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Chairperson:  Rahman Tashakkori 

 

 

 Plant classification is an important task in biological research. However, plant 

classification is a complex task that very few biologists are qualified experts to 

conduct. Therefore, an application to assist in this task would be extremely useful for 

biology students, researchers, and enthusiasts. 

 A significant amount of research has been done for the task of classifying 

plants based upon images of their leaves; however, all of that research has utilized 

images of single leaves on a white background for classification to allow easy 

extraction of shape features. This is not realistic for field work since a natural picture 

of a leaf will have a complex background. 

 This thesis applies a convolutional neural network to the problem in order to 

allow classification of images with natural backgrounds. A mobile application is built 

that can run this neural network on images taken by the device’s camera. This tool 

can be used to assist in complex plant classification tasks anywhere as long as they 

have a mobile device with them.  



v 
 

 

 

 

 

 

 

Acknowledgments 
 

 

 I would like to first thank my advisor, Dr. Rahman Tashakkori, for his continuous 

support of my research and studies. I am thankful for his diligence, patience, and motivation 

to assist my research and writing of this thesis. I cannot imagine having completed this thesis 

without his assistance. 

 I would also like to thank my thesis committee, Dr. Mitchell Parry and Dr. Dee Parks 

for their assistance in producing this thesis. 

 I would also like to thank my family for their continued support throughout my 

studies. Their assistance has greatly helped me pursue my dreams and goals in life, and I 

could not have accomplished this without them. 

 Finally, I would like to thank all of my peers and friends for keeping me sane 

throughout this intense process. Their support through these past few years has been integral 

to me being able to focus and accomplish as much as I have.  

 

  



vi 
 

 

Table of Contents 

 

 
 

Abstract .............................................................................................................................................................. iv 

Acknowledgments ........................................................................................................................................... v 

CHAPTER 1 INTRODUCTION ........................................................................................................... 1 

1.1 Background ........................................................................................................................................ 1 

1.2 Overview of the Thesis ................................................................................................................... 2 

1.3 Thesis Organization ......................................................................................................................... 2 

CHAPTER 2 RELATED WORK .......................................................................................................... 4 

2.1 Plant Classification .............................................................................................................................. 4 

2.2 Convolutional Neural Networks ...................................................................................................... 6 

CHAPTER 3 CONVOLUTIONAL NEURAL NETWORKS ...................................................... 8 

3.1 Introduction ........................................................................................................................................ 8 

3.2 ZCA Whitening................................................................................................................................. 9 

3.3 Training ............................................................................................................................................ 10 

3.4 Activation Functions .................................................................................................................... 11 

3.5 Fully Connected Layers ............................................................................................................... 14 

3.6 The Softmax Classifier ................................................................................................................ 16 

3.7 Convolution Layers ...................................................................................................................... 16 

3.8 Pooling Layers ............................................................................................................................... 18 

3.9 Addressing Overfitting ................................................................................................................ 19 

CHAPTER 4 METHODOLOGY ....................................................................................................... 21 

4.1 Introduction ..................................................................................................................................... 21 

4.2 Building of the Dataset ................................................................................................................ 22 

4.3 Preprocessing of Images.............................................................................................................. 23 

4.4 Neural Network Library .............................................................................................................. 23 

4.4.1 The ConvolutionLayer Class ............................................................................................. 24 

4.4.2 The FullyConnectedLayer Class ...................................................................................... 25 

4.4.3 The Gradients Class ............................................................................................................. 26 

4.4.4 The Loader Class .................................................................................................................. 26 

4.4.5 The NeuralNetwork Class .................................................................................................. 27 



vii 
 

4.4.6 The PoolingLayer Class ...................................................................................................... 27 

4.4.7 The StructuredLayer Class ................................................................................................. 28 

4.4.8 The Utils Class ....................................................................................................................... 28 

4.5 Training and Testing of the Neural Networks ...................................................................... 28 

4.5.1 Neural Network Design....................................................................................................... 28 

4.5.2 Training of Neural Network .............................................................................................. 30 

4.5.3 Testing of Neural Network ................................................................................................. 31 

4.2 The Mobile Application .............................................................................................................. 32 

CHAPTER 5 RESULTS ........................................................................................................................ 36 

5.1 Introduction ..................................................................................................................................... 36 

5.2 Leaf Species Accuracies.............................................................................................................. 37 

5.3 Overall Neural Network Accuracies ........................................................................................ 50 

5.4 Mobile Application Load and Computation Times ............................................................. 54 

CHAPTER 6 CONCLUSIONS AND FUTURE WORK ............................................................ 55 

6.1 Conclusions ..................................................................................................................................... 55 

6.1.1 Leaf Species Accuracies ..................................................................................................... 55 

6.1.2 Neural Network Accuracies ............................................................................................... 56 

6.1.3 Mobile Application Load and Computation Times .................................................... 57 

6.2 Future Work .................................................................................................................................... 58 

BIBLIOGRAPHY ........................................................................................................................................ 60  

Appendix ......................................................................................................................................................... 63 

Vita .................................................................................................................................................................... 64 

 
 



1 
 

Chapter 1 Introduction 

1.1 Background 

 Classification of plants can be a very complex task. Several studies have been done to 

utilize computer vision techniques to aid in the task of plant identification by classifying 

images of plant leaves. A discussion of several of these studies can be seen in Chapter 2. 

Kumar et al. developed a mobile application which can classify an image of a plant leaf [1]. 

However, that application, like the studies discussed on leaf classification, focuses on 

classifying images of leaves against a white background. This is not useful in practice, when 

the picture of the leaf has a natural background. 

 Convolutional Neural Networks have recently emerged as one of the top tools for 

computer vision due in part to their ability to perform classification tasks on images with 

natural backgrounds. Microsoft Research was able to obtain a 4.94% for the best five 

matches (top-5) test error on the ImageNet 2012 classification dataset [2]. This was the first 

result to surpass human-level performance, which had 5.1% top-5 test error. 

 By utilizing stacked convolutional layers, which convolve trained features over entire 

images, complex features are able to be recognized in images without any need for 

segmentation. Removing the need for segmentation allows much simpler classifications, 

since segmentation from natural images is an extremely complex process – especially in 

cases where objects overlap. 
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1.2 Overview of the Thesis 

 This thesis provides details on the design and implementation of a mobile application 

for the classification of pictures of leaves containing a natural background. The mobile 

application allows a user to either take a picture or upload an existing picture of a leaf and the 

mobile application displays a listing of potential classifications with percent likelihoods for 

each of the top three results and an image of each given classification. 

 The application computes these results utilizing a convolutional neural network. A 

library was written for convolutional neural networks that easily transfers onto a mobile 

device for computation. Several methodologies were used to reduce overfitting of the neural 

network, such as dropout [3, 4] and pixel alterations [4]. 

 The results were observed by utilizing a dataset of pictures of leaves mostly taken at 

the Conservatory of Flowers in San Francisco, CA. Five-fold cross validation was performed 

on the dataset to measure the accuracy of the classifier's performance.  

1.3 Thesis Organization 

 This research implements a mobile application for leaf classification utilizing 

convolutional neural networks. The application can classify a picture of a leaf and return a 

listing of potential classifications with percent likelihoods for the top three results. The 

application can either use an existing picture or take one to classify. 

 The work related to plant classification applications and convolutional neural 

networks is discussed in Chapter 2. Chapter 3 describes neural networks in detail and 

methods used to reduce overfitting with their use. Chapter 4 explains the methodology and 

implementation of the application designed for this thesis. Chapter 5 summarizes the results 
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observed from this research. Chapter 6 contains a discussion of the results as well as 

suggestions for future research. 
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Chapter 2 Related Work 

2.1 Plant Classification 

 Plant classification is a complicated task, even for skilled biologists. Computer vision 

techniques can help automate this task to speed up the work of the biologists and be an 

educational tool for non-experts in the field. Several studies have been performed on 

automatic plant classification. 

 Qi and Yang utilized a support vector machine to extract the saw-tooth feature of 

edges of a leaf [5]. Li et al. utilized snakes technique and a cellular neural network to extract 

leaf veins and outlines [6]. Fu and Chi extracted the leaf’s vein structure by combining an 

intensity histogram approach followed by neural network fine-tuning [7]. These three studies 

focused on extracting features to be used for classification of leaves of a plant. 

 Nam et al. created a shape-based leaf image retrieval system using the maximum 

power point algorithm along with a dynamic matching method [8]. The maximum power 

point algorithm reduced the points for shape representation, and the dynamic matching 

method efficiently calculated the result. Gu et al. utilized wavelet transform and Gaussian 

interpolation to extract the leaves’ vein structures and contours of the leaves, and classified 

the leaves based on these features using a neural network [9]. Du et al. proposed the move 

median centers hypersphere classifier for classification of leaves based on several shape 

features such as aspect ratio, rectangularity, sphericity, and more [10]. These three studies 

utilized shape features of the leaves for classification of plants. 
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 Heymans et al. utilized a neural network to distinguish between leaves of species in 

the Opuntia family [11]. Warren tested variation among images of types of Chrysanthemums 

[12]. There were 10 images per species of Chrysanthemum to be tested. Saito and Kaneko 

created a classifier for recognizing wild flowers using two images – one of the flower and 

one of the leaf [13]. Zhenjiang et al. created a rose-classification system utilizing object-

oriented pattern recognition [14]. These four studies all attempted classification of similar 

species using extracted features of shape, color, and/or size of the leaf, petal, and/or flower of 

the plant to be classified. 

 Shrestha developed a leaf classifier that used K-means clustering to classify images 

into one of 38 species [15]. Aspect ratio, isoperimetric ratio, eccentricity, number of 

endpoints, and number of junction points were the features passed into the classifier. An 

accuracy of 89.65% was obtained on the test set. The network was trained and tested on leaf 

images from the Irvin Watson Carpenter, Jr. Herbarium located in the Department of Biology 

of Appalachian State University. The dataset contained only images of leaves on a white 

background.  

 In fact, all of the studies in this section required leaves be on a white background, or 

contained a segmentation step to get an image on a white background for classification. A 

white background was necessary for feature extraction and classification using those features. 

Background removal is a very complex task for natural images and any small error could 

significantly change the shape features used for classification, thus most of the algorithms 

focused on pre-segmented images.  
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2.2 Convolutional Neural Networks 

 Convolutional neural networks are an extremely useful tool for classification of 

objects in natural images without the need for background removal and feature extraction. 

Details of how convolutional neural networks work are described in Section 3.3. 

 Lee et al. were able to obtain 65.4% accuracy on the Caltech-101 object classification 

task using a convolutional neural network [16]. Le et al. trained a convolutional neural 

network on a set of 10 million images from the ImageNet database with 9,000 categories 

such as animals, furniture, musical instruments, and more to obtain an accuracy of 19.2% 

[17]. This result is better than the previous record of 16.7% and is significantly better than a 

random guess, which would result in less than 0.005% accuracy.  Mehrota et al. implemented 

a classifier for Devanagari character recognition [18] that obtained 98.19% accuracy. Simard 

et al. trained a classifier for the MNIST handwriting recognition training set that performed 

with 99.6% accuracy [19]. 

 Bell and Koren showed in the Netflix Prize Challenge that combining the results of 

several models improved accuracy in learning [20]. Hinton et al. built upon this concept to 

introduce the concept of dropout to convolutional neural networks [3]. By omitting a random 

set of neurons from each layer (usually around 50% of them), training the network is similar 

to training several networks with shared weights. They achieved an error rate on the 

ImageNet 1000 class dataset of 42.4%, significantly improving the previous record of 45.7%. 

 Krizhevsky et al. used data augmentation techniques to reduce overfitting [4]. 

Flipping images horizontally to increase the size of the dataset was one simple way they did 

this. Another way was randomly altering the RGB values of the image to reduce the effect of 



7 
 

intensity and color of the illumination of the image. These methods reduced their top-1 error 

rate by over 1%. 

 Glorot et al. showed that rectifier neurons generally outperform sigmoid and 

hyperbolic tangent neurons [21]. He et al. expanded the rectified linear unit to a parametric 

rectified linear unit, and improved upon layer initializations to achieve a 4.94% top-5 error 

on the ImageNet 2012 1000 class dataset. This was an improvement over the winner of the 

competition who achieved 6.66% top 5 error, and was the first to surpass human performance 

of classification on this dataset, which is 5.1% top-5 error. 

 Various research has been performed on leaf classification, however there hasn’t been 

much done on classification of natural images of leaves. What has been done has required 

segmentation of the leaves from the natural background, which lacks consistency. This 

research aims to apply the convolutional neural network technique to create a mobile 

application that can classify pictures of leaves with their natural background taken by the 

device.  
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Chapter 3 Convolutional Neural Networks 

3.1 Introduction 

Neural networks consist of multiple layers of neurons connected together. The first 

set of neurons, known as the input layer, contains one neuron for each data point with the 

value for that data point as the activation value for that neuron. Neurons in deeper layers 

have their activations calculated using (3.2),  

 
ℎ(𝑥) =  𝑓 (∑ 𝜃𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=0

)   
                 (3.2) 

where h(x) is the value of the neuron, n is the number of connections, 𝜃 is a vector of 

weights, x is the input to the neuron, b is a bias term, and f is the activation function 

(activation functions are described in section 3.3.1). Figure 3.1 illustrates this relationship: 

 

Figure 3.1: The connections between neurons 
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 Neural networks can be used for classification tasks by feeding the data through the 

network using trained weights to an output layer consisting of a neuron for each 

classification. The calculated classification can be determined by taking the maximum 

activation value of the output neurons. 

 Convolutional neural networks utilize convolution and pooling layers, which 

significantly improve the power of neural networks for image processing. They are a useful 

tool for processing of images with natural backgrounds, and are therefore a great tool for 

processing natural images of leaves taken by a smartphone. 

3.2 ZCA Whitening 

 Adjacent pixel values are highly correlated in images, causing redundancies in the 

input data. The biological eye, specifically the retina, performs decorrelation operations to 

reduce the redundancies in “pixels” picked up by the eye before transmitting to the brain 

[22]. Zero-phase component analysis (ZCA) whitening aims to produce a similar result by 

removing redundancies in the input data while preserving the spatial arrangement of the 

pixels in the image [23]. 

 The formula for ZCA whitening is shown in (3.1),  

 
𝑥𝑍𝐶𝐴𝑤ℎ𝑖𝑡𝑒 = 𝑈𝐷−

1
2𝑈𝑇𝑥 

(3.1) 

where x is the mean-subtracted input data, U contains the eigenvectors of the covariance 

matrix of the input, and D is a matrix with the corresponding eigenvalues on the diagonal 

(and zeros everywhere else) [24]. The exponent applied to D is an element-wise operation 

only applied to the diagonal (the non-zero values) of the matrix. U and D are both square 

matrices with n rows and n columns where n is the number of features in x. 
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3.3 Training 

 Neural networks are trained using backpropagation of error along with an 

optimization algorithm such as gradient descent. For backpropagation, the error of each 

output node is calculated, and that error is propagated backwards throughout the network to 

all previous layers. The following sections have details on how this error is propagated 

backwards throughout the network for each type of layer. 

 The cost function of the network is shown in (3.3),  

 
Ɛ =

1

2𝑚
∑‖ℎ𝜃,𝑏(𝑥(𝑖)) − 𝑦(𝑖)‖

2
𝑚

𝑖=1

  
(3.3) 

where Ɛ is the error, m is the number of items in the train set, x is the train set, y is the set of 

labels corresponding to the items in the train set, and ℎ𝜃,𝑏(𝑥(𝑖)) is the output of the neural 

network for the input 𝑥(𝑖). 

 Batch gradient descent is an optimization algorithm that performs a forward 

propagation of the training data, then uses backpropagation to calculate a gradient for each 

weight value in the network. These gradients, 
𝜕Ɛ

𝜕𝜃
, can be used to update the weights 

according to (3.4)  

 
𝜃

 
← 𝜃 − 𝛼

𝜕Ɛ

𝜕𝜃
 

(3.4) 

where 𝜃 is the weights of the layer, and 𝛼 is a small parameter used to adjust the step size of 

the function to ensure convergence. 

While batch gradient descent is a good optimization function to use on small datasets, 

large datasets require too much memory to perform these calculations efficiently. For larger 

datasets, mini-batch gradient descent is often used. Mini-batch gradient descent splits the 
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data up into equal sized chunks and performs the exact same algorithm as batch gradient 

descent. This allows for training sets much larger than can fit into memory. However, it does 

add in a bias created by the order in which the data is presented to the algorithm, so it is 

common to randomly shuffle the training data prior to each epoch of training to minimize 

this issue [24]. 

 Another way to optimize the training of a neural network is the classical momentum 

method [25, 26], which can be seen in (3.5),  

 
𝑣𝑖+1

 
← 𝜇𝑣𝑖 −  𝛼

𝜕Ɛ

𝜕𝜃
 

𝜃𝑖+1

 
← 𝜃𝑖 + 𝑣𝑖+1 

(3.5) 

where 𝜇 ∈ [0,1] is the momentum, and 𝑣0 = 0. This is a two-stage update process, first 

updating the velocity 𝑣, and then using that to update the weight matrix 𝜃. Classical 

momentum significantly increases the convergence of gradient descent, requiring √𝑅 times 

fewer iterations to reach the same level of accuracy, where R is the condition number of the 

curvature at the minimum and 𝜇 is set to 
√𝑅−1

√𝑅+1
 [26]. 

3.4 Activation Functions 

 The purpose of an activation function in a neural network is to introduce non-linearity 

into the network. Since the composition of two linear functions creates another linear 

function, having multiple layers to a neural network does not add any complexity unless a 

nonlinear activation function is applied. 

 Biological neurons have two states – firing or not firing. While this is a nonlinear 

activation function, it significantly reduces the complexity that can be modeled by the 

network by limiting the values of the neurons. 
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  The sigmoid activation function is a close model to the biological neurons, but 

allows for a value anywhere in the range of zero to one. The sigmoid activation function can 

be seen in Figure 3.2 and (3.6).  

 
𝑓(𝑥) =

1

1 + 𝑒−𝑥
 

              (3.6) 

 The gradient of the sigmoid function (used for training the network) can be calculated with 

(3.7). 

 𝜕𝑓(𝑥)

𝜕𝑥
= 𝑓(𝑥)(1 − 𝑓(𝑥)) 

              (3.7) 

 

 

Figure 3.2: The sigmoid activation function 

 One of the problems with the sigmoid activation function is that as the magnitude of 

the input increases, the gradient approaches zero. It is also fairly computationally expensive. 

Since neurons are rarely in their maximum saturation, a rectifier can be used to approximate 

the activation function [27]. The Parametric Rectified Linear Unit (PReLU) [2] activation 

function, which addresses both of those issues, can be seen in Figure 3.3 and (3.8).  

 
𝑓(𝑥) =  {

𝑥,   if 𝑥 >  0
𝑎𝑥,   if 𝑥 ≤ 0

 
              (3.8) 
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 In this function, a is another variable that will be trained with the network. The derivative of 

the PReLU function with respect to x can be seen in (3.9),  

 𝜕𝑓(𝑥)

𝜕𝑥
=  {

1,   if 𝑥 >  0
𝑎,   if 𝑥 ≤ 0

 
               (3.9) 

 and the gradient of the PReLU function with respect to a can be calculated with (3.10). 

 𝜕𝑓(𝑥)

𝜕𝑎
=  {

0,   if 𝑥 >  0
𝑥,   if 𝑥 ≤ 0

 
              (3.10) 

 

 

Figure 3.3: The PReLU activation function: a = 0.20 

 The gradient of a can be calculated using equation (3.11), where 
𝜕Ɛ

𝜕𝑓(𝑥)
 is the gradient 

propagated from the deeper layer, x is the input to the layer, and 𝑓(𝑥) is the output of the 

layer. 

 𝜕Ɛ

𝜕𝑎
=  ∑

𝜕Ɛ

𝜕𝑓(𝑥)
𝑥

𝜕𝑓(𝑥)

𝜕𝑎
 

              (3.11) 

 

 The activation function typically used for the output layer of a classifier is the 

softmax function. This function is similar to the sigmoid function, but gives the percent 

likelihood of each classification by ensuring the sum of all neurons totals one. The softmax 

function can be seen in (3.12).  
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𝑓(𝑥) =

𝑒𝑥

∑ 𝑒𝑧
𝑧∈𝑁

 
(3.12) 

 where N is the set of values of the neurons in the output layer before the activation function 

is applied, and x∈N. 

3.5 Fully Connected Layers 

 The basic neural network layer is a fully connected layer. In this type of layer, each 

input neuron is connected to every output neuron. There is a separate weight associated with 

each connection, and a separate bias value for each output neuron. 

  

 

Figure 3.3: An example of a fully connected layer 
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 Figure 3.3 shows a fully connected layer with 3 input neurons and 2 output neurons. 

Each connection has its own weight value, and the weights connected to the neuron labeled 1 

are the bias terms. 

 The forward propagation of a fully connected layer is computed using (3.13),  

 𝑧 = 𝑓(𝑥 × 𝜃 + 𝑏) (3.13) 

where x is the input matrix containing one example per row, 𝜃 is the weight matrix, × is the 

matrix multiplication operator, b is the row vector containing the bias values, f is the 

activation function, and z is the matrix containing the activation of the output neurons. 

The gradient of the weight matrix of the fully connected layer is shown in (3.14),  

 
𝜕Ɛ

𝜕𝜃
=

𝑥𝑇 × (
𝜕Ɛ

𝜕𝑓(𝑧)
°

𝜕𝑓(𝑧)
𝜕𝑥

)

𝑚
 

     (3.14) 

where  
𝜕Ɛ

𝜕𝑓(𝑧)
 is the error propagated from the deeper layer and 

𝜕𝑓(𝑧)

𝜕𝑥
 is the gradient of the 

activation of the output neurons of this layer, and m is the number of training examples. The 

gradient of the bias term is shown in (3.15).  

 𝜕Ɛ

𝜕𝑏
= 𝑐𝑜𝑙𝑢𝑚𝑛𝑀𝑒𝑎𝑛𝑠 (

𝜕Ɛ

𝜕𝑓(𝑧)
°

𝜕𝑓(𝑧)

𝜕𝑥
) 

   (3.15) 

The propagation of the error through the layer can be seen in (3.16).  

 𝜕Ɛ

𝜕𝑥
= (

𝜕Ɛ

𝜕𝑓(𝑧)
°

𝜕𝑓(𝑧)

𝜕𝑥
) × 𝜃𝑇 

    (3.16) 

In these equations, × is the matrix multiplication operator, and ° is the element-wise matrix 

multiplication operator. 
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3.6 The Softmax Classifier 

 The Softmax Classifier is used for the last layer of a neural network to output a 

likelihood value between zero and one for each possible classification. This layer is a 

fully connected layer that uses the softmax activation function and has no bias. The 

gradient of the weight matrix of the fully connected layer is shown in (3.17),  

 𝜕Ɛ

𝜕𝜃
=

𝑥𝑇  × (ℎ(𝑥 × 𝜃) − 𝑦)

𝑚
 

  (3.17) 

where × is the matrix multiplication operation, 𝜃 is the weight matrix, x is the input to the 

layer, h is the softmax activation function, y is the expected output, and m is the number of 

training examples. The propagation of the error through the layer can be seen in (3.18).  

 𝜕Ɛ

𝜕𝑥
= (ℎ(𝑥 × 𝜃) − 𝑦) × 𝜃𝑇 

  (3.18) 

 

3.7 Convolution Layers 

 A convolution layer consists of 𝑛 features of size 𝑚-by-𝑚 that are convolved over an 

ℎ ×  𝑤 ×  𝑐 input, resulting in an (ℎ − 𝑚 + 1)  ×  (𝑤 − 𝑚 + 1)  × 𝑛 output. Figure 3.4 

shows a convolution of a 3×3 kernel over a 5×5 image.  
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Figure 3.4: A valid convolution of 3×3 kernel over 5×5 image [24] 

Similar to the fully connected layers, the result has a bias added to it (there is one bias 

value for each feature) and an activation function applied to it. The forward propagation of a 

convolution layer is computed using (3.19),  

 

𝑧𝑖 = 𝑓 ((∑ 𝑥𝑘 ∗ 𝜃𝑖,

𝑐

𝑘=1

) + 𝑏𝑖) 

(3.19) 

 where 𝑥𝑘 is a training example, 𝜃𝑖, is a feature matrix, 𝑏𝑖 is the bias term, c is the number of 

channels in the input image, i is the feature number, f is the activation function, and z is the 

matrix containing the activation of the output neurons. The ∗ operator indicates a valid 2d 

convolution – a convolution in which the kernel fits entirely inside of the image it is being 

convolved over.  

 These convolution layers are feature detectors that map how well specific features fit 

in an image. Having multiple of these convolution layers in series allows for more complex 

features to be detected over the image. 
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 The bias gradient is calculated the same way as the fully connected layers in 

convolution layers, but the weight gradients and the propagation of the error need to be 

calculated differently. The calculation of the weight gradients is shown in (3.20).  

 
𝜕Ɛ

𝜕𝜃𝑖
=

𝑥𝑖 ∗ (
𝜕Ɛ

𝜕𝑓(𝑧)
°

𝜕𝑓(𝑧)
𝜕𝑥

)

𝑚
 

        (3.20) 

 The calculation of the error propagated through the layer is shown in (3.21),  

 𝜕Ɛ

𝜕𝑥𝑖
= (

𝜕Ɛ

𝜕𝑓(𝑧)
°

𝜕𝑓(𝑧)

𝜕𝑥
) ∙∗ 𝜃𝑖

′ 
       (3.21) 

 where 𝜃′ is the weight matrix rotated 180° and ∙∗ indicates a full convolution – a 

convolution in which the input, x, has been padded with m – 1 zeros on each side, resulting in 

a (ℎ + 𝑚 − 1)  ×  (𝑤 + 𝑚 − 1)  matrix. 

3.8 Pooling Layers 

 A pooling layer takes an ℎ × 𝑤 × 𝑛 input and performs a pooling operation with a 

pooling size m to output an 
ℎ

𝑚
×

𝑤

𝑚
× 𝑛 output.  Common pooling operations are max and 

mean. Pooling layers reduce the size of the features in the network, which reduces calculation 

time of future layers, and makes the network less prone to over-fitting. It also adds a degree 

of translation invariance to the network. 

 In max pooling, error is propagated through the layer by upsampling the error to the 

size of the input and setting the argmax of each pooled region to the error for that region. In 

mean pooling, the error is upsampled to the size of the input by setting each value in the 

pooled region to the error divided by the number of neurons in the pooled region. 
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3.9 Addressing Overfitting 

 Convolutional neural networks end up having many features, so they are very prone 

to overfitting. Reducing overfitting while maintaining a complex representation of the data is 

important – especially when dealing with smaller data sets. 

 One way to reduce overfitting is to introduce a regularization, or weight decay, term 

into the cost function of the network. By adding the sum of the weight values to the cost 

function, the magnitude of the weights are pushed toward zero, which evens out the weight 

of each feature – reducing overfitting in the network. The updated cost function can be seen 

in (3.22)  where n is the number of layers, s is the rows in the weight matrix of layer l, t is the 

columns of the weight matrix of layer l, and 𝜃𝑙 is the weight matrix of layer l. 

 

Ɛ =
1

2𝑚
∑‖ℎ𝜃,𝑏(𝑥(𝑖)) − 𝑦(𝑖)‖

2
𝑚

𝑖=1

+
𝜆

2
∑ ∑ ∑ 𝜃𝑗𝑖

(𝑙)2
𝑡𝑙

𝑗=1

𝑠𝑙

𝑖=1

𝑛𝑙−1

𝑙=1

 

(3.22) 

 

This changes the update of the weight vector to (3.23). 

 
𝑣𝑖+1

 
← 𝜇𝑣𝑖 −  𝛼 (

𝜕Ɛ

𝜕𝜃
+ 𝜆𝜃𝑖) 

𝜃𝑖+1

 
← 𝜃𝑖 + 𝑣𝑖+1 

              (3.23) 

 Another way to reduce overfitting is to artificially increase the training size by 

augmenting input data to generate additional samples. Two beneficial forms of data 

augmentation are image reflections and pixel alterations [4]. Image reflections are simple 

transformations that give a different perspective on the same image, and therefore can be 

useful in learning different orientations of objects. 

 Pixel alteration is slightly more complex, but adds an invariance to intensity and color 

of illumination of the image. The formula for pixel alteration is (3.24) where I is an 
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individual RGB image pixel, 𝑝𝑖 and 𝜆𝑖 are the ith eigenvector and eigenvalue of the 3 x 3 

covariance matrix of the RGB pixel values, and 𝑎𝑖 is a random variable from a normal 

distribution (uniform for all RGB pixels of a particular training image per epoch) [4]. 

 [𝐼𝑥𝑦
𝑅 , 𝐼𝑥𝑦

𝐺 , 𝐼𝑥𝑦
𝐵 ]

𝑇
+=  [𝑝1, 𝑝2, 𝑝3][𝑎1𝜆1, 𝑎2𝜆2, 𝑎3𝜆3]𝑇 (3.24) 

 Overfitting can also be reduced by combining the predictions of different models [4, 

20, 28]. However, training models with many features is very slow. Dropout [3, 4] emulates 

training thousands of models at a time, and doesn’t run much slower than training a single 

network. Dropout works by randomly setting the activation of half of the output neurons in a 

layer to zero, removing them from the network for this training cycle. The error is not 

propagated back through these neurons either. Dropout causes each step of training the 

network to train a slightly different model of the network, but each model shares the same 

weights. This reduces co-adaptations of neurons in which neurons are only helpful in the 

context of specific other neurons. This significantly reduces overfitting and significantly 

improves test accuracy. 
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Chapter 4 Methodology 

4.1 Introduction 

 A convolutional neural network approach to a mobile application for leaf 

classification is discussed in this section. Figure 4.1 shows the approach taken in this thesis. 

Section 4.2 provides details on the dataset gathered for this thesis. Section 4.3 discusses the 

process of loading and preprocessing of the dataset. Section 4.4 describes the neural network 

library written for this approach. Section 4.5 describes the structure of the neural networks 

trained for this thesis. Section 4.6 describes the training and testing of the neural networks. 

Section 4.7 describes the mobile application that is created for the purpose of classification in 

this research. 

 

Figure 4.1: The leaf classification mobile application process 
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4.2 Building of the Dataset  

 The dataset was put together for this thesis by taking pictures of leaves using the 

camera on a Samsung Galaxy S4. Thirty pictures of the leaves for each of fifteen different 

species of plants were taken at a 4128x3096 resolution. Fourteen of the fifteen species of 

plants were taken at the Conservatory of Flowers in San Francisco, California. The last 

species of plant is an unidentified tree in Boone, North Carolina that was used for ensuring 

that the mobile application’s camera feature worked well with new images. Figure 4.2 shows 

a single picture of each of the fifteen classes that are taken for the purpose of this research. 

 

 
Figure 4.2: From left to right: 

Row 1: Acalypha Hispida, Alternanthera Ficoidea, Arenga Hookeriana, 

Begonia Brevirimosa, unidentified tree from Boone 

Row 2: Calathea Insignis, Calathea Warscewiczii, Coffee Arabica, 

Crescetia Cujete, Eugenia Uniflora 

Row 3: Medinilla Magnifica, Ravenala Madagascariensis, Saraca Indica, 

Stanhopea Orchid, Vanda Orchid 
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4.3 Preprocessing of Images 

 The dataset for this thesis was organized into a folder structure with one folder for 

each species. The image loader went through each folder and generated the labels for the 

classes using this structure – all images in the same folder got the same label. 

 Each image was loaded into a BufferedImage and rotated if necessary to ensure that 

the height was the larger dimension using the imgscalr library’s Scalr class. Next, the image 

was resized to a resolution of 80x60. The pixel data were then extracted from the 

BufferedImage and stored into three two-dimensional array of DoubleMatrix (from the 

JBLAS library) – an array of matrices for each image containing a matrix for each channel of 

input. The labels were stored in a single DoubleMatrix – one row per image.  

 The data were then normalized to have zero mean and unit variance. For every 

channel of each image, first the mean pixel value for the channel was subtracted from each 

pixel, then the pixel value was divided by the standard deviation of the pixels in that channel 

of that image. After normalization, ZCA Whitening was applied to the data. 

4.4 Neural Network Library 

 As part of the research for this thesis, a neural network library was written in 

Java to allow for executing on an Android device, and training and testing on a desktop 

computer. The library allows for convolution layers, pooling layers, and fully connected 

layers with various options for cost functions and parameters. Figure 4.3 shows the 

organization of the library as well as the public methods of each class. Sections 4.4.1-4.4.7 

describe the classes that were written for the purpose of this research.  
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Figure 4.3: Organization of the neural network library 

 The desktop portion of the library uses the matrix library JBLAS for matrix 

operations. Since this library uses a platform specific compiled BLAS library that hasn’t been 

ported to android, the android portion of the library uses the JAMA matrix library. The 

ConvolutionLayer, FullyConnectedLayer, NeuralNetwork, PoolingLayer, StructuredLayer, 

and Utils classes have also versions with fewer methods and that utilize the JAMA matrix 

library for computation on a mobile device. 

4.4.1 The ConvolutionLayer Class 

 The ConvolutionLayer class represents a convolution layer of the neural network. 

There are public methods available to compute the output of the layer, perform a feedforward 
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pass of the layer, compute the gradients of the layer, initialize the weights of the layer, update 

the weights of the layer, and get the mobile convolution layer equivalent. The mobile 

ConvolutionLayer only has a method to compute the output of the layer. 

 The theta values for this layer are initialized using (4.1), where the size of the feature 

is k-by-k, a is the parameter for the PReLU activation function and c is the number of input 

channels  [2]. The bias is initialized to all zeros. The value of a is initialized to 0.25 if PReLU 

is the activation function; otherwise it is initialized to 0. 

 

√
2

(1 + 𝑎2) ∗ 𝑘2 ∗ 𝑐
 

(4.1) 

  The convolution layer takes as input a two-dimensional array of matrices indexed by 

image and channel. Each matrix represents a single channel of an image. The output is a two-

dimensional array of matrices indexed by image and feature. The activation function for the 

convolution layer is customizable with options for PReLU, ReLU, sigmoid, softmax, and 

none. Parameters for the number of features, size of features, weight decay, and dropout can 

also be set. 

4.4.2 The FullyConnectedLayer Class 

 FullyConnectedLayer is the class that represents a fully connected layer of the 

network. There are public methods to compute the gradients of the layer, update the weights 

of the layer, compute the output of the layer, perform a feedforward pass of the layer, 

initialize the weights of the layer, and get the corresponding mobile fully connected layer. 

The mobile FullyConnectedLayer only has a method to compute the output of the layer. 
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The theta values for this layer are initialized using (4.2) [2] where n is the size of the 

input to the layer. The bias is initialized to all zeros. The value of a is initialized to 0.25 if 

PReLU is the activation function; otherwise it is initialized to 0. 

 

√
2

(1 + 𝑎2) ∗ 𝑛
 

       (4.2) 

 The input and output to the fully connected layer is a single matrix with each row 

containing the values for a separate image. The activation function for the fully connected 

layer is customizable with options for PReLU, ReLU, sigmoid, softmax, and none. 

Parameters for weight decay and dropout can also be set. 

 For a Softmax Classifier, a FullyConnectedLayer is used with the Softmax activation 

function. Since it behaves the same way except for activation, there is no need for a separate 

class for it. 

4.4.3 The Gradients Class 

 The Gradients class is a data structure used for holding the gradients of a layer. It 

contains matrices for the theta gradient, bias gradient, the gradient of a, the gradient 

propagated through the layer, and the cost of the layer. There is no mobile class for Gradients 

since it is only used for training. 

4.4.4 The Loader Class 

 Loader is an abstract class that defines a class that loads data for the network. It has 

abstract methods to get training data, get training labels, get test data, get test labels, and get 

a mapping from the numerical label to the corresponding text label. This is used by the 

NeuralNetwork class to get data for training the network or performing cross validation. 
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 The library contains an implementation of this class called ImageLoader as well. 

ImageLoader has a constructor that loads data from a folder structured with each 

classification having its own folder to determine the label for each class. It additionally has 

methods to get all data and to get all labels. 

4.4.5 The NeuralNetwork Class 

 The NeuralNetwork class encapsulates all of the layers of the network. It has methods 

to train the network using mini batch gradient descent, to compute the result of an input, 

perform cross validation of the network, reset the weights of the network, and write the 

network to a file. The mobile NeuralNetwork class builds the trained network using a file 

written by the desktop version. It then has a function to compute the result of the network on 

a given input matrix. 

 The neural network consists of an array of StructuredLayers and an array of 

FullyConnectedLayers. The network maintains the structure of the input while computing the 

StructuredLayers, then flattens the data before passing it to the FullyConnectedLayers. If 

used for classification, the last FullyConnectedLayers should be a softmax classifier (by 

utilizing the softmax activation function) to give results as a percent likelihood. 

4.4.6 The PoolingLayer Class 

 The PoolingLayer class represents a pooling layer of the network. It has public 

methods for computing the output of the layer, performing a feedforward pass on the layer, 

expanding the gradient for backpropagation, and getting the equivalent device pooling layer. 

The layer can perform max or mean pooling. It additionally has methods to initialize 

parameters and update weights, which do nothing, in order to conform to the StructuredLayer 
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interface.  The mobile pooling layer only has the method for computing the output of the 

layer. 

4.4.7 The StructuredLayer Class 

 StructuredLayer is an abstract class for layers that maintain the structure of the image. 

This is used for polymorphism between convolution layers and pooling layers to allow them 

to be structured in any order when passed into the NeuralNetwork class. It contains abstract 

methods for computing the output, performing a feedforward pass, computing the gradients, 

updating the weights of the layer, initializing parameters, and getting the equivalent device 

structured layer.  

4.4.8 The Utils Class 

 The Utils class contains various additional methods for the neural network. It contains 

public methods for ZCA whitening (Section 3.2), normalizing the data, the convolution 

operation, sampling patches from images, pixel alteration (Section 3.9), and activation 

functions and their gradients. 

4.5 Training and Testing of the Neural Networks 

 This section discusses the training and testing of five different neural network 

configurations. Section 4.5.1 covers the design of the different neural networks, Section 4.5.2 

discusses the training of the networks, and Section 4.5.3 discusses the testing of the neural 

networks. 

4.5.1 Neural Network Design 

For this thesis, five different neural network configurations are compared. Table 4-1 

describes the configurations of each network. All of the networks trained on images that were 

scaled to a resolution of 80x60 pixels with a set weight decay of 0.00005. Dropout was 
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applied to two layers of each network. Additional dropout caused the networks to train too 

slowly. 

Table 4-1: Neural Network Configurations 
Network A Network B Network C Network D Network E 

Convolution 

16 3x3 Features 

Dropout 0.5 

PReLU activation 

Convolution 

16 3x3 Features 

No dropout 

PReLU activation 

Convolution 

16 3x3 Features 

No dropout 

PReLU activation 

Convolution 

16 3x3 Features 

No dropout 

PReLU activation 

Convolution 

16 3x3 Features 

No dropout 

PReLU activation 

Pooling 

2x2 pooling 

Max pooling 

Pooling 

2x2 pooling 

Max pooling 

Pooling 

2x2 pooling 

Max pooling 

Pooling 

2x2 pooling 

Max pooling 

Pooling 

2x2 pooling 

Max pooling 

Fully Connected 

200 output neurons 

Dropout 0.5 

PreLU activation 

Fully Connected 

200 output neurons 

Dropout 0.5 

PreLU activation 

Convolution 

16 2x2 Features 

Dropout 0.5 

PReLU activation 

Convolution 

16 2x2 Features 

No dropout 

PReLU activation 

Convolution 

16 2x2 Features 

No Dropout 

PReLU activation 

Softmax Classifier 

15 output neurons 

Fully Connected 

200 output neurons 

Dropout 0.5 

PreLU activation 

Pooling 

2x2 pooling 

Max pooling 

Pooling 

2x2 pooling 

Max pooling 

Pooling 

2x2 pooling 

Max pooling 

 
Softmax Classifier 

15 output neurons 

Fully Connected 

200 output neurons 

Dropout 0.5 

PreLU activation 

Fully Connected 

200 output neurons 

Dropout 0.5 

PreLU activation 

Convolution 

16 2x2 Features 

No dropout 

PReLU activation 

  
Softmax Classifier 

15 output neurons 

Fully Connected 

200 output neurons 

Dropout 0.5 

PreLU activation 

Fully Connected 

200 output neurons 

Dropout 0.5 

PreLU activation 

   
Softmax Classifier 

15 output neurons 

Fully Connected 

200 output neurons 

Dropout 0.5 

PreLU activation 

    
Softmax Classifier 

15 output neurons 
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4.5.2 Training of Neural Network 

 
Figure 4.4: Training of neural networks 

 
All networks are trained using minibatch gradient descent with a learning rate of 

0.001. After each epoch, the train and test cost and accuracy are printed out to compare the 

performance of each network configuration as it trains.  If the cost of the training set 

increased from the previous epoch, the learning rate is scaled by 0.75 to allow for fine-tuning 

of the weights. Each network is trained for 100 iterations. 

 During training, alterations (as described in Section 3.9) are made to images for each 

epoch to reduce overfitting. Pixel alterations are applied to each image to reduce the effect of 

the intensity and color of illumination caused by lighting in the image. The images also have 

a 50% chance to be flipped vertically and a 50% chance to be flipped horizontally. This helps 

add rotational invariance to the network. 
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4.5.3 Testing of Neural Network 

 
Figure 4.5: Cross validation of neural networks 

  

 Testing for each configuration is done using five-fold cross-validation. This is done 

by splitting the data into five parts. The network is trained five times – each time one part is 

left out and used as the test set and the other four parts are used for training the network.  

This way, each image ends up being used in one of the test sets, giving a better overall 

representation of how the network fits the data. After the entire network finishes training, the 

specific accuracy per classification is printed to compare which classes learned well and 

which did not. 
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4.2 The Mobile Application 

 
Figure 4.6: Flowchart of the mobile application 

 The mobile application has two options: 1) to classify an image already on the device, 

or 2) to take a picture of an image and then classify that image. Figure 4.7 shows the opening 

screen of the application.  
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Figure 4.7: Opening screen of the application 

If the users select Camera, their camera opens and they can take a picture of a leaf to 

classify as shown in Figure 4.8. When a picture is taken, it is saved on the phone as if the 

user took a picture regularly. This saved picture is then classified just as if it was originally 

selected from the gallery. If users select Gallery, their gallery opens and they can select an 

image of a leaf to classify as shown in Figure 4.9. 

 The selected picture is then run through the network. While the calculations are being 

performed, the app switches to a loading screen as can be seen in Figure 4.10. 

 Finally, once the classification is completed, the results are displayed on screen as can 

be seen in Figure 4.11. The best three results are presented with their percent likelihoods and 

an image of the species. This screen has options to select a new image in the gallery or take a 

new picture. 
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Figure 4.8: Sample picture of a leaf taken with a phone camera 

 

Figure 4.9: Image selection in the gallery 

 

Figure 4.10: Loading screen 
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Figure 4.11: Results (right) for the original image (left)  
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Chapter 5 Results 

5.1 Introduction 

 In this chapter, the results of the networks mentioned in Table 4-1 will be provided. 

Section 5.2 will discuss the accuracies of each species of leaves and shows several results of 

running the mobile application on different images. Section 5.3 will discuss the overall 

accuracies with respect to each network.  Finally, Section 5.4 will discuss the load and 

computation times of each network.  

 The results were obtained through five-fold cross validation of each network. After 

every epoch of training, the rankings of each classification were compiled and printed such 

that the percentage of correct classifications in first, second, and so on could be seen. After 

training, the number of correct classifications with respect to each leaf were printed out to see 

how well classes of leaves were represented. These accuracies were compiled into several 

graphs, illustrating the results in Section 5.2 and Section 5.3. 

 The load times and computation times for running the networks on a mobile device 

were also gathered. The results of the load and computation times can be seen in Section 5.4.  
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5.2 Leaf Species Accuracies 

 It is also important to look at the individual species test accuracies to see where biases 

may lie in the network. Figures 5.1-5.15 show screenshots of classifications of the pictures 

that were taken for the purpose of this research with a correct first classification. Figures 

5.16-5.20 show screenshots of some classifications with correct second or third 

classifications. Figures 5.21-5.24 show screenshots of some classifications with the top-3 

results completely incorrect. Figure 5.25 shows the top-1 accuracies of each network for each 

classification.  Table 5-1 shows the numerical values for these top-1 accuracies. 

 

 
Figure 5.1: Results of Acalypha Hispida  
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Figure 5.2: Results of Alternanthera Ficoidea 

 
Figure 5.3: Results of Arenga Hookeriana 
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Figure 5.4: Results of Begonia Brevirimosa 

 
Figure 5.5: Results of unidentified tree in Boone 
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Figure 5.6: Results of Calathea Insignis 

 
Figure 5.7: Results of Calathea Warscewiczii 
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Figure 5.8: Results of Coffee Arabica 

 
Figure 5.9: Results of Crescetia Cujete 
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Figure 5.10: Results of Eugenia Uniflora 

 
Figure 5.11: Results of Medinilla Magnifica 

 



43 
 

 
Figure 5.12: Results of Ravenala Madagascariensis 

 
Figure 5.13: Results of Saraca Indica 
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Figure 5.14: Results of Stanhopea Orchid 

 
Figure 5.15: Results of Vanda Orchid 
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Figure 5.16: Results of Calathea Insignis 

 
Figure 5.17: Results of Crescetia Cujete 
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Figure 5.18: Results of Eugenia Uniflora 

 
Figure 5.19: Results of Medinilla Magnifica 
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Figure 5.20: Results of Saraca Indica 

 
Figure 5.21: Results of Coffee Arabica 
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Figure 5.22: Results of Eugenia Uniflora 

 
Figure 5.23: Results of Saraca Indica 
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Figure 5.24: Results of Stanhopea Orchid 

 
Figure 5.25: Top-1 accuracies for each class 
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         Table 5-1: Top-1 Accuracies for each class 

 

A B C D E 

Acalypha Hispida 0.533333 0.5 0.466667 0.5 0.5 

Alternanthera Ficoidea 0.5 0.466667 0.666667 0.7 0.733333 

Arenga Hookeriana 0.7 0.633333 0.633333 0.7 0.666667 

Begonia Brevirimosa 0.933333 0.966667 0.966667 0.933333 0.966667 

Boone Tree 0.7 0.633333 0.6 0.6 0.733333 

Calathea Insignis 0.633333 0.7 0.8 0.733333 0.8 

Calathea Warscewiczii 0.433333 0.3 0.4 0.2 0.333333 

Coffee Arabica 0.466667 0.466667 0.5 0.533333 0.533333 

Crescetia Cujete 0.566667 0.5 0.5 0.633333 0.433333 

Eugenia Uniflora 0.1 0.166667 0.166667 0.366667 0.166667 

Medinilla Magnifica 0.366667 0.4 0.333333 0.6 0.466667 

Ravenala 
Madagascariensis 0.366667 0.466667 0.3 0.633333 0.433333 

Saraca Indica 0.366667 0.3 0.433333 0.333333 0.5 

Stanhopea Orchid 0.266667 0.333333 0.233333 0.333333 0.433333 

Vanda Orchid 0.633333 0.666667 0.733333 0.7 0.7 

 

5.3 Overall Neural Network Accuracies 

Figure 5.26 shows how the five networks differ in top-3 test accuracy over the 100 

training iterations. This accuracy is an average for the entire five-fold cross validation 

process. Top-3 accuracy is reported because the mobile application displays the top-3 results 

with pictures, so getting a high top-3 accuracy will allow the user to see the appropriate 

classification often. Figures 5.27-5.31 show the train and test accuracy of the individual 

networks to compare how well the networks fit the data. 
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Figure 5.26: Test accuracy of neural network configurations 

 
Figure 5.27: Train and test accuracies of Network A 
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Figure 5.28: Train and test accuracies Network B 

 
Figure 5.29: Train and test accuracies of Network C 
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Figure 5.30: Train and test accuracies of Network D 

 
Figure 5.31: Train and test accuracies of Network E 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

T
o

p
-3

 A
cc

u
ra

cy

Epoch

Network D Top-3 Accuracy

Train Test

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

T
o

p
-3

 A
cc

u
ra

cy

Epoch

Network E Top-3 Accuracy

Train Test



54 
 

The accuracies for the top three results of the networks can be seen in Table 5-2. 

      Table 5-2: Top-3 accuracies 

 

1 2 3 Total Top-3 

A 0.504444 0.117778 0.086667 0.708889 

B 0.5 0.171111 0.091111 0.762222 

C 0.515556 0.126667 0.082222 0.724444 

D 0.566667 0.168889 0.08 0.815556 

E 0.56 0.168889 0.077778 0.806667 

 

5.4 Mobile Application Load and Computation Times 

 A final result for this mobile application is the load and computation time of the 

application. A slow mobile application is frustrating to the user and will not be used. Table 5-

3 shows the average load and computation times of the networks over 5 uses. 

Table 5-3: Load and Computation Time of Networks 

 

Load Compute 

A 21.2796 2.4598 

B 21.4642 2.5634 

C 5.681 2.509 

D 5.5378 2.583 

E 5.1254 2.7492 
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Chapter 6 Conclusions and Future Work 

6.1 Conclusions 

 Section 6.1.1 discusses the accuracies with respect to the plant species. Section 6.1.2 

discusses and compares the accuracies with respect to the different neural network 

configurations. Finally, Section 6.1.2 discusses the load and computation times of the mobile 

application. 

6.1.1 Leaf Species Accuracies 

 There was a large amount of variance in accuracies of individual classes. Begonia 

Brevirimosa was recognized correctly 95.3% of the time while Eugenia Uniflora was only 

recognized correctly 19.3% of the time. The high accuracy of Begonia Brevirimosa’s leaves 

were likely caused by a combination of the uniqueness of its leaves and that the images in the 

dataset were all in focus with similar lighting. A comparison of three of the images of 

Begonia Brevirimosa’s leaves can be seen in Figure 6.1. 

 

   
Figure 6.1: Begonia Brevirimosa 
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 Eugenia Uniflora had the least top-1 accuracy of any of the classes. One reason for 

this is that there is a lot of variance in its leaves in general – there are significant color and 

even shape differences. Another reason is that the lighting of the photos taken differed, and 

not all of the pictures were in focus. A comparison of three of the images of Eugenia 

Uniflora’s leaves can be seen in Figure 6.2. 

   
 

Figure 6.2: Eugenia Uniflora 

 It can be seen in Figures 5.16-5.24 that the percent likelihoods for the incorrect 

classifications of leaves were significantly lower in general than those of the correct 

classifications in Figures 5.1-5.15. The majority of the correct classifications in Figures 5.1-

5.15 had percent likelihoods greater than 90%. The incorrect classifications were generally 

around 60% or less. This shows that the neural network simply does not recognize the leaves 

being misclassified and could be significantly improved with a much larger dataset that 

covered more variation in the leaves. 

6.1.2 Neural Network Accuracies 

In general, deeper networks tended to have less overfitting of the images than 

shallower ones. Networks D and E, the two deepest networks, had the highest top-3 test 
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accuracies of any of the networks. Network A, the shallowest network, had the lowest top-3 

test accuracy of the networks. Deeper networks allow for more complex features to be 

searched for in the images, so the deeper networks can learn better overall representations of 

the classes. 

In addition, having two fully connected layers before the softmax classifier performed 

significantly better than only having one fully connected layer. This is likely due to the 

dropout on the fully connected layers. Dropout in fully connected layers tends to outperform 

dropout on convolutional layers. 

Lastly, having the extra convolution layer in E did not seem to make a significant 

difference. In fact, it slightly reduced the network’s accuracy from network D. The reasons 

for this are unclear. It could be that additional iterations of training would make up for the 

slight difference. It could also be that with an image as small as the one being used, D is as 

deep of a network as is useful. 

6.1.3 Mobile Application Load and Computation Times 

 As can be seen in Table 5-3, the load time of the networks had much more variance 

than the compute times. The difference in compute times from network A to E was less than 

0.3 seconds. In addition, each network’s compute times are completely reasonable for a 

mobile classification application. All of the times for calculation were less than three 

seconds. 

 The load times seem to be the major factor in the feasibility of this mobile 

application. Networks A and B had completely unreasonable load times – both over 21 

seconds.  This seems to be caused by the size of the weight matrix of the first fully connected 

layer. Since convolution layers are sparsely connected, they require far fewer weights to 
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process the same size input. The input to A and B’s first fully connected layer was 39x29x16, 

where C and D had input sizes of 14x19x16. This required 3,619,200 doubles for the weight 

matrix of the first fully connected layer of A and B, while C and D only had 851,200 doubles 

for that layer. Each convolution layer only required 144 doubles for their weight matrix. 

Networks C, D, and E all had reasonable load times of just over 5 seconds. 

 It appears that additional convolution and pooling layers will reduce the load time of 

the network by reducing the number of connections of the fully connected layers. However, 

the convolution operation is expensive, so having more convolution layers will increase the 

calculation time. 

6.2 Future Work 

 In this research, a mobile leaf classification application was designed using different 

depths of convolutional neural networks. This application was trained to distinguish between 

15 species of leaves, and a top three accuracy of 81.6% was obtained. 

 The best improvement to this research would be to get a significantly larger dataset. 

Getting other species of leaves would allow the application to be more useful in that it could 

recognize more plants. Getting more images of the same leaves would give more variance in 

the training set, causing the application to learn better representations of the classes and get 

more accuracy. 

 In addition, since this research has diverged from needing an image of the leaf 

segmented from background, it would be possible to transition this from a leaf classification 

application to a plant classifier. Since the application would most likely be used to 

distinguish between species of plant by taking a picture of the leaf, the application may be 

able to learn a representation of the entire plant better than just a close up picture of the leaf. 
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It would also be possible to train the network to learn representations of pictures of both the 

entire plant and just the leaf for more options in using the application.  

 Better accuracy may also be obtained by modifying the network to average results 

over several images. Similar to how dropout trains several different networks to give 

improved accuracy, computation over several images should increase the accuracy of the 

classifier in practice.  

 In addition, several other configurations could be considered for the application. As 

of now, the network starts with an 80x60 image, but a larger image would provide more 

information and potentially give better results at the cost of a longer execution time. The 

number and size of features for the convolution layers, the pooling dimension, and the output 

sizes of the fully connected layers could also be modified to examine more networks. Finally, 

with larger image sizes, deeper networks could be examined as well. With these deeper 

networks, if the load time gets to be too much for a mobile application, a client-server 

architecture could be examined to be used when the device has an internet connection. This 

would allow for much more complex networks, while still maintaining the option of using a 

less complex network for classification if there is no internet connection. 
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Appendix 

All of the programs developed for this thesis are included on the enclosed DVD. Following is 

a list of all of the files on the DVD: 

1. LeafApp: Project containing the mobile application developed for this thesis 

2. Leaves: Directory containing the dataset collected for this thesis 

3. NeuralNetwork: Neural network library developed for this thesis 

4. CompiledResults.xlsx: Graphs and data points collected from the training and testing 

of the different neural networks 

5. ParseRes.java: Parses the output of the training and testing of a neural network and 

stores the data in excel files. 

6. ResultA.txt: The output of training and testing of neural network configuration A 

7. ResultB.txt: The output of training and testing of neural network configuration B 

8. ResultC.txt: The output of training and testing of neural network configuration C 

9. ResultD.txt: The output of training and testing of neural network configuration D 

10. ResultE.txt: The output of training and testing of neural network configuration E 
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