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ABSTRACT

A TECHNIQUE FOR ESTIMATING THREE-DIMENSIONAL VOLUME-OF-INTEREST
USING EYE GAZE

Carl Cole Drawdy IV, M.S.T.

Western Carolina University (March 2015)

Director: Paul Yanik, Ph.D.

Assistive robotics promises to be of use to those who have limited mobility or dexterity.

Moreover, those who have limited movement of limbs can benefit greatly from such assistive

devices. However, to use such devices, one would need to give commands to an assistive

agent, often in the form of speech, gesture, or text. The need for a more convenient method

of Human-Robot Interaction (HRI) is prevalent, especially for impaired users because of

severe mobility constraints.

For a socially responsive assistive device to be an effective aid, the device generally

should understand the intention of the user. Also, to perform a task based on gesture, the

assistive device requires the user’s area of attention in three-dimensional (3D) space. Gaze

tracking can be used as a method to determine a specific volume of interest (VOI). However,

heretofore gaze tracking has been under-utilized as a means of interaction and control in 3D

space.

The main objective of this research is to determine a practical VOI in which an

individual’s eyes are focused by combining existing methods. Achieving this objective sets

a foundation for further use of vergence data as a useful discriminant to generate a proper

directive technique for assistive robotics.

This research investigates the accuracy of the Vector Intersection (VI) model when

applied to a usable workspace. A neural network is also applied to gaze data for use in

tandem with the VI model to create a Combined Model. The output of the Combined



Model is a VOI that can be used to aid in a number of applications including robot path

planning, entertainment, ubiquitous computing, and others. An alternative Search Region

method is investigated as well.



CHAPTER 1: INTRODUCTION

1.1 Background and Motivation

Assistive robotics promises to be of use to those who have limited mobility. Moreover,

those who have limited movement of limbs may benefit greatly from such assistive devices.

However, to use such devices, one would need to issue commands to a robotic agent, often

in the form of speech, gesture, or text. The need for a more convenient method of Human-

Robot Interaction (HRI) is prevalent, especially for impaired users due to severe mobility

restriction.

There are several types of assistive devices. Most assistive devices do not exhibit

social intelligence or sensitivity to commands. Some are capable of taking direction from

the user or of adapting to the user’s needs and are socially intelligent [1]. For a user to

direct such an assistive device, the device must know the intention of the user. Also, to

perform a task in 3D space, the assistive device could contain predetermined programming

or receive current information on the user’s area of attention. The latter is investigated in

this research.

There are many ways of representing a user’s area of attention to an assistive device.

The most common is the use of gestures. Motion sensors can be used to track an individual’s

movements in order to receive commands. Some of the common gestures are pointing or

motioning with the arm, hand, or head. A more intuitive method of determining the attention

of an individual is tracking their line of sight (LoS) or gaze vector to a point of gaze (PoG).

Where an individual is looking is a clear indicator of where their attention is located [2]. A

recent and established focus of research using gaze tracking as a tool has involved navigation

of graphical user interfaces (GUI) [3].

Gaze tracking systems are used to find the PoG of an individual. The motivation

for constructing such systems is, in general, to estimate an individual’s gaze target. Two
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types of systems emerge when investigating gaze tracking: the 2-Dimensional system and

3-Dimensional system.

The 2-Dimensional gaze tracking system as referred to by this research does not refer

to how the eye is physically modeled, but to what the system uses as a display to the user.

In 2-Dimensional systems, the system estimates where on a particular plane, such as a video

screen, the user is looking. That is, the system calibrates to a particular display at a certain

distance from the user. These types of systems are used for GUI navigation which includes

the use of the eye-mouse and eye-typing. Currently, there are several accurate systems that

have been commercialized to navigate GUI interfaces [4], [5], [6].

Although 2-Dimensional gaze tracking systems are useful when working with 2D de-

vices, they limit the ability of a user to interact with a device that moves or utilizes 3D

space. The extension of gaze tracking from 2D to 3D has been the focus of research by

several authors since the early 2000s [7], [8], [9], [10], [2], [11]. Unlike 2D gaze tracking

systems, 3D systems aim to use a stereoscopic environment (virtual reality) or a natural

environment (reality) as the display to an individual. However, 3-Dimensional systems in-

troduce complications because estimation techniques become more difficult with the added

dimension.

For an individual to interact with a device in 3D space, the gaze tracking system

must know the fixation point or area of interest of the individual in 3D space. These systems

differ from gesture recognition systems or systems that track the 3D coordinates of a stylus

because there is no item to physically track. 3D gaze tracking systems must use features

that characterize the eye or the physical appearance of eyes to estimate the PoG of an

individual. Therefore, saccadic rhythms, vergence, and other eye characteristics must be

investigated [12].

Fixation, saccades, and vergence are high level characteristics in eye movement that

are important to consider when determining the PoG for an individual. Fixation is the action

of keeping the eye in a fixed position. Saccades are quick rotations of the eye between points

9



of fixation. Vergence refers to the amount that two eyes converge or diverge when focusing

on objects at particular distances [13].

As stated earlier, eye tracking systems that are incorporated to navigate a GUI use

a 2-dimensional format. These tracking devices use data collected from the characteristics

of eye movements and classify these movements into commands. Generally, these systems

include sensory hardware that collect a user’s eye movement data, and software to correlate

the movement data to a PoG on a monitor or 2D screen. Hardware and software of this type

will be used for research in this study and extended to use in 3D gaze estimation.

In summary, the need for convenient methods of directing assistive robotics suggests

the use of 3D gaze tracking. To utilize gaze tracking as a proper tool to navigate a robotic

device, prior studies and methods for 3D gaze tracking are investigated. The findings and

conclusions of these studies are used to formulate a logical method to determine the efficacy

of using gaze data collected in a 2D setting for finding 3D PoG in the interest of directing

an assitive device.

1.2 Purpose

The purpose of this research is to use eye tracking to extend the recent 2D advances

in eye tracking into a 3D environment. Instead of collecting data only on eye movement

characteristics that correspond to point of gaze (PoG) at one depth plane, vergence data can

be collected to correspond to other depth planes. The data collected could be used to locate

an individual’s area of interest using gaze tracking only.

1.3 Objectives

The main objective of this research is to investigate vergence as one characteristic in

serveral that should be included in a gaze directed assitive robot system. The technical

objectives of this research are to first, apply a previously established non-contact, minimal

calibration 3D gaze estimation model to determine a volume of interest in a usable workspace.
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Secondly, the study will apply techniques that boost the performance of the model, setting

a promising foundation for future research.

1.4 Significance of Study

Individuals may suffer from disease or spinal cord injury which impairs use of their

limbs. For such individuals, eye tracking devices to interface with computers can be very

advantageous. Applying this concept to a 3D application would give these users the option

to interact with assistive robotics, in turn affording opportunities to interact with society

with greater ease.

1.5 Limitations of the Study

The study will investigate how eye tracking data can be used to determine depth of

gaze in real 3D space. Also, the study will use data collected to find a region of interest at

varying depths in the user’s field of vision. The study does not generate a generalized model

for directing assistive robotics, and does not present a closed system that is interactive from

the eye-tracking stage to the robotic movement stage. However, the study does lay proper

foundation for future experiments on this topic.
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CHAPTER 2: LITERATURE REVIEW

2.1 Eye Movement Characteristics

Toward detecting PoG, the classification of eye movements must be understood. In a

recent study, eye movement characteristics are detected and classified according to their

characteristic features. Blythe et al. [13] compare eye movements in three separate viewing

scenarios: 2D representation, stereoscopic, and 3D representation (reality). The study aims

to explain how saccadic rhythms and vergence act together in the viewing scenarios above.

Here, the researchers used several LEDs as stimuli to be viewed in all three scenarios.

Results suggest what can and cannot be used as characteristics for detecting gaze depth in

3D situations. Important conclusions of the study show that in all viewing situations, the

versional (strictly lateral) component of saccadic rhythms was the same. Also, it is apparent

through the study that special attention must be given to saccadic rhythms not only during

fixation, but also during lateral movement.

One conclusion that is revealed is that vergence magnitude is very similar in both

stereoscopic settings and in real setting. This finding supports the motivation of this research.

Also, the study notes that saccadic rhythms occur during fixation to continually receive

sensory information. For the proposed research, their conclusions support that a filtering

stage is preferable during data processing.
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2.2 3-Dimensional PoG Estimation Techniques

Several methods have been developed to track PoG in both 2D applications and 3D

applications. However, in both cases, the characteristics used are very much the same. For

the purposes of this research, there are two prominent methods for tracking PoG in 3D space:

the Pupil-Corneal Reflection technique and the model-based technique.

2.2.1 3D Gaze Tracking Models and Related Studies

Pupil-Corneal Reflection (PCR) utilizes the reflection created by light off the cornea and

pupil to determine the orientation of the eye and direction of gaze. This method requires

restriction of head movement due to its sensitivity to change of reflection off the eye. Also,

the distance from the eye sensor must remain approximately static to achieve acceptable

accuracy.

Model-based techniques can alleviate the need for the user to maintain constant head

position. Shape-based models use a prior model of eye contours to track the movement of

the eye. Appearance-based approaches build a model based on the appearance of the eye

under analysis. Prediction templates are constructed for the eye in one position to predict

the appearance of the eye under different movements. The predictions and actual images

are then compared using a similarity measure to indicate the position and gaze direction of

the eye [14].

Some model-based methods incorporate the PCR technique as a feature. Generally,

methods that incorporate several techniques for eye tracking are referred to as hybrid models.

Past studies have used such models to estimate PoG of an individual. Such tracking systems

could be separated into different categories depending on (1) display type, (2) hardware

requirements, and (3) the use of a priori data of the environment [2].

Duchowski et al. [7] developed a system to determine 3D PoG by using a head-

mounted display. The display was stereoscopic, meaning each eye was presented images of

slightly different point of view, simulating reality. An electromagnetic tracker was used to
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track head pose and a head mounted eye tracking system determined the PoG on each 2D

screen presented to the respective eyes. Using both head pose information and two separate

2D data sets for each eye, the 3D PoG was estimated. The system required that users

calibrate to the eye tracker, the distance between each eye, and the distance of the eyes to

the head mounted screen.

Mitsugami et al. [8] developed a head mounted system to estimate 3D PoG from 2D

PoG estimates using a view camera. The display was a real 3D setting. Intersection of

view lines were used with known position of and orientation of the head to find 3D PoG.

The authors took samples of view lines from different angles of head positions. This was

simulated by laterally moving a fixation point across a viewing plane. A novel stochastic

algorithm was used to improve the technique by using all viewing lines from the different

angles. The viewing distances of the gaze targets were set at impractically far distances

away (300 - 500 cm). This research is focused in using a similar idea to estimate 3D PoG,

without the use of head gear and within a practical, but usable, volume.

Essig et al. [9] introduced a tracking system that utilized a neural network to esti-

mate the 3D PoG based on 2D binocular data. A computer screen displayed random dot

stereograms to users and data was collected on each eye’s characteristics. The gaze tracker

used was also head mounted. The system required that the user calibrate the gaze-tracking

system to the monitor and that the neural network be trained.

Kwon et al. [10] displayed a stereoscopic setting using a 2D parallax barrier. A

parallax barrier is split into several sections so to create the effect of 3D by displaying

slightly different images to each eye without the use of headgear. This method required a

static distance between the tracker and the user.

2.2.2 Recent Studies

Hennessey and Lawrence use a hybrid model to estimate the absolute (x,y,z) coordinates

of an individual’s gaze [2]. The authors’ objective is to develop the first binocular system
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for estimating the absolute (x,y,z) gaze point coordinates of an individual when viewing a

real world setting. Also, the authors claim that their model-based method is the first of its

kind to detect 3D gaze points and that their method is the first to be noncontact. No head

gear is required for their approach to calculate PoG in 3D space.

The study implements a three stage system. An image processing stage extracts

image features. A model-fitting stage calculates corneal centers and the optical axes. The

last stage uses a vergence algorithm for computing the 3D PoG.

The system configuration is composed of multiple infrared (IR) light sources, a high

speed digital camera, and a set of 3D PoG markers. The IR sources are used during the

image processing stage to extract the contour of the pupil in each eye. The high speed

digital camera is used to record the corneal reflection off the eyes as a result of ON-axis

and OFF-axis LEDs. The set of markers is used during testing. Participants fixate upon

the markers and a comparison between estimated PoG coordinates and marker coordinates

is performed. The workspace considered has dimensions of 30 × 23 × 25 cm. Seven test

participants were used to calculate precision, accuracy, and robustness of the overall system.

The study also introduces a filtering technique to increase precision. The filtering

technique is employed to reduce jitter, or what is formally known as saccadic movement

[13]. This produces a latency of the system to a maximum of 1.5 s. Latency refers to the

computational delay between the collection of data and the prediction by the system.

Results of the study show that the system has an average accuracy of 3.93 cm from the

target. Accuracy error was calculated by the Euclidean distance error. The system allowed

for a 3 × 9 × 14 cm head space volume which corresponds to the amount of movement

participants’ heads varied.

Specific drawbacks are not easily spotted in the Henessey and Lawrence study. The

workspace of the Hennessey and Lawrence study proves too small for robotic movement, and

it is one of the aims of this proposal to create a methodology to detect 3D gaze detection in

a larger, more practical workspace. Studies such as Hanhela et al. [15], and Wang et al. [16],
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and Duchowski et al. [11], are examined.

Hanhela et al. [15] determines the link between number of observers and precision of

gaze position estimation, and estimate the number of participants needed for sufficient esti-

mation precision. The study focuses on extracting stereoscopic volumes of interest (SVOIs)

from each participant, then intersecting these SVOIs to estimate the overall VOI. The exper-

iment consisted of 13 participants. Each participant would view a single object (white ball)

moving in 3D space on a stereoscopic display. The display was 30 cm from the participants,

while the apparent depth of the ball ranged from 28.24 cm to 31.99 cm from the participant.

The authors find that estimating the x and y ranges for the SVOI can be achieved with

considerable accuracy with 4 participants. The z range estimation was more challenging.

The reported minimum root mean squared error over all participants was 3.55 cm.

The methodology to estimate the SVOI for each participant was to build a 2D heat

map of the left and right eye as the participant views the moving object. The heat maps

are projected to each respective eye to create a cone-like structure which extends into the

stereoscopic display. Intersecting these projections would result in a SVOI as the white ball

moved around the display. Once the SVOIs were compiled for all participants, they were

intersected to find the overall VOI to estimate where the ball was moving on the stereoscopic

display.

Wang et al. [16] present an approach to 3D gaze estimation in stereoscopic displays

comparable to proprietary methods. The authors incorporate an online filter and a depth

calibration step and use a triangulation of gaze depth to produce depth estimates. Their

method uses a derivation for the disparity model. This method is given in equation 2.1 below.

To find the gaze depth z based on a ∆x disparity.

−z
D′ − z

=
∆x

a
→ z =

∆xD′

∆x− a
, (2.1)

where D′ =
√
D2 + y2

e , ye = (yl + yr)/2 and a = 6.3, the average separation of the

eyes. Also, z is the estimated depth of gaze, ∆x is the horizontal difference between gaze
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points, D′ is the distance to the screen, which varies with height of the gaze points, and ye

is the average y coordinate in 3D space.

To triangulate the coordinate of gaze depth, the left and right eye 2D on-screen

positions are measured. There is error associated with spatial triangulation, meaning both

visual axis may not intersect in 3D space. However, the authors average the y-coordinate of

the left and right eye gaze vectors to produce a usable y coordinate estimate.

To remove outliers, the authors replaced x and y coordinates that were two standard

deviations away from the mean with the most recent valid reading. To calibrate the measured

depth estimate in z and the actual depth in z, the authors introduce a linear system S = ZB,

where S is the vector of known depth values, Z is the vector of measured depth values, and

B is a vector of unknown coefficients.

Eight participants were used in the study. Each were asked to pass a preliminary

depth test to be qualified for the study. Next, the participants underwent the 3D calibration

step. Finally, in the testing phase, the participants were shown the sphere grid stimulus

and were instructed to follow a sequence of highlighted spheres in a predetermined pattern

on an 11 x 11 sphere grid space. Each row of the grid space was separated by 5 cm. The

closest horizontal row of 11 spheres was located at 25 cm towards the viewer out of the

screen. When the sequence was activated, the user would follow the highlighted sequence of

spheres at five depths: 20, 10, 0, -10 and -20 cm. The value ’0’ is reserved as the ”on-screen”

position.

The study was completed on both a haploscope and a desktop active stereo system.

The haploscope proved to be more consistent. Distance from screen to user of the haploscope

setup was 86.36 cm. Images were rendered assuming an eye separation of 6.3 cm. The screen

was 48 cm wide and 30 cm high. For the desktop setup, the screen was set at 50 cm from

the user and the monitor was 47.5 cm x 29.2 cm.

17



2.2.3 The Vector Intersection Model

Duchowski et al. [11] build upon the Wang study by comparing depth estimation when

viewing stereoscopic displays and viewing a similar physical scene. The scene was made of

four Snellen charts, patterned after the stimulus used by Love et al. [17]. The stimuli for the

stereoscopic display were placed at four apparent depths relative to the screen: -15, -5, 5,

and 15 cm. The value ‘0’ is reserved again as the “on-screen” position. The charts were offset

horizontally so that none would be directly behind the other. In the physical scene setup,

the Snellen charts were printed out and placed on cardboard. They were placed at 40, 50,

60, and 70 cm from the user and were also horizontally placed so that no chart overlapped

with the other.

For depth estimation in the stereoscopic scene, a Wheatstone system is implemented

on a haploscope. This system uses the disparity model outlined by [16]. A prior step is

needed for 2D calibration which is completed by proprietary software. For 3D calibration,

methods of [16] are implemented for further filtering.

For depth estimation in the physical scene, the binocular Dikablis system is used.

The hardware for this system is comprised of two individual cameras that track eye move-

ments and produce monocular gaze estimates for each eye. The system also produces two

scene camera videos representing the apparent view of each eye. The system requires a 2D

calibration to a particular depth by using four points on a calibration plane. Since there is

no physical screen to calibrate to, the authors use four calibration points on a wall, a certain

distance from the user. Therefore, once the system is calibrated to the calibration plane and

the 3D coordinates of the user’s eyes are known, gaze vectors can be produced from each

eye to the calibration plane. Intersection of these vectors produces a gaze point that can be

used to know where the user is looking. This spatial triangulation method is referred to as

the Vector Intersection (VI) Model.

Data from 15 participants were used after the removal of datasets belonging to par-

ticipants with procedural problems or outlier characteristics. The overall result of the study
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proves that for situations involving physical stimuli, and when a physical fixed accommoda-

tion screen is not present, the VI Model for computing depth is more accurate. The disparity

model, while accurate for stereoscopic displays, is not an effective indicator for estimating

gaze depth in physical environments. Therefore, the VI Model will be implemented in this

research.

2.3 Neural Network

As stated earlier, work in [9] utilized a neural network to categorize gaze data when

viewing autostereograms. This approach will be applied to the physical experimental setup

proposed by this research. To validate the use of a multilayer neural network to 3D gaze

estimation, an overview of neural network theory is provided using subject matter from [18].

2.3.1 Multilayer Neural Networks

A multilayer neural network is a method used primarily for statistical pattern recognition.

It is an extension of simpler training classifiers which utilize linear discriminants and the

gradient descent method to properly classify an input data set to an output data set. There

are several cases in which these simpler methods effectively classify data and generate an

effective hyperplane defined by linear functions. In a more complex circumstance in which

a nonlinear hyperplane must be generated, multilayer neural networks are applicable.

The overall goal of any pattern recognition system is to clearly classify input data,

or minimize classification error. Multilayer neural networks solve the problem of generating

a set of nonlinear functions to define decision regions. By learning parameters that define

the nonlinear functions while simultaneously learning parameters that define the linear dis-

criminant, multilayer neural networks effectively define a proper nonlinear hyperplane and

minimize classification error at the same time.

Generally, three layer and four layer neural networks are sufficient for complex clas-

sification. For the purposes of this research, given that there is a relatively low number of

19



inputs, a three layer topology is utilized. While the four layer topology is based upon the

same principles, it will not be investigated further [18].

2.3.2 Topology

The topology of a three layer neural network includes an input layer, hidden layer, and

output layer. Each layer consists of a number of nodes or units. The number of input units

is simply determined by the dimensionality of what needs to be categorized. The number of

outputs is determined by the number of classes. More ambiguously, the number of hidden

units cannot be specifically predetermined. Although, quantity thresholds can be generally

established to produce effective classification results. These thresholds will be discussed in

section 2.2.3.

2.3.3 Neural Network Training

Each input unit is “connected” once to every hidden unit, and each hidden unit is “con-

nected” to every output unit once. Each hidden unit produces a weighted function of all

inputs. Each output unit receives these functions from all respective hidden units, generat-

ing a function of all hidden units. Therefore, all input units affect the output at each unit

through the hidden layer. The input to the hidden layer can be mathematically modeled in

(2.2) and (2.3), taken from [18].

netj =
d∑

i=0

xiwji, weighted sum of input units (2.2)

yj = f(netj), nonlinear function produced by hidden unit j, (2.3)

where, xi is an ith input and yj is the output at the jth output unit.

Note that i is the index for input units and j is the index for hidden units. The

weight wji references the weight applied to the input at hidden unit j.

The hidden to output layer process can be modeled by (2.4), showing the weighted
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sum net for a given hidden unit k, and the output z from an output unit.

netk =

nH∑
j=0

yjwkj, weighted sum of hidden units (2.4)

zk = f(netk), nonlinear function produced by output unit j (2.5)

Substituting (2.2) into (2.4) yields the output function for a given input x as given

by (2.6).

gk(x) = zk =

nH∑
j=0

f(
d∑

i=0

xiwji)wkj (2.6)

Equation (2.5) shows the forward feeding network topology. The network is trained

in a supervised fashion as follows. To learn the input-hidden weights (wji) properly, the

Backpropagation method must be applied. For a given input x, backpropagation works by

recursively calculating error between results of the output units and ideal results, or target

results selected by the experimenter. Equation 2.7 gives the general definition for training

error, E(w):

E(w) =
1

2

c∑
k=1

(tk − zk)2, (2.7)

where tk is the desired output, c is the number of output units, and w is a vector of input-

hidden weights. The weights start as random values and change in direction using gradient

descent to minimize E(w). This change is generally expressed as

∆w ∝ −∂E
∂w

. (2.8)

There are other characteristics that have an effect on the overall training of the network

such as learning rate and sensitivity. This research is not concerned with improving the

efficiency or speed of the established three layer neural network method. Descriptions of

other characteristics are left to supplemental reading.

It is imperative that viable training set protocols are adhered to, such that the network

is trained correctly. There are three main patterns that are used when training the network:
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stochastic, batch, and on-line training patterns. Stochastic training patterns present random

inputs from the training set, and the weights are adjusted accordingly after the complete

input set is presented, or each epoch. In Batch training, patterns are presented to the network

before any learning takes place. On-line training requires each pattern is presented only once

to the network. This research will use a stochastic training pattern so that the system is not

over-trained to any particular group of gaze data.

With any pattern classification system, it is important to have protocols that indicate

when to halt training. The neural network uses a cross-validation to accomplish this task.

The validation set consists of patterns not yet used in the gradient descent training. If n

represents the total number of patterns in D (the input set), then the classifier is trained m

times. The index m refers to how many combinations of patterns there are. Meaning, the

total number of patterns n is divided by a chosen m, and error between sets of used and

unused patterns is taken for each m. The mean of the m errors is taken after each epoch.

Thus, for a given D, and a set network topology (a set number of input, hidden, and output

units), there are n patterns present to train the data. An m is chosen to divide the patterns

evenly, n/m, such that there are m-1 training pattern sets and one validation set for each

training index m. For each epoch, the system is trained m times, and the error is recorded

at each epoch as the mean of the m errors. Training halts when this error is minimized.

This minimization essentially means that no other pattern set produces better classification.

Recall that the number of units to use in the hidden layer is still ambiguous, but there

are heuristics for choosing this number. Indirectly, the minimum number of hidden units

to use for any three layer implementation is proven by Kolmogorov [18] as 2n + 1; where n

in this case refers to number of input units. However, using a low number of hidden units

proves to create high classification error because of the lack of network parameters. Too

many hidden units proves to overtrain the data to the particular training set. As a general

rule, the number of hidden units should be related to the number of total weights by s/10;

where s refers to the number of training points. Thus, if the total number of input units are
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known and the network is fully connected, the total number of hidden units can be derived

using (2.6).

Wtotal =
s

10
, (2.9)

nH =
Wtotal

i
, (2.10)

(2.11)

where Wtotal is the total number of weights in the network, nH is the total number of hidden

units, and i indexes the input units.

The target set is very important to how the Neural Network learns. The target set

consists of what the output is supposed to be for a given input. As a rule, the target category

should be defined using a +1, and non-target categories should be defined as -1. Thus, in

a 5 -category decision, if the first category is the target, the output should be defined as

to = (+1,−1,−1,−1,−1)′.

2.4 Proposal

There are limitations of the studies highlighted in section 2.2. The study in [2] is accurate

for its application, but the workspace is too small for applications involving assistive robotics.

To build upon this study, this proposal aims to expand the workspace, and use state-of-the-

art software and more modular proprietary hardware to develop a similar non-contact system

over a more usable volume.

Several of the studies mentioned above are conducted in explicitly stereoscopic set-

tings [7], [9], [10], [16]. While these controlled settings are useful for expanding methodologies

of 3D gaze tracking, [11] reports that the error under stereoscopic settings may not be an

accurate reflection of what the error would be for similar experiments performed in physical

settings.

Understanding that there is also error associated with the vector-intersection model

for 3D gaze estimation, it is also of interest here to attempt to bound such error. Using the
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vector-intersection technique in tandem with the application of a neural network may prove

to remedy some problems associated with the vector-intersection model by producing two 3D

PoG estimates. Essig et al. [9] used a similar technique when tracking vergence movements

in autostereograms.

Therefore, the research completes four tasks. The first is to collect 2D non-contact

gaze data from several participants over a usable workspace. Next, the study will implement

the vector-intersection model producing a calculated estimate of 3D PoG. Third, the study

will use half of the participant pool to train a neural network to be tested on the other half.

Using the combined model to produce a bounded vector-of-interest (BVecOI), a VOI can be

ultimately estimated for use by the assitive robot in the workspace.
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CHAPTER 3: METHODOLOGY

3.1 Identification of Hardware and Software

An eye tracker is used to collect gaze data for the experiment. The Tobii TX300 is a

state-of-the-art eye tracker that measures several eye movement characteristics at very high

precision on a 2D platform [5]. It operates at 300 Hz, meaning that one sample of gaze

data is taken approximately every 3 ms. The eye tracker has an option for use without the

screen attached known as the “Scene-camera Setup.” This setup is used when conducting

the experiment.

Software to interface with the TX300 in the experiment and to construct the estima-

tion algorithm will be needed. Aside from the proprietary Tobii Studio software required to

collect data from the TX300, all filtering and analysis is performed in the high-level language

programming environment Matlab R2013a.

3.2 Experimental Setup and Description

The experiment setup is as follows. The eye-tracking device is set facing the user at

approximately 60 cm away. In front of the eye-tracking device, several planes are presented to

the user. The planes or windows increase proportionally in size and are placed at increasing

distances from the user, creating a pyramidal frustum of view. The experiment’s layout is

given in Figure 3.1. Window 1 is the initial plane or calibration plane. Table 3.1 gives the

number, dimension, and depth for each window.

Table 3.1: Window Dimensions
Window Number Dimension (L x W) (cm) Number of Dots Depth (cm)

1 40.6 x 25.6 9 0
2 54.1 x 34.1 25 20
3 67.7 x 42.6 25 40
4 81.2 x 51.2 25 60
5 120.6 x 76.8 25 120
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Figure 3.1: Experimental Setup

The eye-tracking device uses a monitor or 2D screen for calibration. The device is

meant for tracking eye movements with respect to one plane of depth. That is, all data

collected on eye movements is used to approximate the PoG of a user on the 2D screen,

rather than in 3D space. Similar to the Dikablis system [11], each user calibrates by the

eye-tracker to a 2D plane first, before any data is taken. Window 1 is used as the calibration

window. Notice in Figure 3.1 that the universal coordinate system origin is set at the bottom

left corner of the calibration plane (Window 1). This is congruent to the TX300 system’s

origin.

3.3 Experimental Novelty

Taking prior research into consideration, this study is novel in two ways. First, the

workspace volume considered is a larger, more usable workspace than previous studies. Cur-

rent literature shows that the most variance in stimuli depth in stereoscopic experiments
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is 40 cm [16] and in physical experiments 30 cm [11]. This study investigates a variance

in depth of stimuli over a distance of 120 cm, at five distances: 60, 80, 100, 120, and 180

cm from the user. Also, the volume considered in this research is 5.351 × 105 cm3. For

comparison, [2] investigated a volume size of 17250 cm3.

Secondly, the error associated with the vector-intersection model for 3D PoG estima-

tion is predicted to be large given a workspace of the volume presented. There is a need

to bound such error. To this end, a neural network is applied to the system. As in [9], a

neural network is used to achieve a second model, with the data collected is from stimuli in a

real setting, rather than an autostereogram setting. This difference, while seemingly minor,

could produce significant differences in accuracy when applying the neural network.
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CHAPTER 4: EXPERIMENTAL PROCEDURE

4.1 Gaze Data Collection

Eight participants volunteered for the experiment. A chin rest was used to insure that

head movements were minimized and that both right and left eye position would be kept

consistent. Each participant was instructed first to undergo a 2D calibration step, as required

by the eye tracking software. The calibration was performed on the nine Dots of Window 1.

Next, the participant would be asked to fixate upon each Dot in order from Dot 1 to

Dot 9 on Window 1, and from Dot 1 to Dot 25 on Windows 2 through 5. This process is shown

in Figure 4.1. The participant was allowed to rest after each window session was completed.

For each Dot, there was a recorded time period ranging from 1-3 seconds. Recalling that the

eye tracker records at 300 Hz, this translates to 300 - 900 samples per Dot.

Figure 4.1: Fixation Direction: Window 1 (Left), Window 2-5 (Right), Not to scale.

All eight participants completed the experiment. If errors occurred while recording

data, the participant would be requested to repeat that portion of the experiment. Partici-

pant data was exported to Microsoft Excel spreadsheets using Tobii Studio software. These

spreadsheets were then imported into Matlab for further analysis. Figure 4.2 shows the

actual data collection fixture.
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Figure 4.2: Data Collection Fixture (Left), Window 5 Data Collection (Right)

4.2 Data Processing

Participant gaze data was imported into a Matlab data structure so that data could be

categorized by Participant, by Window, and by Dot number. The data imported for each

Dot was a collection of samples. Each sample consisted of coordinates representing where

the left and right eyes’ line of sight intersected the calibration screen. Therefore, each four

dimensional sample consisted of (XLeft, YLeft) and (XRight, YRight). These two points are

where the eye tracker estimates each eye is focused on the initial Window, regardless of

which Window a Participant is focused upon.

4.2.1 Filtering and Smoothing

Samples were removed if there were blank entries for the left eye, right eye, or both. This

is justified given that the nature of this research is to study vergence, which requires data

from both eyes. The samples were filtered and smoothed by dimension. Data more than two

standard deviations from the mean (per dimension) were removed. A moving average was

applied to each dimension. The Window size was 15 samples. This smoothing step is shown

in Figure 4.3. These two steps would ensure that the data used would exclude sporadic

variations in eye movement. Figure 4.2 shows how the data is filtered. The green and

magenta squares represent prefiltered data of (XLeft, YLeft) and (XRight, YRight), respectively.

Red and black circle markers represent data left over after removing outliers, while blue

and cyan circle markers represent data remaining after applying the moving average filter.
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The example data presented in Figure 4.4 shows 120 samples taken from Dot 3, Window 1,

Participant 1.

Figure 4.3: Smoothing in x,y - dimension (Left eye)

Figure 4.4: Filtering and Smoothing

4.2.2 The Vector of Interest

A fundamental component of estimating where an individual is looking in 3D space is

determining which direction the eyes are pointing. This vector of interest (VecOI), gives a

gaze path that can be used for a number of applications. However, it is the distance along

such a vector that is the interest of this research. The models that are applied to gaze data

in this study give clues to how far one is looking in 3D space. By knowing the VecOI and
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the estimated depth of focus (estimations of models), a proper PoG can be determined for

each sample generated by the eye tracker. Collecting several of these samples over time on

one particular stimulus of interest produces a cluster of data points. Finding the centroids

of such clusters can be used to determine where an individual is focused. Since the gaze

data used in this research can be used to find the VecOI, the models presented below will

refer to the VecOI for a proper gaze path for each Participant for every Dot stimulus. The

models are used to estimate how far on this vector the PoG lies or, on which section of this

vector the bounded vector of interest (BVecOI) lies . Whichever the case, the VecOI creates

an accurate gaze path as shown in Figure 4.5.

Figure 4.5: Overhead of Participant 1 VecOIs

Figure 4.5 displays an example of the VecOI of Participant 1 for the first four Win-

dows. There are 120 VecOI’s per Dot, creating the band of blue lines seen at each Dot. As

the figure shows, the VecOI’s are accurate, passing through or very close to their respective
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Dots. All Participants were observed to follow this same pattern.

4.2.3 Vector Insection Approach

To estimate where in 3D space each participant was focused, the vector intersection

(VI) model was applied. This model takes the (xe, ye, ze) position of each eye and draws

a vector to the respective gaze point on the calibration plane. Both vectors are extended

through the calibration plane. Where the two vectors intersect produces a specific (xs, ys, zs)

estimation for each sample. Since there are several samples for each Dot per participant, a

cluster will form for each Dot. The centroid of this cluster is computed and is assigned as

the final estimated point for each particular Dot. Therefore, for each participant there are

109 centroids computed. Figure 4.7 visualizes this process for one particular Dot. The top

image of Figure 4.7 shows the eye positions, the right and left gaze vectors, and the cluster of

red estimation points. The bottom image shows a zoom on the cluster, showing the position

of the real coordinate of the Dot, the red estimation cluster of points and the position of

the centroid of the cluster. Error for the VI model is calculated by finding the Euclidean

distance from the centroid to the real Dot coordinate.

To generate the vector from each eye, a set of parametric equations was used to

generate x-coordinates, y-coordinates, and z-coordinates to define the vectors. Using the

(xe, ye, ze) for each eye and the (xiw, yiw, ziw) on the initial window for each eye (iw =

initial window, two points can now be used to define an equation that intersects both points.

This process is executed for both gaze vectors. The maximum of parameter t is specified

such that there is enough length in each gaze vector for both to intersect. A value of t

is found for each sample for which both gaze vectors intersect in the x and z dimensions.

The average y-coordinate is found between the two vectors at that t value and the resultant

(xs, ys, zs) coordinate is used as the final estimation point for a particular sample. This

averaging method is shown in Figure 4.6. The pseudocode below gives a summation of the

process in Matlab. To find the centroid of each cluster, the kmeans function in the Matlab

Statistics toolbox was utilized.
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Figure 4.6: Averaging method to find ys

Figure 4.7: Vector Intersection Model Example

Algorithm 4.2.1: Vector Intersection Model(Matlab)

comment: Define Left and Right Eye Positions in 3D space

LeftEyePosition = [XL, YL, ZL];
RightEyePosition = [XR, YR, ZR];
comment: Generate the Left and Right Vectors originating from Eyes

for i = 1 : length(GazeInputSampleSize)

LeftEyeGazePoint = [LeftGazePointX,LeftGazePointY ];
RightEyeGazePoint = [RightGazePointX,RightGazePointY ];
comment: Set up Parametric Equation

V ectorLeft = LeftEyePosition− LeftEyeGazePoint;
V ectorRight = RightEyePosition−RightEyeGazePoint;
comment: Defining parameter ’t’

t = −5 : .01 : 0 Be sure that t has a large enough range and high resolution.
comment: Define LoS vectors for each dimension per eye

LoSLx = LeftEyePosition(1) + V ectorLeft(1) ∗ t;
LoSLy = LeftEyePosition(2) + V ectorLeft(2) ∗ t;
LoSLz = LeftEyePosition(3) + V ectorLeft(3) ∗ t;
LoSRx = RightEyePosition(1) + V ectorRight(1) ∗ t;
LoSRy = RightEyePosition(2) + V ectorRight(2) ∗ t;
LoSRz = RightEyePosition(3) + V ectorRight(3) ∗ t;
findt = find(t when LoSLx = LoSRx and LoSLz = LoSRz)
comment: Search LoSLy and LoSRy for y @ t and average them

Finaly = mean(LoSRy(findt), LoSLy(findt));
comment: Use either LoSRx or LoSLx to find X,Z @ t

Finalx = LoSLx(findt);
Finalz = LoSLz(findt);
FinalEstimation = [Finalx(xs), F inaly(ys), F inalz(zs)];
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4.2.4 Neural Network Approach

As stated earlier, to somehow characterize the data to a particular distance, a neural

network is implemented. The four inputs to the neural network were the (XLeft, YLeft) and

(XRight, YRight) points. The system was trained with target outputs in discrete form. Figure

4.8 shows the neural network overall structure and how each target output was defined.

Equation (4.1) displays which window each target output corresponds to. Note that in 4.1,

each sample will take on one row as the target output, not the entire matrix presented.

Figure 4.8: Applied Neural Network Topology

Target Output =


1 −1 −1 −1 −1
−1 1 −1 −1 −1
−1 −1 1 −1 −1
−1 −1 −1 1 −1
−1 −1 −1 −1 1

 =

∣∣∣∣∣∣∣∣∣∣
Window 1 → 0cm
Window 2 → 20cm
Window 3 → 40cm
Window 4 → 60cm
Window 5 → 120cm

∣∣∣∣∣∣∣∣∣∣
(4.1)

The training set was compiled using four participants. To exhaust all possible com-

binations of training sets, an n choose k,

(
n
k

)
= n!

k!(n−k)!
matrix is generated. For this

experiment, n = 8 and k = 4. This results in seventy different training and test sets.
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Once the neural network was trained to the training dataset, sample sets from the

test participant set are used to find the accuracy of the network. The outputs of the network

from the test set were not discrete values, rather each of the five values varied between -1

to 1; −1 ≤ On ≤ 1. The maximum of these outputs were found for each test sample input,

so that each sample is assigned to a particular discrete depth at the window distances. For

example, the network could be trained using sample sets from participants 1-4. The trained

network is then tested for accuracy on participants 5-8. The network’s output for a particular

sample is Ns = [O1, O2, O3, O4, O5]. If the maximum output at a particular sample occurs

at O2, then the output array for that particular sample would be Ns = [0, 1, 0, 0, 0]. Since it

is known that each output On corresponds to a window, then each sample can be assigned

a distance, or a z -coordinate.

To summarize in detail, the Neural Network Model is implemented in a few major

steps. In the training step, data from four participants is used to to train a neural net. Each

sample used to train the network is assigned a target output group of five discrete outputs

or one of the five rows in 4.1. The training data used is comprised of 120 samples for each

of the 109 Dots per participant. Therefore, a total of (4 × 109 × 120) 52320 samples were

used in training.

Next, the trained net is applied to the other four participants’ data, again comprised

of 52320 samples, divided into each of the 109 Dots. The output group for each sample

consists of five numbers, varying from -1 to 1. The maximum output from each output

group is found and set to one, while all other outputs are set to zero. This produces a

discrete output for each sample, effectively assigning it to a window and in turn, a z value.

E.g., Ns = [0, 1, 0, 0, 0]→Window 2→ 20cm.

For each sample, an average vector can be found, indicating a vector of interest

(VecOI). Since each sample is assigned a z value, a corresponding x,y value can be found on

the respective VecOI. This produces a (xs, ys, zs) estimate for each sample in the test data

set. Recall that the samples are grouped by Dots, therefore there are 109 clusters per Dot,
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comprised of the 120 samples. A centroid for each of the clusters is found. The Euclidean

error is then calculated using the known real coordinate of the Dots and the estimated

centroids.

The Neural Network toolbox in Matlab allows for a simple and effective way to train

networks and save each network used. The following steps give an overview of how the

Neural Network Model was implemented in the Matlab environment to output data used for

accuracy analysis.

1. Compile the training data set into one matrix. Interweave the data so that the network

does not train to one Dot first.

2. Create a target matrix. That is, assign each sample in the training data set a vector

of five elements, e.g. [1 -1 -1 -1 -1] (Window 1).

3. Set the seed value by using the setdemorandstream() function.

4. Use the [net, tr] = train(net,B,C) function to output a network (net) and training

data (tr). The argument net is the network (which changes as it is trained), A is the

training data set, and B is the target data set.

5. Save the network. For this studies’ purposes, there were 70 saved networks, corre-

sponding to the number of participant combinations.

6. Compile the testing data set in one matrix. The samples can be in any order (unless

it is desired to have them categorized for further analysis).

7. Use the saved network (net) to classify the test data set.

8. Find the highest output value for each sample and assign the z value.

9. Compile the VecOIs for each sample. Find the corresponding x,y coordinate for each

estimated Z coordinate.
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10. Group the samples into Dots (if this has not already been accomplished in step 6).

Find the centroid of each Dot cluster.

11. Calculate the Euclidean distance from centroid estimation coordinate to real Dot co-

ordinate for each cluster.

Once each sample is assigned a discrete z value, this value is found on the VecOI,

which is generated by a parametric equation. Since the VecOI is known for each sample,

and now the z coordinate is known on that vector, the corresponding values for x and y are

found on that particular vector. Figure 4.9 illustrates this process and again, uses data from

Participant 1, Window 2, Dot 3.

Figure 4.9: Neural Network Estimation using Average Gaze Vector
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Each Dot will have a cluster of points and, unlike the vector intersection model, this

cluster is restricted to discrete z values. The centroid of each cluster is found for each Dot,

representing the estimated PoG for each of the 109 Dots per participant. The centroid in

Figure 4.9 is shown by the black Dot. There is indeed one average gaze vector (blue lines)

corresponding to each sample, thereby producing 120 average gaze vectors. Notice that this

particular centroid estimation is incorrect by one window, estimating that the centroid is

located on Window 3 instead of Window 2.
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4.2.5 Combined Model Approach

To generate a bounded Vector of Interest (BVecOI), centroid estimates from the VI

and Neural Network models are used. The centroids are connected by a vector and a ra-

dius is extended from each point on that vector, creating a search volume. Thus, for each

participant, a VOI is generated per Dot stimulus, yielding 109 VOIs to be compared to the

real Dot locations. Accuracy is found by determining if the estimated VOI encompasses the

coordinates of its respective Dot. Figure 4.10 shows the BVecOI for an example group of

Dots. The BVecOI is created with a parametric equation, as noted above. The parameter t

is bounded from -1 to 0 to ensure that the vector would not extend beyond the two centroid

estimate coordinates.
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Figure 4.10: Combined Model Overhead View (top), Zoomed (bottom)

Note the red filled markers are the Neural Network Model centroids and the black

filled markers are VI Model centroids. As in earlier figures, the position of the eyes and the

initial window outline are shown. The non-filled circles represent the real Dot coordinates.

The BVecOI is shown by the blue lines connecting their respective centroids.

4.2.6 Search Region Approach

The VOI in the Combined Model is determined by two centroids that may or may not

be accurate under high resolution. Understanding that vergence, and in general the human
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eye, is prone to have variations depending on focus, human mechanics, or simply fatigue,

it is warranted that larger Search Regions (SR) should be defined for an assitive robot to

use to shorten its searching path. Therefore, the frustum of view will be divided into three

volumes, which will be called regions. The regions are displayed below in Equation(4.2) and

Figure 4.11.

Bounds =


−10cm ≤ Bounds ≤ 30cm, Region 1
30cm ≤ Bounds ≤ 70cm, Region 2
70cm ≤ Bounds ≤ 130cm, Region 3

 (4.2)

Figure 4.11: Search Regions

Both the VI Model and the Neural Network Model have centroid estimates for every

Dot per Participant. These centroids fall within one of the above regions. Using these regions

the VecOI can be bounded, but unlike the Combined Model, the bounds are fixed, and the

models are treated separately. Based on this paradigm, the Search Region Method is now

proposed.

The Searching Region Method is found by establishing the searching regions, generat-

ing an average VecOI, which is an average vector of all VecOIs for a given Dot, and bounding

the average VecOI by the searching region decided by the z value of each centroid estimate

(essentially defining the SBVecOI). Accuracy is found by calculating the Euclidean error
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between each point coordinate on the SBVecOI and the respective Dot coordinate. Since

Windows 1 and 2 fall within Region 1, Windows 3 and 4 within Region 2, and Window 5

within Region 3, different threshold tolerances are applied when calculating accuracy. For

example, if the estimation is for Dot 1 on Window 2, then a lower tolerance is used than if

the estimation is for Dot 1 on Window 3. The tolerances used when calculating accuracy

are the minimum of the two window tolerances in a particular Region, except for Region 3

which includes one window.
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CHAPTER 5: RESULTS AND DISCUSSION

5.1 Accuracy of the Vector Intersection Model

As stated above, accuracy for the VI Model was determined by finding the Euclidean

distance from the estimated centroid to the respective Dot under scrutiny. For each window

a strict maximum tolerance is defined, given the dimensions between each Dot. Table 5.1

gives the distances between Dots in the x and z direction for each Window. Notice that for

Window 1 there are only 9 Dots. The space between Dots shown for this Window will be

given as though there were 25 Dots, to retain uniform calculation of accuracy. Maximum

tolerance is the minimum of the two dimensional tolerances. Table 5.1 notes these tolerances.

Table 5.1: Defining Accuracy Tolerances for VI Model
Window Number Distance between Dots Tolerance Maximum Tolerance

(x-dim,y-dim) in cm (x-dim,y-dim) in cm Min(x-dim,y-dim)

1 20.3, 12.8 5.08, 3.2 3.2
2 13.5, 8.5 6.7, 4.2 4.2
3 16.9, 10.6 8.4, 5.3 5.3
4 20.3, 12.8 10.1, 6.4 6.4
5 30.1,19.2 15.0, 9.6 9.6

Thus, when accuracy is computed, the maximum tolerance is used as a radius, forming

a sphere from each estimated centroid. The model is deemed as accurate if the real coordinate

Dot lies within this tolerance sphere. Table 5.2 shows the accuracy of the VI Model for each

participant.

The accuracy of the VI model is poor, given that most participant accuracy did not

reach twenty-five percent. To better understand the reason behind the results, error in the

x, y, and z dimension is analyzed.

The VecOI that is not the main issue, but where on that vector one is focused. In

turn, if an accurate z value is estimated, then the corresponding x,y values will be accurate

as well. However, the fact still remains that the estimated centroids for each participant
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Table 5.2: Accuracy of VI Model
Participant Total Accuracy (%)

1 18.3
2 34.8
3 9.1
4 3.6
5 9.1
6 23.8
7 16.5
8 20.1

using the VI model are highly inaccurate. These inaccuracies may be explained by biological

factors, meaning that, when an individual fixates on an object in 3D space, vergence supplies

ocular focus in tandem with lensing focus. Also, image processing in the brain plays a large

role in focus as well.

Inaccuracies could occur also due to what was focused upon, meaning that the black

round Dots used as stimuli provided little interesting information to the user. Being near-2

dimensional and one solid color, it may be that focus was not easily maintained on such a

stimulus. Given these drawbacks of the VI model, the motivation of using a neural network

is warranted.

5.2 Accuracy of the Neural Network Model

As stated in section 4.2.4 the neural network was trained using seventy different combina-

tions of training data and test data. Results from all combinations are not shown. However,

the combination producing the most accurate results, the combination producing the median

results, and the combination producing the least accurate results, are given in Table.

The training set that produced the best, median, and worst accuracy on their respec-

tive test set are analyzed in the table below. Recall that for neural networks, minimal mean

squared error (MSE) for a training set does not necessarily mean better classification for an

independent test set. Table 5.3, 5.4, and 5.5 show the combination number, the participants

used for training data, the MSE for each trained combination, the participants used for test
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data, and the accuracy of the network on the participants. The accuracy shown in these

tables was calculated in the same manner as accuracy for the VI model. A radius is drawn

from the each estimated centroid, creating a sphere. If the corresponding Dot coordinate fell

within that sphere, then the estimate was noted as completely accurate. Results are shown

for three different cases in which the number of hidden units is 25, 50, and 100. In the final

calculation of accuracy, the 50 unit case was used.

Table 5.3: Neural Network Model Results: 25 Hidden Units
NN Index Training MSE Test Participants Accuracy per Test

Participant Order Participant (%)

41 2,3,5,7 0.2692 1,4,6,8 68.8, 46.8, 61.4, 75.2
8 1,2,4,7 0.2625 3,5,6,8 59.6, 45.8, 64.2, 69.7
14 1,2,6,8 0.1701 3,4,5,7 62.3, 39.4, 39.4, 55.0

Table 5.4: Neural Network Model Results: 50 Hidden Units
NN Index Training MSE Test Participants Accuracy per Test

Participant Order Participant (%)

6 1,2,4,5 0.3169 3,6,7,8 65.1, 60.5,59.6, 70.6
54 2,5,7,8 0.4765 1,3,4,6 44.9, 49.5, 39.4, 44.9
29 1,4,6,7 0.7385 2,3,5,8 10.0, 9.1, 10.0, 9.2

Table 5.5: Neural Network Model Results: 100 Hidden Units
NN Index Training MSE Test Participants Accuracy per Test

Participant Order Participant (%)

64 3,5,7,8 0.1294 1,2,4,6 63.3, 66.0, 48.6, 60.0
63 3,5,6,8 0.1262 1,2,4,7 71.5, 65.1, 48.6, 53.2
14 1,2,6,8 0.0885 3,4,5,7 60.5, 37.6, 42.2, 57.8

The percentage accuracy is much higher than that of the VI model, given that the

neural network was trained to the Windows. Also, recall that each output of the neural

network using the test data set was set to particular discrete value, effectively “snapping”

to one of the Windows. It is not surprising that the overall accuracy is reflective of this fact.

Taking into consideration the poor accuracy of both models to accurately predict

where one is focused in 3D space, it is advantageous to investigate a Combined Model ap-
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proach to 3D gaze estimation. Using the estimates from both the VI Model and the Neural

Network Model, a larger volume of interest can be generated.

5.3 Combined Model Accuracy

The Combined Model approach uses the previous models mentioned to produce a BVecOI

based on estimated centroids. The centroids are connected by a vector and a radius is

extended from each point on the vector. If the real Dot coordinate lies within any of the

spheres generated on the vector, or more generally, inside the VOI, then the model is noted

as completely accurate for that Dot. Table 5.6, 5.7, and 5.8 below shows the accuracy of this

model per participant. To show the variation of accuracy between training combinations,

the best performing network, the median performing network, and the worst performing

network are included.

Table 5.6: Accuracy of Combined Model: 25 Hidden Units
NN Index Test Participants Total Accuracy per Test Participant (%)

41 1,4,6,8 80.8, 55.5, 75.7, 85.6
8 3,5,6,8 68.9, 57.6, 80.1, 85.6
14 3,4,5,7 69.6, 45.1, 48.8, 61.9

Table 5.7: Accuracy of Combined Model: 50 Hidden Units
NN Index Test Participants Total Accuracy per Test Participant (%)

6 3,6,7,8 73.7, 80.3, 69.9, 88.8
54 1,3,4,6 78.4, 74.4, 55.5, 66.1
29 2,3,5,8 59.2, 34.4, 36.0, 55.2

Table 5.8: Accuracy of Combined Model: 100 Hidden Units
NN Index Test Participants Total Accuracy per Test Participant (%)

64 1,2,4,6 80.0, 86.5, 57.9, 74.7
63 1,2,4,7 87.2, 90.4, 57.1, 65.3
14 3,4,5,7 68.1, 44.3, 53.6, 62.1

Although there is greater accuracy when using the Combined Model, there are metrics

that must be investigated. Recall that the Combined model uses a BVecOI to generate the
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VOI. The length of this vector varies. If the objective of this research is to somehow limit

the VOI to a practical region, it is important to note the mean µ, standard deviation σ,

maximum, and minimum lengths of the collection of BVecOI’s for a given window. Table

5.9, 5.10, and 5.11 display these metrics for the 50 hidden unit case. Note that the best,

median, and worst Neural Network indicies are shown in the tables below.

Table 5.9: BVecOI Metrics by Window - Index 6
Participant Number Window µ (cm) σ (cm) Max, Min (cm)

3 1 4.8 2.7 7.1, 0.1
2 14.0 5.9 26.2, 3.9
3 19.4 17.0 95.1, 0.7
4 26.3 16.3 66.9, 3.0
5 109.1 53.8 235.6, 35.4

6 1 7.0 6.3 17.8, 0.2
2 23.8 11.2 59.6, 7.4
3 41.5 48.2 236.1, 2.3
4 51.6 30.3 150.0, 5.4
5 132.8 48.6 232.7, 60.2

7 1 8.2 7.6 23.7, 0.2
2 25.8 16.5 86.8, 3.6
3 40.8 22.0 91.6, 14.0
4 52.6 39.0 212.9, 5.7
5 110.1 53.3 231.3, 8.5

8 1 3.5 2.0 6.3, 0.1
2 12.7 8.1 35.6, 0.8
3 30.0 21.3 107.1, 1.0
4 51.1 29.9 150.0, 1.8
5 136.9 47.1 236.4, 44.9

These tables give clues to how the Combined Model reacts as stimuli increase in

distance from the user. As the tables show, an increase in accuracy does not always guarantee

a short BVecOI. Conversely, a short BVecOI does not guarantee that the Dot coordinate is

intercepted at all. However, it can be stated that the length of the BVecOI is dependent

more so on the nature of the VI Model. If the VI Model is generally inaccurate, then the

Combined Model will usually generate a BVecOI that is longer, unless the Neural Network

Model produces a similarly inaccurate estimate. Thus, the VI Model is called into question.

The justification for this conclusion lies in the nature of the eyes and the validity
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Table 5.10: BVecOI Metrics by Window - Index 54
Participant Number Window µ (cm) σ (cm) Max,Min (cm)

1 1 6.7 11.8 38.1, 1.2
2 24.5 7.2 38.1, 8.7
3 17.7 10.7 49.3, 4.4
4 20.1 25.0 113.6, 0.1
5 53.7 50.6 189.3, 0.5

3 1 9.3 11.9 40.7, 1.3
2 24.8 8.0 34.0, 3.9
3 22.4 9.8 51.4, 0.7
4 17.8 15.6 65.4, 2.7
5 40.7 28.2 105.9, 7.3

4 1 6.7 6.4 22.7, 0.1
2 19.4 14.7 51.0, 0.8
3 29.7 25.5 134.7, 2.3
4 21.9 13.1 51.6, 1.5
5 49.2 45.2 188.7, 0.5

6 1 20.5 19.4 54.1, 0.2
2 21.7 16.3 90.2, 4.1
3 21.0 23.3 106.2, 0.9
4 21.6 18.1 66.7, 0.5
5 49.6 46.6 189.8, 4.2

of the VI model. In short, the VI Model is a straightforward procedure: take two vectors

that originate at each eye and intersect them in space to find the PoG. The error for this

technique increases exponentially as the stimuli move further from an individual. The further

an object of interest is away from an individual the less and less the eyes diverge, making a

small change in vergence relate to a large change in estimated depth. The question arises:

why use the VI Model at all?

The VI model judges where one’s eyes are focused; which is not necessarily the focus

of the individual. This does not mean that the VI Model is inaccurate in a broad sense,

but only for applications that rely on highly resolved estimations. Keeping the VI model

gives one strong advantage that the Neural Network Model can not: to make continuous

estimations. It is imperative that the VI Model is not discarded so that window biasing does

not occur.
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Table 5.11: BVecOI Metrics by Window - Index 29
Participant Number Window µ (cm) σ (cm) Max,Min (cm)

2 1 3.0 1.7 5.6, 0.2
2 19.9 5.6 31.1, 9.0
3 29.2 13.2 52.2, 0.3
4 50.8 20.4 88.0, 9.8
5 106.3 37.5 217.4, 51.5

3 1 4.8 2.7 7.1, 0.1
2 14.0 5.9 26.2, 3.9
3 19.4 17.0 95.1, 0.7
4 26.3 16.3 66.9, 3.0
5 109.1 53.8 235.6, 35.4

5 1 4.6 3.5 9.4, 0.1
2 16.2 18.3 91.7, 0.2
3 20.4 14.9 68.8, 0.6
4 40.6 44.7 169.3, 3.5
5 84.3 52.5 230.8, 26.8

8 1 3.5 2.0 6.3, 0.1
2 12.7 8.1 35.6, 0.8
3 30.0 21.3 107.1, 1.0
4 51.1 29.9 150.0, 1.8
5 136.9 47.1 236.4, 44.9

5.4 Search Region Results

Unlike the Combined Model, the Search Region Method is advantageous in the fact that

it does not have ambiguity in length when generating a BVecOI based on the estimates from

the VI Model and the Neural Network Model. The SBVecOI is bounded by 40 or 70 cm in

the z dimension. Table 5.12 and 5.13 show the total accuracy per participant when searching

regions are applied to each model.

The results shown indicate a much higher accuracy than those of the independent

VI Model in Figure 5.12. The disadvantage of this method is that, while some participants

(1,2,6,7,8) reach 70 percent accuracy, accuracy of other participants is substantially lower

and unusable for practical applications. The result is that decreasing resolution may not

lead to meaningful accuracy for some individuals.

It can be seen that for Index 6 in Figure 5.13, the accuracy is considerably better than
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Table 5.12: Accuracy of VI Model - Search Region Method
Participant Total Accuracy(%)

1 71.4
2 83.4
3 59.6
4 42.2
5 50.4
6 73.3
7 69.7
8 77.9

Table 5.13: Accuracy of Neural Network Model - Searching Region Method
NN Index Test Participants Total Accuracy(%)

6 3,6,7,8 76.1, 70.6, 68.8, 81.6
54 1,3,4,6 68.8, 71.5, 67.8, 63.3
29 2,3,5,8 35.7, 32.1, 33.0, 34.8

using the independent Neural Network Model. Again, the resolution has been reduced, but

the SBVecOI is predicable, unlike the Combined Model. A comparison of models is given in

section 5.5 to show the advantages and limitations of each method.
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5.5 Comparison of Models

There are advantages and disadvantages of using each of the approaches considered in

this chapter; which are shown concisely in Table 5.14.

Table 5.14: Comparison of Models
Model Advantages Disadvantages

VI Model

• Generates continuous out-
put data.

• No window biasing.

• No training needed besides
initial calibration.

• Very poor accuracy over
highly resolved intervals.

• Favors individuals whose
vergence varies greatly
with depth.

NN Model

• Substantially higher accu-
racy than VI model.

• With the correct training
set, can be applied to inde-
pendent test sets produc-
ing acceptable accuracy.

• Relies on a training set.
Trained pattern may not
be appropriate for inde-
pendent test group.

• Does not give continuous
outputs.

Combined Model

• Can produce considerably
higher accuracy.

• Utilizes a larger volume
based on a BVecOI.

• Produces unknown lengths
of BVecOIs.

• Low predictability on how
BVecOI lengths vary with
accuracy.

Search Region Method - VI

• Generates a predictable
BVecOI (SBVecOI).

• Considerably higher accu-
racy than standalone VI
due to division by regions.

• Some individuals may still
have unusable accuracy
ranges.

• Large regions cause resolu-
tion to decrease.

Search Region Method - NN

• Generates a predictable
BVecOI (SBVecOI).

• Comparable accuracy to
standalone NN if proper
training set is used.

• Patterns learned by train-
ing set must applicable to
test set.
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CHAPTER 6: CONCLUSION AND FUTURE WORK

In this research, the Vector Intersection approach, the Neural Network approach, a

Combined approach, and the Search Region approach were investigated for gaze estimation

in three dimensional space. The objective of this research were to apply these models to

extend 2D data collection techniques to generate a VOI in a practical and usable workspace

that can be used for 3D applications, especially to aid in assistive robotic path planning.

These objectives were accomplished by constructing an experimental apparatus used to col-

lect gaze data at five different distances spanning from 60 cm to 180 cm in front of each

participant. The gaze data was collected over eight participants. A filtering, smoothing, and

truncating step was taken for analysis purposes. The VI and Neural Network models were

independently applied to each participant and accuracy was calculated accordingly. A Com-

bined Model was presented, using both estimates of the VI and Neural Network Model to

produce a VOI governed by a BVecOI. The Combined Model resulted in higer accuracy, but

low predictability in terms of BVecOI length. Next, the Search Region method is applied

to the VI and Neural Network Models’ independently to produce a BVecOI that is more

predictable in physical length. The accuracy of the Searching Region method is comparable

to that of the Combined Model, making it the preferable approach out of those investigated.

6.1 Conclusions

Results show that the VI model does not produce accurate estimates over the workspace

investigated. As stated earlier, the stimuli used may not have any interesting information,

but the actual cause of inaccuracy lies with the nonlinear relationship between vergence and

distance of stimuli from an individual. Vergence changes are smaller with increase in stimuli

depth. This implies that a small change in vergence can represent a large change in estimated

depth. This is a well-known problem with the VI model. Although the VI model has this

disadvantage, the model does follow a pattern that can be measured. Generally, divergence
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increases with depth, but the magnitude of this change is not consistent. This phenomenon

translates to the vector intersection model, making it highly inaccurate.

The Neural Network model results show that there indeed are general patterns in

gaze behavior that can be used to discern the gaze depth of individuals with moderate

accuracy. The effectiveness of this kind of model in this research shows that the need for a

proper training set is vital in producing moderately accurate results in an independent test

set. Results show that the best combination of training and test set renders around 60-70

percent accuracy across participants. This translates to 65-76 correct estimations out of 109,

which is not acceptable for every application, but is promising for future work.

The Combined Model utilizes estimations of both models. Justification for using the

estimations of both models to produce a larger VOI for each Dot rests in the fact that the

VI model produces continuous estimates, and the Neural Network model produces discrete

estimates. As stated previously, the VI model measures the movements of eyes alone; no

depth calibration is needed for its estimations. The VI model also measures the physical

mechanics of the eyes. Thus, the model may indeed accurately measure PoG according to

the vergence of the individual, but cannot possibly take into account factors beyond that,

such as focusing by the eye’s lens or image processing in the brain. Therefore, it is not

justifiable to discard the estimation of this model, especially for the number of participants

investigated. Since the Neural Network model does train to particular windows, it learns

patterns that uncover the relation between eye characteristics and depth of gaze. But the

estimates of this model are discrete thus introducing certain window biasing. Biasing could

become a problem if future investigations collect gaze data on a different set of individuals

at different distances in a similar workspace. For example, if the Neural Network model

is used to estimate the VOI of an individual gazing upon a stimulus with a z value of 45

cm in the investigated workspace, then it will estimate the individual’s gaze to originate at

some (x,y,z) coordinate on one of the windows. This is a set up for an inherently incorrect

estimation. However, window biasing is alleviated with the use of the VI model, which is a

continuous estimation.
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A closer analysis of the BVecOI generated by the Combined Model shows that the

average physical length of this vector is not consistent, meaning that the model will produce

unpredictable BVecOI’s for each sample set. This is not ideal. The Search Region Method

solves this problem by reducing the resolution by dividing the workspace into regions. Al-

though resolution is decreased drastically, the z distance searched is predictable: 40 or 70

cm. This reduces searching the z distance by 66 percent (80cm / 120cm) or by 42 percent

(50 cm / 120 cm) inside the workspace.

6.2 Future Work

Future work can be divided into two categories. The first is to change certain items of

the experiment to measure the affects on accuracy of each model to improve results. The

second is to use the models investigated in this research in various applications utilizing 3D

space. The list below gives suggestions on items to investigate and the suggestive direction

of future work according to the author of this research.

1. Number of Participants

This research investigates the gaze characteristics of 8 participants. To gain a broader

understanding of the accuracy of the models investigated, more participants should be

used in future work.

2. Hardware

The experimental setup uses a Tobii TX300 eye tracker. The eye tracker itself is

expensive and has a high sampling frequency. Use of a less expensive eye tracker with

a lower sampling frequency should be investigated.

3. Stimulus

In this research, the Dots on each Window used as stimuli are relatively close together

and are all visible while the participant is instructed to fixate upon each one. Future

experiments could utilize a moving monitor that presents each Dot individually. This
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improvement could minimize distraction of the participant and decrease noise in the

gaze data.

4. Vector Intersection Model

Hennessey and Lawrence investigate a modified VI model. This modified VI model

could be implemented and compared with the VI model used in this research.

5. Neural Network Model

The neural network was trained using several participants as a training set in an

attempt to generalize gaze data patterns. Training per participant could reveal higher

accuracy.

6. Voluminous Stimuli

In future experiments, a voluminous stimuli could be used instead of flat or point placed

stimuli. For proper analysis, this would require models to have increased accuracy.

However, using these models or improved versions of these models could give clues to

how individuals collect visual information on the objects around them.

7. Robotic Path Planning Applications

The Search Region method is predictable and has moderate accuracy. If this accuracy

can be improved, then the SBVecOI could be very effective in aiding with path planning

for assistive robots by substantially decreasing a search path.
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