
SIMULATION & TESTING OF A MULTICHANNEL SYTEM
FOR 3D SOUND LOCALIZATION

A thesis presented to the faculty of the Graduate School of Western Carolina University
in partial fulfillment of the requirements for the degree of Master of Science in

Technology.

By

Edward Albert Matthews

Director: Robert Adams, Ph.D.
Associate Professor

Department of Engineering and Technology

Committee Members:
Yanjun Yan, Ph.D., Department of Engineering and Technology
Peter Tay, Ph.D., Department of Engineering and Technology

Daniel Gonko, Commercial and Electronic Music

September 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/345082046?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

TABLE OF CONTENTS

LIST OF TABLES .. iii
LIST OF FIGURES ..iv
ABSTRACT ... v
CHAPTER 1: INTRODUCTION ... 1
CHAPTER 2: LITERATURE REVIEW ... 4
CHAPTER 3: DESIGN & METHODOLOGY .. 11

3.1 Equidistant Localization ... 11
3.1.1 Two Channel System ... 11
 3.1.1.1 Algorithm ... 13
 3.1.1.2 Test Procedure ... 15
3.1.2 Multi-Channel Systems .. 18
 3.1.2.1 Mathematical Derivation ... 18
 3.1.2.2 Algorithm ... 19
 3.1.2.3 Test Procedure ... 22

 3.2 Non-Equidistant Localization .. 25
3.2.1 Mathematical Derivation .. 26
3.2.2 Displaying the Model ... 27

CHAPTER 4: RESULTS & DISCUSSION ... 32
4.1 Two Channel Figures and Summary .. 32
4.2 Multi-Channel Figures and Summary ... 36
4.3 Non Equidistant Results ... 39

CHAPTER 5: CONCLUSION & FUTURE WORK ... 47
REFERENCES .. 49
APPENDIX A: Experimental Data ... 51
APPENDIX B: MATLAB Code ... 57

iii

LIST OF TABLES

Table A1: Two channel experimental data – participants 1 to 5 51
Table A2: Two channel experimental data – participants 6 to 10 52
Table A3: Two channel experimental data – participants 11 to 15 52
Table A4: Multi-channel Perimeter Test positions ... 53
Table A5: Perimeter Test data – participants 1 to 5 .. 53
Table A6: Perimeter Test data – participants 6 to 10 .. 54
Table A7: Perimeter Test data – participants 11 to 15 .. 54
Table A8: Multi-channel Random Angle Test positions ... 55
Table A9: Random Angle Test data – participants 1 to 5 .. 55
Table A10: Random Angle Test data – participants 5 to 10 .. 56
Table A11: Random Angle Test data – participants 11 to 15 .. 56

iv

LIST OF FIGURES

Figure 1: Coordinate system for sound direction ... 1
Figure 2: Paths from a source (A,B) to the left and right ears ... 2
Figure 3: Two-channel stereophonic configuration .. 5
Figure 4: Binaural audio system with loudspeakers .. 7
Figure 5: Three speaker multi-channel configuration (l1=l2=l3) .. 9
Figure 6: Stereophonic configuration formulated with vectors 12
Figure 7: Two-channel simulation example ... 15
Figure 8a: Two-channel experimental setup – table & chin rest 16
Figure 8b: Two-channel experimental setup – listener perspective 16
Figure 9: Three-channel simulation example .. 21
Figure 10: Three-channel experimental setup ... 22
Figure 11: Virtual source locations .. 23
Figure 12: Perimeter Test positions... 24
Figure 13: Random Test positions .. 25
Figure 14a: Sound intensity at time=5.3903ms ... 29
Figure 14b: Sound intensity at time=5.8395ms ... 29
Figure 14c: Sound intensity at time=26.5024ms ... 30
Figure 14d: Sound intensity at time=50.3097ms ... 30
Figure 15: Random Angle Test results – Angle vs. Level Difference 32
Figure 16: Random Angle Test results – Perceived vs. Calculated 33
Figure 17: Random Angle Tests – Average of Responses .. 34
Figure 18: Random Angle Test - RMS error .. 35
Figure 19a: Perimeter Test results – percent of correct responses 36

Figure 19b: Perimeter Test results – percent of responses within 15° 37
Figure 20a: Random Test results – percent of correct responses 38
Figure 20b: Random Test results – percent of responses within 15°............................ 38
Figure 21a: Interaural Correction Algorithm example 1 ... 40
Figure 21b: Interaural Correction Algorithm example 2 ... 41
Figure 21c: Interaural Correction Algorithm example 3 ... 42
Figure 21d: Interaural Correction Algorithm example 4 ... 43
Figure 21e: Interaural Correction Algorithm example 5 ... 44
Figure 21f: Interaural Correction Algorithm example 6 .. 45
Figure 21g: Interaural Correction Algorithm example 7 ... 46

v

ABSTRACT

SIMULATION & TESTING OF A MULTICHANNEL SYTEM FOR 3D SOUND

LOCALIZATION

Edward Albert Matthews, M.S.T.

Western Carolina University (September 2015)

Director: Dr. Robert Adams

Three-dimensional (3D) audio involves the ability to localize sound anywhere in a three-

dimensional space. 3D audio can be used to provide the listener with the perception of

moving sounds and can provide a realistic listening experience for applications such as

gaming, video conferencing, movies, and concerts. The purpose of this research is to

simulate and test 3D audio by incorporating auditory localization techniques in a multi-

channel speaker system. The objective is to develop an algorithm that can place an

audio event in a desired location by calculating and controlling the gain factors of each

speaker. A MATLAB simulation displays the location of the speakers and perceived

sound, which is verified through experimentation. The scenario in which the listener is

not equidistant from each of the speakers is also investigated and simulated. This

research is envisioned to lead to a better understanding of human localization of sound,

and will contribute to a more realistic listening experience.

1

CHAPTER 1: INTRODUCTION

The human ears hear the world in 3D. In other words, we can naturally

distinguish which direction a sound is coming from and how far away the source is.

This process is called auditory localization. The three coordinates that must be

determined when detecting the location of a sound are the azimuth, elevation, and

distance. The azimuth is the angle between the source and the sagittal, or median,

plane (left or right position); elevation is the angle between the source and the

horizontal plane through the ears (up and down position); and distance is how far away

the source is from the listener. Figure 1 shows the coordinate system for sound

localization relative to a listener.

Figure 1: Coordinate system for sound direction

To determine azimuth, our ears use interaural cues, or slight differences in time

and pressure of a sound as it reaches the left and right ear [1]. Interaural time

difference (ITD) is the delay of the sound between the left and right ear, and interaural

level difference (ILD) is the difference in sound pressure [2]. When a source is directly

2

in front of a person, the timing and pressure will be the same, but if the source is moved

to the left or right, the sound will reach one ear slightly before the other with a higher

pressure. Figure 2 shows that the paths to the left and right ear are equidistant from a

source directly in front of a listener (A), but are different when the source is moved to

the side (B):

Figure 2: Paths from a source (A,B) to the left and right ears

This difference gives us the ability to localize a source to our left or right. However, if

the source is anywhere in the median plane, then the distance of the paths to the ears is

equal, hence there will be no interaural differences to distinguish if the sound is coming

from in front of, behind, above, or below the listener. Therefore, to determine elevation

we must rely on the head related transfer function (HRTF). As a sound travels from the

source to the eardrum, the signal is filtered and attenuated by objects such as the head,

torso, and outer ear; the differences in the intensities of frequencies from those at the

source and at the eardrum make up the HRTF [3]. Neither the HRTF nor interaural

cues give information on distance, so the listener must rely on the loudness of the

sound compared to familiar sources to tell how far away it is. Things such as echoes

3

and the timbre of the sound can also aid in judging distance [3]. The combination of

these cues gives us the ability to put a spatial location on a sound source without seeing

it. Therefore, if we can control these parameters then we will be able to trick the mind

into thinking a sound is coming from a desired location.

4

CHAPTER 2: LITERATURE REVIEW

There have been many advances in graphics and video that make us feel like we

are a part of the movie or game that we are viewing. However, most modern stereo

systems, even surround sound, cannot give us the feeling of being “in” the environment

of what we are listening to. Surround sound systems, such as Dolby 5.1, generate

sounds from different directions, but the source of the sound is localized at the speaker

it is coming from. They are not able to make the sound appear to be coming from

above or below the horizon of the speakers, or move the sound closer or farther away

from the listener. 3D audio would give you the ability to place the sound anywhere in

the room. This would give the listener a more realistic experience and would have

many applications such as gaming, video conferencing, movies, and concerts. To

accomplish this, we need to control the cues that tell the listener where the sound is

coming from.

There are several techniques that have been explored to render 3D audio. The

Haas effect, or precedence effect, is a psychoacoustic phenomenon that states that if

two wave fronts hit the ear within a certain amount of time of each other, then the sound

is perceived as a single sound (auditory event), coming primarily from the direction of

the first arriving wave front [4]. The second sound influences the spatial location, but is

dominated by the first even if it is slightly louder. Studies have shown that the limit of

the delay before the sound breaks apart into two separate events is 5-10ms for clicks [5]

and more than 50ms for speech [6]. Any sound that is delayed above these thresholds

will be perceived as an echo. This phenomenon explains why we can localize the

5

source of a sound in a room despite the numerous reflections of the signal off its

surfaces. We can take advantage of this effect to provide a solution to the lack of

dimension in audio systems.

One of the simplest and most common spatial audio systems is the two channel

stereophonic configuration. Figure 3 shows Pulkki’s illustration of a typical stereo

configuration used in [7] where φ0 = 30°.

Figure 3: Two-channel stereophonic configuration

When the same signal is emitted from both channels, the sound will be perceived as a

single auditory event coming from somewhere between the two speakers [7]. This

event is known as a virtual, or phantom, sound source. It is possible to move the

phantom source to any point on a path between the two speakers, called the active arc,

simply by controlling the gain and/or delay of the speakers [8]. The radius of the active

arc is defined by the distance to the speakers. Adjusting the amplitude of the sound

coming from each channel is known as intensity panning, and adjusting the delay of the

sound at each channel is known as time panning [2]. If there are two loudspeakers

positioned symmetrically to the median plane, their gains are equal, and there is no

delay, then the virtual source will be perceived to be directly in the center. The source

6

can move along the arc between the two speakers by controlling the ratio of their gains.

As one speaker is made louder than the other, the virtual source will move closer to that

speaker.

Many authors have investigated these panning techniques (eg. [9], [10], [11]).

According to the Haas effect and summing localization [2], as long as the delay does

not surpass the echo threshold, then the sound will be heard as one event based on the

direction of the first arriving wave. However, there are some drawbacks to these

panning techniques. The phantom source can be positioned anywhere between the two

speakers, but lacks the ability to move anywhere outside of this arc [12]. The position of

the listener is also very restricted. The listener must be positioned so that they are at an

equal distance from each of the speakers, and are oriented so that the speakers are

symmetrical on the median plane. This position is known as the “sweet spot” [12]. If

the listener moves outside of the sweet spot, or rotates their body or head, then the

perceived sound location will be incorrect [13], [14]. Because of these flaws, many

techniques have been investigated to move the source outside of this boundary [15],

increase the size of the sweet spot [8], or make the sweet spot move with the listener

[16], [17].

 Bauer [10] introduced a method to move the sound outside of the stereo

boundary: crosstalk cancellation. Gardner [17] describes crosstalk cancellation as

“inverting the transmission paths that exist from the speakers to the listener” to cancel

“crosstalk” from the right speaker to the left ear and vice versa. Systems that implement

a binaural synthesizer with a crosstalk canceller are known as binaural audio systems.

The goal of these systems is “to reconstruct the acoustic pressures at the listener’s ears

7

that would result from the natural listening situation to be simulated” [17]. Song [16]

discusses the two major blocks of binaural audio systems: the binaural synthesizer B,

which computes the sound that should be heard by the listener’s ear, and the crosstalk

canceller H, which compensates for the transmission path. The block diagram they

provide is shown below:

Figure 4: Binaural audio system with loudspeakers

The binaural synthesizer uses the monaural input signal and HRTFs to generate the

output signals xL and xR. The crosstalk canceller H is an inverse filter of C, which

represents the acoustic paths between the speakers and the ears. Several studies

have been carried out to improve the methods of filtering in crosstalk cancellation, and

many successful approaches have been verified (eg. [15], [18], [19], [20], [21]).

However, since B, H, and C (represented by matrices) are each calculated based on the

listener being in the sweet spot, the 3D effect is degraded when the listener moves.

Several papers (eg. [16], [17]) have presented “dynamic binaural systems” to fix this

problem. These systems incorporate head tracking to find the position of the listener’s

head, and update the binaural synthesis and crosstalk matrices according to its new

position. These systems have shown that it is possible to make a 3D audio system that

compensates for movement.

8

 Another approach to generating 3D audio is by reproducing the waveforms of an

actual sound image through headphones. This is usually done using special recording

techniques where microphones are placed in a listener’s, or a dummy heads, ears to

measure HRTFs, which can then be used to recreate desired signals. Wightman [22]

performed experiments on eight subjects to compare localization of sound presented in

free field to headphones. The subjects were first asked to identify the apparent

positions of sounds delivered from 36 different positions through six loudspeakers. For

each position, stimuli for the headphone testing had to be produced by digitally filtering

signals using the subjects corresponding HRTF and ear canal transfer function (ECTF).

The stimuli were then presented to the listener through headphones and they were

asked to identify the perceived location. According to his results, the spatial positions

identified when the sound was played through the headphones matched positions

identified in free field. There have been several other studies that have validated that

headphone delivered stimulus can reproduce a free field source (eg. [12], [23], [24],

[25]). In addition, most of these studies have pointed out that headphone systems

cannot fully recreate the entire free field image, especially in the front, back, and

elevated positions, and have proposed methods to increase the spatial extent of the

perceived sound image. Although these studies have improved the performance of 3D

headphone systems, there is still the obvious drawback of being limited to the one

listener.

The techniques that have been presented thus far have all shared a common

disadvantage of being limited to one listener, or being confined to a small listening area.

In theory, to achieve 3D audio that can be enjoyed by a larger audience, a multi-channel

9

system would need to be implemented. By adding more speakers, there are more

paths on which the virtual source can move [7]. Many of the same techniques that were

used to simulate spatial sound with two channels can be applied to these systems. It

was shown in [26] that crosstalk cancellation and equalization (CTCE) could be applied

to systems using more than two loudspeakers. Furthermore, it was justified by

simulations that by using more loudspeakers “a more robust CTCE system that is less

sensitive to errors in the measured impulse responses” [26] is achievable. Other

systems have also been investigated where additional speaker[s] are included above

the horizontal plane, such as Auro 11.1 [27] and the 22.2 format discussed in [28].

Pulkki presents a simpler model in [7] where a single elevated speaker is introduced to

the stereo configuration from Figure 3, as shown in Figure 5.

Figure 5: Three speaker multi-channel configuration (l1=l2=l3)

The elevated speaker is the same distance from the listener as the other loudspeakers.

As you can see, the three speakers form a section of a 3-D sphere known as the “active

triangle” on which the virtual source can be positioned [7]. Pulkki went on to explain

10

how this system can be expanded with more loudspeakers, where the speakers form

bases in groups of three. He found that the “maximum error in the virtual source

localization is proportional to the dimensions of the active region. Therefore when good

localization accuracies on a large listening area are desired, the dimensions of the

active regions must be decreased. This is done by applying more loudspeakers on the

desired region of the sound field”. Based on his work it is easy to say that the more

speakers there are in a system, the better. However in practical application, as the

number of speakers increases, so does the cost and amount of space required for the

system. Therefore, for the proposed research the number of channels will be limited to

three.

11

CHAPTER 3: DESIGN & METHODOLOGY

In this research effort two and three channel localization systems were simulated

then tested in a lab environment, and a non-equidistant interaural correction system

was simulated. This chapter presents the design and methodology of the simulations

and experiments.

3.1 Equidistant Localization

In this section our investigation of the vector based amplitude panning (VBAP)

discussed in Pulkki’s paper [7] will be presented. Amplitude panning is an audio

technique where the same signal is played over two or more speakers that are

equidistant from an observer. Since the signals are the same and there is no interaural

time delay, the observer will perceive the illusion of a single virtual source. The position

of the virtual source depends on the locations of the speakers, and the relation between

the amplitudes of the signals they produce. The amplitude of the signals can be

controlled by adjusting the gains of each speaker. The following two sections will

discuss the mathematical derivation, algorithm development, and testing procedure for

two and three channel systems, which both implement amplitude panning.

3.1.1 Two Channel System

Figure 3 can be reformulated as a two-dimensional vector base as shown in

Figure 6

12

Figure 6: Stereophonic configuration formulated with vectors

where 𝑙1and 𝑙2 are the position vectors for the left and right speakers, and 𝑝 is the virtual

source vector. The speaker vectors can be expressed using Equation 1

 𝑙𝑚 = [𝑙𝑚𝑥 𝑙𝑚𝑦]
𝑇
 (1)

where 𝑚 represents the channel number (1 or 2), 𝑙𝑚𝑥 is the x component of the vector,

and 𝑙𝑚𝑦 is the y component of the vector. Therefore the equations for the left and right

speaker vectors are given by

 𝑙1 = [𝑙1𝑥 𝑙1𝑦]
𝑇
 (2)

 𝑙2 = [𝑙2𝑥 𝑙2𝑦]
𝑇
 (3)

The distance to each speaker is equal, therefore the vectors have the same length. The

gain factors of the left and right speakers, 𝑔1 and 𝑔2, are nonnegative scalar variables in

the range of zero to one. To keep the loudness of the virtual source constant the gain

factors must be normalized using Equation 4

 𝑔1
2 + 𝑔2

2 = 𝐶 (4)

13

where 𝐶 is the volume of the virtual source. As 𝐶 increases, the virtual source is

perceived to move closer to the observer.

The vector pointing towards the phantom source can be represented as a linear

combination of the speaker vectors and their respective gains

 𝑝 = [𝑝1 𝑝2]𝑇 = 𝑔1𝑙1 + 𝑔2𝑙2 (5)

The equation may also be written in matrix form

 𝑝𝑇 = 𝑔𝐿12 (6)

 where 𝑔 = [𝑔1 𝑔2] and 𝐿12 = [𝑙1 𝑙2]𝑇. This equation calculates the x and y components

of the phantom source vector. Therefore, if we are given the location and gains of each

speaker, we can calculate the position of the virtual source.

3.1.1.1 Algorithm

Rather than finding the location of the virtual source based on speaker

parameters, the algorithm calculates the proper gain factors needed to put the virtual

source in a desired location. The algorithm calculates the proper gain factors by taking

the inverse of Equation 6, which yields

 𝑔 = 𝑝𝑇𝐿12
−1 = [𝑝𝑥 𝑝𝑦] [

𝑙1𝑥 𝑙1𝑦

𝑙2𝑥 𝑙2𝑦
]

−1

 (7)

Thus the equation calculates the gain factors given the vectors pointing to the left and

right speakers, and the phantom source. The user is asked to input the location of the

speakers by defining the distance to the speakers and the angle from the x axis to the

left and right speakers. The user is also asked to input the angle from the x axis to the

desired virtual source position. Using these values, the algorithm calculates the vectors

pointing toward the speakers and desired virtual source using the following equations

14

 𝑙𝑚𝑥 = 𝑠 cos 𝜃𝑚 (8)

 𝑙𝑚𝑦 = 𝑠 sin 𝜃𝑚 (9)

 𝑝𝑥 = 𝑠 cos 𝜃𝑝 (10)

 𝑝𝑦 = 𝑠 sin 𝜃𝑝 (11)

where 𝑚 is the channel number (1 or 2), 𝑠 is the distance to the speakers, and 𝜃𝑚 and

𝜃𝑝 are the angles from the x axis for each speaker and the virtual source, respectively.

The algorithm checks user input to make sure that none of them are out of bounds (e.g.

if the virtual source lies outside of the active arc). Using Equation 7, the algorithm

calculates the gain factors of the left and right speakers, and plots the speakers and

virtual source. Figure 7 is an example of a plot generated that shows the speaker

locations, vectors, and calculated virtual source. For this example, the left and right

speakers were placed 8 feet from the listener at ±45° from the x axis, and the desired

virtual source position was 15°. The algorithm calculated the left and right gains to be

𝑔1 = 0.866 and 𝑔2 = 0.5, respectively.

15

Figure 7: Two-channel simulation example

3.1.1.2 Test Procedure

To verify that the algorithm calculated the proper gain factors, experimental data

was collected from 15 participants. IRB approval was obtained in order to conduct

testing involving volunteers. The experiment required a quiet room with sufficient space,

and a test setup to generate the acoustical signals. The experimental setup is shown in

Figure 8a and Figure 8b below

-6-4-20246
0

1

2

3

4

5

6

7

8

feet

fe
e
t

Left Speaker

Right Speaker

Virtual Source

16

Figure 8a: Two-channel experimental setup – table & chin rest

Figure 8b: Two-channel experimental setup – listener perspective

17

The observer sat a table covered by a protractor to indicate angles. A chin rest

was used to minimize head movement during the experiment. A base signal was

produced and the corresponding gain factors calculated by the algorithm (Equation 7)

were applied to each channel. The base signal used for testing was a 400 Hz sine

wave with a sampling frequency of 44.1 kHz played for 2 seconds. A Sherwood RX-

4109 stereo system amplified the signal which was output to two Klipsch B-3 bookshelf

speakers. The left and right speakers were placed at ±45° from the x axis at a distance

of 8 feet from the observer. These values were used as inputs to the algorithm. Three

variations of the algorithm were used: Training Program, Discrete Angle Test, and

Random Angle Test.

First, a Training Program was run to verify the speakers were working properly,

and to familiarize the participant with the signal and perception of a virtual source. The

Training Program incremented the desired virtual source position between the left and

right speakers in steps of 15°. At each angle the algorithm would calculate the proper

gain factors and play the resulting tone. The participant was informed of the locations

that would be played before testing, and then asked if they perceived the movement of

sound after the program was complete.

For the Discrete Angle Test, 20 trials were run where the desired virtual source

position was selected from the angles 0°, ±15°, ±30°, or ±45°. For each trial one of

these angles was chosen as the virtual source position from a randomized list, the gain

factors were calculated, and the resulting tone was played. The participant was

instructed to look forward throughout the test, and encouraged to place their hand or a

pointer in the direction of the perceived sound. The tone could be replayed if the

18

participant wanted to hear it again. For each trial the participant was asked to identify

which of the angles were closest to the perceived sound, and the value was recorded.

The Random Angle Test was very similar to the Discrete Angle Test, however

the virtual source position was set based on a random angle selected from twenty

evenly spaced values from -45° to 45°. The participant was instructed to identify the

closest angle, within a few degrees, to where they perceived the virtual source to be,

and the value was recorded.

3.1.2 Multi-Channel Systems

A multi-channel system is a system that uses more than two channels. To

achieve three-dimensional sound using the VBAP technique, a multichannel system

must be used. An additional speaker is placed above the two dimensional plane

created by the listener and the left and right speakers from the stereophonic

configuration, as shown in Figure 5. The elevated speaker must be the same distance

from the listener as the other two speakers. This forms a region of a sphere on which

the virtual source can be moved, called the active triangle. More speakers can be used

in this technique, however only up to three speakers will be active (producing sound) at

one time. For this reason, only a three speaker system was investigated in our

research.

3.1.2.1 Mathematical Derivation

The formulation of the three-dimensional system is exactly the same as the

stereophonic configuration, however there will be three speaker vectors and gain

factors, rather than two, and each vector will have an x, y, and z component. Each

speaker vector can be expressed using the Equation 12

19

 𝑙𝑚 = [𝑙𝑚𝑥 𝑙𝑚𝑦 𝑙𝑚𝑧]
𝑇
 (12)

where 𝑚 represents the channel number (1, 2, or 3), 𝑙𝑚𝑥 is the x component of the

vector, 𝑙𝑚𝑦 is the y component of the vector, and 𝑙𝑚𝑧 is the z component of the vector.

The gain factors of the left, right, and top speakers, 𝑔1 𝑔2 and 𝑔3, are nonnegative

scalar variables in the range of zero to one. To keep the loudness of the virtual source

constant, the third gain factor must be added to the normalizing equation (Eq. 4)

 𝑔1
2 + 𝑔2

2 + 𝑔3
2 = 𝐶 (13)

where 𝐶 is the volume of the virtual source. As 𝐶 increases, the virtual source is

perceived to move closer to the observer.

The three-dimensional vector pointing towards the phantom source can be

represented as a linear combination of the speaker vectors and their respective gains

 𝑝 = [𝑝1 𝑝2 𝑝3]𝑇 = 𝑔1𝑙1 + 𝑔2𝑙2 + 𝑔3𝑙3 (14)

Or, in matrix form

 𝑝𝑇 = 𝑔𝐿123 (15)

where 𝑔 = [𝑔1 𝑔2 𝑔3] and 𝐿123 = [𝑙1 𝑙2 𝑙3]𝑇. This equation calculates the x, y, and z

components of the phantom source vector. Therefore, if we are given the location and

gains of each speaker, we can calculate the position of the virtual source.

3.1.2.2 Algorithm

The algorithm was also modified to calculate proper gain factors given the

speaker parameters and desired virtual source position in three dimensional space.

The input parameters were the distance to the speakers, angle from the x axis of the

left, right, and desired virtual source position, and the elevation of the top speaker and

20

desired virtual source position. The x, y, and z components for each speaker vector are

calculated using following equations

 𝑙𝑚𝑥 = 𝑠 cos 𝜃𝑚 (16)

 𝑙𝑚𝑦 = 𝑠 sin 𝜃𝑚 (17)

 𝑙𝑚𝑧 = 𝑠 sin 𝜙𝑚 (18)

 𝑝𝑥 = 𝑠 cos 𝜃𝑝 (19)

 𝑝𝑦 = 𝑠 sin 𝜃𝑝 (20)

 𝑝𝑧 = √𝑝𝑥
2 + 𝑝𝑦

2 tan 𝜙𝑝 (21)

where 𝑚 is the speaker number (1, 2, or 3), 𝑠 is the distance to the speakers, 𝜃𝑚 and 𝜃𝑝

are the angles from the x axis for each speaker and the virtual source, respectively, and

𝜙𝑚 and 𝜙𝑝 are the elevation angles for each speaker and the virtual source,

respectively. The algorithm checks the user inputs to make sure that none of them are

out of bounds (e.g. if the virtual source lies outside of the active triangle). Then, using

inverse of Equation 15 the gain factors of the left, right, and top speaker are calculated.

 𝑔 = 𝑝𝑇𝐿123
−1 = [𝑝𝑥 𝑝𝑦 𝑝𝑧] [

𝑙1𝑥 𝑙1𝑦 𝑙1𝑧

𝑙2𝑥 𝑙2𝑦 𝑙2𝑧

𝑙3𝑥 𝑙3𝑦 𝑙3𝑧

]

−1

 (22)

If the largest gain factor is greater than 1, then each gain is divided by that factor so that

they are all are between zero and one. To ensure that the loudness is always the same

(regardless of input parameters), a scaling factor is calculated

 𝑛 = √𝑔1
2 + 𝑔2

2 + 𝑔3
2 (23)

21

Each gain factor is then divided by 𝑛. This places the virtual source on the surface of a

sphere surrounding the listener, so it always sounds like it is the same distance away.

When a desired position is input, the algorithm calculates the normalized gains, and a

plot showing the speaker locations and vectors, as well as the virtual source and an

approximation of the active triangle is generated. Figure 9 is an example of the three-

dimensional plot, where the left and right speakers are placed 8 feet from the listener at

±45° azimuth 0° elevation, the top speaker at 0° azimuth 42° elevation, and a desired

virtual source position of −15° azimuth 14° elevation. The algorithm calculated the

gains for this example to be 𝑔1 = 0.3042, 𝑔2 = 0.6702, and 𝑔3 = 0.3726

Figure 9: Three-channel simulation example

MATLAB does not have the ability to play a sound with more than two channels,

therefore an audio file (.wav) for each speaker with its corresponding gain factor had to

0

2

4

6

8

-10

-5

0

5

10
0

1

2

3

4

5

6

feetfeet

fe
e
t

Left Speaker

Right Speaker

Top Speaker

Virtual Source

Active Triangle

22

be generated. The same base signal as in the stereophonic configuration was used, a

400 Hz sine wave with a sampling frequency of 44.1 kHz played for 2 seconds.

3.1.2.3 Test Procedure

To test the 3D algorithm, the test procedure had to be modified. The same

protractor, chin rest, and left and right speakers, placed 8 feet from the listener at ±45°

azimuth 0° elevation, were used. A third Klipsch B-3 bookshelf speaker was added at

0° azimuth 42° elevation, also 8 feet from the listener.

Figure 10: Three-channel experimental setup

Since the computer’s sound card and outputs can only support two channels, an

audio interface was needed to control all three speakers at once. An audio interface

connects to the computer via USB and acts as an external sound card with extra

inputs/outputs, features, and better quality. For this experiment the Focusrite Scarlett

23

2i4 was chosen, which has four independent outputs. The output from the interface

needed to be amplified before going to the speakers. A Sherwood RX-4109 stereo

system (used for the left and right speakers) and a Realistic SA-150 integrated stereo

amplifier (used for the top speaker) were adjusted to calibrate the outputs to the same

amplitude using a four channel oscilloscope.

A digital audio workstation (DAW), SoundForge Pro 11, was used to play the

audio files made by the algorithm and communicate with the audio interface. A DAW is

a computer program designed to record, mix, edit, and play audio files. Before the

experiment, the algorithm was used to produce audio files that placed the virtual source

in 16 different locations inside the active triangle. These files were then imported into

SoundForge. The 16 locations, shown in Figure 11, had azimuth angles of

0°, ±15°, ±30°, or ± 45° and elevation angles of 0°, 14°, 28°, or 42°.

Figure 11: Virtual source locations

24

For multi-channel testing there were two experiments: the Perimeter Test and the

Random Test. Before testing, each participant went through a training program. A

number was assigned to each virtual source position, and the sound for that point was

played for the listener. For the Perimeter Test, only points on the perimeter of the

triangle were used. These locations are shown in Figure 12.

Figure 12: Perimeter Test positions

The sounds were played from one to twelve for training, and then the order was

randomized for testing. For each location, the sound was played twice and the listener

was asked to identify which point was closest to where they perceived the sound to be

coming from.

25

The Random Test was conducted the same as the Perimeter Test, however all

16 points were used. The order for the Random Test training is shown in Figure 13

Figure 13: Random Test positions

The sounds were played from one to sixteen for training, and then the order was

randomized for testing. For each location, the sound was played twice and the listener

was asked to identify which point was closest to where they perceived the sound to be

coming from.

3.2 Non-Equidistant Localization

Up to this point the listener is required to be in a certain spot for the algorithm to

work. This region, which is equidistant from all the speakers, is called the sweet spot.

However in many applications an observer may not be the same distance from all

26

speakers, or would possibly be moving to different locations. If the listener is not in the

sweet spot, interaural time and level differences will be introduced. To compensate for

the differences an interaural correction algorithm was made.

3.2.1 Mathematical Derivation

The interaural correction algorithm receives coordinates for the speakers and the

listener, and angle from the x axis of the desired phantom source as inputs. Using

these values, it adjusts the gain and delay of the speakers so that the sound waves

reach the listener at the same time and with the same intensity. To do this the distance

from the observer to the left and right speakers must be calculated and compared using

the distance formula

 𝑑𝐿,𝑅 = √(𝑥𝐿,𝑅 − 𝑥𝑜)
2

+ (𝑦𝐿,𝑅 − 𝑦𝑜)
2
 (24)

where 𝑑𝐿,𝑅 are the distances in feet to the left and right speakers, (𝑥𝐿,𝑅 , 𝑦𝐿,𝑅) are the x

and y coordinates of the left and right speakers, and (𝑥𝑜 , 𝑦𝑜) are the x and y coordinates

of the observer. Whichever speaker is closer to the observer must be delayed, and the

other speaker’s gain must be multiplied by a factor to increase its volume. Sound

radiates from each speaker in the form of a sphere. The intensity of sound at a given

distance from a speaker is the original intensity divided by the area of the sphere. Since

the area of a sphere is proportional to the square of its radius, the intensity of sound is

inversely proportional to the squared distance from the speaker. This is known as the

inverse square law

 Intensity ∝
1

distance
2 (25)

27

Using this law, the factor needed to compensate for the interaural level distance can be

calculated as follows

 𝐼𝐿 =
𝑘

𝑑𝐿
2 (26)

 𝐼𝑅 =
𝑘

𝑑𝑅
2 (27)

 𝑔𝑟𝑎𝑡𝑖𝑜 =
𝐼𝐿

𝐼𝑅
= (

𝑑𝑅

𝑑𝐿
)

2

 (28)

 𝐺𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = [𝑔𝐿 𝑔𝑅 ∗ 𝑔𝑟𝑎𝑡𝑖𝑜] (29)

where 𝐼𝐿,𝑅 are the left and right sound intensities, and 𝑘 is a constant of proportionality.

To calculate how much the closer speaker must be delayed, the difference in

distances is divided by the speed of sound

 𝑡𝑑 =
𝑑𝑅 − 𝑑𝐿

340.29
 (30)

where 𝑡𝑑 is the time delay in seconds, and 340.29 is the speed of sound in feet per

second.

3.2.2 Displaying the Model

To display this model, a simulation of the sound waves moving from each source

to the observer’s location was created. First, equations for the lines between the

speakers and the observer were found

 𝑦 = 𝑚𝑥 + 𝑏 ⇒ [
𝑚
𝑏

] = [
𝑥𝐿,𝑅 1

𝑥𝑜 1
]

−1

[
𝑦𝐿,𝑅

𝑦𝑜
] (31)

where 𝑚 is the slope of the line, and 𝑏 is it’s y-intercept. Each line was divided into 100

points (x,y) which were converted to pixel locations (row,column) using the following

formulas

28

 𝑟𝑜𝑤 =
𝑦−𝑦𝑚𝑎𝑥

𝑦𝑚𝑖𝑛−𝑦𝑚𝑎𝑥
∗ (𝑁𝑟𝑜𝑤𝑠 − 1) + 1 (32)

 𝑐𝑜𝑙 =
𝑥 − 𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛 − 𝑥𝑚𝑎𝑥
∗ (𝑁𝑐𝑜𝑙𝑠 − 1) + 1 (33)

where 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 are the extremes of the lines between the speakers and

observer, and 𝑁𝑟𝑜𝑤𝑠, 𝑁𝑐𝑜𝑙𝑠 are the dimensions of the display. To show the wave’s

progression, a video file was made where each frame was an image showing the

wave’s intensity and location along the line. The intensity of sound was represented by

an 8-bit full color scale image, where red represented highest intensity and blue

represented lowest intensity. Equation 29 was used to calculate the initial intensities of

the sound waves at each source, and the pixels corresponding their positions were set

to the resulting color value. As the wave moved toward the observer, pixels along the

line would change color based on the intensity at that point. Since the intensity

decreases with the square of distance, the values drop off very quickly. Therefore, we

took the log of the intensities to linearize the color scale using the following equation.

 Color Intensity = log10(Sound Intensity + 0.1) + 1 (34)

Figure 14a, Figure 14b, Figure 14c, and Figure 14d show the sound intensity in color as

the sound moves along the path from each speaker toward the observer. Four time

frames are presented in these figures. In the example the coordinates of the left

speaker are (10,20), the right speaker is at (20,20), and the listener is at (12,5). The

interaural correction algorithm calculated the corrected gains to be 𝑔1 = 0.53555 and

𝑔2 = 0.67586, and for the time delay of the left speaker to be 𝑡𝑑 = 5.4872 𝑚𝑠.

29

Figure 14a: Sound intensity at time=5.3903ms

Figure 14b: Sound intensity at time=5.8395ms

feet

fe
e
t

5.3903ms

10 12 14 16 18 20

5

10

15

20 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

feet

fe
e
t

5.8395ms

10 12 14 16 18 20

5

10

15

20 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

30

Figure 14c: Sound intensity at time=26.5024ms

Figure 14d: Sound intensity at time=50.3097ms

feet

fe
e
t

26.5024ms

10 12 14 16 18 20

5

10

15

20 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

feet

fe
e
t

50.3097ms

10 12 14 16 18 20

5

10

15

20 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

31

The number in the upper left hand corner displays how much time has elapsed since

the preliminary wave left the source. Figure 14b shows the intensities right after the

delay, when the preliminary wave has reached the point that is in line with the left

speaker, and the left speaker initially plays the sound. As you can see, the sound

intensities are the same at this point and are equivalent as they move towards the

observer, decreasing with distance from the source. If the two lines reach the listener at

the same time with the same intensity (color) then the sound will be perceived directly in

front of them, even though they are closer to one speaker. The colors in Figure 14d

show that this is true for the example.

32

CHAPTER 4: RESULTS & DISCUSSION

In this chapter the results of the two and three channel localization testing, as

well as non-equidistant simulation results, are presented. For the two and three

channel localization tests, experimental data was collected from participants and put

into tables. This data can be found in the Appendix section A

4.1 Two Channel Figures and Summary

Figure 15: Random Angle Test results – Angle vs. Level Difference

Figure 15 shows how the level difference in decibels between the left and right

speaker compares to the calculated and perceived angles of the virtual source. The

level difference is found by converting the calculated gain values (Equation 7) to

-60 -40 -20 0 20 40 60
0

5

10

15

20

25

30

35

40

45

L
e
v
e
l
D

if
fe

re
n
c
e
 (

d
B

)

Angle

Theoretical (Pulkki)

Participant Response

7.5o from theoretical

33

decibels and taking the absolute value of their difference. The solid black curves are

the theoretical angles corresponding to each level difference as derived in [7], the

dotted red curves are ±7.5° from the calculated values, and the blue asterisks are the

perceived values heard by listeners in the experiment. As you can see, the majority of

participants perceived the sound to be coming from within 7.5° of the theoretical value.

Figure 16: Random Angle Test results – Perceived vs. Calculated

Figure 16 is a box and whisker plot of the perceived virtual source positions for

all participants. For each box, the red line indicates the median value that was

identified, the edges of the box are the 25th and 75th percentiles, the whiskers extend to

the most extreme data points the algorithm considers not to be outliers, and the red

crosses are the outliers. To be considered an outlier, a data point must be more than

1.5 IQR (inter quartile range) below the 25th percentile or above the 75th percentile.

-50

-40

-30

-20

-10

0

10

20

30

40

50

-45 -40 -36 -31 -26 -21 -17 -12 -7 -2 2 7 12 17 21 26 31 36 40 45
Calculated Angle

P
e
rc

e
iv

e
d
 A

n
g
le

34

Therefore, the smaller the box, the more concentrated and accurate the responses were

to the calculated value. As you can see, the responses around ±45° and 0° seem to be

the most accurate.

Figure 17: Random Angle Tests – Average of Responses

Figure 17 shows how the average perceived angle from all participants

compared to the theoretical values. The line represents the theoretical value, and the

circles represent the average of all of the participant’s responses. The range of

absolute error between the average of the responses and the theoretical angles was

from 0.67° to 3.53°

-50 -40 -30 -20 -10 0 10 20 30 40 50
-50

-40

-30

-20

-10

0

10

20

30

40

50

Calculated Angle

A
v
e
ra

g
e
 P

e
rc

e
iv

e
d
 A

n
g
le

Average of Responses

Perceived(y)=Calculated(x)

35

Figure 18: Random Angle Test - RMS error

Figure 18 shows the root mean square error (RMSE) of the average perceived

angles from all participants. The equation for the root mean square is

 RMSE = √
∑ Error𝑖

2𝑛
𝑖=1

𝑛
 (35)

where Error is the difference between the perceived and actual angle, and 𝑛 is the

number of participants. The minimum error was at −45° with a RMSE of 2.67°, and the

maximum error was at 17° with an RMSE of 5.09°. As you can see, the region near the

center of the arc has the least error, while the regions from −17° to −36° and from 12°

to 31° have the most error.

-50 -40 -30 -20 -10 0 10 20 30 40 50
0

1

2

3

4

5

6

7

Angle

R
M

S
 E

rr
o
r

36

4.2 Multi-Channel Figures and Summary

In the multi-channel tests, the participant was given a discrete set of points from

which to choose the perceived virtual source position (Figure 12 and Figure 13). Each

point had an azimuth of 0°, ±15°, ±30°, or ± 45° and an elevation of 0°, 14°, 28°, or 42°.

Therefore, for each point identified there were three scenarios: only the azimuth was

correct, only the elevation was correct, or both the azimuth and elevation were correct.

Figure 19a, Figure 19b, Figure 20a, and Figure 20b show the results from the multi-

channel testing. The first two figures are the Perimeter Test results, and the last two

figures are the Random Test results. Figure 19a and Figure 20a are bar plots showing

the percentage of responses that matched the exact theoretical value for each virtual

source position by all participants. Figure 19b and Figure 20b show the percentage of

responses that were within 15° of the theoretical value.

Figure 19a: Perimeter Test results – percent of correct responses

0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

90

100

Position Number

P
e
rc

e
n
t

C
o
rr

e
c
t

azimuth

elevation

both

37

Figure 19b: Perimeter Test results – percent of responses within 15°

As you can see from Figure 19a, for almost every position participants identified

the azimuth with a higher accuracy than the elevation. The responses for azimuth have

an accuracy from 80% to 100%, elevation have an accuracy from 53. 3̅% to 100%, and

both have an accuracy from 46. 6̅% to 100%. In Figure 19b there are five positions in

which 100% of the responses were within 15° of the theoretical value. These five points

were all located near the left and right extremes near ±45°. Only three points out of the

twelve have an accuracy of less than 86. 6̅%. The point with the lowest accuracy is

Position 2, which has an azimuth of 15° and an elevation of 0°. For this point, the

azimuth was identified correctly 93. 3̅% of the time, elevation 53. 3̅%, and both only

46. 6̅%. Other points of interest are positions 1, 3, 11, and 12, which have at least one

of the categories at 60% or below in the first plot. It’s interesting to note that these five

points have an azimuth between −30° and 30°, and an elevation of 0°.

0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

90

100

Position Number

P
e
rc

e
n
t

o
f

re
s
p
o
n
s
e
s
 w

it
h
in

 1
5
 o

azimuth

elevation

both

38

Figure 20a: Random Test results – percent of correct responses

Figure 20b: Random Test results – percent of responses within 15°

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

100

Position Number

P
e
rc

e
n
t

C
o
rr

e
c
t

azimuth

elevation

both

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

100

Position Number

P
e
rc

e
n
t

o
f

re
s
p
o
n
s
e
s
 w

it
h
in

 1
5
 o

azimuth

elevation

both

39

The Random Test had similar results to the Perimeter test. Participants identified

azimuth with a higher accuracy than elevation for every position. In Figure 20a the

responses for azimuth have an accuracy from 86. 6̅% to 100%, elevation have an

accuracy from 13. 3̅% to 93. 3̅%, and both have an accuracy from 13. 3̅% to 93. 3̅%. In

Figure 20b eleven out of the sixteen positions had an accuracy in which 100% of

responses were within 15° of the theoretical value, and only two of the sixteen points

had an accuracy less than 93. 3̅%. The three least accurate positions are 4, 7, and 11.

These points all have an azimuth between −15° and 15°, and have an elevation of 0°.

Based on these results, it is easier to identify azimuth than elevation. Intuitively

this makes sense due to the location of the ears on the head. Another observation that

can be made is that the positions near the x axis at low elevations are the hardest to

pinpoint. A possible cause of this is the placement of the speakers. The left and right

speakers were positioned to be about the same height as the listener’s ears. Because

of this, during multi-channel tests, the listener was having to differentiate between four

elevations that were all above his/her head. If the bottom speakers were placed lower,

the listener would be aligned with the center of the active triangle, and the range of

elevations would extend below them as well. Although the experiment could have been

set up differently, according to Figure 20b participants identified the correct azimuth and

elevation of the virtual source within 15° at least 80% of the time.

4.3 Non Equidistant Results

The purpose of the non-equidistant interaural correction algorithm is to calculate

the proper gain factors and time delay needed to compensate for interaural differences

when the listener is not the same distance from each speaker. Several examples where

40

the listener and/or speakers are in different positions are presented below. For each

example the corrected gain factors, time delay, and color intensity simulation produced

by algorithm are shown.

Figure 21a: Interaural Correction Algorithm example 1

Figure 21a shows the scenario in which the listener is the same distance from

both speakers. The coordinates of the left speaker are (10,20), the right speaker is at

(20,20), and the listener is at (15,5). Since the listener is in the middle, the algorithm

calculated the corrected gains to be equal: 𝑔1 = 0.5270 and 𝑔2 = 0.5270, and that there

is no time delay: 𝑡𝑑 = 0 𝑚𝑠.

feet

fe
e
t

46.9338ms

10 12 14 16 18 20

5

10

15

20 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

41

 Figure 21b: Interaural Correction Algorithm example 2

In Figure 21b the coordinates of the left speaker are (10,20), the right speaker is

at (20,20), and the listener is at (11,5). The interaural correction algorithm calculated

the corrected gains to be 𝑔1 = 0.5421 and 𝑔2 = 0.734, and for the time delay of the left

speaker to be 𝑡𝑑 = 7.2278 𝑚𝑠.

feet

fe
e
t

51.764ms

10 12 14 16 18 20

5

10

15

20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

42

Figure 21c: Interaural Correction Algorithm example 3

In Figure 21c the coordinates of the left speaker are (10,20), the right speaker is

at (20,20), and the listener is at (17,5). The interaural correction algorithm calculated

the corrected gains to be 𝑔1 = 0.6216 and 𝑔2 = 0.5308, and for the time delay of the

right speaker to be 𝑡𝑑 = 3.6906 𝑚𝑠.

feet

fe
e
t

49.0983ms

10 12 14 16 18 20

5

10

15

20 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

43

Figure 21d: Interaural Correction Algorithm example 4

In Figure 21d the coordinates of the left speaker are (10,15), the right speaker is

at (20,20), and the listener is at (15,5). The interaural correction algorithm calculated

the corrected gains to be 𝑔1 = 0.5398 and 𝑔2 = 1.0797, and for the time delay of the left

speaker to be 𝑡𝑑 = 13.609 𝑚𝑠.

feet

fe
e
t

46.794ms

10 12 14 16 18 20

5

10

15

20 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

44

Figure 21e: Interaural correction Algorithm example 5

In Figure 21e the coordinates of the left speaker are (10,15), the right speaker is

at (20,20), and the listener is at (15,5). The interaural Correction algorithm calculated

the corrected gains to be 𝑔1 = 1.0797 and 𝑔2 = 0.5983, and for the time delay of the

right speaker to be 𝑡𝑑 = 13.609 𝑚𝑠.

feet

fe
e
t

46.7963ms

10 12 14 16 18 20

5

10

15

20 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

45

Figure 21f: Interaural Correction Algorithm example 6

In Figure 21f the coordinates of the left speaker are (10,18), the right speaker is

at (20,20), and the listener is at (12,5). The interaural correction algorithm calculated

the corrected gains to be 𝑔1 = 0.5384 and 𝑔2 = 0.8995, and for the time delay of the left

speaker to be 𝑡𝑑 = 11.305 𝑚𝑠.

feet

fe
e
t

50.3649ms

10 12 14 16 18 20

5

10

15

20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

46

Figure 21g: Interaural Correction Algorithm example 7

In Figure 21g the coordinates of the left speaker are (12,18), the right speaker is

at (19,15), and the listener is at (18,9). The interaural correction algorithm calculated

the corrected gains to be 𝑔1 = 1.7813 and 𝑔2 = 0.5633, and for the time delay of the left

speaker to be 𝑡𝑑 = 13.911 𝑚𝑠.

As you can see, in each example the speaker that is farthest from the observer

starts at a higher intensity. Once the preliminary wave reaches the point that is in line

with the other speaker, the sound intensities are equal. As the waves move toward the

observer both intensities decrease with distance from the source. Since the two lines

reach the listener at the same time with the same intensity (color) the sound will be

perceived directly in front of them, even though they are closer to one speaker.

feet

fe
e
t

31.9672ms

12 13 14 15 16 17 18 19

9

10

11

12

13

14

15

16

17

18 0

0.2

0.4

0.6

0.8

1

1.2

47

CHAPTER 5: CONCLUSION & FUTURE WORK

In this research effort, an algorithm was developed to simulate auditory

localization in a two and three channel speaker system. A test setup was produced to

implement the simulation, and experimental data was collected to verify the simulation.

An interaural correction algorithm was also developed to simulate the scenario in which

the listener is not the same distance from each speaker. The 2D experiments showed

that participants correctly identified the position of the virtual source with an average

RMS error of 4⁰. The 3D experiments showed that participants identified the correct

azimuth and elevation of the virtual source within 15° of the simulated position at least

80% of the time. Based on these results the simulation is accurate, and could be useful

in implementing a multichannel 3D audio system that could provide a more realistic

listening experience than current stereo-sound systems.

Other than positioning the bottom speakers lower, there are several other ways

the experiment could be modified and continued. The speakers could be moved to

different distances and angles from the listener to see if their ability to distinguish

location is affected, or experiments could be done to see how factors like these effect

the size of the sweet spot. Other sounds, such as music or speech, could also be used

for testing. The next step would be to add additional speakers around the listener to

form an “active sphere” in which the sound could be moved. In this scenario, the same

math could be used, but the algorithm would have to distinguish which group of three

speakers to activate based on the desired virtual source position. The algorithm could

also be used to produce a series of locations to play sound over to give it the effect of

moving across the active triangle.

48

The interaural correction algorithm for non-equidistant localization could also be

tested. If the experiment matched the simulation, then it could be combined with the 3D

amplitude panning algorithm to produce 3D sound despite the listener’s location relative

to the speakers. Also, if the listener’s position were tracked, the algorithm could be

modified to update as they move around and place the sound wherever they are.

49

REFERENCES

[1] Lord Rayleigh [J. W. Strutt], “On our Perception of Sound Direction”, Philosophical
Magazine, vol. 13, pp. 214-232, 1907.

[2] Jens Blauert, Spatial Hearing: the Psychophysics of Human Sound Localization, MIT
Press, Cambridge, Mass, 1983.

[3] William Hartmann, “How We Localize Sound”, Physics Today, vol. 52, issue 11, pp.
24-29, 1999.

[4] Hans Wallach, Edwin B. Newman, and Mark R. Rosenzweig, “The Precedence
Effect in Sound Localization”, The American Journal of Psychology, vol. 62, no. 3, pp.
315-336, Jul. 1949

[5] Willard R. Thurlow and Theodore E. Parks, “Precedence-Suppression Effects for
Two Click Sources”, Perceptual and Motor Skills, vol. 13, pp. 7-12, Aug. 1961.

[6] J.P.A. Lochner and J.F. Burger, “The Subjective Masking of Short Time Delayed
Echoes by Their Primary Sounds and Their Contribution to the Intelligibility of Speech”,
Acta Acustica united with Acustica, vol. 8, no. 1, pp. 1-10, 1958.

[7] Ville Pulkki, “Virtual Sound Source Positioning Using Vector Base Amplitude
Panning”, Journal of the Audio Engineering Society, vol. 45, Issue 6, pp. 456-466, Jun.
1997.

[8] Sacha Spors, H. Wierstorf, A. Raake, F. Melchior, M. Frank, F. Zotter, "Spatial
Sound With Loudspeakers and Its Perception: A Review of the Current State",
Proceedings of the IEEE , vol. 101, no. 9, pp. 1920-1938, Sept. 2013.

[9] K. Boer, “Plastische Klangwiedergabe”, Philips Technische Rundschau, no. 5, pp.
108-115, 1940.

[10] B.B. Bauer, “Stereophonic Earphones and Binaural Loudspeakers”, Journal of the
Audio Eng. Society, vol. 9, no. 2, pp. 148-151, 1961.

[11] K. Wendt, “Das Richtungshoren bei der Oberlagerung zweier Schallfelder bei
Intensitats und Laufzeitstereophonie”, PhD thesis, RWTH Aachen, 1963.

[12] Jeroen Breebaart, Erik Schuijers, “Phantom materialization: A novel method to
enhance stereo audio reproduction on headphones”, IEEE Transactions on Audio,
Speech and Language Processing, vol. 16, no. 8, Nov. 2008.

[13] H. A. M. Clark, G. F. Dutton, and P. B. Vanderlyn. The ’Stereosonic’ Recording and
Reproduction System: A Two-Channel Systems for Domestic Tape Records”, J. Audio
Eng. Soc., vol. 6, Issue 2, pp. 102-117, April 1958.

[14] G. Theile and G. Plenge, “Localization of Lateral Phantom Sources”, J. Audio Eng.
Soc., vol. 25, pp. 196–200, 1977.

[15] M.R. Schroeder and B.S. Atal, “Computer Simulation of Sound Transmission in

50

Rooms”, Proceedings of the IEEE, vol. 51, no. 3, pp. 536-537, March 1963.

[16] Myung-Suk Song, Cha Zhang, D. Florencio, Hong-Goo Kang, “An Interactive 3-D
Audio System With Loudspeakers”, Multimedia IEEE Transactions, vol. 13, no. 5, pp.
844-855, Oct. 2011.

[17] William Gardner, “3-D Audio Using Loudspeakers”, Ph.D. thesis, MIT, MA, 1998.

[18] P. Damaske, “Head-Related Two-Channel Stereophony with Loudspeaker
Reproduction”, J. Acoust. Soc. Am., vol. 50, pp. 1109-1115, 1971.

[19] D.H. Cooper and J.L. Bauck 1989, “Prospects for Transaural Recording”, J. Audio
Eng. Soc., vol. 37, pp. 3-19, 1989.

[20] J. M. Jot, “Etude et réalisation d'un spatialisateur de sons par modèles physiques et
perceptifs”, Doctoral dissertation, Télécom, Paris, France, 1992.

[21] Toshinori Mori and Makoto Iwahara, “Stereophonic Sound Reproduction System”,
Patent 04118599, Feb. 1978.

[22] F. L. Wightman and D. J. Kistler, “Headphone Simulation of Free-Field Listening II:
Psychophysical validation”, J. Acoust. Soc. Am., vol. 85, pp. 868–878, 1989.

[23] Manabu Okamoto, I. Kinoshita, S. Aoki, H. Matsui, “Sound Image Rendering
System for Headphones”, IEEE Trans. On Consumer Elec., vol. 43, Issue 3, pp. 689-
693 Aug 1997.

[24] Zhan Huan Zhou, “Sound Localization and Virtual Auditory Space”, University of
Toronto, Canada, 2002-2004.

[25] Man-ho Park, Song-in Choi, Si-ho Kim, Keun-Sung Bae, “Improvement of front-
back sound localization characteristics in headphone-based 3D sound generation”,
Advanced Communication Technology, ICACT 2005, The 7th International Conference
on, vol. 1, pp. 273-276, 2005.

[26] Yiteng (Arden) Huang. “On Crosstalk Cancellation and Equalization With Multiple
Loudspeakers for 3-D Sound Reproduction”, IEEE Signal Processing Letters, vol. 14,
no. 10, Oct. 2007.

[27] B. Van Daele and W. Van Baelen, "Productions in Auro 11.1", Barco White Paper,
2012.

[28] K. Hamasaki, K. Hiyama, and R. Okumura, "The 22.2 Multichannel Sound System
and its Application," presented at the 118th Convention of the Audio Engineering
Society, paper 6406, May 2005.

51

APPENDIX A: Experimental Data

Table A1: Two channel experimental data – participants 1 to 5 (all angles in degrees)

Left Gain Right Gain
Calculated

Angle
Participant 1 Participant 2 Participant 3 Participant 4 Participant 5

0.788010754 0.615661475 7 15 8 5 5 12

1 0 45 45 45 42 42 41

0.087155743 0.996194698 -40 -45 -37 -45 -45 -40

0.882947593 0.469471563 17 14 15 7 15 20

0.913545458 0.406736643 21 20 22 17 17 26

0.68199836 0.731353702 -2 -9 -7 -5 -5 -2

0.838670568 0.544639035 12 14 7 5 10 8

0.987688341 0.156434465 36 40 42 32 37 39

0.544639035 0.838670568 -12 -15 -12 -15 -12 -19

0.615661475 0.788010754 -7 -10 -4 -12 -8 -5

0 1 -45 -45 -37 -42 -44 -43

0.325568154 0.945518576 -26 -25 -23 -28 -25 -32

0.970295726 0.241921896 31 35 40 33 35 35

0.731353702 0.68199836 2 7 5 0 0 0

0.469471563 0.882947593 -17 -20 -13 -14 -10 -20

0.406736643 0.913545458 -21 -20 -20 -20 -17 -27

0.945518576 0.325568154 26 35 33 30 30 27

0.156434465 0.987688341 -36 -35 -32 -35 -42 -42

0.241921896 0.970295726 -31 -30 -34 -32 -30 -36

0.996194698 0.087155743 40 40 45 40 43 43

Perceived Angle

52

Table A2: Two channel experimental data – participants 6 to 10 (all angles in degrees)

Table A3: Two channel experimental data – participants 11 to 15 (all angles in degrees)

Left Gain Right Gain
Calculated

Angle
Participant 6 Participant 7 Participant 8 Participant 9 Participant 10

0.788010754 0.615661475 7 4 2 7 5 7

1 0 45 43 40 45 45 38

0.087155743 0.996194698 -40 -35 -40 -42 -45 -45

0.882947593 0.469471563 17 18 10 13 15 15

0.913545458 0.406736643 21 29 20 26 22 15

0.68199836 0.731353702 -2 -3 -3 0 -6 0

0.838670568 0.544639035 12 17 5 14 10 13

0.987688341 0.156434465 36 35 32 42 35 38

0.544639035 0.838670568 -12 -15 -13 -12 -19 -11

0.615661475 0.788010754 -7 -10 -8 -3 -10 -9

0 1 -45 -45 -45 -45 -45 -40

0.325568154 0.945518576 -26 -35 -29 -17 -32 -23

0.970295726 0.241921896 31 32 26 37 30 37

0.731353702 0.68199836 2 2 0 0 0 0

0.469471563 0.882947593 -17 -20 -11 -14 -22 -20

0.406736643 0.913545458 -21 -27 -15 -16 -27 -25

0.945518576 0.325568154 26 25 24 28 20 25

0.156434465 0.987688341 -36 -31 -40 -40 -37 -40

0.241921896 0.970295726 -31 -31 -34 -31 -39 -30

0.996194698 0.087155743 40 43 40 45 36 45

Perceived Angle

Left Gain Right Gain
Calculated

Angle
Participant 11 Participant 12 Participant 13 Participant 14 Participant 15

0.788010754 0.615661475 7 9 5 8 0 0

1 0 45 42 38 40 45 37

0.087155743 0.996194698 -40 -36 -44 -44 -38 -39

0.882947593 0.469471563 17 16 12 16 8 8

0.913545458 0.406736643 21 20 15 22 10 17

0.68199836 0.731353702 -2 1 -7 -5 -4 0

0.838670568 0.544639035 12 13 4 8 8 4

0.987688341 0.156434465 36 39 35 44 35 29

0.544639035 0.838670568 -12 -6 -10 -15 -15 -14

0.615661475 0.788010754 -7 -2 -1 -8 -7 -5

0 1 -45 -43 -45 -45 -45 -45

0.325568154 0.945518576 -26 -21 -30 -35 -25 -29

0.970295726 0.241921896 31 30 34 37 26 28

0.731353702 0.68199836 2 8 0 0 0 0

0.469471563 0.882947593 -17 -8 -18 -22 -10 -17

0.406736643 0.913545458 -21 -15 -25 -26 -20 -16

0.945518576 0.325568154 26 24 30 27 23 19

0.156434465 0.987688341 -36 -32 -44 -44 -28 -40

0.241921896 0.970295726 -31 -28 -37 -40 -24 -30

0.996194698 0.087155743 40 35 45 44 36 38

Perceived Angle

53

Table A4: Multi-channel Perimeter Test positions (all angles in degrees)

Table A5: Perimeter Test data – participants 1 to 5

Perimeter Training

Positions
Azimuth Elevation

1 0 0

2 15 0

3 30 0

4 45 0

5 30 14

6 15 28

7 0 42

8 -15 28

9 -30 14

10 -45 0

11 -30 0

12 -15 0

Perimeter Test

Order
Participant 1 Participant 2 Participant 3 Participant 4 Participant 5

2 2 2 3 4 4

3 3 3 3 3 3

4 5 4 4 2 4

9 8 9 9 9 10

7 7 7 6 7 7

0 0 0 0 0 6

8 10 8 8 8 8

6 6 6 6 6 6

1 5 1 3 5 5

5 1 5 5 5 5

11 11 11 7 11 7

10 8 10 8 10 8

Perceived Position

54

Table A6: Perimeter Test data – participants 6 to 10

Table A7: Perimeter Test data – participants 11 to 15

Perimeter Test

Order
Participant 6 Participant 7 Participant 8 Participant 9 Participant 10

2 2 2 4 2 2

3 3 3 3 3 3

4 4 4 2 4 4

9 9 9 9 9 9

7 7 7 7 7 7

0 0 6 0 0 0

8 8 8 8 8 8

6 6 0 6 6 6

1 1 5 5 1 1

5 4 5 1 5 5

11 7 7 11 11 11

10 9 10 10 9 8

Perceived Position

Perimeter Test

Order
Participant 11 Participant 12 Participant 13 Participant 14 Participant 15

2 2 2 3 2 2

3 3 3 3 3 3

4 2 4 4 4 4

9 9 9 9 9 9

7 7 7 7 7 7

0 0 6 6 6 0

8 8 9 9 8 8

6 6 0 6 6 6

1 1 5 1 1 1

5 5 5 5 5 5

11 7 11 7 11 11

10 10 10 8 10 10

Peceived Position

55

Table A8: Multi-channel Random Angle Test positions (all angles in degrees)

Table A9: Random Angle Test data – participants 1 to 5

Random Test

Training Positions
Azimuth Elevation

1 45 0

2 30 0

3 30 14

4 15 0

5 15 14

6 15 28

7 0 0

8 0 14

9 0 28

10 0 42

11 -15 0

12 -15 14

13 -15 28

14 -30 0

15 -30 14

16 -45 0

Random Test

Order
Participant 1 Participant 2 Participant 3 Participant 4 Participant 5

10 10 10 9 10 10

13 12 12 13 13 13

9 8 9 10 9 9

4 5 5 6 6 5

6 6 6 9 5 6

2 1 2 2 3 2

15 15 16 15 15 16

14 14 14 14 14 14

8 8 8 10 8 9

5 5 4 5 5 5

11 12 11 12 12 12

7 9 7 8 8 8

1 1 1 1 1 1

16 16 16 16 16 16

3 3 2 3 3 3

12 12 12 13 11 12

Perceived Position

56

 Table A10: Random Angle Test data – participants 5 to 10

 Table A11: Random Angle Test data – participants 11 to 15

Random Test

Order
Participant 6 Participant 7 Participant 8 Participant 9 Participant 10

10 10 10 10 10 10

13 13 13 12 13 13

9 9 9 9 9 9

4 5 4 4 5 4

6 6 6 6 6 6

2 2 3 3 3 1

15 15 15 15 15 15

14 14 14 14 14 14

8 8 8 8 8 8

5 5 5 5 5 5

11 11 12 12 12 12

7 9 8 8 8 8

1 1 1 1 1 1

16 16 16 16 16 16

3 2 3 3 3 3

12 12 12 12 12 12

Perceived Position

Random Test

Order
Participant 11 Participant 12 Participant 13 Participant 14 Participant 15

10 10 9 10 10 10

13 13 13 13 13 13

9 9 9 9 9 9

4 5 4 5 5 5

6 6 6 6 6 6

2 2 3 3 3 2

15 15 15 15 15 15

14 14 15 12 14 14

8 8 7 8 8 8

5 5 5 6 5 5

11 12 13 12 11 12

7 8 7 8 9 8

1 1 1 1 1 1

16 16 16 15 16 16

3 3 3 2 3 3

12 13 13 13 12 13

Perceived Position

57

APPENDIX B: MATLAB Code

TrainingProgram2D.m

clear all

close all

choosetest = mymenu1('Choose Training:','Sweep','User Input');

if choosetest == 1

 % % get speaker inputs

 prompt = {'Please enter the distance to the speakers in feet:

',...

 'Please enter the angle (in degrees) from center to the left

speaker: ',...

 'Please enter the angle (in degrees) from center to the right

speaker: '};

 title = 'Speaker Parameters';

 numlines = 1;

 defAns = {'8','45','-45'};

 options.Resize='off';

 options.WindowStyle='normal';

 options.Interpreter='tex';

 answer = inputdlg(prompt,title,numlines,defAns,options);

 s = str2num(answer{1});

 LeftAngle = str2num(answer{2});

 RightAngle = str2num(answer{3});

 % Calculate angles and gains

 for Pangle = RightAngle:15:LeftAngle % for stepping through all

angles

 xL = s*cosd(LeftAngle);

 yL = s*sind(LeftAngle);

 Left = [xL yL];

 xR = s*cosd(RightAngle);

 yR = s*sind(RightAngle);

 Right = [xR yR];

 xP = s*cosd(Pangle);

 yP = s*sind(Pangle);

 P = [xP yP];

 done = false;

 while (~done)

 LeftMag = norm(Left);

58

 if Left(1)>0 && Left(2)>0

 done = true;

 elseif ~(Left(1)>0 && Left(2)>0)

 fprintf('Error: Speaker out of bounds, must be in

first quadrant \n');

 Left = input('Please input a 2 dimensional vector ([x

y]) for the left speaker: ');

 end

 end

 thetaL = (atan(Left(2)/Left(1)))*180/pi

 done = false;

 while (~done)

 RightMag = norm(Right);

 if Right(1)>0 && Right(2)<0 && (abs(LeftMag-

RightMag))<10^-6

 done = true;

 elseif ~(Right(1)>0 && Right(2)<0)

 fprintf('Error: Speaker out of bounds, must be in

fourth quadrant \n');

 Right = input('Please input a 2 dimensional vector ([x

y]) for the right speaker: ');

 elseif ~((abs(LeftMag-RightMag))<10^-6)

 fprintf('Error: Magnitude of vectors must be equal

\n')

 Right = input('Please input a 2 dimensional vector ([x

y]) for the right speaker: ');

 end

 end

 thetaR = (atan(Right(2)/Right(1)))*180/pi

 done = false;

 while (~done)

 P = P';

 thetaP = (atan(P(2)/P(1)))*180/pi

 L = [Left' Right']';

 G = P'*inv(L)

 if P(1)>0 && Pangle>=RightAngle && Pangle<=LeftAngle &&

max(G)<=1 && max(G)>=0

 done = true;

 elseif ~(P(1)>0 && Pangle>RightAngle && Pangle<LeftAngle

&& max(G)<1 && max(G)>0)

 fprintf('Error')

 done = true;

 end

 end

59

 gL = G(1);

 gR = G(2);

 perceivedL = sin(2*pi*400*(0:1/20000:2));

 perceivedR = sin(2*pi*400*(0:1/20000:2));

 perceived = [gL.*perceivedL' gR.*perceivedR'];

 %% Play tone

 soundsc(perceived,20000);

 pause(2.5)

 end

else

 trainingdone = 2;

 while trainingdone == 2

 close all

 %% Play tone at 0,+-15,+-30,,+-45

 prompt = {'Please enter the distance to the speakers in feet:

',...

 'Please enter the angle (in degrees) from center to the

left speaker: ',...

 'Please enter the angle (in degrees) from center to the

right speaker: ',...

 'Please enter the desired angle (in degrees) of the

perceived sound: '};

 title = 'Speaker Parameters';

 numlines = 1;

 defAns = {'8','45','-45','0'};

 options.Resize='off';

 options.WindowStyle='normal';

 options.Interpreter='tex';

 answer = inputdlg(prompt,title,numlines,defAns,options);

 s = str2num(answer{1});

 LeftAngle = str2num(answer{2});

 RightAngle = str2num(answer{3});

 Pangle = str2num(answer{4});

 xL = s*cosd(LeftAngle);

 yL = s*sind(LeftAngle);

 Left = [xL yL];

 xR = s*cosd(RightAngle);

 yR = s*sind(RightAngle);

 Right = [xR yR];

 xP = s*cosd(Pangle);

 yP = s*sind(Pangle);

60

 P = [xP yP];

 done = false;

 while (~done)

 LeftMag = norm(Left);

 if Left(1)>0 && Left(2)>0

 done = true;

 elseif ~(Left(1)>0 && Left(2)>0)

 fprintf('Error: Speaker out of bounds, must be in

first quadrant \n');

 Left = input('Please input a 2 dimensional vector ([x

y]) for the left speaker: ');

 end

 end

 thetaL = (atan(Left(2)/Left(1)))*180/pi

 done = false;

 while (~done)

 RightMag = norm(Right);

 if Right(1)>0 && Right(2)<0 && (abs(LeftMag-

RightMag))<10^-6

 done = true;

 elseif ~(Right(1)>0 && Right(2)<0)

 fprintf('Error: Speaker out of bounds, must be in

fourth quadrant \n');

 Right = input('Please input a 2 dimensional vector ([x

y]) for the right speaker: ');

 elseif ~((abs(LeftMag-RightMag))<10^-6)

 fprintf('Error: Magnitude of vectors must be equal

\n')

 Right = input('Please input a 2 dimensional vector ([x

y]) for the right speaker: ');

 end

 end

 thetaR = (atan(Right(2)/Right(1)))*180/pi

 done = false;

 while (~done)

 P = P';

 thetaP = (atan(P(2)/P(1)))*180/pi

 L = [Left' Right']';

 G = P'*inv(L)

 if P(1)>0 && Pangle>=RightAngle && Pangle<=LeftAngle &&

max(G)<=1 && max(G)>=0

 done = true;

 elseif ~(P(1)>0 && Pangle>RightAngle && Pangle<LeftAngle

&& max(G)<1 && max(G)>0)

61

 prompt = {'Error: The Perceived sound must lie in the

active arc of the two speakers Please enter the desired angle of the

perceived sound : '};

 answer = inputdlg(prompt);

 Pangle = str2num(answer{1});

 xP = s*cosd(Pangle);

 yP = s*sind(Pangle);

 P = [xP yP];

 end

 end

 figure

 plot([0 Left(2)],[0 Left(1)],'r-o')

 hold on

 plot([0 Right(2)],[0 Right(1)],'-o')

 plot([0 P(2)],[0 P(1)],'k-x')

 set(gca,'XDir','reverse')

 legend('Left Speaker','Right Speaker','Virtual Source')

 xlabel('feet')

 ylabel('feet')

 grid on

 gL = G(1);

 gR = G(2);

 perceivedL = sin(2*pi*400*(0:1/44100:2));

 perceivedR = sin(2*pi*400*(0:1/44100:2));

 perceived = [gL.*perceivedL' gR.*perceivedR'];

 soundsc(perceived,44100);

 repdone = false;

 while (~repdone)

 replay = mymenu1('Replay Sound?','Yes','No');

 if replay ==1

 soundsc(perceived,20000);

 else

 repdone=true;

 end

 end

 trainingdone = mymenu1('Training Done?','Yes','No');

 end

end

62

DiscreteAngleTest2D.m

clear all

close all

prompt = {'Please enter the Participant number: ',...

 'Please enter the frequency of the tone you want to play: '};

title = 'Participant Information';

numlines = 1;

defAns = {'','400'};

options.Resize='off';

options.WindowStyle='normal';

options.Interpreter='tex';

answer = inputdlg(prompt,title,numlines,defAns,options);

freq = str2num(answer{2});

Participant = str2num(answer{1});

filename = ['Amplitude Panning Data_' date];

if (~exist([filename '.xls']))

 xlswrite(filename,[{'Trial'} {'Left Gain'}...

 {'Right Gain'} {'Desired Perceived Angle'} {'Actual Perceived

Angle'}...

 {'Error'} {'Distance to Speakers'}],...

 Participant,[char(65) num2str(1)]);

 Trial = 1;

else

 xlswrite(filename,[{'Trial'} {'Left Gain'}...

 {'Right Gain'} {'Desired Perceived Angle'} {'Actual Perceived

Angle'}...

 {'Error'} {'Distance to Speakers'}],...

 Participant,[char(65) num2str(1)]);

 A = xlsread(filename,Participant);

 [rows cols] = size(A);

 Trial = rows+1;

end

testdone = false;

% First 20 only 0:15:+-45 Last 20 use Random

prompt = {'Please enter the distance to the speakers in feet: ',...

 'Please enter the angle (in degrees) from center to the left

speaker: ',...

 'Please enter the angle (in degrees) from center to the right

speaker: '};

title = 'Speaker Parameters';

numlines = 1;

63

defAns = {'8','45','-45'};

options.Resize='off';

options.WindowStyle='normal';

options.Interpreter='tex';

answer = inputdlg(prompt,title,numlines,defAns,options);

s = str2num(answer{1});

LeftAngle = str2num(answer{2});

RightAngle = str2num(answer{3});

Angles = [15,-30,30,-15,45,0,-45,-30,-30,45,-15,30,45,-15,0,15,45,-

30,15,-45];

while testdone~=Angles(length(Angles))

 for i = 1:length(Angles);

 close all

 Pangle = Angles(i);

 xL = s*cosd(LeftAngle);

 yL = s*sind(LeftAngle);

 Left = [xL yL];

 xR = s*cosd(RightAngle);

 yR = s*sind(RightAngle);

 Right = [xR yR];

 xP = s*cosd(Pangle);

 yP = s*sind(Pangle);

 P = [xP yP];

 done = false;

 while (~done)

 LeftMag = norm(Left);

 if Left(1)>0 && Left(2)>0

 done = true;

 elseif ~(Left(1)>0 && Left(2)>0)

 fprintf('Error: Speaker out of bounds, must be in

first quadrant \n');

 Left = input('Please input a 2 dimensional vector ([x

y]) for the left speaker: ');

 end

 end

 thetaL = (atan(Left(2)/Left(1)))*180/pi

 done = false;

 while (~done)

 RightMag = norm(Right);

 if Right(1)>0 && Right(2)<0 && (abs(LeftMag-

RightMag))<10^-6

 done = true;

64

 elseif ~(Right(1)>0 && Right(2)<0)

 fprintf('Error: Speaker out of bounds, must be in

fourth quadrant \n');

 Right = input('Please input a 2 dimensional vector ([x

y]) for the right speaker: ');

 elseif ~((abs(LeftMag-RightMag))<10^-6)

 fprintf('Error: Magnitude of vectors must be equal

\n')

 Right = input('Please input a 2 dimensional vector ([x

y]) for the right speaker: ');

 end

 end

 thetaR = (atan(Right(2)/Right(1)))*180/pi

 done = false;

 while (~done)

 P = P';

 thetaP = (atan(P(2)/P(1)))*180/pi

 L = [Left' Right']';

 G = P'*inv(L)

 if P(1)>0 && Pangle>=RightAngle && Pangle<=LeftAngle &&

max(G)<=1 && max(G)>=0

 done = true;

 elseif ~(P(1)>0 && Pangle>RightAngle && Pangle<LeftAngle

&& max(G)<1 && max(G)>0)

 prompt = {'Error: The Perceived sound must lie in the

active arc of the two speakers Please enter the desired angle of the

perceived sound : '};

 answer = inputdlg(prompt);

 Pangle = str2num(answer{1});

 xP = s*cosd(Pangle);

 yP = s*sind(Pangle);

 P = [xP yP];

 end

 end

 figure

 plot([0 Left(1)],[0 Left(2)],'r-o')

 hold on

 plot([0 Right(1)],[0 Right(2)],'-o')

 plot([0 P(1)],[0 P(2)],'k-x')

 grid on

 gL = G(1);

 gR = G(2);

 perceivedL = sin(2*pi*freq*(0:1/20000:2));

65

 perceivedR = sin(2*pi*freq*(0:1/20000:2));

 perceived = [gL.*perceivedL' gR.*perceivedR'];

 soundsc(perceived,20000);

 repdone = false;

 while (~repdone)

 replay = mymenu1('Replay Sound?','Yes','No');

 if replay ==1

 soundsc(perceived,20000);

 else

 repdone=true;

 end

 end

 prompt2 = {'What was the angle of the perceived sound?: '};

 answer2 = inputdlg(prompt2);

 PerceivedAngle = str2num(answer2{1});

 Error = Pangle-PerceivedAngle;

 row = Trial+1;

 letter = char(65);

 number = num2str(row);

 cell = [letter number];

 xlswrite(filename,[Trial gL gR Pangle PerceivedAngle Error

s],Participant,cell);

 testcomplete = mymenu1('Continue Testing?','Yes','No');

 testdone = Pangle;

 Trial = Trial+1;

 end

end

66

RandomAngleTest2D.m

clear all

close all

testdone = false;

prompt = {'Please enter the Participant number: ',...

 'Please enter the frequency of the tone you want to play: '};

title = 'Participant Information';

numlines = 1;

defAns = {'','400'};

options.Resize='off';

options.WindowStyle='normal';

options.Interpreter='tex';

answer = inputdlg(prompt,title,numlines,defAns,options);

freq = str2num(answer{2});

Participant = str2num(answer{1});

filename = ['Amplitude Panning Data_' date];

if (~exist([filename '.xls']))

 xlswrite(filename,[{'Trial'} {'Left Gain'}...

 {'Right Gain'} {'Desired Perceived Angle'} {'Actual Perceived

Angle'}...

 {'Error'} {'Distance to Speakers'}],...

 Participant,[char(65) num2str(1)]);

 Trial = 1;

else

 xlswrite(filename,[{'Trial'} {'Left Gain'}...

 {'Right Gain'} {'Desired Perceived Angle'} {'Actual Perceived

Angle'}...

 {'Error'} {'Distance to Speakers'}],...

 Participant,[char(65) num2str(1)]);

 A = xlsread(filename,Participant);

 [rows cols] = size(A);

 Trial = rows+1;

end

% First 20 only 0:15:+-45 Last 20 Random

prompt = {'Please enter the distance to the speakers in feet: ',...

 'Please enter the angle (in degrees) from center to the left

speaker: ',...

 'Please enter the angle (in degrees) from center to the right

speaker: '};

title = 'Speaker Parameters';

numlines = 1;

67

defAns = {'8','45','-45'};

options.Resize='off';

options.WindowStyle='normal';

options.Interpreter='tex';

answer = inputdlg(prompt,title,numlines,defAns,options);

s = str2num(answer{1});

LeftAngle = str2num(answer{2});

RightAngle = str2num(answer{3});

Angles = [7,45,-40,17,21,-2,12,36,-12,-7,-45,-26,31,2,-17,-21,26,-36,-

31,40];

while testdone~=Angles(length(Angles))

for i = 1:length(Angles);

 close all

 Pangle = Angles(i);

 xL = s*cosd(LeftAngle);

 yL = s*sind(LeftAngle);

 Left = [xL yL];

 xR = s*cosd(RightAngle);

 yR = s*sind(RightAngle);

 Right = [xR yR];

 xP = s*cosd(Pangle);

 yP = s*sind(Pangle);

 P = [xP yP];

 done = false;

 while (~done)

 LeftMag = norm(Left);

 if Left(1)>0 && Left(2)>0

 done = true;

 elseif ~(Left(1)>0 && Left(2)>0)

 fprintf('Error: Speaker out of bounds, must be in

first quadrant \n');

 Left = input('Please input a 2 dimensional vector ([x

y]) for the left speaker: ');

 end

 end

 thetaL = (atan(Left(2)/Left(1)))*180/pi

 done = false;

 while (~done)

 RightMag = norm(Right);

 if Right(1)>0 && Right(2)<0 && (abs(LeftMag-

RightMag))<10^-6

68

 done = true;

 elseif ~(Right(1)>0 && Right(2)<0)

 fprintf('Error: Speaker out of bounds, must be in

fourth quadrant \n');

 Right = input('Please input a 2 dimensional vector ([x

y]) for the right speaker: ');

 elseif ~((abs(LeftMag-RightMag))<10^-6)

 fprintf('Error: Magnitude of vectors must be equal

\n')

 Right = input('Please input a 2 dimensional vector ([x

y]) for the right speaker: ');

 end

 end

 thetaR = (atan(Right(2)/Right(1)))*180/pi

 done = false;

 while (~done)

 P = P';

 thetaP = (atan(P(2)/P(1)))*180/pi

 L = [Left' Right']';

 G = P'*inv(L)

 if P(1)>0 && Pangle>=RightAngle && Pangle<=LeftAngle &&

max(G)<=1 && max(G)>=0

 done = true;

 elseif ~(P(1)>0 && Pangle>RightAngle && Pangle<LeftAngle

&& max(G)<1 && max(G)>0)

 prompt = {'Error: The Perceived sound must lie in the

active arc of the two speakers Please enter the desired angle of the

perceived sound : '};

 answer = inputdlg(prompt);

 Pangle = str2num(answer{1});

 xP = s*cosd(Pangle);

 yP = s*sind(Pangle);

 P = [xP yP];

 end

 end

 figure

 plot([0 Left(1)],[0 Left(2)],'r-o')

 hold on

 plot([0 Right(1)],[0 Right(2)],'-o')

 plot([0 P(1)],[0 P(2)],'k-x')

 grid on

 gL = G(1);

 gR = G(2);

69

 perceivedL = sin(2*pi*freq*(0:1/20000:2));

 perceivedR = sin(2*pi*freq*(0:1/20000:2));

 perceived = [gL.*perceivedL' gR.*perceivedR'];

 soundsc(perceived,20000);

 repdone = false;

 while (~repdone)

 replay = mymenu1('Replay Sound?','Yes','No');

 if replay ==1

 soundsc(perceived,20000);

 else

 repdone=true;

 end

 end

 prompt2 = {'What was the angle of the perceived sound?: '};

 answer2 = inputdlg(prompt2);

 PerceivedAngle = str2num(answer2{1});

 Error = Pangle-PerceivedAngle;

 row = Trial+1;

 letter = char(65);

 number = num2str(row);

 cell = [letter number];

 xlswrite(filename,[Trial gL gR Pangle PerceivedAngle Error

s],Participant,cell);

 testcomplete = mymenu1('Continue Testing?','Yes','No');

 testdone = Pangle;

 Trial = Trial+1;

 end

end

70

GainCalc3D.m

close all

clear all

prompt = {'Please enter the distance to the speakers in feet: ',...

 'Please enter the angle (in degrees) from center to the left

speaker: ',...

 'Please enter the angle (in degrees) from center to the right

speaker: ',...

 'Please enter the elevation (in degrees) from horizontal to the

top speaker: ',...

 'Please enter the desired elevation (in degrees) from horizontal

of the perceived sound: ',...

 'Please enter the desired angle (in degrees) of the perceived

sound: '};

title = 'Speaker Parameters';

numlines = 1;

defAns = {'8','45','-45','42','28','15'};

options.Resize='off';

options.WindowStyle='normal';

options.Interpreter='tex';

answer = inputdlg(prompt,title,numlines,defAns,options);

s = str2num(answer{1});

LeftAngle = str2num(answer{2});

RightAngle = str2num(answer{3});

TopElevation = str2num(answer{4});

Pelevation = str2num(answer{5});

Pangle = str2num(answer{6});

% angle = randi([RightAngle LeftAngle])*pi/180; % for random angle

generation

xL = s*cosd(LeftAngle);

yL = s*sind(LeftAngle);

zL = 0;

Left = [xL yL zL];

xR = s*cosd(RightAngle);

yR = s*sind(RightAngle);

zR = 0;

Right = [xR yR zR];

xT = 0;

yT = 0;

zT = s*sind(TopElevation);

xT = sqrt(s^2-zT^2);

yT = 0;

Top = [xT yT zT];

xP = s*cosd(Pangle);

71

yP = s*sind(Pangle);

zP = sqrt(xP^2+yP^2)*tand(Pelevation);

P = [xP yP zP];

done = false;

while (~done)

 LeftMag = norm(Left);

 if Left(1)>0 && Left(2)>0

 done = true;

 elseif ~(Left(1)>0 && Left(2)>0)

 fprintf('Error: Speaker out of bounds, must be in first

quadrant \n');

 Left = input('Please input a 2 dimensional vector ([x y]) for

the left speaker: ');

 end

end

thetaL = (atan(Left(2)/Left(1)))*180/pi

done = false;

while (~done)

 RightMag = norm(Right);

 if Right(1)>0 && Right(2)<0 && (abs(LeftMag-RightMag))<10^-6

 done = true;

 elseif ~(Right(1)>0 && Right(2)<0)

 fprintf('Error: Speaker out of bounds, must be in fourth

quadrant \n');

 Right = input('Please input a 2 dimensional vector ([x y]) for

the right speaker: ');

 elseif ~((abs(LeftMag-RightMag))<10^-6)

 fprintf('Error: Magnitude of vectors must be equal \n')

 Right = input('Please input a 2 dimensional vector ([x y]) for

the right speaker: ');

 end

end

thetaR = (atan(Right(2)/Right(1)))*180/pi

done = false;

while (~done)

 P = P';

 thetaP = (atan(P(2)/P(1)))*180/pi

 elevP = atand(P(3)/P(1))

 L = [Left' Right' Top']';

 G = P'*inv(L)

 if max(G)>1

 G = G/max(G)

 end

72

 if P(1)>0 && Pangle>=RightAngle && Pangle<=LeftAngle && max(G)<=1

&& max(G)>=0

 done = true;

 elseif ~(P(1)>0 && Pangle>RightAngle && Pangle<LeftAngle &&

max(G)<1 && max(G)>0)

 prompt = {'Error: The Perceived sound must lie in the active

arc of the two speakers Please enter the desired angle of the

perceived sound : '};

 answer = inputdlg(prompt);

 Pangle = str2num(answer{1});

 xP = s*cosd(Pangle);

 yP = s*sind(Pangle);

 P = [xP yP];

 end

end

figure

plot3([0 Left(1)],[0 Left(2)],[0 Left(3)],'r-o','linewidth',2)

hold on

plot3([0 Right(1)],[0 Right(2)],[0 Right(3)],'-o','linewidth',2)

plot3([0 Top(1)],[0 Top(2)],[0 Top(3)],'c-o','linewidth',2)

plot3([0 P(1)],[0 P(2)],[0 P(3)],'k-x','linewidth',2)

plot3([Left(1) Top(1)],[Left(2) Top(2)],[Left(3)

Top(3)],'k:','linewidth',2)

plot3([Right(1) Top(1)],[Right(2) Top(2)],[Right(3)

Top(3)],'k:','linewidth',2)

plot3([Left(1) Right(1)],[Left(2) Right(2)],[Left(3)

Right(3)],'k:','linewidth',2)

grid on

legend('Left Speaker','Right Speaker','Top Speaker','Virtual

Source','Active Triangle')

xlabel('feet')

ylabel('feet')

zlabel('feet')

n = sqrt(G(1)^2+G(2)^2+G(3)^2);

gL = G(1)/n;

gR = G(2)/n;

gT = G(3)/n;

fs = 44100;

perceivedL = gL.*sin(2*pi*350*(0:1/fs:2));

perceivedR = gR.*sin(2*pi*350*(0:1/fs:2));

perceivedT = gT.*sin(2*pi*350*(0:1/fs:2));

perceived = [gL.*perceivedL' gR.*perceivedR' gT.*perceivedT'];

audiowrite('perceivedL.wav',perceivedL,fs);

audiowrite('perceivedR.wav',perceivedR,fs);

audiowrite('perceivedT.wav',perceivedT,fs);

73

NonEquidistant.m

clear all

close all

prompt = {'Please enter the coordinates ([x y]) of the left speaker:

',...

 'Please enter the coordinates ([x y]) of the right speaker:

',...

 'Please enter the coordinates ([x y]) of the listener ',...

 'Please enter the desired angle of the perceived sound: '};

title = 'Speaker Parameters';

numlines = 1;

defAns = {'[10 20]','[20 20]','[12 5]','0'};

options.Resize='off';

options.WindowStyle='normal';

options.Interpreter='tex';

answer = inputdlg(prompt,title,numlines,defAns,options);

Left = str2num(answer{1});

Right = str2num(answer{2});

Listener = str2num(answer{3});

Center = [(Left(1)+Right(1))/2 Listener(2)];

dL = sqrt((Left(1)-Listener(1))^2+(Left(2)-Listener(2))^2);

dR = sqrt((Right(1)-Listener(1))^2+(Right(2)-Listener(2))^2);

s = (dL+dR)/2;

angle = str2num(answer{4})*pi/180;

x = s*sin(angle)+Listener(1);

yL = s*cos(angle)+Listener(2);

P = [x yL];

Pcenter = [P(1)+Center(1)-Listener(1) P(2)];

done = false;

while (~done)

 LeftMag = norm(Left);

 if Left(1)>0 && Left(2)>0

 done = true;

 elseif ~(Left(1)>0 && Left(2)>0)

 fprintf('Error: Speaker coordinates must be positive \n');

 Left = input('Please input coordinates ([x y]) for the left

speaker: ');

 end

end

thetaLrad = atan((Left(1)-Listener(1))/(Left(2)-Listener(2)));

thetaLdeg = thetaLrad*180/pi

74

done = false;

while (~done)

 RightMag = norm(Right);

 if Right(1)>0 && Right(2)>0

 done = true;

 elseif ~(Right(1)>0 && Right(2)>0)

 fprintf('Error: Speaker coordinates must be positive \n');

 Right = input('Please input coordinates ([x y]) for the right

speaker: ');

 end

end

thetaRrad = atan((Right(1)-Listener(1))/(Right(2)-Listener(2)));

thetaRdeg = thetaRrad*180/pi

done = false;

while (~done)

 if Listener(2)<Left(2) && Listener(2)<Right(2) &&

Listener(1)>Left(1) && Listener(1)<Right(1)

 done = true;

 elseif ~(Listener(2)<Left(2) && Listener(2)<Right(2) &&

Listener(1)>Left(1) && Listener(1)<Right(1))

 fprintf('Error: Listener out of bounds, must be in front of

and between speakers \n');

 Listener = input('Please input coordinates ([x y]) for the

Listener: ');

 end

end

done = false;

while (~done)

 Pvect = (Pcenter-Center);

 thetaPrad = atan((P(1)-Listener(1))/(P(2)-Listener(2)));

 thetaPdeg = thetaPrad*180/pi

 L = [(Left-Center)' (Right-Center)']';

 G = Pvect*inv(L)

 if G(1)>1

 G(2)=G(2)/G(1)

 G(1) = 1

 elseif G(2)>1

 G(1)=G(1)/G(2)

 G(2) = 1

 end

 if dR>dL

 Gcorrect = [G(1) G(2)*(dR/dL)^2]

 TL = (dR-dL)/340.29;

 TR = 0;

 elseif dL>dR

75

 Gcorrect = [G(1)*(dL/dR)^2 G(2)]

 TR = (dL-dR)/340.29;

 TL = 0;

 else

 Gcorrect = G

 TR = 0;

 TL = 0;

 end

 Pcal = Gcorrect*L;

 if P(1)>0 && P(2)>0 && thetaPdeg<thetaRdeg && thetaPdeg>thetaLdeg

 done = true;

 'Please input a 2 dimensional vector ([x y]) for the desired

perceived location: ');

 end

end

zp = 5; % padding

pixscale = 4; % scales number of pixels

ymin = min([Right(2) Left(2) Listener(2)]);

ymax = max([Right(2) Left(2) Listener(2)]);

Nrows = pixscale*(ymax-ymin+2*zp);

xmin = min([Right(1) Left(1) Listener(1)]);

xmax = max([Right(1) Left(1) Listener(1)]);

Ncols = pixscale*(xmax-xmin+2*zp);

img = zeros(Nrows,Ncols);

figure

plot([Listener(1) Left(1)],[Listener(2) Left(2)],'r-o')

hold on

plot([Listener(1) Right(1)],[Listener(2) Right(2)],'-o')

plot([Listener(1) P(1)],[Listener(2) P(2)],'k-x')

grid on

axis([0 xmax+2*zp 0 ymax+2*zp])

messageGL = num2str(Gcorrect(1));

messageTL = num2str(TL);

gtext({messageGL,messageTL})

messageGR = num2str(Gcorrect(2));

messageTR = num2str(TR);

gtext({messageGR,messageTR})

xlabel('feet')

ylabel('feet')

Npoints = 100;

lineL = inv([Left(1) 1; Listener(1) 1])*[Left(2);Listener(2)];

lineR = inv([Right(1) 1; Listener(1) 1])*[Right(2);Listener(2)];

x = linspace(xmin,xmax,Ncols);

76

y = linspace(ymin,ymax,Nrows);

figure

if dR>dL

 xL = linspace(Left(1),Listener(1),Npoints);

 yL = lineL(1)*xL+lineL(2);

 xR = linspace(Right(1),Listener(1),round(Npoints*dR/dL));

 yR = lineR(1)*xR+lineR(2);

 addpts = round(Npoints*dR/dL)-Npoints;

 deltaD = sqrt((xL(1)-xL(2))^2+(yL(1)-yL(2))^2);

 deltaT = deltaD/340.29;

 IL(1) = Gcorrect(1);

 IR(1) = Gcorrect(2);

 GF = 10^((log10(Gcorrect(1)/Gcorrect(2))/addpts));

 for j = 1:addpts

 [rowR(j),colR(j)] =

xy_to_rowcol(xmin,xmax,ymin,ymax,zp,Nrows,Ncols,xR(j),yR(j));

 if j>1

 IR(j) = IR(j-1)*GF;

 end

 img(round(rowR(j)),round(colR(j)))=IR(j);

 logimg = log10(img+10^-1)+1;

 imagesc(x,y,fliplr(logimg))

 xlabel('feet')

 ylabel('feet')

 colorbar

 time = j*deltaT*1000;

 text(ymin+5.5,xmin-4,[num2str(time) 'ms'],'Color',[1 1 1])

 F(j)=getframe;

 end

 for i = 1:length(xL);

 j = i+addpts;

 [rowL(i),colL(i)] =

xy_to_rowcol(xmin,xmax,ymin,ymax,zp,Nrows,Ncols,xL(i),yL(i));

 IR(j) = IR(j-1)*GF;

 if i>1

 IL(i) = IL(i-1)*GF;

 end

 img(round(rowL(i)),round(colL(i)))=IL(i);

 [rowR(j),colR(j)] =

xy_to_rowcol(xmin,xmax,ymin,ymax,zp,Nrows,Ncols,xR(j),yR(j));

 img(round(rowR(j)),round(colR(j)))=IR(j);

 logimg = ((log10(img+10^-1)+1)/1);

 imagesc(x,y,fliplr(logimg))

 xlabel('feet')

77

 ylabel('feet')

 colorbar

 time = j*deltaT*1000;

 text(ymin+5.5,xmin-4,[num2str(time) 'ms'],'Color',[1 1 1])

 F(j)=getframe;

 end

elseif dL>dR

 xL = linspace(Left(1),Listener(1),Npoints*dL/dR);

 yL = lineL(1)*xL+lineL(2);

 xR = linspace(Right(1),Listener(1),round(Npoints));

 yR = lineR(1)*xR+lineR(2);

 addpts = round(Npoints*dL/dR)-Npoints;

 deltaD = sqrt((xL(1)-xL(2))^2+(yL(1)-yL(2))^2);

 deltaT = deltaD/340.29;

 IL(1) = Gcorrect(1);

 IR(1) = Gcorrect(2);

 GF = 10^((log10(Gcorrect(2)/Gcorrect(1))/addpts));

 for i = 1:addpts

 [rowL(i),colL(i)] =

xy_to_rowcol(xmin,xmax,ymin,ymax,zp,Nrows,Ncols,xL(i),yL(i));

 if i>1

 IL(i) = IL(i-1)*GF;

 end

 img(round(rowL(i)),round(colL(i)))=IL(i);

 logimg = ((log10(img+10^-1)+1)/1);

 imagesc(x,y,fliplr(logimg))

 colorbar

 xlabel('feet')

 ylabel('feet')

 time = i*deltaT*1000;

 text(ymin+5.5,xmin-4,[num2str(time) 'ms'],'Color',[1 1 1])

 F(i)=getframe;

 end

 for j = 1:length(xR);

 i = j+addpts;

 [rowR(j),colR(j)] =

xy_to_rowcol(xmin,xmax,ymin,ymax,zp,Nrows,Ncols,xR(j),yR(j));

 IL(i) = IL(i-1)*GF;

 if j>1

 IR(j) = IR(j-1)*GF;

 end

 img(round(rowR(j)),round(colR(j)))=IR(j);

 [rowL(i),colL(i)] =

xy_to_rowcol(xmin,xmax,ymin,ymax,zp,Nrows,Ncols,xL(i),yL(i));

78

 img(round(rowL(i)),round(colL(i)))=IL(i);

 logimg = ((log10(img+10^-1)+1)/1);

 imagesc(x,y,fliplr(logimg))

 colorbar

 xlabel('feet')

 ylabel('feet')

 time = i*deltaT*1000;

 text(ymin+5.5,xmin-4,[num2str(time) 'ms'],'Color',[1 1 1])

 F(i)=getframe;

 end

else

 xL = linspace(Left(1),Listener(1),Npoints);

 yL = lineL(1)*xL+lineL(2);

 xR = linspace(Right(1),Listener(1),round(Npoints*dR/dL));

 yR = lineR(1)*xR+lineR(2);

 deltaD = sqrt((xL(1)-xL(2))^2+(yL(1)-yL(2))^2);

 deltaT = deltaD/340.29;

 IL(1) = Gcorrect(1);

 IR(1) = Gcorrect(2);

 addpts = round(Npoints*dL/dR)-Npoints;

 GF = 10^(log10(0.1/Gcorrect(1))/(Npoints-1));

 for i = 1:length(xR)

 [rowR(i),colR(i)] =

xy_to_rowcol(xmin,xmax,ymin,ymax,zp,Nrows,Ncols,xR(i),yR(i));

 [rowL(i),colL(i)] =

xy_to_rowcol(xmin,xmax,ymin,ymax,zp,Nrows,Ncols,xL(i),yL(i));

 if i>1

 IL(i) = IL(i-1)*GF;

 IR(i) = IR(i-1)*GF;

 end

 img(round(rowL(i)),round(colL(i)))=IL(i);

 img(round(rowR(i)),round(colR(i)))=IR(i);

 imagesc(x,y,fliplr(img))

 colorbar

 xlabel('feet')

 ylabel('feet')

 time = i*deltaT*1000;

 text(ymin+5.5,xmin-4,[num2str(time) 'ms'],'Color',[1 1 1])

 F(i)=getframe;

 end

end

figure

movie(F,1,10)

