0.0075(4) 

EGARCH(1,1) 0.0126(6) 0.2993(6) 0.7449(6) 0.9252(5) 0.9743(5) 0.9862(5) 

SV 0.0025(3) 0.0026(3) 0.0032(3) 0.0036(3) 0.0041(2) 0.0046(3) 

FIGARCH(1,1) 0.0018(2) 0.0020(2) 0.0022(2) 0.0025(2) 0.0029(1) 0.0030(2) 

FIEGARCH(1,1) 0.0099(5) 0.2682(5) 0.7416(5) 0.9714(6) 1.0406(6) 1.0559(6) 

ARFIMA(1,d,1) 0.0014(1) 0.0019(1) 0.0023(1) 0.0024(1) 0.0028(1) 0.0029(1) 
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II. MAE as the evaluation criterion 

GARCH(1,1) 0.0492(4) 0.0564(4) 0.0650(4) 0.0714(4) 0.0774(4) 0.0830(4) 

EGARCH(1,1) 0.1109(6) 0.5469(6) 0.8630(6) 0.9619(5) 0.9871(5) 0.9931(5) 

SV 0.0436(3) 0.0427(3) 0.0480(3) 0.0520(3) 0.0569(3) 0.0611(3) 

FIGARCH(1,1) 0.0374(2) 0.0400(2) 0.0443(2) 0.0465(2) 0.0501(2) 0.0510(2) 

FIEGARCH(1,1) 0.0976(5) 0.5177(5) 0.8611(5) 0.9856(6) 1.0201(6) 1.0276(6) 

ARFIMA(1,d,1) 0.0326(1) 0.0377(1) 0.0423(1) 0.0458(1) 0.0490(1) 0.0499(1) 

 
Notes: This table evaluates the performance of different models in the forecasting of REIT volatility based on 

subsample II (06/08/2002-05/11/2006). The forecast period is 05/11/2005 to 05/11/2006 and a fixed rolling window 

of 736 observations is used. RMSE is root mean square error. MAE is mean absolute error. The numbers in 

parentheses are the relative ranking of each model for the corresponding evaluation criterion.  
 

 

 

 

Table 7 Evaluations of REIT volatility forecasts based on subsample III 
 

                                 Forecast Horizons 

Models    1-day      5-day     10-day      15-day     20-day     25-day 

 

Panel A: realized volatility (RV) as proxy 

 

I. RMSE as the evaluation criterion 

GARCH(1,1) 0.0074(4) 0.0141(4) 0.0141(4) 0.0143(3) 0.0154(4) 0.0161(4) 

EGARCH(1,1) 0.2356(6) 0.9876(5) 0.9837(5) 0.9833(5) 0.9831(5) 0.9829(5) 

SV 0.0062(3) 0.0101(3) 0.0126(3) 0.0143(3) 0.0139(3) 0.0139(3) 

FIGARCH(1,1) 0.0052(2) 0.0055(2) 0.0061(2) 0.0065(2) 0.0067(2) 0.0069(2) 

FIEGARCH(1,1) 0.1137(5) 1.5721(6) 1.1275(6) 1.1469(6) 1.1186(6) 1.1048(6) 

ARFIMA(1,d,1) 0.0047(1) 0.0053(1) 0.0058(1) 0.0060(1) 0.0061(1) 0.0062(1) 

       

II. MAE as the evaluation criterion 

GARCH(1,1) 0.0793(4) 0.1034(4) 0.1283(4) 0.1182(4) 0.1224(4) 0.1256(4) 

EGARCH(1,1) 0.4821(6) 0.9938(5) 0.9918(5) 0.9916(5) 0.9916(5) 0.9914(5) 

SV 0.0726(3) 0.0965(3) 0.1094(3) 0.1174(3) 0.1162(3) 0.1162(3) 

FIGARCH(1,1) 0.0661(2) 0.0682(2) 0.0724(2) 0.0757(2) 0.0778(2) 0.0792(2) 

FIEGARCH(1,1) 0.3085(5) 1.2527(6) 1.0618(6) 1.0709(6) 1.0576(6) 1.0511(6) 

ARFIMA(1,d,1) 0.0622(1) 0.0660(1) 0.0687(1) 0.0717(1) 0.0738(1) 0.0754(1) 

 

Panel B: historical volatility (HV) as proxy 

 

I. RMSE as the evaluation criterion 

GARCH(1,1) 0.0040(4) 0.0079(4) 0.0101(4) 0.0112(4) 0.0126(4) 0.0140(4) 

EGARCH(1,1) 0.2386(6) 0.9907(5) 0.9867(5) 0.9862(5) 0.9856(5) 0.9849(5) 

SV 0.0031(3) 0.0065(3) 0.0090(3) 0.0110(3) 0.0111(3) 0.0118(3) 

FIGARCH(1,1) 0.0025(2) 0.0023(2) 0.0028(2) 0.0034(2) 0.0040(2) 0.0049(2) 

FIEGARCH(1,1) 0.1164(5) 1.5752(6) 1.1305(6) 1.1498(6) 1.1211(6) 1.1067(6) 

ARFIMA(1,d,1) 0.0013(1) 0.0016(1) 0.0020(1) 0.0029(1) 0.0037(1) 0.0046(1) 
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II. MAE as the evaluation criterion 

GARCH(1,1) 0.0576(4) 0.0870(4) 0.10434) 0.1055(4) 0.1118(4) 0.1176(4) 

EGARCH(1,1) 0.4852(6) 0.9953(5) 0.9933(5) 0.9931(5) 0.9928(5) 0.9924(5) 

SV 0.0512(3) 0.0790(3) 0.0943(3) 0.1044(3) 0.1049(3) 0.1074(3) 

FIGARCH(1,1) 0.0444(2) 0.0438(2) 0.0479(2) 0.0534(2) 0.0598(2) 0.0658(2) 

FIEGARCH(1,1) 0.3134(5) 1.2539(6) 1.0633(6) 1.0723(6) 1.0588(6) 1.0520(6) 

ARFIMA(1,d,1) 0.0328(1) 0.0363(1) 0.0406(1) 0.0479(1) 0.0550(1) 0.0620(1) 

 
Notes: This table evaluates the performance of different models in the forecasting of REIT volatility based on 

subsample III (05/12/2006-04/30/2008). The forecast period is 05/01/2007 to 04/11/2008 and a fixed rolling window 

of 251 observations is used. RMSE is root mean square error. MAE is mean absolute error. The numbers in 

parentheses are the relative ranking of each model for the corresponding evaluation criterion.  
 

 

 

Figure 1 Time series plot of REIT daily returns for 01/05/1999 to 04/30/2008 
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Figure 2   A comparison of the distribution of REIT daily returns with the normal distribution 

 


