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CHAPTER I

INTRODUCTION

Addressing climate change, the United Nations World Tourism Organization
(UNWTO) has stated in its ‘Davos Declaration on Climate Change and Tourism’ that
climate is a key resource for tourism and that the sector is highly sensitive to the impacts
of climate change. The UNWTO has suggested that communities and governments
should ‘develop regional and local climate information services tailored to the tourism
sector’ and implement community policy which is based on the interface between climate
and the businesses/consumers within the tourism industry (UNWTO, 2009 p. 25).
Literature addressing the complex interactions between varied weather and climate
conditions within the tourism sector has attempted to answer many of the objectives
outlined by the UNWTO through detailed research on how tourism resources could
change and how people might travel to different locations under varying scenarios of
climate change.

This dissertation explores how varying weather conditions influence consumer
behavior in the form of visitor-attendance response. In order to better study this interface,
the Tourism, Recreation, and Leisure (TRL) sector and particularly zoological parks were
researched because they are largely outdoor-oriented and have significant exposure to
weather. Additionally, because the sector is impacted by weather at varying scales and

has many stakeholders, the findings in this dissertation have the ability to advance theory



and provide useful policy-making guidelines. Expanded to wider scales, weather can
affect seasonal tourist arrivals and impact the income of an entire geographic region
thereby forcing communities to consider weather and climate in their comprehensive
strategic planning (Scott et al., 2012; Agnew and Plautikof, 2001; Gomez-Martin, 2005;
de Freitas, 2002; Hale and Altalo, 2003; de Freitas et al, 2008). As a result, research in
this field can advance our understanding of human response to various ambient
environmental conditions while assisting in better managing visitor demand in the TRL
sector.

The need for further study of the shorter-term relationships that might exist
between weather and the TRL sector has been emphasized by many researchers (Nicholls
et al., 2008; Shih and Nicholls, 2011; Scott, 2012; Scott and Jones, 2006). However, it
has been argued that before we can effectively understand how future climate change
scenarios may broadly impact human behavior, we should establish in detail a present-
day baseline for human behavioral response to varied weather conditions and consider
long-term ‘duration effects’ by researching attendance trends over longer periods of time
(Hynds and Smith, 1994).

To do this and provide comparable results across the tourism sector, this
dissertation specifically focuses on the short-term varied weather conditions impacting a
major subsector of TRL, zoological parks and aquariums, which contributed over $16
billion to the United States economy in 2012, supporting 142,000 jobs and attracting 175
million visitors (AZA, 2013). Zoological parks and aquariums represent a significant

subsector of TRL, though few studies have examined in detail how weather conditions



might affect zoo visitor attendance over time. Mason (2000) has remarked that zoos as
tourist attractions remain under-researched, and Davey (2007) has stated that zoo
attendance patterns are in need of additional research.

There are benefits for using zoological parks in weather-attendance research as
zoos offer several specific advantages in research methodologies concerning how weather
impacts visitor-attendance choices. First, prior to visiting a zoological park, people have
certain expectations regarding the reasons why they visit and the outdoor exposure they
will likely experience when on site. Although there are differing motivations for zoo
patrons (Falk et al, 2007), those who visit zoological parks generally go to learn about
animals, conservation, and nature, and patrons expect this to occur mostly in an outdoor
setting regardless of the geographic location of the zoo. Second, unlike the wide variety
of activities potentially engaged in by beach or park tourists (Grodzik, 1972;
Brandenburg and Ploner, 2002; Ploner and Brandenburg, 2003; Rutty and Scott, 2014;
Morgan et al., 2000), activity at zoos can generally be defined as “slow steady walking”
(Mieczkowski, 1985) as the main function visitors perform at most zoo locations. Third,
because most zoos operate as paid-for admission venues, they keep reliable and accurate
attendance data over time. Additionally, in order to maintain controlled admissions,
zoological park space has definite geographic boundaries with fixed entry and exit points.
Difficulties can arise when accounting for attendees at open spaces such as botanical
gardens and nature parks with multiple entrances and beach fronts with undefined
geographical spaces (Knez and Thorsson 2005; Rutty and Scott, 2014; Curtis, Arrigo, and

Covington, 2008; Morgan et al., 2000).



In this dissertation, the weather-visitor attendance relationship is explored by
examining how weather impacts daily zoo visitor attendance over a period of
approximately one decade by researching four AZA accredited zoological parks in
different climate regimes: Zoo Atlanta, Indianapolis Zoo, Phoenix Zoo, and St. Louis
Zoo. These four zoos were chosen to illustrate how differing geographies may create
diverse visitor responses due to differing regional climates and weather conditions.
Although dissimilar in their climates, these four metropolitan zoological parks were

chosen because they are comparable regarding key points as outlined in Table 1.1:

Table 1.1. Description of Key Characteristics between Four Zoological Parks

Average | ASOS Weather
Size zom CSA |Visitor Rank| Annual Pen:ent
Zoological Park Data Period (Acres) | Population (USA) | Visitation Visit Time | Station Relative
(Hours) to Zoo

Atlanta Georgia 5,618,431 5+ 0.8 million 67% 3 7.40 miles SSW

Indianapolis Indiana ;.%"ltf:‘::‘f:e 64 2,080,782 25+  10million 85%  3tod  7.00 milesSW
2011

Arizona (n~3564) 125 4,192,887 14 1.4 milion 80% 3 3.87 miles WSW

Missouri 90 2,878,255 3 29million 65%  3tod  8.71miles NNW

In order to study the weather-visitor attendance interface, two complex weather
variables were utilized in this dissertation. Chapters II and III use the Physiologically
Equivalent Temperature (PET) because it represents a more visitor-tailored measure of
the ambient environmental conditions and captures the ‘feel’ of the ambient thermal
conditions a zoo visitor is most likely to experience. PET is well established as it is
commonly used in outdoor tourism studies (Lin et al., 2008, 2009; Matzarakis, 1996;

Staiger et al., 2011). For the purposes of this research, the PET-derived temperature



variable was classified into a nine-point thermal sensation scale following standards
established by the American Society of Heating, Refrigerating and Air-Conditioning
Engineers (ASHRAE) (ASHRAE, 2001 and 2004) where the ambient environment is
described as ‘very cold’ through “very hot’. The nine categories used were specified

using the standard as defined by Matzarakis and Mayer (1996) (Table 1.2).

Table 1.2. PET-Based Thermal Categories Aadapted From Matzarakis and Mayer (1996)

PET ASHRAE THERMAL CATEGORY PHYSIOLOGICAL STRESS

Very cold Extreme cold stress
4°C

Cold Strong cold stress

8°C
Cool Moderate cold stress

Slightly warm Slight heat stress

Strong heat stress

Extreme heat stress

Chapter IV uses the Spatial Synoptic Classification (SSC), a weather type
classification that captures the character of a particular synoptic regime (Sheridan, 2002).
This weather variable was used to review a larger scale of the ambient atmospheric
condition which incorporates a ‘comprehensive treatment of climate’.

The SSC includes seven general categories further explained in Table 1.3:



Table 1.3. The Seven Categories of the Spatial Synoptic Classification (SSC) with
Descriptive Definitions. Adapted from Sheridan, 2002.

Dry Polar (DP) Dry air usually from polar regions; coldest
temperatures during the year
Dry Moderate | Mild and dry air; often found when a traditional air

(DM) mass is moderated

Dry Tropical Dry air representing the hottest and driest conditions of
(DT) the year

I(\/INCIJILSSt Polar Cloudy, humid, and cool weather types

Moist Moderate | Variable in its seasonality; considerably warmer than
(MM) moist polar conditions

I(VIN?_II_S)t Tropical Warm and humid air; often oppressive conditions
gg;]s'tlonal Air mass transition from one to another

All weather variables in this dissertation were paired with the daily attendance
totals at each zoo from September 2001 to June 2011 over a total of 3564 days. This time
period was selected because it represented a period where at each zoo there was no
significant change in the array of attractions. Additionally, incorporating a period of
nearly one decade helps control for impacts resulting from severe weather events.
Analysis used attendance-grouping methodologies where daily attendance data from each
were segmented into four attendance categories or Attendance Day Typologies (ADTs)
(Figure 1.1). These attendance categories included:

e Poor attendance days where daily visitor attendance is less than one standard

deviation below the mean daily attendance,

e Average attendance days which are within one standard deviation of the mean daily

attendance,



e Good attendance days that are between one and two standard deviations above the

overall daily attendance mean, and

e Excellent attendance days where attendance is more than two standard deviations

above the daily attendance mean.

Number of observations

T
0
Standard Deviation

Figure 1.1. Theoretical Normalized Distribution of Attendance Data by Attendance Day
Typology (ADT)

The following three chapters investigate the relationship between weather
conditions and visitor behavioral response at zoological parks. Chapter II explores the
relationship between PET-derived temperature categories and daily attendance at the
Phoenix and Atlanta zoos. This chapter/manuscript is entitled, “Weather and Tourism:
Visitor Attendance and Physiologically Equivalent Temperature (PET) at the Phoenix
and Atlanta Zoos”. Chapter III develops and tests the foundations of Chapter II by
expanding the research of the PET-derived temperature categories and their relationship

with visitor attendance through a comparison of the Indianapolis and St. Louis zoos—two
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zoological parks located in similar climates. This manuscript also investigates the role of
price in visitor sensitivities and interpretations of the ambient thermal conditions. This
chapter/manuscript is entitled, “Weather, Pricing, and Tourism at the Indianapolis and St.
Louis Zoological Parks”. Chapter IV utilizes the Spatial Synoptic Classification as the
weather variable to analyze visitor response to the ambient synoptic environment. This
weather variable is used to expand the geographic scale of analysis and to review weather
beyond the thermal component to a more comprehensive weather-typing variable. Used
in this comparison are the Atlanta and Indianapolis zoos in a chapter/manuscript entitled,
“Using Synoptic Weather Types to Predict Visitor Attendance at the Atlanta and

Indianapolis Zoological Parks”.



CHAPTER II
WEATHER AND TOURISM: VISITOR ATTENDANCE AND
PHYSIOLOGICALLY EQUIVALENT TEMPERATURE AT

THE PHOENIX AND ATLANTA ZOOS

Co-authored with Dr. Keith G. Debbage for Tourism Geographies

[2.1] Introduction

Tourism, Recreation, and Leisure (TRL) is a largely outdoor-oriented economic
sector that is particularly sensitive to weather impacts. For example, at the individual
level, weather can affect peoples’ attendance decisions and how businesses forecast their
visitor demand. Expanded to larger scales, weather can affect seasonal tourist arrivals and
impact the income of an entire geographic region thereby forcing communities to
consider weather and climate in their comprehensive strategic planning (Scott et al.,
2012; Agnew and Plautikof, 2001; Gomez-Martin, 2005; de Freitas, 2002; Hale and
Altalo, 2003; de Freitas et al., 2008). An improved understanding of human response to
various ambient environmental conditions can help the TRL sector better manage visitor

demand and contribute to an improved understanding of the tourist-weather interface.



The focus of this paper is on the varied weather conditions that impact a major
subsector of TRL, zoological parks and aquariums, which contributed over $16 billion to
the United States economy in 2012, supporting 142,000 jobs and attracting 175 million
visitors (AZA, 2013). While zoos and aquariums represent a significant subsector of
TRL, few studies have examined in detail how weather conditions might affect zoo
visitor attendances over time. In broad terms, Mason (2000) previously observed that in
spite of the importance of zoos as tourist attractions, they remain under-researched.
Additionally, Davey (2007), in remarking how zoo attendance patterns are the result of
many influencing factors, suggested the need for additional research.

Much of the research regarding the impact of the atmospheric environment on
TRL focuses less on how detailed weather conditions impact visitor attendance and more
on how climate change broadly construed might impact certain TRL sectors in the long-
term. This is especially the case with ski tourism where much research focuses on the
future availability of physical resources such as snow and water in various alpine
locations across the world (Willms, 2007; Cegnar, 2007; Endler and Matzarakis, 2007;
Oehler and Matzarakis, 2007; Morehouse et al., 2007; Jetzkowitz, 2007; Gajic-Capka,
2007; Tepfenhart et al., 2007; Tervo, 2007; Scott et al., 2007; Vrtacnik Garbas, 2007).
Ski tourism is unusual because a weather scenario that includes plentiful snow may also
adversely impact visitor attendances if the roads are impassable.

Before researchers can effectively understand how future climate change
scenarios may broadly impact human behavior, Nicholls et al. (2008), Shih and Nicholls

(2011), and Scott and Jones (2006) have suggested that it might be helpful to establish in
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detail a present-day baseline for human behavioral response to varied weather conditions.
Additionally, Hynds and Smith (1994) have recommended the consideration of long-term
‘duration effects’ by researching attendance trends over longer periods of time.

In this paper, we address these points by examining how weather impacts daily
zoo visitor attendance over a period of approximately one decade by comparing two AZA
accredited zoological parks in very different climate regimes: the Phoenix Zoo and Zoo
Atlanta. These two zoos were chosen to illustrate how differing geographies may create
diverse visitor responses due to differing regional climates and weather conditions. The
purpose of this paper is to determine how such varying weather conditions, specifically
the ambient thermal environment (as measured by the Physiologically Equivalent
Temperature, PET (Hoppe, 1999), might influence visitor attendance over time.
Additionally, better understanding how the prevailing climates of an area may create
different visitor attendance responses to the thermal environment could provide further
insight into the broader processes of human acclimatization. First, it is hypothesized that
while days with the highest visitor attendances will have similar thermal profiles at both
the Phoenix and Atlanta zoos, at lower levels of visitor attendance each zoo might exhibit
differing attendance trends linked to locally-defined thresholds of tolerance regarding
daily weather conditions (de Freitas, 2014). Second, because visitors at both zoos are in
attendance for an average of three hours (Personal Communication, 2015a, 2015b), they
are likely to finalize the decision to visit the zoo during the morning hours when weather
conditions are likely less than ‘ideal’. As a result, it is hypothesized that days with

stagnant thermal conditions will be more associated with lower attendance while days
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that experience a wider range of thermal conditions will be associated with higher
attendance levels. The assumption here is that potential zoo visitors are likely to make a

trip to the zoo on days when the weather promises to ‘improve’ as the day progresses.

[2.2] Theoretical Background and Context

A growing body of literature assessing the impacts of weather on attendance has
emerged in recent years which has focused especially on the outdoor sporting industry.
Much of this research includes analysis of sports such as the National Football League
(NFL) (Welki and Zlatoper, 1994), club cricket (Hynds and Smith, 2010), downbhill
skiing (Hamilton et al., 2007), soccer (Garcia and Rodriguez, 2002), baseball (Butler,
2002), Australian Rules Football (Borland and Lye, 2006), and golf (Nicholls et al.,
2008; Scott and Jones, 2006). Additionally, outdoor nature-parks (Grodzik, 1972;
Brandenburg and Ploner, 2002; Ploner and Brandenburg, 2003) and beaches (Ibarra,
2010) are commonly used when modeling weather-attendance interactions. Other studies
have focused on how weather impacts church attendance (Innaccone and Everton, 2004;
Olson, 2008) as well as walk-in visitations for medical clinics (Diehl, et al., 1981). Most
of this type of research does not solely focus on the weather-attendance relationship, but
adopts a multivariate approach that includes additional predictor variables such as the
influence of holidays, day-of-week, month, season (Olson, 2008; Hynds and Smith,
2010), admission price, per-capita income, and the impact of facility capacity (Borland

and Lye, 2006) on visitor attendance.
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Hynds and Smith (1994) addressed the expectation that weather and weather
forecasts might partially influence attendances at outdoor cricket matches. Using a data
set of 52 cricket matches from 1984 to 1992, the authors created a model to predict match
attendance. Among other predictor variables, they included day-of-play weather variables
such as hours of sunshine, rainfall amount, and temperature. Hynds and Smith (1994, p.
105) observed that rain deterred attendance because the presence of rain created a
reduction in demand resulting from both the ‘disutility of sitting in the rain and disrupted
match play.” By contrast, other weather variables such as temperature and ‘variation in
hours of sunshine’, though showing positive relationships with cricket match attendance,
did not contribute to large changes in attendance and was thereby less influential than
rainfall.

Butler’s (2002) assessment of baseball attendance involved a central concern with
how baseball visitor attendance was influenced by team matchups and scheduling.
However, in order to provide a clearer idea of the actual impact on attendance, an
analysis of weather variables as control factors was included in a larger regression model.
Butler created pre-defined weather scenarios coded as ‘dummy variables’ which included
‘cold’ (less than 55°F), ‘hot’ (greater than 94°F) and ‘bad weather’ (weather described as
overcast, drizzle, or rain). All weather variables were statistically significant within the
model and were inversely related to baseball attendances.

Welki and Zlatoper (1999) presented a model that explained attendances at
professional National Football League (NFL) games in the United States. In the

regression analysis, the authors included three weather variables: (1) rain as a dummy
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variable indicating if rain occurred on game day, (2) temperature as the high temperature
on game day, and (3) an index variable combining temperature and rain with the goal of
assessing the influence of temperature during rainy conditions. The authors found that
while rain decreased game attendances, the impact of rain on attendance diminished as
temperature increased leading to the conclusion that ‘warm rain’ had a less adverse
impact on attendance.

Over the period from 1981 to 1986, Borland and Lye (1992) reviewed factors
impacting visitor attendance at 132 Australian Rules Football matches. Although weather
was not the central focus of this study, the authors addressed how adverse weather
conditions might deter visitor attendance. Consequently, Borland and Lye (1992)
included an undefined dummy variable, ‘bad weather’, in their analysis which was
constructed using newspaper reports that indicated adverse weather conditions on the day
of the matches. ‘Bad weather” was found to be a statistically significant factor in the
attendance model leading to the author’s observation that attendances were negatively
impacted by poor weather conditions. Additionally, Garcia and Rodriguez (2002) used
weather within a set of variables aimed at determining the ‘opportunity cost’ of attending
a football match in the Spanish First Division Football League. Weather conditions were
assessed with dummy variables that captured temperature effects in both dry and wet
conditions by using ‘no-rain high temperature’ and ‘no-rain low temperature’ categories;
additionally, the impact of rain was assessed with a ‘rainy days’ variable indicating the

presence of rainfall. Undefined scenarios of ‘hot’, ‘cold’ and ‘poor weather’ were
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addressed by the authors in the text and data tables though no detailed discussion was
provided beyond the reflection that ‘poor weather’ discouraged attendance.

Outside the sporting industry, weather impacts on visitor attendance behavior
often refer to locations which, unlike open-air stadiums, are sheltered from the weather.
Because of this difference, the impacts of weather in these venues often concern access
and road conditions rather than the physiological dis/comfort visitors may experience at
the particular destination. lannaccone and Everton (2004) and Olson (2008) reviewed
factors influencing attendance at churches in the United States. Both studies addressed
the impact of weather with a variable called ‘bad weather Sundays’ where bad weather
was defined as the church being located within a National Weather Service (NWS)
‘winter weather advisory area’ on Sunday or having had substantial snowfall on
Saturdays. Within their regression analysis, lannaccone and Everton (2004) observed th
bad weather had a detrimental impact on attendance. Conversely, through informal
conversation with pastors and personal observations, the authors concluded that good
weather can also discourage church attendance because it can make alternative
recreational activities more attractive. Olson (2008) analyzed weather’s impact on
Protestant churches across a conservative to liberal spectrum in the United States
Midwest. The results indicated that non-liturgical conservative church congregations
were more negatively impacted by the ‘bad weather Sunday’ variable. While possible
differences among church type and weather response do exist, Olson (2008) did not
provide additional commentary beyond suggesting that the findings were likely

attributable more to driving distance than cultural reasons.

at
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Diehl et al (1981) focused strongly on weather parameters and modeled walk-in
attendances at inner-city health clinics using calendar data (i.e., day-of-week and season
variables) and weather data. Calendar data included holidays, day-of-week, and month;
weather data included high and low temperatures in degrees Fahrenheit, precipitation
between 6am and noon, precipitation between noon and 6pm, precipitation from 6pm to
midnight, minutes of sunshine, percent sky cover, and the presence of weather hazards
during the day (including fog, thunderstorms, ice pellets, hail, glaze, haze). While
weather-related variables were determined to add little predictive value to the regression
analysis, high and low temperatures, daytime rainfall, and winter weather events like
freezing rain or ‘glaze’ were determined to be statistically significant for predicting walk-
in attendances at clinics. Temperatures had positive relationships with turnout indicating
warmer temperatures were associated with increased clinic visitation while rainfall
(during daytime hours) and glaze had inverse relationships with visitation.

In order to fully understand the complex interface between weather and visitor
attendance, more detailed research needs to be conducted that examines weather
thresholds and their impacts on attendance. De Freitas et al (2008) and de Freitas (2002)
underscore this by stating that weather-attendance research should determine weather-
thresholds prior to their inclusion in larger attendance prediction models (de Freitas et al.,
2008; de Freitas, 2002). They argue that doing so can enhance research that tends to use
‘expert-based’ weather thresholds because these types of thresholds are generally
arbitrary and, therefore, at best, represent only an approximation of the expected weather

impacts on attendance.
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More detailed research that focused primarily on the weather-attendance
relationship includes Shih et al. (2009), Grodzik (1972), and Nicholls et al. (2008) who
utilized multiple weather parameters to assess outdoor tourist attendance. Shih et al.
(2009) examined weather impacts on ski lift ticket sales in Michigan by analyzing
weather conditions at two ski resort locations and the respective surrounding areas where
visitors most likely originated. At the ski resort site, the variables included maximum and
minimum temperatures, snow depth, and wind chill, while from the surrounding areas
(the most likely areas of visitor origination), snowfall and snow depth were analyzed. It
was determined that local on-site snow depth and minimum temperatures were the most
important weather variables determining downhill ski ticket sales. By comparison,
Grodzik (1972) examined the impacts of temperature, sunshine duration, and
precipitation on outdoor nature park tourism in Canada. It was found that temperature
was most relevant in modeling recreational participation rates. Grodzik also stated that
recreational participation may be better modeled through the use of a human heat budget
as it more accurately depicts the personal ‘experience’ a person may have with the
ambient thermal conditions.

Nicholls et al. (2008) advanced the study of weather-attendance relationships in a
geographic comparison of how three golf courses in the state of Michigan were impacted
by the weather with respect to the number of golf rounds played. Weather was central to
the study as maximum temperature, minimum temperature, and precipitation were all
assessed; however, weather was not the only variable analyzed as public holidays, gas

prices, and the Consumer Confidence Index (CCI) were also included in analysis. The
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authors found that in every case maximum temperature was the most important variable
having a positive impact on the number of golf rounds played per day where higher
temperatures resulted in more rounds played. In comparing the differing geographies of
the three courses and the subsequent differences in the relationship between rounds
played and weather, Nicholls et al. (2008) also concluded that the courses which draw
their visitors primarily from local or regional clientele are more heavily impacted by
weather variability than courses primarily working with non-local consumers mainly
because local residents have the ability to assess the weather conditions they will likely
be exposed to simply by looking out their windows. Conversely, nonlocal visitors are not
able to directly assess weather conditions at or near the location and have likely planned a
trip in advance investing time and money where the investment decreases the ability for
tourists to make last-minute decisions regarding the weather. This finding is further
substantiated in the work of Becken and Wilson (2013) which addressed the difficulties
of assessing weather-response relationships when working with non-local travelers.
Although there is a growing body of research focused on the weather attendance
relationship in a wide variety of venues, there is little consensus regarding the optimal
weather variables for such analysis. According to de Freitas et al. (2007),
biometeorological variables, such as the Physiologically Equivalent Temperature (PET),
are able to more accurately capture the physiological conditions a person may experience
and, therefore, can serve as a “better” weather variable when assessing how tourists may
react to the outdoor thermal environment. Brandenburg and Ploner (2002) and Ploner and

Brandenburg (2003) addressed this when they examined the impact of meteorological
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variables on different park recreationalists in Austria using precipitation, vapor pressure,
cloud cover, air temperature, and the biometeorological index variable PET. To better
model differences across recreationalist types, they created categories of analysis (e.g.
bikers, hikers, joggers, dog walkers) which resulted in better predictive modeling when
estimating visitor attendance using weather variables. Their findings indicated that PET
had the highest impact on visitor attendance decisions followed by precipitation and
cloud cover. Additionally, comparison across categories indicated that the most active
recreationalist groups were also the best modeled by weather variables, and particularly
PET, as ‘bikers’ and ‘hikers’ displayed stronger weather-attendance relationships than
‘dog walkers’. The differences that exist between different recreational activities indicate
that the weather-human attendance relationship is a product of both the physiological
experience (as observed from high PET correlations) and psychological expectations (as
found by the varying weather sensitivities by activity group). Specific weather thresholds
were also analyzed by Brandenburg and Ploner (2002) who found that positive
relationships existed between the number of bikers and temperatures only when
temperatures were above 10°C. They concluded that factors such as day-of-week might
be more influential on park attendance than weather; however, they found that weather
does impact visitor attendance and may be able to influence the activity choice of an
outdoor recreationalist.

The research in this paper builds on the work of Grodzik (1972), Shih et al.
(2009), Nicholls et al. (2008), Brandenburg and Ploner (2002), and Ploner and

Brandenburg (2003) by utilizing multiple weather variables and transforming them into
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Physiologically Equivalent Temperature (PET) categories that are then linked to specific
zoo attendance data over time. Following de Freitas (2007), the use of a
biometeorological variable such as PET should help to more accurately capture the
physiological condition a person may experience, and, therefore, help develop more
explicit associations between ambient environmental conditions and human responses
that can be more closely determined and explained.

On a final note, much of the weather-attendance literature within the Tourism,
Recreation, and Leisure (TRL) sector has focused on better understanding visitor
responses to weather through various survey-response techniques that engage visitors
personally by evaluating on-site preferences regarding ‘ideal’ weather conditions and
‘satisfaction levels’ during actual visits. While there are advantages to employing this
survey-based active user-engaged research (Rutty and Scott, 2014; Hwang et al., 2007;
Knez et al., 2006; Andrade et al., 2011; de Freitas et al., 2008; Lin, 2009; Matzarakis,
1996), the use of passive or indirect observation through already-published secondary
data reports can also link visitor attendance and on-site behavior to various ambient
environmental conditions. Indirect techniques can also consider both current and
historical attendance where it is assumed that attendance is, to a point, based upon
perceived satisfaction with the ambient environment. De Freitas (2014) has noted that
visitor attendance decisions are often made in response not to ideal weather conditions
but to perceived thresholds of tolerance. Consequently, the indirect observation of visitor
behavior could be a better proxy for determining visitor response to the ambient

environmental conditions than direct user-engagement and reports of preferences.
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Indirect techniques that involve historical attendance data sets are also advantageous
because they can incorporate large amounts of secondary historical data which can
provide better information regarding behavior over extensive time periods that could lead

to more statistically robust models given the larger number of observations.

[2.3] Methods

In this paper, it is hypothesized that those days with the highest visitor
attendances at both the Phoenix Zoo and Zoo Atlanta will exhibit similar relationships
with respect to the ambient thermal environment. However, at lower levels of attendance,
it is also hypothesized that differing climates and regional definitions of ‘bad weather’
between Phoenix and Atlanta will yield different attendance outcomes. For example,
when subjected to extreme heat conditions in Phoenix, rather than being willing to
tolerate higher temperatures, it is projected that most Phoenix Zoo visitors will show
‘heat aversion’ due to an unwillingness to tolerate additional exposure to excessive heat.
Conversely, in Atlanta, which has a more diverse climate with a lower occurrence of
‘extreme heat stress’ than Phoenix, it is projected that visitors at Zoo Atlanta will display
less sensitivity to varied weather conditions because they are more accustomed to
implementing adaptive strategies due to the diversity of weather conditions experienced
in Atlanta. Much of this logic is tied to de Freitas (2014) who observed that visitor
attendance tends to be shaped more by locally-defined thresholds of tolerance than by
‘ideal” weather conditions. Furthermore, it is hypothesized that days with wider thermal

ranges will experience higher attendances than days with stagnant thermal conditions. At
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both locations, it is projected that days with wider thermal ranges will be more aligned
with cooler morning temperatures that warm to moderate afternoon temperatures.
Alternatively, stagnant thermal regimes may have similar visitor responses in Phoenix
and Atlanta but for differing climatic reasons. Stagnant thermal regimes in Phoenix are
likely days that remain very warm throughout the daytime; in Atlanta, these regimes are
likely associated with cold and/or rainy weather.

In this research, daily attendance data from each zoo were collected from
September 2001 to June 2011 over a total of 3564 days. This time period was selected
because it represented a period where at each zoo there was no significant change in the
array of attractions. Additionally, incorporating a period of nearly one decade helps
control for impacts resulting from severe weather events. Visitor attendances at each zoo
were then segmented into four attendance categories or Attendance Day Typologies
(ADTs). These attendance categories included:

e Poor attendance days where daily visitor attendance is less than one standard

deviation below the mean daily attendance,

e Average attendance days which are within one standard deviation of the mean daily

attendance,

e (Good attendance days that are between one and two standard deviations above the

overall daily attendance mean, and

e Excellent attendance days where attendance is more than two standard deviations

above the daily attendance mean.
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Figure 2.1. Theoretical Normalized Distribution of Attendance Data by Attendance Day
Typology (ADT)

Part of the logic for including two categories of attendance more than one
standard deviation above the mean attendance (i.e., ‘good’ and ‘excellent’ days) is their
disproportionate impact on overall attendance. For example, while attendance at the
Phoenix Zoo and Zoo Atlanta fell within the ‘good’ and ‘excellent’ categories only on an
average of one day out of every seven, the total visitor attendance for these ADTs
accounted for over 39% of total yearly attendance at both zoos.

Weather data at both zoos was obtained from the nearest hourly-data National
Weather Service (NWS) Automated Surface Observing Systems (ASOS) station. The
ASOS station used for the Phoenix Zoo is located at Phoenix Sky Harbor Airport, 3.9
miles WSW of the zoo while the weather station used for Zoo Atlanta is located at
Atlanta Hartsfield Airport, 7.4 miles SSW of the zoo center. During the period of study,
these stations did not change locations. Although it is acknowledged that the weather

stations used in the research are not located immediately proximate to each zoological
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park, they are close enough to assume that the weather conditions occurring at the
stations represented a reasonable proxy for the weather experienced at each zoo.

When reviewing factors contributing to attendance decisions, it is also important
to consider the weather conditions from the time most visitors plan their trip to the time
they return home because these are the weather conditions most likely influencing
decisions regarding a trip to an outdoor venue. Consequently, we collected weather data
once every hour for the variables of temperature, humidity, dew point, wind speed, and
sky cover from 7am to 7pm local standard time. Nicholls et al. (2006 and 2008) have
highlighted the importance of utilizing this type of fine resolution weather data as it
assists in more fully detecting how weather conditions may impact attendances and
participation at outdoor locations.

Additionally, this paper, in its calculation of the outdoor thermal environment,
used the Physiologically Equivalent Temperature (PET) because it represents a more
visitor-tailored measure of the ambient environmental conditions and captures the ‘feel’
of the ambient thermal conditions a zoo visitor is most likely to experience. PET is well
established as it is commonly used in outdoor tourism studies (Lin et al., 2008, 2009;
Matzarakis, 1996; Staiger et al., 2011). The derived temperature values of PET are often
classified into a nine-point thermal sensation scale following standards established by the
American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)
(ASHRAE, 2001 and 2004) where the ambient environment is described as ‘very cold’
through ‘very hot’. For the purposes of this research, the nine categories used were

specified using the standard as defined by Matzarakis and Mayer (1996) (Table 2.1).
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Table 2.1. PET-Based Thermal Categories Adapted from Matzarakis and Mayer (1996)

PET ASHRAE THERMAL CATEGORY PHYSIOLOGICAL STRESS
Very cold Extreme cold stress
4°Cc
Culd Strong cold stress

Cool Moderate cold stress

Slightly warm Slight heat stress

Strong heat stress

Extreme heat stress

Figure 2.2 describes the methodological process used in this research where
hourly weather data was converted to a derived PET value and then assigned to a PET-
based thermal category. PET was calculated thirteen times every day for each hour from
7am to 7pm where its value was dependent upon atmospheric inputs of temperature, wind
speed, sky cover, and relative humidity. To obtain the PET derived value, the RayMan
Pro software (Matzarakis et al., 2000) was used which yiclded a PET-derived
temperature variable in degrees Celsius. This software is commonly used in the
calculation of PET, particularly within human bioclimate research and tourism
(Matzarakis et al., 2007). After calculation, each PET-derived temperature value was
then assigned to the corresponding PET-based thermal category as defined by Matzarakis
and Mayer (1996). After the thirteen hourly PET categories were determined on a
particular day, the warmest and coldest thermal categories for that day were selected to

represent the daily high and low PET-based thermal category values.

25



Temperature

==
DER =
: | 4
(I —
| 5 Humidity

Copyrght © 1008 - 2090

Figure 2.2. Methodological Process of Converting Hourly Weather Data to a PET-Based
Thermal Category

In previous research, the warmest daily PET-derived value correlated highest with
visitor attendance at zoos; additionally, it performed better than the average or low daily
PET values in predicting attendance (Perkins, 2012). The warmest daily high PET
worked well in predicting visitor attendance because it represented a particular day’s
most extreme thermal condition which tended to occur at the time most visitors were
likely to be at the zoo. Furthermore, it is likely that most visitors planning to visit the zoo
are attuned to the daytime high thermal condition rather than an abstract average or early-
morning low temperature.

As changes in weather conditions will likely impact visitor decisions, this
research also analyzed how the number of PET-derived thermal categories experienced
during a day impacted visitor attendance. Rather than defining the amount of daytime
thermal change by measuring the degree difference between the high and low PET values
from 7am to 7pm, this research calculated a ‘perceived’ thermal change as measured by
the number of different PET-based thermal class intervals (Table 2.1) a visitor
experienced between the low and high PET from 7am to 7pm at a particular location.

Because thermal category ranges were derived by survey-response techniques in
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accordance with the ASHRAE thermal perception scale, it was assumed that the number
of thermal categories occurring during a day better represented the amount of perceptible
change visitors experience from the thermal conditions.

While zoological parks are similar to other outdoor venues such as public city
parks, botanical gardens, hiking trails, and beaches, they offer several specific advantages
for the study of human behavior regarding the weather. First, prior to visiting a zoological
park, people have certain expectations regarding the reasons why they visit and the
outdoor exposure they will likely experience when on site. Although there are differing
motivations for zoo patrons (Falk et al, 2007), those who visit zoological parks generally
go to learn about animals, conservation, and nature, and patrons expect this to occur
mostly in an outdoor setting regardless of the geographic location of the zoo. Second,
unlike the wide variety of activities potentially engaged in by beach or park tourists
(Grodzik, 1972; Brandenburg and Ploner, 2002; Ploner and Brandenburg, 2003; Rutty
and Scott, 2014; Morgan et al., 2000), activity at zoos can generally be defined as “slow
steady walking” (Mieczkowski, 1985) as the main function visitors perform at most zoo
locations. Because activity levels contribute to the calculation of the Physiologically
Equivalent Temperature (PET), having a comparable visitor activity level across zoo
locations allows for a higher level of confidence in any comparison of human thermal
comfort and visitor attendance across sites. Third, because most zoos operate as paid-for
admission venues, they keep reliable and accurate attendance data over time.
Additionally, in order to maintain controlled admissions, zoological park space has

definite geographic boundaries with fixed entry and exit points. Methodological
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difficulties can arise when accounting for attendees at open spaces such as botanical
gardens and nature parks with multiple entrances, and beach fronts with undefined
geographical spaces (Knez and Thorsson 2005; Rutty and Scott, 2014; Curtis, Arrigo, and
Covington, 2008; Morgan et al., 2000).

The Phoenix and Atlanta zoological parks are relatively similar in function and
purpose. Both zoos are located in major urban metropolitan areas where each zoo is
positioned within the urban core and occupies a portion of a larger city park system.
Visitor length of stay at both zoos is comparable as the average visitor spends
approximately 3.5 hours per trip. Because visitors plan to spend several hours outdoors
when visiting, this most likely forces them to integrate the daily weather in their planning
considerations. Furthermore, unlike the San Diego Zoo or Washington National Zoo,
which are internationally renowned zoos that attract a large number of out-of-state
visitors, the Phoenix and Atlanta zoos largely attract day-trippers from within the
metropolitan areas of Phoenix and Atlanta. For example, at the Phoenix Zoo, 80% of the
guests are from within the state of Arizona and at Zoo Atlanta, 67% of the guests are
from within the state of Georgia (Personal Communication, 2015a, 2015b). Given the
large numbers of local day-trippers with less fixed schedules, it is likely that visitor
decisions at the Phoenix Zoo and Zoo Atlanta will be more aligned with weather
conditions than they would at zoos in larger tourist venues with many nonlocal visitors.
This logic follows Nicholls et al. (2008) who observed increased visitor sensitivities to
weather conditions at golf courses with larger shares of local visitors. It should be noted

that both metropolitan areas are comparable in population as the Phoenix Combined
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Statistical Area (CSA) contained approximately 4.2 million residents while the Atlanta
CSA had 5.6 million residents in 2012 (U.S. Census, 2012). Also, both zoos are paid-
admission zoos with similar costs as parent/child admission rates (as of 2014) were
$20/$14 for Phoenix and $22/$17 for Atlanta.

Finally, though the Phoenix Zoo (33.45°N) and Zoo Atlanta (33.73°N) are at
equivalent latitudinal locations, their climates are very different. The Képpen-Geiger
climate classification system locates the Phoenix Zoo in a dry climate with seasonal
precipitation regimes while Zoo Atlanta is located in a humid continental climate with
hot summers and no particular dry season (Peel et al., 2007). Average annual
precipitation in Phoenix totaled 204 mm while Atlanta totaled 1280 mm. The warmest
month in both locations was July when the high temperature averaged 41.2°C in Phoenix
and 37.7°C in Atlanta. In Phoenix the coldest month was December when the average
high temperature was 18.9°C. The coldest month in Atlanta was January with an average

high temperature of 11.3°C.

[2.4] Findings
Although the Phoenix Zoo and Zoo Atlanta are not regarded as national zoos in
the same way as the San Diego Zoo or Washington National Zoo, they are still capable of
generating a substantial number of visitors. From September 2001 to June 2011, the two
zoos generated a total combined attendance of 17.5 million visitors. During this period,
the Phoenix Zoo averaged slightly over one million visitors per year while Zoo Atlanta

attracted approximately 0.75 million visitors on an annual basis. The Phoenix Zoo is the
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largest privately owned non-profit zoo in the United States and has been in operation
since 1962. During its recent history, it has attracted national acclaim with ‘Ruby the
elephant’ who was widely known for her ability to paint artwork which was subsequently
sold for fundraising and charitable purposes. Currently, the Phoenix Zoo is known for its
large diversity of animal exhibits, international conservation efforts in species re-
introduction, and for a national ‘sanctuary’ which houses both ‘unwanted’ and
endangered animals from throughout the world. Zoo Atlanta, established in 1889, is one
of the oldest zoos in the United States. It also gained national recognition for a popular
animal as it showcased the well-known ‘Willie B.” gorilla in its renowned gorilla habitat.
Today Zoo Atlanta is highly regarded for its giant panda exhibit as it is one of only four
zoos in the United States with this species on exhibit. Clearly, both zoos have well-
established histories and sophisticated arrays of attractions; what is less clear is how at
each zoo varied weather conditions might impact average daily visitor attendance.

Table 2.2 illustrates the number of days represented at each zoo for each of the
Attendance Day Typologies (‘poor’, ‘average’, ‘good’, and ‘excellent’), and Table 2.3
illustrates the total visitor attendance within each Attendance Day Typology (ADT) by
z00. The number of attendees and the number of days are additive across each row,
indicating the total number of days analyzed (Table 2.2) and the total number of visitors
in attendance (Table 2.3) at each zoo from September 2001 to June 2011. Due to the
statistical nature of the ADT groupings, the ‘average’ ADT is the largest single grouping
both in terms of number of days represented at the zoos and total visitor attendance. In

Table 2.2, the ‘average’ ADT represented 75.8% of all days at the Phoenix Zoo and
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76.1% of all days at Zoo Atlanta. In comparison, the ‘average’ ADT represented 56.7%
of the total visitor attendance at the Phoenix Zoo and 61.0% of the total visitor attendance
at Zoo Atlanta (Table 2.3). These percentages do not completely resemble the theoretical
normalized distribution because the attendance data was positively skewed, typical of
much attendance data. The ‘sweet spot’” days of maximum attendance are typically only
one in five of all days analyzed when compared to the poor and average distributions.
Furthermore, the daily average attendances for ‘good’ and ‘excellent’ days at both zoos
were three and four times the attendance levels on average attendance days.

In Table 2.2, while the ‘good’ and ‘excellent” ADTs combined only accounted for
17.1% of the total days represented at the Phoenix Zoo and 14.1% of total days
represented at Zoo Atlanta, these days accounted for 42.4% and 38.6% of the total visitor
attendances (Table 2.3) at the Phoenix Zoo and Zoo Atlanta, respectively. Consequently,
a large portion of total visitor attendance (and thus revenue) occurs on only a select few
number of days during the year. Both the ‘good’ and ‘excellent’ ADTs, then, are of high
importance when attempting to forecast visitor attendance. By contrast, the ‘poor’ ADT
accounted for less than 1% of the total number of visitors at both the Phoenix Zoo and
Zoo Atlanta. While direct comparisons of the weather conditions on days within the
‘poor’ and ‘excellent” ADT groupings are important when understanding the weather-
attendance interface, from the perspective of the probable revenue share within the
different ADT groupings, both zoos in this research would likely most benefit from a
more detailed analysis of differences in weather conditions between ‘excellent’ and

‘good’” ADTs.
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Table 2.2. Number of Days by Attendance Day Typology (ADT) September 2001 — June
2011

Phoenix Zoo 257 (7.2%) 2,721 (75.8%) 404 (113%) 208 (5.8%)

Zoo Atlanta 349 (9.7%) 2,727 (76.1%) = 338 (9.4%) 170 (4.7%)

Table 2.3. Total Visitor Attendance by Attendance Day Typology (ADT) September 2001

—June 2011
Phoenix 93,333 5,721,080 2,486,641 1,784,993
Z00 (0.9%) (56.7%) (24.7%) (17.7%)
Z00 26,827 4,522,693 1,595,615 1,265,605
Atlanta (0.4%) (61.0%) (21.5%) (17.1%)

The categories in Figure 2.3 represent the proportion of the number of days at the
Phoenix and Atlanta zoos falling within a particular PET-based thermal category from
September 2001 to June 2011 where the day in question was represented by the warmest

PET-based thermal category that occurred between 7am and 7pm on each day.
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Figure 2.3. Daily Observed Thermal Categories at the Phoenix and Atlanta Zoos
September 2001 — June 2011 as Measured by the Thermal Category Representing the
Warmest Daytime PET (7am to 7pm)

It is clear from Figure 2.3 that Phoenix and Atlanta have very distinct thermal
profiles. In Phoenix, the ‘very hot’ thermal category occurred 39% of the time, making
this the most frequently occurring thermal category. By contrast, this same type of
‘extreme heat stress’ was not observed as frequently in Atlanta where the ‘very hot’
thermal category occurred only 8% of the time. At the other thermal extreme, Phoenix
reported a negligible number of ‘very cold’ days, while in Atlanta 10% of all days fell
within the ‘very cold’ thermal category. Despite these differences, both Phoenix and
Atlanta are comparable regarding the more moderate thermal conditions. The proportion
of days falling between the ‘slightly cool’ through ‘slightly warm’ thermal categories was
33% in Phoenix and 35% in Atlanta. Overall, the thermal conditions in Phoenix are

largely defined by high proportions of days falling within the warmer thermal categories
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and lower proportions of colder days. The thermal conditions in Atlanta are largely
defined as a relatively even representation of all the thermal categories from ‘very cold’
to ‘very hot’. Less clear is how these different thermal regimes may shape and influence
daily visitor attendance at each zoo during the study period.

The distribution of PET-based thermal categories based on the percent share of
each Attendance Day Typology (ADT) for both zoos is displayed in Figure 2.4, where the
large share of ‘poor’ attendance days at opposite thermal extremes is vividly illustrated
and indicates a potential ‘thermal aversion effect’. Attendance at both zoos appears to
show ‘extreme temperature aversion’ refined by the location’s most commonly occurring
thermal extreme category (Figure 2.3). At the Phoenix Zoo, 84% of the ‘poor’ ADT is
represented by the ‘very hot’ thermal category indicating potential ‘heat aversion’; at Zoo
Atlanta, 54% of the ‘poor’ ADT occurred within the ‘very cold’ thermal category
indicating potential ‘cold aversion’. Although Phoenix residents are more accustomed to
warmer thermal conditions and Atlanta residents have more experience with colder
thermal profiles, this does not mean that they have adapted to these conditions or that
either have developed elevated thermal tolerance levels. In fact, quite the opposite trend
appears to be occurring where ‘very hot’ daily thermal classifications are more predictive
of ‘poor’ attendance in Phoenix while ‘very cold’ thermal conditions indicate ‘poor’
attendance figures in Atlanta. This finding may suggest that because zoo visitors in
Phoenix display potential ‘heat aversion’ and in Atlanta display potential ‘cold aversion’,
visitors could be reacting to a ‘saturation point” where they choose to no longer tolerate

the location’s prevailing thermal extreme regarding their discretionary leisure time.
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Figure 2.4. Distribution of Warmest Daytime PET-Based Thermal Categories Based on
the Percent Share of Attendance Day Typology (ADT) by Zoo.

By contrast, the distribution of PET-based thermal categories across the
‘excellent” ADT shows a definitive pattern that is shared by both Phoenix and Atlanta
zoos. At the Phoenix Zoo, the peak representations of the highest days of attendance on
record are within the ‘slightly warm’ and ‘warm’ thermal categories, where both

categories combined represented 60% of all the days within the ‘excellent” ADT. Zoo
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Atlanta’s peak representations in the highest attendances are also within the ‘slightly
warm’ and ‘warm’ thermal categories and combined represented 54% of all the days
within the ‘excellent” ADT. Despite the differences in prevailing climates and the stark
differences observed in the thermal category representations across the ‘poor” ADTs,
what is apparent in the findings from the ‘excellent” ADT is that both zoos are very
comparable in terms of visitor thermal category preference on days with the highest
attendances. Generally speaking, both zoos display visitor preferences for ‘slightly warm’
and ‘warm’ thermal conditions that are apparently the ‘thermally optimum’ conditions for
peak visitor attendance at both zoos. That said, there are still key differences between the
Phoenix Zoo and Zoo Atlanta regarding the nuances observed between the ‘good’ and
‘excellent” ADT categories.

Figure 2.5 provides a direct visual comparison of the ‘good’ and ‘excellent’ ADT
categories at the Phoenix Zoo and Zoo Atlanta with respect to the warmest daytime PET-
based thermal category. In both zoos ‘good’ and ‘excellent’ attendance days are mainly
concentrated in thermal categories warmer than ‘slightly cool’, therefore, the potential

‘heat aversion’ observed at the Phoenix Zoo is more apparent.
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Figure 2.5. Geographic Comparison of Atlanta (ATL) and Phoenix (PHX) Zoos for
Percent Share of Attendances within ‘Good’ and “‘Excellent” ADT Categories with
Respect to the Highest Daytime PET-Based Thermal Categories

Specifically, regarding the ‘good’ ADT category, the Phoenix Zoo shows a

slightly lower representation of ‘hot’ days and a much higher representation of ‘neutral’

days when compared with Zoo Atlanta. This relationship is observed again in the

‘excellent” ADT category where the Phoenix Zoo shows a lower representation of ‘hot’
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days and a higher representation of ‘warm’ through ‘neutral’ days than observed at Zoo
Atlanta. Figure 2.5 seems to suggest that on peak attendance days the Phoenix Zoo visitor
is more ‘heat averse’ than the Zoo Atlanta visitor. In fact, concerning discretionary time,
Phoenix Zoo visitors appear unwilling to tolerate additional heat stress in a setting where
39% of the thermal regime is already classified as ‘very hot’ (Figure 2.3). This finding
could be a manifestation of results from Figure 2.4 where, within the ‘poor’ ADT, the
respective zoo visitors appear to be reacting aversely to each location’s prevailing
thermal extreme. Phoenix Zoo visitors, then, likely will display more potential ‘heat
aversion’ than zoo visitors in Atlanta who more often experience extreme cold conditions
than extreme heat conditions (Figure 2.3).

Much of the analysis thus far has focused solely on the connections that exist
between zoo visitor attendances and the highest daytime PET-based thermal conditions,
however, because visits to both the Phoenix and Atlanta zoos last approximately three
hours on average (Personal Communication, 2015a, 2015b), most visitors likely assess
the weather based upon the conditions they might experience throughout their entire time
at the zoo location. Because of this, conditions throughout the day, particularly any
potential changes in the atmospheric environment, may directly influence a decision to
visit. To test for this, the average number of PET-based thermal categories experienced
during each day (7am to 7pm) by ADT is shown in Table 2.4 at both the Phoenix Zoo
and Zoo Atlanta. Additionally, illustrated in Figure 2.6 is the percent share of each ADT
by number of PET-based thermal categories experienced by a visitor per day. To

illustrate, if the highest PET derived value obtained for the day at one of the zoos
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occurred in the ‘very hot’ category and the lowest PET derived value occurred in the
‘neutral’ category, it would represent 5 thermal categories experienced by a zoo visitor.
Table 2.4 gives further detail regarding the average number of thermal categories
experienced in a day for each ADT category.

In Table 2.4 it is clear that poorly attended days experienced fewer thermal
categories during a day while peak attendance was directly related to those days that
experienced a larger number of PET-based thermal categories. For example, at the
Phoenix Zoo, ‘poor’ attendance days averaged only 2.4 PET-based thermal categories
while ‘excellent’ attendance days experienced more than four PET-based thermal

categories on average.

Table 2.4. Average Number of Perceived Thermal Categories Experienced During a Day

for Each ADT

Phoenix Zoo 24 3.5 4.1 4.2

Zoo Atlanta 1.7 3.1 3.6 39
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Figure 2.6. Percent Share of Attendance Day Typology (ADT) by Number of PET-Based
Thermal Categories Experienced by a Visitor per Day (7am to 7pm)
In Phoenix, poorly attended days when the number of PET-based thermal
categories experienced was less than three would most likely be representative of an
atmospheric condition where early morning low temperatures were already quite warm.

After sunrise with a dry desert heating regime present, these hot morning temperatures

40



would quickly warm to the ‘very hot’ thermal category representing ‘extreme heat stress’
where they would remain for the duration of the day. Such an early-morning condition is
likely related to periods of southerly wind flow where hot desert air from the Sonoran and
Chihuahuan Deserts in Arizona and Mexico is advected into Phoenix thereby inhibiting
significant nighttime cooling. By contrast, peak attendance days tended to occur on days
that experienced four or five PET-based thermal categories. Such a scenario likely
implies a situation when cooler temperatures were experienced first thing in the morning
and gradual warming occurred throughout the day. Thermal conditions at the Phoenix
Zoo seem to appeal most to zoo visitors when they wake-up to a welcome break from the
very hot thermal regimes that predominate in the region and a decision is made to visit
the zoo based on the expectation that ‘very hot’ conditions are unlikely to occur later in
the day.

Much of the same dynamic is happening at Zoo Atlanta, with some notable
exceptions. For example, at Zoo Atlanta poor attendances tended to occur on thermally
stagnant days when the number of PET-based thermal categories experienced was two or
fewer. In Atlanta, the most likely weather conditions contributing to a day with little to
no thermal change are either days which begin as ‘very cold’ and do not warm much
and/or days with significant cloud cover and possible rain which lead to little daytime
warming. Additionally, these cloudy days, regardless of the presence of rainfall, are not
aesthetically pleasant conditions for outdoor zoo visits, thereby further decreasing zoo
attendance. Much like Phoenix, well attended days tended to occur on days when

approximately four thermal categories were experienced. Such days are most likely
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represented by moderate to fair weather conditions in the early morning which typically
evolve to relatively clear skies and ample sunshine by mid-afternoon.

A possible reason why daily thermal conditions require slightly more change in
Phoenix than in Atlanta to boost attendance likely relates to the differences in prevailing
climates (Table 2.4). Phoenix, a drier and warmer climate than Atlanta, on most days has
more potential for significant daytime heating; therefore, a day which falls within the
‘optimal’ thermal categories regarding higher levels of attendance requires cooler
morning temperatures. Atlanta, alternatively, could see the daytime high PET falling
within the ‘optimal’ thermal categories without the need for as much daytime heating as
in Phoenix and, therefore, requires fewer thermal categories to generate ‘good’ or

‘excellent’ attendance days.

[2.5] Conclusions and Future Direction

The United Nations World Tourism Organization (UNWTO) in its report
discussing tourism’s response to climate change has suggested that “As climate defines
the length and quality of tourism seasons, affects tourism operations, and influences
environmental conditions that both attract and deter visitors, the sector is considered to be
highly[Iclimate sensitive. These effects of a changing climate will have considerable
impacts on tourism and travel businesses” (UNWTO, 2009, p. 2).

Many authors have suggested, however, that in order to better understand how
tourism communities can become more resilient to climate change, society must first

better understand how weather and climate factors impact tourists today (Nicholls et al.,
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2008; Shih and Nicholls, 2011; Scott and Jones, 2006; Scott, 2012). This paper has
sought to partially address these concerns by examining in detail how zoo visitors have
responded to the ambient atmospheric conditions over an extended period of time. By
focusing on zoological parks, this research has also addressed a large and important part
of the tourism industry since annual visitations at U.S. zoos surpass those of all major
sporting venues combined (AZA, 2013). Additionally, zoos cater to an important
demographic of the population that can be impacted negatively by future climate change
weather—namely large family groups that include both children and the elderly. As a
result, the use of zoological parks as indicators of human thermal comfort preferences can
give insights into how future generations may respond to climate change scenarios.
Specific findings in this research have helped provide foundational information
concerning both human thermal preferences and how those preferences may vary across
diverse climates. As an example, it was found that the ‘optimal thermal conditions’
regarding peak visitor attendance were relatively consistent across both the Phoenix and
Atlanta zoos despite their differing climates. In detail the PET-based thermal categories
of ‘slightly warm’ and ‘warm’ were found to best describe the ‘optimal thermal
conditions’ for visitor attendance at both zoos. Regarding thermal conditions which
depress attendance turnout, both zoos showed a consistent ‘thermal aversion effect’, and
specifically an ‘extreme temperature aversion’ where visitors avoided the respective
location’s most common thermal extreme condition. To illustrate, Phoenix Zoo visitors
displayed potential ‘heat aversion’; conversely, Zoo Atlanta visitors displayed potential

‘cold aversion’. The potential ‘heat aversion’ observed at the Phoenix Zoo also appeared
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to influence visitor preferences on days of higher attendance within the ‘good’ and
‘excellent” ADT categories. A result of this potential ‘heat aversion’, visitors at the
Phoenix Zoo displayed preferences for cooler thermal conditions than did visitors at Zoo
Atlanta.

Given the prevailing climates of the Phoenix and Atlanta zoos, it was expected
that visitors in Phoenix would be somewhat better acclimatized to hot thermal conditions,
and visitors in Atlanta may display cooler thermal preferences. However, we observed
Phoenix Zoo visitors to be less tolerant of excessive heat and Zoo Atlanta visitors less
tolerant of excessive cold, at least regarding their discretionary leisure time. Overall, the
type of ‘extreme temperature aversion’ appeared to be linked to the prevailing climate of
a location where visitor displays of ‘heat aversion’ or ‘cold aversion’ may have been
reactions to ‘saturation points’ when visitors no longer tolerated the location’s most
common thermal extreme.

Regarding daytime changes in the weather, visitors to both zoos indicated that in
addition to the daily high PET-based thermal conditions, they might also be well attuned
to the dynamic change in thermal categories during a day. Both zoos experienced peak
attendance on days when visitors experienced four or more PET-based thermal categories
for a given day, suggesting that days which promised improving weather conditions were
more likely to stimulate attendance.

While zoological parks can be excellent ‘test laboratories’ in the ongoing
assessment of how weather and climate might impact visitor behavior, this paper raises

additional research questions. If an ‘optimal thermal condition’ exists regarding peak zoo
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visitor attendance, how will climate change impact zoo visitor demands in the future
beyond just the Phoenix and Atlanta zoos? Will zoos located in different climate zones
display visitor preferences similar to those found in Phoenix and Atlanta? Furthermore, if
the ‘heat aversion effect” demonstrated in Phoenix is replicable in other locations with
similar thermal regimes, what might this imply for the geography of zoo attractions in the
long-term?

By building our understanding of how weather events and thermal regimes
influence visitor behavior, we can begin to use this and other research as a foundation for
modeling future visitor behavior under varying scenarios of climate change. By better
understanding how tourists and recreationalists behave in response to changing patterns
of weather and climate, leaders and governments have an increased ability to make better

informed policy and planning decisions for the future.

45



CHAPTER 11
WEATHER, PRICING, AND TOURISM AT THE INDIANAPOLIS AND

ST. LOUIS ZOOLOGICAL PARKS

Co-authored with Dr. Keith G. Debbage for Weather, Climate & Society

[3.1] Introduction

Identified by the United Nations (UN) as “presenting significant threats to the
achievement of the Millennium Development Goals” (UN, 2013), climate change and the
variability of future weather events are projected to have large impacts on the health,
well-being, behavior, and security of human society. These impacts are broad-reaching
and specifically affect many sectors of the global economy. In particular, the United
Nations World Tourism Organization (UNWTO) has stated in its ‘Davos Declaration on
Climate Change and Tourism’ that climate is a key resource for tourism and the sector is
highly sensitive to the impacts of climate change. The UNWTO has suggested that
communities and governments should ‘develop regional and local climate information
services tailored to the tourism sector’ and implement community policy which is based
on the interface between climate and the businesses and consumers within the tourism
industry (UNWTO, 2009 pg. 25).

Literature addressing the complex interactions between varied weather and
climate conditions within the tourism sector has attempted to answer many of the

objectives outlined by the UNWTO through detailed research on how tourism resources
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could change and how people might travel to different locations under varying scenarios
of climate change. In particular, various alpine communities across the world that house
the ski industry have been a focus of much research which has found that under global
warming, low-elevation resorts may be stressed in their physical snow and water
resources, and higher alpine locations may incur excessive crowding due to a shift in
recreationalist behavior as they abandon unreliable low-elevation ski resorts. (Cegnar,
2007; Tepfenhart et al., 2007; Scott et al., 2007).

Although research providing insight into the impacts of climate change on
tourism have been important, many authors have indicated that in order to better
understand how future climate change scenarios may broadly impact human behavior,
society must first better understand how people interpret the weather and climate
conditions of today (Nicholls et al., 2008; Scott and Jones, 2006; Scott, 2012). Additional
understanding of the behavioral choices tourists make regarding the weather can establish
a stronger foundation by which research can forecast future tourist behavior.

This paper, in particular, focuses on the shorter-term impacts varied weather
conditions may have on tourist behavior by considering the largely outdoor-oriented
economic sector of Tourism, Recreation, and Leisure (TRL). Specifically, the focus of
this paper is on the large and important TRL sector encompassing zoological parks and
aquariums which contributed over $16 billion to the United States economy in 2012,
supporting 142,000 jobs and attracting 175 million visitors, a total number of visitors in
excess of all the major U.S. sporting events combined for the same time period (AZA,

2013). Few studies have examined in detail how weather conditions might affect zoo
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visitor attendances over time though Mason (2000) has remarked that zoos as tourist
attractions remain under-researched and Davey (2007) has stated that zoo attendance
patterns are in need of additional research. Additionally, Perkins and Debbage (2016a)
identified in their research that zoological parks might be settings well-suited for the
study of outdoor tourist behavior and subsequent weather events.

To address these points, we study how varying weather conditions, specifically
the ambient thermal environment (as measured by the Physiologically Equivalent
Temperature, PET) (Hoppe, 1999), might influence visitor attendance over time. In doing
so, we review how weather impacts daily zoo visitor attendance over a period of
approximately one decade by comparing two AZA accredited zoological parks in similar
climate regimes: the Indianapolis and St. Louis zoos.

These two zoological parks were chosen to build on the research findings of
Perkins and Debbage (2016a) who examined the Phoenix and Atlanta zoos to better
understand how visitor attendances in differing geographic settings are impacted by the
ambient thermal environment as described by the Physiologically Equivalent
Temperature (PET). In particular, results from the Indianapolis and St. Louis zoos will
provide a comparison of the weather-attendance relationship at zoos located within
climates colder than in the original work by Perkins and Debbage (2016a). It will do so
by assessing if the ‘thermally optimum’ conditions found earlier in Phoenix and Atlanta
are translatable to other climatic regions. Additionally, because the Indianapolis and St.

Louis zoos are located in similar climate regimes, this research will also assess whether
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zoos located in the same general climate have consistent weather-attendance
relationships.

Better understanding how the prevailing climates of an area may create different
visitor attendance responses to thermal environments could provide further insight into
the broader processes of human acclimatization. First, in both the Indianapolis and St.
Louis zoos, it is hypothesized that days with highest visitor attendance will be similar
between zoos and, further, they will have similar thermal profiles to what was found in
Phoenix and Atlanta by Perkins and Debbage (2016a). Because the climates are cooler in
Indianapolis and St. Louis than in the zoos studied by Perkins and Debbage (2016a), it is
also projected that visitors at Indianapolis and St. Louis zoos might show less cold
tolerance than visitors in Phoenix or Atlanta, based on regional expectations regarding
what zoo attendees may perceive as weather conditions that are not thought to be
‘pleasant’. Second, because visitors at both zoos are in attendance for an average of three
to four hours (Personal Communication, 2015¢, 2015d) and are exposed to outdoor
conditions over an extended period of time, it is hypothesized that days with wider ranges
of thermal conditions will be associated with higher attendance, and days with ‘stagnant’
thermal conditions will be associated with lower attendance. Third, because Indianapolis
Zoo is paid-admission and St. Louis Zoo is free-admission, it is hypothesized that pricing
will likely impact how visitors interpret the weather conditions where lower cost will

potentially decrease weather sensitivities.
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[3.2] Theoretical Background and Context

One of the key factors driving tourist behavior relates to the general comfort a
tourist or recreationalist experiences when engaging in a chosen activity. In the event of
climate change, warmer conditions will likely change comfort levels which may, in turn,
cause tourists and recreationalists to alter their activities, perform the same activities but
in different locations, or adapt to the thermal conditions. For a better understanding of the
thresholds and preferences tourists have regarding the outdoor environment and the
activities they engage in during their discretionary leisure time, much research has been
performed to identify the thermal conditions most tourists prefer (Scott et al., 2012).

In order to better understand the thermal conditions coinciding with the highest
visitor attendances in Tourism, Recreation, and Leisure (TRL) settings, (termed here, the
‘optimal’ thermal condition), one must first gauge the thermal preferences of those
visitors. Extensive research in the TRL sector has been performed that aimed to
determine the thermal conditions which are most preferred by tourists in outdoor settings.
Due to the wide activities engaged in by TRL participants, no single universal thermal
preference has been agreed upon; however, several activity-specific ranges have been
outlined in the literature which assist in better determining an envelope of

tourist/recreationalist preference (Scott, 2012).
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Table 3.1. A Summary Review of the Preferred Thermal Conditions of Varying Visitors
Within the Tourism Sector

Optimal
Method Study Year ptl R Closest ASHRAE Category Tourism Segment Culture
Temperature °C
Besancenot 1978 25-33 Slightly Warm Warm General Global
Expert-Based . . 5
Mieczkowski 1985 20-27 RSN siightly warm General Global
Maddison 2001 30.7 Warm General English
Lise and Tol 2002 21.8 _ Slightly Warm General French
Lise and Tol 2002 24.4 Slightly Warm General Italian
. Hamilton and Lau 2005 24 Slightly Warm General German
Observational .
Hamilton et al. 2005 14 General Global
Bigano et al. 2006 16.2 General Global
Perkins and Debbage 2016 - Sl!ghtly Warm Warm Zoologfcal Park SW USA
- Slightly Warm Warm Zoological Park SE USA
Gomez-Martin 2006 22-28 _ Slightly Warm General Spanish
Defreitas et al. 2008 - Slightly Warm Warm Beach Canadian
23 Slightly Warm Urban Multicultural
21 Mountain Multicultural
Scott et al. 2008 25 Slightly Warm Beach New Zealand
27 Slightly Warm Beach Canadian
29 Warm Beach Swedish
survey 27-32 Slightly Warm Warm Beach Multicultural
Rutty and Scott 2010 i . .
20-26 Slightly Warm Beach Multicultural
Wirth 2010 20-26 Slightly Warm Urban German
Moreno 2010 28 Slightly Warm Beach W European
Lin 2010 21-23 ~ Neutral Urban Taiwanese
Hewer and Scott 2011 24-30 Slightly Warm Warm Nature park Canadian
Andrade et al. 2011 23-28 Slightly Warm Urban Portuguese

It must be noted that the focus here is on the thermal component of the ambient
environmental condition. As mentioned by de Freitas (1990), there are several weather-
related parameters that are important when examining the atmosphere a tourist will
experience when outdoors including rainfall, wind speed, and sunshine. Table 3.1 is an
update to the work of Scott et al. (2012) and outlines several studies within the TRL
sector which define ‘optimum’ weather conditions for tourism. Excerpted from each
study is the optimal temperature or temperature range for tourism.

To provide comparison, the ‘optimal temperatures’ in the literature have been
converted to the closest thermal category as specified by Matzarakis and Mayer (1996).

Table 3.2 displays the nine thermal categories defined by the American Society of
51



Heating and Air Conditioning Engineers (ASHRAE) with the thresholds defined by
Matzarakis and Mayer (1996); the thresholds were specified with respect to the derived

Physiologically Equivalent Temperature (PET) (Hoppe, 1999).

Table 3.2. PET-Based Thermal Categories Adapted from Matzarakis and Mayer (1996)

PET ASHRAE THERMAL CATEGORY PHYSIOLOGICAL STRESS

Very cold Extreme cold stress

Cold Strong cold stress

Cool Moderate cold stress

Slightly warm Slight heat stress

Hot Strong heat stress

Very hol Exlreme heal slress

The research surveyed in Table 3.1 is performed using three distinct methods:
‘expert-based’ which defines its optimal temperatures based upon the author’s best
determination, ‘observational” which defines optimal weather and temperatures based on
tourist travel departure and attendance data, and ‘survey’ which makes its determinations
regarding on-site surveys of tourists and recreationalists. As discussed by Perkins and
Debbage (2016a), each method has its advantages and disadvantages; however, all are of
use when considering the ‘optimal’ temperatures and weather conditions within the TRL
sector. Further, Table 3.1 describes the ‘tourism segment’ and the ‘culture’ in focus for

each study. The ‘tourism segment’ refers to the target tourist audience of the study or
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intended visit-location of those questioned where ‘general tourism’ can largely be defined
as sightseeing tourism or “slow steady walking” (Mieczkowski, 1985) as the main
activity visitors perform. ‘Culture’ describes the origin of the people who were either
observed or surveyed to obtain the results.

While there is a large array of differing results, some key points emerge from an
overall survey of the findings (Table 3.1). First, those studies assessing either a ‘global’
culture or a ‘general’ tourism segment indicate a wide range of possibility for ‘optimal’
thermal preferences. For example, Hamilton et al. (2005) and Bigano et al. (2006)
utilized international tourist departure data to determine the thermal preferences of
tourists; both resulted in the optimal thermal temperature coinciding with the ‘slightly
cool’ ASHRAE category. Conversely, Maddison (2001), in a review of global tourism
demand for travelers from the United Kingdom, found a much warmer optimal
temperature coinciding with the ‘warm” ASHRAE category. Second, the intent of the
vacationer appeared to modify the thermal preferences (Gomez-Martin, 2005). Generally
speaking, beach tourism has the warmest thermal preference and mountain tourism the
coldest, with urban tourism falling between these anchor points. Zoological park tourism
(Perkins and Debbage, 2016a) most resembled results seen in ‘urban’ tourism; this
finding is expected given the metropolitan location of both zoos in the research. Third,
visitor origin also influenced the optimal thermal assessment, and, in general, tourists
traveling to a location normally preferred conditions that were more in contrast to the
prevailing climate of their home locations. Among beach vacationers, Scott et al. (2008)

found that Swedish respondents had a stated thermal preference (29°C) which was
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warmer than both New Zealand (25°C) and Canadian (27°C) respondents. Furthermore,
New Zealand, the warmest location among those in the study reported the coldest
preference. This finding is further substantiated in the work of Perkins and Debbage
(2016a) where it was found that the optimal thermal conditions for zoological park
visitors in the United States were warmer in the mild climate of Atlanta, Georgia, than in
the hot desert climate of Phoenix, Arizona, by approximately one PET-based thermal
category. Finally, while the present trend of research is away from expert-based
determinations of the tourism-climate, the work of Besancenot (1978) and Mieczkowski
(1985) show that expert-based methodologies are useful as they do indicate results
similar to what is found in more advanced mixed-methods research.

With these thermal comfort preferences in mind, a growing body of literature
assessing the impacts of weather on attendance has emerged in recent years. Nicholls et
al. (2008), and Perkins and Debbage (2016a) utilized multiple weather parameters to
assess outdoor tourist attendances. Nicholls et al. (2008) reviewed how weather impacted
the number of golf rounds played at three golf courses in the state of Michigan. Weather
impact was the central focus of the study as variables of maximum temperature,
minimum temperature, and precipitation were all assessed; however, other variables were
also incorporated in the analysis including public holidays, gas prices, and the Consumer
Confidence Index (CCI). The authors found that at every golf course in the study,
maximum temperature was the most influential weather variable on rounds of golf played
where higher temperatures resulted in more rounds played. In comparison across the

three golf courses in the research, Nicholls et al. (2008) also concluded that the courses
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with a higher percentage-share of visitors who live locally were more heavily impacted
by weather variability than the courses which drew more visitors from non-local areas.
This is primarily because local residents, simply by looking out their windows, had the
convenience of assessing weather conditions they would likely experience when golfing.
Conversely, non-local golfers did not have that same convenience of directly assessing
weather conditions at or near the location and had likely planned their trip in advance,
investing time and money; this investment decreases the ability for tourists to make last-
minute decisions regarding the weather. Becken and Wilson (2013) further substantiated
this finding as they addressed how non-local travelers often do not have much flexibility
in their schedules to adapt to changing weather conditions.

Although there is a growing body of research focused on the relationship between
weather and visitor attendance in a wide variety of tourist venues, there is little consensus
regarding the optimal weather variables for this type of analysis. With this in mind, de
Freitas et al. (2007) suggested the use of biometeorological variables such as the
Physiologically Equivalent Temperature (PET) to more accurately capture the
physiological conditions a person may experience. They concluded that this type of
weather variable may serve as a ‘better’ assessment of how tourists may react to the
outdoor thermal environment. Brandenburg and Ploner (2002) and Ploner and
Brandenburg (2003) used PET, among other meteorological variables of precipitation,
vapor pressure, cloud cover, and temperature, when they examined the impact of weather
on different outdoor park recreationalists in Austria. The authors explored how varying

recreationalist activities may cause visitors to interpret weather conditions differently by
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creating activity categories segmenting park visitors into ‘bikers’, ‘hikers’, ‘joggers’, and
‘dog walkers’. Their findings indicated that among all weather variables, PET had the
greatest impact on visitor attendance decisions followed by precipitation and cloud cover.
Comparison between activity categories indicated the most active recreationalist groups,
specifically, ‘bikers’ and ‘hikers’ displayed stronger weather-attendance relationships
than ‘dog walkers’. These findings may indicate that the weather-human attendance
relationship is a product of both physiological experiences (as observed from high PET
correlations) and psychological expectations (as found by the different weather
sensitivities by activity group). Brandenburg and Ploner (2002) also found that positive
relationships existed between temperatures and number of bikers only when temperatures
were above 10°C, indicating a possibility of activity-specific weather thresholds. They
concluded that while non-weather factors such as day-of-week might be most influential
on park attendances, weather had a substantial impact on visitors.

Perkins and Debbage (2016a) focused on the relationship between visitor
attendance and coinciding ambient thermal conditions as measured by PET-based thermal
categories at the Phoenix and Atlanta zoos. In their research, the authors segmented
attendances at each zoo with respect to four statistically-based categories called
Attendance Day Typologies (ADTs) which were linked to ‘poor’, ‘average’, ‘good’, and
‘excellent’ levels of visitor attendance. At each zoo, within each of the ADT categories,
they performed separate analysis to determine the PET-based thermal category most
associated with the particular level of high or low visitor attendances. In their findings

they highlighted universal preferences across zoo locations and suggested the possibility
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that visitors at each zoo may display differences in weather preference as a result of the
prevailing climates of each location. Regarding universal preferences, they concluded
that, generally speaking, there could be a ‘universal thermal preference’ in the PET-based
thermal categories of ‘slightly warm’ and ‘warm’ in both Phoenix and Atlanta where
attendances are highest during these thermal conditions. Further, the lowest attendances
on record coincide with the predominating thermal extreme condition for a particular
location. Low attendance days in Phoenix coincided with ‘very hot’ thermal conditions,
while in Atlanta, the lowest attendance days coincided with ‘very cold’ thermal
conditions.

Interpreting the differences in visitor attendances concerning thermal conditions
between geographic locations, Perkins and Debbage (2016a) stated that attendance-
weather relationships may be a product of the climatology of the extreme thermal
conditions. For example, visitor attendance at the Phoenix Zoo appeared to indicate a
greater amount of ‘heat aversion’ than visitors in Atlanta. It was hypothesized that this
occurred because residents of Phoenix might be reacting to a possible ‘saturation point’
where they chose not to adapt to or tolerate the prevailing thermal extreme when it came
to their discretionary leisure time. In their conclusion, Perkins and Debbage (2016a)
called for an expansion of this type of research into different climate geographies,
particularly those in colder climates, to further assess the relationships between visitor
attendance and the ambient thermal environment.

On a final note, Perkins and Debbage (2016a) used zoological parks with very

different climates but with comparable admission prices. In this research, the opposite is
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true as Indianapolis and St. Louis zoos are located in very similar climates; however,
Indianapolis Zoo is pay-for-admission while St. Louis Zoo is a free-admission facility.
Price is not the central focus in this research, though this difference across zoos must be
placed into context in order to help determine if price may have an impact on both
attendance patterns and on how people may change their interpretation of ambient
thermal conditions based on the cost of visiting a particular zoological park.

In order to place the role of pricing within tourism and leisure activities in the
appropriate context, an overview of admission ticket pricing should be explored. Sporting
event attendance with respect to ticket prices is a well-researched field detailing topics
concerning drivers of attendance, econometric modeling, and pricing strategy (Villar and
Guerrero, 2009). Theoretically, other factors being equal, higher ticket prices should
lower the expected visitor attendance. This very relationship was found by Donihue et al.
(2007) where, in Major League Baseball (MLB) spring training games, higher ticket
prices resulted in lower game attendances. This was true even during spring training
games which sold low-cost tickets averaging $10.64 for a paying adult. Kahane and
Shmanske (1997) found a similar relationship within MLB regular-season play where
they determined that for each major league team, an increase of one-dollar in the average
ticket price will decrease yearly attendance by approximately 180,000 people.

While within the sporting industry it appears that increasing ticket prices
decreases visitor attendances, the proportion between the increase in ticket price and
decrease in visitor attendance (elasticity) is much debated. In a study of ticket prices

within the Brazilian Football League, Madalozzo (2008) determined that while ticket

58



discounts would increase public attendance, a fifty-percent discount on ticket prices
would only increase the public attendance by sixteen percent. Additionally, Donihue et
al. (2007), Kahane and Shamanske (1997), and Miller and Palmer (2008) refer to tickets
sold within Major League Baseball as priced in an ‘inelastic’ range of the demand curve.
Pricing in an inelastic range indicates that if ticket prices are increased, the loss in public
attendance due to this price increase will not decrease enough to result in a net loss in
profit; consequently, profit maximizing strategies would suggest increasing ticket prices.
Kahane and Shmanske (1997) also note, however, that the marginal cost of an extra
spectator in an unfilled stadium is negligible, and unsold seats do not yield any profit;
therefore, it is not always necessary to control attendance through increased pricing
strategies.

Macdonald (2006), Luksetich and Partridge (1997), Nedzela and Lane (1990) and
Steiner (1997) found the same relationship in an overview of ticket pricing, attendance,
and profit at museums where current admission prices were low enough that an increase
in price would not yield an equivalent decrease in museum attendance. Additionally,
Nedzela and Lane (1990, p. 191) stated that ‘Experience at North American museums
suggests that modest admission fees have no long-term negative impact on attendance.’
Short of crowding, museums share the same situation with sports venues where the
marginal cost of an extra person in attendance is negligible. Steiner (1997) furthered the
discussion by addressing the concept of free admission at museums by highlighting the
multifaceted complexity of this relationship. For example, paid admission increases

museum profit while simultaneously decreasing overall attendance; free admission
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decreases immediate profit but increases attendance which can then increase museum
recognition due to increased word-of-mouth advertisement. Additionally, similar to
zoological parks, other services such as gift shop sales, special events, and concessions
often supplement the limited yield from admission tickets.

Further complicating the relationship between attendance figures and admission
prices, zoos have had to establish a balance between public education and revenue-
generating pricing strategies. Cain and Meritt (1998) addressed zoological park and
aquarium pricing strategies and gave insight into the role of pricing on attendance in the
United States. The authors noted that, largely, zoos and aquariums are deemed ‘merit
goods’ because they are goods which the public demands but is unwilling to purchase at
prices that cover costs; this results in ticket prices which are below ‘market value’.
Additionally, the 1965 Association of Zoos and Aquariums (AZA) officials suggested
that members keep their admission prices low in order to make facilities accessible to
low-income families and school groups (Lindemann et al., 1965). Cain and Meritt (1998,
p. 306) emphasized inelastic pricing points observed in other leisure activities: ‘the fact
that zoos and aquariums operate in the inelastic portion of their demand curves suggests
that they do not set price to maximize profits’ but to raise marginal amounts of money to
‘help defray the cost of constructing new exhibits’. Additionally, as seen with sports
stadiums and museums, the marginal cost of an additional visitor to the zoo does not
warrant significant cause to raise admission prices. As a result, it is reasonable to assume
that the admission prices of zoos do not present a significant barrier to entry for most

visitors. Because of these factors, ‘free-admission’ zoos should reflect additional
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attendances over ‘paid-for’ admission zoos only in certain circumstances. First, free zoos
should reflect an increased number of visitors from very low-income groups. Second, free
zoos should have more visitors who visit frequently and utilize the zoo for shorter periods
of time. Third, free zoos should have higher attendances on marginal weather days
because there is little financial risk in attending. Unfortunately, despite much research on
the link between attendance and ticket pricing, there is very little publicly-available
research on how ticket pricing may mitigate or enhance human response to weather

conditions (Hale and Altalo, 2003, Maddison and Bigano, 2003).

[3.3] Methods

The methods in this paper borrow from the earlier work of Perkins and Debbage
(2016a) regarding their research of the impact the ambient thermal environment (as
measured by PET-based thermal categories) had on attendances at Phoenix Zoo and Zoo
Atlanta. Similar methods were employed in this research regarding the Indianapolis and
St. Louis zoos. Findings from Perkins and Debbage (2016a) helped shape the hypotheses
which guided the development of this paper regarding visitor relationships with (1)
thermal environment, (2) changes in the thermal environment during the daytime, and (3)
price impacts on responsiveness to the weather conditions. First, this paper hypothesizes
that days with highest visitor attendance at both Indianapolis and St. Louis zoos will
exhibit similar findings concerning the ambient thermal conditions most preferred by
visitors in Perkins and Debbage (2016a) and these preferences will likely show little

variation with what was found in Phoenix and Atlanta. Conversely, at lower levels of
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attendance, it is also hypothesized that Indianapolis and St. Louis zoo visitors will display
similar visitor responses to the ambient thermal environment regarding poor days.
Specifically, because Indianapolis and St. Louis are located in a climate regime where the
most prevalent thermal extreme results in cold-stress conditions, it is projected that most
zoo visitors at both locations will simply avoid cold thermal extremes due to an
unwillingness to tolerate additional exposure to excessive cold, indicating a potential
‘cold aversion’. This expectation is based on the findings of de Freitas (2014) that visitor
attendance in outdoor tourist locations tended to be shaped more by locally-defined
thresholds of tolerance than by ‘ideal’” weather conditions and also the findings of Perkins
and Debbage (2016a) who stated that the prevailing thermal extreme of a location will be
most associated with visitor tendencies to display either ‘cold aversion’ or ‘heat aversion’
in their attendance responses. Second, because visitors are attuned to the range of
conditions they may experience throughout their visit to a zoo, it is hypothesized that
days experiencing a wider range of thermal conditions will also result in higher
attendances than days with relatively stagnant thermal conditions. As found by Perkins
and Debbage (2016a), days with wide thermal ranges are more associated with cool
morning temperatures warming to mild afternoon temperatures. Conversely, ‘stagnant
thermal regimes’ in continental (non-desert) climates are most associated with conditions
that are either very cold and remain cold throughout the day and/or days with significant
clouds and possible rainfall. Third, a key difference between the Indianapolis and St.
Louis zoos is admission pricing. It is hypothesized the role of zoo admission pricing will

impact attendances predominately at lower attendances and specifically when weather

62



conditions are not ‘ideal’ for outdoor tourism. Much of this logic is tied to Cain and
Meritt (1998) who noted that admission prices to zoos are generally priced below market
value. Therefore, only in conditions when zoo admission is less valuable to visitors, such
as in the event of ‘poor weather’, would price become enough of a factor to possibly
influence visitor decisions to attend.

Visitor attendances were calculated using daily attendance data collected from
September, 2001, to June, 2011, at each zoo. This time period was selected because it
represented a period where at each zoo there was no significant change in the array of
attractions. Additionally, incorporating a period of nearly one decade helps control for
impacts resulting from severe weather events. Following the methods of Perkins and
Debbage (2016a), each zoo’s visitor attendances were segmented into four statistically-
based attendance categories called Attendance Day Typologies (ADTs):

e Poor attendance days: daily visitor attendance less than one standard deviation below

the mean daily attendance

e Average attendance days: within one standard deviation of the mean daily attendance

e (Good attendance days: between one and two standard deviations above the overall

daily attendance mean

e Excellent attendance days: attendance more than two standard deviations above the

daily attendance mean
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Number of observations

Standard Deviation

Figure 3.1. Theoretical Normalized Distribution of Attendance Data by Attendance Day
Typology (ADT). Adapted from Perkins and Debbage, 2016a

There are two ADT categories above the ‘average’ category and only one ADT
category below the ‘average’ category. Perkins and Debbage (2016a, p. 9) observed that
“part of the logic for including two categories of attendance more than one standard
deviation above the mean attendance (i.e., ‘good’ and ‘excellent’ days) is their
disproportionate impact on overall attendance.” For example, though attendances at the
Indianapolis and St. Louis zoos fell within the ‘good’ and ‘excellent’ categories an
average of only one day out of every seven, the total visitor attendance for these two
ADTs accounted for an average of 43.5% of the total yearly visitor attendance.

Weather data at both zoos was obtained from the nearest hourly-data National
Weather Service (NWS) Automated Surface Observing Systems (ASOS) station. The
ASOS station used for Indianapolis Zoo is located at Indianapolis International Airport
7.0 miles SW of the zoo; the weather station used for St. Louis Zoo is located at Lambert-
St. Louis International Airport 8.7 miles NNW of the zoo. Although the weather stations

are not located inside each zoological park, they are close enough to assume that weather
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conditions occurring at the weather stations represented a reasonable proxy for weather
experienced at each zoo.

When considering the many factors contributing to attendance decisions, it is
important to include weather conditions from early morning, when most visitors plan
their trip, to afternoon, when they return home, because weather conditions within this
entire time period most likely influence initial decisions regarding a trip to an outdoor
venue. Consequently, we collected weather data once every hour for the variables of
temperature, humidity, dew point, wind speed, and sky cover only for the hours from 7am
to 7pm local standard time. Nicholls et al. (2008) highlighted the importance of utilizing
this type of fine-resolution weather data because it helped to more fully detect how
weather conditions may impact attendances at outdoor locations.

Additionally, this paper, following suggestions of de Freitas et al. (2007) and the
methods of Ploner and Brandenburg (2003), Brandenburg and Ploner (2002) and Perkins
and Debbage (2016a), used as its weather variable the Physiologically Equivalent
Temperature (PET) because it represented a more specified measure of ambient thermal
conditions that a visitor may ‘feel’ while visiting the zoo. PET is well established because
it is frequently used in outdoor tourism studies (Lin et al., 2008, 2009; Matzarakis, 1996;
Staiger et al., 2011). The derived temperature values of PET are often classified into a
nine-point thermal sensation scale following the standards established by the American
Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE, 2001 and

2004) where thermal environments are described as ‘very cold’ through ‘very hot’. For
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the purposes of this research, the nine categories are defined in Table 3.2 using the
standard established by Matzarakis and Mayer (1996).

To calculate each derived PET value for every hour between 7am and 7pm, a
specific method was followed. Figure 3.2 describes this methodological process where
hourly weather data was converted to a derived PET value and then assigned to a PET-
based thermal category. PET was calculated thirteen times every day for each hour from
7am to 7pm; its value was dependent upon atmospheric inputs of temperature, wind
speed, sky cover, and relative humidity. The RayMan Pro software (Matzarakis et al.,
2000) used atmospheric inputs and calculated the PET derived temperature value in
degrees Celsius. This software is commonly used in the calculation of PET, particularly
within human bioclimate research and tourism (Matzarakis et al., 2007). After
calculation, each PET-derived temperature value was assigned to the corresponding PET-
based thermal category as defined by Matzarakis and Mayer (1996). The thirteen hourly
PET thermal categories were displayed for a particular day and the warmest and coldest
thermal categories for that day were selected to represent the daily high and low PET-

based thermal category values.

Temperature
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Figure 3.2. Methodological Process of Converting Hourly Weather Data to a PET-Based
Thermal Category
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In previous research, Perkins (2012) found that when compared with daily
average and daily low PET values, the daily high PET value performed best when
predicting visitor attendances. The warmest daily PET likely worked well when
predicting visitor attendance because it represented the most extreme thermal condition
on a particular day and because it tended to occur at the time most visitors were likely to
be at the zoo. Furthermore, it is probable that most visitors planning to visit the zoo are
attuned to the warmest thermal condition rather than an abstract average or early-morning
low temperature.

As changes in thermal conditions throughout the day will likely impact visitors,
this research also analyzed the number of PET-derived thermal categories a visitor
experienced in a day and how it coincided with varying levels of visitor attendances.
Rather than calculating daytime thermal change by determining the difference in degrees
between the high and low PET temperature values from 7am to 7pm, this research
calculated a ‘perceived’ thermal change measured by the number of PET-based thermal
categories a visitor experienced between the low and high PET from 7am to 7pm at a
particular location. Because the thermal categories were derived by people’s opinions in
survey-response techniques in accordance with the ASHRAE thermal perception scale, it
is assumed that the number of thermal categories experienced in a day should also
represent the total number of perceived thermal conditions a zoo visitor experienced
during that same day.

The theory behind using zoological parks as the tourist locations in weather-

attendance research is substantiated by Perkins and Debbage (2016a) who discussed
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several methodological advantages gained when using zoological parks as ‘test
laboratories’ for the assessment of weather’s impact on visitor behavior. As an example,
zoological park visitors generally have certain expectations regarding why they visit a
zoo and the outdoor exposure to the weather they will likely experience when on site.
While there are different motivations among zoo visitors, they generally visit to learn
about animals, conservation, and nature in an outdoor setting regardless of the zoo’s
geographic location (Falk et al, 2007). Research concerning zoological park visitors also
involves a relatively standardized visitor who usually engages in sightseeing at a “slow
steady walking” pace (Mieczkowski, 1985). By contrast, research in beach or park
tourism must consider a variety of visitors who engage in different activities and may
interpret the ambient thermal conditions differently depending on their goals (Grodzik,
1972; Brandenburg and Ploner, 2002; Ploner and Brandenburg, 2003; Rutty and Scott,
2014; Morgan et al., 2000). Regarding visitor attendance data, zoo locations provide
accurate sources of data over time because they must count visitors for financial
accounting purposes. Additionally, because zoological parks are managed properties, the
park space has fixed geographic boundaries with entry and exit points. In other venues
with open-boundary spaces, multiple entrances, and undefined geographical spaces,
accurate attendance counting can be very difficult (Knez and Thorsson 2005; Rutty and
Scott, 2014; Curtis, Arrigo, and Covington, 2008; Morgan et al., 2000).

Indianapolis and St. Louis zoos have many comparable attributes that may allow
for better isolation of the weather-visitor attendance relationship. Both zoos are located in

major urban metropolitan areas and each zoo is positioned within the urban downtown.
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Visitor length-of-stay is comparable as the average visitor spends approximately three to
four hours per trip (Personal communication, 2015¢, 2015d). Because visitors plan to
spend several hours outdoors when visiting, they most likely consider the daily weather
in their planning decisions. The Indianapolis and St. Louis zoos largely attract day-
trippers from within the metropolitan areas of Indianapolis and St. Louis. For example, at
Indianapolis Zoo, 85% of the guests are from within the state of Indiana (Personal
Communication, 2015¢); at St. Louis Zoo 65% of guests are classified as ‘area residents’
from the local ten-county metropolitan area (Personal Communication, 2015d). Given the
large percentage of visitors who are local and have less fixed schedules, it is likely that
visitor decisions may be more aligned with weather conditions than they would in other
outdoor tourist venues with larger shares of nonlocal visitors. This logic is supported by
findings from Nicholls et al. (2008) who observed that tourist locations with larger
percent shares of local visitors were more sensitive to weather conditions than those
tourist locations with higher percent shares of nonlocal visitors. Additionally, both zoos
are located in large metropolitan areas with similar populations. The Indianapolis
Combined Statistical Area (CSA) contained approximately 2.1 million residents; the St.
Louis CSA had 2.9 million residents in 2012 (U.S. Census, 2012). As mentioned earlier,
however, a key difference between both zoos is price; adult admission rates were $14 in
Indianapolis and there was no admission charge in St. Louis.

Finally, it is hypothesized that, because the prevailing climates of Indianapolis
and St. Louis are similar, there may also be similarities between the zoos concerning how

visitors behave in response to varied weather conditions. Outlined in Table 3.3 are
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several key climate variables in Indianapolis and St. Louis. To capture the general
climates, thirty-year climate normals from 1981 to 2010 were used in the comparison

(NOAA, 2014).

Table 3.3. Climate Comparison of Indianapolis and St. Louis (Data from NOAA, 2014)

N July July
Warmest Conditions 24.1°C 31.7°C
. January January
Coldest Conditions 22.2°C 4.4°C
_ » February January
Driest Conditions 58 9mm & (@i
N May May
Wettest Conditions 128.3mm 119.9mm
Annual Precipitation 1,078mm 1,040mm
Days above 32°C 18 43
Days below 0°C 103 84
K6ppen-Geiger Classification Dfa Dfa/Cfa

What is apparent from the comparison in Table 3.3 is that both locations have
similar climates; however, St. Louis, in general, is slightly warmer in both the warmest
and coldest months. Further, St. Louis has more hot days above 32°C and fewer cold
days when low temperatures dip below freezing. Precipitation regimes between the
locations are very similar both in their temporal distributions of the wettest and driest
months and in annual precipitation totals. The Koppen-Geiger climate classification
system places Indianapolis in a location defined as a “humid continental climate’ (Dfa)
while St. Louis is located on the margin between a ‘humid continental climate’ (Dfa) and
a ‘humid subtropical climate’ (Cfa).
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[3.4] Findings

Although the Indianapolis and St. Louis Zoos do not attract a large number of
international visitors as do San Diego or Washington National zoos, they still generate a
substantial number of visitors. From September 2001 to June 2011 the two zoos attracted
a total combined attendance of over 39 million visitors. During this period, Indianapolis
Zoo averaged approximately one million visitors per year while St. Louis Zoo attracted
over 2.9 million visitors on an annual basis. Indianapolis Zoo has been operating since
1964 and is one of the only zoos in the United States to have both an accredited
zoological park and botanical garden on the same site. Presently, Indianapolis Zoo is
widely known for its new International Orangutan Exhibit, constructed to be one of the
premiere orangutan exhibits in the world. St. Louis Zoo, one of the oldest zoological
parks in the United States, has been in operation since opening in conjunction with the
1904 St. Louis World’s Fair. It gained national fame in the 1960s when zoo director
Marlin Perkins hosted a television special on animals and nature. Today, St. Louis Zoo is
recognized as one of the leading zoos in animal research and conservation education.
Clearly, both zoos have well-established histories and diverse arrays of attractions; what
is less clear is how at each zoo the ambient thermal environment might impact average
daily visitor attendance.

Table 3.4 illustrates the number of days represented at each zoo for each of the
Attendance Day Typologies (‘poor’, ‘average’, ‘good’, and ‘excellent’) and Table 3.5
illustrates total visitor attendances within every Attendance Day Typology (ADT). The

table rows are additive indicating the total number of days analyzed (Table 3.4) and the
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total number of visitors in attendance (Table 3.5) at each zoo from September 2001 to
June 2011. Due to the statistical methodology used to define the ADT categories, the
‘average’ ADT is the largest single grouping both in terms of number of days represented
and total visitor attendance. In Table 3.4, the ‘average’ ADT represented 68.9% of all
days at Indianapolis Zoo and 69.0% of the days at St. Louis Zoo. In comparison, the
‘average’ ADT represented 54.1% of the total visitor attendance at Indianapolis Zoo and
57.0% of the total visitor attendance at St. Louis Zoo (Table 3.5).

However, while the ‘good’ and ‘excellent” ADTs combined accounted for only
16.5% of the total days represented at Indianapolis Zoo and 16.9% of total days
represented at St. Louis Zoo (Table 3.4), these days accounted for 45.6% and 41.4% of
the total visitor attendances (Table 3.5) at Indianapolis and St. Louis zoos respectively.
Consequently, a large portion of total visitor attendance occurs only on a select few days
during the year. ‘Good’ and ‘excellent” ADTs, then, are likely of high importance when
attempting to forecast visitor attendance. In contrast, the ‘poor’ ADT accounted for less
than 2% of the total number of visitors at both Indianapolis and St. Louis zoos. As a
result, a more detailed analysis of the differences in ambient thermal conditions between
the ‘good’ and ‘excellent’ ADT categories might be theoretically illuminating and of
particular use to the zoos within this study.

Table 3.4. Number of Days Represented by Each Attendance Day Typology (ADT) from
September 2001 to June 2011

Indianapolis Zoo 526 (14.7%) 2474 (68.9%) 426 (11.9%) 164 (4.6%)
St. Louis Z0o 504 (14.1%) 2467 (69.0%) = 437 (12.2%) = 168 (4.7%)
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Table 3.5. Total Visitor Attendances by Each Attendance Day Typology (ADT) from
September 2001 to June 2011

Indianapolis 31,863 5,369,595 2,903,326 1,614,481
Zoo (0.3%) (54.1%) (29.3%) (16.3%)

St Louis Zog | 454110 16,596,336 7,804,123 4,247,332
' (1.6%) (57.0%) (26.8%) (14.6%)

Table 3.6 illustrates the average daily attendance by Attendance Day Typology
(ADT) and provides ratios indicating what percentage of the attendance in St. Louis is
matched by Indianapolis. For example, within the ‘poor’ ADT, Indianapolis Zoo
attendance only matches 7% of the attendance at St. Louis Zoo; for the highest days of
attendance in the ‘excellent’ ADT, daily attendance in Indianapolis comprises only 39%
of the attendance in St. Louis. Most significant, though, is the trend across ADT
categories in the Indianapolis to St. Louis ratios where a large drop is observed between
the ‘average’ and ‘poor’ ADT categories. This drop may be tied to the difference in
admission fees between the two zoos and may indicate that for ‘poor’ days of attendance,
the ‘free-admission’ policy of St. Louis Zoo could encourage more people to attend
because there is no substantial financial loss in the event poor weather conditions shorten
a visit. Because the Indianapolis to St. Louis attendance ratio does not significantly drop
until the ‘poor’ ADT, this may indicate that weather conditions most associated with the
‘average’ ADT category, though not ‘ideal’, are still sufficiently acceptable for visitors to
be willing to pay the $14 admission price in Indianapolis. Therefore, understanding
differences in weather conditions between ‘average’ and ‘poor’ days of attendance could

better illustrate how visitors may value weather conditions.
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Table 3.6. Average Daily Attendances by Attendance Day Typology (ADT) and the Ratio
of the Average Attendances between the Indianapolis and St. Louis Zoos

Indianapolis 60 2,171 6,815 9,844
St. Louis 877 6,727 17,858 25,282
IND/STL 0.07 0.32 0.38 0.39

To provide further context for the attendance differences between Indianapolis
and St. Louis zoos, Figure 3.3 illustrates average monthly attendances at both zoos. What
is clear from this comparison is that while there are significant absolute differences in
attendance volumes, with respect to the seasonal pattern in visitation, these two zoos are
very similar. Particularly, the peak months of attendance at both zoos occur from May
through July with lower levels of attendance in the adjacent ‘shoulder seasons’. The
lowest attendance occurs during the winter months from November to February
suggesting that the ambient thermal conditions may contribute to these attendance

patterns at both zoos.
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Figure 3.3. Comparison of the Average Total Monthly Attendances at the Indianapolis
and St. Louis Zoos
Figure 3.4 displays the percent share of daily PET-based thermal categories at
each zoo from September 2001 to June 2011. The categories in Figure 3.4 represent the
proportion of the number of days falling within a particular PET-based thermal category
where the day in question was represented by the warmest PET-based thermal category

occurring between 7am and 7pm.
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Figure 3.4. Daily Observed Thermal Categories at the Indianapolis and St. Louis Zoos
September 2001 — June 2011 as Measured by the Thermal Category Representing the
Warmest Daytime PET (7am to 7pm)

Figure 3.4 shows that Indianapolis and St. Louis have similar thermal profiles. In
both locations, the most frequently occurring thermal category was ‘very cold’ which
occurred 30% of the time in Indianapolis and 24% of the time in St. Louis. The two zoos
are also comparable regarding the more moderate thermal conditions. The proportion of
days falling within ‘warm’ through ‘cool’ thermal categories was 49% in Indianapolis
and 48% in St. Louis. The difference is greatest between zoos in the thermal categories
representing the warmest conditions where ‘hot’ and ‘very hot’ thermal categories
combined represented only 13% of all the days in Indianapolis but 21% of the days in St.
Louis. How these thermal regimes shape and influence daily visitor attendance at each
zoo during the study period is less clear.

Distribution of PET-based thermal categories based on the percent share of each

Attendance Day Typology (ADT) for both zoos is illustrated in Figure 3.5. Consistent
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across both zoos, the largest share of ‘poor’ attendance days are within the ‘very cold’
PET-based thermal category. In Indianapolis and St. Louis, respectively, 85% and 87% of
the ‘poor’ ADT was comprised of days that experienced ‘very cold’ thermal conditions.
This finding indicates the possibility of the ‘thermal aversion effect’ (Perkins and
Debbage, 2016a) where, specifically, ‘cold aversion” may have influenced visitor
attendance choices. Though residents of Indianapolis and St. Louis are exposed to ’very
cold’ thermal conditions more than any other thermal category (Figure 3.4), this does not
mean that zoo visitors have adapted to these conditions or have developed elevated
thermal tolerance levels. In fact, because of the high shares of ‘very cold’ thermal
conditions observed in the ‘poor’ days of attendance, quite the opposite trend appears to
be happening. This further suggests that residents of both Indianapolis and St. Louis may
have reacted to a possible ‘saturation point’ where zoo visitors displayed ‘extreme
temperature aversion’ (Perkins and Debbage, 2016a) and chose not to tolerate the

prevailing cold extremes with respect to their discretionary leisure time.
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Figure 3.5. Distribution of Warmest Daytime PET-Based Thermal Categories Based on

the Percent Share of Attendance Day Typology (ADT) by Zoo
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Additional similarities between the Indianapolis and St. Louis zoos are observed
within the distribution of PET-based thermal categories across the ‘excellent” ADT. At
Indianapolis Zoo, the peak representations of the highest days of attendance on record are
within the ‘slightly warm’ and ‘warm’ thermal categories, both of which represented 27%
of all the days within the ‘excellent’ ADT. By contrast, a clear bias toward the ‘warm’
thermal regime was observed in St. Louis with respect to the ‘excellent” ADT where
‘warm’ days accounted for 33% of this ADT and their percent shares dropped to 19%
within the ‘slightly warm’ thermal category. What is apparent in the findings from the
‘excellent” ADT is both zoos are very comparable in terms of the thermal category
generating the highest visitor attendances. Specifically, though, visitors at Indianapolis
Zoo appear to be ‘indifferent’ regarding ‘slightly warm’ and ‘warm’ days, whereas
visitors to St. Louis Zoo have a demonstrated preference for ‘warm’ thermal regimes on
excellent attendance days. Overall, while ‘warm’ may be indicative of an ‘optimal
thermal condition’ across zoo locations, key differences between zoos are more
pronounced when highlighting the nuances that might exist between ‘good’ and
‘excellent” ADT categories.

Figure 3.6 provides a more direct visual comparison of the ‘good’ and ‘excellent’
ADTs with respect to the warmest daytime PET-based thermal category and appears to

show warmer preferences at the St. Louis Zoo relative to Indianapolis.
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Figure 3.6. Geographic Comparison of Indianapolis (IND) and St. Louis (STL) Zoos for
Percent Share of Attendances for ‘Good’ and “‘Excellent” ADT Categories with respect to
Highest Daytime PET-Based Thermal Categories
Regarding the ‘good’ ADT category, St. Louis Zoo showed a much higher
representation of ‘hot’ days and a slightly lower representation of ‘warm’ and ‘slightly
warm’ days when compared with Indianapolis Zoo indicating that St. Louis visitors may
have preferred slightly warmer thermal regimes. Again, in the ‘excellent” ADT category,

St. Louis Zoo visitors appeared to prefer warmer thermal regimes as Figure 3.6 indicates

a higher representation of ‘hot’ and ‘warm’ days and a lower representation of ‘slightly
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warm’ and ‘neutral’ days than observed at Indianapolis Zoo. Figure 3.6 seems to suggest
that on peak attendance days St. Louis Zoo visitors may have acclimatized to become
more ‘heat tolerant’ than visitors to Indianapolis Zoo.

Although physiological acclimatization may be occurring, what also could be
driving the warmer temperature preferences in St. Louis is free-admission pricing. For
example, on hot days, visitors to the St. Louis Zoo may still visit despite ‘hot’ thermal
conditions, because, if it becomes too uncomfortable, they can leave with limited
financial repercussions. Conversely, at Indianapolis, while ‘hot’ thermal regimes do not
severely decrease attendance, to some visitors, the ‘strong heat stress’ in ‘hot’ thermal
conditions may be too uncomfortable to justify paying a non-refundable $14 admission,
and, therefore, they do not attend.

Much of the analysis thus far has focused on the connections that exist between
zoo visitor attendance and the highest daytime PET-based thermal conditions; however,
visits to both Indianapolis and St. Louis zoos last three to four hours on average (Personal
Communication, 2015¢; 2015d). As a result, most zoo visitors likely assess the weather
based on conditions they might experience throughout their time at the zoo location.
Because of this, any potential changes in the atmospheric environment during the day
may directly influence a decision to visit. To test this, the number of PET-based thermal
categories experienced by a visitor during a day (7am to 7pm) is shown in Figure 3.7
with respect to the percent share for each ADT at the Indianapolis and St. Louis Zoos. To
illustrate, if the highest PET-derived value obtained for the day occurred in the ‘very hot’

category and the lowest PET-derived value occurred in the ‘neutral’ category, it would
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represent a day where five thermal categories were experienced by a zoo visitor. Table
3.7 gives further detail regarding the average number of thermal categories experienced
in a day for each ADT category.

In Table 3.7 and Figure 3.7 it is apparent that at both zoos, poorly attended days
appear to experience fewer thermal categories across the day, while peak visitor
attendance is directly related to those days that experience a wide range of PET-based
thermal regimes. For example, ‘poor’ days of attendance at Indianapolis and St. Louis
zoos experienced an average of only 1.20 and 1.18 thermal categories; further, ‘poor’
days in general almost exclusively experienced fewer than two thermal categories.
Considering the climates of both Indianapolis and St. Louis, the most likely weather
conditions contributing to a day with these ‘thermally-stagnant’ conditions are either days
which began as ‘very cold’ and did not warm much and/or days with significant cloud
cover and possibly rain which led to little daytime warming. Additionally, cloudy days
are not aesthetically pleasant conditions for outdoor zoo visits, thereby further decreasing
zoo attendances.

Table 3.7. Average number of PET-Based Thermal Categories Experienced during a day
for each Attendance Day Typology (ADT)

Indianapolis Zoo 1.20 2.69 3.46 3.67
St. Louis Zoo 1.18 2.76 3.42 3.48
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Figure 3.7. Percent Share of Attendance Day Typology (ADT) by Number of Different
PET-Based Thermal Categories Experienced by a Visitor per Day (7am to 7pm)
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In contrast to the ‘poor’ attendance days, ‘excellent’ attendance days experienced
a wider range of PET-based thermal regimes. Within the ‘excellent” ADT, Indianapolis
Zoo experienced an average of 3.67 thermal categories during a day and St. Louis zoo
averaged 3.48. Additionally, the highest days of visitor attendance rarely experienced
fewer than three PET-based thermal categories. In both Indianapolis and St. Louis, days
which experienced three or more PET-based thermal categories would generally
experience conditions which were dry, partly cloudy to clear, and began with early
morning temperatures that were not within a thermal extreme. As an example, because
‘warm’ and ‘slightly warm’ thermal categories are most associated with high attendances
at both zoos, a day where morning low temperatures likely began in the ‘cool’ to ‘slightly
cool’ range and gradually warmed throughout the day should accurately describe many

days which experienced three or more thermal categories.

[3.5] Conclusions and Future Direction

In consideration of the implications of climate change, the United Nations World
Tourism Organization suggested that governments and communities should develop
climate information tailored to the tourism sector and implement policy based on the
interactions between weather and tourists (UNWTO, 2014). This paper has outlined
research which has addressed both long-term climate implications on tourism and short-
term impacts weather has on tourism participants. The particular purpose of this paper
was to build on the original work of Perkins and Debbage (2016a) whose research

addressed the interfaces between ambient thermal conditions and visitor attendances at
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zoological parks. This original work was begun as a response to the suggestions of
Nicholls et al. (2008), Scott and Jones (2006), and Scott et al. (2012), all of whom
suggested that before undertaking significant research on the implications of climate
change in the tourism industry, we must first better understand how different weather and
climate factors impact tourists. Further, as originally argued by Perkins and Debbage
(2016a), a focus on zoological parks addresses a large and important sector of the
Tourism, Recreation, and Leisure (TRL) sector. Moreover, because zoological parks cater
to both children and the elderly, zoos have the potential to serve as a ‘canary in the
coalmine’, indicating how the most vulnerable populations in society may react to the
outdoor thermal conditions.

Specific findings of this research provide a broader geographic context to the
original work of Perkins and Debbage (2016a) and help provide foundational information
regarding human thermal preferences and how those preferences may vary across diverse
climates. For example, similar to the Phoenix and Atlanta zoos (Perkins and Debbage,
2016a), it was found that ‘optimal thermal conditions’ for peak attendances at both the
Indianapolis and St. Louis zoos generally occurred within the ‘slightly warm’ and ‘warm’
thermal categories.

While there was a general agreement in the ‘optimal’ thermal categories for
attendance, the two zoos showed nuanced differences in visitor thermal preference within
the highest days of attendance. In particular, within the ‘good’ and ‘excellent’ ADT
categories, visitors at St. Louis Zoo indicated a greater preference for warmer thermal

regimes than visitors at both Indianapolis Zoo. While it is possible that these warmer
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thermal preferences observed in St. Louis were due to physiological acclimatization, they
appear more likely to be visitor responses to free-admission pricing.

Among those thermal conditions most associated with ‘poor’ levels of attendance,
this research also confirmed findings from the original Perkins and Debbage (2016a)
research which concluded that the most common thermal extreme condition at a location
tends to be associated with the lowest visitor attendances on record, resulting in an
‘extreme temperature aversion’. Both Indianapolis and St. Louis zoos experienced ‘very
cold’ conditions in greater frequency than ‘very hot’ days, and appeared to experience
‘cold aversion’ on the lowest days of attendance. Visitors also appeared to show
attunement to the number of thermal categories experienced throughout a day. It was
determined that Indianapolis and St. Louis zoos saw highest attendances when three or
more thermal categories were experienced in a day.

Price serves in many ways to control visitor attendances at zoological parks and
other similar TRL venues. While price may directly impact the ability of low-income
groups to attend, its impacts on how people may change their interpretations of the
weather is less certain. Although ‘very cold’ thermal regimes and ‘thermally-stagnant’
weather seem to be detrimental to visitor attendance, price may also play a role. It
appears that visitors to St. Louis Zoo are more likely to take a chance and visit the zoo
even if the weather is not ‘optimal’ because admission is free and the financial
implications are lessened.

Although slight differences in the thermal preferences of visitors between the

Indianapolis and St. Louis zoological parks have been identified, and a comparison with
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the work of Perkins and Debbage (2016a) has been provided, future research
incorporating metropolitan zoos in more diverse climates would be excellent tests to
determine if local climates continue to influence ‘poor’ attendance days and whether a
‘universal optimal thermal condition’ continues to persist regarding the highest days of
attendance. Moreover, this paper suggested that admission pricing may have an impact on
how people interpret the weather. To test this hypothesis in increased detail, a more
complete analysis of admission pricing would be useful in determining how price may
contribute to ways in which people interpret the ambient environmental conditions. Other
metropolitan zoos that offer free-admission, such as Lincoln Park Zoo in Chicago, Illinois
or Como Zoo in Saint Paul, Minnesota, could be useful case-studies when studying the
interface of price, attendance, and weather.

Better understanding how tourists and recreationalists behave today in response to
weather will give insights into how they will also respond to a changing climate. Such
information can potentially be used by communities and businesses to make better-

informed policy and planning decisions moving forward.
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CHAPTER IV
USING SYNOPTIC WEATHER TYPES TO PREDICT VISITOR ATTENDANCE

AT THE ATLANTA AND INDIANAPOLIS ZOOLOGICAL PARKS

Single Authorship for International Journal of Biometeorology

[4.1] Introduction

Weather impacts on outdoor tourists and recreationalists are multifaceted and
complex not only because humans can respond differently to similar outdoor conditions
(Lin and Matzarakis, 2008; Knez and Thorsson 2006; Matzarakis and Mayer, 1996;
Nikolopoulou and Lyoudis, 2006), but also because complexities exist when attempting
to describe the ambient atmospheric environment (Scott, 2008; de Fretias, 2008). Human
psychological interpretation and physiological sense of the weather cannot be completely
explained by a single weather variable such as temperature, rain, or humidity because the
ambient atmospheric environmental conditions are reflections of multiple weather
variables acting in concert to produce a particular weather condition. Because of this
complexity, an index incorporating weather variables to describe the ambient
atmospheric conditions is often used for an improved approximation of the weather (Scott
et al., 2004; de Freitas et al., 2008, Mieczkowski, 1985; Hwang et al., 2007; Andrade et

al., 2011; Scott et al., 2008; Lin,
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2009; Matzarakis, 1996) though the appropriate scale and scope of such an index has
been much discussed (Scott et al., 2004, Scott et al., 2008, de Freitas et al., 2008).

Despite these challenges, economic sectors encompassing Tourism, Recreation,
and Leisure (TRL) can benefit from better understanding the complex relationships that
exist between weather and consumer behavior (Nicholls, 2008; Gomez-Martin, 2006;
Scott, 2008; Hale and Altalo, 2002; Perkins and Debbage, 2016a; 2016b). Additionally,
an index using weather variables reflecting the activities of participants within the TRL
sector could lead to an improved business decision-making process as a result of an
increased understanding of the complex weather-tourist relationship (Nicholls, 2008;
Perkins and Debbage, 2016a; 2016b).

Research on the relationships that exist between weather, climate, and tourism has
largely assumed that weather directly impacts tourists in both indoor and outdoor venues
where indoor tourist venues are impacted more by accessibility issues in the event of
inclement weather (Olson, 2008; Tepfenhart et al., 2007), and outdoor venues are
impacted more by the comfort levels a tourist or recreationalist will likely experience
when exposed to the ambient environment (Scott et al., 2008; Gomez-Martin, 2005;
Raukem et al., 2010). Additionally, regional climates which create expectations of the
most likely weather conditions a traveler will experience can also impact tourist travel
decisions even prior to the visit (Agnew and Palutikof, 2001; Hamilton and Lau 2005;
Bigano, et al., 2006). While there is general agreement that weather will impact vacation
decisions prior to an actual visit and influence tourist behavior and comfort once at a

location (Gomez-Martin, 2005), there is not consistent agreement as to how the concept
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of a ‘tourism climate’ should be best quantified. Quantifying weather impacts to yield a
‘tourism index’ to describe a particular location are frequently broad-based but are also
refined to business interests, economic development, climate change implications, and
the physical well-being of non-local tourists (Scott, 2008; Hale and Altalo 2002;
Mieczkowski, 1985; Curtis, Arrigo, and Covington, 2008).

Current research in this realm is frequently discussed in the International Society
of Biometeorology’s Commission on Climate, Tourism and Recreation and within the
research field of “Tourism Climatology’ (Scott, 2008; Matzarakis and de Freitas, 2001;
Matzarakis et al., 2004; Matzarakis et al., 2007). Recent research has attempted to
improve foundational tourism climate indices such as Miezckowski’s (1985) global
‘Tourism Climate Index’ (TCI) to better reflect the physiological and psychological
conditions experienced by a tourist or recreationalist (Scott, 2008; de Freitas et al., 2008).
Other improvements address geographic precision by considering potential
acclimatizations, urban/rural location, cultural preferences for particular environmental
conditions (de Freitas, 2014; Rutty and Scott, 2009; Knez and Thorsson 2006;
Nikolopoulou and Lyoudis, 2005; Matzarakis and Mayer, 1996; Lin and Matzarakis,
2008), and levels of physical exertion by considering the different activities tourists
perform (Brandenburg and Ploner, 2002; Suminski et al., 2008). Unfortunately, as indices
have become increasingly location-specific and depart from global models (e.g., the TCI)
their use becomes less translatable across geographies as they only describe specific
activities, sites, climates, or populations which have potentially adapted to a particular

climatology.
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The purpose of this paper is to propose and test the applicability of the Spatial
Synoptic Classification (SSC) (Sheridan, 2002) as a tool to predict visitor attendance
response in the TRL sector across different climate regimes. Specific choice of this
weather-type classification is in response to the need for a translatable meteorologically-
based index which captures generalized ambient atmospheric conditions but still
considers local climatology. In detail, this paper examines how approximately one decade
of daily synoptic weather conditions impacts daily zoo visitor attendance. It does so by
examining Zoo Atlanta and Indianapolis Zoo, two zoological parks similar in annual

attendance and physical size but located in different climates.

[4.2] Theoretical Background and Context

Classifications of the ambient atmospheric environment began as efforts to better
comprehend nature and to help create generalized guides of a global environment. One of
the earliest but still prevalent (with recent modifications) environmental classifications is
Koppen’s (1931) system of climate classifications which described the world in general
classes based on local measures of native vegetation, temperature, precipitation, and the
seasonality of precipitation regimes. The purpose of such classifications changed,
however, from a focus on describing the natural environment in general, to a focus on
describing the natural environment from a more applied humanistic point of view. As
discussed by Miezckowski (1985), following original nature-oriented classification
systems of Koppen (1931), Thornthwaite (1931 and 1948) and others, some

classifications became more human-oriented than nature-oriented. Research by Brazol in
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Argentina (1952), Davis in Great Britain (1968), and Gates in the United States (1973)
concerned outdoor human comfort classifications and were precursors of a new type of
research that was beginning to focus more on geographically-specific human-oriented
classifications of the climate.

The emerging focus on human-oriented descriptions of the environment echoed
the applied research of the time and the related growth of international tourism
(Mieczkowski, 1985). Perhaps one of the first classifications of weather with regards to a
tourist resort destination in this ‘new era’, Burnet (1963) addressed the climatic
regionalization of seaside resorts in France and was followed by research describing the
‘tourism climate’ of the Mediterranean region (Heurtier, 1968) and Canada (Crowe,
1976). Generally, the goal of these new descriptions of a ‘tourism climate’ was to address
the needs of temporary visitors who would be interested in climatic conditions during
specific times of the year (Mieczkowski, 1985), in essence, to educate the general public
as to the ‘nature’ of a place.

To provide global context for a ‘tourism climate’, Mieczkowski (1985) published
the Tourism Climate Index (TCI) which was regarded as the most comprehensive climate
index developed specifically for tourism (Scott, 2004). The goal of the TCI was to
provide a universal measure for the ‘climatic well-being’ of a tourist recreating at a level
of ‘moderate sightseeing’ or the equivalent of a ‘slow, steady walking’ pace. The TCI
was based on monthly weather variables of temperature, sunshine, precipitation, and
wind speed which were combined into an index value derived by separately scoring each

weather variable on a monthly basis and totaling the results in a weighted formula. Final
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TCI results scored a particular month at a location between -10 and 100 to reflect the
climatic suitability for a tourist’s well-being (Mieczkowski, 1985). The primary factor
considered in the TCI index was thermal comfort as it comprised 50% of the formula
weighting. To calculate thermal comfort, TCI utilized a ‘modified thermal comfort’
rating system based upon biometeorological studies by the American Society of Heating
and Air Conditioning Engineers (ASHRAE, 1972). Gradations of thermal comfort based
upon temperature and humidity (effective temperature) were adjusted for the TCI by
utilizing a scale derived from a ‘psychrometric’ chart. Precipitation was assessed as
having a negative relationship with the overall TCI score and ‘mean monthly hours of
sunshine’ was considered to have a positive relationship with the TCI score. Precipitation
and sunshine each accounted for 20% of the weight within the overall index. Although
the lowest represented weather variable within the TCI formula at 10%, wind was
assessed in a more complex manner regarding the outdoor tourist because it was
dependent upon the ambient temperature and is threshold-based. For example, too much
wind and too little wind have negative impacts on tourist comfort; however, the
relationship with wind changes when temperatures are low and a ‘wind chill’ factor
exists.

While Miezckowski’s TCI (1985) has served as a foundation index within tourism
climate studies, more recent indices attempted to specify and improve upon the
application of the TCI. One commonly used improvement adjusted the weighting
schemes of meteorological variables to reflect the preferences of the

tourist/recreationalist through survey-response methodologies (Rutty and Scott, 2014;
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Hwang et al., 2007; Andrade et al., 2011; Scott et al., 2008; Lin, 2009; Matzarakis,
1996). Prominent indices of note which have been published recently and attempted to
advance the original TCI included the “user-based beach climate index” (Morgan et al.,
2000), and the “second generation climate index for tourism (CIT)” (de Freitas et al.,
2008) which proposed both a tourism index and a conceptual framework for future
tourism climate indexes.

The ‘user-based beach climate index’ (Morgan et al., 2000) was a survey-based
specification of Mieczkowski’s TCI which reviewed tourist preferences of thermal
sensation, bathing water, sunshine, wind speed, and precipitation. This index utilized the
foundations of the TCI but specified them regarding tourist activities in an attempt to lead
to a better understanding of the weather preferences of recreationalists as end-users.
Morgan et al. (2000) altered the weights of the TCI weather variables based on survey
responses which allowed the end-users to weight the factors in the tourism index rather
than imposing a top-down ‘expert based’ approach to the index.

The ‘second generation climate index for tourism’ (CIT) (de Freitas et al., 2008)
provided both a conceptual framework and an applied index for the future development
of tourism climate indices where it defined the ‘essential features’ needed in a tourism
climate index. The authors listed guidelines and several key needs for tourism climate
indices that included (1) theoretical soundness, (2) a comprehensive treatment of climate,
(3) simplicity in calculation, (4) a user-friendly display, (5) use of threshold overriding
effects, and (6) empirical testing. First, ‘theoretical soundness’ was defined as having

consideration of past studies which aimed to better understand tourism and
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weather/climate relationships. Additionally it required using a multidisciplinary approach
combining physical and social sciences to create a more ‘complete’ index. Second, the
‘comprehensive treatment of climate’ identified the need to consider the thermal
relationship the human has with the environment as the prominent factor when studying
tourist comfort; namely it suggests the use of biometeorological temperature models.
Further, de Freitas et al. (2007) suggested the nine-point thermal scale established by the
American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE,
2001, 2004) be used because it is one of the primary tools by which biometeorology
conveys thermal sensation categories. These nine thermal categorizations of the
ASHRAE scale are continuous and are described as: ‘very cold’, ‘cold’, ‘cool’, ‘slightly
cool’, ‘neutral’, ‘slightly warm’, ‘warm’, ‘hot’, ‘very hot’. Third, ‘simplicity in
calculation’ guidelines suggested that models incorporate readily-available
meteorological data on daily or hourly intervals. Fourth, a ‘user-friendly display’ referred
to the need for attention to the ‘nature and form’ of the tourism index output since the
purpose of the index is to be accessible and understandable to all users both inside and
outside academia. Fifth, ‘threshold overriding effects’ relates to better integrating the
nonlinear impacts of a climate system. For example, certain weather conditions such as
the presence of heavy rain or high winds can profoundly impact a tourist environment
regardless of the prevailing thermal conditions. Sixth, ‘empirical testing’ suggested
implementing end-user surveys to derive index weightings rather than expert-defined

determinations. An index following these guidelines, de Freitas et al. (2008) argued,
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should have a higher degree of ‘ground truth’ and would likely be more accurate with
respect to the targeted audiences.

With these theoretical guidelines in mind, de Freitas et al. (2008) proposed the
CIT index, a weighted combination of thermal (T), aesthetic (A), and physical (P)
measures of the environment. The thermal measures (T) were biometeorological
assessments of the body-atmosphere energy balance. The authors did not specify a
particular index but recommended using a human heat balance model that is presented
following the nine factor ASHRAE scale. The aesthetic factors (A) referred to the visual
‘appeal’ of the sky conditions (cloudiness). For example, in beach tourism venues a large
amount of cloud cover is not preferred by tourists. The physical measurement (P)
incorporated ‘overriding threshold effects’ defined by the authors as events with greater
than three millimeters of rain within a particular hour and/or wind speeds higher than six
meters/second. In the event of these physical thresholds being satisfied, the physical facet
(P) of the CIT equation assumed greatest weighting. Normal weighting of the CIT is a
result of interviews with tourists and recreationalists where questions are asked regarding
the relative importance of sunshine, absence of strong wind, absence of rain, importance
of comfortable temperature, preferred wind speed, and preferred percentage of cloud
cover. Overall CIT ratings (1 poor, 7 ideal) are displayed by de Freitas et al. (2008) in a
three-dimensional matrix (Figure 4.1) showing index scores in correspondence with the
nine point thermal sensation scale (T) and the relative aesthetic (A) and physical (P)

ratings components.
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Empirically tested for beach tourism, results from the CIT ratings, seen in Figure
4.1 (de Freitas et al., 2008), indicate that for sedentary beach tourists/recreationalists
there is a thermal preference for ‘hot’ and ‘warm’ conditions; however, the magnitude of
the overall tourism rating is modified based upon varying combinations of weather

variables.

ASHRAE scale Rain (>3mmor Wind [z6m/s

TSN Cloud (<40%) Cloud (250%) >thrduration) &t ground)
[m Al Al iy ]

Veryhot  (+4) [EEN 3 2 3

Hot (+3) 6 5 2

Wam (+2) 7 2

Slightly warm (+1) 6 n 1

Indifferent  (0) 5 3 1

Slightly cool (1) n 3 1 2

Cool (-2)

Cold (-3)

Very cold (-4)

Figure 4.1. Example of CIT Ratings in a Beach Tourism Climate where 1 is Poor and 7 is
Ideal. Thermal conditions (T) are based on the ASHRAE Thermal Sensation Scale, also
included in the Overall Index Score are Aesthetic Variables (A), and Physical Factors (P)
Adapted from de Freitas et al. (2008).

In order to address the need for a holistic meteorologically-based variable
capturing the present ambient atmospheric environment yet still considering the
climatology of a location, this paper proposes and tests the Spatial Synoptic
Classification in the realm of tourism. The Spatial Synoptic Classification (SSC)
originated as a weather classification system designed to identify the character of a

particular air mass (Kalkstein et al, 1996). While the SSC classification relies on the logic

of an ‘air mass’, described by Crowe (1971 p. 589) as a volume of air which has acquired
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“characteristics of temperature and humidity related to the condition of the sea, land, or
ice beneath it”, it is not an air mass classification. Instead, the SSC is a weather type
classification that captures the character of a particular synoptic regime (Sheridan, 2002),
based on the Temporal Synoptic Index (TSI) (Kalkstein and Webber, 1990).
Meteorological variables utilized in the calculation of the SSC include temperature, dew
point, east/west and north/south wind vector components, cloud cover, and sea-level
pressure where each variable is assessed four times daily at standardized local times.
Analysis also includes a climatological examination of ‘seed days’ that incorporate local
and historical weather readings to categorize a particular air mass in a region. ‘Seed days’
are defined as days in a location’s climatological period of record containing ‘typical’
meteorological characteristics of a particular weather type. The calculation of ‘seed
days’, therefore, relies on the climatology of a particular location. Basing its definition on
local and historical data allows the SSC to be an index that is geographically scaled and
‘relative’, rather than ‘absolute’, as it accounts for the climatology of a location or region
(Hondula et al., 2014).

The SSC includes seven general categories further explained in Table 4.1:

Table 4.1 The Seven Categories of the Spatial Synoptic Classification (SSC) with
Descriptive Definitions. Adapted from Sheridan, 2002.

Dry Polar (DP) Dry air usually from polar regions; coldest temperatures

during the year
Dry Moderate Mild and dry air; often found when a traditional air mass is
(DM) moderated

Dry air representing the hottest and driest conditions of the

Dry Tropical (DT) year

98



Moist Polar (MP) Cloudy, humid, and cool weather types

Moist Moderate Variable in its seasonality; considerably warmer than moist
(MM) polar conditions
Moist Tropical

(MT) Warm and humid air; often oppressive conditions

Transitional (TR) Air mass transition from one to another

Most applied research using the SSC has focused on studies pertaining to weather,
climate, and human health, particularly heat-health warning systems and
morbidity/mortality studies (Hondula et al., 2014). The SSC has also been used in
research throughout the globe and in many differing climates including cold regions
concerned with how cold weather impacts human mortality (Rainham et al.; 2005
Kalkstein and Sheridan, 2011). In a review of the SSC, Hondula et al. (2014, p. 109)
have noted, “It has been used in a diverse range of climatological investigations,
including analysis of air quality variability, human health, vegetation growth,
precipitation and snowfall trends, and broader analyses of historical and future climatic
variability and trends.” Little research, though, considers the SSC outside the field of
weather, climate, and human health, though Hondula et al. (2014) addressed the need for
future development in more diverse research fields.

In response to de Freitas et al. (2008) and Mieczkowski (1985) who expressed
that tourism-climate research needs to develop a more comprehensive index aimed at
reflecting the ‘well-being’ of tourists, this paper tests the ability of the Synoptic Scale
Classification (SSC) to serve as an index which incorporates a ‘comprehensive treatment
of climate’ regarding outdoor-oriented zoo tourism. The SSC has potential use within

tourism studies for several reasons. First, it bridges the gap between global indices (TCI)
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and geographically-tailored indices that may not be translatable across cultures or
locations. Second, because its calculation methodology is relative to the location it is
describing, the SSC is a variable that may consider regionalized acclimatization of local
tourists and recreationalists. Third, as the SSC has been found to be associated with
health outcomes in environmental health research, it may reflect a component of the
decision-making process tourists likely undergo when participating in outside tourist or
recreationalist activities. As an example, it can be reasonably assumed that people regard
personal comfort and well-being in their decisions to be outdoors; attendance turnout in
outdoor venues should, therefore, be at least partially reflective of these personal health
considerations. Fourth, because the SSC captures multiple factors of an atmospheric
environment and single weather variables are not entirely reflective of the actual ambient
atmospheric environment experienced by a human when outdoors, the SSC will likely
better reflect conditions on which tourists base their decisions pertaining to the weather.
Fifth, because the SSC reports a generalized weather condition rather than specific
numerical thermal or humidity thresholds, it may be more applicable to use in research
where human ‘indifference’ is a contributing factor. For example, as observed in Perkins
and Debbage (2016a; 2016b), ranges exist where attendances appear steady despite
changing thermal regimes, indicating some degree of visitor ‘indifference’ regarding
weather conditions. This suggests that people may take generalized weather conditions
into consideration rather than just one single aspect of the weather. As a result, the SSC
may be a useful variable in attendance prediction as it potentially reflects a generalized

ambient environment to which people react.
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[4.3] Methods

In this paper it is hypothesized that the Spatial Synoptic Classification (SSC) will
act as an element that can be used to help predict visitor attendances in outdoor
zoological parks. Although the SSC does not report actual precipitation or temperature
metrics but, instead, classifies generalized synoptic-scale weather types over large spatial
extents, certain categories of the SSC still will likely coincide with visitor attendances
because visitors respond not to individual facets of the weather, but to an overall
atmospheric condition. Because the SSC captures this overall atmospheric condition, it is
likely, particularly when comparing high and low days of visitor attendances, that there
will be key associations between the SSC and visitor attendances. Specifically, it is
hypothesized that warmer and drier SSC categories such as ‘Dry Moderate’ (‘DM’) and
‘Dry Tropical’ (‘DT’) will be associated with the highest days of visitor attendance, and
SSC categories, such as ‘Moist Polar’ (‘MP’) and ‘Dry Polar’ (‘DP’) describing cold/wet
conditions, will be most associated with lower days of visitor turnout. Although there will
be general associations between SSC categories and visitor attendance, it is less clear
when considering the large spatial-scale of the SSC, if it will provide detailed insight
into visitor behavior between varying geographic locations. Additionally, it is also
unclear if the SSC will provide detailed analysis on any subtle attendance variations as
was observed in the research of Perkins and Debbage (2016a; 2016b) concerning thermal
environments. Regarding the possible difficulty in geographic comparison, it is
hypothesized that the calculation process of the SSC may mask differences across

geographical locations in the behavior of zoo visitors. The reason behind this is the SSC
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calculates its categories with respect to local climatology and, in essence, ‘acclimates’ its
synoptic categories for each location. As a result, any small-scale acclimations zoo
visitors have developed for a particular location may already be integrated into the SSC
categories, and, therefore, these acclimations may not be apparent when comparing
weather preferences across locations.

Visitor attendances were calculated at each zoological park using daily attendance
data collected from September 2001 to June 2011. This time period was selected because
it represented a period where at each zoo there was no significant change in the array of
attractions. Additionally, incorporating a period of nearly one decade helps control for
impacts resulting from severe weather events. Using the methods of Perkins and Debbage
(2016a; 2016b), visitor attendances at each zoo were segmented into four statistically-
based attendance categories called Attendance Day Typologies (ADTs) (Figure 4.2).
These attendance categories included:

e Poor attendance days: daily visitor attendance is less than one standard deviation

below the mean daily attendance

e Average attendance days: within one standard deviation of the mean daily attendance

e (Good attendance days: between one and two standard deviations above the overall

daily attendance mean

e Excellent attendance days: attendance is more than two standard deviations above the

daily attendance mean
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Number of observations

Standard Deviation

Figure 4.2. Theoretical Normalized Distribution of Attendance Data by Attendance Day
Typology (ADT). Adapted from Perkins and Debbage, 2016a; 2016b

More ADT categories exist above the mean than below the mean. This was
explained by Perkins and Debbage (2015, p. 9) who observed that “part of the logic for
including two categories of attendance more than one standard deviation above the mean
attendance (i.e., ‘good’ and ‘excellent’ days) is their disproportionate impact on overall
attendance.” For example, though attendances at Zoo Atlanta and Indianapolis Zoo fell
within the ‘good’ and ‘excellent’ categories an average of only one day out of every
seven, the total visitor attendance for these two ADTs accounted for an average of 42.1%
of the total yearly visitor attendance.

The Synoptic Scale Classification (SSC) data used in this paper were obtained
online as daily data from Sheridan’s “Spatial Synoptic Classification Homepage”
(Sheridan, 2014). For the study period, every day was assigned a specific SSC category
identifying the synoptic condition most associated with the prevailing weather conditions

at the location. In the event of more than one synoptic weather type occurring on one day,
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the SSC system classifies the day as a “Transition’ (‘T”) category; as a result, there is

never more than one SSC for any day. For further illustration of the spatial extent of the

SSC categories, Figure 4.3 illustrates an example of a map obtained from Sheridan’s

“Spatial Synoptic Classification Homepage” (Sheridan, 2014) that displays the

distribution of SSC conditions across the contiguous United States on August 14, 2004, a

day when both Indianapolis and Atlanta zoos experienced ‘excellent’ attendances over

10,000 visitors.
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Figure 4.3. An Example Map of the Spatial Distribution of SSC Conditions Across the

Contiguous United States on August 14, 2004. Obtained from Sheridan’s ““Spatial

For each day at each zoo location the Synoptic Scale Classification (SSC)
category was paired with the total daily visitor attendance. After these pairings were
made, analysis was performed within each of the four established Attendance Day

Typology (ADT) categories of ‘poor’, ‘average’, ‘good’, and ‘excellent’ to determine

Synoptic Classification Homepage™ (Sheridan, 2014).

what SSC type occurred most often regarding particular levels of visitor attendances. For
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example, findings will provide evidence of what SSC categories are most associated with
high and low visitor attendances. Additionally, after observing the general trends between
SSC categories and attendance volumes, more detailed analysis compares the
relationships seen at Zoo Atlanta with those found at Indianapolis Zoo to determine if
there are differences between Atlanta and Indianapolis in how visitors respond to the
synoptic weather conditions.

Using zoological parks as the tourist locations in this research is substantiated by
Perkins and Debbage (2016a; 2016b) who discussed the methodological advantages of
using zoological parks as ‘test laboratories’ for the assessment of weather impacts on
visitor behavior. Those same advantages can be found in this research which compares
the visitor attendances and prevailing synoptic weather categories at Zoo Atlanta and
Indianapolis Zoo. For example, zoological park visitors generally have certain
expectations regarding the reasons why they visit and the outdoor exposure they will
likely experience when on site. Although there are differing motivations for zoo visitors,
they generally go to learn about animals, conservation, and nature, and patrons expect
this to occur mostly in an outdoor setting regardless of the geographic location of the zoo
(Falk et al, 2007). Research concerning zoological park visitors involves a more
standardized visitor who engages in sightseeing at a “slow steady walking”
(Mieczkowski, 1985) pace. By contrast, other tourist venues, such as beaches or parks,
assess visitors who engage in a wide variety of activities, many of whom may interpret
the ambient environment differently depending on their goals (Brandenburg and Ploner,

2002; Ploner and Brandenburg, 2003; Rutty and Scott, 2014; Morgan et al. 2000). Zoo
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locations provide accurate sources of visitor attendance data over time because they must
account for all visitors on their property and for financial accounting reasons.
Additionally, because zoological parks are managed properties, the park space has
definite geographic boundaries with fixed entry and exit points. In other venues
methodological difficulties can arise when counting attendees in open-boundary spaces,
such as botanical gardens and nature parks with multiple entrances and beach fronts with
undefined geographical spaces (Knez and Thorsson 2006; Rutty and Scott, 2014; Curtis,
Arrigo, and Covington, 2008; Morgan et al., 2000).

Atlanta and Indianapolis zoos have many relatable aspects which should allow for
better isolation of the weather-visitor attendance relationship. Both zoological parks are
located in major metropolitan areas and each is positioned within the urban downtown.
Visitor length-of-stay is comparable as the average visitor spends approximately three to
four hours per trip at both zoos (Personal Communication, 2015a; 2015c). Because
visitors plan to spend several hours outdoors when visiting, this most likely forces them
to consider the daily weather in their planning considerations. The Atlanta and
Indianapolis zoos largely attract day-trippers from within the respective metropolitan
areas. To illustrate, at Zoo Atlanta 67% of the guests are from within the state of Georgia
(Personal Communication, 2015a); at Indianapolis Zoo 85% of guests are from the state
of Indiana (Personal Communication, 2015c). Given the large numbers of local ‘day-
trippers’ with less fixed schedules, it is likely that visitor decisions may be more aligned
with weather conditions than they would in other outdoor tourist venues with many

nonlocal visitors. This is supported by findings from Nicholls et al. (2008) who observed
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that locations with larger shares of local visitors were more sensitive to the prevailing
weather conditions than those with non-local visitors. Additionally, both zoos are located
in large metropolitan areas and charge moderate admission fees.

The prevailing climate of each zoo location may contribute to the way in which
visitors to the zoo interpret the synoptic conditions; furthermore, these climate
differences across zoo locations may give insight regarding potential human
acclimatizations. Atlanta is classified by the K&ppen-Geiger climate classification system
as a location with a ‘humid subtropical climate’ (Cfa). This type of climate has four
distinct seasons where precipitation occurs throughout the year without any predominant
rainy season. The warmest month in Atlanta is July which averages 26.8°C; however
there are also periods of significantly warm conditions as approximately 44 days per year
exceed 32°C. The coldest month in Atlanta is January, averaging 6.4°C; additionally,
approximately 40 days per year have low temperatures below freezing. While
precipitation is relatively steady throughout the year, the driest month in Atlanta is
October which averages 86.6mm and the wettest month is July which averages 133.9mm.
Total yearly precipitation averages 1,262mm. Precipitation in Atlanta generally falls as
rain. Winter precipitation can come in the form of snowfall, though Atlanta generally
experiences a mix of freezing rain and sleet conditions that can negatively impact
transportation in the region (NOAA, 2014).

The climate of Indianapolis is similar to Atlanta but generally cooler, slightly
drier, and more variable. It is classified by the Koppen-Geiger climate classification

system as a location with a ‘humid continental climate’ (Dfa). Again, this climate has
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four distinct seasons with precipitation occurring throughout the year with no particular
rainy season. The warmest month in Indianapolis is July which averages 24.1°C;
however, there are also periods of significantly warm conditions as approximately 18
days per year exceed 32°C. The coldest month in Indianapolis is January which averages
-2.2°C; additionally, approximately 103 days per year have low temperatures below
freezing. Precipitation in Indianapolis is relatively steady throughout the year, though
there is some variation as the driest month is February which averages 58.9mm and the
wettest month is May which averages 128.3mm. Total yearly precipitation averages
1,078mm. Precipitation in Indianapolis generally falls as rain. Winter precipitation in
Indianapolis comes in the form of snowfall more often than in Atlanta; however,
Indianapolis also periodically experiences a mix of freezing rain and sleet conditions

(NOAA, 2014).

[4.4] Findings

From September 2001 to June 2011, the Atlanta and Indianapolis zoological parks
generated a total combined attendance of 17.3 million visitors. During this period, Zoo
Atlanta averaged slightly over 0.75 million visitors per year, and Indianapolis Zoo
attracted approximately one million visitors on an annual basis. Zoo Atlanta, established
in 1889, is one of the oldest zoos in the United States and today is highly regarded for its
giant panda exhibit, one of only four zoos in the U.S. with this species on exhibit. The
Indianapolis Zoo has been in operation since 1964 and is one of the few zoos to have

both an accredited zoological park and botanical garden on the same site. Presently,
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Indianapolis Zoo is widely known for its $21.5 million International Orangutan Exhibit,
one of the premiere orangutan exhibits in the world. Clearly, both zoos have well-
established histories and sophisticated arrays of attractions; what is less clear is how at
each zoo varied synoptic weather conditions might impact average daily visitor
attendance.

lustrated by zoo in Table 4.2 and Table 4.3 are the total number of days
represented (Table 4.2) and the total visitor attendances (Table 4.3) within each of the
four Attendance Day Typologies (ADTs) ‘poor’, ‘average’, ‘good’, and ‘excellent’. The
statistical grouping methodology to define ADT categories expectedly makes the
‘average’ ADT the largest category in terms of number of days and in terms of total
visitor attendances at both zoos. A comparison between Tables 4.2 and 4.3 shows a key
difference in the percent representations between number of days and total visitor
attendances where the total visitor attendances are lower than would be expected
considering the number of days analyzed. For example, in Zoo Atlanta ‘average’ days
represent 76.1% of the total days analyzed but only 61.0% of total visitor attendances; at
Indianapolis Zoo the ‘average’ ADT represents 68.9% of the days analyzed but only
54.1% of the total visitor attendances. This discrepancy in percent representations can be
readily explained by observing the higher days of attendance in the ‘good’ and ‘excellent’
ADT categories. In Table 4.2, combining ‘good’ and ‘excellent’ ADT categories
accounted for only 14.1% of the total number of days represented in Atlanta and only
16.5% in Indianapolis; however, in terms of total visitor attendances (Table 4.3), the

‘good’ and ‘excellent’ ADT categories accounted for 38.6% in Atlanta and 45.6% in
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Indianapolis. Subsequently, a large portion of total visitor attendance occurs only on a
select few number of days. As a result, the ‘good’ and ‘excellent’ ADTs are very
important categories regarding visitor attendance analysis. By contrast, while the ‘poor’
ADT represented 9.7% and 14.7% of the total days of attendance at Zoo Atlanta and
Indianapolis Zoo respectively, this ADT accounted for less than 0.5% of the total number
of visitors at both Atlanta and Indianapolis zoos. From this finding, a more detailed
analysis of the differences in synoptic weather conditions between the ‘good’ and
‘excellent” ADT categories might be of particular use to the zoos within this study.

Table 4.2. Number of Days Represented for each Attendance Day Typology (ADT) from
September 2001 to June 2011

Zoo Atlanta 349 (9.7%) 2,727 (76.1%) 338 (9.4%) 170 (4.7%)
Indianapolis Zoo 526 (14.7%) 2,474 (68.9%) 426 (11.9%) 164 (4.6%)

Table 4.3. Total Visitor Attendances for each Attendance Day Typology (ADT) from
September 2001 to June 2011

Zoo Atlanta 26,827 (0.4%) 4,522,693 (61.0%) 1,595,615 (21.5%) 1,265,605 (17.1%)
Indianapolis Zoo 31,863 (0.3%) 5,369,595 (54.1%) 2,903,326 (29.3%) 1,614,481 (16.3%)

Figure 4.4 presents the percent share of the Synoptic Scale Classification (SSC)

categories found at Atlanta and Indianapolis zoos from September 2001 to June 2011.
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The categories in Figure 4.4 represent the proportion of days falling within a particular

SSC category where every day was represented by a single SSC category.

15%

Atlanta Indianapolis

Dry Moderate m Dry Polar ® Dry Tropical » Moist Moderate ® Moist Polar ® Moist Tropical ® Transition
Figure 4.4. Percent Share of Daily Observed Synoptic Scale Classification (SSC)
Conditions at the Atlanta and Indianapolis Zoos from September 2001 to June 2011
Percent shares of the SSC categories between Atlanta and Indianapolis in Figure
4.4 largely demonstrate two similar continental climates, both with varied synoptic
weather regimes. First, the ‘Dry Moderate’ (‘DM’) SSC category is the highest
represented regime at both locations with representations of 31% at Atlanta and 27% at
Indianapolis. Second, when comparing ‘moist’ (‘MP’, ‘MM’, ‘MT’) and ‘dry’ (‘DP”’,
‘DM, ‘DT’) synoptic regimes, both zoo locations are very similar. Atlanta observes 45%
of its synoptic conditions describing a ‘moist’ regime compared with 44% in
Indianapolis; conversely, within ‘dry’ synoptic conditions Atlanta observes 47%

compared with 46% in Indianapolis.

111



Similar in synoptic regimes, these locations also possess key climatic differences
regarding the thermal component of the synoptic conditions that may be driving
relationships observed with visitor behavior. The two synoptic categories with the largest
differences in percent representation between Atlanta and Indianapolis are ‘Moist
Tropical’ (‘MT’) where Atlanta showed a seven percentage-point higher occurrence and
‘Moist Polar’ (‘MP’) where Indianapolis showed a seven percentage-point higher
occurrence. Beyond these singular categories, Atlanta also experienced a greater amount
of ‘tropical’ SSC regimes than did Indianapolis (29% vs 21%), and Indianapolis
experienced a greater amount of ‘polar’ SSC regimes than did Atlanta (28% vs 17%)).
Synoptically, Atlanta appears to have experienced a warmer profile than Indianapolis.
This climatic difference may help clarify the differences observed across locations
regarding how synoptic regimes impact visitor attendances.

Displayed in Figure 4.5 is the percent share of each Attendance Day Typology
(ADT) by Synoptic Scale Category (SSC) for Atlanta and Indianapolis zoos. Prominent
in this description is that both zoos display strikingly similar patterns across the

relationship of synoptic weather conditions and the respective ADT categories.
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Figure 4.5. Distribution of SSC Categories based on the Percent Share of Attendance
Day Typology (ADT) by Zoo
The synoptic regimes most commonly associated with ‘excellent’ attendance at
both zoos included ‘Dry Moderate’ (‘DM’), ‘Moist Tropical’ (‘MT’) and ‘Dry Tropical’
(‘DT’). At Zoo Atlanta 46% of the ‘excellent” ADT occurred on ‘DM’ days compared to
54% at Indianapolis Zoo. Although the SSC integrates local climatology in its calculation

of each synoptic regime, it is likely that at both zoos ‘DM’ days would result in partly
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cloudy to clear skies and moderate temperatures. Such conditions may be ‘ideal’ for zoo
visits which require significant outdoor exposure to the elements. However, it should also
be noted that while Atlanta experienced a disproportionately larger share of ‘Dry
Moderate’ (‘DM”) days relative to Indianapolis (i.e., 31% versus 27% respectively), this
did not equate to a higher share of ‘excellent’ attendance days in Atlanta than in
Indianapolis while under ‘DM’ conditions (i.e., 46% versus 54% respectively). From this,
Atlanta appears not as ‘reliant’ on ‘DM’ conditions as is Indianapolis to generate its
highest attendances. This could indicate that zoo visitors in Atlanta are either more
resilient to a wider array SSC conditions or visitors in Indianapolis have a higher degree
of sensitivity to synoptic conditions that are not ‘ideal’.

The second most commonly occurring synoptic regime in the ‘excellent” ADT
was the ‘M T’ regime representing 21% of all ‘excellent’ days at Zoo Atlanta and 11% at
Indianapolis Zoo. ‘MT’ days represent synoptic regimes that are capable of generating
cloudy skies with both wet and warm conditions. While the warm thermal component of
‘MT’ conditions may stimulate attendance, the potential for precipitation can
simultaneously dampen attendance levels. One reason that could partially explain why
‘MT’ days occur more frequently in Atlanta than in Indianapolis during the ‘excellent’
ADT may be linked to the simple fact that Atlanta experienced more ‘MT’ days in total
than did Indianapolis (i.e., 23% versus 16% of the days respectively).

The third most commonly-occurring SSC category associated with ‘excellent’
levels of attendance is ‘Dry Tropical’ (‘DT’). Although ‘DT’ only occurred on 6% of the

days of record in Atlanta and on 5% of the days in Indianapolis, ‘DT’ comprised 15% of

114



the ‘excellent” ADT in Atlanta and 11% of the ‘excellent’ ADT in Indianapolis. Weather
accompanying ‘Dry Tropical’ (‘DT’) regimes can represent the hottest and driest
conditions during a year, however, they are almost always associated with dry, clear
conditions. Given the relatively mild continental climates of both Atlanta and
Indianapolis it is likely, despite ‘DT’ conditions representing warmer thermal profiles,
that temperatures usually were not high enough to trigger ‘heat aversion’. Of particular
question regarding differences across zoo locations is why ‘DT’ was four percentage
points higher in Atlanta than in Indianapolis on ‘excellent’ attendance days despite
having very similar profiles regarding overall ‘DT’ conditions (6% in Atlanta versus 5%
in Indianapolis). Findings across both ‘tropical’ synoptic regimes (‘MT’ and ‘DT’) may
give an explanation for this difference. Results suggest that Atlanta visitors may have a
preference and/or tolerance for warmer synoptic regimes than do visitors in Indianapolis.
In the ‘excellent” ADT category, both ‘tropical’ synoptic regimes, ‘Dry Tropical’ (‘DT’)
and ‘Moist Tropical’ (‘MT’), have higher representations in Atlanta than in Indianapolis
where ‘DT’ is four percentage-points higher and ‘MT’ is ten percentage-points higher.
Regarding the ‘good’ ADT a similar dynamic seems to be at play. Both zoos were
more likely to experience ‘DM’ conditions on ‘good’ attendance days followed by ‘MT’
regimes. At Zoo Atlanta 41% of all ‘good’ attendance days occurred under a ‘DM’
synoptic regime compared to 43% of all such days in Indianapolis. By contrast, ‘MT’
conditions accounted for 31% of all ‘good’ attendance days compared to 19% of all such

days in Indianapolis.

115



The SSC categories most associated with ‘poor’ levels of attendance at both zoos
were ‘MP’, ‘DP’, ‘T, and ‘MM’. In Atlanta and Indianapolis zoos, the SSC regime with
the highest representation in the ‘poor’ ADT was the ‘Moist Polar’ (‘MP’) condition as it
comprised 29% of the ‘poor’ attendances at Zoo Atlanta and 32% at Indianapolis Zoo.
The ‘Dry Polar’ (‘DP’) condition was the second-most commonly occurring synoptic
regime, representing 26% and 28% of all the ‘poor’ attendances at Atlanta and
Indianapolis zoos respectively. These two SSC categories are similar as they represented
synoptic regimes displaying cold and/or wet conditions which occurred mostly in the
winter seasons. The ‘poor’ ADT indicated that visitors to Indianapolis Zoo may be less
tolerant of ‘polar’ synoptic regimes than visitors to Zoo Atlanta. Within the ‘Dry Polar’
(‘DP) and ‘Moist Polar’ (“MP’) synoptic categories, Indianapolis consistently had higher
representations than Atlanta in both of these categories by an average of three
percentage-points. Because Indianapolis experiences a continental climate that is
generally colder than Atlanta, this finding may indicate that zoo visitors in Indianapolis
do not adapt to the prevailing thermal extreme conditions, but rather, in their
discretionary leisure time, avoid such conditions. Further, it is likely, given the
climatology-based methodology of the SSC, that ‘DP’ and ‘MP’ conditions in
Indianapolis are, in fact, colder (but not wetter) than those experienced in Atlanta. This
indicates that the thermal component within these SSC categories could be the key
difference affecting attendance turnout.

‘Transition’ (‘T”) conditions represented 18% of the ‘poor’ ADT at both

zoological parks. These conditions are associated with a change in the synoptic air mass
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(Table 4.1). In the continental climates of Atlanta and Indianapolis, this condition is
highly variable but can be associated with weather changes during frontal passages.
Many frontal passages can be accompanied with rain, drizzle, or even thunderstorm
conditions, all of which are not good for attendance turnout at outdoor zoo locations.

The ‘Moist Moderate’ (‘MM’) regime was also associated with lower attendance
as it represented 17% and 8% of the synoptic regimes within the ‘poor’ ADT at Atlanta
and Indianapolis zoos respectively. This regime, however, did not adversely impact
attendance to the same degree as did ‘MP’ or ‘DP’ or ‘T’ synoptic conditions. This is
likely due to the fact that ‘MM’ conditions are variable with wet or cloudy weather but
not usually accompanied with harsh temperatures. One prominent note is that ‘MM’
conditions represented a disproportionately high share of ‘poor’ days in Atlanta relative
to Indianapolis (17% versus 8% respectively) despite their relatively similar overall
representation of total days (15% in Atlanta versus 14% in Indianapolis). This indicates
that the presence of ‘MM’ regimes are likely more detrimental to attendances in Atlanta
than in Indianapolis. A possible reason for this geographic difference may be that zoo
visitors in Atlanta favor ‘tropical’ regimes however a ‘MM’ regime represents cooler and
wetter temperatures producing an ‘unwelcome’ departure from the preferred thermal
regimes. Conversely, in Indianapolis much the same dynamic is occurring. Because
Indianapolis experiences a greater amount of ‘polar’ SSC regimes and visitors appear to
dislike these ‘polar’ conditions, ‘MM’ conditions may come as a ‘welcome’ departure
from the harsh temperatures experienced during ‘polar’ synoptic conditions in

Indianapolis.
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Because it is probable that above ‘average’ attendance days can be roughly
predicted by zoo administrators using ‘non-weather’ factors such as ‘weekends’,
‘holidays’, etc., a better understanding of the differences that exist between synoptic
conditions coinciding with ‘good’ or ‘excellent’ attendances might improve attendance
forecasting. Regarding synoptic conditions at both Atlanta and Indianapolis Zoos,
‘excellent’ attendances had higher percentage shares than ‘good’ attendances in the SSC
categories of ‘DM, ‘DP’, and ‘DT’. This indicates that on higher days of attendance, the
presence of ‘DM’, ‘DP’, or ‘DT’ conditions may elevate attendances beyond ‘good’
levels to ‘excellent’ levels of attendance. The synoptic regimes most associated with
raising attendances to ‘excellent’ levels were ‘DT’ in Atlanta and ‘DM’ in Indianapolis.
Conversely, for ‘MM’ and ‘MT’ regimes, ‘good’ attendances had higher percentage
shares than ‘excellent’ attendances. On higher days of attendance, the presence of ‘MM’
or ‘MT’ conditions may be more likely to yield ‘good’ levels of attendance than
‘excellent’ levels of attendance. The synoptic regime most associated with a likelihood to
keep attendances in the ‘good” ADT category and not elevate them to the ‘excellent’
ADT category was the ‘MT’ SSC category for both zoos.

Generally speaking, it appears that at both zoos, even with higher attendance
levels, ‘moist’ synoptic regimes still negatively impact attendances, and, while they do
not necessarily preclude higher days of attendance, when directly comparing ‘good’ and
‘excellent” ADTs, ‘moist’ synoptic regimes are not beneficial. Further, ‘dry’ regimes, in

spite of the thermal component, appear to be helpful for increasing visitor attendances.
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[4.5] Conclusions and Future Direction

The United Nations World Tourism Organization’s (UNWTO) background paper,
“Advancing Tourism’s Response to Climate Change”, outlines several impacts that
climate variability has on tourism destinations and operators. In particular, future weather
and climate variability will have direct impacts on the length and quality of tourism
seasons and on tourist decision-making. The ability to better interpret changes in global
tourism demand and tourist behavior under future scenarios of climate change could be
enhanced by developing a comprehensive climate index for tourism. De Freitas et al.
(2008) outlined the need for a climate index that is translatable across a diverse range of
climates and one which is also attuned to the potential acclimatizations people may have
developed as a result of their culture or local environments.

Because people have a tendency to react to their environment regarding their own
personal well-being, it is likely that to some degree, tourist decisions incorporate
healthful decisions. This paper explored the possibility of using a human health-oriented
weather classification, the Spatial Synoptic Classification (SSC), in the context of
outdoor tourist behavior to determine if different synoptic weather conditions described
by the SSC align with visitor attendance at zoological parks.

It was found that ‘Dry Moderate’ conditions appeared to be the ‘optimal” synoptic
conditions for outdoor zoological park tourism. Specifically, ‘Dry Moderate’, ‘Moist
Tropical, and ‘Dry Tropical’ conditions were highly represented in ‘excellent” and
‘good’ levels of attendance, and ‘poor’ levels of attendance were highly represented by

‘Moist Polar’, ‘Dry Polar’, ‘Transition’, and ‘Moist Moderate’ synoptic regimes. This
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finding was consistent across Atlanta and Indianapolis geographies. SSC categories
associated with ‘moist’ conditions were also associated with low attendance, and those
associated with ‘dry’ conditions were associated with high attendance. Results from the
‘Moist Tropical” SSC, however, indicated that warmer temperatures can lessen the
negative attendance impacts of ‘moist’ conditions. This finding is substantiated by the
work of Welki and Zlatoper (1999) who also found, in the event of rain-conditions,
warmer temperatures mitigated losses in visitor attendance. Using the SSC to illuminate
geographic differences in the weather-attendance relationship indicated that zoo visitors
in Indianapolis were more averse to ‘Dry Polar’ and ‘Moist Polar’ conditions than zoo
visitors in Atlanta. This relationship between zoos is consistent with results from Perkins
and Debbage (2016a; 2016b) who found that visitors in locations with higher occurrences
of extreme thermal conditions tend to display more aversion to those extreme conditions
instead of tolerating or adapting to them.

Overall, this research indicates that the SSC is a reasonably good variable for
predicting tourist behavior. Though not specific or offering a great detail of nuanced
variations when interpreting potential acclimatizations or weather preferences across
diverse geographies, the SSC does have the potential for development as part of a tourism
index. Given its large spatial extent, this type of weather metric may be useful in longer-
term attendance forecasting where exact temperature forecasts are not reliable. Future
research should test the SSC across more diverse climatic regimes to determine its ability
to be used in multiple tourism geographies. Regarding development within the field of

‘tourism climatology’, future research could test the ability of the SSC to be used as a
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“first step’ categorization to identify the general synoptic regime. After this
categorization, specific tourism indices could then be developed for each SSC condition.
This paper utilized a weather index associated with ‘climate and human health’
and applied it in the realm of ‘climate tourism and recreation’. While differences exist
across these biometeorological realms, methodologies can be shared that may yield novel
applications and findings. As found in this research, an interdisciplinary use of a health-
oriented index in ‘tourism climatology’ resulted in both an improved understanding of
how tourists respond to synoptic weather conditions and the potential for future
interdisciplinary research. This cross-collaboration may lead to research which helps

tourists and operators improve decision-making.
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CHAPTER V

CONCLUSION

This dissertation, in its review of differing weather factors as they impacted
visitor attendance at four large metropolitan AZA accredited zoological parks across the
United States, revealed novel findings regarding how weather conditions impact
consumer behavior in the form of visitor attendance response.

Generally, in the research, the potential presence of a ‘thermal aversion effect’
and, in particular, an ‘extreme temperature aversion’ where visitors avoided a location’s
most common thermal extreme condition was found across all zoos. Based upon these
findings, ‘cold locations’ appeared to show ‘cold aversion’ in their attendance responses
to the ambient thermal environment, and ‘warm locations’ appeared to show ‘heat
aversion’ in their attendance responses to the ambient thermal environment. This may
mean that visitors to zoological parks may not acclimate to the prevailing climates, but
instead, may become less tolerant by choosing not to expose themselves to any additional
thermal stresses regarding their discretionary leisure time. Also, consistent across all four
zoological parks in the research, it was found that days which promised ‘thermally
stagnant’ weather conditions were more likely to be accompanied with low visitor
turnout. Conversely, days with weather conditions which experienced multiple thermal

categories and significant daytime heating
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appeared to promise higher visitor turnout. While not tested across all four zoological
parks, results from this dissertation may indicate that admission pricing could contribute
to how potential zoo visitors interpret the atmospheric environment.

Table 5.1 displays specific findings through the explorations of all three

manuscripts:

Table 5.1. Comparison of Key Findings from Chapters 1 — 3

Thermal Experienced
Optimal Thermal Regime(s) Aversion Most Common Thermal
for Attendance Thermal Extreme  Categories for
Effect
Peak Attendance

Optimal Synoptic
Condition for
Attendance

Zoological Park

Atlanta Slightly Warm =~ Warm  HeGilIRAETS T RV oV o 1T N (o) Dry Moderate (DM)
IGGIELET:LIE Slightly Warm Warm Cold Aversion Very Cold (30%) Dry Moderate (DM)
Phoenix Slightly Warm Warm Heat Aversion  Very Hot (39%)

St. Louis Warm Cold Aversion  Very Cold (24%)

Specific findings in this research have provided foundational information
concerning both human thermal preferences and how those preferences may vary across
diverse climates within outdoor zoological park tourism.

It was found in Chapters II and III that ‘optimal thermal regimes for attendance’
were relatively consistent across all four zoos despite their differing climates. The PET-
based thermal category of ‘warm’ was found to be the only ‘optimal thermal condition’
for visitor attendance consistent across all four zoos. There were slight nuances, though,
as Atlanta, Indianapolis, and Phoenix zoo visitors demonstrated a preference for both
‘slightly warm’ and ‘warm’ thermal regimes and St. Louis a preference for ‘warm’ and

‘hot’ thermal regimes. A potential key describing a possible cause for the warmer thermal
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preferences in St. Louis was free-admission pricing. The consistencies found in the
‘optimal’ thermal regimes may indicate that despite the differences in prevailing climates
of the locations, regarding outdoor zoo tourism, there could be a global optimal thermal
condition most preferred by those visiting a zoological park.

The ‘thermal aversion effect’ was most apparent on the lowest days of visitor
attendance where these ‘poor’ days of attendance largely coincided with the most
common thermal extreme condition. Atlanta, Indianapolis, and St. Louis zoological parks
all showed ‘cold aversion’ and had their most common thermal extreme occurring in the
‘very cold’ thermal category. Phoenix Zoo, conversely, displayed ‘heat aversion’ as most
of its ‘poor’ days of attendance occurred in the ‘very hot’ thermal category. Moreover,
this ‘very hot’ thermal category was the most common thermal extreme in Phoenix over
the study period.

Because zoo visitors may assess the weather based on the entirety of conditions
they could experience throughout their time at the zoo location, any potential changes in
the daily atmospheric environment may influence decisions to visit. Days which
experienced more thermal categories, in general, saw higher attendances. Days which did
not experience many thermal categories saw ‘thermally stagnant’ weather conditions
resulting in lower attendances. Atlanta, Indianapolis, and St. Louis zoos, in order to cross
a ‘threshold’ between lower days of attendance and higher days of attendance, needed to
experience at least three thermal categories during the daytime. Phoenix, likely due to its

arid desert climate, needed to experience at least four thermal categories and cooler

124



morning temperatures than the other locations in order to realize higher daily attendance
volumes.

In Chapter IV the Atlanta and Indianapolis zoos were studied using the Synoptic
Scale Classification, and it was determined that ‘Dry Moderate’ conditions appeared to
be the ‘optimal” synoptic conditions for outdoor zoological park tourism. Specifically, at
both zoos, ‘Dry Moderate’ and ‘Dry Tropical’ conditions were precursors for ‘excellent’
attendance levels, ‘Moist Tropical® for ‘good but not excellent’ attendance levels, and
‘Dry Polar’, ‘Moist Moderate’, ‘Moist Polar’, and ‘Transition’ for ‘poor’ attendance
levels. Overall, it was found that the SSC was a reasonably good variable for predicting
tourist behavior and it potentially could be developed as part of a tourism index.

By looking at visitor attendance response to multiple weather variables at outdoor
zoological parks, this dissertation research provided new methodologies and illustrated
new findings which may allow for a better understanding of how people react to the
weather. Further, this research provided additional examples to add to a foundation of
research which tests regional visitor acclimatization and adaptation to ambient
environmental conditions.

By building an understanding of how weather influences consumer behavior, this
research can be used as a foundation for modeling future visitor behavior under varying
scenarios of climate change. Doing so may be a key in improving the abilities of leaders

and governments to make better-informed policy and planning decisions for the future.
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