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Older adults’ performance decrements can sometime be traced back to inferior strategic 

choices compared to their younger counterparts. Additionally, older adults often fail to revise 

their strategic choices with task experience (Bieman-Copland & Charness, 1994; Brigham & 

Pressley, 1988; Lovett & Schunn, 1999; Price, Dunlosky, & Hertzog, 2008; Touron & Hertzog, 

2004a, 2004b; Touron, Hoyer, & Cerella, 2004). Metacognitive models of strategy selection 

suggests that beliefs, prior knowledge, goals, and task representation influence strategic decisions 

(e.g., Winne & Hadwin, 1998). No studies to date have attempted to compare task representation 

in older and younger adults to determine whether older adults’ poor strategic choices might be 

driven by an impoverished understanding of the tasks they are asked to engage in.  In two studies 

we used a pathfinder methodology to elicit conceptual knowledge about a novel chemistry task. 

In both studies, more conceptual knowledge was related to superior task performance in both 

younger and older adults. However, we found no evidence of age-related deficits in task 

representation, formation, or utilization. Surprisingly, participants’ task representation scores did 

not improve following task practice. However, performance improved over trials, even for items 

that had to be learned with task practice, suggesting that task representation updating did occur. 

These findings provide indirect evidence of task representation updating in both younger and 

older adults. However, no age deficits in the ability to update task representations were found. 

Exploratory analyses suggest that performance in younger adults was related to motivational 

issues, whereas performance in older adults was driven by higher levels of processing speed and 

crystallized intelligence.  
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CHAPTER I 

INTRODUCTION 
 
 

Older and younger adults often choose different strategies when performing the same 

task; this has been shown in a variety of cognitive domains (Bouazzaoui et al., 2010; Dunlosky & 

Connor, 1997; Frank, Touron, & Hertzog, 2013; Hertzog, Mcguire, & Lineweaver, 2010; Hines, 

Touron, & Hertzog, 2009; Lemaire, Arnaud, & Lecacheur, 2004; Lemaire & Lecacheur, 2007; 

Lemaire, 2010; Rawson & Touron, 2009; Rogers & Gilbert, 1997; Starns & Ratcliff, 2010; 

Touron & Hertzog, 2004a, 2004b). Unfortunately, older adults often choose less effective 

strategies compared to younger adults. Relative to younger adults, older adults make poorer 

strategy choices when: choosing memory encoding strategies (Brigham & Pressley, 1988; 

Dunlosky, Hertzog, & Powell-Moman, 2005; Dunlosky & Hertzog, 2001), deciding which 

information to study for a test and for how long (Dunlosky & Connor, 1997; Hines et al., 2009), 

deciding whether to round up or down when performing mental arithmetic (Green, Lemaire, & 

Dufau, 2007; Lemaire et al., 2004), deciding whether to retrieve information from memory or 

compute the answer (Frank et al., 2013; Hertzog, Touron, & Hines, 2007; Hertzog & Touron, 

2011; Rawson & Touron, 2009; Touron, Hertzog, & Frank, 2012; Touron, Swaim, & Hertzog, 

2007; Touron & Hertzog, 2004a, 2004b, 2009; Touron, 2006), and determining the appropriate 

speed-accuracy trade-off to maximize performance (Starns & Ratcliff, 2010; Strayer & Kramer, 

1994). Furthermore, older adults are less likely to update or adjust their strategic choices in 

response to task stimuli (Lemaire et al., 2004; Lemaire & Lecacheur, 2007; Lemaire, 2010) or 

poor task performance (Brigham & Pressley, 1988; Price, Hertzog, & Dunlosky, 2008). 
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The next section briefly describes the role of task understanding in models of strategy selection. 

The subsequent sections describe how aging impacts each of those processes, what gaps in the 

literature remain, and how connecting to the literature on mental models, including conceptual 

knowledge, perspectives, and techniques, can help fill these gaps.  

Metacognitive Models of Strategy Selection 

Older adults’ strategic choices have been shown to be influenced by their beliefs about 

strategies, and the beliefs in their ability to use strategies (Brigham & Pressley, 1988; Dunlosky et 

al., 2005; Dunlosky & Hertzog, 2001; Frank et al., 2013; Hertzog et al., 2007; Hertzog & Touron, 

2011; Hines et al., 2009; Price et al., 2008; Rawson & Touron, 2009; Touron & Hertzog, 2004b, 

2004a). However, models of strategy selection also highlight the importance of having an 

accurate understanding about the task itself (Bromme, Pieschl, & Stahl, 2009; Dunlosky & 

Hertzog, 2000; Lovett & Schunn, 1999; Muis, 2007; Winne & Hadwin, 1998). For example, one 

may choose different study strategies based on whether study time is limited, the test is essay, 

multiple choice, or fill in the blank, and whether the test is open or closed book. Likewise, initial 

misconceptions about a task may restrict the set of strategic options one considers, or may result 

in the misapplication of those strategies (Bromme et al., 2009; Winne & Hadwin, 1998). Theories 

of strategy selection allow for changes in task representations (and changes in strategy beliefs) via 

metacognitive monitoring and updating. That is, people can monitor the results of their strategic 

choices, monitor the structure of the task, and compare these to their mental representations of the 

task. This process is referred to as metacognitive monitoring (Nelson & Narens, 1990). If 

accurate monitoring occurs, people may then use this information to update their task 

representations and strategic beliefs, and change their strategic choices (Bromme et al., 2009; 

Dunlosky & Hertzog, 2000; Muis, 2007; Winne & Hadwin, 1998). This process is referred to as 

metacognitive control (Nelson & Narens, 1990).  
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Aging and Metacognitive Monitoring 

On a trial-by-trial basis, older adults generally demonstrate metacognitive monitoring 

equal to that of younger adults (Dunlosky, Baker, Rawson, & Hertzog, 2006; Dunlosky, Kubat-

Silman, & Hertzog, 2003; Dunlosky & Connor, 1997; Hertzog, Dunlosky, & Sinclair, 2010; 

Hertzog, Kidder, Powell-Moman, & Dunlosky, 2002; Hertzog, Sinclair, & Dunlosky, 2010; 

Hines, Hertzog, & Touron, 2015; Kuhlmann & Touron, 2011). By contrast, older adults 

sometimes struggle to use this information when estimating performance across trials. This may 

result from an aggregation failure. For example, on a learning task, older adults may fail to keep 

track of what proportion of items was correctly recalled, overall or for a given strategy. For 

example, Price and colleagues (2008) had participants rate the effectiveness of an interactive 

imagery strategy (a normatively effective strategy) and rote repetition strategy (a normatively less 

effective strategy) before and after studying novel word pairs using the two strategies. 

Immediately after studying each item, participants rated the likelihood that they would recall it on 

a future test. Younger and older adults initially rated the strategies as equally effective. When 

rating each item during study, older and younger adults rated the items studied using interactive 

imagery as being more likely to be remembered than those studied with rote repetition. That is, 

older and younger adults both showed accurate monitoring at the item level. However, when 

asked at the end of study to rate the effectiveness of each strategy, only younger adults correctly 

updated these strategy beliefs (by rating interactive imagery as more effective).  

Even when accurate monitoring does occur, people may fail to exert metacognitive 

control, and continuing using the ineffective strategies despite their updated knowledge. For 

example, people may realize while studying that a particular strategy isn’t working, or may 

realize after taking a test that their accuracy was below the desired level. However, they are only 

exerting metacognitive control if they alter their strategic approach as a result (e.g., altering 
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encoding strategies, study time allocation, or goals). Older adults commonly display impairments 

in metacognitive control, by not altering their strategies despite accurate performance monitoring 

(Dunlosky et al., 2006, 2003; Dunlosky & Connor, 1997; Hertzog, Dunlosky, et al., 2010; 

Hertzog et al., 2002; Hertzog, Sinclair, et al., 2010; Kuhlmann & Touron, 2011). Given older 

adults’ failures to update and utilize new metacognitive information about strategies, it is possible 

that older adults may also struggle to update or utilize their task representations as well.   

While monitoring performance, one may discover that their fundamental task 

representation is inaccurate (Gaschler & Frensch, 2007; Haider & Frensch, 1996, 1999). For 

example, one may expect a multiple choice test but be given a free recall test instead. Or one may 

discover that the instructions they were given were not entirely accurate or that certain task 

information is irrelevant (Gaschler & Frensch, 2007; Haider & Frensch, 1996, 1999). To the 

extent that one can identify inconsistencies between their representation of the task and the actual 

task, they should seek to correct those inconsistencies and use the updated knowledge to alter 

their strategic approach (Lovett & Schunn, 1999). To date, no study has specifically attempted to 

measure older adults’ task representations. Thus, it is unknown whether older adults enter tasks 

with accurate task representations or if they update those task representations and utilize them to 

improve strategic choices. Furthermore, we do not know whether older adults’ abilities to form, 

monitor, and update task representations are equivalent to those of younger adults.  

Although studies have not directly compared older and younger adults abilities to form 

and update task representations, data from eye-tracking and skill acquisition studies provide some 

support for the hypothesis. Older adults are found to fixate task-irrelevant information to a greater 

degree than do younger adults (Mitzner, Touron, Rogers, & Hertzog, 2010; Spieler, Mayr, & 

LaGrone, 2006; Touron et al., 2012), suggesting the possibility that they do not fully understand 

the task. For example, in a task where participants had to search an array of unrelated word pairs 
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(e.g., ivy-bird, potato-frog) to determine whether a target word pair occurred in the array (Mitzner 

et al., 2010; Touron et al., 2012). For example, the words “ivy” and “bird” are paired in the array, 

as are “potato” and “frog.” If the target pair was ivy-bird, the participant would search the array 

and respond “yes” when they located ivy-bird Because each word occurred only once in the array, 

a participant could respond to a rearranged pair (e.g., ivy-frog) as soon as they found either of the 

words in the array (e.g., after locating the pair ivy-bird or potato-frog). However, on early trials, 

older and younger adults often continued to search the array even after one of the target words 

(e.g., ivy) had been located. Participants may not have correctly understood that the task 

possessed a single target, and thus continued to search for additional targets among the 

distractors. That is, they continued to search for ivy-frog even after locating ivy-bird in the array. 

After a few trials, younger but not older adults ceased this behavior, terminating their search after 

visually fixating one of the target words. By contrast, older adults often continued to search the 

entire array despite this behavior being maladaptive. That is, older adults failed to update their 

task representation and adjust their strategic process accordingly. The current studies attempt to 

measure task understanding without reliance on critical errors, to determine whether these 

persistent task misrepresentations are a common occurrence among older adults.  

Limitations of Current Understanding and Methods 

Metacognitive ratings (e.g., performance predictions) and questionnaires have been used 

to examine age differences in beliefs about strategies (Brigham & Pressley, 1988; Dunlosky et al., 

2003; Frank et al., 2013; Hertzog, Sinclair, et al., 2010; Price et al., 2008; Touron & Hertzog, 

2004a), and critical task errors have suggested specific task misunderstandings (Mitzner et al., 

2010; Touron et al., 2012). However, neither of these methods is well suited for measuring 

overall task representation accuracy.  
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Metacognitive performance predictions can provide insight into faulty strategic beliefs 

(e.g., thinking a strategy faster or more accurate than it really is). But performance predictions 

will not indicate when a participant has faulty beliefs about the structure of the task. For example, 

performance predictions will capture when a participant is expecting a recognition test but is 

given a recall test, or when a participant is expecting an immediate test but is given a distractor 

task between study and recall. By contrast, questionnaires asking participants to reflect on critical 

aspects of their task representation can provide more target information about task understanding. 

For example, you can ask directly what kind of test a participant expects, whether something is 

important to a task (e.g., being fast, being accurate). However, these too have drawbacks. First, 

questionnaires invariably reflect what the experimenter expects the participant’s task 

representation to contain—they force the researcher’s representation space upon the participant 

(Rouse & Morris, 1986; Rowe & Cooke, 1995). For example, a questionnaire may omit important 

aspects of the participant’s task representation that the experimenter’s task representation does 

not include (Rouse & Morris, 1986; Rowe & Cooke, 1995). This happens when the participant’s 

task representation contains unnecessary or irrelevant information (commissions; Rouse & 

Morris, 1986; Rowe & Cooke, 1995). Questionnaires can also be reactive if they ask a participant 

to reflect on an aspect of the task that was not originally part of their task representation 

(omissions; Rouse & Morris, 1986; Rowe & Cooke, 1995). The reactive effects of questionnaires 

could be particularly problematic if the questionnaire is administered prior to task completion.1 

The participant may incorporate information from the questionnaire into their task representation, 

                                                           
1 This criticism can be applied to metacognitive ratings as well. Making performance predictions may 
cause people to monitor their learning and performance to a greater degree than they ordinarily would. 
Likewise, asking for performance precisions may cause people to ponder how they know that they know 
something, and may even result in participants considering how manipulated task properties influence 
their learning. 
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and then uses that information to make different strategic decisions than they would have made 

had they not answered the questionnaire.  

Lastly, critical task errors may reflect an inaccurate task representation (Gaschler & 

Frensch, 2007; Haider & Frensch, 1996, 1999; Mitzner et al., 2010; Touron et al., 2012). 

However these errors may also reflect an inability to utilize one’s task representation to make 

appropriate strategic choices, and cannot identify task misrepresentations when those do not 

result in obvious task errors. Thus, critical error analyses may under estimate task representation 

errors. 

In contrast to the questionnaires, metacognitive ratings, and critical errors which tap 

specific aspects of task representations or relevant knowledge (e.g., how strategies impact 

performance accuracy), the mental model framework utilizes techniques designed to capture a 

broad measure of  conceptual knowledge, and how specific concepts within a participant’s 

conceptual knowledge relate to one another (Goldsmith, Johnson, & Acton, 1991; Novak & 

Cañas, 2006; Novak, 1990; Rouse & Morris, 1986; Rowe & Cooke, 1995; Staggers & Norica, 

1993). If we think of task representations as a form of task-specific conceptual knowledge, these 

techniques may allow us to examine global task representations. 

The Mental Model Framework 

While the metacognitive model of strategy choice suggest a clear role for task-relevant 

knowledge and understanding (Bromme et al., 2009; Lovett & Schunn, 1999; Muis, 2007; Stahl, 

Pieschl, & Bromme, 2006; Winne & Hadwin, 1998), studies have not measured task 

representations directly. By contrast, the mental model approach used in the human factors and 

education literatures elicits more extensive information about people’s conceptual knowledge 

(Goldsmith et al., 1991; Novak & Cañas, 2006; Novak, 1990; Rouse & Morris, 1986; Rowe & 

Cooke, 1995; Staggers & Norica, 1993). 
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Within the education and human factors literatures, various terms have been used to 

describe internal mental representations including: schema, knowledge structure, task 

representation, situation model, concept map, conceptual framework, and belief (Dorsey, 

Campbell, Foster, & Miles, 1999; Doyle & Ford, 1998; Rouse & Morris, 1986; Staggers & 

Norica, 1993). Due to the complexity of internal representations, these terms are particularly 

difficult to define, resulting in some dispute over the proper definition (for a through treatment, 

see Doyle & Ford, 1999; Rouse & Morris, 1986). Definitions typically describe and measure 

mental models as either complex networks of stored knowledge or as fleeting visuospatial 

representations in working memory. Schnotz and Preuss (1997) differentiate between these two 

categories using the terms conceptual knowledge and mental models, respectively. They argue 

that mental models are actually temporary representations derived from conceptual knowledge 

and task cues (Schnotz & Preuss, 1997; see also Seel, 2001; Wilson & Rutherford, 1989). When 

discussing the relevant literature, I will adopt this terminology, with conceptual knowledge 

referring to stable long-term memory representations and mental models referring to conceptual 

knowledge held temporarily within the focus of attention (i.e., in working memory). 

Conceptual Knowledge 

Conceptual knowledge has been described as a web of interconnected knowledge 

(Gadgil, Nokes-Malach, & Chi, 2012) or knowledge structure (Dorsey et al., 1999), and includes 

all levels of knowledge specificity. General schematic knowledge and task-specific 

representations are both examples of conceptual knowledge. Conceptual knowledge contains not 

only declarative knowledge, but also the interconnections, and in particular, the causal links 

between those pieces of declarative knowledge (Gadgil et al., 2012; Van Boven & Thompson, 

2003). Research indicates that it is these relationships between pieces of information that predict 

success on domain-relevant tasks (Goldsmith et al., 1991; Novak & Cañas, 2006; Novak, 1990; 
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Staggers & Norica, 1993). These findings suggest that declarative knowledge may be a poor 

indicator of task representation accuracy, whereas the structural relationships between task-

relevant concepts may be far more diagnostic of, and critical to, task performance. The next 

sections describe a method for measuring conceptual knowledge, followed by a discussion of how 

conceptual knowledge and mental models are formed, utilized, and updated, considering potential 

age differences at each step. 

Measuring Conceptual Knowledge 

Concept mapping is perhaps the most popular way to measure conceptual knowledge 

(Novak & Cañas, 2006). A concept map is a series of nodes (concepts) connected by links 

representing how those concepts are connected in a participant’s knowledge structure (Novak & 

Cañas, 2006; Novak, 1990). For example, in Figure 1, p. 12, “Bunsen burner,” “temperature,” and 

“bacteria” are examples of nodes, whereas “increases” and “decreases” are links.  

One way to generate a concept map is to use pair-wise relatedness ratings of domain-

relevant terms provided by the researcher (Capelo & Dias, 2009; Clariana & Taricani, 2010; 

Curtis & Davis, 2003; d’Apoilonia, Charles, & Gary, 2004; Dorsey et al., 1999; Goldsmith et al., 

1991; Gomez, Hadfield, & Housner, 1996; Gonzalvo, Cafias, & Bajo, 1994; Johnson, Goldsmith, 

& Teague, 1994; Kim, 2012; Van Boven & Thompson, 2003) or in rare cases, by the participant 

(Rowe & Cooke, 1995). This technique has the participant rate the relatedness of all possible 

pairs of terms (Figure 2, p. 13). Participant pair-wise ratings are then subjected to a pathfinder 

algorithm. The pathfinder algorithm is a data reduction technique that transforms the matrix of 

pair-wise relatedness ratings into a concept map. This is done by maintaining strong links 

between nodes and trimming off weaker links. For example, consider Figure 1 (p. 12). The 

pathfinder derived ratings might indicate strong relationships between Bunsen burner and 

temperature and between temperature and bacteria, but a weaker relationship between Bunsen 
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burner and bacteria. Thus, the resulting strong indirect relationship between Bunsen burner and 

bacteria, through the concept “temperature” would be retained, and the weaker direct relationship 

would be eliminated. 

  

 

Figure 1.Study 2 Reference Map.  

Pathfinder derived concept maps are then compared to a reference map created by an 

expert or group of experts. The primary advantage of this technique is that the purpose of the task 

is less transparent, and all relationships are considered, eliminating the bias that occurs when the 

experimenter selects which relationships to ask about via metacognitive ratings or questionnaires 

(see Chiu, Chou, & Liu, 2002; Dorsey et al., 1999; Jacobs-lawson & Hershey, 1994; Kim, 2012; 

Markham, Mintzes, & Jones, 1994; Novak & Cañas, 2006; Poindexter & Clariana, 2006; Rice, 

Ryan, & Samson, 1998; Rowe & Cooke, 1995; Seel, 2001; Taricani & Clariana, 2006; Wallace & 

Mintzes, 1990).  
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Figure 2. Screenshot of Rate Software used in Study 1. 
 
 

When concept maps are elicited using pair-wise ratings, accuracy is typically measured 

as the proportion of overlap between a given concept map and the reference map known as 

“closeness” or “C” scores (Johnson & Goldsmith, 1994). Thus, C scores range from 0 (no 

overlap) to 1 (identical concept maps; for a detailed explanation of the pathfinder algorithm and 

calculations for C, see Goldsmith et al., 1991). C scores from relevant concept maps predict 

classroom performance in domains such as: history of psychology (Gonzalvo et al., 1994), 

research methods and statistics (Goldsmith et al., 1991), biology (d’Apoilonia et al., 2004), 

accounting (Curtis & Davis, 2003), and teaching of elementary mathematics (Gomez et al., 1996). 

C scores also predict performance outside the classroom in domains such as: accounting job 

performance (Curtis & Davis, 2003), teaching of elementary mathematics job performance 

(Gomez et al., 1996), ACT math scores (Johnson et al., 1994), radar warning systems 

troubleshooting performance (Rowe & Cooke, 1995), and negotiation performance (Van Boven 

& Thompson, 2003).  

Unlike questionnaires which ask about specific relationships deemed important by the 

researcher, pathfinder-derived concept maps allow a participant to specify any number of 

relationships among concepts (nodes; Rouse & Morris, 1986; Rowe & Cooke, 1995). That is, 
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pathfinder-derived concept maps do not force the researcher’s conceptualization upon the 

participant to the extent that questionnaires do (Rouse & Morris, 1986; Rowe & Cooke, 1995). 

Conceptual Knowledge Formation 

According to the mental model perspective, new conceptual knowledge utilizes existing 

schemas and conceptual knowledge as a starting point, and modifies them accordingly (Schnotz 

& Preuss, 1997). For example, when presented with a memory task in a laboratory, a participant 

not only references their beliefs about memory and study strategies, but also uses prior learning 

experiences to assume—by way of analogy—a certain structure to the task itself (e.g., study 

proceeded by test; note that these processes need not be intentional or conscious). Task 

instructions, cues, and experience are then used to modify that general schema into a task-specific 

representation. Thus, conceptual knowledge formation relies on schematic knowledge, beliefs, 

monitoring, metacognitive control, and analogical processing.  

Because older adults possess greater crystalized knowledge, they should have more task 

structures and schemas to choose from when seeking a starting model for a new task. Indeed, 

older adults do demonstrate greater learning when new information is consistent with or can be 

incorporated into existing knowledge (Castel, 2005, 2007; Stine-Morrow, Miller, & Hertzog, 

2006), however these studies focused on incorporating only new pieces of declarative information 

and not the acquisition of new structured conceptual knowledge 

Conceptual Knowledge Updating 

Metacognitive models of strategy selection suggest that task representations and strategic 

choices are updated in response to external feedback and participant-identified inaccuracies in 

task representation (monitoring; Bromme et al., 2009; Lovett & Schunn, 1999; Muis, 2007; 

Winne & Hadwin, 1998). Likewise, the mental model and conceptual knowledge framework also 

suggests that conceptual knowledge is updated, but through three specific processes: accretion, 
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tuning, or reorganization (Schnotz & Preuss, 1997). Accretion is when new knowledge is simply 

added to the existing knowledge and could be thought of as adding a node and link to a concept 

map (Schnotz & Preuss, 1997). Tuning involves the changing of a single component within the 

structural knowledge from one value to another, such as changing a link label in a concept map 

(e.g., correcting the link atoms are molecules into atoms make up molecules; Schnotz & Preuss, 

1997). Because unlearning is involved in tuning, Schnotz and Preuss suggest that it may be more 

resource demanding than accretion. Lastly, reorganization involves the altering of relationships 

within conceptual knowledge (Schnotz & Preuss, 1997). This will typically involve far greater 

changes to the conceptualization and may require even more resources than tuning or accretion, 

as the very structure of the relationships involved are altered (Schnotz & Preuss, 1997).  

Studies on strategy knowledge updating in younger and older adults have looked 

exclusively at changes akin to accretion and tuning (Bieman-Copland & Charness, 1994; 

Brigham & Pressley, 1988; Devolder & Pressley, 1992; Matvey, Dunlosky, Shaw, Parks, & 

Hertzog, 2002; Price, Hertzog, & Dunlosky, 2010). For example, in the study by Price and 

colleagues (2008) described earlier, younger but not older adults updated their strategic 

knowledge to reflect the actual effectiveness of two memory encoding strategies. This could be 

thought of as a tuning of the effectiveness of each strategy. By contrast, it could be argued that 

the absence of pre-study differences in strategy effectiveness ratings suggests that strategy 

effectiveness was not part of older or younger adults’ conceptual knowledge at all, and thus 

adding that information should instead involve accretion.  

In studies of strategy knowledge updating, both younger and older adults demonstrate 

difficulty in updating their strategic knowledge, with older adults struggling more than young 

(Bieman-Copland & Charness, 1994; Brigham & Pressley, 1988; Devolder & Pressley, 1992; 

Matvey et al., 2002; Price et al., 2010). Given the age differences in updating for what Schnotz 
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and Preuss claim is a less resource demanding type of updating, older adults may show even 

greater decrements when the underlying structure of their conceptual knowledge needs to be 

updated. To date no studies have examined this process in older adults. One potential prediction 

is that older adults may make minor adjustments to their conceptual knowledge (which could be 

evidenced by increased overlap between their concept maps and those of experts—increased C 

scores), but may show less updating compared to younger adults. This might be particularly 

problematic when their concept maps are initially highly inaccurate, and thus greater structural 

changes are necessary. 

Conceptual Knowledge Utilization: Mental Models 

In contrast to the conceptual knowledge stored in long-term memory, a mental model is a 

mental representation of a given system at an exact moment in time (Besnard, Greathead, & 

Baxter, 2004; Van Boven & Thompson, 2003). Due to the constraints of working memory, people 

cannot consider the entirety of their conceptual knowledge when solving a problem or making a 

decision (Besnard et al., 2004; Schnotz & Preuss, 1997; Seel, 2001; Van Boven & Thompson, 

2003)2. As a result, when a person is faced with a problem, they extract from their conceptual 

knowledge the necessary elements (and only those necessary elements) to form a mental model of 

the current situation (Chiou & Anderson, 2010; Kim, 2012; Schnotz & Preuss, 1997; Seel, 2001). 

This mental model is then used to solve the problem or make a decision (Chiou & Anderson, 

2010; Kim, 2012; Schnotz & Preuss, 1997; Seel, 2001). Thus, strategic decisions, like all 

decisions and problem solving (Johnson-Laird, 1983), should occur at the mental model level.  

If age differences occur in conceptual knowledge formation, monitoring, or updating, 

they will influence the mental models used when making strategic choices (Schnotz & Preuss, 

                                                           
2 Note that this is also consistent with Anderson’s ACT-R model (Anderson, Matessa, & Lebiere, 1997). 
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1997). Likewise, if age differences occur in the ability to form mental models out of their 

conceptual knowledge, these differences could influence strategic choices. Unfortunately, 

measuring mental models is difficult because mental models are fleeting and difficult for the user 

to describe (Besnard et al., 2004; Van Boven & Thompson, 2003). As a result, the literature on 

mental models often uses highly controlled situations where mental models can be inferred from 

behavioral outcomes (such as common errors in reasoning; Besnard, Greathead, & Baxter, 2004; 

Johnson-Laird, 1983; Van Boven & Thompson, 2003). This approach is not feasible for some 

tasks. However, a failure to make appropriate strategic choices when conceptual knowledge is 

accurate would be an indirect indicator of a potential mental model formation or utilization 

failure. 

Because mental models are limited by working memory constraints (Besnard et al., 2004; 

Schnotz & Preuss, 1997; Seel, 2001; Van Boven & Thompson, 2003), older adults’ reduced 

working memory capacity (Bopp & Verhaeghen, 2007; Hasher & Zacks, 1988) could result in 

impoverished mental models and thus conceptual knowledge utilization. That is, older adults may 

struggle to maintain more complex mental models in working memory, forcing older adults to 

occasionally make decisions based on less information than younger adults. Supporting this view, 

age differences in mental model utilization appear when multiple mental models are under 

consideration at a once  (Copeland & Radvansky, 2007; Gilinsky & Judd, 1994; Radvansky, 

Zacks, & Hasher, 1996) and older adults often do consider fewer pieces of information when 

making decisions (Blanchard-Fields, Hertzog, & Horhota, 2012; Chen & Blanchard-Fields, 2000; 

Hess, Follett, & McGee, 1998; Klaczynski & Robinson, 2000; but see Hines, Hertzog, & Touron, 

2015 for evidence that older adults consider as many cues as younger adults do when making 

metacongnitive predictions).  



16 
 

However, when a single mental model is necessary, age differences in mental model 

formation and utilization are rarely reported, with some studies suggesting that older adults rely 

more on mental models more than do younger adults (Gilbert, Rogers, & Samuelson, 2004; 

Morrow, Leirer, Altieri, & Fitzsimmons, 1994a; Radvansky, Copeland, Berish, & Dijkstra, 2003; 

Radvansky, Gerard, Zacks, & Hasher, 1990; Radvansky & Dijkstra, 2007; Radvansky, 1999b; 

Stine-Morrow, Gagne, Morrow, & DeWall, 2004; Stine-Morrow, Morrow, & Leno, 2002). It is 

important to note that these studies focused exclusively on mental models of narratives or single 

sentences. Narrative and text processing are two highly practiced domains for most adults. 

Additionally, although some narratives require a substantial degree of mental model updating, 

understanding a complex new task may require a greater degree of updating and manipulation. 

Thus mental model updating and manipulation in complex novel tasks may tax working memory 

to the point where age differences in mental model utilization appear.  

Current Studies 

In two studies we examine whether concept mapping can be used to measure younger and 

older adults’ task representations and whether these task representation influences strategic 

choices in younger and older adults. In the second study we also examine whether age differences 

in the ability to update task representation explain age differences in the ability to improve 

strategic choices following practice.  
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CHAPTER II 

STUDY 1 

 
 The goal of Study 1 was to determine whether pathfinder derived concept maps could be 

used to measure task representations in younger and older adults. To date, no study had used 

concept mapping to measure task representations, nor had any study used concept mapping with a 

population of older adults. To minimize the influence of prior knowledge and beliefs on task 

representation formation and utilization, a novel chemistry task with a well-defined task structure 

(analogous to managing swimming pool chemistry) was created.  We were concerned that general 

age-related decrements in learning (e.g., associative binding deficits; Naveh-Benjamin, 2000; Old 

& Naveh-Benjamin, 2008) could produce age differences in underlying declarative knowledge 

about the task. This was especially concerning given the novelty of the task. If older adults fail to 

learn the basic terminology of the task, then they will be unable to convey the relatedness of those 

terms via the pathfinder ratings. To combat this, we used a series of guided learning quizzes and a 

cumulative criterion test during the task instructions. Although the criterion test required a 

minimum level of declarative knowledge, previous studies show that such tests are poor 

predictors of concept map scores (Goldsmith et al., 1991; Novak & Cañas, 2006; Novak, 1990; 

Staggers & Norica, 1993). Thus, variability in task representations (C scores) were still expected 

despite requiring a minimum level of declarative knowledge for all participants.  

Methods 

Participants 

Twenty younger adults aged 18-22 (M = 18.81) and 31 older adults aged 61-85 (M = 

70.30) participated in the study. Of the 31 older adults, 11 were excluded for performance reasons
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(described later). This produced a final older adult sample of 20 participants aged 61-77 (M = 

69.49). Younger adults participated for course credit whereas older adults received roughly $10 

per hour for participation. Participants were in relatively good health and none reported ever 

having suffered a major seizure or stroke. All participants had corrected near visual acuity of 

20/50 or better. Participant demographics can be found in Table 1.  

 
Table 1 
 
Study 1 Demographic and Performance Data 

     Age dif 
Demographics Young SD Old SD d 
N 20  20   
Age 18.81 1.81 69.49 4.32  
Education 12.51 0.86 15.49 2.48 +1.61** 
Medications 0.57 0.90 2.51 1.64 +1.47** 
Processing speed 38.62 7.81 27.80 4.89 -1.66** 
Vocabulary 13.45 3.12 22.75 7.26 +1.66** 

     
     Age dif 

Performance Young SD Old SD d 
Cumulative test  0.85 0.13 0.75 0.11 -0.83** 
C score 0.26 0.09 0.29 0.09 +0.33 
Attempts to 
criterion      1.67 0.91 2.05 0.94 +0.41 

Inference test 0.59 0.16 0.56 0.17 -0.18 
 

Note.  Young = young adult means; Old = older adult means; Processing speed = number correct 
on out of 30 on Salthouse’s pattern comparison task (1993); Vocabulary = number correct out of 
36 on the Advanced Vocabulary Test (Ekstrom, French, & Harman, 1976); Cumulative test = 
proportion correct on a 15 question, 9-choice, multiple choice cumulative instructions test 
measuring declarative knowledge of the instructions; C score = proportion of concept map 
overlap between the participant and reference models ranging from 0 (no overlap) to 1 (perfect 
overlap); Attempts to reach criterion = number of attempts taken to pass the cumulative 
instructions test; Inference test = proportion correct on a 19 question, 4-choice, multiple choice 
test inference test measuring the ability to apply the information from the instructions. *p < .05. 
**p < .01. 
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Materials 

A novel chemistry task was created for this study. The task structure is perfectly 

analogous to the daily management of a swimming pool. However, the task is disguised as a 

novel chemistry task in which the participant maintains a chemical solution in a beaker rather 

than a pool (Appendix B). All of the terms normally associated with a swimming pool were 

disguised by replacing the term with a single letter (Appendix C).  

The swimming pool task was chosen for a number of reasons. First, the task is difficult 

and complex, but clearly manageable (people can learn to manage a swimming pool). Second, the 

relationships between properties of a swimming pool vary in complexity. For example, it is rather 

straightforward that adding chlorine tablets and liquid chlorine will boost chlorine levels. By 

contrast, managing pH is more complex. First, the pH of a swimming pool cannot be stabilized 

without an optimal level of alkalinity. Thus, you can only raise the pH to the desired level after 

first adjusting the alkalinity. Second, in order lower alkalinity, you must lower pH to a very acidic 

level which is not recommended for swimming, and then raise the pH back into the ideal range 

after the alkalinity level is in the desired range. Thus, some aspects of the task (like chlorine 

management) allow for a fairly rudimentary understanding, whereas others (like pH and alkalinity 

management) require an integrated understanding of how various chemical properties interact. 

For the purposes of Study 1, participants only learned how to do the chemical task. They did not 

actually perform the task. 

Pathfinder ratings were collected using the Rate software available from Interlink, Inc., 

Las Cruces, NM. The Rate software first shows all pairs of words that will be used for the task. 

Two words are then shown in the center of the screen and the participant indicates via keypress 

how related they think those terms are (Figure 2, p. 13). 
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Additionally, two tests were created. The first was a 15 question, 9-choice multiple 

choice test cumulative instructions test, designed to capture knowledge for explicitly stated 

relationships from the instructional text (declarative knowledge; Appendix D). The second was a 

19 question, 4-choice multiple choice inference test relevant to the novel chemistry task, designed 

to capture the ability to apply the knowledge about the chemistry task (Appendices D and E).  

Procedures 

Participants first completed a demographics questionnaire followed by a near visual 

acuity test, pattern comparison, and vocabulary tests. Data from these measures are presented in 

Table 1 (p. 19-20). 

For the learning phase, participants were told that they would play the role of chemists 

and had to manage a solution in a beaker. Participants then read instructions about how the novel 

chemistry task would work and were asked to learn the basic information about the chemicals 

(e.g., learn that Liquid D and Chemical D Tablets were used to increase Active D in the solution). 

To guide and aid the participants’ learning they were given a series of “open book” mini-quizzes 

throughout the learning phase. That is, participants were free to switch between the quiz and 

chemical task instructions while taking the mini-quizzes. If a participant did not get 100% 

accuracy on one of these quizzes, they were asked to restudy the text and retry the mini-quiz. 

Participants were given feedback on which items were correct and incorrect, but were told to scan 

the text for the correct answers to the items they missed. The mini-quiz items were taken directly 

from the cumulative instructions test. 

After obtaining 100% accuracy on a mini-quiz, the participant was permitted to continue 

on to the next part of the instructional text. In total there were 15 mini-quiz questions, seven 

relating to the properties analogous to Chlorine and eight relating to the properties analogous to 

pH and alkalinity. After passing all mini-quizzes they completed a cumulative test containing the 
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same 15 items as the mini-quizzes. In order to pass the cumulative test, the participant had to 

correctly answer at minimum four of the seven “chlorine questions” and four of the eight “pH and 

alkalinity questions.” If a participant did not meet this minimum criterion they were taken back to 

the start of the learning phase and asked to restudy the instructional text and their answers to the 

mini quizzes.3 Participants were informed that this phase would take up a substantial portion of 

the experiment and that most people had to reread the information several times.   

Next, participants completed the pathfinder ratings for 19 relevant terms (Appendix F), 

followed by the inference test (Table 1, p. 19-20), and a post-task questionnaire (Table 2, p. 23-

25). The inference test contained 22, four-choice multiple choice responses. This test was 

designed to test a participant’s ability to use the information they gained from the instructional 

test in ways that would be similar to performing the actual chemistry task. The post-task 

questionnaire asked them to make a series of 1-5 ratings regarding their task experience, and 

indicate any terms they felt were omitted from the ratings task.4 Additionally the post-task 

questionnaire asked, “What did this task make you think of?” and “Have you ever owned or 

managed a swimming pool before?” No participant indicated that the task reminded them of 

managing a swimming pool.5  

 
  

                                                           
3 Initial piloting did not include the mini-quizzes and included minimal feedback on criterion test 
performance. Under these initial conditions most participants did not reach the criterion and all voiced 
considerable frustration with the task. Adding the mini-quizzes and increasing the degree to feedback 
improved criterion test performance and alleviated frustration resulting in improved compliance. 
4 No participant suggested any additional terms for the ratings task. 
5 Participants having owned or managed a swimming pool did not perform differently on any measure 
relative to those not having owned or managed a pool. When Table 1 age differences are examined using 
Age X Ownership ANOVAs instead of t-tests, the pattern of significance is unchanged with no main effects 
of ownership and no Age X Ownership interactions (all Fs < 1). 
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Table 2 
 
Post-task Questionnaire Data 

Study 1 
        Age dif 
Phase   Young SD Old SD d 

Instructions 

Learning 
difficulty 3.67 1.02 4.60 0.75 +1.04** 

Reading 
difficulty 2.57 1.12 2.30 1.13 -0.24 

Ratings 
Difficulty 3.76 1.04 3.95 1.24 +0.17 
Tediousness 4.14 0.79 4.20 1.20 +0.06 

Inference test Difficulty 3.90 0.94 4.35 0.93 +0.48 
Study 2 

      Age dif 
Phase   Young SD Old SD d 
Instructions Difficulty 6.89 1.88 7.73 1.34 +0.51* 

Tediousness 7.26 2.39 7.03 2.03 -0.10 
Motivation 3.03 2.37 7.43 1.91 +2.04** 

 Effort 5.46 2.11 7.70 1.39 +1.25** 
Cumulative test 1 Difficulty 6.46 2.78 8.07 0.94 +0.78** 

Tediousness 6.66 2.55 6.80 1.94 +0.06 
Motivation 4.20 2.47 7.87 1.61 +1.80** 
Effort 5.57 2.40 7.80 1.58 +1.10** 

Cumulative test 2 Difficulty 5.63 2.31 7.90 1.42 +1.18** 
Tediousness 6.00 2.59 6.80 2.12 +0.34 
Motivation 4.51 2.64 7.60 1.98 +1.32** 
Effort 5.51 2.45 7.50 1.72 +0.94** 

Ratings 1 Difficulty 6.60 2.61 7.90 1.35 +0.63* 
Tediousness 7.51 2.13 7.07 2.10 -0.21 
Motivation 3.94 2.76 7.83 1.60 +1.72** 
Effort 5.29 2.16 7.77 1.59 +1.31** 

Ratings 2 Difficulty 5.66 2.65 7.77 1.43 +0.99** 
Tediousness 7.00 2.29 6.90 2.20 -0.04 
Motivation 4.03 2.54 7.73 1.78 +1.69** 
Effort 5.43 2.56 7.80 1.61 +1.11** 

Chemistry Task Difficulty 7.03 2.29 7.83 1.32 +0.43 
Tediousness 8.00 1.75 6.70 2.22 -0.65* 
Motivation 3.76 3.01 7.83 1.70 +1.67** 
Effort 5.46 2.96 7.77 1.59 +0.97** 

Learning Missing 
information 

Difficulty 6.51 2.55 7.47 1.48 +0.46** 
Tediousness 7.20 2.41 6.60 2.13 -0.26 
Motivation 4.31 2.69 7.73 1.70 +1.52** 
Effort 5.40 2.65 7.70 1.56 +1.06** 
Identify missing 5.71 2.46 6.63 1.96 +0.41 
Mental list .59 - .60    -    - 
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Recall missing 
information 4.83 2.22 5.80 2.34 +0.43 

 Prior chemistry 
knowledge 3.77 2.33 3.53 2.54 -0.10 

 Task 
understanding 3.80 2.35 4.47 2.43 

+0.28 

 
Note.  Study 1 self-ratings of learning difficulty, difficulty reading the text, difficulty making 
relatedness ratings, tediousness of making the relatedness ratings, and difficulty of the inference 
tests are on 1 (not at all) to 5 (very much) Likert scales; prior knowledge of chemistry were self-
rated from 1 (very poor) to 5 (Excellent); attempts to criterion indicates the number of attempts it 
took a participant to pass the learning criterion test. Study 2 self-ratings of difficulty, tediousness, 
motivation, effort, and ability to identify and recall which information was missing from the task 
instructions,  are on 1 (not at all/very little/very easy) to 9 (very/as much as possible) Likert 
scales; Instructions = difficulty, tediousness, motivation, effort while trying to learn the 
information from the instructional text;  Cumulative test 1 = difficulty, tediousness, motivation, 
effort on the pre-task cumulative instructions test; Cumulative test 2 = difficulty, tediousness, 
motivation, effort on the post-task cumulative instructions test; Ratings 1 = difficulty, 
tediousness, motivation, effort on the pre-task pathfinder ratings; Ratings 2 = difficulty, 
tediousness, motivation, effort on the post-task pathfinder ratings; Chemistry task = difficulty, 
tediousness, motivation, effort for performing the novel chemistry task; Learning missing 
information = difficulty, tediousness, motivation, effort for learning the missing information via 
performing the novel chemistry task. Prior chemistry knowledge, pre- and post-task chemical task 
understanding on 1 (very poor) to 9 (excellent) Likert scales; whether participants made a mental 
list of the missing information from the task is the percentage of participants indicating “yes.” *p 
< .05. **p < .01.  
 
 

Results 

Eleven older adults required more than five attempts to pass the cumulative test at the end 

of the learning phase. In each case the experimenter had noted that the participant had switched to 

a strategy of rapidly advancing through the instructional text and guessing on the cumulative test 

until they reached the criterion. For this reason these eleven participants were replaced. After 

removing these participants, the age difference in the number of attempts required to reach 

criterion was not significant, t(38) = 1.30, p = .202.  
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Figure 3. Relationship between C Scores and Inference Test Scores (Percent Correct).  
 
 

Neither C scores, nor inference test scores, differed with age (Table 1, p. 19-20; Figure 

3). However these measures were positively correlated overall, r(38) = .52, p = .001, and within 

younger, r(18) = .54, and older adults, r(18) = .54, (Figure 3, p. 25). The eleven older adults 

whom were excluded from analysis all had C scores similar to the lowest performing participants 

that were retained for analysis and inference test scores near chance. Therefore, we conclude that 

these participants’ C scores accurately reflected their failure to learn any aspect of the task, but 

were likely driven by associative deficits or low motivation, which are not of interest to the 

current study.  

Discussion 

Despite all participants reaching a minimum level of declarative knowledge (as measured 

by the cumulative instructions test), participants demonstrated varied levels of task representation 

in both C scores and inference test scores. Furthermore, high C scores were associated with 

higher inference test performance. This is consistent with the mental model and conceptual 

knowledge frameworks which claim that the underlying structure of knowledge and the 
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interrelations among ideas are more critical for knowledge utilization than is declarative 

knowledge. These findings also suggest that task representations can be measured using 

pathfinder-derived concept maps. Most importantly these results held for both younger and older 

adults, suggesting that pathfinder-derived concept maps can be used to measure conceptual 

knowledge in older adults. When older adults possessed accurate task representations they scored 

as highly on the inference test as did younger adults. Thus, we found no evidence for a utilization 

deficit among older adults. This is consistent with a general failure to find mental model 

utilization deficits in older adults in other domains, namely reading comprehension and narrative 

processing (Gilbert et al., 2004; Morrow et al., 1994a; Radvansky et al., 2003, 1990; Radvansky 

& Dijkstra, 2007; Stine-Morrow et al., 2004, 2002). 

The difficulty of learning novel task relationships was much greater than anticipated. 

This was particularly true for older adults, 11 of whom were not able to learn the basic surface 

relationships. The time course for the learning phase of the study was also much longer than 

expected with older adults taking roughly an hour to pass the criterion test—twice as long as 

younger adults. These issues were taken in consideration when designing Study 2. 
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CHAPTER III 

STUDY 2 
 
 

Study 2 measured task representations both before and after completing the novel 

chemistry task to test: (1) whether initial task representations influence initial strategic choices in 

older and younger adults, (2) for the presence of age-related differences in task representation 

updating, (3) whether age-related differences in task representation updating account for older 

adults’ continued use of suboptimal strategies.  

Methods 

Participants 

Thirty-five younger (aged 18-25) and 30 older adults (aged 60-75) were tested.6  Younger 

adults participated for course credit and older adults received roughly $10 per hour for 

participation. Participants were in relatively good health and none reported ever having suffered a 

major seizure or stroke. All participants had corrected near visual acuity of 20/50 or better. 

Participant demographics can be found in Table 3.  

Materials  

Pretests, learning, and pathfinder rating materials. The same pretests used in Study 1 

were used for Study 2. Pilot studies revealed that the learning quizzes and cumulative instructions 

test criterion used in Study 1 produced near ceiling performance on the novel chemistry task for 

many young adults. Therefore the novel chemistry task instructions were presented without any 

guided learning quizzes. The cumulative instructions test was retained, but the criterion for 

                                                           
6 The researchers noted that adults over 75 were subjectively more likely express difficulty and frustration 
in Study 1. Thus the age range was reduced to 60-75 for Study 2. 
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passing this test was eliminated (participants continued regardless of test performance) and three 

items were removed from the quiz because they tested information that was not specifically 

relevant to managing the chemistry task (e.g., whether a property being too high caused corrosion 

or toxic fumes). Additionally, to ensure that all participants would enter the novel chemistry task 

with less than perfect task representations, some information was removed from the novel 

chemistry task instructions. Participants were explicitly informed that the information was 

incomplete and told that part of their job during the task was to determine what the missing 

relationships were. The missing information included which chemical properties were affected by 

temperature (Active D and Inactive D evaporate more quickly at high temperatures) and how 

chemicals C, T, and N would impact Properties B and Q (C increases Property Q, T increases 

Properties B and Q, and N decreases Property Q; see Appendix G). While understanding the 

effects of temperature could aid in the management of Active D and Inactive D, these properties 

could be reasonably managed without this knowledge. By contrast, effectively managing 

Properties B and Q is impossible without first learning the missing information. 
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Table 3 
 
Study 2 Demographic and Performance Data 

     
Age 

difference 
Demographics Young SD Old SD  d 
N 35  30   
Age 18.54 0.85 70.90 3.35  
Education 12.40 0.69 16.45 1.82 +2.94** 
Medications 0.54 0.82 2.13 1.98 +1.05** 
Processing speed 38.89 7.46 27.76 5.34 -1.72** 
Vocabulary 15.60 4.36 24.70 6.01 +1.73** 

     
Age 

difference 
Performance Young SD Old SD  d 
Cumulative test 1 .42 .25 .47 .23 +0.21 
C score 1 .25 .09 .30 .12 +0.47 
Chemistry task  -2.59 25.88 3.01 20.69 +0.23 
Properties B & Q 3.84 21.08 -2.59 21.31 -0.30 
C score 2    .25 .12 .29 .07 +0.41 
Cumulative test 2    .45 .31 .42 .25 -0.11 

Note.  Young = young adult means; Old = older adult means; Processing speed = number correct 
on out of 30 on Salthouse’s pattern comparison task (1993); Vocabulary = number correct out of 
36 on the Advanced Vocabulary Test (Ekstrom et al., 1976); Cumulative test 1 = proportion 
correct on a 15 question, 9-choice, multiple choice, pre-task cumulative instructions test 
measuring declarative knowledge of the instructions; C score 1 = pre-task proportion of concept 
map overlap between the participant and reference models ranging from 0 (no overlap) to 1 
(perfect overlap); Chemistry task = Corrected performance on the chemistry task, where the mean 
performance is zero and scores above zero are above average and scores below zero are below 
average; Properties B & Q = Corrected performance scores on the chemistry task when restricting 
the data to only performance on Properties B and Q, the sub-set of the chemistry task that requires 
structural updating for high performance; C score 2 = post-task proportion of concept map 
overlap ; Cumulative test 2 = proportion correct on a 15 question, 9-choice, multiple choice, post-
task cumulative instructions test measuring declarative knowledge of the instructions. *p < .05. 
**p < .01. 

 

Novel chemistry task. Participants in Study 2 not only learned about, but also performed 

the novel chemistry task. The task was programmed in E-Prime 2, and featured five solution 

properties which need to be maintained within an ideal range. The task trials were presented as 
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“days” to the participant. For each trial the participant received a report indicating the current 

level of each solution property, and the ideal range for each property. The participant then had the 

option to add various doses of chemicals or adjust the setting of the Bunsen burner. The goal of 

the task was to use these options to keep each solution property as close as possible to the center 

of its ideal range. After selecting the dose for each chemical additive, the participant clicked a 

submit button. The display then showed how the chemical additives changed the solution 

properties. The participant then clicked on an “advance day” button which started the next trial. 

Solution properties then changed overnight in accordance with how solution properties were 

described in the instructions (e.g., temperature and Active D [free chlorine] decrease over night). 

At the end of 7 days the participant received a new chemical solution. Each of these chemical 

solutions had a different problem starting state, meaning different solution properties would be 

outside the ideal range. Thus, the each participant had to “fix” different problems with the 

solution. Poor strategic choices (adding the wrong chemicals) could create further problems as 

well, whereas proper strategic choices would eliminate problems and bring the solution properties 

into their ideal ranges. However, even with ideal strategic choice, some problems take multiple 

days to correct.  

There were 18 different problem starting states, each of which occurred once during the 

first half of the chemistry task and once during the second half of the chemistry task. The second 

occurrence of each problem state was altered slightly as to not be identical to the first occurrence, 

but required the same strategic choices. Thus there were 252 “days” in all, which constituted 36 

different “trials” each with its own starting state. The order of the starting states within each half 

of the chemistry task was randomized. Participants were informed that they would receive a new 

solution every seven days. In addition to displaying the total number of 252 days they had 
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completed, the display also counted down the number of days until a new solution would be 

given (Figure 4). 

 

 

Figure 4. Chemistry Task Interface. 

 
Scoring. Values for each solution property ranged from 0 to 438. The ideal range for 

each solution property was between 146 and 292, with the exception of Inactive D which is 

ideally kept at zero, and thus has an ideal range from zero to 146 (see Table 4 for an example, p. 

32). First, solution property values were averaged across the seven days for each trial. Next, for 

each property a (absolute value) deviation score was computed from the mid-point of the ideal 

range, referred to as the “ideal value.” Again, the exception is Inactive D, where ideal value is 

zero. Thus, for each property, the deviation scores range 0 to 219, except for Inactive D, which 

ranges from 0 to 438. However, deviation scores for Inactive D were rarely greater than 219. In 

all cases higher deviation corresponded to worse performance. For example, in Table 4 (p. 32) 
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Property B is at 286. This value is within the ideal range (146 < 286 < 292), but is 67 points 

above the ideal value. Thus, the deviation score for Property B is 67, indicating good but not 

excellent management of Property B.  By contrast, Active D is far above the ideal value and 

outside the ideal range, earning a very high (poor) deviation score.  

Note that participants were asked to keep the properties as close to the midpoint of the 

ideal range as possible. Thus values closer to the midpoint earn lower (better) deviation scores 

than those within the ideal range but farther from the midpoint. When properties fell outside the 

ideal range the effects on the solution became more robust. Thus it was best to keep the properties 

in the ideal range as much as possible, but also as close to the midpoint as possible. Again 

Inactive D was the one exception to this rule with values at zero earning the most points.  

Because some solution states required multiple chemical adjustments across days to be 

brought back into the ideal range whereas others require only a single adjustment, some solution 

states necessitated higher overall deviation scores for the trial. To correct for this difference in 

solution state difficulty, the mean performance for each property in each solution starting state 

(collapsing across participants) was subtracted from the corresponding deviation score to produce 

a corrected score. The corrected score was then multiplied by -1 so that positive corrected scores 

now indicated above average performance and negative corrected scores indicated below average 

performance. Thus, in Table 4, the participant performed close to average on Properties B and Q, 

but was far below average on her management of Property B, but above average at managing 

Inactive D and Temperature, producing a corrected total score just below average for the trial. 

The total scores were not visible to the participant, but instead the participant could deduce the 

effectiveness of their strategic decisions based on whether the chemical properties returned to 

their ideal ranges.  
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Table 4 
 
Chemistry Task Scoring 
 

 
Property 

level 
Ideal 
value 

Deviatio
n score 

Solution 
difficulty 

Corrected 
Score 

Property B 286.4 219 67.4 65.6 -1.8 
Property Q 162 219 56.7 76.6 19.9 
Active D 438 219 219.6 27.4 -192.1 
Inactive D 12 0 12.1 55 42.9 
Temperature 205 219 13.8 94.6 80.8 
Trial score   73.9 63.9 -10.0 

 

Note. Ideal value indicates the midpoint of the ideal range which scores are computed from, 
except Inactive D where 0 is ideal value. Property level indicates the current level of a given 
property. Deviation indicates the absolute value of the number of points above or below the ideal 
value each property level is. 

 

Procedures 

Participants first completed the demographics questionnaire followed by cognitive pre-

tests. Participants next read the instructions for the novel chemistry task at their own pace and 

were given the option to re-read the instructions prior to taking the cumulative test. As in Study 1, 

the initial group of participants (20 young, 16 old) was informed that this phase would take up a 

substantial portion of the experiment and that most people had to reread the information several 

times.  However, of these participants, only half of the older adults completed the study in the 

designated time period (3 hours for the first 12 participants, extended to 4 hours for the next 4 

participants). We were concerned that the aforementioned instruction differentially affected older 

and younger adults’ study times. After removing these statements from the instructions no older 

adult participant failed to complete the task within four hours. Younger adults’ task completion 

times were not affected by the removal of these instructions, t(33) = 0.17, p = .854.   
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Next participants completed the cumulative instructions quiz, but no performance 

criterion was used.  We also removed three questions from the cumulative instructions test that 

asked about peripheral details (which solution properties produced corrosion, calcium deposits, 

and toxic fumes when they were outside their ideal range) that were not necessary for performing 

the chemistry task. Participants then completed the pathfinder ratings task. For Study 2, the 

pathfinder ratings task was reprogrammed in E-prime 2. This new version of the task presented 

four item pairs at once and answers were logged after they clicked a submit button. This was done 

to reduce completion times and to allow participants the option to change responses and prevent 

miskeys from contaminating the data. As with the cumulative instructions quiz, several items 

from the pathfinder ratings task that were not directly relevant to novel chemistry task (e.g., 

whether a property being too high caused corrosion or toxic fumes), were omitted. Thus Study 2 

used only 14 items, reducing the total number of ratings to made, from 170 to 136. Participants 

were prompted half-way through the pathfinder ratings and offered a break.  

Following the pre-task pathfinder ratings, participants completed the novel chemistry 

task, and then completed the ratings task again. Finally, participants completed the instructions 

quiz a second time, followed by a post-task questionnaire in which participants rated how 

difficult and tedious each phase of the experiment was, how motivated they were to perform well, 

and how much effort they put into performing well on a 1-9 Likert scales (Table 2, p. 23-25).  

As in Study 2, participants were asked if there were any additional terms they felt should 

have been included in the pathfinder ratings task, and what the task made them think of.7 Lastly, 

participants were asked whether they had ever owned or managed a swimming pool before.  

                                                           
7 Four participants (one younger and three older adults) listed items that were already in the ratings task. 
An additional young adult listed, “Rate of Growth” and an additional older adult wrote, “in working with 
each other or against each other.” 
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Results 

Task Representations 

As in Study 1, task representations were measured using C scores. A 2 (Age: young, old) 

X 2 (Time: pre-task, post-task) ANOVA with time as a within subjects factor and age as a 

between subjects factor was used to examine age differences in task representation and changes in 

task representations. The main effects of age, F(1, 63) = 3.57, p  =.063, time F(1, 63) = 0.45, p  = 

.505, and the Age X Time interaction, F(1, 63) = 0.00, p  = .957, were not significant. As in Study 

1, older and younger adults had equally accurate task initial representations. Contrary to 

predictions, neither age group showed strong evidence of task representation updating. Only half 

of either age group (young = 17, old = 15) showed positive changes in task representation scores, 

with the remainder showing negative changes (Figure 5, p 35-36). Even for those showing 

positive changes in C scores, most of those changes were small. Only four younger and three 

older adults showed changes in C score of .10 of greater.  

Novel Task Performance 

Corrected chemistry task performance scores were analyzed using SAS Proc MIXED 

(Littell, Milliken, Stroup, & Wolfinger, 2000) examining the influences of age, initial task 

representation, changes in task representation (pre, post) and trial as predictors of chemistry task 

performance.8 Trials were entered as trials 0 through 35 rather than 1 through 36 so that the 

intercept indicates Trial 1 performance. 

                                                           
8 Prior to entering trial effects into statistical models, the effects of trial and potential interactions with 
trial (Age X Trial, Age X Change X Trial) were examined using both visual inspection of individual data plots 
and trend analyses. The linear trend for trial accounted for 52% of the variance with the remaining 
variance contained primarily beyond the 10th order, suggesting that the remaining variance was primarily 
idiosyncratic rather than meaningful changes in the data. Trend analyses for the Age X Trial interaction 
and the Age X Trial X C score change interaction, indicated that only 10-20% of the variance respectively 
could be accounted for in the first three orders of trial, suggesting no interaction between age and trial 
(linear or otherwise).  
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Changes in C scores 
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Figure 5. Stem and Leaf Plot for Changes in C Scores (C Score 1 – C Score 2). Underlined 
numbers indicate older adults. 
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Model 1: Changes in performance with practice. The first model tested for age 

differences in overall performance and performance changes with practice (Table 5, p. 37-38). A 

main effect of trial indicates that participants’ performance on the chemistry task improved with 

practice. However, the failure to obtain a main effect of age or an Age X Trial interaction 

indicates that older and younger adults performed similarly on chemistry task and showed similar 

improvements across trials (Figure 6, p. 39). If anything, the non-significant Age X Trial trend 

indicates that older adults may have improved slightly more over trials compared to younger 

adults. This suggests that older adult’s strategic choices, which directly impact performance 

scores, were as good as those of young adults and improved over trials at comparable, if not 

greater rate. That is, older adults did not demonstrate suboptimal strategic choices or failures to 

alter their strategic choices with practice.  

 
Table 5 
 
Model Results for Chemistry Task Performance 
 
Model 1      
  Estimate SE df t-value p-value 
Intercept -5.65 1.80 63 -3.14 .003 
Age 2.53 2.64 63 0.96 .343 
Trial 0.17 0.09 2273 1.98 .048 
      
Age X Trial 0.18 0.13 2273 1.35 .176 
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Model 2      
  Estimate SE df t-value p-value 
Intercept -45.49 2.95 63 -15.44 < .001 
Age 12.58 4.20 63 2.99  .004 
Initial C score 157.66 9.65 2271 16.33 < .001 
Trial 0.17 0.08 2271 2.15 .032 
      
Age X Initial C score -59.33 12.50 2271 -4.75 < .001 
Age X Trial 0.18 0.12 2271 1.47 .141 
      
      
Model 3      
  Estimate SE df t-value p-value 
Intercept -50.07 2.90 63 -17.26 < .001 
Age 13.75 4.86 63 2.83 .006 
Initial C score 178.71 9.59 2267 18.64 < .001 
C score change 100.54 17.18 2267 5.85 < .001 
Trial 0.17 0.08 2267 2.20 .028 
      
Age X Initial C score -68.70 15.23 2267 -4.51 < .001 
Age X C score change -86.11 27.62 2267 -3.12 .002 
Age X Trial 0.18 0.12 2267 1.53 .127 
C score change X Trial -0.06 0.84 2267 -0.07 .943 
Age X Trial X C score 
change 0.32 1.24 2267 0.26 .798 
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Model 4      
  Estimate SE df t-value p-value 
Intercept -37.71 6.46 59 -5.83 < .001 
Age -44.25 9.11 59 -4.86 < .001 
Initial C score 170.15 10.18 2267 16.72 < .001 
C score change 102.59 17.04 2267 6.02 < .001 
Vocabulary 0.14 0.20 59 0.71 .483 
Processing speed -0.32 0.12 59 -2.77 .008 
Trial 0.17 0.08 2267 2.24 .025 
      
Age X Initial C score -75.87 15.58 2267 -4.87 < .001 
Age X C score change -87.04 27.26 2267 -3.19 .001 
Age X Vocabulary 0.64 0.26 59 2.51 .015 
Age X Processing speed 1.41 0.20 59 6.95 < .001 
Age X Trial 0.18 0.11 2267 1.56 .120 
C score change X Trial -0.06 0.82 2267 -0.07 .942 
Age X Trial X C score 
change 0.32 1.22 2267 0.26 .795 

 

Note. Models of chemistry task performance. Performance scores are corrected for trial difficulty. 
Performance scores of zero indicate average performance, with positive values being above 
average and negative values being below average.  Younger adults serve as the reference group. 
Thus positive age effects indicate better performance or steeper slopes for older adults relative to 
young.  Main effects indicate the beta estimate for young adults with the interaction coefficient 
indicating how beta estimate changes for older adults.  
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Figure 6. Chemistry Task Performance over Trials by Age Group. Data averaged over bins of 3 
trials. Note that data were binned for visual purposes, but unbinned data were analyzed. 
 

Model 2: Performance as a function of initial task representation. Despite not finding 

an age difference in performance or task representation updating, we continued with the a priori 

analysis plan to determine whether task representations influenced strategic choices for younger 

and older adults. Model 2 added initial (pre-task) C scores and the interaction with age as 

predictors of chemistry task performance (Table 5, p. 37-38). A main effect of pre-task C scores 

confirmed that more accurate initial task representations produced better chemistry performance 

(Figure 7, p. 40). When including pre-task C scores in the model, we obtain a significant age 

effect, with older adults outperforming younger adults when C scores are held constant. However, 

these main effects were qualified by a significant Age X Initial C score interaction. This effect 

indicated that the slope of the initial C score-performance relationship was steeper for young 
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adults than for older adults. The main effect of trial continued to be significant, and the Age X 

Trial interaction remained non-significant. 

 

 

Figure 7. Relationship between Initial C Scores and Corrected Chemistry Task Score. 
 

To illustrate the combined main effect of age and significant Age X Initial C score 

interaction, consider the examples in Table 6 (p. 41). Although the main effect of age indicates 

higher performance in older adults, this is largely undermined by the stronger Age X Initial C 

score interaction. Older adults’ shallower slope for initial C scores results in higher performance 

estimates (relative to younger adults) when task representations are poor, but lower performance 

estimates (relative to younger adults) when initial C scores moderate to high. For example, an 

older adult with an initial C score of .15 will typically perform somewhat better (chemistry task 

score of -18.16) compared to a younger adult with a similarly poor task representation (chemistry 

task score of -21.84). Note that these estimates are for the first trial (0) of the task, and thus both 

age groups can be expected to attain higher scores following practice. However, an older adult 

with a highly accurate task representation (initial C score of .45) will perform slightly lower 
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(chemistry task score of 11.34) compared to a younger adult with a similar initial C score 

(chemistry task score of 25.46). Therefore, younger adults with accurate task representations 

appear to be slightly better at utilizing them than their older adult counterparts. However, older 

adults appear to be performing slightly better than young when task representations are poor. This 

could be the result of motivational factors or C scores perhaps being poorer measures of older 

adults’ task representations. Each of these is considered in the discussion and supplemental 

analyses. 

 
Table 6 
 
Model 2 Chemistry Task Score Examples 
 
Initial C score 
(C1) Young Old 

.15 -21.84 -18.16 

.30 1.81 -3.41 

.45 25.46 11.34 
 

Note. Model-derived estimates for chemistry task scores for older and younger adults at three 
different initial C scores when Trial = 0 (first trial). 
 

Model 3: Changes in performance as a function of task representation updating. 

Although no general improvement in C scores were found, some participants did show 

improvements in their task representations, whereas others showed little change or even 

decrements following practice. These latter decrements could reflect forgetting or confusion, 

whereas the improvements could reflect actual improvements and may influence task 

performance. Thus we continued with the a priori plan to examine the importance of task 

representation updating via a mixed model which added changes in C scores and the interactions 

of C score Change, Trial, and Age into the model (Table 5, p. 37-38).   
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The main effects of initial C scores and the Age X Initial C score interaction remained 

significant, with higher initial C scores predicting better overall task performance, and the 

relationship between the two being steeper for young adults. A significant positive main effect of 

Changes in C scores was qualified by a significant negative Age X C score change interaction. 

The main effect indicates that improvements in task representation scores for pre- to post-task 

were associated with higher performance for young adults. However, the high negative regression 

coefficient (-89.11) for the interaction with age indicates that older adults showed only modest 

gains when C scores improved, with a regression weight of 14.43 (100.54-86.11) compared to 

younger adults 100.54.  

Theoretically, C scores are thought to reflect deep structural knowledge. Thus, any 

changes in C scores should reflect the addition of new knowledge or the reorganization of 

existing knowledge. If deep structural task representation updating is responsible for 

improvements in the task over trials, then one would expect a C score change X Trial interaction, 

with changes in performance over trials being greater for those participants showing evidence of 

deep structural updating. However, continued significance of the main effect of trial after 

accounting for C score change, and the non-significant Change X Trial, and Age X Change X 

Trial interactions indicate that the changes in task performance over trials seen in Model 1 are not 

entirely explainable by the structural updating of task-related knowledge, as it is measured by 

changes in C scores. It may be the case that deep structural knowledge updating occurs relatively 

early in the task (if at all), and thus is reflected in performance throughout the task. By contrast, 

the small increases in performance over trials throughout the task may indicate tuning of relevant 

knowledge, and not the addition or reorganization of knowledge. That is, one may tune their 

knowledge of how much a chemical agent influences a solution property without learning new 

structural relationships between those chemical agents and solution properties.  
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The minimal effect of changes in C scores on older adults’ performance also calls into 

question the validity of pre- and post-task changes in C scores as a measure of knowledge 

updating in older adults. We comment on this further in the supplemental analyses and results 

section.  

Supplemental Analyses 

To follow up on the age equivalence in C scores and chemistry task performance, we 

examined the potential roles of task motivation, processing speed, and crystalized knowledge as 

explanations for older adults’ high level of performance. We also reanalyzed the chemistry task 

data after isolating performance to two properties in the chemistry task that required new learning 

to manage (because the chemistry task instructions omitted critical information about these 

properties).  If knowledge updating is as rare as changes in C scores suggest, then we should see 

minimal improvement over trials on these specific properties. Additionally, if performance also 

improves on these select properties, then they provide a better test for potential age differences in 

knowledge updating.   

 Motivation and effort. As noted earlier, ratings for motivation and effort were higher for 

older adults compared to younger adults at all stages of the task (Table 2, p. 23-25). Motivation 

and effort during the chemistry task, and motivation and effort for learning the missing 

information from the instructions were highly correlated with one another (rs = .23—.95) and 

were thus combined to form a single measure. This combined motivation/effort measure 

correlated with chemistry task performance, r = .45, p = .002 (ryoung = .51, p = .002; rold = .40, p = 

.028; Figure 8, p. 44). The scatterplot in Figure 8 shows that a number of highly motivated older 

adults still performed rather poorly. Thus, although some older adults may compensate for age 

related changes via enhanced motivation and effort, this explanation appears to be inadequate for 

a number of older adults. Ultimately a restriction of range issue makes the relationship between 
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motivation and performance in older adults difficult to assess. Because motivation correlated 

strongly with subjective understanding of the chemistry task (rated 1 to 9; ryoung = .52, p = .001; 

rold = .50, p = .004), it is possible that subjective success increased motivation, or that subjective 

success was used as a basis for inferring motivation (both were rated post-task). Likewise 

subjective task performance correlated strongly in actual performance (ryoung = .43, p = .009; rold = 

.51, p = .004), indicating that participants had a somewhat accurate sense of their performance 

and understanding during the task.  

 

  

Figure 8. Relationship between Motivation and Chemistry Task Performance in Younger and 
Older Adults. Motivation & Effort = sum of self-reported motivation to do well on the chemistry 
task (1-9 scale) and effort on the chemistry task (1-9 scale). Higher values indicate greater 
motivation and effort. 
 
 
 Vocabulary knowledge and processing speed. Older adults also had higher vocabulary 

scores. In addition to being a loose measure of crystalized intelligence, vocabulary scores often 

correlate highly with reading comprehension scores (Jeon & Yamashita, 2014). Here, vocabulary 

scores correlated positively with chemistry task performance, particularly in older adults, but not 
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necessarily for younger adults (Table 7, p.45). Similar effects were found for processing speed, 

again in older, but not younger adults. These correlations suggest that older adults with adequate 

processing speed and superior vocabulary knowledge may use these abilities to overcome age-

related declines in other cognitive abilities.  

 
Table 7 
 
Correlations with Vocabulary and Processing Speed 
 

 
Chemistry 

Task  
Properties 

B & Q C score 1 C score 2 Cumulative 
Quiz 1 

Cumulative 
Quiz 2 

 Young 
Vocabulary  .27    .28  .30  .34  .32  .32 
Processing 
speed -.18  -.19 -.25 -.05 -.38 -.11 

   

 Old 
Vocabulary  .35  .45  .17  .16  .32  .32 
Processing 
speed  .41  .31  .19  .06 -.04  .13 

 

Note. Processing speed = number correct on out of 30 on Salthouse’s pattern comparison task 
(1993); Vocabulary = number correct out of 36 on the Advanced Vocabulary Test (Ekstrom et al., 
1976); Chemistry task = Corrected performance on the chemistry task; Properties B & Q = 
Corrected performance scores on the chemistry task when restricting the data to only performance 
on Properties B and Q; C score 1 = pre-task proportion of concept map overlap between the 
participant and reference models ranging from 0 (no overlap) to 1 (perfect overlap); C score 2 = 
post-task proportion of concept map overlap; Cumulative test 2 = proportion correct on out of 
post-task cumulative instructions test;  Cumulative test 1 = proportion correct on out of 12 items 
on the pre-task cumulative instructions test. Bold values indicate significance at the p < .05 level. 
Italicized values indicate trending significance, p < .10. 
 

 To test whether vocabulary or processing speed could account for variance above and 

beyond that already explained by C scores,  we entered these factors into a fourth model 

predicting chemistry task scores (Table 5, 37-38). The main effect of vocabulary score was not 

significant, but an Age X Vocabulary interaction reveals that vocabulary performance was related 
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to higher chemistry task performance in older but not younger adults. Processing speed was 

surprisingly a significant negative predictor for younger adults, but an Age X Processing speed 

interaction shows that higher processing speed was a positive predictor for older adults. These 

results support the hypothesis that older adults with spared processing speed and/or greater 

crystalized intelligence may rely on these capacities to maintain high performance on novel and 

cognitively demanding tasks (Masunaga & Horn, 2001; Morrow et al., 2003, 2009). 

 Although self-rated prior knowledge of chemistry did not differ with age, it correlated 

positively with chemistry task performance in both younger, r = .37, p = .027, and older adults r = 

.43, p = .010. However, this measure was taken after participants performed the novel chemistry 

task, and thus may be contaminated by perceptions of task performance. Indeed, chemistry 

knowledge ratings and subjective task understanding correlated strongly in both younger (r = .57, 

p < .001) and older adults (r = .77, p < .001). 

Vocabulary knowledge and processing speed in Study 1. Given the predictive effects of 

vocabulary knowledge and processing speed in for chemistry task performance, we reanalyzed 

Study 1 using multiple regression with C scores, vocabulary, processing speed, age, and all 

possible interactions with age as predictors of inference test performance (Table 8). As can be 

seen in Table 8, neither vocabulary ability nor processing speed predicted inference task 

performance after accounting for C scores. Additionally the interactions with age were not 

significant. Thus, crystalized knowledge and processing speed do not appear to be generally 

beneficial for utilizing task representations, but instead appear to be uniquely important for 

performing novel tasks. However, it is important to keep in mind the lower power in Study 1 

compared to Study 2. 
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Table 8 
  
Study 1 Inference Test Performance  
 
  Estimate         SE df t-value p-value 
Intercept 0.56 0.22 32 2.60 .001 
Age -0.34 0.30 32 -1.13 .265 
C score 1.23 0.39 32 3.17 .003 
Vocabulary -0.01 0.01 32 -1.30 .202 
Processing speed -0.00 0.00 32 -0.70 .487 
      
Age X C score -0.26 0.52 32 -0.51 .617 
Age X Vocabulary 0.02 0.01 32 1.45 .149 
Age X Processing speed 0.00 0.01 32 0.31 .762 

 

Note. Study 1 proportion correct on the inference test. Younger adults serve as the reference 
group. Thus positive age effects indicate better performance or steeper slopes for older adults 
relative to young.  Main effects indicate the beta estimate for young adults with the interaction 
coefficient indicating how beta estimate changes for older adults. 
 

 Evidence for deep structural updating. In addition to the null effects for changes in C 

scores, performance on the chemistry instructions quiz for the impoverished information 

remained near floor, with younger and older adults on average correctly answering only 0.58 and 

0.61 (out of 3 questions), respectively.  

But do these findings really indicate that all improvements in chemistry task scores were 

the result of tuning rather than structural updating of knowledge? To investigate this possibility, 

we isolated performance on the chemistry task for just the management of Properties B and Q. 

The impoverished instructions indicated that low levels of Property Q would lower Property B, 

and that Chemicals C, T, and N would impact Properties B and Q. However, the instructions did 

not tell participants how Chemicals C, T, and N would impact Properties B and Q. Without this 

specific information, it is impossible to systematically adjust Properties B and Q. Additionally, 

Properties B and Q did not interact with any other chemical agents or chemical properties. 
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Therefore, any changes in the ability to manage Properties B and Q, necessitate some degree of 

structural knowledge updating. Thus we re-ran Models 1 through 4 on this subset of chemical 

properties (Table 9, p. 49-51). 

Model 5: Changes in performance managing Properties B and Q with practice. A main 

effect of trial indicates that participants do show indirect evidence of structural knowledge 

updating (Figure 9, p. 49).9 A main effect of age indicates that older adults performed worse on 

these particular items relative to younger adults. The Age X Trial interaction was not significant, 

suggesting that although older adults performed worse on average, they improved at a similar rate 

compared to younger adults. This may indicate that older adults generally struggled somewhat to 

update their task representations relative to young adults, but like younger adults continued to 

improve their performance via tuning when they were able to update. For example, older adults 

may be learning how one of the chemicals affects Property B or Q, but without understanding 

how the other chemicals function will achieve only modest scores on these properties. Note that 

this interpretation is inconsistent with the argument that adding new structural knowledge is less 

resource consuming than tuning existing structural knowledge (Schnotz & Preuss, 1997).  

 

                                                           
9 As with overall chemistry task performance, trend analyses indicated that performance changes for 
Properties B and Q were primarily linear, with the linear trend accounting for over 50% of the variance 
and the remaining variance accounted for beyond 4th order.  
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Figure 9. Chemistry Task Performance for Properties B and Q over Trials by Age Group. Data 
averaged over bins of 3 trials. Note that data were binned for visual purposes, but unbinned data 
were analyzed.  
 
 
Table 9 
 
Model Results for Chemistry Task Performance on Properties B and Q 
 
Model 5      
  Estimate SE Df t-value p-value 
Intercept -3.88 2.36 63 -1.64 .105 
Age -6.97 3.48 63 -2.00 .050 
Trial 0.44 0.12 2273 3.80 < .001 
      
Age X Trial -0.07 0.17 2273 -0.45 .651 
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Model 6      
  Estimate SE Df t-value p-value 
Intercept -32.57 4.09 63 -7.96 < .001 
Age -5.54 5.84 63 -0.95 .346 
Initial C score 113.50 13.41 2271 8.47 < .001 
Trial 0.44 0.11 2271 3.91 < .001 
      
Age X Initial C score -23.54 17.36 2271 -1.36 .175 
Age X Trial -0.08 0.17 2271 -0.47 .642 
      
      
Model 7      
  Estimate SE df t-value p-value 
Intercept -34.60 4.12 63 -8.08 < .001 
Age -21.93 14.14 63 -1.55 .133 
Initial C score 123.79 13.60 2267 9.10 < .001 
C score change 78.20 24.37 2267 3.21 .001 
Trial 0.43 0.11 2267 3.81 < .001 
      
Age X Initial C score -0.04 21.61 2267 -0.00 .999 
Age X C score change -9.59 39.18 2267 -0.24 .807 
C score change X Trial -1.69 1.19 2267 -1.42 .157 
Age X Trial -0.07 0.17 2267 -0.43 .665 
Age X Trial X C score 
change 0.90 1.76 2267 0.51 .609 
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Model 8      
  Estimate SE df t-value p-value 
Intercept -27.87 9.24 59 -3.02 .004 
Age -65.88 13.01 59 -5.06 < .001 
Initial C score 111.04 14.54 2267 7.64 < .001 
C score change 76.90 24.34 2267 3.16 .002 
Vocabulary 0.45 0.29 59 1.54 .128 
Processing speed -0.27 0.16 59 -1.64 .107 
Trial 0.43 0.11 2267 3.85 < .001 
      
Age X Initial C score -6.87 22.27 2267 -0.31 .758 
Age X C score change -11.97 38.96 2267 -0.31 .759 
Age X Vocabulary 0.78 0.36 59 2.14 .036 
Age X Processing speed 1.01 0.29 59 3.49 < .001 
Age X Trial -0.07 0.16 2267 -0.44 .662 
C score change X Trial -1.69 1.18 2267 -1.43 .152 
Age X Trial X C score 
change 0.90 1.74 2267 0.52 .605 

 

Note. Models of chemistry task performance for Properties B and Q (only). Performance scores 
are corrected for trial difficulty. Performance scores of zero indicate average performance, with 
positive values being above average and negative values being below average. Younger adults 
serve as the reference group. Thus positive age effects indicate better performance or steeper 
slopes for older adults relative to young.  Main effects indicate the beta estimate for young adults 
with the interaction coefficient indicating how beta estimate changes for older adults. 
 

Model 6: Performance on Properties B and Q as a function of initial task 

representations. We next added initial C scores and the interactions with age and trial to the 

model (Table 9, p. 49-51). Somewhat surprisingly, initial C scores were predictive of 

performance on Properties B and Q. This is despite the fact that managing these properties 

requires information not present prior to the initial pathfinder ratings task. Although participants 

lack specific knowledge of how Chemicals C, T, and N influence Properties B and Q, initial C 

scores may still contain useful information that supports learning and management of Properties 

B and Q—if the participant can learn update the missing information in their task understanding. 
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For example, understanding that Chemicals C, T, and N will influence only Properties B and Q, 

as opposed to thinking they will influence other Properties, is valuable for limiting the number of 

options that need to be experimented with early in the task. Likewise, knowing how the other 

properties (Active D, Inactive D, and Temperature) function reduces the need to monitor and 

update one’s knowledge of those properties. This may free up resources to monitor Properties B 

and Q specifically. Lastly, knowing that Properties B and Q interact with one another should 

allow for better management of the two after one has learned which chemicals influence each 

property.  

Model 7: Changes in performance on Properties B and Q as a function of task 

representation updating. We next added changes in C scores and interactions with age and trial 

(Table 9, p. 49-51). Unlike in Model 3 for overall chemistry task performance (Table 5, p. 37-38), 

changes in C scores were similarly positive predictors for both age groups (main effect, but no 

interaction with age). Again, changes in C scores did not interact with trial for improvements in 

performance on Properties B and Q, casting doubt on the hypothesis that changes in C scores 

serve as a useful measure for changes in deep structural updating, as reflected in improved task 

performance. We comment further on this finding in the discussion section. 

Model 8: The role of processing speed and vocabulary on performance managing 

Properties B and Q. As with overall chemistry task performance, we examined the potential role 

of processing speed and vocabulary scores on performance (Table 9, p. 49-51). As with overall 

task performance (Table 5, p. 37-38), both processing speed and vocabulary ability predicted 

higher performance in older adults (significant interactions with age) but in this case neither was 

predictive for younger adults (no main effect of processing speed or vocabulary). This again 

supports the hypothesis that older adults with spared cognitive resources (higher processing 

speed) are better able to perform this novel task, in this case, even when performance necessitates 
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updating one’s task understanding. Likewise, these results suggest that greater vocabulary ability 

(whether this reflects crystalized knowledge, general language ability, or both) also serves as a 

protective factor for older adults, and may explain why many older adults were able to perform at 

or near the level as their younger counterparts.  

Discussion 

 The finding that older adults form equally accurate initial task representations was not 

surprising given the results of Study 1. This occurred even after the learning criterion was 

removed. These findings are consistent with prior research on narrative processing which 

suggests that older adults show no impairment in the ability to form mental representations of text 

passages (Gilbert et al., 2004; Morrow, Leirer, Altieri, & Fitzsimmons, 1994b; Radvansky et al., 

2003, 1990; Radvansky & Dijkstra, 2007; Radvansky, 1999a; Stine-Morrow et al., 2004, 2002). 

Likewise, older adults showed a similar relationship between initial task representations (C 

scores) and task performance, indicating little or no deficit in the ability to utilize structural 

knowledge to make strategic task decisions.  

What was unexpected was the age equivalence in chemistry task performance throughout 

the task and continued age equivalence in C scores at the end of the task. Whereas we predicted 

age-related declines in performance and substantial task representation updating for young but not 

old, we found age equivalence in performance and no initial evidence of task representation 

updating in either age group (although there is individual variability suggesting that some 

participants may have updated whereas others may have forgotten information, or mis-updated). 

These results suggested that the deep structural updating thought to be measured by changes in C 

scores was generally absent, with improvements in task performance possibly being driven by 

tuning (modifying the strength of existing relationships), rather than structural updating. 

Additional support for this argument comes from the failure to find any evidence of a C score 
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change X Trial interaction. This null effect suggests that changes in task understanding were not 

responsible for the observed linear changes in task performance over trials.  

 However, changes in C scores, though strongly related to overall performance in younger 

adults were only weakly related to performance in older adults. This calls into question the 

validity of the post-task C score measure, particularly for older adults. It is possible that older 

adults (and possibly some young adults) do update their structural knowledge, but that this new 

knowledge is simply not captured on the second set of pathfinder ratings. One explanation is that 

older adults may learn the spatial mapping of the chemical additives in the chemistry task and 

learn which property each influences. However, if they do not encode the names of these 

chemical additives, they will be unable to demonstrate this new knowledge during the ratings 

task—which requires that the names of terms be tied knowledge about those concepts. For 

example, a participant may learn that the chemical in top left raises Properties Q, the chemical in 

the lower left lowers Property Q, and the middle left chemical raises both Properties B and Q. 

However, if the participant only learns these spatial-to-effect mappings, instead of the actual 

chemical names, then they will still be unable to accurately indicate which chemicals are related 

to which properties on the subsequent ratings task. To consider this possibility, a ratings task with 

location information might be used. 

The mental model and conceptual knowledge frameworks argue that deep structural 

knowledge is more important than declarative knowledge (Curtis & Davis, 2003). Proponents of 

the concept mapping approach also argue that concept mapping is better at tapping this important 

deep structural knowledge than are explicit tests of declarative knowledge (Goldsmith et al., 

1991; Novak & Cañas, 2006; Novak, 1990; Staggers & Norica, 1993). Thus, it may be that older 

adults did not incorporate the new information into their existing knowledge structure, but instead 

learned explicit relationships as declarative knowledge only. However, performance on the post-
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task quiz, which explicitly asked participants to indicate which chemicals increased and which 

decreased Properties B and Q, was near floor, arguing against this interpretation. However both 

these findings can be explained by older adults simply failing to learn the explicit labels 

necessary to accurately complete either the post-task ratings or cumulative test.  

 The strongest support that participants did indeed update their structural knowledge and 

not merely tune existing knowledge comes in the form of performance changes on Properties B 

and Q specifically. Although the instructions contained important information regarding how 

these properties interacted with each other, it did not contain information on how each chemical 

would impact these properties. Specifically it only indicated that Chemicals T, C, and N would 

influence the properties but that participants would have to learn via completing the task which 

chemicals raised and lowered which properties. Thus, any improvement in managing Properties B 

and Q requires updating the structural relationships between concepts. Although older adults 

generally did worse when managing these specific properties, there was no age difference in the 

rate of improvement across trials, suggesting that older adults were generally as effective as 

young at updating their task understanding for these properties and chemicals. This is despite the 

lack of change in older adults pre- to post-task C scores, again suggesting that post-task C scores 

may fail to capture new structural knowledge in older adults. Showing the interface during the 

ratings task might allow older and younger adults to better convey their new knowledge if they 

encoded only the spatial locations and effects of, but not the names, of the different task elements. 

 Whether through equivalent rates of tuning, accretion (adding new knowledge) or 

reorganization, older adults demonstrated improvements in performance comparable to those of 

younger adults. This is particularly interesting given the supposed difficulty of both tuning and 

reorganizing existing knowledge (Schnotz & Preuss, 1997). Given this age equivalence, as well 

as the age equivalence in initial C scores, we investigated potential explanations for why older 
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adults were able to achieve performance levels equivalent to those of younger adults. Older adults 

generally indicated being more motivated to perform well at each stage of the task and having put 

more effort into the task. However these ratings were assessed post-task and may have been 

influenced by subjective task performance. By contrast, processing speed and vocabulary were 

assessed with commonly used psychometric tests prior to chemistry task performance. Both 

processing speed and vocabulary scores predicted better performance for older but not younger 

adults on overall chemistry task performance and on Properties B and Q specifically. These 

findings suggest that spared cognitive functioning (processing speed) was important for learning 

and performing the novel chemistry task for older adults. Additionally, vocabulary scores were 

significant predictors of older adults’ performance even after accounting for processing speed. 

This suggests that older adults with lesser cognitive abilities may have been able to use their 

generally greater crystalized intelligence to compensate for age-related declines in processing 

speed. By contrast, vocabulary scores and processing speed did not predict superior performance 

in younger adults, who may not need to rely as heavily on crystalized knowledge, and whom 

likely possess adequate cognitive abilities (i.e. processing speed) to perform the task. 

Performance in younger adults was instead related to low motivation and effort. But again, these 

ratings were collected following chemistry task performance and may be contaminated by subject 

performance on the chemistry task.  

Although consistent with prior research (Masunaga & Horn, 2001; Morrow et al., 2003, 

2009), the relationship between vocabulary scores and chemistry task performance in older adults 

was surprising. The novelty of the chemistry task should have minimized the likelihood of prior 

knowledge of any sort influencing task performance. Alternatively, vocabulary knowledge may 

have related to task performance via its relation to reading comprehension (Jeon & Yamashita, 
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2014). If this is the case, older adults with higher vocabulary scores may be better able to extract 

information from the instructions, which would aid chemistry task performance.  
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CHAPTER IV 

GENERAL DISCUSSION 
 
 

 Task representations are theorized to guide strategic choices on a variety of tasks 

(Bromme et al., 2009; Lovett & Schunn, 1999; Muis, 2007; Winne & Hadwin, 1998). However 

no study to our knowledge had examined age differences in task representations, despite findings 

of age differences in strategic choices. In two studies we demonstrate that pathfinder-derived 

concept maps (C scores) can be used to measure younger and older adults task representations for 

deep structural relationships learned via text. Likewise, we found strong relationships between C 

scores and performance on an inference test (Study 1) and a novel chemistry task (Study 2), 

consistent with the contention that task representations are an important determinant of strategic 

choices. However, a general lack of improvement in C scores from pre- to post-task calls into 

question the utility of concept mapping for measuring task representation updating—particularly 

for older adults. 

Although we found some evidence of task representation updating via performance 

changes, we did not find evidence for age decrements in updating. A number of factors may 

explain this age equivalence. Older adults with better cognitive abilities (i.e. better processing 

speed) may have had the adequate resources necessary for simultaneously monitoring and 

updating while performing the novel chemistry task. Other older adults may have relied on 

superior linguistic skills, as well as any prior knowledge they were able to relate to the material to 

buffer against age-related changes. Likewise, because the learning phase was self-paced, older 

adults may have been better able to form accurate initial task representations which may require
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less updating of the already learned information and thus allow more cognitive resources to be 

allocated to learning the new information.  

Additionally, because the chemistry task itself was self-paced, it may have allowed older 

adults to compensate for age-related declines by taking more time to make decisions and learn the 

information via the task. Therefore, these results may not generalize to knowledge updating on 

tasks involving time limits or instructions emphasizing speeded performance. Under speeded 

conditions older adults may indeed show deficits in knowledge updating. Why then, does higher 

processing speed predicted higher performance in older adults on a self-paced task? The answers 

to this question come in two forms. First, when processing speed is inadequate for a given 

cognitive process, it can have downstream effects on other cognitive processes that occur 

simultaneously or later on, which also rely on the inadequately completed aforementioned 

process (Salthouse, 1996). Second, age-related changes in processing speed often coincide with 

demyelination and a general compromising of cognitive capacity (Salthouse, 1996). Thus, 

superior processing speed itself may not be driving better performance in older adults, but rather, 

superior processing speed may be a marker for generally spared cognitive abilities. Thus, some 

other ability which also remains intact in our older adults with greater processing speed, for 

example working memory, may actually be responsible for our older adults’ spared utilization of 

task representations.  

Because vocabulary and processing speed correlated more strongly with performance on 

the novel chemistry task than with initial C scores, post-task C scores, pre-task cumulative test 

scores, or post-task cumulative test scores (Table 7, p. 45), this would suggest that these abilities 

were responsible for the utilization, not formation or updating, of task representations. Likewise, 

the reanalysis of Study 1 data found that neither processing speed nor vocabulary scores predicted 

performance on the novel inference test, after accounting for task representation. Taken together, 
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these findings suggest that performing rather than merely learning about a novel task draws on 

these abilities in older adults. Future research should include latent variable measures of working 

memory, processing speed, and crystalized intelligence to consider these questions.  

Lastly, the age equivalence in performance in both Studies 1 and 2 suggest no age-related 

decrement in the ability to utilize structural knowledge. According to the mental model 

perspective these results would suggest age-related sparing in the ability to form and manipulate 

mental models to solve problems or make inferences (Johnson-Laird, 2001; Schnotz & Preuss, 

1997). These results add to existing literature on age-related sparing of mental representation 

formation and utilization (Masunaga & Horn, 2001; Morrow et al., 2003, 2009). 

Better methods for measuring changes in task representations need to be developed. A 

general method for measuring changes in task representations (such as concept mapping) may not 

be the most effective approach. By contrast, idiosyncratic methods depending on the task may be 

more effective. For example Harada, Mori, and Taniue (2010) examined older adults’ use of an 

electronic diet-support system. They found that different methods of instruction had an impact on 

the interface navigation patterns of older adults, with some instructions producing fewer 

navigation errors (entering the wrong menu for a given task) than others. Thus, cessation of such 

task errors could be a valuable indictor of changes in task representation. Likewise, some 

strategies necessitate a change in task representation. For example, Haider and Frensch (1996) 

developed an alphabet verification task where participants were told to check an alphabetical 

string for errors. Contrary to the instructions, all alphabetical errors were contained only in the 

final three characters of the string. Thus participants could shift to a more efficient strategy of 

processing only the critical three characters at the end of the string, but only if they corrected their 

initial faulty representation of the task. Likewise, Kieras and Bovair (1983) gave participants a 

series of procedures to follow to make a computerized spaceship fire a laser. However, the 
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procedures involved a number for step peripheral to the laser system, which were thus 

unnecessary. A number of participants identified these unnecessary steps and switched to a more 

efficient procedure. Presumably, this occurred because these participants were able to form an 

accurate mental representation of the spaceship and update their task representation accordingly 

(Kieras & Bovair, 1983). However, neither of these studies compared younger and older adults’ 

abilities to update their task representations and switch strategies accordingly. The downside to 

this methodology is that if age differences are found, it will remain unclear whether these 

constitute a failure to update knowledge, or a metacognitive control failure to utilize the new 

knowledge (hence the current studies attempt to measure task representations directly).  

In addition to better measurement of task representation updating, future research should 

aim to determine under what situations younger and older adults are more likely to engage in task 

representation updating, and under what circumstances age decrements in updating are most 

likely to occur. For example, older adults may be more likely to update their task representations 

in familiar domains, where working memory constraints may be reduced. Likewise, explicitly 

informing older adults to consider the task design and their task approach, throughout a task, or 

during mandatory task breaks may allow older adults to better consider their approach when 

relived of the demands of simultaneously performing the task.  

Conclusions 

 Although the current studies found only minimal evidence for age deficits in task 

representation updating, they provide several important findings. Concept mapping appears to be 

a valuable tool for assessing initial task representations but may be limited in the ability to 

capture changes in those representations—particularly among older adults. The general age 

equivalence in task representations and performance also contributes to the larger literature on 

mental representations of text where older adults demonstrate equivalent performance to younger 
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adults. Lastly, the findings that processing speed, superior crystalized intelligence, and high 

motivation/effort may be potential explanations for age-related sparing in mental representations 

are novel and warrant future research.  
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APPENDIX A 
 

STUDY 1 NOVEL CHEMISTRY TASK INSTRUCTIONS 
 
 
Instructions 
 
In this study you will play the role of chemist. Your job is to keep various attributes of a solution 
within specified ideal ranges over a series of hypothetical days. For each “day” in the task you 
will receive a report containing the current levels of each chemical attribute indicated by an “X.” 
The report is color coded and the ideal range marked by a gray box with the word “ideal” inside 
it. 

  
(Press the RIGHT ARROW to continue) 

Ideal range 

Current Value 
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When any attribute gets too high or too low, you will need to decide what to do to return that 
attribute to its optimal level. These actions may include exposing the solution to heat or adding 
various chemicals to the solution. Each chemical can be added to the solution in one of three 
doses: small, medium, or large and the Bunsen burner can be turned off or set to either a low or 
high level. You can click on the up and down arrows next to a chemical to change the size of the 
dose for that chemical. Changes can only be made to the solution once per day. After deciding 
what to do for a given day, you will click the “Submit” button to advance to the next day of the 
task. 

 
(Press the LEFT ARROW to go back) 
(Press the RIGHT ARROW to continue) 
  

Decrease dose Increase dose 
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Next, you will read information regarding the attributes of the solution that need to be monitored 
and how they can be adjusted up or down. 
You will have to pass a quiz at the end of the instructions to continue to the next part of the 
experiment. Most people take a few tries to learn all the information, so don't be discouraged if it 
takes you a few tries as well. 
 
(Press the LEFT ARROW to go back) 
(Press the RIGHT ARROW to continue) 
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Active D  
Bacteria will grow in the solution if the temperature or chemical composition of the solution is 
not ideal. To combat this, a constant level of disinfectant must be maintained in the solution.   
Active D shows the level of disinfectant available to keep the solution sanitary. It is important 
that you do not allow Active D to get too low, or you run the risk of bacterial growth in the 
solution (explained on a later screen).  
Active D is converted into Inactive D (explained on a later screen) as it breaks down and kills 
bacteria in the solution. As a result, the level of Active D decreases a little each time bacteria 
enter the solution. The more bacteria enter the solution, the more drastic the decrease in the level 
of Active D and the more drastic the increase in Inactive D. Active D will also gradually 
evaporate from the solution. High temperatures will increase the rate of evaporation. Therefore, 
you must regularly replenish Active D to prevent the growth of bacteria. 
Active D can be maintained by adding a small dose of Chemical D Tablets to the solution daily. 
Active D can also be increased moderately by adding a medium or large dose of Chemical D 
Tablets to the solution. Active D can be increased drastically by adding a small, medium, or large 
dose of Liquid Chemical D to the solution.   

 
(Press the LEFT ARROW to go back) 
(Press the RIGHT ARROW to continue) 
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Inactive D 
As Active D kills bacteria it is converted into Inactive D. Inactive D cannot help break down and 
kill new bacteria. As bacteria enter the solution, the level of Active D decreases and the level of 
Inactive D increases, as Active D is converted into Inactive D. High levels of Inactive D produce 
toxic fumes. As a result Inactive D should be kept as low as possible (note the lower ideal range). 
As with Active D, Inactive D will gradually evaporate from the solution, and high temperatures 
will increase the rate of evaporation.  
Inactive D will normally remain low if you maintain an appropriate Active D level. 

 
 
(Press the LEFT ARROW to go back) 
(Press the RIGHT ARROW to continue) 
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Bacterial growth 
Only small amounts of bacteria are likely to enter the solution at a given time. Therefore, when 
Active D is in the ideal range, all bacteria that enter the solution are killed before they can 
multiply. As a result Active D decreases slightly and Inactive D increases slightly when bacteria 
enter the solution. Inactive D then evaporates from the solution within a day or two, bringing the 
Inactive D level back down to the ideal range. However, you may need to add additional 
Chemical D tablets if Active D gets too low. 
High temperatures will facilitate the growth of bacteria. When the level of Active D is low or the 
temperature is too high, Active D is unable to kill all the bacteria before they begin to multiply. 
This results in bacterial growth in the solution.  
Once bacteria begin to grow in the solution, Chemical D Tablets alone will not increase the 
Active D level of the solution. Instead the Active D released by the tablets will be instantly 
converted into Inactive D as it kills some, but not all of the bacteria. This rapidly results in very 
low levels of Active D and very high levels of Inactive D.  
Adding a large dose of Liquid Chemical D to the solution will provide enough Active D to kill all 
of the bacteria, ending the bacterial growth in the solution.  
Therefore, low Active D levels and high Inactive D levels indicate bacterial growth in the 
solution, which should be treated by adding Liquid Chemical D to the solution. 
Because Inactive D naturally evaporates from the solution, the Inactive D level will gradually 
decrease after the bacterial growth has ended. Temporarily increasing the solution temperature 
can speed the evaporation of Inactive D.  
  
(Press the LEFT ARROW to go back) 
(Press the RIGHT ARROW to continue) 
  



79 
 

Property Q 

Property Q must be kept within the ideal range to avoid damage to the solution container. Low 
Property Q will cause corrosion of the solution container. High Property Q will cause calcium 
deposits to form on the solution container. Property Q can be increased by adding either Chemical 
C or Chemical T to the solution. Property Q can be decreased by adding Chemical N to the 
solution. How much Property Q changes with each dose of Chemical C, T, or N will depend on 
the level of Property B (explained on the next screen). 

 
(Press the LEFT ARROW to go back) 
(Press the RIGHT ARROW to continue) 
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Property B 
 
Property B is a chemical buffer for Property Q. A chemical buffer controls how easily another 
chemical attribute changes.  
When the level of Property B is ideal, Property Q levels will remain relatively stable and a 
medium dose of Chemical C, T, or N will produce a moderate change in Property Q.  
At low levels of Property B, Property Q fluctuates drastically and even a small dose of Chemical 
C, T, or N will produce a drastic change in Property Q. That is, there is nothing to buffer the 
changes in Property Q. 
At high levels of Property B, a large dose of Chemical C, T, or N is needed to produce a moderate 
increase or moderate decrease in Property Q.  Like Property Q, high levels of Property B will also 
cause calcium deposits to form on the solution container.  

 
(Press the LEFT ARROW to go back) 
(Press the RIGHT ARROW to continue) 
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Adjusting Properties Q and B 
 
When Property B and Q are both outside the ideal range, you should always adjust Property B 
before attempting to adjust Property Q on the following day. This is because Property Q will be 
difficult to keep in the ideal range without the proper level of Property B present to buffer 
changes in Property Q.  
You can increase Property B slightly, moderately, or drastically, using a comparable (small, 
medium, or large) dose of Chemical T. Note that Chemical T increases both Property Q and B. 
Therefore, if you increase Property B with Chemical T, Property Q will also increase. By 
contrast, Property Q can instead be increased with Chemical C without altering Property B. 
Decreasing Property B is more complex. You can only decrease Property B by first decreasing 
Property Q to a very low level using Chemical N (see image below). When Property Q is low, 
Property B will begin to decrease. When Property B reaches the ideal range, you will then add 
Chemical C to bring Property Q back into its ideal range. 

 
 
(Press the LEFT ARROW to go back) 
(Press the RIGHT ARROW to continue) 
 
 
 
  

Property Q is low and will 
decrease Property B 
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Temperature 
To maintain stable levels of Active D, the temperature of the solution should be higher than the 
temperature in the lab.  
Because the solution will cool gradually over time, temperature can be increased by turning up 
the Bunsen burner. Turning the Bunsen burner off will allow the temperature of the solution to 
decrease. Turning the Bunsen burner on low or high will increase the temperature moderately or 
drastically (respectively). 
High temperatures can cause Active and Inactive D to evaporate from the solution more rapidly. 
High temperatures also facilitate the growth of bacteria in the solution. At high temperatures, 
bacteria may begin to multiply before Active D kills them. Temperature has no impact on 
Property Q or Property B and does not alter the effects of the chemicals added to the solution 
(Chemical D tablets, Liquid Chemical D, Chemicals C, T, and N).  

 
 
(Press the LEFT ARROW to go back) 
(Press the ENTER when you are done reading) 
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APPENDIX B 
 

SWIMMING POOL TERMS AND THEIR NOVEL CHEMISTRY TASK ANALOGS 
 
 

Swimming pool Novel Chemistry task 
Free chlorine Active D 
Combined chlorine Inactive D 
pH Property Q 
Alkalinity Property B 
Temperature Temperature 
Chlorine tablets Chemical D tablets 
Liquid chlorine Liquid chemical D 
Pool heater Bunsen burner 
Chemical C Borax 
Chemical T Sodium bicarbonate 
Chemical N Muriatic acid 

  



84 
 

APPENDIX C 
 

STUDY 1 DECLARATIVE KNOWLEDGE QUIZ ITEMS 
 
 

This ONE chemical can be used to maintain or moderately increase Active D. 

This ONE property needs to be maintained in the solution to kill bacteria.  

This ONE chemical can be used to drastically increase Active D. 

This ONE property will cause toxic fumes if it gets too high. 

This ONE property increases when bacteria contaminate the solution. 

This ONE chemical is added to eliminate bacteria AFTER they begin to grow in the solution. 

These TWO properties will evaporate from the solution at high temperatures. 

Either of these TWO chemicals can be used to increase Property Q. 

This ONE chemical can be used to decrease Property Q. 

This ONE property will cause corrosion to form on the solution container if it gets too low. 

These TWO properties will cause calcium deposits to form on the solution container if either gets 

too high. 

This ONE property acts as a chemical buffer for Property Q. 

This ONE chemical can be used to increase Property B. 

This ONE property must be lowered to decrease Property B. 

This ONE property should always be adjusted before adjusting Property Q. 

Response options 

Property B 

Chemical C 

Chemical D Tablets 

Inactive D 



85 
 

Active D 

Liquid chemical D 

Chemical N 

Property Q 

Chemical T 
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APPENDIX D 
 

STUDY 1 INFERENCE TEST ITEMS 
 
 

Question Options 
Which chemical has the 
opposite effects as 
Chemical T? 

A) 
Chemical 
N 

B) Chemical 
C 

C) Liquid 
Chemical D 

D) Chemical 
D tablets 

Your solution is being 
used in an industrial 
facility where temperatures 
can be in excess of 200 
degrees. What should you 
recommend to the facility 
employee in charge of 
purchasing chemicals? 

A) 
Purchase 
large 
quantities 
of 
Chemical C 
and T 

B) Purchase 
large 
quantities of 
Chemical N 

C) Purchase 
large 
quantities 
of Chemical 
D Tablets 
and Liquid 
Chemical D 

D) Purchase 
industrial 
sized heaters 
to heat the 
solution 

When Properties B and Q 
are low, what should be 
done to increase Property 
Q? 

A) Add 
liquid 
Chemical 
D 

B) Add 
Chemical C 

C) Add 
Chemical T 

D) Add 
Chemical N 

When Property B is high 
and Property Q is low, 
what should be done to the 
solution? 

A) Wait 
until 
Property B 
is lower 
then add 
Chemical C 

B) Add 
Chemical C 
and then add 
Chemical T 

C) Add 
Chemical C 
then add 
Chemical N 

D) Add 
Chemical T 
then add 
Chemical N 

When Active D is low and 
Inactive D is high, what 
should be done to the 
solution? 

A) Add 
Chemical 
D tablets 

B) Add 
Liquid 
Chemical D 

C) Turn on 
the Bunsen 
burner 

D) Add 
Chemical T 

A fellow chemist is having 
trouble adjusting property 
Q in his solution. What 
might be the cause of his 
problem? 

A) Property 
B is too 
high or too 
low 

B) Active D 
is too low 

C) Inactive 
D is too 
high 

D) The 
solution 
temperature is 
too low 

If Inactive D and Active D 
are both extremely high, in 
addition to adding Liquid 
Chemical D, you should 
____. 

A) Add 
Chemical C 

B) Add 
Chemical D 
Tablets 

C) Add 
Chemical N 

D) Turn on 
the Bunsen 
burner 
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Although it is not ideal to 
do so, you are asked to 
keep the solution at a 
lower temperature than 
usual. As a result of this 
procedure, you can expect 
to ____? 

A) Use less 
Chemcial 
N and more 
Chemcial T 

B) 
Experience 
more 
bacterial 
contamination 

C) Use less 
Liquid 
Chemical D 
and fewer 
Chemical D 
Tablets 

D) Use more 
Liquid 
Chemical D 
and more 
Chemical D 
Tablets 

If Active D is normal and 
Inactive D is zero, what 
should be done to the 
solution? 

A) Add 
Liquid 
Chemical 
D 

B) Add 
Chemical D 
Tablets 

C) Turn on 
the Bunsen 
Burner 

D) Nothing 

Another chemist designs a 
cover for the solution that 
helps prevent heat loss and 
evaporation. If you use this 
cover you could expect to 
also _____. 

A) Use 
more 
Chemical 
D tablets 

B) Use more 
Chemical N 

C) Use 
fewer 
Chemical D 
tablets 

D) Use less 
Chemical N 

If the solution were kept in 
an environment where 
high levels of Chemical N 
were present and likely to 
contaminate the solution, 
then you would likely 
____. 

A) 
Frequently 
use the 
Bunsen 
burner 

B) Frequently 
add Chemical 
T or C to the 
solution 

C) 
Frequently 
add 
Chemical N 
to the 
solution 

D) Frequently 
add Liquid 
Chemical D 

Active D and Inactive D 
levels dropped drastically 
from Day 1 to Day 2. 
Which of the following is 
a possible cause of this 
effect? 

A) 
Someone 
added too 
many 
Chemical 
D tablets to 
the solution 

B) Someone 
added too 
much Liquid 
Chemical D 
to the solution 

C) 
Someone 
added too 
much 
Chemical N 
to the 
solution 

D) Someone 
left the 
Bunsen 
burner on 

Yesterday someone added 
Liquid Chemical D to the 
solution and turned the 
Bunsen burner on high. 
What was the likely state 
of the solution that 
prompted this action? 

A) Property 
Q was high 

B) Property B 
was low 

C) Inactive 
D was low 
and 
temperature 
was low 

D) Active and 
Inactive D 
were high 

Someone spilled Chemical 
C into your solution. What 
course of action should 
you take to counteract 
these effects? 

A) Add 
Liquid 
Chemical 
D 

B) Add 
Chemical N 

C) Add 
Chemical T 

D) Turn on 
the Bunsen 
burner 
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Someone accidentally 
added too much Liquid 
Chemical D to her 
solution. What should she 
do to counteract the effect? 

A) Add 
Chemical 
D Tablets 

B) Add 
Chemical N 

C) Add 
Chemical C 

D) Turn on 
the Bunsen 
burner 

Active D is low and 
Inactive D is high. What is 
the likely cause of this 
situation? 

A) The 
temperature 
is too high 

B) Chemical 
D tablets 
were added to 
the solution 

C) Property 
B is too low 

D) Bacteria is 
contaminating 
the solution 

Calcium deposits have 
begun to form on the 
solution container. What is 
the likely cause of this 
situation? 

A) Property 
Q is too 
high 

B) Property B 
is too high 

C) Both 
property Q 
and B are 
too high 

D) Any of the 
above could 
cause this 
situation 

The solution container has 
begun to corrode. What is 
the likely cause of this 
situation? 

A) Property 
Q is too 
low 

B) Property B 
is too low 

C) Both 
Property Q 
and B are 
too low 

D) Any of the 
above could 
cause this 
situation 

Bacteria have 
contaminated the solution. 
What action should you 
take? 

A) Add 
Chemical 
D tablets 

B) Add 
Liquid 
Chemical D 

C) Add 
Chemical N 

D) Add 
Chemical C 

Property Q has been 
mostly stable over the last 
few days, drifting upwards 
only slightly. What can we 
assume about the solution? 

A) There is 
no bacteria 
in the 
solution 

B) The 
temperature is 
within the 
optimal range 

C) Property 
B is in the 
optimal 
range 

D) Active D 
is in the 
optimal range 

Property Q was low so you 
added Chemical C. Then 
Property Q became 
extremely high so you 
added Chemical N. Now 
Property Q is extremely 
low. What should you do 
to resolve this situation? 

A) Add 
Chemical C 

B) Add 
Chemical N 

C) Add 
Chemical T 

D) Turn on 
the Bunsen 
burner 

The lab has run out of 
Liquid Chemical D and 
Chemical D tablets. What 
could you do to prevent 
the growth of bacteria? 

A) Keep 
the 
temperature 
on the low 
side of the 
optimal 
range 

B) Keep 
Property Q on 
the high side 
of the optimal 
range 

C) Keep 
Property B 
on the low 
side of the 
optimal 
range 

D) Keep 
Inactive D on 
the high ends 
of the optimal 
range 
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APPENDIX E 
 

STUDY 1 PATHFINDER TERMS 
 
 

Active D 

Inactive D 

Property B 

Chemical C 

Chemical T 

Property Q 

Chemical N 

Liquid Chemical D 

Chemical D Tablets 

Bunsen burner 

Temperature 

Evaporate 

Bacteria 

Disinfectant 

Calcium deposits 

Corrosion 

Buffer 

Chemical 

Property 
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APPENDIX F 
 

STUDY 2 NOVEL CHEMISTRY TASK INSTRUCTIONS 
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