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ABSTRACT

Bread wheat (Triticum aestivum) has a roughly 17Gbp hexaploid genome,
resulting from a hybridization event between tetraploid emmer wheat (Triticum
dicoccoides) and diploid goat grass (Aegilops tauschii). This large plant genome is
composed of at least 80% transposable elements (TE’s), making the transcriptionally
active regions (genes) difficult to locate. Epigenetic methylation of DNA is a common
indicator of low transcriptional activity and is used to silence TE’s within a genome.
Using restriction enzymes that cannot cut methylated DNA (Hpall and HpyCH41V)
[llumina sequencing libraries were constructed that are enriched for hypomethylated
regions of the wheat cultivar “Chinese Spring”. The resulting sequence data (roughly 4.5
Gb) was assembled into contigs with AbySS using k-values of 36, 50, and 64. Resulting
contigs were then annotated for gene content using Blastx and Blast2GO. Our findings
were then compared to un-enriched sequences from a whole genome shotgun sequence
to determine the gene enrichment potential of our selection strategy. When contigs
were assembled with a k-value of 64 for the libraries made with HpyCH41V and k-values
of 64 and 50 for the Hpall libraries, a higher proportion of genes were identified than in

the control whole genome shotgun sequence.



INTRODUCTION

Many common cereal crops have extremely large genomes, which makes them
difficult to sequence (Nelson et al. 2008). Their nuclear genomes are also filled with
repetitive, non-coding DNA, making it very problematic to find and analyze functional
genes (Nelson et al. 2008). Plant genome size is affected by several factors, such as
polyploidy via hybrid speciation and the amplification of transposable elements
(Bennetzen 2002). Bread wheat (Triticum aestivum) in particular is problematic to
genetically manipulate, as it has a 17Gbp hexaploid genome, (with component genomes
known as A, B, and D) which is the result of multiple independent hybridization events
(Figure 1) (Brenchley et al. 2012). The A and B genomes (which gave rise to Triticum
urartu and a now-extinct relative of Aegilops speltoides, respectively) diverged roughly
6.5 million years ago and hybridized to create the D genome, Aegilops tauschii, roughly
5.5 million years ago (Marcussen et al. 2014). Less than 1 million years ago, the A and B
genomes would again hybridize to make a new species, tetraploid emmer wheat
(Triticum turgidum) (Marcussen et al. 2014). The final hybridization event, which
created modern bread wheat, was between tetraploid emmer wheat (Triticum
turgidum) and diploid goat grass (Aegilops tauschii) roughly 10000-8000 years ago,

which correlates with the beginnings of human agriculture (Brenchley et al. 2012).



AABBDD
Figure 1. Model of the Phylogenetic History of Bread Wheat (Triticum aestivum;

AABBDD). Units indicate millions of years ago (Marcussen et al. 2014).

Compounding the difficulty of sequence analysis in bread wheat is the high
percentage of highly repetitive non-gene structures in its nuclear genome (Brenchley et
al. 2012). The most prevalent non-gene structures are the transposable elements (TEs),
which can be classified as either DNA transposons or retrotransposons (Charles et al.
2008). Of these two classes, retrotransposons have a greater impact on the size of the
genome in plants, composing a significant portion (80%) of the maize (Zea mays)
genome (Nelson et al. 2008). Retrotransposons are mobile genetic elements that can
create copies of their DNA sequence and then move their copies to other sections of the

genome at will, by creating an RNA transcript of the enzymes reverse transcriptase,



RNaseH, and integrase as well as the repetitive DNA (Kumar et al. 1999). The
transcripts for these enzymes are then translated into their respective proteins, which
use the RNA as a template to reverse transcribe the DNA sequence and insert it at a new
location (Kumar et al. 1999). These mobile genetic elements cause mutations when they
insert themselves into or near genes in a host genome, and the replicating mechanism
they use produces mutations that are often stable, as they do not alter the DNA
sequence at the point of replication (Kumar et al. 1999).

Retrotransposons can be further broken down into the subgroups of long
terminal repeat (LTR) retrotransposons, long interspersed repetitive elements (LINEs),
and short interspersed repetitive elements (SINEs) (Kumar et al. 1999). Of these three,
LTR retrotransposons are the most common and the most complex, being found in most
plant species and taking up a significant portion of the genome, such as over 60% of the
maize genome and slightly less than 60% of the wheat genome (Emberton et al. 2005;
Charles et al. 2008; Kumar et al. 1999). LTR retrotransposons contain protein-coding
genes specifically for their own replication and insertion, but they do not generally
contain genes relevant to other cell processes (Kumar et al. 1999). LINEs are similar to
LTR retrotransposons, but they lack a gene to insert themselves back into the genome,
and SINEs (non-autonomous elements), the smallest retrotransposons, lack any kind of
genes to move themselves, relying on those encoded by LINEs or LTR retrotransposons
(Kumar et al. 1999).

DNA Transposons, the other large category of transposable element, differ from
retrotransposons in that their mechanism of transposition is a DNA intermediate

instead of an RNA intermediate (Wicker et al. 2007). There are two subclasses of DNA



transposons: subclass 1 and subclass 2 (Wicker et al. 2007). Subclass 1 DNA
transposons are the more researched of the two, and were thought to be the only kind
of DNA transposon until recently (Wicker et al. 2007). These transposable elements are
generally much smaller than retrotransposons, containing a short terminal inverted
repeat (TIR) of at most 200 bp and a gene that encodes the enzyme transposase
(Wessler 2006). Transposase binds to the TIRs and cuts both strands of DNA, excising
the transposon, and inserts it into another region of the genome (Wessler 2006).
Subclass 2 DNA transposons are not well understood, but they do replicate a strand of
DNA and then move a single strand to another area, much like retrotransposons but
without an RNA intermediate (Wicker et al. 2007). DNA transposons can be present in
the genome in numbers comparable to retrotransposons, but due to their smaller size,
they are responsible for a smaller percentage of the genome, such as 8.6% in maize or
10-14% in wheat (Charles et al. 2008; Schnable et al. 2009).

The wheat genome has undergone multiple hybridization events and
transposable element amplifications, creating a genome with low gene density, which,
based on sequence analysis, varies widely, ranging from 1 gene per 87 kb to 1 gene per
184 kb (Choulet et al. 2010). When genes do occur, they are found in groups described
as “gene islands”, as previous work has determined that 94% of wheat genes are found
in gene dense regions that cover 29% of the genome (Choulet et al. 2010). Maize (Zea
mays) has a similarly low gene density, even with a vastly different evolutionary history
(Bennetzen et al. 2005). Previous studies have shown that the gene density in maize can

range from 0.5-10.7 genes per 100kb (Haberer et al. 2005). Genes in maize are less



likely to be grouped together, with 64% of genes being found in islands containing only
one gene (Bennetzen et al. 2005).

A molecular technique used successfully for gene enrichment in maize is the
construction of hypomethylated partial restriction (HMPR) libraries using methylation-
sensitive Hpall (cut site 5’-CCGG-3") and HpyCH4IV (cut site 5’-ACGT-3’) restriction
endonucleases (Emberton et al. 2005). Methylation in DNA involves the addition of a
methyl group to a 5’ cytosine (converting it to 5-methyl cytosine) in the sequences 5'-
CG-3" and 5'-CNG-3'(Emberton et al. 2005). In maize, genes are usually unmethylated,
while LTR retrotransposons are mostly methylated (Bennetzen et al. 1994). The same
pattern of methylation has also been identified in wheat (Cantu et al. 2010). Many
bacterial restriction endonucleases, such as Hpall and HpyCH41V, cannot cut methylated
DNA, which means that genic regions are much more likely to be extracted (Emberton
et al. 2005). Construction of HMPR libraries with the two previously mentioned
enzymes has been shown to reduce the amount of LTR retrotransposons in sequence
data from 70% to less than 5% (Emberton et al. 2005). Library construction with this
technique has been previously performed by Matt Estep at the University of Georgia,
and the DNA was sequenced at Purdue University by Rick Westerman. Access to the
data was provided by Jeff Bennetzen of the University of Georgia. The focus of this
portion of the experiment was to complete a computational analysis on the previously
generated data.

This technique has not yet been used to filter wheat DNA, but since wheat and
maize have similar gene density and DNA methylation patterns, this technique was

tested in order to determine if it could prove useful as a starting point for future studies



on bread wheat and other grasses with similar genetic structures. Library construction
is only a part of the process of finding genes in large, LTR-dense genomes, as the large
amounts of sequence data (often reaching several gigabytes) render manual analysis
techniques impossible (Skuse et al. 2008). An array of bioinformatics tools needs to be
utilized to discover genes and their regulatory systems at any useful rate (Skuse et al.
2008). In this experiment, AbySS (Assembly by Short Sequence), Blast+, and Blast2GO
were used to create contigs (longer sections of DNA sequence data made from
overlapping raw sequences) and annotate the sequence data, respectively. AbySS is a
parallel sequence assembly program that creates contigs using a de Bruijn graph, which
represents a homogenous overlap between sequences (Simpson et al. 2009). AbySS was
developed specifically to address the limitations of previous sequence assembly
programs, as using a de Bruijin graph allows the assembly algorithm to be calculated
across a network of computers (Simpson et al. 2009). The level of stringency in AbySS is
given by the k-mer value (Simpson et al. 2009). The k-mer value is used to determine all
possible subsequences of the given sequence of length k, so if a sequence is 100 bp in
length and k is 64, then k-mer refers to all of the sections in the 100 bp sequence of
length 64 (Simpson et al. 2009). For the purpose of assembling contigs, sequences must
overlap by k-1 to be considered a contig (Simpson et al. 2009). Blast+ is the newest
version of the BLAST (basic local alignment search tool) search program, which
searches a given sequence against a database of sequences with known function, and
returns sequences with similar nucleotides (Camacho et al. 2013). Blast is the most
commonly used sequence similarity search tool (Camacho et al. 2013). Blast2GO

performs a three-step annotation procedure: first, input sequences can be blast



searched for homologous sequences or blast results can be imported; second, each
sequence is mapped, which finds Gene Ontology (GO) terms for each known blast hit;
and third, annotation, which calculates an annotation score for each GO term and
selects the term with the lowest annotation score above the user-given threshold
(Conesa etal. 2008).

Using AbysSS, several sets of contigs were made from the raw HMPR data with a
range of k-mer values, as well as a library of contigs from a whole genome shotgun
sequence to act as a control. A whole genome shotgun sequence is an unbiased
sequencing method in which all of the organism’s nuclear DNA is broken up randomly
and sequenced. The contigs were then blasted, mapped to GO terms, and annotated
with Blast2GO. We were able to demonstrate that our gene enrichment strategy
recovered a higher proportion of genes than in the control whole genome shotgun

sequence.



METHODS
Library Construction (experimental)

Hypomethylated partial restriction (HMPR) libraries were constructed as
previously described, using nuclear DNA extracted from bread wheat (Triticum
aestivum) cultivar “Chinese spring” (Emberton et al. 2005, Nelson et al. 2008). Digestion
was performed with restriction enzymes Hpall (used to generate data set 1080) and
HpyCH41V (used to generate data set 1081), in order to allow the enzymes to shear the
DNA at unmethylated cut sites. The sequences were generated with the [llumina
sequencing platform.

Whole genome shotgun sequences (Control)

DNA sequences were downloaded from EBI study ERP000319 to act as controls
for our experiment. The control data (DNA from a whole genome shotgun sequence of
Chinese spring) was taken from 5 pg of nebulized (sheared randomly) Chinese spring
nuclear DNA, and sequences were selected of lengths between 500-800 bp (Brenchley
et al. 2012). The sequences were then generated with 454 pyrosequencing in a similar
fashion as the Illumina reads to generate five-fold coverage of the wheat genome,
roughly 85 GB (Brenchley et al. 2012). As a control, a random selection of whole
genome shotgun sequence data of roughly equal size to one of the HMPR data files (5 *
106 sequences) was selected with a Python random sampler script. Selected sequences
shorter than 100 bp were eliminated, and then a random 100 bp section of each

remaining sequence was taken and put into a separate file for further analysis.



Bioinformatics

The raw HMPR data (1080 and 1081) (Purdue Genomics core) was assembled
into paired-end contigs using AbySS version 1.5.1 (Simpson et al. 2009) with a range of
k-mer values (36 (the lowest allowed in AbySS), 50, and 64 (the highest k value
allowed)) to give a wide coverage for the parameter. Resulting contigs were then
compared to the NCBI non-redundant protein database using the blastx function of
Blast+ version 2.2.27+, which translated each contig of nucleotides to the six potential
reading frames (patterns of dividing the sequence of nucleotides into groups of three,
three of which are found on each of the two strands of DNA) and then searches the
resulting peptide sequences (Camacho et al. 2013). Blast2GO version 3.0 was then used
to further analyze the top ten blastx hits of each contig by mapping each hit with an e-
value (expect value, the possibility of finding the given sequence at random in a
database the size of the one searched) of 1*10-¢ or lower to Gene Ontology (GO) terms, a
value which had been used in the previous study with maize (Emberton et al. 2005).
Annotation was then calculated using an annotation score cutoff of 55 (Conesa et al.
2008). The control sequence data was then analyzed with AbySS, blastx, and Blast2GO
in the same manner as described previously.

For each of the annotated sets of contigs for the 1080, 1081, and shotgun
sequence data, the following statistics were calculated and compared with Blast2GO:
the percent of contigs with blastx results, the percent of successfully mapped contigs,
and the percent of contigs with annotation. Specifically, the proportions of each level of
analysis in the 1080 and 1081 data were compared to the equivalent category in the

control.



RESULTS

Two pairs of sequence libraries were generated from partial restriction
digestions using both enzymes independently. The paired data sets for both the 1080
and 1081 data had the same number of sequences, and the amount of DNA in each data
set for both enzymes was similar (Table 1). Since the DNA was sequenced with Illumina,
reads averaged around 100 bp in length. While the range of sequence length varied
from 30bp to 101bp, the mean length is between 92 and 96 bp, indicating that the
majority of the sequences in all four HMPR sequence libraries were close to the
optimum length (Table 1). Due to the sequence selection process, the randomly selected
control data had sequences of exactly 100 bp in length (Table 1).

Table 1. HMPR Library Sequence Number and Size

Sequences Nucleotides Length range Mean length
1080 R2 4,229,132 404,287,056 30-101 96
1080 R1 4,229,132 391,246,103 30-101 93
1081 R1 5,378,707 502,236,596 30-101 92
1081 R2 5,378,707 517,224,183 30-101 95
Control 5,000,000 500,000,000 100 100

Sequences were classified in one of four ways: “no blast hits”, “with blast hits”,
“with mapping”, and “with GO annotation”. Each classification represents the highest
level of analysis achieved by the sequences in that category, so sequences in the “no
blast hits” category did not match with any blastx hits, those in the “with blast hits”
group did not match any GO terms, the sequences in the “with mapping” section had no
GO terms whose annotation score was above the cutoff, and those in the “with GO

annotation” were able to achieve the highest level of analysis (Figure 2).
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Figure 2. Distribution of Annotation Categories for Hpall, HpyCH41V, and Shotgun
Sequences (control).

This figure shows the number of sequences in each category of analysis (total
sequences (blue), no blastx hits (red), with blastx hits (green), with mapping (purple),
and with GO annotation (turquoise)) in the Hpall, HpyCH41V, and control libraries.



The control sample of shotgun sequence data with a k-mer of 64 assembled

41974 contigs, 11.0% of which had blastx hits and 3.9% of which had annotation

(Figure 3, Table 2). The 1080-k64 data had the highest percentages with 41.5% of its

1421 contigs having blastx hits and 15.3% having annotation (Figure 3, Table 2). The

1080 data generated 4860 contigs with a k of 50, and had 20.9% of its sequences get

blast hits, and 6.4% were annotated (Figure 2, Table 2). With a k of 36, 17119 contigs

were generated from the 1080 data, 6.2% of which had blast hits and 2.3% of which

were annotated (Figure 2, Table 2). The 1081-k64 data generated 3852 contigs and had

the second-highest percentage of sequences with blastx hits and annotation, with

percentages of 14.8% with blastx hits and 7.2% having GO annotation (Figure 3, Table

2). The 1081 data with a k of 50 produced 17309 contigs, but had only 8.1% blast hits,

and 2.6% with annotation (Figure 2, Table 2). The 1081 data assembled with a k of 36

had the lowest percentages of blasted and annotated sequences, as 1.8% out of its

64461 sequences had blastx hits and 0.71% had GO annotation (Figure 2, Table 2).

Table 2. Number of Contigs and Percentages of Blasted and Annotated Contigs for all

Data Sets
Kvalue Total Contigs % of Contigs % of Contigs
with blastx hits with annotation
Control 64 41974 11.0 3.9
Hpall 64 1421 41.5 15.3
50 4860 20.9 6.4
36 17119 6.2 2.3
HpyCH41V 64 3852 14.8 7.2
50 17309 8.1 2.6
36 64461 1.8 0.71
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Figure 3. Data Distribution for Control, Hpall, and HpyCH41V with K-value of 64.

This figure shows the number of sequences in each analysis category (total
sequences (blue), no blastx hits (red), with blastx hits (green), with mapping (purple),
and with GO annotation (turquoise)) for the control, Hpall, and HpyCH41V assembled
with a k-value of 64.



DISCUSSION

Bread wheat has one of the most complicated genomes of any common crop,
thanks to the multiple hybridization events in its evolutionary history and the massive
quantity of retrotransposons and DNA transposons constantly copying, excising, and
inserting themselves throughout the genome (Charles et al. 2008; Marcussen et al.
2014). One of the main challenges to analyzing the gene content of wheat is finding the
genes when they are surrounded by transposable elements (Brenchley et al. 2012). The
construction of libraries with methylation sensitive restriction endonucleases and using
multiple enzymes has been shown to reduce transposable element content from over
70% to less than 5% of the sequence in maize (Emberton et al. 2005). Maize and wheat
have been previously shown to have very similar gene densities, even though wheat’s
genome is several times larger (Choulet et al. 2010). Also, both plants have
demonstrated a pattern of having unmethylated genes and methylated transposable
elements (Bennetzen et al. 1994; Cantu et al. 2010). The initial presumption was that
since wheat and maize have a similar genetic structure and methylation patterns, and
the construction of HMPR libraries was effective in filtering out transposable elements
in maize, then the same technique should also be useful in bread wheat.

Computational methods have become crucial tools in gene identification. After
the DNA was sequenced, bioinformatics programs were used for every step of the
analysis. From making the contigs to calculating the annotation score for each GO term,
it would have been impossible to gather the data in a meaningful amount of time
without bioinformatics techniques. The DNA sequence itself may be easy enough to

acquire, but to find genes within the sequence (not to mention how they are regulated,



organized, or expressed) in large sequences needs computational tools (Skuse et al.
2008).

There were two major components to this experiment: the contig assembly and
the sequence analysis. For the contig assembly, there were multiple mentions in the
AbysSS literature of finding the optimum k value for the assembly, all of which said to
run multiple trials and inspect the results. However, the literature is scarce on details of
what indicates an optimal k value. We decided to use k values of 36, 50, and 64 to give a
wide coverage of the parameter, representing the minimum, midpoint, and maximum k
values that AbySS could assemble. The initial idea was that the lower k value would give
more contigs, but the assemblies with higher k values would have proportionally more
blasted and fully annotated sequences, which ended up being true. The results from the
1080/1081 data both supported the theory that contigs assembled with a higher k
value a higher proportion of annotated sequences, so the control data was only
analyzed fully with a k value of 64. In all data sets, a k value of 64 gave the best results
proportionally, as both the 1080 and 1081 data had a higher percent of annotated
contigs than the control when their contigs were assembled with a k value of 64.

There was a general inverse trend between the length of the k value and the
number of contigs produced, to the point that there are orders of magnitude more
sequences in the low k assemblies than there are in those of the high k (Figure 2). On
the same note, as k decreased, the number of blasted and annotated sequences
increased, but the proportions of valuable data decreased dramatically, as the number
of annotated sequences would increase by several dozen, while the number of total

contigs without blast hits would increase several times over (Figure 2).



The 1080 contigs produced a higher percent of blasted and annotated sequences
than the 1081 dataset. In particular, the 1080 assembly made with a k-mer of 64 had the
highest percentage of blast results and annotated sequences of all, with over 40% of
sequences getting a blastx hit and over 15% getting annotated. The high k-mer 1080
data compared especially well to the control, having several times more blasted (3.5x)
and annotated (3.9x) sequences, even with the highest possible k-mer for the control
data. Both experimental data sets, when assembled with high k-mer values, had a higher
percentage of successfully analyzed sequences than the control. Lower k-mer values
yield more contigs, but higher k-mer contigs are more likely to be the actual DNA
sequence, which helps to explain the higher percentages of blasted and annotated
results in the high-k experimental data sets.

While not quite as effective at removing transcriptionally inactive material in
bread wheat as it is in maize, the construction of HMPR libraries in the wheat genome
still eliminates a large portion of repetitive sequence data when contigs are assembled
with highly selective k-mer values. This supports the initial idea that using methylation-
sensitive restriction enzymes is effective in enriching for genes in large plant genomes
(Emberton et al. 2005). Less selective parameters generate a number of contigs
comparable to the control, but fall short of actually producing a higher percentage of

genes.
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