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ABSTRACT

A LIFTING OF GRAPHS TO 3-UNIFORM HYPERGRAPHS, ITS GENERALIZATION,

AND FURTHER INVESTIGATION OF HYPERGRAPH RAMSEY NUMBERS

Aaron Frost Rapp, M.S.

Western Carolina University (March 2015)

Director: Dr. Mark Budden, Mathematics

Ramsey theory has posed many interesting questions for graph theorists that have yet to be

solved. Many different methods have been used to find Ramsey numbers, though very few

are actually known. Because of this, more mathematical tools are needed to prove exact

values of Ramsey numbers and their generalizations. Budden, Hiller, Lambert, and Sanford

have created a lifting from graphs to 3-uniform hypergraphs that has shown promise. They

believe that many results may come of this lifting, and have discovered some themselves.

This thesis will build upon their work by considering other important properties of their

lifting and analogous liftings for higher-uniform hypergraphs. We also consider ways in

which one may extend many known results in Ramsey Theory for graphs to the r-uniform

hypergraph setting.
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1 INTRODUCTION

1.1 Purpose and Significance of the Study

Ramsey theory for graphs began when Frank Ramsey posed the question “How

many people must be gathered to guarantee that there are three mutual acquaintances or

three mutual strangers?” [12] The answer to this question turns out to be six. It was de-

termined by graph theorists by trying to find the maximum number of vertices such that

every red/blue coloring of the edges of Kn (a complete graph on n vertices) will either have

a red Ks-subgraph or a blue Kt-subgraph. Note that a graph G is a finite, non-empty set

V together with a set E, of distinct two-element subsets of distinct elements of V . Each

element of V is called a vertex, while each element of E is called an edge. We may denote

V and E by V (G) and E(G) respectively. An edge of a graph G is said to join two vertices a

and b and the vertices a and b are said to be adjacent. A complete graph is a graph G where

every set of two vertices are adjacent. We will denote the minimum number of vertices

needed to guarantee that every red/blue coloring of the edges of Kn (the complete graph on

n vertices) contains either a red Ks-subgraph or a blue Kt-subgraph by the Ramsey number

R(Ks,Kt). So in the case of the party problem, R(K3,K3) = 6. The proof for this theorem

is as follows.

Consider a red-blue coloring of a K6. In this K6 there is a vertex u that is adjacent

to the other five vertices in the graph.

u

a b c

Figure 1: Red edges emanating from u
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From this vertex u, we are guaranteed by the Pigeonhole Principle that at least three out of

the five vertices must have edges of one color. Without loss of generality assume that there

are three red edges emanating from u, say {ua,ub,uc}. If any one of the edges {ab,bc,ac}

are colored red then we are guaranteed to have a red K3. Otherwise these edges are all

colored blue, and we are guaranteed a blue K3. Therefore R(K3,K3)≤ 6.

To show that R(K3,K3)> 5, we will show that there exist a K5 that has no red or blue

K3. Consider coloring the outer edges of the K5 with only red edges and all interconnecting

edges blue.

Figure 2: Red Outer Edges of K5 Figure 3: Blue Interconnecting Edges of K5

If we combine these two, we will have a complete K5 with no red or blue K3 as a subgraph.

Thus R(K3,K3)> 5. Since R(K3,K3)≤ 6 and R(K3,K3)> 5 then R(K3,K3) = 6. [4]

The study of Ramsey Numbers becomes extremely complicated since arguments

used in the proof for R(K3,K3) = 6 become too complex once s and t become large enough.

Note that we may use R(s, t) to denote a Ramsey Number instead of R(Ks,Kt). The follow-

ing are the only known Ramsey Numbers [11]:

• R(1, t) = 1

• R(2, t) = t

• R(3,3) = 6 (Ramsey, 1930)

• R(3,4) = 9, R(3,5) = 14, R(4,4) = 18 (Greenwood and Gleason 1955)
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• R(3,7) = 23 (Kalbfleisch 1966)

• R(3,6) = 18 (Graver and Yackel 1968)

• R(3,9) = 36 (Grinstead and Roberts 1982)

• R(3,8) = 28 (McKay and Min 1992)

• R(4,5) = 25 (McKay and Radziszowski 1995)

After these simpler cases, the opportunity to find an exact Ramsey number becomes ex-

tremely difficult due to all possible combinations of vertices to form an edge in each graph;

there are
(n

2

)
edges in a complete graph, and 2(

n
2) ways to two color them, without con-

sidering isomorphic graphs. What mathematicians have been doing is creating bounds for

Ramsey Numbers, to eventually reach a single number. The following are known upper

and lower bounds for some Ramsey Numbers [11]

36≤ R(4,6)≤ 41 49≤ R(4,7)≤ 61

43≤ R(5,5)≤ 49 58≤ R(5,6)≤ 87

102≤ R(6,6)≤ 165 113≤ R(6,7)≤ 298

565≤ R(9,9)≤ 6588

Once both s and t start to become numbers greater than 5, there is even more ambiguity to

what the actual Ramsey Number really is. In fact, closing the bounds on Ramsey Numbers

listed above are extremely difficult. Erdős, one of the most published researchers in this

field, is famously quoted in [9] with an explanation on the difficulty of determining these

numbers:

“Suppose that evil aliens land on the earth and say that they are going to come back in
five years and blow it up, unless humankind can tell them the value of R(5,5) when they
come back. Then all the mathematicians and computer scientists of the world should get
together, and using all the computers in the world, we would probably be able to compute
R(5,5) and save the earth. But what if the aliens had instead said that they would blow up
the earth unless we could calculate R(6,6) in five years? In that case, the best strategy that
humankind could follow would be to divert everyone’s energy and resources into weapons
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research for the next five years.”

– P. Erdős (paraphrased)

This quote greatly describes the difficulty of finding specific Ramsey numbers.

Mathematicians so far have been able to find Ramsey numbers for specific types of graphs

such as trees, stars, paths, and a few others, usually given a condition on the number of

vertices. With these Ramsey numbers, it is possible to take graphs, defined with edges

that are a combination of two vertices, and generalize them to graphs where an edge is a

combination of r vertices instead.

1.2 r-Uniform Hypergraphs

Remember that a graph G is a finite, non-empty set V together with a set E, of

distinct two-element subsets of distinct elements of V . We will take this definition of a 2-

uniform graph and generalize it for an r-uniform hypergraph. So an r-uniform hypergraph

G is a finite, non-empty set V together with a set E, of distinct r-element subsets of distinct

elements of V . Each element of V is called a vertex, while each element of E is called

a hyperedge. We may denote V and E by V (G) and V (G) respectively. A hyperedge of

a graph G is said to join r vertices v1,v2, ...,vr and the vertices v1,v2, ...,vr are said to be

adjacent.

For r-uniform hypergraphs, depicting hyperedges is not as straight forward as con-

necting two vertices with a line. For any hypergraph we will depict a hyperedge by circling

the group of vertices within that certain hyperedge. For example, consider a 3-uniform

hypergraph with the vertex set V (G) = {a,b,c,d,e} and hyperedge set E(G) = {abc,ade}

depicted in Figure 4.

By how we depict these hypergraphs, adding in more edges means that it will be-

come harder to depict. In this hypergraph, we only depict two out of the possible(5
3

)
= 10 hyperedges, so depicting more hypergraphs can only become more clustered. To

illustrate this, assume the same hypergraph as before, but with the hyperedge set E(G) =



10

Figure 4: 3-Uniform Hypergraph, V (G) = {a,b,c,d,e}, E(G) = {abc,ade}

{abc,ade,ace,abd}, as seen in Figure 5. As we can see, when we include four of the

Figure 5: 3-Uniform Hypergraph, V (G) = {a,b,c,d,e}, E(G) = {abc,ade,ace,abd}

possible ten hyperedges, the hypergraph starts to become clustered. If we were to include

nine of the ten possible hyperedges, it becomes hard to discern the different hyperedges

and what vertices they contain. It also becomes more difficult to draw since by including

the hyperedge bed in the hypergraph above, we are not able to draw a regular oval over the

vertices; it would be an L-shaped oval.
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This problem becomes amplified when dealing with r-uniform hypergraphs since

each hyperedge will contain r vertices. Any complete r-uniform hypergraph becomes so

clustered that it will be close to impossible to discern the different hyperedges. If we try

coloring the different hyperedges as well, any visualization or argument based on drawing

or picturing hypergraphs becomes extremely difficult to do. This leads to complications

with proving Ramsey numbers since we cannot necessarily depict the process, as was seen

with proving R(3,3) = 6.

In r-uniformity, the hypergraph Ramsey numbers are defined similarly to their

counter parts in regular graphs, though they are denoted R(s, t;r) where s and t denote

the order of the complete hypergraphs in an r-uniform setting. Though a few Ramsey

numbers are known for graphs, there is only one known Ramsey number for hypergraphs:

R(4,4;3) = 13. [11] There do exist bounds for other two color, hypergraph Ramsey num-

bers, mostly only lower bounds, which are listed below from [11].

• 33≤ R(4,5;3)

• 58≤ R(4,6;3)

• 82≤ R(5,5;3)

• 34≤ R(5,5;4)

Though this list is meager, it has been improved upon by Graham, Rothschild, and Spencer

[8] who have found a relation between Ramsey Numbers for graphs and Ramsey Num-

bers for r-uniform hypergraphs. This theorem, called the Stepping-Up Lemma, will be

discussed in the next section.

Lastly, for r-uniform hypergraphs H1,H2, . . . ,Hk, define the t-color Ramsey number

R(H1,H2, . . .Ht ;r)
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to be the least n∈N such that every arbitrary coloring of the hyperedges of K(r)

n (a complete

r-uniform hypergraph on n vertices) using t colors results in a subhypergraph isomorphic to

Hi for some color i ∈ {1,2, . . . , t}. If H1 = H2 = · · ·= Ht , then we may write Rt(H1;r) for

the corresponding Ramsey number. It is also standard to write R(k1,k2, . . . ,kt ;r) whenever

Hi = K(r)
ki

for all i ∈ {1,2, . . . , t}. When r = 2, it is standard to reduce the notation to

R(G1,G2, . . . ,Gt) for graphs G1,G2, . . . ,Gt , or to R(k1,k2, . . . ,kt) when Gi = Kki for all

i ∈ {1,2, . . . , t}.

Another type of graph that we can generalize is a path. For 1 ≤ t < r, a t-tight

r-uniform path, denoted P(r)
t,n , is a connected r-uniform hypergraph that is formed by each

consecutive hyperedge including t vertices from the previous hyperedge. P(r)
t,n has a vertex

set V (P(r)
t,n ) = {v1,v2, ...,vn} and a hyperedge set E(P(r)

t,n ) = {e1,e2, ...,ep} such that for

1≤ i≤ p,

ei = {v(r−t)(i−1)+1,v(r−t)(i−1)+2, ...,v(r−t)(i−1)+r}

and p =
n− t
r− t

. Through this definition, we only allow for leaves to exist at the ends of the

t-tight r-uniform path, similarly to what can be found in graphs. Note that we lose a part

of the strictness of paths found in graphs since we can have repeated vertices in multiple

hyperedges of P(r)
t,n . This is a consequence of the generalization, though if we only allow

for each consecutive hyperedge to share a single vertex (t = 1) then we will have a stricter

generalization of a path that follows closer to the original definition.

An extension of a 1-tight r-uniform path is an r-uniform tree, denoted T (r)
m . This

is a connected r-uniform hypergraph on m vertices that can be formed hyperedge-by-

hyperedge, with each new hyperedge including exactly one vertex from the previous hy-

pergraph. Of course, K(r)
n is unique (up to isomorphism), but there can be many r-uniform

trees on a given number of vertices. It is also easily observed that the number of hyperedges

in K(r)
n and T (r)

m are n!
r!(n−r)! and m−1

r−1 , respectively.

An r-uniform hypergraph H = (V,E) will be called bipartite if V can be partitioned
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into two disjoint subsets V1 and V2 with every hyperedge including vertices from both

V1 and V2. The complete bipartite r-uniform hypergraph K(r)
m,n has vertex sets V1 and V2

with cardinalities m and n, respectively, and includes all r-uniform hyperedges that include

vertices from both V1 and V2. In particular, we call the hypergraph K(r)
1,n a hyperstar, and

note that it contains n!
(r−1)!(n−r+1)! hyperedges. We can further generalize the idea of an

r-uniform hyperstar, denoted S(r)t,n , such that the set of vertices V can be partitioned into two

sets V1 and V2 such that |V1|= t and each hyperedge contains all t vertices from V1 and r− t

vertices from V2. When r = 2, we may write Kn, Tm, and Km,n in place of K(2)
n , T (2)

m , and

K(2)
m,n.

1.3 The Lifting of Graphs to 3-Uniform Hypergraphs

To find Ramsey numbers, mathematical tools are needed to help decrease the up-

per bounds or increase the lower bounds. Budden, Hiller, Lambert, and Sanford [2] have

defined a map from graphs of order at least three, that are composed of edges with two

vertices (G2) to hypergraphs of order at least three, that are composed of hyperedges with

three vertices (G3). We denote this by ϕ : G2→ G3, the lifting of a graph to a 3-uniform

hypergraph with vertices V (ϕ(Γ)) =V (Γ) and hyperedges

E(ϕ(Γ)) := {abc| exactly one or all of ab,bc,ac ∈ E(Γ)}.

From this lifting, there are a few major properties and theorems that were found in [2]. The

first is as follows.

Theorem 1.1. If Γ ∈ G2, then ϕ(Γ) = ϕ(Γ).

This theorem shows a very interesting and important relation for this lifting. This

importance can be applied to Ramsey numbers because it preserves complements and thus,

shows some promise that it will convert some lower bounds for Ramsey numbers from G2

to lower bounds for Ramsey numbers in G3. Note, for the following theorem we define
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the notation Γ[S] to be the subgraph of Γ induced by the set of vertices S. The following is

Theorem 4 from [3].

Theorem 1.2. Let Γ ∈ G2, S⊂V (Γ) a subset containing at least three elements, and K :=

Γ[S]. Then ϕ(Γ) is complete if and only if K is complete or K is the union of exactly two

disjoint complete subgraphs.

This has led to an interesting result regarding complete bipartite graphs and their lifting,

specifically that they lift to an empty hypergraph.

An important theorem that is discussed in [2] is the Stepping-Up Lemma. A version

of the Stepping-Up Lemma from [8] is the following.

Theorem 1.3. If r > 3 and N is a lower bound for R(n,n;r) then 2N is a lower bound for

R(2n+ r−4,2n+ r−4;r+1).

This lemma is extraordinary in that once a lower bound is found for one specific case, it will

lead to new lower bounds for higher dimensional cases. There does exist a problem with

this theorem in that it does not step up from G2 to G3. In fact, Colon, Fox and Sudakov [7]

provided a method for stepping-up from G2 to G3, but it jumps from a two coloring to a

four coloring. Thus the lifting introduced in [2] fills in the hole in the Stepping-Up Lemma.

In [2], they are able to further improve upon the Stepping-Up Lemma from G2 to G3, by

using the knowledge that a 3-uniform hypergraph of the form K(3)
n −e does not exist in the

range of ϕ, where e is a single hyperedge.

2 Lifting to Hypergraphs

2.1 Extensions of the 3-Uniform Lifting

Since Budden, Hiller, Lambert, and Sanford were able to improve some Ramsey

numbers by identifying which 3-uniform hypergraphs do not exist in the image of ϕ, this



15
leads to further questions on what other 3-uniform hypergraphs do not exist in the image

of ϕ? We can go one step further than what was addressed in [2] and show that a complete

3-uniform hypergraph that is missing a subhypergraph of a lesser order will not appear in

the image of ϕ.

Theorem 2.1. Let n > m ≥ 3 and assume that H is a subhypergraph of K(3)
n of order m

having at lease one hyperedge. If Γ∈G2, then the lifting ϕ(Γ) does not contain any induced

subhypergraph isomorphic to K(3)
n −H.

Proof. Suppose false, then ϕ(Γ) contains a subhypergraph isomorphic to K(3)
n −H. Denote

by abc some hyperedge in H and let x be some vertex in K(3)
n that is not contained in H

(the existence of such a hyperedge and vertex are assumed). Then the subhypergraph of

ϕ(Γ) induced by {x,a,b,c} is isomorphic to K(3)
4 − e, which cannot happen by Theorem 7

of [2].

Theorem 2.1 greatly restricts the hypergraphs that appear in the range of ϕ. It also

enables us to improve upon some of the Ramsey number results obtained in [2]. In their

proofs, Budden, Hiller, Lambert, and Sandford used a class of graphs known as Turàn

graphs, which possess certain optimal parameters, escpecially when dealing with Ramsey

Numbers. Suppose n ≥ 3 and q ≥ 2 are integers. By the Division Algorithm, there exist

integers m≥ 0 and 0≤ r < q such that n = mq+ r. The Turàn graph Tq(n) is the complete

q-partite graph whose vertices are partitioned into balanced sets. Such graphs contain Kq-

subgraphs but lack Kq+1-subgraphs. In fact, out of all graphs of order n, they possess

the maximal number of edges possible without containing a Kq+1-subgraph. This was

demonstrated by Turàn [14] in 1941 when he proved that every other graph of order n and

size equal to that of Tq(n) contains a Kq+1-subgraph. When considering the lifting of Turàn

graphs, we obtain the following theorem, which are extensions of some Ramsey number

results from [2].
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Theorem 2.2. Let n ≥ 4, q ≥ 2, and n = mq+ r, where 0 ≤ r < q. Then we have the

following:

(1) If n = qm, then R(K(3)
q+1−H1,K

(3)
2m+1−H2;3)> n,

(2) If n = qm+1, then R(K(3)
q+1−H1,K

(3)
2m+2−H2;3)> n,

(3) If n = qm+ r, with r > 2, then R(K(3)
q+1−H1,K

(3)
2m+3−H2;3)> n,

where H1 and H2 are subhypergraphs of the respective complete subhypergraphs having

smaller orders and containing at least one hyperedge.

Proof. Regardless of the value of r, note that Tq(n) contains a Kq-subgraph, but not a

Kq+1-subgraph. Also, at most one vertex of a complete subgraph can come from any one

connected set of vertices. So, ϕ(Tq(n)) contains a K(3)
q -subhypergraph, but not a K(3)

q+1-

subhypergraph. Note that Tq(n) consists of disconnected complete subgraphs of orders

m and m+ 1. By Theorem 1.2, we obtain the following cases. If n = qm, then all of

the sets of vertices have cardinality m and ϕ(Tq(n)) contains a K(3)
2m -subhypergraph, but

not a K(3)
2m+1-subhypergraph. If n = qm+ 1, then exactly one vertex set has cardinality

m+1 and ϕ(Tq(n)) contains a K(3)
2m+1-subhypergraph, but not a K(3)

2m+2-subhypergraph. For

the remaining cases in which n = qm+ r with 2 ≥ r > q, at least two vertex sets have

cardinality m+ 1, and we find that ϕ(Tq(n)) contains a K(3)
2m+2-subhypergraph, but not a

K(3)
2m+3-subhypergraph. These results along with the implication of Theorem 2.1 proves the

theorem.

We will move on to determining the connection between graphs and 3-uniform hy-

pergraph Ramsey numbers for complete 3-uniform hypergraphs missing a subhypergraph

of a lesser order.

Theorem 2.3. Let s, t ∈ N with s≥ 3 and t ≥ 3, then

R(K(3)
2s−1−H1,K

(3)
2t−1−H2;3)> R(Ks,Kt)
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where H1 and H2 are subhypergraphs of the respective complete subhypergraphs having

smaller orders and containing at least one hyperedge.

Proof. Assume that m = R(Ks,Kt), then there exists a graph G of order m− 1 that does

not contain a Ks-subgraph, and whose complement does not contain a Kt-subgraph. From

Theorem 1.2, it follows that ϕ(G) does not contain a K(3)
2s−1 subhypergraph, and whose

complement does not contain a K(3)
2t−1-subhypergraph. For any subhypergraphs H1 and H2

that contain at least one hyperedge and have a lesser order than their respective complete

graphs K2s−1 and K2t−1, Theorem 2.1 then implies that ϕ(G) does not contain a (K(3)
2s−1−

H1)-subhypergraph, and its complement does not contain a (K(3)
2t−1−H2)-subhypergraph.

Thus,

R(K(3)
2s−1−H1,K

(3)
2t−1−H2;3)> m−1 = R(Ks,Kt)

From this, we can imply that the Stepping-Up Lemma from [8] may have some

connection to Theorem 2.3. This is because Theorem 2.3 implies

R(K(3)
2s−1−H1,K

(3)
2t−1−H2;3)≥ R(K(3)

2s−1,K
(3)
2t−1)> R(Ks,Kt)

which shows somewhat of a similar result to the Stepping-Up Lemma. In fact, in [2] they

were able to improve upon the Stepping-Up Lemma in some fashion with the result that

there exist no 3-uniform hypergraph that is missing an edge in the image of ϕ. Again, we

will further this result using the fact that K(3)
n −H does not exist in the image of ϕ for any

subhypergraph H of order less than n containing at least one hyperedge.

Theorem 2.4. If q≥ 3, then

R(K(3)
5 ,K(3)

q+1−H1,K
(3)
2s−1−H2,K

(3)
2t−1−H3;3)> q(R(Ks,Kt)−1),
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where H1, H2, and H3 are subhypergraphs of the respective complete subhypergraphs hav-

ing smaller orders and containing at least one hyperedge.

Proof. Suppose that m = R(Ks,Kt), q ≥ 3, and let n = q(m− 1). Denote the partitioned

vertex sets in Tq(n) by V1,V2, ...,Vk. We have already noted that ϕ(Tq(n)) contains a K(3)
q -

subhypergraph, but not a K(3)
q+1-subhypergraph. From Theorem 2.2, it follows that it does

not contain a (K(3)
q+1−H1)-subhypergraph, for any subhypergraph H1 that has an order less

than q+1 and has at least one hyperedge. Color the hyperedges in ϕ(Tq(n)) yellow. Note

that Tq(n) consists of q disconnected Km−1-subgraphs. Since R(s, t) = m, there exists a

red/blue coloring of the edges of Km−1 that does not contain a red Ks-subgraph or a blue

Kt-subgraph. When lifting just a single Km−1 colored in this way, the lifted hypergraph

contains at most a red K(3)
2s−2-subhypergraph or a blue K(3)

2t−2-subhypergraph by Theorem

1.2. In fact, by Theorem 2.4, the lifted hypergraph does not contain red (K(3)
2s−1−H2)-

subhypergraph or a blue (K(3)
2t−1−H3)-subhypergraph, where H2 and H3 have order less

than their respective complete hypergraphs and contain at least one hyperedge. We apply

this coloring to the hyperedges in ϕ(Tq(n)) that arise from the individual liftings of the

disjoint vertex sets. The remaining hyperedges in ϕ(Tq(n)) are precisely those that include

one vertex from Vi and the other two vertices from Vj, where i 6= j. Color these hyperedges

green. A complete subhypergraph formed using only these hyperedges includes at most

two vertices from any Vi and vertices from no more than two of the partitioned vertex

sets. Hence, the green hyperedges may contain a K(3)
4 -subhypergraph, but not a K(3)

5 -

subhypergraph. From this coloring, we find that R(K(3)
5 ,K(3)

q+1−H1,K
(3)
2s−1−H2,K

(3)
2t−1−

H3;3)> n = q(m−1), from which the theorem follows.

2.2 Extension of Hypergraphs Not in the Image of ϕ

With Theorem 2.1, we are able to identify a vast amount of hypergraphs that do not

exist in the image of our lifting. Though this covers a vast majority of cases, there still exist
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some other types of hypergraphs that are not in the image of ϕ. Recall the definition of a

t-tight r-uniform path from Section 1.2. In the 3-uniform setting, such a path can only be

1-tight (called a loose path) or 2-tight. With this definition, we are able to identify anohter

type of subypergraph that does not exist in the image of ϕ. This type of subhypergraph is

not included in Theorem 2.1, since the t-tight paths we consider may have the same order

as the hypergraph they are contained in.

Theorem 2.5. Let n≥ 4, n≥ k≥ 3, and Γ∈G2. The lifting ϕ(Γ) cannot contain an induced

subhypergraph isomorphic to K(3)
n −P(3)

t,k , where P(3)
t,k is a t-tight path with k vertices, in a

3-uniform hypergraph.

Proof. If k = 3 then (K(3)
n −P(3)

t,3 ) =
(

K(3)
n − e

)
and since (K(3)

n − e) is not in the image

of ϕ then (K(3)
n −P(3)

t,3 ) is not in the image either. For some arbitrary k > 3, consider the

complement of (K(3)
n −P(3)

t,k ). Note that the compliment of this is just a loose, 3-uniform

path containing at least two hyperedges. Take a vertex x from an end hyperedge of the path.

Also, for the other end hyperedge, we will have a set of vertices {a,b,c} that constitute this

hyperedge. Notice that the induced subhypergraph Γ[{x,a,b,c}] in the complement has

only one edge. Therefore in (K(3)
n − P(3)

k ), the induced subhypergraph Γ[{x,a,b,c}] ∼=

(K(3)
4 − e), which cannot exist in the image of ϕ, thus (K(3)

n −P(3)
t,k ) does not exist in the

image of ϕ.

Though a majority of the hypergraphs (K(3)
n −P(3)

t,k ) will be of an order less than

K(3)
n (thus it will be contained in Theorem 2.1), there still exist cases where a P(3)

t,k may

have the same order as the complete K(3)
n . For example consider P(3)

1,7 in Figure 6.

As depicted above, the order of P(3)
1,7 is 7, which is the same order of a complete

hypergraph on the same vertices. Therefore, there still exist some cases of t-tight paths in

a 3-uniform setting that are not covered by Theorem 2.1. Thus, we can improve upon the

Ramsey numbers stated above, with these special cases. Note that the proofs are almost
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Figure 6: 3-Uniform Loose Path of Order 7

identical to the ones given above, except that we will use Theorem 2.5 instead of Theorem

2.1.

Theorem 2.6. Let n ≥ 4, q ≥ 2, and n = mq+ r, where 0 ≤ r < q. Then we have the

following:

(1) If n = qm, then R(K(3)
q+1−P(3)

t,k ,K
(3)
2m+1−P(3)

t,k ;3)> n;

(2) If n = qm+1, then R(K(3)
q+1−P(3)

t,k ,K
3
2m+2−P(3)

t,k ;3)> n;

(3) If n = qm+ r, with r > 2, then R(K(3)
q+1−P(3)

t,k ,K
(3)
2m+3−P(3)

t,k ;3)> n.

Theorem 2.7. If q≥ 3, then

R(K(3)
5 ,K(3)

q+1−P(3)
t,k ,K

(3)
2s−1−P(3)

t,k ,K
(3)
2t−1−P(3)

t,k ;3)> q(R(Ks,Kt)−1).

2.3 Lifting to r-Uniform Hypergraphs

The theorems that have been discussed before, and in [2], have all been for only

3-uniform hypergraphs. Since we have been able to find a relation between G2 and G3

through this lifting ϕ, there should be a way to generalize this lifting to hypergraphs where

hyperedges are made up of r vertices, Gr. A r-uniform hypergraph Γ = (V,E) consists
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of a finite set V of vertices and a set E of distinct unordered r-tuples of different vertices

(called hyperedges). Define ϕn
2 : G2 7→ Gr to send a graph Γ to graph ϕr

2(Γ) with the same

vertex set V (Γ) =V (ϕr
2(Γ)) and x1x2x3...xr is a r-Uniform Hyperedge in ϕr

2(Γ) if and only

if Γ[{x1,x2,x3, ...,xr}] is a disjoint union of at most r−1 complete subgraphs, including the

possibility that it is complete itself. Throughout the rest of this thesis, we assume graphs

in G2 contain at least r vertices when considering ϕr
2. Note that by how this generalized

lifting is defined, if r = 3, all of the previous theorems in this paper and in [2] still hold.

Thus it is important to notice that if we have a complete graph in G2, then it will lift to a

complete graph in Gr through ϕr
2. It is important to determine what other types of graph

will lift to complete graphs in Gr through this generalized lifting.

Lemma 2.8. Let Γ ∈ G2, S⊆V (Γ) a subset containing at least r elements, and H := Γ[S].

If H is the disjoint union of at most r−1 complete subgraphs, then ϕ(r)(H) is complete.

Proof. Assume that H is the disjoint union of complete subgraph C1,C2, . . . ,C`, where

1 ≤ ` ≤ r− 1. Let x1,x2, . . . ,xr be any subset of r distinct vertices in S. If xi ∈ Ci and

x j ∈C j with i 6= j, then xix j 6∈ E(H) since Ci and C j are disconnected. Also, for any two

vertices y,z ∈Ci, yz ∈ E(H) since Ci is complete. Thus, any collection of r distinct vertices

in S is a disjoint union of at most r−1 complete subgraphs in H, and ϕ(r)(H) is complete.

This lemma and the following theorem classify what types of subgraphs can be

lifted to complete subhyper graphs.

Theorem 2.9. Let Γ∈G2, S⊂V (Γ) a subset containing at least r elements, and H := Γ[S].

Then ϕ(r)(H) is complete if and only if H is the disjoint union of at most r− 1 complete

subgraphs.

Proof. Lemma 2.8 provides one direction for the biconditional statement in the theorem.

It remains to be shown that if ϕ(r)(H) is complete, then H is the disjoint union of at most
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r− 1 complete subgraphs. Since ϕ(r)(H) is assumed to be complete, it follows that the

induced subgraph for every subset of exactly r vertices in H is the disjoint union of at most

r−1 complete subgraphs. Draw H one vertex at a time, beginning with k = r vertices and

including all edges incident with each new vertex and the vertices contained in the previous

graph. Let Hk be the graph after k vertices have been drawn. We proceed by induction on

k. In the initial case k = r, the r vertices lift to a hyperedge, so the preimage is a disjoint

union of at most r− 1 complete subgraphs by definition. Now suppose that for k ≥ r,

Hk is the disjoint union of at most r− 1 complete subgraphs and consider Hk+1, where

V (Hk+1) = V (Hk)∪{x}. Assume that Hk is composed of ` disjoint complete subgraphs

C1,C2, . . . ,C`, where 1 ≤ ` ≤ r− 1. The first case we consider is when x is disjoint from

Hk. Then Hk+1 is the disjoint union of `+1 complete subgraphs. If `= r−1, then picking

a vertex xi from each Ci, we find that xx1x2 · · ·xr−1 is not a hyperedge in ϕ(Γ), contradicting

the assumption that it is complete. Hence, ` < r− 1 and we find that Hk+1 is the disjoint

union of at most r−1 complete subgraphs. In the remaining cases, x is incident with some

vertex in Hk, so Hk+1 has the same number of components as Hk (or possibly fewer). It

remains to be shown that if x is incident with a vertex in Ci, then it must be incident with

every vertex in Ci and that x cannot be incident with vertices from more than one copy of

Ci. If x is incident with xi ∈ Ci and x j ∈ C j for i 6= j, then any subset of r vertices from

Hk+1 that contains x, xi, and x j cannot be the disjoint union of complete subgraphs since xi

is not adjacent to x j. Finally, suppose that x is adjacent with xi ∈Ci for only one value of

i. If Ci = {xi}, then {x}∪Ci forms a K2 and Hk+1 is still the disjoint union of ` complete

subgraphs. Otherwise, Ci must contain at least r vertices. Suppose that x is adjacent with

some y∈Ci. Then for any other distinct vertices x1,x2, . . . ,xr−2 in Ci, the subgraph of Hk+1

induced by {x,y,x1, . . . ,xr−2} must be complete since it is connected. Thus, x must be

adjacent to all vertices in Ci. Thus, we have shown that Hk+1 must be the disjoint union of

at most r−1 complete subgraphs and the same must be true for H.
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From this theorem, we can imply some important aspects from graphs that can be

mapped to their r-uniform hypergraph through the lifting ϕr
2. Using the previous theorem,

we are able to construct r-uniform hypergraphs that have certain clique sizes, as well as

address the clique size in an r-uniform hypergraph and identify what could have lifted to it.

Corollary 2.10. If ω(Γ) = k then ω(ϕr
2(Γ))≤ (r−1)k.

Proof. Let ω(Γ) = k. For ϕr
2(Γ) to be complete, we know that Γ can have at most r− 1

disjoint complete subgraphs. Since ω(Γ) = k, then each complete subgraph of Γ will have

a clique size of at most k. Thus since there will be at most (r−1)k vertices in Γ, then there

can be at most (r−1)k vertices in ϕr
2(Γ), thus ω(ϕr

2(Γ))≤ (r−1)k.

Corollary 2.11. If ω(ϕr
2(Γ)) = k then ω(Γ)≤ k.

Proof. Let ω(ϕr
2(Γ)) = k. Since the max clique size in ϕr

2(Γ) is k, then the largest complete

subhypergraph of ϕr
2(Γ) will have clique size k. Since this is true, then Γ can have a

maximum clique size of k by Theorem 2.9. Thus ω(Γ)≤ k.

This is important since Ramsey numbers, in any uniformity, are a different way

of determining the number of vertices need to have a certain (hyper)subgraph of certain

clique size in the red coloring of the (hyper)graph or the blue coloring of the (hyper)graph.

The existence of these bounds are helpful, but do not encourage to much hope in help-

ing find reasonable bounds on hypergraph Ramsey numbers since the bounds can become

pretty large. This, compounded with the loss of the complement property found in the

lifting ϕ(Γ)3
2, makes finding hypergraph Ramsey numbers from these results even more

difficult. Further investigation might result in bounds created for hypergraph Ramsey num-

bers, though they would most likely be for obscure Ramsey numbers, and the bounds might

not be that helpful.
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3 Hypergraph Ramsey Numbers

3.1 2-Color Ramsey Theorems

For any r-uniform hypergraph H whose hyperedges all consist of two or more ver-

tices, one can define the weak chromatic number χw(H) to be the minimal number of colors

needed to color the vertices of H so that no hyperedge is monochromatic. The strong chro-

matic number χs(H) is the minimal number of colors needed to color the vertices of H so

that all adjacent vertices (contained within a common hyperedge) have different colors. It

is easily observed that for any r-uniform hypergraph H,

χw(H)≤ χs(H),

and whenever r = 2, χw = χs = χ, where χ is the chromatic number for graphs. Finally, we

denote by dxe and bxc the ceiling and floor functions for x ∈ R, respectively. The reader

should note that the material found in Section 3, is also discussed in [1].

In 1972, Chvátal and Harary [6] proved a general Ramsey inequality for graphs:

R(G1,G2)≥ (c(G1)−1)(χ(G2)−1)+1, (1)

where c(G1) is the order of the largest connected component of G1 and χ(G2) is the chro-

matic number of G2. Using this result, Chvátal [5] was then able to prove the explicit

Ramsey number

R(Tm,Kn) = (m−1)(n−1)+1, (2)

where T is any tree on m vertices. In this section, we focus on extending these two results

to r-uniform hypergraphs. First, we generalize (1) to r-uniform hypergraphs.
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Theorem 3.1. Let H1 and H2 be r-uniform hypergraphs with r ≥ 2. Then

R(H1,H2;r)≥ (c(H1)−1)(χw(H2)−1)+1,

where c(H1) is the order of the largest connected component of H1 and χw(H2) is the weak

chromatic number of H2.

Proof. Let k = (c(H1)−1)(χw(H2)−1) and consider K(r)
m composed of χw(H2)−1 copies

of K(r)
c(H1)−1. Color the hyperedges within each copy of Kc(H1)−1 red and the remaining

hyperedges blue. No red copy of H1 can exist since the largest red connected component

has order c(H1)−1. Also, no blue copy of H2 can exist since one can obtain a weak coloring

of any blue hypergraph by assigning a single color to the vertices in each Kc(H1)−1. Hence,

R(H1,H2;r)≥ k+1.

When considering an analogue for (2) using r-uniform hypergraphs, we will find

that it is no longer possible to obtain an exact value for R(H1,H2;r) when r > 2. The exact

value in the r = 2 case was due to the fact that the weak and strong chromatic numbers agree

in this setting. When considering complete r-uniform hypergraphs, we have the following.

Lemma 3.2. If n≥ r ≥ 2, it follows that χw(K
(r)
n ) = d n

r−1e and χs(K
(r)
n ) = n.

Proof. The chromatic number evaluations for complete r-uniform hypergraphs follow from

the fact that every weak coloring of K(r)
n contains at most r− 1 vertices of a given color.

For a strong coloring, no two distinct vertices can have the same color since there exists

some hyperedge that includes both vertices.

Theorem 3.3. If n≥ r ≥ 2 and T (r)
m is any r-uniform tree on m vertices, then

(m−1)
(⌈ n

r−1

⌉
−1
)
+1≤ R(T (r)

m ,K(r)
n ;r)≤ (m−1)(n−1)+1.
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Proof. Letting H1 = T (r)

m and H2 = K(r)
n in Theorem 3.1 and using the weak chromatic

number result from Lemma 3.2, we obtain the first inequality

(m−1)
(⌈ n

r−1

⌉
−1
)
+1≤ R(T (r)

m ,K(r)
n ;r).

To prove the second inequality, consider a 2-coloring of the edges on K(r)
k , where k =

(m−1)(n−1)+1. First, we handle the base cases in which m = r or n = r. If m = r, then

T (r)
m consists of a single hyperedge and it is easily seen that

R(T (r)
m ,K(r)

n ;r) = n≤ (r−1)(n−1)+1.

If n = r, then K(r)
n consists of a single hyperedge and we have

R(T (r)
m ,K(r)

n ;r) = m≤ (m−1)(r−1)+1.

Now we proceed by using strong induction on m+n. Assume that

R(T (r)
m′ ,K

(r)
n′ ;r)≤ (m′−1)(n′−1)+1

for all m′+n′<m+n and any r-uniform tree T (r)
m′ on m′ vertices. Now, for a fixed r-uniform

tree T (r)
m on m vertices, form the r-uniform tree T ′ by removing a single “leaf.” That is,

for some hyperedge containing only a single vertex of degree greater than 1, remove the

hyperedge and the r−1 vertices of degree 1, resulting in T having order m− (r−1). Call

the one remaining vertex from the removed leaf x. By the inductive hypothesis, we have

that the red/blue coloring of the edges of K(r)
k contains either a red T ′ or a blue K(r)

n . In the

latter case, we are done, so assume the former case. Now, consider the red/blue coloring

of the edges of K(r)
k−(m−(r−1)) formed by removing the m− (r− 1) vertices in the red T ′-
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subgraph from the original K(r)

k . It is easily confirmed that

k− (m− (r−1))≥ (m−1)(n−2)+1

from which we obtain a red/blue coloring of the edges of K(r)
(m−1)(n−2)+1. Applying the

inductive hypothesis again, we find that this hypergraph contains either a red T (r)
m or a blue

K(r)
n−1. In the former case, we are done, so assume the latter case. Thus, the original red/blue

coloring of the edges of K(r)
k contains a red T ′ and a blue K(r)

n−1 that are disjoint. Consider

the possible colors that can be assigned to the hyperedges that contain x and r−1 vertices

from the K(r)
n−1 subgraph. If any of them are red, then there exists a red T (r)

m . Otherwise, all

of them are blue and there exists a blue K(r)
n . Hence,

R(T (r)
m ,K(r)

n ;r)≤ (m−1)(n−1)+1,

completing the proof of the theorem.

In 1974, Burr [3] proved that when m−1 divides n−1,

R(Tm,K1,n) = m+n−1, (3)

where Tm is any tree on m vertices. We extend this result to r-uniform hypergraphs in the

following two theorems, and corollary.

Theorem 3.4. If r ≥ 2, k ≥ 1, and T (r)
m is any r-uniform tree on m≥ r vertices, then

R(T (r)
m ,K(r)

1,k(m−1)+r−1;r)≥ (k+1)(m−1)+1.

Proof. Form a 2-coloring of the hyperedges in K(r)
(k+1)(m−1) by taking k+1 copies of K(r)

m−1.
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Let all of the hyperedges in each copy of K(r)

m−1 be colored red and all interconnecting

hyperedges be colored blue. No red T (r)
m has been formed since T (r)

m has m vertices and the

largest connected component in the hypergraph spanned by the red hyperedges has order

m−1. When considering the largest value of t for which there exists a blue K(r)
1,t , note that

if x is the vertex that is alone in its bipartite vertex set, then at most r−2 other vertices in

the same copy of K(r)
1,t can be included in the other vertex set. Thus, our coloring includes a

blue K(r)
1,k(m−1)+r−2, but not a blue K(r)

1,k(m−1)+r−1, resulting in the lower bound stated in the

theorem.

Note that in the special case in which n−1 is divisible by m−1, we can let k = n−1
m−1

to obtain the lower bound

R(T (r)
m ,K1,n+r−2;r)≥ n+m−1. (4)

This result agrees with the lower bound necessary to prove (3) when r = 2. Now we turn

our attention to finding an upper bound.

Theorem 3.5. If t +1≥ r ≥ 2, and T (r)
m is any r-uniform tree on m vertices, then

R(T (r)
m ,K(r)

1,t ;r)≤ m+ t− (r−1).

Proof. Let m = r+`(r−1) (that is, `+1 is the number of hyperedges in T (r)
m ). We proceed

by induction on `≥ 0. In the case `= 0, it is easily seen that

R(T (r)
r ,K(r)

1,t ;r) = t +1 = r+ t− (r−1).
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Now assume that the inequality is true for the `−1 case:

R(T (r)
m−(r−1),K

(r)
1,t ;r)≤ m+ t−2(r−1),

for all r-uniform trees on m− (r− 1) vertices. For a given r-uniform tree T (r)
m , let T ′ be

the tree formed by removing a single leaf (a hyperedge and the r− 1 verities of degree 1

contained in that hyperedge) and let x be the vertex in T ′ that was incident with the removed

leaf. Consider a red/blue coloring of the hyperedges in K(r)
m+t−(r−1). By the inductive hy-

pothesis, this coloring contains either a red T ′ or a blue K(r)
1,t . Assume the former case and

note that besides the vertices in T ′, the graph K(r)
m+t−(r−1) contains

m+ t− (r−1)− (m− (r−1)) = t

other vertices. Now consider the hyperedges that include x along with all r−1 subsets of

vertices from the t not included in T ′. If any one of these hyperedges is red, we obtain a

red copy of T (r)
m . Otherwise, they are all blue, and we have a blue K(r)

1,t .

If we assume that n−1 is divisible by m−1 and let t = n+ r−2, then combining

(4) with Theorem 3.5, we obtain the following corollary.

Corollary 3.6. If n+1≥ r≥ 2, T (r)
m is any tree on m vertices, and m−1 divides n−(r−1),

we have that

R(T (r)
m ;K(r)

1,n;r) = m+n− (r−1).

Proof. We proceed by induction on m≥ r. First consider the case m = r. If a 2-coloring of

the hyperedges in a complete r-uniform hypergraph lacks any red edges, then they must all

be blue and n+ r−1 vertices are required to have a blue K(r)
1,n+r−2. Thus,

R(T (r)
r ,K(r)

1,n+r−2;r) = n+ r−1≤ n+2r−3.
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Now suppose that

R(T (r)
j ,K(r)

1,n+r−2;r)≤ j+n+ r−3

for all j < m and consider a 2-coloring of the hyperedges of K(r)
m+n+r−3. Let T ′ be a hyper-

graph formed by removing a single leaf (a hyperedge and the r−1 vertices of degree 1 in

that hyperedge) from T (r)
m . Suppose that x is the remaining vertex from the removed leaf.

Since T ′ has m− (r− 1) < m vertices, the inductive hypothesis implies that there exists a

red T ′ or a blue K(r)
1,n+r−2. In the latter case, we are done, so assume the former. Note that

there are n+2r−4≥ n+ r−2 vertices in K(r)
m+n+r−3 that are not in the red T ′. Consider all

of the hyperedges that include these vertices and the vertex x. If any one of them are red,

we obtain a red T (r)
m . Otherwise they are all blue and there exists a blue K(r)

1,n+r−2.

Since we are able to generalize some results from Burr [3], this indicates that there

might exist other Ramsey numbers that include stars and paths that can be generalized.

A path, denoted Pm, is a set of vertices V (Pm) = {v1,v2, ...,vm} such that its edges are

E(Pm) = {v1v2,v2v3, ...,vm−1,vm}. A complete bipartite graph, denoted Ks,t , has a set of

vertices that can be partitioned into two subsets U and W such that each edge joins a vertex

of U and a vertex of W . A star is a complete bipartite graph where either s = 1 or t = 1. [4]

Parsons has defined bounds for these specific Ramsey numbers for any path of length m and

star with order n+1, R(Pm,K1,n). In his paper [10], he was also able to determine a specific

Ramsey number, depending on the relationship of the orders of the Path and Star. When in

an r-Uniform setting the definitions of a star and path become a bit more ambiguous.

It is important to note for both of these definitions given in Section 1.2, we must

be careful about picking the number of vertices that we can use. For a t-tight r-Uniform

path, it is best to determine, how many edges you will want, and the tightness of the path,

and from there you will be able to determine the number of vertices needed. If you start

with declaring the number of vertices in the set, it may be impossible for each vertex to be

included in a hyperedge, by how they are defined.



31
With those two definitions in mind, we will generalize the upper bound found in

[10].

Theorem 3.7. For some 1≤ t < r,

R(P(r)
t,n ,S

(r)
t,m;r)≤ m+n−1

.

Proof. By induction on k, where k is the number of hyperedges in P(r)
t,n and let k = r. Then

R(P(r)
t,r ,S

(r)
t,m;r) = m < m+ r− 1. Next suppose that for n = r + (k− 1)(r− t), we have

R(P(r)
t,n ,S

(r)
t,m;r) ≤ m+ n− 1 and consider P(r)

t,r+k(r−t). Consider a red/blue coloring of the

hyperedges in K(r)
m+r+k(r−t)−1. Remove a hyperedge that is at an end of P(r)

t,r+k(r−t). Without

loss of generality, assume that we have removed the hyperedge {v1,v2, ...,vr}. Note that

the vertices v1,v2, ...,vr−t are not contained in P(r)
t,r+k(r−t), but vr−t+1,vr−t+2, ...,vr are still

contained in P(r)
t,r+k(r−t). By the induction hypothesis, we have that K(r)

m+r+k(r−t)−1 contains

a red P(r)
t,r+(k−1)(r−t) or a blue S(r)t,m. Assume the former, then there exist m + r + k(r−

t)− 1− (r + (k− 1)(r− t)) = m+ (r− t)− 1 vertices that are not contained in the red

P(r)
t,r+(k−1)(r−t). Next consider the vertices {vr−t+1,vr−t+2, ...,vr}. Note that there are t

vertices, and consider subsets of r− t vertices such that all r− t vertices are not contained

in P(r)
t,r+(k−1)(r−t). If a hyperedge containing these vertices is colored red, then we will have

a red P(r)
t,r+(k)(r−t). If not, then all such hyperedge will be colored blue and we will have a

blue S(r)t,m. Therefore R(P(r)
t,n ,S

(r)
t,m;r)≤ m+ r+ k(r− t)−1 = m+n−1.

3.2 Multicolor Hypergraph Ramsey Numbers

In 2002, Robertson (Theorem 2.1, [13]) proved that if n ≥ 3 and ki ≥ 3 for i =

1,2, . . . ,n, then

R(k1,k2, . . . ,kn;2)> (k1−1)(R(k2,k3, . . . ,kn;2)−1).
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Here, R(k1,k2, . . . ,kn;r) denotes the least natural number m such that every coloring of the

r-uniform edges of the complete graph Km on m vertices using r colors results in a complete

Kki for some i. When k1 = k2 = · · ·= kn (the “diagonal” case), we write Rn(k1;r) in place of

R(k1,k2, . . . ,kn;r). Robertson’s result followed from a “Turán-type” coloring and implied

four improved lower bounds for diagonal multicolor Ramsey numbers: R5(4;2) ≥ 1372,

R5(5;2) ≥ 7329, R4(6;2) ≥ 5346, and R4(7;2) ≥ 19261. All of these bounds have since

been improved (see [11] for a current list of best bounds), but very little is known about

their r-uniform analogues.

In this short note, we generalize Robertson’s theorem in two different directions.

First, there is no need to assume that the monochromatic subgraphs are complete sub-

graphs, so our generalization will allow for arbitrary subgraphs of order 3 or more, with

the exception of the first color. The significant generalization that we make is to extend

Robertson’s constructive method of proof to the r-uniform case.

Theorem 3.8. Let q≥ 2, n≥ 3, and suppose that R(H2,H3, . . . ,Hn;r)≥ n. Then

R(K(r)
(n−1)q+1,H2,H3, . . . ,Hn;r)> q(R(H2,H3, . . . ,Hn;r)−1).

Proof. Suppose that R(H2,H3, . . . ,Hn;r) =m, where it is assumed that m≥ n, and fix a col-

oring φ of maximal (n−1)-Ramsey coloring of K(r)
m−1 (lacking subhypergraphs isomorphic

to H2, H3, . . . , Hn in colors 2, 3, . . . , n, respectively). Consider the r-uniform hypergraph

Γ of order t = q(m−1), where q≥ 2, consisting of q disjoint copies of K(r)
m−1, each colored

according to φ. Denote the vertex sets in the partition by V1, V2, . . . , Vq. The hyperedges

(x1,x2, . . . ,xr) in the complement of Γ are those in which not all of the xi come from the

same Vj. Thus, every hyperedge in Γ contains at most r−1 vertices coming from a single

Vj. Coloring all of these hyperedges with the same color produces a clique of order at most
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(r−1)q. Thus, we find that

R(K(r)
(r−1)q+1,H2,H3, . . . ,Hn;r)> q(m−1) = q(R(H2,H3, . . . ,Hn;r)−1),

completing the proof of the theorem.

As an example of the utility of Theorem 1 the following lower bounds follow im-

mediately from the explicit lower bounds given in Section 7.1 of Radziszowski’s dynamic

survey [11]:

R(K(3)
4 ,K(3)

4 ;3) = 13 =⇒ R(K(3)
2q+1,K

(3)
4 ,K(3)

4 ;3)> 12q,

R(K(3)
4 ,K(3)

5 ;3)≥ 33 =⇒ R(K(3)
2q+1,K

(3)
4 ,K(3)

5 ;3)> 32q,

R(K(3)
5 ,K(3)

5 ;3)≥ 82 =⇒ R(K(3)
2q+1,K

(3)
5 ,K(3)

5 ;3)> 81q,

R(K(4)
5 ,K(4)

5 ;4)≥ 34 =⇒ R(K(4)
2q+1,K

(4)
5 ,K(4)

5 ;4)> 33q,

R(K(3)
4 − e,K(3)

4 − e;3) = 7 =⇒ R(K(3)
2q+1,K

(3)
4 − e,K(3)

4 − e;3)> 6q,

R(K(3)
4 − e,K(3)

5 ;3)≥ 14 =⇒ R(K(3)
2q+1,K

(3)
4 ,K(3)

5 ;3)> 13q,

R(K(3)
4 ,K(3)

4 ,K(3)
4 ;3)≥ 56 =⇒ R(K(3)

2q+1,K
(3)
4 ,K(3)

4 ,K(3)
4 ;3)> 55q.

For example, letting q = 2 in the second inequality gives us the following immediate corol-

lary.

Corollary 3.9. R(K(3)
5 ,K(3)

5 ,K(3)
5 ;3)≥ 163.

The next corollary is proved by induction on the number of colors. To simplify

the statement, we define the notation Rr(K(n)
m ,H1,H2;n) to denote the r−color n−uniform

hypergraph Ramsey number for r− 2 copies of K(n)
m along with nonempty hypergraphs
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H1 and H2. Note that we are using superscripts to denote these semi-diagonal Ramsey

numbers, in contrast to using subscripts for their diagonal counterparts.

Corollary 3.10. If r ≥ 3 and q≥ 2, then

Rn(K(r)
(r−1)q+1,H1,H2;r)> qn−2(R(H1,H2;r)−1).

Proof. The proof of Corollary 2 follows from a simple inductive argument on n. For the

n = 3 case, Theorem 3.8 implies

R3(K(r)
t ,H1,H2;r)> q(R(H1,H2;r)−1),

where t = (r−1)q+1. Assume now that

Rk(K(r)
t ,H1,H2;r)≥ qk−2(R(H1,H2;r)−1)+1,

for 3≤ k ≤ n−1. Applying Theorem 3.8 again, we have

Rk+1(K(r)
t ,H1,H2;r)≥ q(Rk(K(r)

t ,H1,H2;r)−1)+1≥ q(qk−2(R(H1,H2;r)−1))+1,

implying the statement of the corollary.

Of course, when H1 = H2 = K(r)
(r−1)q+1 , we obtain the following diagonal case:

Rn(K
(r)
(r−1)q+1;r)> qn−2(R2(K

(r)
(r−1)q+1;r)−1).

In 2004, Xiaodong, Zheng, Exoo, and Radziszowski (Theorem 2, [15]) proved the

following multicolor Ramsey number inequality for graphs:

R(k1,k2, . . . ,kt)≥ (R(k1,k2 . . . ,ki)−1)(R(ki+1,ki+2, . . . ,kt)−1)+1, (5)

for k j ≥ 2, 1 ≤ j ≤ t, and 2 ≤ u ≤ t − 2. Their proof was constructive and described a

method for coloring the edges in Kmn with t colors, avoiding the necessary monochromatic
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subgraphs, where

m = R(k1,k2 . . . ,ki)−1 and n = R(ki+1,ki+2, . . . ,kt)−1.

Although their approach does not easily generalize to hypergraphs, the following two the-

orems make use of the constructive method used in [15] to provide multicolor Ramsey

number inequalities. Theorem 3.11 also makes use of the approach used in Theorem 3.1.

Theorem 3.11. Let r ≥ 2, t ≥ 3, and H be an r-uniform hypergraph. Then

R(H,K(r)
k2

, . . . ,K(r)
kt

;r)≥ (χw(H)−1)(R(K(r)
k2

, . . . ,K(r)
kt

;r)−1)+1.

Proof. Let n = R(K(r)
k2

,K(r)
k3

, . . . ,K(r)
kt

;r)− 1 and consider a coloring of the hyperedges of

K(r)
(χw(H)−1)n formed by considering χw(H)−1 copies of K(r)

n . Within each copy of K(r)
n , the

hyperedges are colored such that no no copy of K(r)
ki

appears for any color 2≤ i≤ t. Color

all of the hyperedges that interconnect the different copies of K(r)
n with color 1. Note that

no copy of H appears in color 1 since one can obtain a weak coloring of the vertices of any

color 1 hypergraph by coloring the vertices according to which copy of K(r)
n they lie within.

Thus, we find that

R(H,K(r)
k2

, . . . ,K(r)
kt

;r)> (χw(H)−1)n,

from which the result follows.

The next theorem is a true generalization of Xiaodong, Zheng, Exoo, and Radzis-

zowski’s Theorem as it reduces to (5) when r = 2 since

R(2,k2, . . . ,kt ;r) = R(k2 . . . ,kt ;r).
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Theorem 3.12. Let r ≥ 2 and t−2≥ i≥ 3. Then

R((r−1)2 +1,k2, . . . ,kt ;r)≥ (R(k2, . . . ,ki;r)−1)(R(ki+1, . . . ,kt ;r)−1)+1.

Proof. Let

m = R(k2, . . . ,ki;r)−1 and n = R(ki+1, . . . ,kt ;r)−1

and form a t-coloring of the hyperedges is K(r)
mn by considering m copies of K(r)

n . Color

the hyperedges within each copy of K(r)
n so that no copy of K(r)

k j
exists in color j for any

i+ 1 ≤ j ≤ t. The remaining hyperedges are those those interconnect the different copies

of K(r)
n . Give color 1 to the hyperedges that have at least two vertices within a common

copy of K(r)
n . So, all hyperedges in color 1 include at most r− 1 vertices from any given

copy of K(r)
n and can include vertices from at most r−1 different copies of K(r)

n . Thus, the

maximum clique in color 1 has order (r−1)2. Finally, the remaining hyperedges are those

whose vertices are all in different copies of K(r)
n . If we identify the vertices in K(r)

m with the

distinct copies of K(r)
n , we can form a coloring of the remaining hyperedges with colors 2

through i that avoids a copy of K(r)
k j

in color j for all 2≤ j ≤ i. Thus, our t-coloring of the

hyperedges of K(r)
mn has avoided all of the necessary monochromatic subhypergraphs.

Lastly, we are able to determine another conjectured extension of Theorem 2 of

[15].

Conjecture 3.13. If r ≥ 2 and t > i+1 > 2, then

R(k1,k2, . . . ,kt ;r)≥
⌊

R(k1,k2, . . . ,ki;r)−1
r−1

⌋
(R(ki+1,ki+2, . . . ,kt ;r)−1)+1.

To provide some support for our conjecture, consider the following construction.

Let

m = R(k1,k2, . . . ,ki;r)−1, n = R(ki+1,ki+2, . . . ,kt ;r)−1,
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a =

⌊ m
r−1

⌋
, and form a t-coloring of the hyperedges of K(r)

an using a copies of K(r)
n . Within

each copy of K(r)
n , color the hyperedges so that no copy of K(r)

k j
exists in color j for any

i+ 1 ≤ j ≤ t. The remaining hyperedges each have at most r− 1 vertices within a single

copy of K(r)
n , forming a clique of order at most

⌊
m

r−1

⌋
(r−1)≤ m.

It is clear that for any choice of r− 1 vertices from each copy of K(r)
n , the resulting

K(r)
b m

r−1 c(r−1) has an i-coloring of the hyperedges that lack a copy of K(r)
k j

in color j for all

1≤ j≤ i. Of course, it is not clear whether or not this can be done in a well-defined manner

for all choices of r−1 vertices from each K(r)
n .
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4 Further Topics of Interest

This paper has generalized many Ramsey numbers to hypergrah Ramsey number

of G3 and others to any uniformity Gr. Further investigation has shown that some of the

results from Section 2, may be able to be generalized for any uniformity. If this is the case,

then it is possible to not only improve on bounds for these numbers at any uniformity, but

also have exact numbers. Also further investigation of Parsons [10] might show promise

for finding a Path-Star Ramsey number for any uniformity, depending on how m and n are

selected.
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