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ABSTRACT 

 

SIMULATION & TESTING OF A MULTICHANNEL SYTEM FOR 3D SOUND 

LOCALIZATION  

Edward Albert Matthews, M.S.T. 

Western Carolina University (September 2015) 

Director: Dr. Robert Adams 

 

Three-dimensional (3D) audio involves the ability to localize sound anywhere in a three-

dimensional space.  3D audio can be used to provide the listener with the perception of 

moving sounds and can provide a realistic listening experience for applications such as 

gaming, video conferencing, movies, and concerts.  The purpose of this research is to 

simulate and test 3D audio by incorporating auditory localization techniques in a multi-

channel speaker system.  The objective is to develop an algorithm that can place an 

audio event in a desired location by calculating and controlling the gain factors of each 

speaker.  A MATLAB simulation displays the location of the speakers and perceived 

sound, which is verified through experimentation.  The scenario in which the listener is 

not equidistant from each of the speakers is also investigated and simulated.  This 

research is envisioned to lead to a better understanding of human localization of sound, 

and will contribute to a more realistic listening experience. 
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CHAPTER 1: INTRODUCTION 

 

The human ears hear the world in 3D.  In other words, we can naturally 

distinguish which direction a sound is coming from and how far away the source is.  

This process is called auditory localization.  The three coordinates that must be 

determined when detecting the location of a sound are the azimuth, elevation, and 

distance.  The azimuth is the angle between the source and the sagittal, or median, 

plane (left or right position); elevation is the angle between the source and the 

horizontal plane through the ears (up and down position); and distance is how far away 

the source is from the listener.  Figure 1 shows the coordinate system for sound 

localization relative to a listener. 

 

Figure 1: Coordinate system for sound direction 

To determine azimuth, our ears use interaural cues, or slight differences in time 

and pressure of a sound as it reaches the left and right ear [1].  Interaural time 

difference (ITD) is the delay of the sound between the left and right ear, and interaural 

level difference (ILD) is the difference in sound pressure [2].  When a source is directly 
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in front of a person, the timing and pressure will be the same, but if the source is moved 

to the left or right, the sound will reach one ear slightly before the other with a higher 

pressure.  Figure 2 shows that the paths to the left and right ear are equidistant from a 

source directly in front of a listener (A), but are different when the source is moved to 

the side (B): 

 

 

Figure 2: Paths from a source (A,B) to the left and right ears 

This difference gives us the ability to localize a source to our left or right.  However, if 

the source is anywhere in the median plane, then the distance of the paths to the ears is 

equal, hence there will be no interaural differences to distinguish if the sound is coming 

from in front of, behind, above, or below the listener.  Therefore, to determine elevation 

we must rely on the head related transfer function (HRTF).   As a sound travels from the 

source to the eardrum, the signal is filtered and attenuated by objects such as the head, 

torso, and outer ear; the differences in the intensities of frequencies from those at the 

source and at the eardrum make up the HRTF [3].  Neither the HRTF nor interaural 

cues give information on distance, so the listener must rely on the loudness of the 

sound compared to familiar sources to tell how far away it is.  Things such as echoes 
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and the timbre of the sound can also aid in judging distance [3].  The combination of 

these cues gives us the ability to put a spatial location on a sound source without seeing 

it.  Therefore, if we can control these parameters then we will be able to trick the mind 

into thinking a sound is coming from a desired location. 
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CHAPTER 2: LITERATURE REVIEW 

 

There have been many advances in graphics and video that make us feel like we 

are a part of the movie or game that we are viewing.  However, most modern stereo 

systems, even surround sound, cannot give us the feeling of being “in” the environment 

of what we are listening to.  Surround sound systems, such as Dolby 5.1, generate 

sounds from different directions, but the source of the sound is localized at the speaker 

it is coming from.  They are not able to make the sound appear to be coming from 

above or below the horizon of the speakers, or move the sound closer or farther away 

from the listener.  3D audio would give you the ability to place the sound anywhere in 

the room.  This would give the listener a more realistic experience and would have 

many applications such as gaming, video conferencing, movies, and concerts.  To 

accomplish this, we need to control the cues that tell the listener where the sound is 

coming from.    

There are several techniques that have been explored to render 3D audio.   The 

Haas effect, or precedence effect, is a psychoacoustic phenomenon that states that if 

two wave fronts hit the ear within a certain amount of time of each other, then the sound 

is perceived as a single sound (auditory event), coming primarily from the direction of 

the first arriving wave front [4].  The second sound influences the spatial location, but is 

dominated by the first even if it is slightly louder.  Studies have shown that the limit of 

the delay before the sound breaks apart into two separate events is 5-10ms for clicks [5] 

and more than 50ms for speech [6].  Any sound that is delayed above these thresholds 

will be perceived as an echo.  This phenomenon explains why we can localize the 
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source of a sound in a room despite the numerous reflections of the signal off its 

surfaces.  We can take advantage of this effect to provide a solution to the lack of 

dimension in audio systems.   

One of the simplest and most common spatial audio systems is the two channel 

stereophonic configuration.  Figure 3 shows Pulkki’s illustration of a typical stereo 

configuration used in [7] where φ0 = 30°. 

 

Figure 3: Two-channel stereophonic configuration 

When the same signal is emitted from both channels, the sound will be perceived as a 

single auditory event coming from somewhere between the two speakers [7].  This 

event is known as a virtual, or phantom, sound source.  It is possible to move the 

phantom source to any point on a path between the two speakers, called the active arc, 

simply by controlling the gain and/or delay of the speakers [8].  The radius of the active 

arc is defined by the distance to the speakers.  Adjusting the amplitude of the sound 

coming from each channel is known as intensity panning, and adjusting the delay of the 

sound at each channel is known as time panning [2].  If there are two loudspeakers 

positioned symmetrically to the median plane, their gains are equal, and there is no 

delay, then the virtual source will be perceived to be directly in the center.  The source 
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can move along the arc between the two speakers by controlling the ratio of their gains.  

As one speaker is made louder than the other, the virtual source will move closer to that 

speaker.   

Many authors have investigated these panning techniques (eg. [9], [10], [11]).  

According to the Haas effect and summing localization [2], as long as the delay does 

not surpass the echo threshold, then the sound will be heard as one event based on the 

direction of the first arriving wave.  However, there are some drawbacks to these 

panning techniques.  The phantom source can be positioned anywhere between the two 

speakers, but lacks the ability to move anywhere outside of this arc [12].  The position of 

the listener is also very restricted.  The listener must be positioned so that they are at an 

equal distance from each of the speakers, and are oriented so that the speakers are 

symmetrical on the median plane.  This position is known as the “sweet spot” [12].  If 

the listener moves outside of the sweet spot, or rotates their body or head, then the 

perceived sound location will be incorrect [13], [14].  Because of these flaws, many 

techniques have been investigated to move the source outside of this boundary [15], 

increase the size of the sweet spot [8], or make the sweet spot move with the listener 

[16], [17]. 

  Bauer [10] introduced a method to move the sound outside of the stereo 

boundary: crosstalk cancellation.  Gardner [17] describes crosstalk cancellation as 

“inverting the transmission paths that exist from the speakers to the listener” to cancel 

“crosstalk” from the right speaker to the left ear and vice versa.  Systems that implement 

a binaural synthesizer with a crosstalk canceller are known as binaural audio systems.  

The goal of these systems is “to reconstruct the acoustic pressures at the listener’s ears 
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that would result from the natural listening situation to be simulated” [17].  Song [16] 

discusses the two major blocks of binaural audio systems: the binaural synthesizer B, 

which computes the sound that should be heard by the listener’s ear, and the crosstalk 

canceller H, which compensates for the transmission path.  The block diagram they 

provide is shown below:  

 

Figure 4: Binaural audio system with loudspeakers 

The binaural synthesizer uses the monaural input signal and HRTFs to generate the 

output signals xL and xR.  The crosstalk canceller H is an inverse filter of C, which 

represents the acoustic paths between the speakers and the ears.  Several studies 

have been carried out to improve the methods of filtering in crosstalk cancellation, and 

many successful approaches have been verified (eg. [15], [18], [19], [20], [21]).  

However, since B, H, and C (represented by matrices) are each calculated based on the 

listener being in the sweet spot, the 3D effect is degraded when the listener moves.  

Several papers (eg. [16], [17]) have presented “dynamic binaural systems” to fix this 

problem.  These systems incorporate head tracking to find the position of the listener’s 

head, and update the binaural synthesis and crosstalk matrices according to its new 

position.   These systems have shown that it is possible to make a 3D audio system that 

compensates for movement. 
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 Another approach to generating 3D audio is by reproducing the waveforms of an 

actual sound image through headphones.  This is usually done using special recording 

techniques where microphones are placed in a listener’s, or a dummy heads, ears to 

measure HRTFs, which can then be used to recreate desired signals.  Wightman [22] 

performed experiments on eight subjects to compare localization of sound presented in 

free field to headphones.  The subjects were first asked to identify the apparent 

positions of sounds delivered from 36 different positions through six loudspeakers.  For 

each position, stimuli for the headphone testing had to be produced by digitally filtering 

signals using the subjects corresponding HRTF and ear canal transfer function (ECTF).  

The stimuli were then presented to the listener through headphones and they were 

asked to identify the perceived location.  According to his results, the spatial positions 

identified when the sound was played through the headphones matched positions 

identified in free field.  There have been several other studies that have validated that 

headphone delivered stimulus can reproduce a free field source (eg. [12], [23], [24], 

[25]).   In addition, most of these studies have pointed out that headphone systems 

cannot fully recreate the entire free field image, especially in the front, back, and 

elevated positions, and have proposed methods to increase the spatial extent of the 

perceived sound image.  Although these studies have improved the performance of 3D 

headphone systems, there is still the obvious drawback of being limited to the one 

listener. 

The techniques that have been presented thus far have all shared a common 

disadvantage of being limited to one listener, or being confined to a small listening area.  

In theory, to achieve 3D audio that can be enjoyed by a larger audience, a multi-channel 
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system would need to be implemented.  By adding more speakers, there are more 

paths on which the virtual source can move [7].  Many of the same techniques that were 

used to simulate spatial sound with two channels can be applied to these systems.  It 

was shown in [26] that crosstalk cancellation and equalization (CTCE) could be applied 

to systems using more than two loudspeakers.  Furthermore, it was justified by 

simulations that by using more loudspeakers “a more robust CTCE system that is less 

sensitive to errors in the measured impulse responses” [26] is achievable.  Other 

systems have also been investigated where additional speaker[s] are included above 

the horizontal plane, such as Auro 11.1 [27] and the 22.2 format discussed in [28].  

Pulkki presents a simpler model in [7] where a single elevated speaker is introduced to 

the stereo configuration from Figure 3, as shown in Figure 5. 

 

Figure 5: Three speaker multi-channel configuration (l1=l2=l3) 

The elevated speaker is the same distance from the listener as the other loudspeakers.  

As you can see, the three speakers form a section of a 3-D sphere known as the “active 

triangle” on which the virtual source can be positioned [7].  Pulkki went on to explain 
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how this system can be expanded with more loudspeakers, where the speakers form 

bases in groups of three.  He found that the “maximum error in the virtual source 

localization is proportional to the dimensions of the active region. Therefore when good 

localization accuracies on a large listening area are desired, the dimensions of the 

active regions must be decreased.  This is done by applying more loudspeakers on the 

desired region of the sound field”.  Based on his work it is easy to say that the more 

speakers there are in a system, the better.  However in practical application, as the 

number of speakers increases, so does the cost and amount of space required for the 

system.  Therefore, for the proposed research the number of channels will be limited to 

three. 
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CHAPTER 3: DESIGN & METHODOLOGY 

 

In this research effort two and three channel localization systems were simulated 

then tested in a lab environment, and a non-equidistant interaural correction system 

was simulated.  This chapter presents the design and methodology of the simulations 

and experiments. 

3.1 Equidistant Localization 

In this section our investigation of the vector based amplitude panning (VBAP) 

discussed in Pulkki’s paper [7] will be presented.  Amplitude panning is an audio 

technique where the same signal is played over two or more speakers that are 

equidistant from an observer.  Since the signals are the same and there is no interaural 

time delay, the observer will perceive the illusion of a single virtual source.  The position 

of the virtual source depends on the locations of the speakers, and the relation between 

the amplitudes of the signals they produce.  The amplitude of the signals can be 

controlled by adjusting the gains of each speaker.  The following two sections will 

discuss the mathematical derivation, algorithm development, and testing procedure for 

two and three channel systems, which both implement amplitude panning. 

3.1.1 Two Channel System 

Figure 3 can be reformulated as a two-dimensional vector base as shown in 

Figure 6 



12 
 

 

Figure 6: Stereophonic configuration formulated with vectors 

where 𝑙1and 𝑙2 are the position vectors for the left and right speakers, and 𝑝 is the virtual 

source vector.  The speaker vectors can be expressed using Equation 1 

 𝑙𝑚 = [𝑙𝑚𝑥 𝑙𝑚𝑦]
𝑇
 ( 1 ) 

where 𝑚 represents the channel number (1 or 2), 𝑙𝑚𝑥 is the x component of the vector, 

and 𝑙𝑚𝑦 is the y component of the vector.  Therefore the equations for the left and right 

speaker vectors are given by 

 𝑙1 = [𝑙1𝑥 𝑙1𝑦]
𝑇
 ( 2 ) 

 𝑙2 = [𝑙2𝑥 𝑙2𝑦]
𝑇
  ( 3 ) 

The distance to each speaker is equal, therefore the vectors have the same length.  The 

gain factors of the left and right speakers, 𝑔1 and 𝑔2, are nonnegative scalar variables in 

the range of zero to one.  To keep the loudness of the virtual source constant the gain 

factors must be normalized using Equation 4 

 𝑔1
2 + 𝑔2

2 = 𝐶 ( 4 ) 
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where 𝐶 is the volume of the virtual source.  As 𝐶 increases, the virtual source is 

perceived to move closer to the observer.   

The vector pointing towards the phantom source can be represented as a linear 

combination of the speaker vectors and their respective gains 

 𝑝 = [𝑝1  𝑝2]𝑇 = 𝑔1𝑙1 + 𝑔2𝑙2 ( 5 ) 

The equation may also be written in matrix form 

 𝑝𝑇 = 𝑔𝐿12 ( 6 ) 

 where 𝑔 = [𝑔1 𝑔2] and 𝐿12 = [𝑙1 𝑙2]𝑇.  This equation calculates the x and y components 

of the phantom source vector.  Therefore, if we are given the location and gains of each 

speaker, we can calculate the position of the virtual source.  

3.1.1.1 Algorithm 

Rather than finding the location of the virtual source based on speaker 

parameters, the algorithm calculates the proper gain factors needed to put the virtual 

source in a desired location.  The algorithm calculates the proper gain factors by taking 

the inverse of Equation 6, which yields 

 𝑔 = 𝑝𝑇𝐿12
−1 = [𝑝𝑥 𝑝𝑦] [

𝑙1𝑥 𝑙1𝑦

𝑙2𝑥 𝑙2𝑦
]

−1

 ( 7 ) 

Thus the equation calculates the gain factors given the vectors pointing to the left and 

right speakers, and the phantom source.  The user is asked to input the location of the 

speakers by defining the distance to the speakers and the angle from the x axis to the 

left and right speakers.  The user is also asked to input the angle from the x axis to the 

desired virtual source position.  Using these values, the algorithm calculates the vectors 

pointing toward the speakers and desired virtual source using the following equations 
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 𝑙𝑚𝑥 = 𝑠 cos 𝜃𝑚  ( 8 ) 

 𝑙𝑚𝑦 = 𝑠 sin 𝜃𝑚 ( 9 ) 

 𝑝𝑥 = 𝑠 cos 𝜃𝑝 ( 10 ) 

 𝑝𝑦 = 𝑠 sin 𝜃𝑝 ( 11 ) 

where 𝑚 is the channel number (1 or 2), 𝑠 is the distance to the speakers, and 𝜃𝑚 and 

𝜃𝑝 are the angles from the x axis for each speaker and the virtual source, respectively.  

The algorithm checks user input to make sure that none of them are out of bounds (e.g. 

if the virtual source lies outside of the active arc).  Using Equation 7, the algorithm 

calculates the gain factors of the left and right speakers, and plots the speakers and 

virtual source.  Figure 7 is an example of a plot generated that shows the speaker 

locations, vectors, and calculated virtual source.  For this example, the left and right 

speakers were placed 8 feet from the listener at ±45° from the x axis, and the desired 

virtual source position was 15°.  The algorithm calculated the left and right gains to be 

𝑔1 = 0.866 and 𝑔2 = 0.5, respectively. 
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Figure 7: Two-channel simulation example 

3.1.1.2 Test Procedure 

To verify that the algorithm calculated the proper gain factors, experimental data 

was collected from 15 participants.  IRB approval was obtained in order to conduct 

testing involving volunteers. The experiment required a quiet room with sufficient space, 

and a test setup to generate the acoustical signals.  The experimental setup is shown in 

Figure 8a and Figure 8b below 
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Figure 8a: Two-channel experimental setup – table & chin rest 

 

 

Figure 8b: Two-channel experimental setup – listener perspective 
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The observer sat a table covered by a protractor to indicate angles.  A chin rest 

was used to minimize head movement during the experiment.  A base signal was 

produced and the corresponding gain factors calculated by the algorithm (Equation 7) 

were applied to each channel.  The base signal used for testing was a 400 Hz sine 

wave with a sampling frequency of 44.1 kHz played for 2 seconds.  A Sherwood RX-

4109 stereo system amplified the signal which was output to two Klipsch B-3 bookshelf 

speakers.  The left and right speakers were placed at ±45° from the x axis at a distance 

of 8 feet from the observer.  These values were used as inputs to the algorithm.  Three 

variations of the algorithm were used:  Training Program, Discrete Angle Test, and 

Random Angle Test. 

First, a Training Program was run to verify the speakers were working properly, 

and to familiarize the participant with the signal and perception of a virtual source.  The 

Training Program incremented the desired virtual source position between the left and 

right speakers in steps of 15°.  At each angle the algorithm would calculate the proper 

gain factors and play the resulting tone.  The participant was informed of the locations 

that would be played before testing, and then asked if they perceived the movement of 

sound after the program was complete.  

For the Discrete Angle Test, 20 trials were run where the desired virtual source 

position was selected from the angles 0°, ±15°, ±30°, or ±45°.  For each trial one of 

these angles was chosen as the virtual source position from a randomized list, the gain 

factors were calculated, and the resulting tone was played.  The participant was 

instructed to look forward throughout the test, and encouraged to place their hand or a 

pointer in the direction of the perceived sound.  The tone could be replayed if the 
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participant wanted to hear it again.  For each trial the participant was asked to identify 

which of the angles were closest to the perceived sound, and the value was recorded. 

The Random Angle Test was very similar to the Discrete Angle Test, however 

the virtual source position was set based on a random angle selected from twenty 

evenly spaced values from -45° to 45°.  The participant was instructed to identify the 

closest angle, within a few degrees, to where they perceived the virtual source to be, 

and the value was recorded. 

3.1.2 Multi-Channel Systems 

A multi-channel system is a system that uses more than two channels.  To 

achieve three-dimensional sound using the VBAP technique, a multichannel system 

must be used.  An additional speaker is placed above the two dimensional plane 

created by the listener and the left and right speakers from the stereophonic 

configuration, as shown in Figure 5.  The elevated speaker must be the same distance 

from the listener as the other two speakers.  This forms a region of a sphere on which 

the virtual source can be moved, called the active triangle.  More speakers can be used 

in this technique, however only up to three speakers will be active (producing sound) at 

one time.  For this reason, only a three speaker system was investigated in our 

research. 

3.1.2.1 Mathematical Derivation 

The formulation of the three-dimensional system is exactly the same as the 

stereophonic configuration, however there will be three speaker vectors and gain 

factors, rather than two, and each vector will have an x, y, and z component.  Each 

speaker vector can be expressed using the Equation 12 
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 𝑙𝑚 = [𝑙𝑚𝑥 𝑙𝑚𝑦 𝑙𝑚𝑧]
𝑇
  ( 12 ) 

where 𝑚 represents the channel number (1, 2, or 3), 𝑙𝑚𝑥 is the x component of the 

vector, 𝑙𝑚𝑦 is the y component of the vector, and 𝑙𝑚𝑧 is the z component of the vector.  

The gain factors of the left, right, and top speakers, 𝑔1 𝑔2 and 𝑔3, are nonnegative 

scalar variables in the range of zero to one.  To keep the loudness of the virtual source 

constant, the third gain factor must be added to the normalizing equation (Eq. 4) 

 𝑔1
2 + 𝑔2

2 + 𝑔3
2 = 𝐶  ( 13 ) 

where 𝐶 is the volume of the virtual source.  As 𝐶 increases, the virtual source is 

perceived to move closer to the observer.  

The three-dimensional vector pointing towards the phantom source can be 

represented as a linear combination of the speaker vectors and their respective gains 

 𝑝 = [𝑝1 𝑝2 𝑝3]𝑇 = 𝑔1𝑙1 + 𝑔2𝑙2 + 𝑔3𝑙3 ( 14 ) 

Or, in matrix form 

 𝑝𝑇 = 𝑔𝐿123 ( 15 ) 

where 𝑔 = [𝑔1 𝑔2 𝑔3] and 𝐿123 = [𝑙1 𝑙2 𝑙3]𝑇.  This equation calculates the x, y, and z 

components of the phantom source vector.  Therefore, if we are given the location and 

gains of each speaker, we can calculate the position of the virtual source. 

3.1.2.2 Algorithm 

The algorithm was also modified to calculate proper gain factors given the 

speaker parameters and desired virtual source position in three dimensional space.  

The input parameters were the distance to the speakers, angle from the x axis of the 

left, right, and desired virtual source position, and the elevation of the top speaker and 
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desired virtual source position.  The x, y, and z components for each speaker vector are 

calculated using following equations 

 𝑙𝑚𝑥 = 𝑠 cos 𝜃𝑚  ( 16 ) 

 𝑙𝑚𝑦 = 𝑠 sin 𝜃𝑚 ( 17 ) 

 𝑙𝑚𝑧 = 𝑠 sin 𝜙𝑚 ( 18 ) 

 𝑝𝑥 = 𝑠 cos 𝜃𝑝 ( 19 ) 

 𝑝𝑦 = 𝑠 sin 𝜃𝑝  ( 20 ) 

 𝑝𝑧 = √𝑝𝑥
2 + 𝑝𝑦

2 tan 𝜙𝑝  ( 21 ) 

where 𝑚 is the speaker number (1, 2, or 3), 𝑠 is the distance to the speakers, 𝜃𝑚 and 𝜃𝑝 

are the angles from the x axis for each speaker and the virtual source, respectively, and 

𝜙𝑚 and 𝜙𝑝 are the elevation angles for each speaker and the virtual source, 

respectively.  The algorithm checks the user inputs to make sure that none of them are 

out of bounds (e.g. if the virtual source lies outside of the active triangle).  Then, using 

inverse of Equation 15 the gain factors of the left, right, and top speaker are calculated.  

 𝑔 = 𝑝𝑇𝐿123
−1 = [𝑝𝑥 𝑝𝑦 𝑝𝑧] [

𝑙1𝑥 𝑙1𝑦    𝑙1𝑧

𝑙2𝑥 𝑙2𝑦    𝑙2𝑧

𝑙3𝑥 𝑙3𝑦    𝑙3𝑧

]

−1

  ( 22 ) 

 

If the largest gain factor is greater than 1, then each gain is divided by that factor so that 

they are all are between zero and one.  To ensure that the loudness is always the same 

(regardless of input parameters), a scaling factor is calculated 

 𝑛 = √𝑔1
2 + 𝑔2

2 + 𝑔3
2 ( 23 ) 
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Each gain factor is then divided by 𝑛.  This places the virtual source on the surface of a 

sphere surrounding the listener, so it always sounds like it is the same distance away.  

When a desired position is input, the algorithm calculates the normalized gains, and a 

plot showing the speaker locations and vectors, as well as the virtual source and an 

approximation of the active triangle is generated.  Figure 9 is an example of the three-

dimensional plot, where the left and right speakers are placed 8 feet from the listener at 

±45° azimuth 0° elevation, the top speaker at  0° azimuth 42° elevation, and a desired 

virtual source position of −15° azimuth 14° elevation.  The algorithm calculated the 

gains for this example to be 𝑔1 = 0.3042, 𝑔2 = 0.6702, and 𝑔3 = 0.3726 

 

Figure 9: Three-channel simulation example 

MATLAB does not have the ability to play a sound with more than two channels, 

therefore an audio file (.wav) for each speaker with its corresponding gain factor had to 
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be generated.  The same base signal as in the stereophonic configuration was used, a 

400 Hz sine wave with a sampling frequency of 44.1 kHz played for 2 seconds. 

3.1.2.3 Test Procedure 

To test the 3D algorithm, the test procedure had to be modified.  The same 

protractor, chin rest, and left and right speakers, placed 8 feet from the listener at ±45° 

azimuth 0° elevation, were used.  A third Klipsch B-3 bookshelf speaker was added at 

0° azimuth 42° elevation, also 8 feet from the listener. 

 

Figure 10: Three-channel experimental setup 

Since the computer’s sound card and outputs can only support two channels, an 

audio interface was needed to control all three speakers at once.  An audio interface 

connects to the computer via USB and acts as an external sound card with extra 

inputs/outputs, features, and better quality.  For this experiment the Focusrite Scarlett 
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2i4 was chosen, which has four independent outputs.  The output from the interface 

needed to be amplified before going to the speakers.  A Sherwood RX-4109 stereo 

system (used for the left and right speakers) and a Realistic SA-150 integrated stereo 

amplifier (used for the top speaker) were adjusted to calibrate the outputs to the same 

amplitude using a four channel oscilloscope. 

A digital audio workstation (DAW), SoundForge Pro 11, was used to play the 

audio files made by the algorithm and communicate with the audio interface.  A DAW is 

a computer program designed to record, mix, edit, and play audio files.  Before the 

experiment, the algorithm was used to produce audio files that placed the virtual source 

in 16 different locations inside the active triangle.   These files were then imported into 

SoundForge.  The 16 locations, shown in Figure 11, had azimuth angles of 

0°, ±15°, ±30°, or ± 45° and elevation angles of 0°, 14°, 28°, or 42°. 

 

Figure 11: Virtual source locations 
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For multi-channel testing there were two experiments: the Perimeter Test and the 

Random Test.  Before testing, each participant went through a training program.  A 

number was assigned to each virtual source position, and the sound for that point was 

played for the listener.  For the Perimeter Test, only points on the perimeter of the 

triangle were used.  These locations are shown in Figure 12. 

 

 

Figure 12: Perimeter Test positions 

The sounds were played from one to twelve for training, and then the order was 

randomized for testing.  For each location, the sound was played twice and the listener 

was asked to identify which point was closest to where they perceived the sound to be 

coming from. 
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The Random Test was conducted the same as the Perimeter Test, however all 

16 points were used.  The order for the Random Test training is shown in Figure 13 

 

 

Figure 13: Random Test positions 

The sounds were played from one to sixteen for training, and then the order was 

randomized for testing.  For each location, the sound was played twice and the listener 

was asked to identify which point was closest to where they perceived the sound to be 

coming from. 

3.2 Non-Equidistant Localization 

Up to this point the listener is required to be in a certain spot for the algorithm to 

work.  This region, which is equidistant from all the speakers, is called the sweet spot.  

However in many applications an observer may not be the same distance from all 
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speakers, or would possibly be moving to different locations.  If the listener is not in the 

sweet spot, interaural time and level differences will be introduced.  To compensate for 

the differences an interaural correction algorithm was made. 

3.2.1 Mathematical Derivation 

The interaural correction algorithm receives coordinates for the speakers and the 

listener, and angle from the x axis of the desired phantom source as inputs.  Using 

these values, it adjusts the gain and delay of the speakers so that the sound waves 

reach the listener at the same time and with the same intensity.  To do this the distance 

from the observer to the left and right speakers must be calculated and compared using 

the distance formula 

 𝑑𝐿,𝑅 =  √(𝑥𝐿,𝑅 − 𝑥𝑜)
2

+ (𝑦𝐿,𝑅 − 𝑦𝑜)
2
 ( 24 ) 

where 𝑑𝐿,𝑅 are the distances in feet to the left and right speakers, (𝑥𝐿,𝑅 , 𝑦𝐿,𝑅) are the x 

and y coordinates of the left and right speakers, and (𝑥𝑜 , 𝑦𝑜) are the x and y coordinates 

of the observer.  Whichever speaker is closer to the observer must be delayed, and the 

other speaker’s gain must be multiplied by a factor to increase its volume.  Sound 

radiates from each speaker in the form of a sphere.  The intensity of sound at a given 

distance from a speaker is the original intensity divided by the area of the sphere.  Since 

the area of a sphere is proportional to the square of its radius, the intensity of sound is 

inversely proportional to the squared distance from the speaker.  This is known as the 

inverse square law 

 Intensity ∝
1

distance
2 ( 25 ) 
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Using this law, the factor needed to compensate for the interaural level distance can be 

calculated as follows 

 𝐼𝐿 =
𝑘

𝑑𝐿
2 ( 26 ) 

    𝐼𝑅 =
𝑘

𝑑𝑅
2  ( 27 ) 

 𝑔𝑟𝑎𝑡𝑖𝑜 =
𝐼𝐿

𝐼𝑅
= (

𝑑𝑅

𝑑𝐿
)

2

     ( 28 ) 

 𝐺𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = [𝑔𝐿   𝑔𝑅 ∗ 𝑔𝑟𝑎𝑡𝑖𝑜] ( 29 ) 

where 𝐼𝐿,𝑅 are the left and right sound intensities, and 𝑘 is a constant of proportionality. 

To calculate how much the closer speaker must be delayed, the difference in 

distances is divided by the speed of sound   

 𝑡𝑑 =
𝑑𝑅 − 𝑑𝐿

340.29
 ( 30 ) 

where 𝑡𝑑 is the time delay in seconds, and 340.29 is the speed of sound in feet per 

second. 

3.2.2 Displaying the Model 

To display this model, a simulation of the sound waves moving from each source 

to the observer’s location was created.  First, equations for the lines between the 

speakers and the observer were found 

 𝑦 = 𝑚𝑥 + 𝑏  ⇒    [
𝑚
𝑏

] = [
𝑥𝐿,𝑅 1

𝑥𝑜 1
]

−1

[
𝑦𝐿,𝑅

𝑦𝑜
] ( 31 ) 

where 𝑚 is the slope of the line, and 𝑏 is it’s y-intercept.  Each line was divided into 100 

points (x,y) which were converted to pixel locations (row,column) using the following 

formulas 
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 𝑟𝑜𝑤 =
𝑦−𝑦𝑚𝑎𝑥

𝑦𝑚𝑖𝑛−𝑦𝑚𝑎𝑥
∗ (𝑁𝑟𝑜𝑤𝑠 − 1) + 1      ( 32 ) 

 𝑐𝑜𝑙 =
𝑥 − 𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛 − 𝑥𝑚𝑎𝑥
∗ (𝑁𝑐𝑜𝑙𝑠 − 1) + 1 ( 33 ) 

where 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 are the extremes of the lines between the speakers and 

observer, and 𝑁𝑟𝑜𝑤𝑠, 𝑁𝑐𝑜𝑙𝑠 are the dimensions of the display.  To show the wave’s 

progression, a video file was made where each frame was an image showing the 

wave’s intensity and location along the line.  The intensity of sound was represented by 

an 8-bit full color scale image, where red represented highest intensity and blue 

represented lowest intensity.  Equation 29 was used to calculate the initial intensities of 

the sound waves at each source, and the pixels corresponding their positions were set 

to the resulting color value.  As the wave moved toward the observer, pixels along the 

line would change color based on the intensity at that point.  Since the intensity 

decreases with the square of distance, the values drop off very quickly.  Therefore, we 

took the log of the intensities to linearize the color scale using the following equation.  

 Color Intensity = log10(Sound Intensity + 0.1) + 1  ( 34 ) 

Figure 14a, Figure 14b, Figure 14c, and Figure 14d show the sound intensity in color as 

the sound moves along the path from each speaker toward the observer.  Four time 

frames are presented in these figures.  In the example the coordinates of the left 

speaker are (10,20), the right speaker is at (20,20), and the listener is at (12,5).  The 

interaural correction algorithm calculated the corrected gains to be 𝑔1 = 0.53555 and 

𝑔2 = 0.67586, and for the time delay of the left speaker to be 𝑡𝑑 = 5.4872 𝑚𝑠. 
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Figure 14a: Sound intensity at time=5.3903ms 

 
Figure 14b: Sound intensity at time=5.8395ms 
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Figure 14c: Sound intensity at time=26.5024ms 

 
Figure 14d: Sound intensity at time=50.3097ms 
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The number in the upper left hand corner displays how much time has elapsed since 

the preliminary wave left the source.  Figure 14b shows the intensities right after the 

delay, when the preliminary wave has reached the point that is in line with the left 

speaker, and the left speaker initially plays the sound.  As you can see, the sound 

intensities are the same at this point and are equivalent as they move towards the 

observer, decreasing with distance from the source.  If the two lines reach the listener at 

the same time with the same intensity (color) then the sound will be perceived directly in 

front of them, even though they are closer to one speaker.  The colors in Figure 14d 

show that this is true for the example. 
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CHAPTER 4: RESULTS & DISCUSSION 

 

In this chapter the results of the two and three channel localization testing, as 

well as non-equidistant simulation results, are presented.  For the two and three 

channel localization tests, experimental data was collected from participants and put 

into tables.  This data can be found in the Appendix section A 

4.1 Two Channel Figures and Summary 

 

Figure 15: Random Angle Test results – Angle vs. Level Difference 

Figure 15 shows how the level difference in decibels between the left and right 

speaker compares to the calculated and perceived angles of the virtual source.  The 

level difference is found by converting the calculated gain values (Equation 7) to 
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decibels and taking the absolute value of their difference.  The solid black curves are 

the theoretical angles corresponding to each level difference as derived in [7], the 

dotted red curves are ±7.5° from the calculated values, and the blue asterisks are the 

perceived values heard by listeners in the experiment.  As you can see, the majority of 

participants perceived the sound to be coming from within 7.5° of the theoretical value. 

 
Figure 16: Random Angle Test results – Perceived vs. Calculated 

Figure 16 is a box and whisker plot of the perceived virtual source positions for 

all participants.  For each box, the red line indicates the median value that was 

identified, the edges of the box are the 25th and 75th percentiles, the whiskers extend to 

the most extreme data points the algorithm considers not to be outliers, and the red 

crosses are the outliers.  To be considered an outlier, a data point must be more than 

1.5 IQR (inter quartile range) below the 25th percentile or above the 75th percentile.  
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Therefore, the smaller the box, the more concentrated and accurate the responses were 

to the calculated value.  As you can see, the responses around ±45° and 0° seem to be 

the most accurate. 

 

Figure 17: Random Angle Tests – Average of Responses 

Figure 17 shows how the average perceived angle from all participants 

compared to the theoretical values.  The line represents the theoretical value, and the 

circles represent the average of all of the participant’s responses.  The range of 

absolute error between the average of the responses and the theoretical angles was 

from 0.67° to 3.53° 
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Figure 18: Random Angle Test - RMS error 

Figure 18 shows the root mean square error (RMSE) of the average perceived 

angles from all participants.  The equation for the root mean square is 

 RMSE = √
∑ Error𝑖

2𝑛
𝑖=1

𝑛
 ( 35 ) 

where Error is the difference between the perceived and actual angle, and 𝑛 is the 

number of participants.  The minimum error was at −45° with a RMSE of 2.67°, and the 

maximum error was at 17° with an RMSE of 5.09°.  As you can see, the region near the 

center of the arc has the least error, while the regions from −17° to −36° and from 12° 

to 31°  have the most error. 
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4.2 Multi-Channel Figures and Summary 

In the multi-channel tests, the participant was given a discrete set of points from 

which to choose the perceived virtual source position (Figure 12 and Figure 13).  Each 

point had an azimuth of 0°, ±15°, ±30°, or ± 45° and an elevation of 0°, 14°, 28°, or 42°.  

Therefore, for each point identified there were three scenarios: only the azimuth was 

correct, only the elevation was correct, or both the azimuth and elevation were correct.  

Figure 19a, Figure 19b, Figure 20a, and Figure 20b show the results from the multi-

channel testing.  The first two figures are the Perimeter Test results, and the last two 

figures are the Random Test results.  Figure 19a and Figure 20a are bar plots showing 

the percentage of responses that matched the exact theoretical value for each virtual 

source position by all participants.  Figure 19b and Figure 20b show the percentage of 

responses that were within 15° of the theoretical value. 

 
Figure 19a: Perimeter Test results – percent of correct responses 
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Figure 19b: Perimeter Test results – percent of responses within 15°  

As you can see from Figure 19a, for almost every position participants identified 

the azimuth with a higher accuracy than the elevation.  The responses for azimuth have 

an accuracy from 80% to 100%, elevation have an accuracy from 53. 3̅% to 100%, and 

both have an accuracy from 46. 6̅% to 100%.  In Figure 19b there are five positions in 

which 100% of the responses were within 15° of the theoretical value.  These five points 

were all located near the left and right extremes near ±45°.  Only three points out of the 

twelve have an accuracy of less than 86. 6̅%.  The point with the lowest accuracy is 

Position 2, which has an azimuth of 15° and an elevation of 0°.  For this point, the 

azimuth was identified correctly 93. 3̅% of the time, elevation 53. 3̅%, and both only 

46. 6̅%.  Other points of interest are positions 1, 3, 11, and 12, which have at least one 

of the categories at 60% or below in the first plot.  It’s interesting to note that these five 

points have an azimuth between −30° and 30°, and an elevation of 0°.   
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Figure 20a: Random Test results – percent of correct responses 

 

 
Figure 20b: Random Test results – percent of responses within 15°  
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The Random Test had similar results to the Perimeter test.  Participants identified 

azimuth with a higher accuracy than elevation for every position.  In Figure 20a the 

responses for azimuth have an accuracy from 86. 6̅% to 100%, elevation have an 

accuracy from 13. 3̅% to 93. 3̅%, and both have an accuracy from 13. 3̅%  to 93. 3̅%.  In 

Figure 20b eleven out of the sixteen positions had an accuracy in which 100% of 

responses were within 15° of the theoretical value, and only two of the sixteen points 

had an accuracy less than 93. 3̅%.  The three least accurate positions are 4, 7, and 11.  

These points all have an azimuth between −15° and 15°, and have an elevation of 0°. 

Based on these results, it is easier to identify azimuth than elevation.  Intuitively 

this makes sense due to the location of the ears on the head.  Another observation that 

can be made is that the positions near the x axis at low elevations are the hardest to 

pinpoint.  A possible cause of this is the placement of the speakers.  The left and right 

speakers were positioned to be about the same height as the listener’s ears.  Because 

of this, during multi-channel tests, the listener was having to differentiate between four 

elevations that were all above his/her head.  If the bottom speakers were placed lower, 

the listener would be aligned with the center of the active triangle, and the range of 

elevations would extend below them as well.  Although the experiment could have been 

set up differently, according to Figure 20b participants identified the correct azimuth and 

elevation of the virtual source within 15° at least 80% of the time. 

4.3 Non Equidistant Results 

The purpose of the non-equidistant interaural correction algorithm is to calculate 

the proper gain factors and time delay needed to compensate for interaural differences 

when the listener is not the same distance from each speaker.  Several examples where 
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the listener and/or speakers are in different positions are presented below. For each 

example the corrected gain factors, time delay, and color intensity simulation produced 

by algorithm are shown. 

 

Figure 21a: Interaural Correction Algorithm example 1 

Figure 21a shows the scenario in which the listener is the same distance from 

both speakers.  The coordinates of the left speaker are (10,20), the right speaker is at 

(20,20), and the listener is at (15,5).  Since the listener is in the middle, the algorithm 

calculated the corrected gains to be equal: 𝑔1 = 0.5270 and 𝑔2 = 0.5270, and that there 

is no time delay: 𝑡𝑑 = 0 𝑚𝑠. 
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 Figure 21b: Interaural Correction Algorithm example 2  

In Figure 21b the coordinates of the left speaker are (10,20), the right speaker is 

at (20,20), and the listener is at (11,5).  The interaural correction algorithm calculated 

the corrected gains to be 𝑔1 = 0.5421 and 𝑔2 = 0.734, and for the time delay of the left 

speaker to be 𝑡𝑑 = 7.2278 𝑚𝑠. 
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Figure 21c: Interaural Correction Algorithm example 3 

In Figure 21c the coordinates of the left speaker are (10,20), the right speaker is 

at (20,20), and the listener is at (17,5).  The interaural correction algorithm calculated 

the corrected gains to be 𝑔1 = 0.6216 and 𝑔2 = 0.5308, and for the time delay of the 

right speaker to be 𝑡𝑑 = 3.6906 𝑚𝑠. 
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Figure 21d: Interaural Correction Algorithm example 4 

In Figure 21d the coordinates of the left speaker are (10,15), the right speaker is 

at (20,20), and the listener is at (15,5).  The interaural correction algorithm calculated 

the corrected gains to be 𝑔1 = 0.5398 and 𝑔2 = 1.0797, and for the time delay of the left 

speaker to be 𝑡𝑑 = 13.609 𝑚𝑠. 
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Figure 21e: Interaural correction Algorithm example 5 

In Figure 21e the coordinates of the left speaker are (10,15), the right speaker is 

at (20,20), and the listener is at (15,5).  The interaural Correction algorithm calculated 

the corrected gains to be 𝑔1 = 1.0797 and 𝑔2 = 0.5983, and for the time delay of the 

right speaker to be 𝑡𝑑 = 13.609 𝑚𝑠. 
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Figure 21f: Interaural Correction Algorithm example 6 

In Figure 21f the coordinates of the left speaker are (10,18), the right speaker is 

at (20,20), and the listener is at (12,5).  The interaural correction algorithm calculated 

the corrected gains to be 𝑔1 = 0.5384 and 𝑔2 = 0.8995, and for the time delay of the left 

speaker to be 𝑡𝑑 = 11.305 𝑚𝑠. 
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Figure 21g: Interaural Correction Algorithm example 7 

In Figure 21g the coordinates of the left speaker are (12,18), the right speaker is 

at (19,15), and the listener is at (18,9).  The interaural correction algorithm calculated 

the corrected gains to be 𝑔1 = 1.7813 and 𝑔2 = 0.5633, and for the time delay of the left 

speaker to be 𝑡𝑑 = 13.911 𝑚𝑠. 

As you can see, in each example the speaker that is farthest from the observer 

starts at a higher intensity.  Once the preliminary wave reaches the point that is in line 

with the other speaker, the sound intensities are equal.  As the waves move toward the 

observer both intensities decrease with distance from the source.  Since the two lines 

reach the listener at the same time with the same intensity (color) the sound will be 

perceived directly in front of them, even though they are closer to one speaker. 
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CHAPTER 5: CONCLUSION & FUTURE WORK 

 

In this research effort, an algorithm was developed to simulate auditory 

localization in a two and three channel speaker system.  A test setup was produced to 

implement the simulation, and experimental data was collected to verify the simulation.  

An interaural correction algorithm was also developed to simulate the scenario in which 

the listener is not the same distance from each speaker.  The 2D experiments showed 

that participants correctly identified the position of the virtual source with an average 

RMS error of 4⁰.  The 3D experiments showed that participants identified the correct 

azimuth and elevation of the virtual source within 15° of the simulated position at least 

80% of the time.  Based on these results the simulation is accurate, and could be useful 

in implementing a multichannel 3D audio system that could provide a more realistic 

listening experience than current stereo-sound systems. 

Other than positioning the bottom speakers lower, there are several other ways 

the experiment could be modified and continued.  The speakers could be moved to 

different distances and angles from the listener to see if their ability to distinguish 

location is affected, or experiments could be done to see how factors like these effect 

the size of the sweet spot.  Other sounds, such as music or speech, could also be used 

for testing.  The next step would be to add additional speakers around the listener to 

form an “active sphere” in which the sound could be moved.  In this scenario, the same 

math could be used, but the algorithm would have to distinguish which group of three 

speakers to activate based on the desired virtual source position.  The algorithm could 

also be used to produce a series of locations to play sound over to give it the effect of 

moving across the active triangle. 
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The interaural correction algorithm for non-equidistant localization could also be 

tested.  If the experiment matched the simulation, then it could be combined with the 3D 

amplitude panning algorithm to produce 3D sound despite the listener’s location relative 

to the speakers.  Also, if the listener’s position were tracked, the algorithm could be 

modified to update as they move around and place the sound wherever they are. 
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APPENDIX A: Experimental Data 

 

Table A1: Two channel experimental data – participants 1 to 5 (all angles in degrees) 

 

 

 

 

 

 

 

 

 

 

 

 

Left Gain Right Gain
Calculated 

Angle
Participant 1 Participant 2 Participant 3 Participant 4 Participant 5

0.788010754 0.615661475 7 15 8 5 5 12

1 0 45 45 45 42 42 41

0.087155743 0.996194698 -40 -45 -37 -45 -45 -40

0.882947593 0.469471563 17 14 15 7 15 20

0.913545458 0.406736643 21 20 22 17 17 26

0.68199836 0.731353702 -2 -9 -7 -5 -5 -2

0.838670568 0.544639035 12 14 7 5 10 8

0.987688341 0.156434465 36 40 42 32 37 39

0.544639035 0.838670568 -12 -15 -12 -15 -12 -19

0.615661475 0.788010754 -7 -10 -4 -12 -8 -5

0 1 -45 -45 -37 -42 -44 -43

0.325568154 0.945518576 -26 -25 -23 -28 -25 -32

0.970295726 0.241921896 31 35 40 33 35 35

0.731353702 0.68199836 2 7 5 0 0 0

0.469471563 0.882947593 -17 -20 -13 -14 -10 -20

0.406736643 0.913545458 -21 -20 -20 -20 -17 -27

0.945518576 0.325568154 26 35 33 30 30 27

0.156434465 0.987688341 -36 -35 -32 -35 -42 -42

0.241921896 0.970295726 -31 -30 -34 -32 -30 -36

0.996194698 0.087155743 40 40 45 40 43 43

Perceived Angle
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Table A2: Two channel experimental data – participants 6 to 10 (all angles in degrees) 

 

 

Table A3: Two channel experimental data – participants 11 to 15 (all angles in degrees) 

 

Left Gain Right Gain
Calculated 

Angle
Participant 6 Participant 7 Participant 8 Participant 9 Participant 10

0.788010754 0.615661475 7 4 2 7 5 7

1 0 45 43 40 45 45 38

0.087155743 0.996194698 -40 -35 -40 -42 -45 -45

0.882947593 0.469471563 17 18 10 13 15 15

0.913545458 0.406736643 21 29 20 26 22 15

0.68199836 0.731353702 -2 -3 -3 0 -6 0

0.838670568 0.544639035 12 17 5 14 10 13

0.987688341 0.156434465 36 35 32 42 35 38

0.544639035 0.838670568 -12 -15 -13 -12 -19 -11

0.615661475 0.788010754 -7 -10 -8 -3 -10 -9

0 1 -45 -45 -45 -45 -45 -40

0.325568154 0.945518576 -26 -35 -29 -17 -32 -23

0.970295726 0.241921896 31 32 26 37 30 37

0.731353702 0.68199836 2 2 0 0 0 0

0.469471563 0.882947593 -17 -20 -11 -14 -22 -20

0.406736643 0.913545458 -21 -27 -15 -16 -27 -25

0.945518576 0.325568154 26 25 24 28 20 25

0.156434465 0.987688341 -36 -31 -40 -40 -37 -40

0.241921896 0.970295726 -31 -31 -34 -31 -39 -30

0.996194698 0.087155743 40 43 40 45 36 45

Perceived Angle

Left Gain Right Gain
Calculated 

Angle
Participant 11 Participant 12 Participant 13 Participant 14 Participant 15

0.788010754 0.615661475 7 9 5 8 0 0

1 0 45 42 38 40 45 37

0.087155743 0.996194698 -40 -36 -44 -44 -38 -39

0.882947593 0.469471563 17 16 12 16 8 8

0.913545458 0.406736643 21 20 15 22 10 17

0.68199836 0.731353702 -2 1 -7 -5 -4 0

0.838670568 0.544639035 12 13 4 8 8 4

0.987688341 0.156434465 36 39 35 44 35 29

0.544639035 0.838670568 -12 -6 -10 -15 -15 -14

0.615661475 0.788010754 -7 -2 -1 -8 -7 -5

0 1 -45 -43 -45 -45 -45 -45

0.325568154 0.945518576 -26 -21 -30 -35 -25 -29

0.970295726 0.241921896 31 30 34 37 26 28

0.731353702 0.68199836 2 8 0 0 0 0

0.469471563 0.882947593 -17 -8 -18 -22 -10 -17

0.406736643 0.913545458 -21 -15 -25 -26 -20 -16

0.945518576 0.325568154 26 24 30 27 23 19

0.156434465 0.987688341 -36 -32 -44 -44 -28 -40

0.241921896 0.970295726 -31 -28 -37 -40 -24 -30

0.996194698 0.087155743 40 35 45 44 36 38

Perceived Angle
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Table A4: Multi-channel Perimeter Test positions (all angles in degrees) 

 

 

Table A5: Perimeter Test data – participants 1 to 5 

 

 

 

 

 

 

 

Perimeter Training 

Positions
Azimuth Elevation

1 0 0

2 15 0

3 30 0

4 45 0

5 30 14

6 15 28

7 0 42

8 -15 28

9 -30 14

10 -45 0

11 -30 0

12 -15 0

Perimeter Test 

Order
Participant 1 Participant 2 Participant 3 Participant 4 Participant 5

2 2 2 3 4 4

3 3 3 3 3 3

4 5 4 4 2 4

9 8 9 9 9 10

7 7 7 6 7 7

0 0 0 0 0 6

8 10 8 8 8 8

6 6 6 6 6 6

1 5 1 3 5 5

5 1 5 5 5 5

11 11 11 7 11 7

10 8 10 8 10 8

Perceived Position
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Table A6: Perimeter Test data – participants 6 to 10 

 

 

Table A7: Perimeter Test data – participants 11 to 15 

 

 

 

 

 

 

Perimeter Test 

Order
Participant 6 Participant 7 Participant 8 Participant 9 Participant 10

2 2 2 4 2 2

3 3 3 3 3 3

4 4 4 2 4 4

9 9 9 9 9 9

7 7 7 7 7 7

0 0 6 0 0 0

8 8 8 8 8 8

6 6 0 6 6 6

1 1 5 5 1 1

5 4 5 1 5 5

11 7 7 11 11 11

10 9 10 10 9 8

Perceived Position

Perimeter Test 

Order
Participant 11 Participant 12 Participant 13 Participant 14 Participant 15

2 2 2 3 2 2

3 3 3 3 3 3

4 2 4 4 4 4

9 9 9 9 9 9

7 7 7 7 7 7

0 0 6 6 6 0

8 8 9 9 8 8

6 6 0 6 6 6

1 1 5 1 1 1

5 5 5 5 5 5

11 7 11 7 11 11

10 10 10 8 10 10

Peceived Position



55 
 

Table A8: Multi-channel Random Angle Test positions (all angles in degrees) 

 

  

Table A9: Random Angle Test data – participants 1 to 5 

 

Random Test 

Training Positions
Azimuth Elevation

1 45 0

2 30 0

3 30 14

4 15 0

5 15 14

6 15 28

7 0 0

8 0 14

9 0 28

10 0 42

11 -15 0

12 -15 14

13 -15 28

14 -30 0

15 -30 14

16 -45 0

Random Test 

Order
Participant 1 Participant 2 Participant 3 Participant 4 Participant 5

10 10 10 9 10 10

13 12 12 13 13 13

9 8 9 10 9 9

4 5 5 6 6 5

6 6 6 9 5 6

2 1 2 2 3 2

15 15 16 15 15 16

14 14 14 14 14 14

8 8 8 10 8 9

5 5 4 5 5 5

11 12 11 12 12 12

7 9 7 8 8 8

1 1 1 1 1 1

16 16 16 16 16 16

3 3 2 3 3 3

12 12 12 13 11 12

Perceived Position
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 Table A10: Random Angle Test data – participants 5 to 10 

 

 Table A11: Random Angle Test data – participants 11 to 15 

 

Random Test 

Order
Participant 6 Participant 7 Participant 8 Participant 9 Participant 10

10 10 10 10 10 10

13 13 13 12 13 13

9 9 9 9 9 9

4 5 4 4 5 4

6 6 6 6 6 6

2 2 3 3 3 1

15 15 15 15 15 15

14 14 14 14 14 14

8 8 8 8 8 8

5 5 5 5 5 5

11 11 12 12 12 12

7 9 8 8 8 8

1 1 1 1 1 1

16 16 16 16 16 16

3 2 3 3 3 3

12 12 12 12 12 12

Perceived Position

Random Test 

Order
Participant 11 Participant 12 Participant 13 Participant 14 Participant 15

10 10 9 10 10 10

13 13 13 13 13 13

9 9 9 9 9 9

4 5 4 5 5 5

6 6 6 6 6 6

2 2 3 3 3 2

15 15 15 15 15 15

14 14 15 12 14 14

8 8 7 8 8 8

5 5 5 6 5 5

11 12 13 12 11 12

7 8 7 8 9 8

1 1 1 1 1 1

16 16 16 15 16 16

3 3 3 2 3 3

12 13 13 13 12 13

Perceived Position
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APPENDIX B: MATLAB Code 

 

TrainingProgram2D.m  

clear all 

close all 

choosetest = mymenu1('Choose Training:','Sweep','User Input'); 

if choosetest == 1 

    % % get speaker inputs 

    prompt = {'Please enter the distance to the speakers in feet: 

',... 

        'Please enter the angle (in degrees) from center to the left 

speaker: ',... 

        'Please enter the angle (in degrees) from center to the right 

speaker: '}; 

     

    title = 'Speaker Parameters'; 

    numlines = 1; 

    defAns = {'8','45','-45'}; 

    options.Resize='off'; 

    options.WindowStyle='normal'; 

    options.Interpreter='tex'; 

     

    answer = inputdlg(prompt,title,numlines,defAns,options); 

    s = str2num(answer{1}); 

    LeftAngle = str2num(answer{2}); 

    RightAngle = str2num(answer{3}); 

     

    % Calculate angles and gains 

    for Pangle = RightAngle:15:LeftAngle  % for stepping through all 

angles 

         

        xL = s*cosd(LeftAngle); 

        yL = s*sind(LeftAngle); 

        Left = [xL yL]; 

        xR = s*cosd(RightAngle); 

        yR = s*sind(RightAngle); 

        Right = [xR yR]; 

        xP = s*cosd(Pangle); 

        yP = s*sind(Pangle); 

        P = [xP yP]; 

         

        done = false; 

        while (~done) 

            LeftMag = norm(Left); 
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            if Left(1)>0 && Left(2)>0 

                done = true; 

            elseif ~(Left(1)>0 && Left(2)>0) 

                fprintf('Error: Speaker out of bounds, must be in 

first quadrant \n'); 

                Left = input('Please input a 2 dimensional vector ([x 

y]) for the left speaker: '); 

            end 

        end 

        thetaL = (atan(Left(2)/Left(1)))*180/pi 

         

        done = false; 

        while (~done) 

            RightMag = norm(Right); 

            if Right(1)>0 && Right(2)<0 && (abs(LeftMag-

RightMag))<10^-6 

                done = true; 

            elseif ~(Right(1)>0 && Right(2)<0) 

                fprintf('Error: Speaker out of bounds, must be in 

fourth quadrant \n'); 

                Right = input('Please input a 2 dimensional vector ([x 

y]) for the right speaker: '); 

            elseif ~((abs(LeftMag-RightMag))<10^-6 ) 

                fprintf('Error: Magnitude of vectors must be equal 

\n') 

                Right = input('Please input a 2 dimensional vector ([x 

y]) for the right speaker: '); 

            end 

        end 

        thetaR = (atan(Right(2)/Right(1)))*180/pi 

         

        done = false; 

        while (~done) 

            P = P'; 

            thetaP = (atan(P(2)/P(1)))*180/pi 

            L = [Left' Right']'; 

            G = P'*inv(L) 

            if P(1)>0 && Pangle>=RightAngle && Pangle<=LeftAngle && 

max(G)<=1 && max(G)>=0 

                done = true; 

            elseif ~(P(1)>0 && Pangle>RightAngle && Pangle<LeftAngle 

&& max(G)<1 && max(G)>0) 

                fprintf('Error') 

                done = true; 

            end 

        end 
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        gL = G(1); 

        gR = G(2); 

         

        perceivedL = sin(2*pi*400*(0:1/20000:2)); 

        perceivedR = sin(2*pi*400*(0:1/20000:2)); 

        perceived = [gL.*perceivedL' gR.*perceivedR']; 

         

        %% Play tone 

        soundsc(perceived,20000); 

        pause(2.5) 

    end 

     

else 

    trainingdone = 2; 

    while trainingdone == 2 

        close all 

        %% Play tone at 0,+-15,+-30,,+-45 

         

        prompt = {'Please enter the distance to the speakers in feet: 

',... 

            'Please enter the angle (in degrees) from center to the 

left speaker: ',... 

            'Please enter the angle (in degrees) from center to the 

right speaker: ',... 

            'Please enter the desired angle (in degrees) of the 

perceived sound: '}; 

         

        title = 'Speaker Parameters'; 

        numlines = 1; 

        defAns = {'8','45','-45','0'}; 

        options.Resize='off'; 

        options.WindowStyle='normal'; 

        options.Interpreter='tex'; 

         

        answer = inputdlg(prompt,title,numlines,defAns,options); 

        s = str2num(answer{1}); 

        LeftAngle = str2num(answer{2}); 

        RightAngle = str2num(answer{3}); 

        Pangle = str2num(answer{4});         

        xL = s*cosd(LeftAngle); 

        yL = s*sind(LeftAngle); 

        Left = [xL yL]; 

        xR = s*cosd(RightAngle); 

        yR = s*sind(RightAngle); 

        Right = [xR yR]; 

        xP = s*cosd(Pangle); 

        yP = s*sind(Pangle); 
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        P = [xP yP]; 

         

        done = false; 

        while (~done) 

            LeftMag = norm(Left); 

            if Left(1)>0 && Left(2)>0 

                done = true; 

            elseif ~(Left(1)>0 && Left(2)>0) 

                fprintf('Error: Speaker out of bounds, must be in 

first quadrant \n'); 

                Left = input('Please input a 2 dimensional vector ([x 

y]) for the left speaker: '); 

            end 

        end 

        thetaL = (atan(Left(2)/Left(1)))*180/pi 

         

        done = false; 

        while (~done) 

            RightMag = norm(Right); 

            if Right(1)>0 && Right(2)<0 && (abs(LeftMag-

RightMag))<10^-6 

                done = true; 

            elseif ~(Right(1)>0 && Right(2)<0) 

                fprintf('Error: Speaker out of bounds, must be in 

fourth quadrant \n'); 

                Right = input('Please input a 2 dimensional vector ([x 

y]) for the right speaker: '); 

            elseif ~((abs(LeftMag-RightMag))<10^-6 ) 

                fprintf('Error: Magnitude of vectors must be equal 

\n') 

                Right = input('Please input a 2 dimensional vector ([x 

y]) for the right speaker: '); 

            end 

        end 

        thetaR = (atan(Right(2)/Right(1)))*180/pi 

         

        done = false; 

        while (~done) 

            P = P'; 

            thetaP = (atan(P(2)/P(1)))*180/pi 

            L = [Left' Right']'; 

            G = P'*inv(L) 

            if P(1)>0 && Pangle>=RightAngle && Pangle<=LeftAngle && 

max(G)<=1 && max(G)>=0 

                done = true; 

            elseif ~(P(1)>0 && Pangle>RightAngle && Pangle<LeftAngle 

&& max(G)<1 && max(G)>0) 
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                prompt = {'Error: The Perceived sound must lie in the 

active arc of the two speakers   Please enter the desired angle of the 

perceived sound : '}; 

                answer = inputdlg(prompt); 

                Pangle = str2num(answer{1}); 

                xP = s*cosd(Pangle); 

                yP = s*sind(Pangle); 

                P = [xP yP]; 

            end 

        end 

         

        figure 

        plot([0 Left(2)],[0 Left(1)],'r-o') 

        hold on 

        plot([0 Right(2)],[0 Right(1)],'-o') 

        plot([0 P(2)],[0 P(1)],'k-x') 

        set(gca,'XDir','reverse') 

        legend('Left Speaker','Right Speaker','Virtual Source') 

        xlabel('feet') 

        ylabel('feet') 

        grid on 

         

        gL = G(1); 

        gR = G(2); 

         

        perceivedL = sin(2*pi*400*(0:1/44100:2)); 

        perceivedR = sin(2*pi*400*(0:1/44100:2)); 

        perceived = [gL.*perceivedL' gR.*perceivedR']; 

         

        soundsc(perceived,44100); 

         

        repdone = false; 

        while (~repdone) 

            replay = mymenu1('Replay Sound?','Yes','No'); 

            if replay ==1 

                soundsc(perceived,20000); 

            else 

                repdone=true; 

            end 

        end 

        trainingdone = mymenu1('Training Done?','Yes','No'); 

    end 

end 
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DiscreteAngleTest2D.m 

clear all 

close all 

  

prompt = {'Please enter the Participant number: ',... 

    'Please enter the frequency of the tone you want to play: '}; 

  

title = 'Participant Information'; 

numlines = 1; 

defAns = {'','400'}; 

options.Resize='off'; 

options.WindowStyle='normal'; 

options.Interpreter='tex'; 

answer = inputdlg(prompt,title,numlines,defAns,options); 

freq = str2num(answer{2}); 

Participant = str2num(answer{1}); 

filename = ['Amplitude Panning Data_' date]; 

  

if (~exist([filename '.xls'])) 

    xlswrite(filename,[{'Trial'} {'Left Gain'}... 

        {'Right Gain'} {'Desired Perceived Angle'} {'Actual Perceived 

Angle'}... 

        {'Error'} {'Distance to Speakers'}],... 

        Participant,[char(65) num2str(1)]); 

    Trial = 1; 

else 

    xlswrite(filename,[{'Trial'} {'Left Gain'}... 

        {'Right Gain'} {'Desired Perceived Angle'} {'Actual Perceived 

Angle'}... 

        {'Error'} {'Distance to Speakers'}],... 

        Participant,[char(65) num2str(1)]); 

    A = xlsread(filename,Participant); 

    [rows cols] = size(A); 

    Trial = rows+1; 

end 

  

testdone = false; 

% First 20 only 0:15:+-45    Last 20 use Random 

prompt = {'Please enter the distance to the speakers in feet: ',... 

    'Please enter the angle (in degrees) from center to the left 

speaker: ',... 

    'Please enter the angle (in degrees) from center to the right 

speaker: '}; 

  

title = 'Speaker Parameters'; 

numlines = 1; 
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defAns = {'8','45','-45'}; 

options.Resize='off'; 

options.WindowStyle='normal'; 

options.Interpreter='tex'; 

  

answer = inputdlg(prompt,title,numlines,defAns,options); 

s = str2num(answer{1}); 

LeftAngle = str2num(answer{2}); 

RightAngle = str2num(answer{3}); 

  

Angles = [15,-30,30,-15,45,0,-45,-30,-30,45,-15,30,45,-15,0,15,45,-

30,15,-45]; 

  

while testdone~=Angles(length(Angles)) 

    for i = 1:length(Angles); 

        close all 

        Pangle = Angles(i); 

        xL = s*cosd(LeftAngle); 

        yL = s*sind(LeftAngle); 

        Left = [xL yL]; 

        xR = s*cosd(RightAngle); 

        yR = s*sind(RightAngle); 

        Right = [xR yR]; 

        xP = s*cosd(Pangle); 

        yP = s*sind(Pangle); 

        P = [xP yP]; 

         

        done = false; 

        while (~done) 

            LeftMag = norm(Left); 

            if Left(1)>0 && Left(2)>0 

                done = true; 

            elseif ~(Left(1)>0 && Left(2)>0) 

                fprintf('Error: Speaker out of bounds, must be in 

first quadrant \n'); 

                Left = input('Please input a 2 dimensional vector ([x 

y]) for the left speaker: '); 

            end 

        end 

        thetaL = (atan(Left(2)/Left(1)))*180/pi 

         

        done = false; 

        while (~done) 

            RightMag = norm(Right); 

            if Right(1)>0 && Right(2)<0 && (abs(LeftMag-

RightMag))<10^-6 

                done = true; 
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            elseif ~(Right(1)>0 && Right(2)<0) 

                fprintf('Error: Speaker out of bounds, must be in 

fourth quadrant \n'); 

                Right = input('Please input a 2 dimensional vector ([x 

y]) for the right speaker: '); 

            elseif ~((abs(LeftMag-RightMag))<10^-6 ) 

                fprintf('Error: Magnitude of vectors must be equal 

\n') 

                Right = input('Please input a 2 dimensional vector ([x 

y]) for the right speaker: '); 

            end 

        end 

        thetaR = (atan(Right(2)/Right(1)))*180/pi 

         

        done = false; 

        while (~done) 

            P = P'; 

            thetaP = (atan(P(2)/P(1)))*180/pi 

            L = [Left' Right']'; 

            G = P'*inv(L) 

            if P(1)>0 && Pangle>=RightAngle && Pangle<=LeftAngle && 

max(G)<=1 && max(G)>=0 

                done = true; 

            elseif ~(P(1)>0 && Pangle>RightAngle && Pangle<LeftAngle 

&& max(G)<1 && max(G)>0) 

                prompt = {'Error: The Perceived sound must lie in the 

active arc of the two speakers   Please enter the desired angle of the 

perceived sound : '}; 

                answer = inputdlg(prompt); 

                Pangle = str2num(answer{1}); 

                xP = s*cosd(Pangle); 

                yP = s*sind(Pangle); 

                P = [xP yP]; 

            end 

        end 

         

        figure 

        plot([0 Left(1)],[0 Left(2)],'r-o') 

        hold on 

        plot([0 Right(1)],[0 Right(2)],'-o') 

        plot([0 P(1)],[0 P(2)],'k-x') 

        grid on 

         

        gL = G(1); 

        gR = G(2); 

         

        perceivedL = sin(2*pi*freq*(0:1/20000:2)); 
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        perceivedR = sin(2*pi*freq*(0:1/20000:2)); 

        perceived = [gL.*perceivedL' gR.*perceivedR']; 

        soundsc(perceived,20000); 

         

        repdone = false; 

        while (~repdone) 

            replay = mymenu1('Replay Sound?','Yes','No'); 

            if replay ==1 

                soundsc(perceived,20000); 

            else 

                repdone=true; 

            end 

        end 

         

        prompt2 = {'What was the angle of the perceived sound?: '}; 

        answer2 = inputdlg(prompt2); 

        PerceivedAngle = str2num(answer2{1}); 

        Error = Pangle-PerceivedAngle; 

         

        row = Trial+1; 

        letter = char(65); 

        number = num2str(row); 

        cell = [letter number]; 

         

        xlswrite(filename,[Trial gL gR Pangle PerceivedAngle Error 

s],Participant,cell); 

         

        testcomplete = mymenu1('Continue Testing?','Yes','No'); 

        testdone = Pangle; 

        Trial = Trial+1; 

    end 

end 
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RandomAngleTest2D.m 

clear all 

close all 

  

testdone = false; 

prompt = {'Please enter the Participant number: ',... 

    'Please enter the frequency of the tone you want to play: '}; 

  

title = 'Participant Information'; 

numlines = 1; 

defAns = {'','400'}; 

options.Resize='off'; 

options.WindowStyle='normal'; 

options.Interpreter='tex'; 

answer = inputdlg(prompt,title,numlines,defAns,options); 

freq = str2num(answer{2}); 

Participant = str2num(answer{1}); 

filename = ['Amplitude Panning Data_' date]; 

  

if (~exist([filename '.xls'])) 

    xlswrite(filename,[{'Trial'} {'Left Gain'}... 

        {'Right Gain'} {'Desired Perceived Angle'} {'Actual Perceived 

Angle'}... 

        {'Error'} {'Distance to Speakers'}],... 

        Participant,[char(65) num2str(1)]); 

    Trial = 1; 

else 

    xlswrite(filename,[{'Trial'} {'Left Gain'}... 

        {'Right Gain'} {'Desired Perceived Angle'} {'Actual Perceived 

Angle'}... 

        {'Error'} {'Distance to Speakers'}],... 

        Participant,[char(65) num2str(1)]); 

    A = xlsread(filename,Participant); 

    [rows cols] = size(A); 

    Trial = rows+1; 

end 

  

% First 20 only 0:15:+-45    Last 20 Random 

prompt = {'Please enter the distance to the speakers in feet: ',... 

    'Please enter the angle (in degrees) from center to the left 

speaker: ',... 

    'Please enter the angle (in degrees) from center to the right 

speaker: '}; 

  

title = 'Speaker Parameters'; 

numlines = 1; 
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defAns = {'8','45','-45'}; 

options.Resize='off'; 

options.WindowStyle='normal'; 

options.Interpreter='tex'; 

  

answer = inputdlg(prompt,title,numlines,defAns,options); 

s = str2num(answer{1}); 

LeftAngle = str2num(answer{2}); 

RightAngle = str2num(answer{3}); 

Angles = [7,45,-40,17,21,-2,12,36,-12,-7,-45,-26,31,2,-17,-21,26,-36,-

31,40]; 

  

while testdone~=Angles(length(Angles)) 

for i = 1:length(Angles);   

     

        close all 

        Pangle = Angles(i); 

         

        xL = s*cosd(LeftAngle); 

        yL = s*sind(LeftAngle); 

        Left = [xL yL]; 

        xR = s*cosd(RightAngle); 

        yR = s*sind(RightAngle); 

        Right = [xR yR]; 

        xP = s*cosd(Pangle); 

        yP = s*sind(Pangle); 

        P = [xP yP]; 

         

        done = false; 

        while (~done) 

            LeftMag = norm(Left); 

            if Left(1)>0 && Left(2)>0 

                done = true; 

            elseif ~(Left(1)>0 && Left(2)>0) 

                fprintf('Error: Speaker out of bounds, must be in 

first quadrant \n'); 

                Left = input('Please input a 2 dimensional vector ([x 

y]) for the left speaker: '); 

            end 

        end 

        thetaL = (atan(Left(2)/Left(1)))*180/pi 

         

        done = false; 

        while (~done) 

            RightMag = norm(Right); 

            if Right(1)>0 && Right(2)<0 && (abs(LeftMag-

RightMag))<10^-6 
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                done = true; 

            elseif ~(Right(1)>0 && Right(2)<0) 

                fprintf('Error: Speaker out of bounds, must be in 

fourth quadrant \n'); 

                Right = input('Please input a 2 dimensional vector ([x 

y]) for the right speaker: '); 

            elseif ~((abs(LeftMag-RightMag))<10^-6 ) 

                fprintf('Error: Magnitude of vectors must be equal 

\n') 

                Right = input('Please input a 2 dimensional vector ([x 

y]) for the right speaker: '); 

            end 

        end 

        thetaR = (atan(Right(2)/Right(1)))*180/pi 

         

        done = false; 

        while (~done) 

            P = P'; 

            thetaP = (atan(P(2)/P(1)))*180/pi 

            L = [Left' Right']'; 

            G = P'*inv(L) 

            if P(1)>0 && Pangle>=RightAngle && Pangle<=LeftAngle && 

max(G)<=1 && max(G)>=0 

                done = true; 

            elseif ~(P(1)>0 && Pangle>RightAngle && Pangle<LeftAngle 

&& max(G)<1 && max(G)>0) 

                prompt = {'Error: The Perceived sound must lie in the 

active arc of the two speakers   Please enter the desired angle of the 

perceived sound : '}; 

                answer = inputdlg(prompt); 

                Pangle = str2num(answer{1}); 

                xP = s*cosd(Pangle); 

                yP = s*sind(Pangle); 

                P = [xP yP]; 

            end 

        end 

         

        figure 

        plot([0 Left(1)],[0 Left(2)],'r-o') 

        hold on 

        plot([0 Right(1)],[0 Right(2)],'-o') 

        plot([0 P(1)],[0 P(2)],'k-x') 

        grid on 

  

        gL = G(1); 

        gR = G(2); 
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        perceivedL = sin(2*pi*freq*(0:1/20000:2)); 

        perceivedR = sin(2*pi*freq*(0:1/20000:2)); 

        perceived = [gL.*perceivedL' gR.*perceivedR']; 

        soundsc(perceived,20000); 

         

        repdone = false; 

        while (~repdone) 

            replay = mymenu1('Replay Sound?','Yes','No'); 

            if replay ==1 

                soundsc(perceived,20000); 

            else 

                repdone=true; 

            end 

        end 

         

        prompt2 = {'What was the angle of the perceived sound?: '}; 

        answer2 = inputdlg(prompt2); 

        PerceivedAngle = str2num(answer2{1}); 

        Error = Pangle-PerceivedAngle; 

         

        row = Trial+1; 

        letter = char(65); 

        number = num2str(row); 

        cell = [letter number]; 

         

        xlswrite(filename,[Trial gL gR Pangle PerceivedAngle Error 

s],Participant,cell); 

         

        testcomplete = mymenu1('Continue Testing?','Yes','No'); 

        testdone = Pangle; 

        Trial = Trial+1; 

    end 

end 
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GainCalc3D.m 

close all 

clear all 

prompt = {'Please enter the distance to the speakers in feet: ',... 

    'Please enter the angle (in degrees) from center to the left 

speaker: ',... 

    'Please enter the angle (in degrees) from center to the right 

speaker: ',... 

    'Please enter the elevation (in degrees) from horizontal to the 

top speaker: ',... 

    'Please enter the desired elevation (in degrees) from horizontal 

of the perceived sound: ',... 

    'Please enter the desired angle (in degrees) of the perceived 

sound: '}; 

  

title = 'Speaker Parameters'; 

numlines = 1;  

defAns = {'8','45','-45','42','28','15'}; 

options.Resize='off'; 

options.WindowStyle='normal'; 

options.Interpreter='tex'; 

answer = inputdlg(prompt,title,numlines,defAns,options); 

s = str2num(answer{1}); 

LeftAngle = str2num(answer{2}); 

RightAngle = str2num(answer{3}); 

TopElevation = str2num(answer{4}); 

Pelevation = str2num(answer{5}); 

Pangle = str2num(answer{6}); 

  

% angle = randi([RightAngle LeftAngle])*pi/180; % for random angle 

generation 

xL = s*cosd(LeftAngle); 

yL = s*sind(LeftAngle); 

zL = 0; 

Left = [xL yL zL]; 

xR = s*cosd(RightAngle); 

yR = s*sind(RightAngle); 

zR = 0; 

Right = [xR yR zR]; 

xT = 0; 

yT = 0; 

zT = s*sind(TopElevation); 

xT = sqrt(s^2-zT^2); 

yT = 0; 

Top = [xT yT zT]; 

xP = s*cosd(Pangle); 
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yP = s*sind(Pangle); 

zP = sqrt(xP^2+yP^2)*tand(Pelevation); 

P = [xP yP zP]; 

  

done = false; 

while (~done) 

    LeftMag = norm(Left); 

    if Left(1)>0 && Left(2)>0 

        done = true; 

    elseif ~(Left(1)>0 && Left(2)>0) 

        fprintf('Error: Speaker out of bounds, must be in first 

quadrant \n'); 

        Left = input('Please input a 2 dimensional vector ([x y]) for 

the left speaker: '); 

    end 

end 

thetaL = (atan(Left(2)/Left(1)))*180/pi 

  

done = false; 

while (~done) 

    RightMag = norm(Right); 

    if Right(1)>0 && Right(2)<0 && (abs(LeftMag-RightMag))<10^-6 

        done = true; 

    elseif ~(Right(1)>0 && Right(2)<0) 

        fprintf('Error: Speaker out of bounds, must be in fourth 

quadrant \n'); 

        Right = input('Please input a 2 dimensional vector ([x y]) for 

the right speaker: '); 

    elseif ~((abs(LeftMag-RightMag))<10^-6 ) 

        fprintf('Error: Magnitude of vectors must be equal \n') 

        Right = input('Please input a 2 dimensional vector ([x y]) for 

the right speaker: '); 

    end 

end 

thetaR = (atan(Right(2)/Right(1)))*180/pi 

  

done = false; 

while (~done) 

    P = P'; 

    thetaP = (atan(P(2)/P(1)))*180/pi 

    elevP = atand(P(3)/P(1)) 

    L = [Left' Right' Top']'; 

    G = P'*inv(L) 

    if max(G)>1 

    G = G/max(G) 

    end 
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    if P(1)>0 && Pangle>=RightAngle && Pangle<=LeftAngle && max(G)<=1 

&& max(G)>=0 

        done = true; 

    elseif ~(P(1)>0 && Pangle>RightAngle && Pangle<LeftAngle && 

max(G)<1 && max(G)>0) 

        prompt = {'Error: The Perceived sound must lie in the active 

arc of the two speakers   Please enter the desired angle of the 

perceived sound : '}; 

        answer = inputdlg(prompt); 

        Pangle = str2num(answer{1}); 

        xP = s*cosd(Pangle); 

        yP = s*sind(Pangle); 

        P = [xP yP]; 

    end 

end 

  

figure 

plot3([0 Left(1)],[0 Left(2)],[0 Left(3)],'r-o','linewidth',2) 

hold on 

plot3([0 Right(1)],[0 Right(2)],[0 Right(3)],'-o','linewidth',2) 

plot3([0 Top(1)],[0 Top(2)],[0 Top(3)],'c-o','linewidth',2) 

plot3([0 P(1)],[0 P(2)],[0 P(3)],'k-x','linewidth',2) 

plot3([Left(1) Top(1)],[Left(2) Top(2)],[Left(3) 

Top(3)],'k:','linewidth',2) 

plot3([Right(1) Top(1)],[Right(2) Top(2)],[Right(3) 

Top(3)],'k:','linewidth',2) 

plot3([Left(1) Right(1)],[Left(2) Right(2)],[Left(3) 

Right(3)],'k:','linewidth',2) 

grid on 

legend('Left Speaker','Right Speaker','Top Speaker','Virtual 

Source','Active Triangle') 

xlabel('feet') 

ylabel('feet') 

zlabel('feet') 

  

n = sqrt(G(1)^2+G(2)^2+G(3)^2); 

gL = G(1)/n; 

gR = G(2)/n; 

gT = G(3)/n; 

fs = 44100; 

perceivedL = gL.*sin(2*pi*350*(0:1/fs:2)); 

perceivedR = gR.*sin(2*pi*350*(0:1/fs:2)); 

perceivedT = gT.*sin(2*pi*350*(0:1/fs:2)); 

perceived = [gL.*perceivedL' gR.*perceivedR' gT.*perceivedT']; 

audiowrite('perceivedL.wav',perceivedL,fs); 

audiowrite('perceivedR.wav',perceivedR,fs); 

audiowrite('perceivedT.wav',perceivedT,fs);  
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NonEquidistant.m 

clear all 

close all 

  

prompt = {'Please enter the coordinates ( [x y] ) of the left speaker: 

',... 

    'Please enter the coordinates ( [x y] ) of the right speaker: 

',... 

    'Please enter the coordinates ( [x y] ) of the listener ',... 

    'Please enter the desired angle of the perceived sound: '}; 

  

title = 'Speaker Parameters'; 

numlines = 1; 

defAns = {'[10 20]','[20 20]','[12 5]','0'}; 

options.Resize='off'; 

options.WindowStyle='normal'; 

options.Interpreter='tex'; 

 

answer = inputdlg(prompt,title,numlines,defAns,options); 

Left = str2num(answer{1}); 

Right = str2num(answer{2}); 

Listener = str2num(answer{3}); 

Center = [(Left(1)+Right(1))/2 Listener(2)]; 

dL = sqrt((Left(1)-Listener(1))^2+(Left(2)-Listener(2))^2); 

dR = sqrt((Right(1)-Listener(1))^2+(Right(2)-Listener(2))^2); 

s = (dL+dR)/2; 

angle = str2num(answer{4})*pi/180; 

x = s*sin(angle)+Listener(1); 

yL = s*cos(angle)+Listener(2); 

P = [x yL]; 

Pcenter = [P(1)+Center(1)-Listener(1) P(2)]; 

 

done = false; 

while (~done) 

    LeftMag = norm(Left); 

    if Left(1)>0 && Left(2)>0 

        done = true; 

    elseif ~(Left(1)>0 && Left(2)>0) 

        fprintf('Error: Speaker coordinates must be positive  \n'); 

        Left = input('Please input coordinates ([x y]) for the left 

speaker: '); 

    end 

end 

thetaLrad = atan((Left(1)-Listener(1))/(Left(2)-Listener(2))); 

thetaLdeg = thetaLrad*180/pi 
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done = false; 

while (~done) 

    RightMag = norm(Right); 

    if Right(1)>0 && Right(2)>0 

        done = true; 

    elseif ~(Right(1)>0 && Right(2)>0) 

        fprintf('Error: Speaker coordinates must be positive \n'); 

        Right = input('Please input coordinates ([x y]) for the right 

speaker: '); 

    end 

end 

thetaRrad = atan((Right(1)-Listener(1))/(Right(2)-Listener(2))); 

thetaRdeg = thetaRrad*180/pi 

  

done = false; 

while (~done) 

    if Listener(2)<Left(2) && Listener(2)<Right(2) && 

Listener(1)>Left(1) && Listener(1)<Right(1) 

        done = true; 

    elseif ~(Listener(2)<Left(2) && Listener(2)<Right(2) && 

Listener(1)>Left(1) && Listener(1)<Right(1)) 

        fprintf('Error: Listener out of bounds, must be in front of 

and between speakers \n'); 

        Listener = input('Please input coordinates ([x y]) for the 

Listener: '); 

    end 

end 

  

done = false; 

while (~done) 

    Pvect = (Pcenter-Center); 

    thetaPrad = atan((P(1)-Listener(1))/(P(2)-Listener(2))); 

    thetaPdeg = thetaPrad*180/pi 

    L = [(Left-Center)' (Right-Center)']'; 

    G = Pvect*inv(L) 

    if G(1)>1 

        G(2)=G(2)/G(1) 

        G(1) = 1 

    elseif G(2)>1 

        G(1)=G(1)/G(2) 

        G(2) = 1 

    end 

    if dR>dL 

        Gcorrect = [G(1) G(2)*(dR/dL)^2] 

        TL = (dR-dL)/340.29; 

        TR = 0; 

    elseif dL>dR 
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        Gcorrect = [G(1)*(dL/dR)^2 G(2)] 

        TR = (dL-dR)/340.29; 

        TL = 0; 

    else 

        Gcorrect = G 

        TR = 0; 

        TL = 0; 

    end 

    Pcal = Gcorrect*L; 

 

    if P(1)>0 && P(2)>0 && thetaPdeg<thetaRdeg && thetaPdeg>thetaLdeg 

        done = true; 

       'Please input a 2 dimensional vector ([x y]) for the desired 

perceived location: '); 

    end 

end 

  

zp = 5;   % padding 

pixscale = 4; % scales number of pixels 

ymin = min([Right(2) Left(2) Listener(2)]);  

ymax = max([Right(2) Left(2) Listener(2)]); 

Nrows = pixscale*(ymax-ymin+2*zp); 

xmin = min([Right(1) Left(1) Listener(1)]); 

xmax = max([Right(1) Left(1) Listener(1)]); 

Ncols = pixscale*(xmax-xmin+2*zp); 

img = zeros(Nrows,Ncols); 

  

figure 

plot([Listener(1) Left(1)],[Listener(2) Left(2)],'r-o') 

hold on 

plot([Listener(1) Right(1)],[Listener(2) Right(2)],'-o') 

plot([Listener(1) P(1)],[Listener(2) P(2)],'k-x') 

grid on 

axis([0 xmax+2*zp 0 ymax+2*zp]) 

messageGL = num2str(Gcorrect(1)); 

messageTL = num2str(TL); 

gtext({messageGL,messageTL}) 

messageGR = num2str(Gcorrect(2)); 

messageTR = num2str(TR); 

gtext({messageGR,messageTR}) 

xlabel('feet') 

ylabel('feet') 

  

Npoints = 100; 

lineL = inv([Left(1) 1; Listener(1) 1])*[Left(2);Listener(2)]; 

lineR = inv([Right(1) 1; Listener(1) 1])*[Right(2);Listener(2)]; 

x = linspace(xmin,xmax,Ncols); 
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y = linspace(ymin,ymax,Nrows); 

  

figure 

if dR>dL 

    xL = linspace(Left(1),Listener(1),Npoints); 

    yL = lineL(1)*xL+lineL(2); 

    xR = linspace(Right(1),Listener(1),round(Npoints*dR/dL)); 

    yR = lineR(1)*xR+lineR(2); 

    addpts = round(Npoints*dR/dL)-Npoints; 

    deltaD = sqrt((xL(1)-xL(2))^2+(yL(1)-yL(2))^2); 

    deltaT = deltaD/340.29; 

    IL(1) = Gcorrect(1); 

    IR(1) = Gcorrect(2); 

    GF = 10^((log10(Gcorrect(1)/Gcorrect(2))/addpts)); 

 

    for j = 1:addpts 

        [rowR(j),colR(j)] = 

xy_to_rowcol(xmin,xmax,ymin,ymax,zp,Nrows,Ncols,xR(j),yR(j)); 

        if j>1 

            IR(j) = IR(j-1)*GF; 

        end 

        img(round(rowR(j)),round(colR(j)))=IR(j); 

        logimg = log10(img+10^-1)+1; 

        imagesc(x,y,fliplr(logimg)) 

        xlabel('feet') 

        ylabel('feet') 

        colorbar 

        time = j*deltaT*1000; 

        text(ymin+5.5,xmin-4,[num2str(time) 'ms'],'Color',[1 1 1]) 

        F(j)=getframe; 

    end 

 

    for i = 1:length(xL); 

        j = i+addpts; 

        [rowL(i),colL(i)] = 

xy_to_rowcol(xmin,xmax,ymin,ymax,zp,Nrows,Ncols,xL(i),yL(i)); 

        IR(j) = IR(j-1)*GF; 

        if i>1 

            IL(i) = IL(i-1)*GF; 

        end 

        img(round(rowL(i)),round(colL(i)))=IL(i); 

        [rowR(j),colR(j)] = 

xy_to_rowcol(xmin,xmax,ymin,ymax,zp,Nrows,Ncols,xR(j),yR(j)); 

        img(round(rowR(j)),round(colR(j)))=IR(j); 

        logimg = ((log10(img+10^-1)+1)/1); 

        imagesc(x,y,fliplr(logimg)) 

        xlabel('feet') 
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        ylabel('feet') 

        colorbar 

        time = j*deltaT*1000; 

        text(ymin+5.5,xmin-4,[num2str(time) 'ms'],'Color',[1 1 1]) 

        F(j)=getframe; 

    end 

 

elseif dL>dR 

    xL = linspace(Left(1),Listener(1),Npoints*dL/dR); 

    yL = lineL(1)*xL+lineL(2); 

    xR = linspace(Right(1),Listener(1),round(Npoints)); 

    yR = lineR(1)*xR+lineR(2); 

    addpts = round(Npoints*dL/dR)-Npoints; 

    deltaD = sqrt((xL(1)-xL(2))^2+(yL(1)-yL(2))^2); 

    deltaT = deltaD/340.29; 

    IL(1) = Gcorrect(1); 

    IR(1) = Gcorrect(2); 

    GF = 10^((log10(Gcorrect(2)/Gcorrect(1))/addpts)); 

 

    for i = 1:addpts 

        [rowL(i),colL(i)] = 

xy_to_rowcol(xmin,xmax,ymin,ymax,zp,Nrows,Ncols,xL(i),yL(i)); 

        if i>1 

            IL(i) = IL(i-1)*GF; 

        end 

        img(round(rowL(i)),round(colL(i)))=IL(i); 

        logimg = ((log10(img+10^-1)+1)/1); 

        imagesc(x,y,fliplr(logimg)) 

        colorbar 

        xlabel('feet') 

        ylabel('feet') 

        time = i*deltaT*1000; 

        text(ymin+5.5,xmin-4,[num2str(time) 'ms'],'Color',[1 1 1]) 

        F(i)=getframe; 

    end 

 

    for j = 1:length(xR); 

        i = j+addpts; 

        [rowR(j),colR(j)] = 

xy_to_rowcol(xmin,xmax,ymin,ymax,zp,Nrows,Ncols,xR(j),yR(j)); 

        IL(i) = IL(i-1)*GF; 

        if j>1 

            IR(j) = IR(j-1)*GF; 

        end 

        img(round(rowR(j)),round(colR(j)))=IR(j); 

        [rowL(i),colL(i)] = 

xy_to_rowcol(xmin,xmax,ymin,ymax,zp,Nrows,Ncols,xL(i),yL(i)); 
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        img(round(rowL(i)),round(colL(i)))=IL(i); 

        logimg = ((log10(img+10^-1)+1)/1); 

        imagesc(x,y,fliplr(logimg)) 

        colorbar 

        xlabel('feet') 

        ylabel('feet') 

        time = i*deltaT*1000; 

        text(ymin+5.5,xmin-4,[num2str(time) 'ms'],'Color',[1 1 1]) 

        F(i)=getframe; 

    end 

 

else 

    xL = linspace(Left(1),Listener(1),Npoints); 

    yL = lineL(1)*xL+lineL(2); 

    xR = linspace(Right(1),Listener(1),round(Npoints*dR/dL)); 

    yR = lineR(1)*xR+lineR(2); 

    deltaD = sqrt((xL(1)-xL(2))^2+(yL(1)-yL(2))^2); 

    deltaT = deltaD/340.29; 

    IL(1) = Gcorrect(1); 

    IR(1) = Gcorrect(2); 

    addpts = round(Npoints*dL/dR)-Npoints; 

    GF = 10^(log10(0.1/Gcorrect(1))/(Npoints-1)); 

    for i = 1:length(xR) 

        [rowR(i),colR(i)] = 

xy_to_rowcol(xmin,xmax,ymin,ymax,zp,Nrows,Ncols,xR(i),yR(i)); 

        [rowL(i),colL(i)] = 

xy_to_rowcol(xmin,xmax,ymin,ymax,zp,Nrows,Ncols,xL(i),yL(i)); 

        if i>1 

            IL(i) = IL(i-1)*GF; 

            IR(i) = IR(i-1)*GF; 

        end 

        img(round(rowL(i)),round(colL(i)))=IL(i); 

        img(round(rowR(i)),round(colR(i)))=IR(i); 

        imagesc(x,y,fliplr(img)) 

        colorbar 

        xlabel('feet') 

        ylabel('feet') 

        time = i*deltaT*1000; 

        text(ymin+5.5,xmin-4,[num2str(time) 'ms'],'Color',[1 1 1]) 

        F(i)=getframe; 

    end 

end 

  

figure 

movie(F,1,10) 


