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Abstract: 

Most vertebrate fossils are rare and difficult to find and although paleontologists and 
paleoanthropologists use geological maps to identify potential fossil-bearing deposits, the 
process of locating fossiliferous localities often involves a great deal of luck. One way to reduce 
the role of serendipity is to develop predictive models that increase the likelihood of locating 
fossils by identifying combinations of geological, geospatial, and spectral features that are 
common to productive localities. We applied GEographic Object-Based Image Analysis 
(GEOBIA) of high resolution QuickBird and medium resolution images from the Landsat 8 
Operational Land Imager (OLI) along with GIS data such as slope and surface geology layers to 
identify potentially productive Eocene vertebrate fossil localities in the Great Divide Basin, 
Wyoming. The spectral and spatial characteristics of the image objects that represent a highly 
productive locality (WMU-VP-222) were used to extract similar image objects in the area 
covered by the high resolution imagery and throughout the basin using the Landsat imagery. 
During the 2013 summer field season, twenty-six locations that would not have been spotted 
from the road in a traditional ground survey were visited. Fourteen of the eighteen localities that 
were fossiliferous were identified by the predictive model. In 2014, the GEOBIA techniques 
were applied to Landsat 8 imagery of the entire basin, correctly identifying six new productive 
localities in a previously unsurveyed part of the basin. 
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Abstract: Most vertebrate fossils are rare and difficult to find and although paleontologists and
paleoanthropologists use geological maps to identify potential fossil-bearing deposits, the process
of locating fossiliferous localities often involves a great deal of luck. One way to reduce the
role of serendipity is to develop predictive models that increase the likelihood of locating fossils
by identifying combinations of geological, geospatial, and spectral features that are common to
productive localities. We applied GEographic Object-Based Image Analysis (GEOBIA) of high
resolution QuickBird and medium resolution images from the Landsat 8 Operational Land Imager
(OLI) along with GIS data such as slope and surface geology layers to identify potentially productive
Eocene vertebrate fossil localities in the Great Divide Basin, Wyoming. The spectral and spatial
characteristics of the image objects that represent a highly productive locality (WMU-VP-222) were
used to extract similar image objects in the area covered by the high resolution imagery and
throughout the basin using the Landsat imagery. During the 2013 summer field season, twenty-six
locations that would not have been spotted from the road in a traditional ground survey were
visited. Fourteen of the eighteen localities that were fossiliferous were identified by the predictive
model. In 2014, the GEOBIA techniques were applied to Landsat 8 imagery of the entire basin,
correctly identifying six new productive localities in a previously unsurveyed part of the basin.

Keywords: paleoanthropology; vertebrate paleontology; object-oriented image analysis; feature
extraction; Eocene; predictive models

1. Introduction

Although paleontologists and paleoanthropologists use global navigational satellite systems and
online data sources such as geological maps to identify potential fossiliferous areas, the process of
selecting which areas a field crew should intensively investigate has remained relatively constant for
the last century [1] and there is a certain element of luck in the discovery of new sites. The primary
method of locating fossils in the landscape is through intensive and time consuming field surveys in
which teams spend large amounts of time traversing the landscape in vehicles and on foot in search
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of productive areas, which are usually spotted at a distance from a road or higher ground. In an
effort to reduce the role of chance, geospatial analytical techniques have recently been used to create
predictive models to aid in identifying productive localities.

While the adoption of geospatial techniques in paleoanthropology has been slow as compared to
disciplines such as archaeology or geology, some early adopters have incorporated these techniques
into their search for hominin fossils. The “Paleoanthropological Inventory of Ethiopia”, a program
initiated in 1988 by Ethiopia’s Ministry of Culture and developed by paleoanthropologists Berhane
Asfaw and Tim White [2] mapped the main Ethiopian Rift and Afar Depression using a combination
of Landsat Thematic Mapper (TM) satellite imagery, aerial photography, and space shuttle large
format camera (LFC) photos to identify geologic features of interest to paleoanthropologists studying
early stages of hominin evolution. Aerial photography and satellite images pinpointed locations of
interest for ground survey in the Woranso-Mille study area in the central Afar region of Ethiopia [3].
Njau and Hlusko [4] used Google Earth supplemented by high resolution IKONOS imagery to locate
new paleontological and archaeological sites in Tanzania. Bailey and colleagues [5] incorporated
Landsat 7 Enhanced Thematic Mapper (ETM+) imagery with Shuttle Radar Topographic Mission
(SRTM-3) data across southern African landscapes during the Plio-Pleistocene to argue that active
volcanism must have played a pivotal role in the habitat choices of early hominins. Nigro and
colleagues [6] used standard surveying techniques to create a 3-D model of the Swartkrans hominin
cave site in South Africa and then used GIS methods to plot and analyze the distribution of fossil
remains and artifacts in this three-dimensional reconstruction of the cave.

Invertebrate and vertebrate paleontologists have used various geospatial techniques in attempts
to reconstruct past environments and to understand the geographic distribution of extinct taxa in
the past. In North America, Stucky and colleagues [7,8] pioneered the use of satellite imagery to
identify vertebrate fossil-bearing rock units of Eocene age in the Wind River Basin of Wyoming.
Conroy and colleagues [9] also used ArcGIS to create Keyhole Markup Language (kml) files for
use with Google Earth to record and share results of vertebrate paleontological fieldwork in several
sedimentary basins of western North America. Stigall-Rode and colleagues projected locality data for
fossil taxa onto a map of the Devonian period in order to model the distribution and habitat ranges
of extinct taxa [10,11]. Another interesting application of geospatial techniques in paleontology [12]
used a GIS to analyze the utility of biostratigraphic dating methods applied to vertebrate faunal and
floral assemblages during the Triassic of North America and Europe. Ghaffar [13] created digital
contour maps of the Dhok Bun Ameer Khatoon site in the Siwalik Hills of Pakistan and used these
models to explore the fossil distribution of the Miocene giraffid Giraffokeryx punjabiensis.

Many of the works previously discussed relied upon visual inspection of remotely sensed
imagery to guide ground surveys in search of fossil vertebrates, hominins, or archaeological sites.
Although archaeologists have been developing and testing predictive site location models for
several decades [14–16], predictive modeling has been rarely utilized by paleontologists or
paleoanthropologists. Oheim [17] developed a model to predict the location of dinosaur fossils in
the late Cretaceous Two Medicine Formation of north-central Montana. She performed a suitability
analysis, an approach commonly used by archaeologists, which incorporates several types of data
into a GIS, including geologic maps, land cover maps, road networks, and elevation. This analysis
resulted in a raster data layer in which each grid cell had a value based on environmental suitability
that predicted the likelihood of locating fossils at that location. This model was field tested by
systematically surveying areas of both high and low probability. The number of fossils found
per square kilometer was used to create a fossil density map that was highly correlated with the
predicted score. Chew and Oheim [18] used GIS analyses to explore biases in the fossil mammal
record from the earliest Eocene of the Bighorn Basin in Wyoming. Their results suggested that
sampling area (calculated within their GIS by digitizing fossil localities from topographic maps)
added significant bias to calculations of species richness both at the level of individual localities and
across the entire basin.
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Another geospatial method of predicting where fossils can be found is by classifying imagery.
Malakhov and colleagues [19] used a spectral angle mapping technique to classify Landsat ETM+
imagery of fossiliferous strata in southern Kazakhstan. Conroy used an unsupervised classification
approach [20] and Conroy and colleagues [21] classified Landsat ETM+ imagery using a maximum
likelihood approach in the Uinta Basin of Utah. In the Great Divide Basin in Wyoming, two of
the authors of this paper used an Artificial Neural Network (ANN)-based technique to classify
Landsat ETM+ imagery with the goal of identifying new localities [22,23]. By training the ANN
to recognize the spectral signatures of known fossil localities, they created a classified image that
included predicted localities throughout the basin. It was found that the medium resolution Landsat
imagery was adequate for a general reconnaissance of the 10,000 km2 basin, but problems with over
prediction led to frequent false positive indications. In an attempt to improve on these results, this
paper explores an object-oriented approach in which higher resolution imagery of areas of interest
are analyzed in greater detail. The ANN-based Landsat ETM+ model is also used to compare the
object-based models that are the subject of this paper.

2. Study Area

Located in southwestern Wyoming USA (see Figure 1), the Great Divide Basin (GDB) is an
internal drainage basin that forms the northeastern part of the Greater Green River basin. The basin
is encircled by the Continental Divide, which splits at South Pass and rejoins near Rawlins, WY. The
GDB is bounded by the Wamsutter Arch in the south, the Rock Springs Uplift to the west, the eastern
portion of the Wind River Mountains and the Sweetwater Arch to the north, and the Rawlins Uplift
to the east. Interstate highway 80 parallels the Wamsutter Arch along the southern edge of the GDB
between the cities of Rawlins in the east and Rock Springs in the west.

Many geological surveys of the GDB are mainly concerned with understanding and mapping
its copious hydrocarbon and mineral resources [24–28], while paleontological efforts prior to our
research team’s work over the past twenty years were minimal [29,30]. This region of Wyoming
is drastically different today than it was during the Eocene epoch (56–38 million years ago), when
the climate was tropical and therefore significantly warmer and wetter than today. Throughout the
Eocene, the Greater Green River Basin was the site of a large freshwater lake known to geologists as
Lake Gosiute. The lake expanded and contracted multiple times throughout the Eocene due to climate
change and tectonic activity [31], resulting in a complex inter-tonguing geological layer cake of fluvial
and lacustrine sediments. At various times throughout the Eocene, Lake Gosiute encompassed the
entire Greater Green River Basin (including parts of modern day Wyoming, Utah and Colorado),
while at other times it was separated into multiple, smaller lakes. The Fort Union and Wasatch
formations are fluvial units that outcrop throughout the Greater Green River Basin. These are the
beds of most interest to this research since they often contain remains of terrestrial vertebrates who
lived, died, and were fossilized along the rivers, streams and deltas of late Paleocene to early Eocene
southwestern Wyoming. Green River Formation deposits are lacustrine in origin, representing the
sediments created by Lake Gosiute itself, and they contain abundant fish fossils [32].

16557



Remote Sens. 2015, 7, 16555–16570

Remote Sens. 2015, 7, page–page 

3 

Another geospatial method of predicting where fossils can be found is by classifying imagery. 
Malakhov and colleagues [19] used a spectral angle mapping technique to classify Landsat ETM+ 
imagery of fossiliferous strata in southern Kazakhstan. Conroy used an unsupervised classification 
approach [20] and Conroy and colleagues [21] classified Landsat ETM+ imagery using a maximum 
likelihood approach in the Uinta Basin of Utah. In the Great Divide Basin in Wyoming, two of the 
authors of this paper used an Artificial Neural Network (ANN)-based technique to classify Landsat 
ETM+ imagery with the goal of identifying new localities [22,23]. By training the ANN to recognize 
the spectral signatures of known fossil localities, they created a classified image that included 
predicted localities throughout the basin. It was found that the medium resolution Landsat imagery 
was adequate for a general reconnaissance of the 10,000 km2 basin, but problems with over 
prediction led to frequent false positive indications. In an attempt to improve on these results, this 
paper explores an object-oriented approach in which higher resolution imagery of areas of interest 
are analyzed in greater detail. The ANN-based Landsat ETM+ model is also used to compare the 
object-based models that are the subject of this paper. 

2. Study Area 

Located in southwestern Wyoming USA (see Figure 1), the Great Divide Basin (GDB) is an 
internal drainage basin that forms the northeastern part of the Greater Green River basin. The basin 
is encircled by the Continental Divide, which splits at South Pass and rejoins near Rawlins, WY. The 
GDB is bounded by the Wamsutter Arch in the south, the Rock Springs Uplift to the west, the 
eastern portion of the Wind River Mountains and the Sweetwater Arch to the north, and the 
Rawlins Uplift to the east. Interstate highway 80 parallels the Wamsutter Arch along the southern 
edge of the GDB between the cities of Rawlins in the east and Rock Springs in the west. 

 
Figure 1. The Great Divide Basin in southwestern Wyoming (highlighted in blue). Figure 1. The Great Divide Basin in southwestern Wyoming (highlighted in blue).

While vertebrate fossils spanning the late Paleocene through the late Eocene epochs can be
found in the GDB, our research team focuses on the mammals and other vertebrates that lived
during the earliest part of the Eocene, the so-called Wasatchian North American Land Mammal
Age (NALMA) [33]. The transition from the Paleocene to the Eocene epochs, which occurred
approximately 56 million years ago (MYA) was a critically important moment in the history of
life on Earth [34–37], marked by a massive perturbation in the Earth’s carbon cycle caused by
an enormous release of methane into the atmosphere from oceanic clathrate deposits [38,39]. The
resulting greenhouse warming led to an estimated 5–8 degree Celsius rise in global temperatures that
lasted for several tens of thousands of years and resulted in an enormous faunal and floral turnover
on land and in the oceans [39]. This event has come to be known as the Paleocene Eocene Thermal
Maximum (PETM), and it was accompanied by the extinction of many typical Paleocene taxa and the
origination (and spread across the northern continents) of a modern mammalian fauna marked by
the first appearance of primates, artiodactyls and perissodactyls [35].

Vertebrate fossils in the GDB are typically preserved in the fluvial channel sandstones and
overbank deposits of the Wasatch Formation. The fossils of terrestrial animals are usually isolated
teeth, jaws, and postcranial bones that have been transported by stream action. Whole or partial
skeletons, skulls, or articulated bones are extremely rare. In addition to mammals such as early
primates, rodents, hooved animals and carnivores, the remains of turtles, crocodiles, lizards and fish
are frequently found. As the fossils erode out of the sandstones due to the action of wind and water,
they are deposited in the loose sands found at the base of sandstone outcrops. Some fossils are found
in situ within the sandstone matrix and can be carefully removed from the surrounding rock using
dental picks. Dry or wet screening is often incorporated in the search for small fossils such as teeth.
Exposed silt and mudstone areas also sometimes contain isolated small fossils.
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Over a 22-year period, the authors have identified 125 productive localities in the Great Divide
Basin using the traditional search technique in which geological and topological maps are consulted
to identify potentially productive areas that are accessible and have the correct fluvial geology. Field
crews of five to fifteen workers traverse the landscape in vehicles or on foot and visually identify
sandstone outcrops and barren areas that undergo a search that typically takes upwards of an hour,
depending on the size and complexity of the site. The area of these 125 localities is approximately
1.75 km2, a tiny fraction of the 10,000 km2 basin. In a typical month-long field season, approximately
six new localities are found, with most of these being clustered near the sparse road network in
the GDB.

A major limitation of the traditional search methodology is the dependence on the available
geological maps, which are often highly generalized and, in some cases, poorly represent the complex
fluvial and lacustrine sedimentary surficial geology. This was found to be the case while surveying
in areas mapped as the Niland tongue of the Wasatch formation. In some cases, the sedimentary
deposits and fossils found here were more indicative of a lacustrine depositional environment,
indicating the local geology was most likely part of the Tipton tongue of the Green River formation.
A second aspect of inaccuracies in geologic maps is the fact that WMU-VP-222 (Figure 2), an Eocene
sandstone outcrop (Wasatch Fm.) is mapped as Quaternary sand. This probably is a result of this
relatively small outcrop being below the minimum mapping unit of the available geological map.
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Figure 2. QuickBird image of the training area (A) showing ANN-, OLI-, and QuickBird-based 
model results and productive localities discovered in previous field seasons. (B) Ground level view 
of a sandstone outcrop at an example locality. The outer edge of the whole locality measured with a 
GPS (C). (D) The highlighted image objects for the QuickBird model (green) and the Landsat 8 OLI 
model (red). Because these localities are on public land and are therefore subject to possible illegal 
looting, the exact coordinates cannot be publicized under the terms of our collection permit. 

3. Data and Methodology 

This research explores the use of imagery with higher spatial resolution than was used in 
previous work in an effort to more accurately delineate the localities and reduce the problem of 
over prediction. Since high spatial resolution sensors represent objects of the size of typical fossil 
localities (approximately 5000 to 20,000 m2 in this area) with many more pixels than would be the 
case in medium resolution imagery, data volume and economic constraints limited analysis to 
selected small patches where surface features are represented by groups of pixels. 

Figure 2. QuickBird image of the training area (A) showing ANN-, OLI-, and QuickBird-based model
results and productive localities discovered in previous field seasons; (B) Ground level view of a
sandstone outcrop at an example locality. The outer edge of the whole locality measured with a GPS
(C); (D) The highlighted image objects for the QuickBird model (green) and the Landsat 8 OLI model
(red). Because these localities are on public land and are therefore subject to possible illegal looting,
the exact coordinates cannot be publicized under the terms of our collection permit.
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3. Data and Methodology

This research explores the use of imagery with higher spatial resolution than was used in
previous work in an effort to more accurately delineate the localities and reduce the problem of over
prediction. Since high spatial resolution sensors represent objects of the size of typical fossil localities
(approximately 5000 to 20,000 m2 in this area) with many more pixels than would be the case in
medium resolution imagery, data volume and economic constraints limited analysis to selected small
patches where surface features are represented by groups of pixels.

Geographic object-based image analysis (GEOBIA) is a term coined by Hay and Castilla [40]
to differentiate techniques that analyze groups of homogeneous pixels (image objects) from raster
analyses that operate on a per-pixel basis. Multi-pixel image objects allow more complex analyses
based on statistics, shape parameters and contextual relationships [41] and GEOBIA techniques can
reduce mis-registration and shadowing effects [42]. The most important advantage is the fact that the
image objects created can directly correspond to a real world object [43], such as a known highly
productive fossil locality. Blaschke et al. [44] argue that GEOBIA has evolved sufficiently to be
designated a new scientific paradigm with specific tools, software, methods, rules and language.

The 2013 field season used high resolution QuickBird satellite imagery of the Freighter Gap to
Pinnacles area, a section in the northwest part of the Great Divide Basin that was deemed high priority
for exploration by previous research [22]. A 160 km2 QuickBird image from 9 September 2009 was
selected for the analysis, while a 25 km2 image of an area in the southern part of the GDB was acquired
as a training site for the feature extraction model. Both of these images were pan sharpened to a
spatial resolution of 0.6 m using the Gram-Schmidt module in module in ENVI™ version 5.1. Figure 1
shows the image footprints in red and Figure 2A shows the training site area. The 25 km2 image has
several localities that were identified in earlier surveys, including WMU-VP-222, the most productive
locality that has been identified to date within the GDB (Figure 2). It was discovered in 2002 and
has provided thousands of mammalian fossils, including important adapid and omomyid primate
species. For the 2014 field season, a Landsat 8 Operational Land Imager (OLI) image from 27 June
2013 was used to extend the predictive model to other parts of the basin. Multispectral bands 2
through 7, which include the visible, near-infrared and two shortwave infrared bands were used, and
the coastal (band 1) and cirrus (9) bands were excluded. This image was also pan-sharpened to a
spatial resolution of 15 m using the panchromatic band (band 8).

Other data included a digital elevation model (DEM), a surficial geology map, a map of Wyoming
roads, and the watershed boundaries of the Greater Green River basin. The DEM has a ten meter
resolution and was developed from the National Elevation Dataset. The geologic map was created
by the Wyoming State Geological Survey in 1998 at a 1:500,000 scale.

The results of an earlier Artificial Neural Network (ANN) per-pixel classification of a Landsat 7
Enhanced Thematic Mapper + (ETM+) image obtained on 8 August 2002 were used to compare the
GEOBIA results to a more traditional analysis. The ANN classification process (detailed in [22,23]),
divided the basin into five land cover classes: barren, forest, scrubland, wetland and localities.
The map of the pixels classified as localities was used as a basis for comparison and is displayed
in Figures 2–4 using orange symbology.

For the GEOBIA analysis, a “divide and conquer” exclusionary classification scheme was adopted.
Areas of the image were classified into crisp classes using Boolean descriptors based on the above
parameters and then excluded in a stepwise manner until only the suitable areas of the image
remained. A series of classes was generated including: flatland, sloped land, vegetation, roads,
cloud, and finally potential localities. The multiresolution segmentation algorithm in the eCognition
Developer 64™ software package was used to segment the imagery into image objects. The 25 km2

high resolution image was used to develop the rule set for the segmentation and feature extraction
of the Freighter Gap-Pinnacles image (Table 1). The multi-resolution segmentation algorithm was
used and the segmentation parameters were developed using a heuristic process to determine the
appropriate values. This process is hierarchical and iterative as each segmentation operates on
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previous segmentations, creating image objects that nest within larger super-objects, and resulting in
a multi-scale segmentation of the image. A total of four nested hierarchical levels of segmentation
were performed, with scale parameters (roughly analogous to the size of image objects) of 100, 50,
25 and 10. The compactness variable was set to 0.5 and the shape parameter was set to 0.1. Because
localities can range from long, narrow outcrops along a ridge to compact, isolated forms, shape was
only marginally incorporated in the segmentation and both the smoothness and compactness aspects
of shape were equally balanced.
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Once each multi-resolution segmentation was completed, spectral difference segmentation
was performed for each level. Each segmentation created a large number of individual image
objects, often with neighboring image objects that were spectrally similar. The spectral difference
segmentation algorithm merged neighboring image objects according to their mean image layer
intensity values. Neighboring image objects were merged if the difference between their layer mean
intensities was below the value given by the maximum spectral difference value. A maximum
spectral difference value of 10 was chosen to reduce the total number of image objects and decrease
total computation times.

The goal of the segmentation was to create an image object that matched WMU-VP-222,
a productive fossil locality in the 25 km2 image. The level three and four segmentations (scale
parameters of 25 and 10 for the QuickBird imagery, or a scale parameter of 50 in the case of the Landsat
8 OLI image, best delimited the areal extent of the locality as measured by GPS in previous field
seasons. The segmented image was then analyzed to develop the classification rule set. Statistical
values such as mean brightness of the image objects that corresponded with WMU-VP-222 were used
to determine the parameters for the feature extraction.
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Table 1. eCognition rule set for the QuickBird imagery.

Segmentation

Multiresolution
100 (shape:0.1 compct:0.5) creating “Level 1”
At Level 1: spectral difference 10
50 (shape:0.1 compct:0.5) creating “Level 2”
At Level 2: spectral difference 10
25 (shape:0.1 compct:0.5) creating “Level 3”
At Level 3: spectral difference 10
10 (shape:0.1 compct:0.5) creating “Level 4”
At Level 4: spectral difference 10

Classification
Level 3

Unclassified with Mean Slope Layer 8 ě 6 at Level 3:
SlopedLand
Unclassified with Mean Slope Layer 8 < 6 at Level 3: FlatLand
SlopedLand with NDVI ě 0.16 at Level 3: Vegetated
FlatLand and SlopedLand with Length/Width (geometry ratio)
> 4 at Level 3: Road
SlopedLand with Brightness ě390 at Level 4: Locality

Level 4
Unclassified with Mean Slope Layer 8 ě 6 at Level 4:
SlopedLand
Unclassified with Mean Slope Layer 8 < 6 at Level 4: FlatLand
SlopedLand with NDVI ě 0.16 at Level 4: Vegetated
FlatLand and SlopedLand with Length/Width (geometry ratio)
> 4 at Level 4: Road
SlopedLand with Brightness ě 390 at Level 4: Locality
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Once the specific parameters for the multi-resolution segmentation were determined using the
25 km2 image, the segmentation was applied to the Freighter Gap/Pinnacles image. Slope is an
important landscape characteristic for extracting potential localities. The most productive localities
in the GDB are located along cliff faces, where a more resistant cap of sandstone or limestone overlies
less resistant fossil-bearing sediments [22]. Flat areas were excluded based on the mean slope values
of the image objects calculated from the slope layer. A value of six percent slope was chosen as the
threshold based on the distribution of slope values measured at the localities that were discovered in
earlier field seasons. All areas with six percent mean slope or higher were classified as high slope and
all below six percent were classified as low slope. The areas of low slope were then excluded from
consideration. The primary vegetation in the GDB is sagebrush, mixed grass, and saltbrush, and
fossils are typically not found in heavily vegetated areas. These areas were excluded using the mean
Normalized Difference Vegetation Index (NDVI) values for each image object. An NDVI threshold
of 0.16 was adopted with image objects at or above this value corresponding to areas with sagebrush
or riparian vegetation. A variety of values were tested and visually inspected to determine if large
patches of sagebrush were adequately classified.

Since fossils are typically found in surface scatters, any human activity, such as grading, paving,
or frequent travel, will accelerate the decomposition of fossils. Therefore, areas of human disruption
of the landscape are not generally good locations for prospecting for fossils. While most roads in
the GDB are simple two-track trails, some roads have been graded or paved by the county road
department or oil and gas companies in the region. The pads surrounding the increasing number
of oil and gas wells scattered throughout the basin are also not good candidate areas, but these
are large and flat enough to be included in the low slope class. A road class was derived using
the length/width ratios. A high brightness value reflected the fact that the bare soil of the dirt
roads in the images was significantly brighter than their surroundings. The length/width ratios
identified the image objects that were thin in shape. Roads were excluded to limit potential localities
to undisturbed areas.

In the Freighter Gap/Pinnacles QuickBird image, a small patch of cloud cover in the northeastern
portion of the image was manually outlined and excluded. After excluding flatlands, vegetated
areas, clouds, and roads, the remaining image objects with a mean brightness value of less than
or equal to 390 were excluded. In the shadowed area relating to the cloud, the rule set was re-run
with the brightness value for this last step lowered to 222. Any image object remaining in the high
slope classification that met this mean brightness parameter was then classified as being a potentially
fossiliferous location.

A similar rule set was applied to the pan-sharpened Landsat 8 OLI image of the entire Great
Divide Basin. In this case only two levels of segmentation, with scale parameters of 100 and 50 were
performed, as smaller scale parameter values yielded objects consisting of only a few pixels. The
threshold brightness value for identifying potential localities was 17,500. No clouds were present, so
brightness adjustments for shadow areas were not necessary. A completely segmented and classified
image was now completed. Figure 2A shows the results of the extraction of potential localities, with
a ground level photograph of an example outcrop (Figure 2B), a larger scale image that shows the
outline of the whole locality as measured by GPS (Figure 2C), and the model output for this area
(Figure 2D) with the QuickBird image objects outlined in green and the Landsat 8 OLI objects in red.

The models were verified using twelve known fossil localities to the east of WMU-VP-222 in
the 25 km2 image that were found in earlier field seasons using the traditional search technique
(Figure 2A). In the case of the QuickBird-based model, eleven of the twelve localities were within
100 m of an image object. Reducing the brightness threshold below 390 resulted in a large increase
of highlighted objects. The Landsat 8 OLI model highlighted the same eleven localities. Ten of the
12 fossil localities corresponded to pixels highlighted by the ANN classification.

The final classified image objects were then exported from the eCognition software as an ArcGIS
feature class. Only the image objects classified as potential localities were exported for all four
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levels of segmentation. The surface geology map was added to these maps and any classified image
objects that did not fall within the Wasatch formation were excluded. This was the final step in the
classification process and resulted in polygons that indicate areas of the image that met all criteria for
being potentially fossiliferous. A map of the road network of the basin was added to each map to
provide guidance to accessing high priority sites.

The predictions that were derived from the QuickBird image of the Freighter Gap/Pinnacles
area were tested during the July 2013 field season. The maps of the extracted image objects indicated
locations within the satellite images that met the criteria for containing fossils. However, there were
many individual predicted image objects in the image and it was impossible to survey each potential
locality in the limited time allotted. In order to further refine the areas to be surveyed, 17 high priority
survey points were selected from the Freighter Gap/Pinnacles image along four paths followed by
the field crew (Figure 3).

The maps of image objects corresponding to potentially productive localities were exported into
ArcPad and then loaded onto a Topcon GRS-1 GPS receiver. These ArcPad maps included the four
classified segmentation levels, a road map, surficial geology map, the satellite image, a point feature
of known fossil localities, and finally a point feature of the selected survey points. The GPS receiver
was then used in the field to navigate to selected survey points. Nine potential localities that were
not predicted by the model were also searched by the field crew as it transited between the survey
points. These sites were generally unvegetated mudstone areas and flat areas of exposed sandstone
that would normally be searched if they were spotted in a traditional survey. The unpredicted sites
serve as “negative” localities, so that the reported statistics evaluate the model’s ability to distinguish
productive fossil localities from “searchable” sites. Because the sampling frame consists of potential
localities, rather than random locations, the sampling scheme is conservatively biased. The limited
number of sites that were searched was dictated by the difficult logistics of transporting a field
survey crew and the fact that meaningful searches of a single candidate site can take upwards of
an hour. A sampling scheme based on complete spatial randomness would necessarily involve
searching a large number of locations such as sagebrush flats and sand dunes that would not normally
be searched. Any localities that were searched in the field were recorded in the map with a new,
sequentially numbered point feature that included information such as: coordinates, date, and brief
descriptions of the types of fossils recovered and of the local geology.

4. Results and Discussion

A total of 26 sites were searched for fossils in 2013 as shown in the confusion matrix (Table 2),
18 of which had fossils and eight that did not. The eight negative sites were sandstone outcrops or
mudstone areas that were searched for fossils as they were encountered in the field when transiting
to or between the 17 sites that were highlighted by the predictive model. In the model based on the
QuickBird image, 14 sites were within a 100 m buffer of a predicted high priority survey point, and
five of the negative sites were not associated with image objects. This yielded a 73.1 percent correct
classification rate. Cohen’s Kappa statistic was 0.389, indicating the model showed an approximately
39 percent improvement over random chance [45,46]. The user’s accuracy is the probability that an
object predicted to either contain fossils or not is correctly identified so that it represents a measure
of errors of commission. Producer’s accuracy represents the probability that a locality that actually
contains or does not contain fossils is correctly highlighted by the model and represents a measure
of errors of omission. The user’s and producer’s accuracies for the predicted fossil localities were
approximately 0.80, indicating relatively low errors of commission and omission. However the lower
user’s accuracy (0.56) for the localities that were searched but not predicted by the model indicates
that the model was not as effective at identifying areas that are not likely to contain fossils.
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Table 2. Results of 2013 field season from the Freighter Gap/Pinnacles QuickBird image.

Prediction Ground Truth

Fossils Present Fossils Absent User’s Accuracy
Fossils Present 14 3 0.82
Fossils Absent 4 5 0.56

Producer’s Accuracy 0.78 0.63
Percent Correct 73.1% Cohen’s Kappa 0.389

When the basin-wide model derived from the Landsat 8 OLI image was developed prior to
the 2014 field season, the predictions were applied retrospectively to the 2013 field results from the
Freighter Gap to Pinnacles area. Table 3 is a confusion matrix for this retrospective analysis and
Figure 3 also shows the model results. The OLI-based model was more conservative with fewer
potentially productive localities predicted in the Freighter Gap-Pinnacles area. This is reflected
in the lower correct classification rate (65.4%) with only 11 of the 18 fossiliferous localities being
correctly identified. The number of false positives was reduced to two, and Cohen’s Kappa was
reduced to 0.308. While the user’s accuracy (0.85) was a bit higher than the QuickBird-based
model due to the lower number of false positives, the lower producer’s accuracy (0.61) indicates
that false negative indications missed seven productive localities. The Landsat 8 OLI GEOBIA
model was overly conservative as evidenced by the low user’s accuracy (0.46) for the fossils absent
prediction. Adjusting the threshold brightness value for identifying potential localities to a value
lower than 17,500 would highlight more localities as potentially productive and would likely improve
these results.

Table 3. Retrospective results of 2013 field season from the Landsat 8 OLI image.

Prediction Ground Truth

Fossils Present Fossils Absent User’s Accuracy
Fossils Present 11 2 0.85
Fossils Absent 7 6 0.46

Producer’s Accuracy 0.61 0.75
Percent Correct 65.4% Cohen’s Kappa 0.308

Table 4 contains the results from the Landsat 7 ETM+ ANN-based model applied retrospectively
to the 2013 localities. This model was less conservative than either of the GEOBIA models and
highlighted more areas as potentially productive. The lower Cohen’s Kappa (0.224) is a reflection
of this overprediction and the lack of specificity in areas predicted to not be fossiliferous resulted in
low user’s and producer’s accuracies (0.50 and 0.63, respectively).

Table 4. Retrospective results of 2013 field season from the Landsat 7 ANN-based predictive model.

Prediction Ground Truth

Fossils Present Fossils Absent User’s Accuracy
Fossils Present 15 5 0.75
Fossils Absent 3 3 0.50

Producer’s Accuracy 0.83 0.63
Percent Correct 69.2% Cohen’s Kappa 0.224

In the 2014 field season, image objects derived from the Landsat 8 OLI image were used to
direct the field crew to seven potential localities southeast of Dugout Draw, a previously unsurveyed
portion of the GDB (Figure 4). Seven additional sites that were not predicted by the model were
searched as well. In the confusion matrix (Table 5), six of the nine localities that contained fossils
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were successfully predicted and four of the five negative sites did not have a predicted image object
at that location. This yielded a 71.4 percent correct classification rate with a Cohen’s Kappa statistic of
0.429. The overly conservative nature of this model is evident in the relatively low user’s accuracy for
the fossils absent prediction (0.57) and the low producer’s accuracy (0.67) for the sites that actually
contained fossils.

The tendency for the ANN-based model to over predict sites with fossils present is evident in
the retrospective results for 2014 (Table 6). The user’s accuracy for the fossils present prediction is the
lowest of any of the comparisons here, and the model overpredicts to the extent that three of the five
sites with no fossils were highlighted, resulting in a producer’s accuracy of only 0.40.

Table 5. Results of 2014 field season from the Dugout Draw area using the Landsat 8 OLI image.

Prediction Ground Truth

Fossils Present Fossils Absent User’s Accuracy
Fossils Present 6 1 0.86
Fossils Absent 3 4 0.57

Producer’s Accuracy 0.67 0.80
Percent Correct 71.4% Cohen’s Kappa 0.429

Table 6. Results of 2014 field season from the Dugout Draw area using the Landsat 7 ANN-based
predictive model.

Prediction Ground Truth

Fossils Present Fossils Absent User’s Accuracy
Fossils Present 8 3 0.72
Fossils Absent 1 2 0.67

Producer’s Accuracy 0.89 0.40
Percent Correct 71.4% Cohen’s Kappa 0.317

5. Conclusions

The primary goal of the survey work performed in the Great Divide Basin was the recovery of
Eocene vertebrate fossils. Of particular interest were mammalian fossils, specifically primates (such as
adapids and omomyids). Over the past twenty years of fieldwork in this area, it has been recognized
that sandstone outcrops and barren areas of mud or siltstone are the most likely locations to contain
mammalian and primate fossils [22]. The goal of both of these predictive models is to recognize these
potentially fossiliferous locations remotely and pinpoint them within the landscape. Survey teams
can then be guided to previously unsurveyed locations or areas that possibly have been overlooked
during previous field seasons. The overall success rate of these models, approximately 65% to 73%,
with Kappa values from 0.3 to 0.4, is a moderate success and does improve on the traditional search
method of spotting potential localities from roads or on foot.

Previous methods of survey relied on visual inspection of topographic and geologic maps to
locate areas of interest. The survey team would then travel to these areas and physically search for
visible sandstone outcrops, which were relatively close to and generally visible from roads. By using
methods such as those proposed here, survey teams can use GPS to navigate to potentially productive
locations that are not visible from the road network. This expands the search area significantly in
areas such as the GDB that have sparse road networks, meaning that field crews can utilize their time
more efficiently.

There are some issues that have come to light in the execution of this research. The first of
these is that the scale parameter for the multiresolution segmentations and the spectral difference
thresholds were heuristically determined, thus limiting the transferability of these models to other
imagery sources, dates, and areas. This is an inherent problem in any expert system, although in

16566



Remote Sens. 2015, 7, 16555–16570

the case of GEOBIA, research into statistical methods such as the Estimation of Scale Parameter [47]
that minimize within object local variance while maximizing between object variance provide some
guidance in this regard. Other parameter optimization techniques [48–50] have been recently
introduced and the ESP technique was automated and updated to include multidimensional data [51],
and these would likely improve the segmentation process and may obviate the need for using the
spectral difference merging of size-limited image object that otherwise have similar characteristic
features to neighboring objects.

Using the mean brightness of the image objects to classify the sandstone outcrops is a rather
simplistic method that does not take full advantage of the spectral signature of the localities. The
result is that there were quite a few “false positives” in the classification. Some of the areas that were
highlighted by the models were found to consist primarily of claystones and mudstone, as opposed
to sandstones, and although these have contained isolated fossils in some cases, the probability
of finding fossils in these areas is low. A more narrowly specified spectral analysis that focuses
exclusively on sandstone outcrops could possibly be more successful. Previous work [20–23] has
shown some promise in this regard on a per-pixel basis, but differentiating the spectral signatures
of sandstone outcrops from the surrounding eroded and windblown sand and separating the fluvial
Wasatch formation from the lacustrine Green River formation are problems that remain elusive.

The slope mask could have benefited from a higher resolution DEM that would more closely
match the spatial resolution of the QuickBird imagery. Details of some of the smaller localities were
inevitably lost in the relatively coarse 10 m mesh. The models would have been more efficient and
flexible if the geological data were incorporated as a thematic layer in the rule set rather than using
this map as a post hoc mask.

Another improvement that could be incorporated is a more robust ground truthing of the
resulting classification. In this research, areas searched were those classified as being potentially
fossiliferous by the models or those areas encountered in the field that looked promising but were
not predicted. This particularly limited the number of negative sites that were searched, so that the
proportion of fossiliferous sites did not reflect their extreme rarity in the total landscape. In 22 years
of searching for localities in the GDB using traditional techniques, the authors have identified 125
known productive localities in approximately 20 actual months of fieldwork with prospecting crews
typically ranging from five to fifteen workers). The search paths in the 2013 and 2014 field seasons
did not encounter enough negative sites along the search paths to achieve this proportion so that the
unbalanced survey design skewed the kappa statistic downward [45].

In spite of these limitations, this research has shown that the GEOBIA methodology of analyzing
high resolution imagery has the potential to improve paleontological and paleoanthropological
field surveys, and in this example, it outperforms the per-pixel ANN-based model using medium
resolution imagery. A total of 27 new productive fossil localities were identified in the 2013 and 2014
field seasons, 20 of which were highlighted by the QuickBird or Landsat 8 models. The methodology
developed here is a fairly simple segmentation and classification scheme that was shown to have
moderate success in locating fossils in the field. With further refinement of this methodology, more
accurate predictive models can be developed and the success rate of fossil recovery can be greatly
increased. This will result in a saving of time and money while performing fieldwork and will
ultimately lead to the recovery of more fossils, and a greater understanding of life in the past.
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