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Abstract 
 

Structure-from-Motion based Vegetation Modeling and Shade Estimation 
 

James Balcomb  
B.S., Humboldt State University 

M.A., Appalachian State University 
 
 

Chairperson:  Jeffrey D. Colby 
 
 

Although three-dimensional (3-D) light dimension and range (LiDAR) point cloud datasets 

describing the structure of vegetation have proven to be highly useful for ecological modeling, the 

collection of such data is expensive. However, a new technology known as Structure-from-Motion, or 

SfM, has become available that can be used to create 3-D point cloud datasets for far less cost. A 

small unmanned aerial system (UAS), point and shoot digital camera, and Agisoft PhotoScan® 

(http://agisoft.com) software were used to create a highly dense 3-D SfM point cloud dataset 

representing a short reach of the Upper South Fork of the New River in Boone, NC. The quality of the 

3-D SfM point cloud dataset was evaluated with an emphasis on how accurately vegetation was 

represented. Also, a digital surface model (DSM) based on the 3-D SfM point cloud dataset was used 

in conjunction with a solar ray tracing method to predict shade cast by vegetation in the study area. 

Overall, the results of this study suggest that SfM based point clouds representing vegetation are of a 

high enough quality to be used for ecological modeling purposes. 

 

  

iv 
 



 

 

 

Acknowledgments 

 

 I would like to thank my committee members Jeffrey Colby, Jessica Mitchell and Chuanhui 

Gu for enough advice to keep my thesis within the bounds of scientific standards, but also enough 

freedom and independence to pursue my own ideas. I would also like to thank Michael Flannigan for 

his work over the 2013-2014 academic year researching and purchasing the equipment that I used. I 

greatly benefitted from Michaels wise choices. I would like to thank Jeffrey Colby for pursuing the 

purchase of said equipment and Kathleen Schroeder for approving the final purchase. I would like to 

thank Jeffrey Colby and Chuanhui Gu for awarding me GRAM funding, and the Cratis D. William 

Graduate School for awarding me a Chancellors Fellowship.  

 

  

v 
 



 

 

 

Table of Contents 

Abstract…………………………………………………………………………….………………….iv          

Acknowledgments……………………………………………………………….……………………..v             

Foreword…………………………………………………………………………….……….……….vii 

Introduction…………………………………………………………………………………….………1 

Article: Structure-from-Motion based Vegetation Modeling and Shade Estimation……..…..…..……5  

References………………………………………………………………………….………….….…..47 

Biographical Sketch…………………………………………………………………………..……….51 

 

  

vi 
 



 

 

 

 

 

 

 

Foreword 

 

 

 The article presented in this thesis will be submitted to Photogrammetric Engineering & 

Remote Sensing, the official journal of the American Society for Photogrammetry and Remote 

Sensing. The organization and formatting of the article main body strictly follows the instruction to 

authors for manuscript submission to the journal.  

 

 

 

vii 
 



Introduction 

 In his March 1927 presidential address to the Association of American Geographers (AAG), 

J. Paul Goode asserted that the map is a “record of progress in geography.” Goode argued that maps 

reflect the current state of geography and that one only need examine a map to understand the abilities 

and limitations of geographers. Conducting such an examination of contemporary maps would reveal 

the fact that the field of geography remains limited with regard to its ability to work with three-

dimensional (3-D) data. This is not due to the fact that the third, or z coordinate is unimportant but 

rather that collecting and working with 3-D data has proven to be challenging and expensive. 

Currently, the most commonly employed method for collecting 3-D data representing the Earth’s 

surface is light detection and ranging (LiDAR). LiDAR represents 3-D geographical data through the 

use of a 3-D point cloud, which is a dataset composed of anywhere from thousands to millions of 

individual points representing the location and shape of objects in 3-D space. Each point has an x,y, 

and z coordinate which places that point in its specific location. Collectively, the points are referred to 

as a 3-D point cloud dataset. Although highly accurate and proven to produce high quality data, 

LiDAR is expensive; the use of LiDAR to create 3-D point cloud datasets typically costs tens of 

thousands of dollars. Such costs make it prohibitive to collect 3-D point cloud datasets at a high 

temporal resolution, or for small projects or by small organizations. Thus one of the barriers that the 

field of geography must overcome is finding a method to accurately and inexpensively create 3-D 

point cloud datasets. Fortunately, technological advances are making possible the production of 3-D 

point clouds very inexpensively with just a hobbyist grade unmanned aerial system (UAS), a 

consumer grade digital camera, a desktop computer, and appropriate software packages. 

Unmanned Aerial Systems 

The first challenge that must be overcome when attempting to collect 3-D point cloud 

datasets is that of carrying a sensor to an effective height. Traditionally this has been accomplished by 

the use of a manned aircraft. But it is now possible to use a UAS to easily carry a camera to a height 
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from which it can take high resolution aerial images. Small UASs can be purchased for less than 

$2500 and are cheap to operate, making them extremely inexpensive to use.  

Consumer Grade Digital Cameras 

 The second challenge in collecting 3-D geographical data is that of acquiring and operating 

an appropriate sensor. LiDAR scanners can be expensive and too large to mount on a small UAS. But 

this issue has been overcome by the fact that for less than $200, a camera can be purchased that 

weighs less than 300 grams and is able to capture 12 megapixel images. Such a camera can be 

mounted on a small UAS and capture the images necessary for deriving 3-D geographical data. 

Structure From Motion 

 The third challenge in the process of creating 3-D point cloud datasets is that of measuring 

the heights of objects using remote sensing techniques. As previously mentioned, LiDAR is 

expensive, and collecting the images required for traditional photogrammetry requires a high level of 

expertise and a high level of control over the image capture process. But new techniques in the field 

of computer vision known as Structure from Motion (SfM) are able to construct 3-D point cloud 

datasets using a set of overlapping photographs and georeferenced ground control points (GCPs). 

Such software is ideal for working with images taken using a small UAS.  

Justification For The Research Project 

 While SfM methodologies hold great promise for revolutionizing the field of geography by 

making possible the inexpensive production of 3-D point cloud datasets, the technology is still new 

and there is a need to prove the accuracy of the results. Current standards concerning the accuracy of 

3-D point cloud datasets have been set by LiDAR collection techniques known as airborne laser 

scanning (ALS), mobile laser scanning (MBL), and terrestrial laser scanning (TLS). ALS has been 

found to have a root mean square error (RMSE ) ranging from 5.0 cm to 25.9 cm depending on the 

land cover type while TLS is accepted to have an accuracy rating of a few cm or mm depending on 
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the circumstances (Hodgson and Bresnahan, 2004). Additionally, United States Geological Survey 

Quality Level 2 guidelines state that the 95 percent confidence level for a 3-D LiDAR point cloud 

dataset must be less than or equal to 19.6 cm (Heidemann, 2014). As such, LiDAR collected for use 

in scientific, commercial, or other professional applications can be expected to adhere to these 

accuracies. 

  However, there is not yet a widely accepted accuracy standard for SfM. Nor are the strengths 

and weaknesses of the technique well understood.  Important questions need to be answered such as 

what is the range of environmental circumstances under which SfM techniques can be used, where do 

SfM techniques fail to produce accurate results, will SfM capture all objects in a scene equally well, 

and in general how accurately can SfM data represent features on the Earth’s surface? 

Problem Statement 

In order for SfM to become a useful and widely accepted method of collecting 3-D 

geographical data, it is necessary to determine the accuracy and reliability of the 3-D point cloud 

datasets produced. The purpose of this research was to investigate the ability of SfM techniques to 

represent an area of mixed land cover types including deciduous and coniferous forest, turf grass and 

a river. Multiple study objectives were as follows: 

1. Deploy a UAS system to collect a series of aerial images of a short reach of the South 

Fork of the New River located in Boone, N.C, USA. 

2. Construct a georeferenced 3-D point cloud dataset from the collected images using an 

SfM process and differential global positioning system (DGPS) unit.  

3. Assess the density of the 3-D SfM point cloud dataset to estimate how well different land 

cover types may be represented.  

4. Assess the horizontal and vertical accuracy of the 3-D SfM point cloud dataset by 

comparing field measurements of tree and building heights with tree and building heights 

determined using a LiDAR/SfM hybrid DSM.  
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5. Assess the horizontal and vertical accuracy of the 3-D SfM point cloud dataset by 

comparing an SfM derived DSM to a LiDAR derived DSM.  

6. Assess the horizontal and vertical accuracy of the 3-D SfM point cloud dataset by using 

an SfM derived DSM in conjunction with the GRASS GIS module r.sunmask 

(http://grass.osgeo.org) to predict patterns of shade cast by objects. (If the three 

dimensional shape of objects is constructed accurately by the SfM process, then the shade 

patterns predicted by the GRASS r.sunmask module should match shade patterns in 

reference photographs.) 

Role of the Author 

The role of the lead author (James Balcomb) was to serve as the primary investigator for the study 

and to conduct the following activities: 

1. Develop and deploy a UAS system able to collect the photographs necessary for 

constructing a 3-D SfM point cloud dataset. 

2. Collect DGPS data necessary for geo-referencing the aforementioned 3-D point cloud 

dataset. 

3. Construct a 3-D point SfM cloud dataset using the photographs collected in step one and an 

appropriate software package. 

4. Assess the density and horizontal and vertical root mean square error (RMSE) of the 3-D 

SfM point cloud dataset using ground truthing methods and a 3-D LiDAR point cloud 

dataset.   

5. Predict patterns of shade occurring in the study area using the 3-D SfM point cloud dataset.  

6. Conduct an assessment to determine the accuracy with which the shade patterns were 

predicted. 

7. Produce a manuscript documenting the aforementioned steps and results produced.   
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Structure-from-Motion based Vegetation Modeling and 

Shade Estimation. 

James N. Balcomb, Jeffrey D. Colby, Chuanhui Gu, Jessica Mitchell 

Abstract 

Although three-dimensional (3-D) light dimension and range LiDAR point cloud datasets 

representing the structure of vegetation have proven to be highly useful for ecological modeling, the 

collection of such data is expensive. However, a new technology known as Structure-from-Motion, or 

SfM, has become available that can be used to create 3-D point cloud datasets for far less cost. A 

small unmanned aerial system (UAS), point and shoot digital camera, and Agisoft PhotoScan® 

(http://agisoft.com) software were used to create a highly dense 3-D point cloud dataset representing a 

short reach of the Upper South Fork of the New River in Boone, NC. The quality of the 3-D point 

cloud dataset was investigated with an emphasis on determining how accurately vegetation was 

represented. Also, a digital surface model (DSM) based on the 3-D point cloud dataset was used in 

conjunction with a solar ray tracing method to predict shade cast by vegetation in the study area. 

Overall, the results suggest that the use of SfM methods to construct 3-D point cloud datasets 

representing vegetation are of a high enough quality to be used for ecological modeling purposes. 

Introduction 

Three-dimensional (3-D) light dimension and ranging (LiDAR) point cloud datasets have 

proven valuable for ecological applications such as modeling riparian shade, determining leaf-area-

index (LAI) and estimating above ground biomass (e.g., Greenberg et al. 2012; Lefsky et al. 2002; 

Newcomb 2012). The use of 3-D LiDAR point cloud datasets in ecological applications is limited by 

the fact that collecting such data is expensive with even small projects costing tens of thousands of 
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dollars. Erdody and Moskal (2010) found that collecting LiDAR data cost about US$3.00/Ha plus 

initial costs ranging from $10,000-20,000, and a study conducted by the United States Forest Service 

found that it cost $33,424 to collect LiDAR data for 12,792 hectares (Hummel et al., 2011).  

However, techniques in computer vision known as Structure-from-Motion, or SfM, combined 

with advances in unmanned aerial systems (UAS) and digital cameras have created a less expensive 

alternative for creating 3-D point cloud datasets. The equipment necessary can be purchased for less 

than $10,000 and includes a hobbyist grade UAS, a consumer grade digital camera, and a software 

package such as AgiSoft PhotoScan ® (http://www.agisoft.com).  

Structure from Motion 

SfM is a computer vision process able to derive a 3-D point cloud dataset from a set of 

unordered photographs that may have been taken from a variety of angles and distances (Snavely et 

al., 2006). The main requirement for generating datasets using SfM is that horizontal image overlap is 

at least 66% and that vertical image overlap is at least 80%. Strict control over parameters such as 

focal length, perspective angle, and distance to the target is unnecessary (Snavely et al., 2006). 

Rather, automated algorithms in the software are able to calculate crucial information such as focal 

length and the relative position from where an image was taken (Dandois and Ellis, 2013; Snavley et 

al., 2006).  

SfM uses photogrammetric principles and a three step process in the reconstruction of 3-D 

scene geometry from two dimensional images (Verhoeven, 2011). The first step in the SfM process is 

to determine internal and external parameters such as camera position and focal length for each 

photograph in the set (Snavely et al., 2006). This is accomplished through identifying specific 

features in photographs than can be seen in additional photographs (Snavely et al., 2006). By 

matching and aligning common features in two photographs it is possible to calculate the relative 

position of those two photographs to each other. This step is repeated until the relative position of all 

photographs in the set are identified. Step two utilizes photogrammetric principles and the positional 
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information of the photographs to construct a sparse 3-D point cloud dataset. Photogrammetry works 

by using geometrical principles and 2D photographs to determine the location of features in 3-D 

space (Geodetic Systems, 2014). In order for the image of a feature to be captured in a photograph, 

lights waves must be reflected from that object through the principle point of the camera lens and 

onto the cameras sensor surface. Some of these light waves travel in a straight line from the feature to 

the camera lens, passing directly through the principal point of the camera lens. Since these light 

waves have traveled in a straight line it is possible to use their location on the cameras sensor, in 

conjunction with the cameras focal length, to recreate the path that was traveled to reach the sensor. 

Hence, for a given pixel on the camera sensor it is possible to determine a straight line connecting that 

specific pixel with the feature from which the light ray originated. By performing this process for 

multiple, overlapping images, numerous straight lines from unique camera positions to the same 

feature are created. The point in space where the lines intersect will be the features position in three-

dimensional space. Therefore, it can be known relative to the position of the camera what that 

features x,y, and z coordinates are.  

With the positional information of photographs from step one, the previously described 

photogrammetric principles are used to construct a sparse 3-D point cloud dataset. A sparse point 

cloud is constructed due to the need to use only matching features that are very clear in the 

construction of scene geometry (Verhoeven, 2011). Thus the initial 3-D point cloud dataset will 

necessarily be sparse due to the need to use only the clearest matching features. Step three in the SfM 

process is the construction of a dense 3-D point cloud by using the reconstructed scene geometry 

from step two and every single pixel in the photographs to fill in the details between points in the 

sparse 3-D point cloud dataset (Verhoeven, 2011). Assuming that a pixel is located in an area that 

overlaps with another photograph, that pixel can be matched with a pixel in the second photograph to 

create a matching point. With the 3-D geometry of the scene established, the thousands of matching 

points derived from individual pixels can be used to fill in the areas between points in the sparse 3-D 

point cloud dataset. The result is the final product, or the dense 3-D point cloud dataset. The 
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robustness of SfM methods has been demonstrated, for example, by constructing 3-D point cloud 

datasets of historical sites from internet photo collections where focal length, and camera model were 

unavailable (Snavley et al., 2006). 

Collecting the data necessary to create a 3-D point cloud dataset can be as simple as taking a 

set of highly overlapping images of an area of interest. However, without any geo-referencing data 

the 3-D point cloud dataset constructed by the SfM process will be in an arbitrary coordinate system 

and may not be correctly oriented with regard to the x,y and z axis. Geo-referencing is achieved by 

establishing the coordinates of specific points located within the 3-D point cloud dataset, and then 

using a transformation to establish the coordinates of every other point in the dataset. Thus, in order 

to create a georeferenced 3-D point cloud dataset using the SfM process, both a set of highly 

overlapping photographs and the x,y, and z coordinates of specific features or ground control points 

(GCPs) in the photographs are necessary.  

Unmanned Aerial Systems 

Modern UASs come in a variety of sizes and capabilities, ranging from 1 Kg remote 

controlled helicopters able to carry only a lightweight camera, to large military style drones capable 

of carrying advanced weaponry. The UASs of interest for lower budget research projects typically fall 

into the nano, micro, or mini class (Colomina and Molina, 2014).Such UASs are characterized by 

light take off weights (less than 15 kg) , short ranges (less than 10 Km), and low operating altitudes 

(Colomina and Molina, 2014). Additionally, UASs of the nano, micro, or mini class typically have 

short flight times ranging from ten to forty-five minutes. For example, the senseFly Ebee (senseFly, 

2014) micro UAS can fly for 45 minutes and cover 1000 hectares. Although researchers have 

successfully used other platforms to gather aerial data, including kites and balloons, motorized UASs 

provide the advantage of being quick to set up and take down, and can fly in a variety of weather 

conditions and environmental settings (Bryson et al., 2013).  Although a manned aircraft able to 

collect LiDAR data can cover a larger spatial extent, a UAS collecting photographs for SfM can be 
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flown inexpensively allowing for repeat collections of data and the documentation of ephemeral 

events such as the annual growth of new leaves in deciduous forests (Dandois and Ellis, 2013).  

Digital Cameras 

Also necessary for producing inexpensive 3-D point clouds using SfM methods is a 

lightweight camera. A micro UAS with a payload of only 300 grams is extremely limited in terms of 

the payload it can carry. But modern consumer digital cameras are lightweight, (often weighing less 

than 300 grams) and can capture images at up to a 16 megapixel resolution. Additionally, the cost of a 

quality digital camera is reasonable, with appropriate models available for under $200.  

Accuracy of 3-D SfM Point Cloud Datasets 

Although SfM methods hold great potential, there is still a need to assess the quality of the 3-

D point clouds produced. Results from studies investigating the accuracy of 3-D SfM point cloud 

datasets are promising and have found them to be comparable to 3-D LiDAR point cloud datasets. 

Lucieer at al. (2014) used a DEM derived from SfM data to map landslide displacement and found a 

horizontal RMSE of 7.4 cm and a vertical RMSE of 6.2 cm when 39 individually GPS measured 

checkpoints (horizontal and vertical accuracies = 2-4 cm) were used as a reference. Harwin et al. 

(2012) mapped a natural coastal site in Australia and found a vertical accuracy of 2.5 – 4.0 cm when 

checkpoints established using a TotalStation were compared to the 3-D SfM point cloud dataset. 

Fonstad et al. (2013) found a vertical RMSE of 1.049 m when an SFM derived DEM was compared 

to a LiDAR derived DEM.  

These studies took place in arid or semi-arid areas with little vegetation and validated the use 

of SfM for describing earthen features. Less well understood is how accurately SfM can be used for 

describing vegetative features and there is evidence to suggest that the presence of vegetation 

negatively impacts the quality of 3-D SfM point cloud datasets. Westoby et al. (2012) compared an 

SfM derived DEM to a DEM created using terrestrial laser scanning (TLS) and that found that greater 

deviations between the surfaces existed in areas of dense vegetation than in less vegetated areas. 
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Fonstad et al (2013) similarly found that differences between an SfM derived DSM and a LiDAR 

derived DSM were greatest in areas of vegetation.    

SfM for Measuring Vegetation 

 Although the presence of vegetation may decrease the accuracy of a 3-D SfM point cloud 

dataset, additional studies provide evidence that useful vegetation metrics may still be determined 

using SfM methods. Dey et al. (2012) found that it was possible to recreate the structure of grapevines 

using SfM methods. The 3-D point cloud dataset derived was of a high enough accuracy that an 

appropriate algorithm was able to discern grapes from stems and leaves with a 96% – 98% success 

rate. Mathews and Jensen (2013) used a 3-D SfM point cloud dataset to estimate leaf area index 

(LAI) of grape vines. The LAI predicted using the 3-D SfM point cloud dataset was compared to LAI 

as observed in the field. This analysis was moderately successful with an r2 = 0.567.  

More extensive vegetation mapping using SfM has also been successful. Lisein et al. (2013) 

used a small UAS and SfM methods to develop a forest canopy height model (CHM) for a 200 

hectare plot in France. There was a good fit (r2 = 0.91) between individual tree heights as predicted 

by the SfM CHM and individual tree heights measured in the field.  In comparison, the model fit for a 

LiDAR CHM was r2 = 0.94. Dandois and Ellis (2013) likewise found that SfM can be used to 

effectively measure forestry metrics such as tree height. In a study conducted in an eastern deciduous 

forest, an SfM CHM was comparable to a LiDAR CHM for predicting tree heights (r2 = .82 – 0.83 

and r2 = .83 – 0.84 respectively). In addition to finding a high level of agreement for individual trees, 

Dandois and Ellis (2013) found an RMSE of 2.3 m and an r2 of 0.87 when an SfM DSM and a 

LiDAR DSM for a forested area were compared.   

The purpose of this paper is to investigate the ability of SfM techniques to reconstruct an area 

of mixed land cover types including deciduous and coniferous riparian forest, turf grass and a river. In 

particular, the ability of the SfM process to reconstruct complex vegetation will be examined. In so 

doing the question of how well SfM techniques can be used for the generation of 3-D point cloud 
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datasets representing vegetation will be addressed. As vegetation represents a significant component 

of many landscapes, this question must be answered before SfM methods can be used for purposes of 

ecological modeling. Thus this study will make a contribution to both the field of SfM and the field of 

ecology by investigating if SfM techniques are able to reconstruct complex vegetation. Multiple study 

objectives were as follows: 

1. Deploy a UAS system to collect a series of aerial images along a short reach of the South Fork 

of the New River located in Boone, N.C, USA. 

2. Construct a georeferenced 3-D point cloud dataset from the collected images using an SfM 

process and a differential global positioning system (DGPS) unit.  

3. Assess the density of the 3-D SfM point cloud dataset to estimate how well different land cover 

types may be represented.  

4. Assess the horizontal and vertical accuracy of the 3-D SfM point cloud dataset by comparing 

field measurements of tree and building heights with tree and building heights determined using 

a LiDAR/SfM hybrid DSM.  

5. Assess the horizontal and vertical accuracy of the 3-D SfM point cloud dataset by comparing an 

SfM derived DSM to a LiDAR derived DSM.  

6. Assess the horizontal and vertical accuracy of the 3-D SfM point cloud dataset by using an SfM 

derived DSM in conjunction with the GRASS GIS module r.sunmask (http://grass.osgeo.org) 

to predict patterns of shade cast by objects. (If the three dimensional shape of objects is 

constructed accurately by the SfM process, then the shade patterns predicted by the GRASS 

r.sunmask module should match shade patterns in reference photographs.) 

Methods 

Study Area 

 The area selected for the study was a 190 meter reach of the South Fork of the New River 

located in Boone, North Carolina, USA (Figure 1). The study area includes two picnic shelters, a 
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constructed wetland, an area of closely cropped turf grass, areas of deciduous and evergreen riparian 

forest, and a reach of the river which was approximately 10 m wide and 60 to 90 cm deep. The area 

was relatively flat with no features such as hills or steep slopes. The elevation of the site ranges from 

942 to 945 m above sea level. Data were collected on August 27, 2014 under leaf-on conditions. 

 
Figure 1. Locator map of the study area.  
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Data Acquisition 

 A total of 228 aerial photographs were collected using a Canon PowerShot S100® (Canon 

U.S.A., 2014) digital point and shoot camera mounted on a DJI Phantom 2 Vision+® quad-copter 

(DJI, 2014) (Figure 2). A GoPro Hero 4® camera (GoPro, 2014) was also mounted on the quad-

copter and used as a means to pilot the aircraft along flight lines (Figure 2). The GoPro camera had a 

live video feed that was relayed to a small LCD monitor that the operator of the aircraft was able to 

view (Figure 2). By navigating the quad-copter using the live GoPro video feed it was thus possible to 

fly a gridded pattern over the study area and capture the necessary aerial photographs for constructing 

a 3-D SfM point cloud dataset. Flight lines were flown such that photographs had a seventy-five 

percent horizontal overlap and a ninety percent vertical overlap. Additionally, the DJI Phantom quad-

copter had a telemetry data feed that relayed flight parameters, including altitude, to the video 

monitor. Using this data feed enabled the capture of all photographs from a constant height of 

approximately seventy meters.  

The Canon PowerShot S100 camera was modified to take photographs automatically using 

the Canon Hack Development Kit (CHDK) (http://www.chdk.wikia.com) open source software and 

additional open source intervalometer script (http://www.chdk.wikia.com/wiki/countdown 

_intervalometer). Through the use of the CHDK/intervalometer software the Canon S100 was 

programmed to take photographs in a time lapse fashion with one image captured every five seconds 

(the intervalometer was set to take a photograph every two seconds but post flight analysis found that 

the interval between image capture was closer to five seconds). Therefore, it was necessary only to 

initiate the intervalometer function before launching the aircraft and photographs were then captured 

at a regular interval during flights. The Canon S100 focus was set to infinity and the camera was put 

in shutter priority mode so that photographs were taken at a shutter speed of 1/1650 seconds. 
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Figure 2. Equipment used for collecting aerial photographs from left to right: Trimble GeoXH 
DGPS unit, Go Pro Hero 4 digital camera, Canon S100 digital camera, DJI Phantom Vison 2 +, 
RX-LCD5802 LCD Monitor, and Futaba flight controller. 

 

Three separate flights were conducted between 11:00 a.m. standard time and 11:45 a.m. standard time 

on August 27, 2014 with each flight lasting approximately nine minutes. Weather conditions were 

clear and calm with no clouds present for any of the flights.  

 A total of nine 46 cm x 46 cm ground control points (GCPs) were distributed throughout the 

study area prior to image capture. The GPS locations of GCPs were recorded using a Trimble 

GeoXH® (Trimble Navigation Limited, 2014) differentially corrected DGPS unit (Figure 2). Due to 

the need to be able to view GCPs in the images, GCP locations were restricted to areas of turf grass 

and therefore not distributed evenly throughout the study as would be desirable. After the 

photographs had been captured, five naturally occurring objects (such as boulders in the river and 

distinct pavement corners) were located in the study area and added as additional GCPs. The addition 
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of these five objects was made in an attempt to improve the spatial distribution of GCPs in the study 

area. Thus the total number of GCPs utilized was 14.  

The GPS coordinates of the GCPs were corrected using Trimble Correct software run as an 

ESRI ArcGIS® (http://www.esri.com) extension. Elevation values recorded by the GeoXH were in 

WGS84 height above ellipsoid (HAE) and required further processing in order to be converted to 

North American Vertical Datum 88 (NAVD88). This conversion was accomplished using VDatum 

software (http://vdatum.noaa.gov) supplied by the National Oceanic and Atmospheric Administration 

(NOAA).  When using the GeoXH to collect data in the field an estimated error bound for each GPS 

reading is supplied by the GeoXH’s software. This information was used to estimate the accuracy of 

each GCP as ±30 cm (horizontal and vertical).  

Data Pre-processing 

Construction of 3-D SfM Point Cloud Dataset 

 The Agisoft PhotoScan Professional software package was used for creating a point cloud 

from the photographs taken using the Canon S100 and DJI Phantom quad-copter. This process was 

highly automated with little input required from the user. What user input was required involved geo-

referencing and selecting the quality level of the 3-D SfM point cloud dataset. 

 The first procedure that the PhotoScan software performs is photograph alignment and 

creation of a sparse 3-D SfM point cloud dataset. Photograph alignment was run with a quality setting 

of “high” which means that photographs were used at their original resolution as opposed to being 

coarsened in order to increase processing efficiency (Agisoft, 2014). The Canon S100 camera has a 

navigation grade GPS and tags every photograph with latitude, longitude and elevation coordinates 

(WGS84). These values are used by the PhotoScan software to roughly match up the photographs and 

improve the processing time but they are not accurate enough to geo-reference the final 3-D point 

cloud dataset. Consequently, the initial sparse point cloud was roughly geo-referenced to WGS84 

coordinates but further refined in order to increase the geolocation accuracy level.  
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 In order to improve the geo-referencing of the sparse 3-D SfM point cloud dataset it was 

necessary to use the GCPs established during the data capture process. First GCP locations were 

established in all photographs by using the PhotoScan software to locate the center of each target. 

Once the location of a GCP had been established the corrected GPS coordinates of that target were 

entered into PhotoScan. When all the GCPs had been located in the photographs and corresponding 

GPS coordinates entered, an optimization step was run that utilized the location of the GCPs to 

improve photograph alignment and geo-referencing. The result of the optimization step was a sparse 

3-D SfM point cloud dataset georeferenced (WGS84 and NAVD88) using data collected with the 

GeoXH GPS unit.  

The second procedure that PhotoScan software performs is to create a georeferenced 3-D 

SfM dense point cloud dataset using the georeferenced 3-D sparse point cloud dataset. When referring 

to the 3-D SfM point cloud dataset, “sparse” and “dense” are relative terms and used to establish the 

fact that the initial 3-D SfM point cloud dataset contains a lower density of points than the final 3-D 

SfM point cloud dataset. In this study, the initial “sparse” 3-D SfM point cloud dataset had a density 

of 15 points/m2  and the final “dense” 3-D SfM point cloud dataset had a density of 1193 points/m2. 

When initiating the creation of the dense 3-D SfM point cloud dataset the PhotoScan software gives 

the user a choice between “aggressive” or “mild” filtering parameters. Initial trial runs revealed that 

setting the depth filtering parameter to “aggressive” resulted in the exclusion of some darkly colored 

trees in the study area. Additionally, the  PhotoScan manual (Agisoft, 2014) suggested setting the 

depth filtering parameter to “mild” in order to aid in the reconstruction of complex objects. Based on 

both initial observations and the PhotoScan manual the depth filtering parameter was set to “mild”. 

With the quality level set to ‘high” and a computer with two Intel(R) Xeon(R) 3.16 Ghz processors, 

32.0 GB RAM and a 64-bit operating system used for processing, the processing time required to 

produce the 3-D SfM dense point cloud dataset was approximately fifty-three hours. A quality level 

of “high” means that four different processes were run to create the dense 3-D SfM point cloud 

resulting in points that were more accurate in terms of their location and RGB value (Verhoeven, 

16 
 



2011). Upon completion, the 3-D SfM dense point cloud dataset was converted from 

WGS84/NAVD88 to North Carolina State Plane coordinate system (NAD83) and exported as an LAS 

file. The conversion to the North Carolina State Plane system was done in order to match the 

coordinate system of the 3-D LiDAR point cloud dataset used for comparison purposes.  

Editing of the Dense 3-D SfM Point Cloud Dataset 

In order to identify and remove any points representing noise, the dense 3-D SfM point cloud 

dataset was edited using TerraScan® (http://www.terrasolid.com) software. The dense 3-D SfM point 

cloud dataset that was produced by the PhotoScan software had a number of points that were below 

the surface of the ground. This offset was made apparent by viewing the dense 3-D SfM point cloud 

dataset from a number of angles using the TerraScan software. (Setting the depth filtering parameter 

in PhotoScan to “mild” resulted in more subsurface noise points and hence required a greater amount 

of editing in TerraScan.) Points below an elevation value of 940 m above sea level were clearly below 

any landscape feature in the study area and were classified as noise and deleted from the point cloud. 

Isolated points existing greater than two meters from any other point were similarly deleted from the 

point cloud. Individual points clearly below any landscape feature that had not been deleted by the 

height filtering method were manually identified using cross section views and deleted. As an 

additional editing step the dense 3-D SfM point cloud dataset was cropped to only include areas that 

had been captured from all directions (north, east, west and south) in the photographs. Photographs 

were manually inspected in order to determine areas not captured from all directions. As a result the 

dense 3-D SfM point cloud dataset was cropped to include only areas meeting this multi-direction 

criterion.  

3-D LiDAR Point Cloud Dataset 

 The 3-D LiDAR point cloud dataset used for this study was collected in April, 2010 by Tuck 

Mapping Solutions of Big Stone Gap, Virgina. The vertical RMSE of the 3-D LiDAR point cloud 

dataset was 5 cm and the horizontal RMSE was 38 cm. The LiDAR sensor make and model was a 
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Riegl Q680i with a scan angle of 60 degrees. The 3-D LiDAR point cloud dataset was collected using 

a helicopter flying at an altitude of 700 meters and a speed of 70 knots. Tuck Mapping Solutions 

delivered both an all return LiDAR point cloud dataset containing earth, vegetation, and buildings and 

a bare earth LiDAR point cloud dataset. TerraScan software was used by the authors to further 

process the all return LiDAR point cloud dataset into a first return LiDAR point cloud dataset. SfM 

techniques cannot penetrate vegetation and therefore result in a 3-D point cloud dataset similar to a 

LiDAR first return point cloud. Using a first return 3-D LiDAR point cloud dataset allowed for valid 

comparisons to be made with the 3-D SfM point cloud dataset. Table 1 illustrates the fact that both 

the bare earth and the first return 3-D LiDAR datasets were highly dense and also provides density 

values for the 3-D SfM point cloud as a comparison.  

Table 1. LiDAR and SfM 3-D Point Cloud Dataset Characteristics   
3-D Point Cloud Dataset Average Point Density (m2) Average Point Spacing (cm) 
LiDAR Bare Earth 3.6 40.5 
LiDAR First Return 9.8 40.5 
SfM  1193 3.9 

Geo-referencing Correction 

 The geo-referencing error of the dense 3-D SfM point cloud dataset was estimated using the 

first return 3-D LiDAR point cloud dataset as a reference. The first return 3-D LiDAR point cloud 

dataset was chosen to be used as a reference as it was professionally produced and had a known level 

of geo-referencing error. This step was completed by using TerraScan software to determine the 

difference in location between picnic shelters in the LiDAR point cloud and picnic shelters in the SfM 

point cloud. The x, y and z coordinates of picnic shelter corners were first determined in the LiDAR 

point cloud and then also determined in the SfM point cloud. This resulted in eight points of 

comparison (four corners each for two picnic shelters). Based on the differences in coordinates 

between corresponding corners of picnic shelters in the LiDAR point cloud and the SfM point cloud, 

an estimate of the geo-referencing error of the SfM point cloud was made. It should be noted that this 

method of estimating geo-referencing error is not as robust as one with multiple reference locations 
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spread throughout the study area; however, due to limitations with this particular study it was the 

method available and provided a useful estimate of geo-referencing accuracy.  

 The average difference between the locations of picnic shelter corners in the 3-D SfM point 

cloud dataset and the 3-D Lidar point cloud dataset was found to be 26 cm horizontal and 2 cm in the 

z dimension. The 3-D SfM point cloud dataset appeared to be shifted slightly to the southeast with 

respect to the 3-D LiDAR point cloud dataset. The geo-referencing accuracy of the 3-D SfM point 

cloud dataset as determined from using the LiDAR point cloud and picnic shelters was within what 

would be considered reasonable given that the GeoXH is not considered a survey grade GPS receiver.    

Based on the geo-referencing error that was found in the previous step, a final pre-processing 

step was added whereby the dense 3-D SfM point cloud dataset was transformed slightly in order to 

minimize the geo-referencing error between the dense 3-D SfM point cloud dataset and the LiDAR 3-

D point cloud dataset. Sixteen cm was subtracted from the x coordinates and 21 cm was added to the 

y coordinates for all points in the dense 3-D SfM point cloud dataset. The z SfM coordinates were left 

unaltered due to the fact that differences between the SfM and the LiDAR 3-D point cloud datasets in 

the z dimension were minimal. 

Construction of Digital Elevation and Digital Height Models 

 In total, three 2.5-D digital surface feature elevation raster layers were created using the 

dense 3-D SfM point cloud dataset and the 3-D LiDAR point cloud datasets. The first 2.5-D DSM 

used only the dense 3-D SfM point cloud dataset. This product is hereafter referred to as the SfM 

DSM. Cell values in the SfM DSM were determined using the maximum elevation of any SfM point 

found in a cell area. Areas lacking SfM points were interpolated using a natural neighbor algorithm. 

To determine the resolutions of the DSM, the following equation was used (Tobler 1988, Turner et 

al., 2013):  

 

 𝑑 = √(𝐴/𝑛) (1) 
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(where d = average horizontal resolution, A = map area in square meters, and n equals the number of 

points). It was determined that a resolution as high as 2.9 cm was possible for the SfM DSM. 

However, when the SfM DSM was used for the additional step of shade modeling, a resolution of 2.9 

cm resulted in processing times of several hours. In the interest of efficiency, a coarser cell size of 15 

cm was used as the final resolution of the SfM DSM which allowed for the shade modeling process to 

be run in less than one hour.   

 The second 2.5-D surface model produced is referred to as the LiDAR/SfM-canopy height 

model (LIDAR/SfM CHM) and displayed heights of trees and the picnic shelters above ground level. 

As all cell values in the SfM DSM were in meters above sea level, the heights of individual objects 

were also in meters above sea level and it was impossible to determine how tall trees and buildings 

were. In order to overcome this limitation, a CHM was created to calculate the heights of objects 

above the ground rather than in height above sea level. To accomplish this, first a DEM was created 

from the bare earth 3-D LiDAR dataset. Based on the average spacing of the bare earth 3-D LiDAR 

dataset (40.5 cm), the resolution of the bare earth DEM was set to 150 cm. An SfM DSM with a 

matching resolution of 150 cm was also created using the 3-D SfM point cloud dataset. A resolution 

of 150 cm was chosen in order to facilitate picking out the tops of trees in the SfM/LiDAR DSM. Cell 

values in the SfM DSM were determined using the maximum elevation of any SfM point found in a 

cell area. Subtracting the LiDAR derived bare earth DEM from the SfM DSM resulted in the creation 

of SfM/LiDAR CHM.  

A third DSM was created to display differences between the SfM DSM derived from the 

dense 3-D SfM point cloud dataset and the first return LiDAR point cloud dataset. This DSM is 

referred to as the DSM-Diff and was created by subtracting a DSM based on the first return LiDAR 

point cloud dataset from the SfM DSM. An issue obfuscating the comparison between the dense 3-D 

SfM point cloud dataset and the first return LiDAR point cloud dataset was the fact that slight 

differences in the boundaries of the point cloud datasets resulted in DSMs with slightly different 
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boundaries and cells that did not line up perfectly. To overcome this problem, the extent of the dense 

3-D SfM point cloud dataset was edited to match the extent of the first return LiDAR point cloud 

dataset. This was achieved by thinning the dense 3-D SfM point cloud dataset to include only points 

existing within 3 horizontal centimeters of a LiDAR point. A Python script was created that thinned 

the dense 3-D SfM point cloud dataset by matching the x and y coordinates of LiDAR points with the 

x and y coordinates of SfM points. In order to be considered a match an SfM point had to fall within 3 

horizontal centimeters of a LiDAR point. Any non-matching SfM points were deleted. By matching 

SfM points to LiDAR points the boundaries of the point clouds were almost exactly the same and the 

resulting DSMs aligned perfectly. In addition, with these comparably dense data sets, representing the 

DSMs at the same resolution is possible and straightforward to calculate. 

Based on the average spacing of the first return LiDAR point cloud (42.6 cm) and thinned 3-

D SfM point cloud dataset (42.6 cm), the resolution of both DSMs were set to 90 cm. A resolution of 

90 cm was chosen in order minimize interpolation when creating the DSMs. By roughly doubling the 

average spacing of the both 3-D point cloud data sets, each cell of the DSMs contained on average 

two points.  The max value of any point falling within a cell area was used to determine the value of 

that cell. The final step in creating the DSM-Diff was to subtract the LiDAR DSM from the DSM 

based on the thinned 3-D SfM point cloud dataset.  

Diagnostic Methods 

Measurement of 3-D SfM Point Cloud Dataset Densities 

Three dimensional SfM point cloud dataset densities were calculated by randomly selecting 

thirty points located within each of the four land cover types (flat turf, deciduous forest, river, and 

conifer forest) and using a tool for calculating point density in TerraScan to determine the density at 

each point location. The size of the tools bounding box was set to one square meter. By locating the 

center of the bounding box over the randomly selected points, the SfM point cloud density at that 

location was reported by the TerraScan software.   
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Relative Vertical Error of Turf Areas 

 Thirty randomly selected plots with a radius of 90 cm were selected within flat turf areas. A 

radius of 90 cm was selected as it was the minimum plot size encompassed more than 30 LiDAR 

points and more than 30 SfM points allowing for valid statistics to be calculated. The mean and 

standard deviation of z values for SfM points located within each plot were calculated. Additionally, 

the RMSE of each plot was determined using the DSM-Diff. For this step the center point of each plot 

was located on the DSM-Diff and the corresponding cell value noted. These values were used as the 

basis of the RMSE for flat turf areas.  

Measurement of Picnic Shelters and Tree Heights 

The vertical and horizontal accuracies of the SFM point cloud were investigated by 

comparing field measured heights of objects in the study area against SfM measured heights of 

objects in the study area. Two picnic shelters in the study area were used for this purpose. As each of 

these structures were less than 270 cm high measuring their dimensions was straightforward and a 

measuring tape was used to find the distance from the ground to each corner and two roof peaks. In 

addition, the length of each side of the roof of the picnic shelters was also measured. For each picnic 

shelter this resulted in a total of six height and four horizontal measurements of centimeter level 

accuracy. 

SfM picnic shelter heights were determined from the SfM DSM using ArcMap software. As 

each picnic shelter was surrounded by open turf area it was possible to measure their height in the 

SfM DSM without using the LiDAR bare earth layer as a reference.   

Horizontal picnic shelter dimensions were determined from the dense 3-D SfM point cloud 

dataset using TerraScan software. This method was chosen in order to minimize inaccuracies 

associated with measuring horizontal distances in a raster layer. As the cell size in the SfM DSM was 

15 cm, the resolution was too coarse to measure picnic shelter roof lengths with centimeter accuracy. 
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However, working with the dense 3-D SfM point cloud dataset directly in TerraScan allowed for 

measuring picnic shelter roof lengths with a centimeter level of accuracy.  

In addition to picnic shelters, the heights of forty-one trees in the study were also measured 

using an inclinometer and measuring tape. Rather than selecting trees in a randomized fashion, only 

trees where the crown was clearly visible and the distance to the base could be accurately measured 

were used. This approach was chosen as it aided in ensuring that the measurement of tree heights was 

as accurate as possible. Location of individual trees was recorded using a GeoXH DGPS unit. In areas 

of dense forest GPS readings were taken at three locations in a triangular fashion around the base of 

the tree. This technique ensured that the correct tree could be picked out in the SfM/LiDAR CHM.  

Unlike the picnic shelters, most trees were surrounded by vegetation and it was not possible 

to determine their height from the SfM DSM. To overcome this problem the LiDAR/SfM CHM was 

used as the basis for determining SfM tree heights. First, measured tree locations were mapped on the 

LiDAR/SfM CHM using the recorded GPS data. As these points recorded the base of the tree, they 

were not an exact match with the highest point of the tree. The highest point of the tree was therefore 

determined by using the greatest cell value found closest to the GPS recorded tree base. In the 

deciduous forest area trees were spaced out and it was obvious which tree top matched a GPS 

recorded tree base. In the evergreen forest trees were dense and it was more challenging to pick out 

the correct tree top. However, the multiple GPS recordings taken for each evergreen tree made it 

possible to match field measured trees with trees in the LiDAR/SfM CHM layer. 

Shade Modeling 

 As a further step to investigate the accuracy of the SfM point cloud, the SfM DSM was used 

as a basis for predicting shade patterns cast by objects in the study area. Although measuring the 

heights of trees can validate that the highest points of objects are being accurately represented by the 

SfM process, the question still needs to be answered as to whether or not other aspects of objects, 

such as width and shape, are also being accurately reconstructed. Shade modeling can assist with this 
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question by providing insight into the 3-D shape of objects as captured by the dense 3-D SfM point 

cloud dataset. The logic underlying this process is that shade patterns directly reflect the shape of the 

objects casting the shade. Thus it is possible to infer from the shape of a shade pattern the 3-D shape 

of the associated object. As such, if shade patterns are accurately predicted using the SfM DSM then 

evidence is provided for the fact that the dense 3-D SfM point cloud has accurately reconstructed the  

shapes of objects found in the study area. 

In order to model shade patterns using the 2.5-D SfM DSM the GRASS GIS r.sunmask 

(http://grass.osgeo.org) module was used. This application employs the National Renewable Energy 

Labs (NREL) SOLPOS algorithm (http://rredc.nrel.gov/solar/codesandalgorithms/solpos) in 

conjunction with a ray tracing model and a DSM to determine areas receiving either shade or sun for 

a specific date and time. The output is a binary raster file with values of either sun or shade. This 

application was selected as its accuracy is supported by Ruiz-Arias et al. (2009), who found strong 

agreement between measured irradiation values and GRASS GIS r.sunmask predicted irradiation 

values under clear sky conditions (r2 = 0.92 – 0.93).  Additionally, Greenberg et al. (2012) found an 

overall accuracy of 92% when the GRASS GIS r.sunmask module and a LiDAR DSM were used to 

predict areas of shade in the San Joaquin River Delta. The high resolution 15 cm SfM DSM was used 

as input for the GRASS GIS r.sunmask module and the time and date set to match that of the original 

data collection time and date of August 27, 2014 11:30 am Eastern Standard Time. The GRASS GIS 

r.sunmask module assumes clear sky conditions when predicting shade which matched the clear sky 

conditions present during the data collection process.  

The accuracy of the shade patterns produced was assessed using two different approaches. 

The first method was an accuracy assessment that evaluated the SfM shade map against shaded areas 

represented on a reference ortho-image using 200 stratified random points in the study area. One 

hundred random points were selected from areas predicted to be shaded and one hundred random 

points were selected from areas predicted to be non-shaded. This distribution pattern ensured that the 
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results were not biased by the fact that a greater area of the study area was not shaded for the time 

being modeled. 

The reference ortho-image was produced using the PhotoScan software and was constructed 

from the same images that were used to create the dense 3-D SfM point cloud dataset. In addition, 

these images made an excellent reference from which to validate shade patterns as they were taken 

from a low altitude, and the shade patterns cast by trees and other objects were clearly visible.  

 All 200 points were evaluated using ArcMap software. First, a reference binary raster layer 

of shade was created by using the ArcMap Raster Algebra Tool to extract all cells with a brightness 

value of less than fifty from the ortho-image. The brightness value of fifty was determined by using a 

heuristic approach combined with visual inspections to create a reference raster shade layer matching 

shaded areas in the reference ortho-image. The ArcMap Resample tool was then used to set the 

resolution of the reference binary shade layer to 15 cm to match the resolution of the SfM shade map. 

A reference point was classified as shaded if it fell within a shaded pixel on the reference raster layer. 

Similarly, a reference point was classified as non-shaded if it fell outside of a shade pixel on the 

reference layer. With all 200 reference points classified as shade or non-shade the accuracy 

assessment was completed by comparing the value of reference points to the value of the sample 

points in the SfM shade map. In addition, shade accuracy was also assessed at 138 stratified random 

points located only in flat areas such as ground or river, rather than anywhere in the study area. 

Seventy-nine points were selected from flat shaded areas and seventy-nine points from flat non-

shaded areas. A reference point was classified as shaded if it fell within a shaded pixel on the 

reference raster layer. Similarly, a reference point was classified as non-shaded if it fell outside of a 

shade pixel on the reference layer. With all 138 reference points from flat areas classified as shade or 

non-shade the accuracy assessment was completed by comparing the value of reference points to the 

value of the sample points in the SfM shade map.  

The second assessment method compared SfM shade map patterns to reference shade patterns 

for selected individual trees and one picnic shelter. Only isolated trees located in open turf areas 
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where shade patterns could clearly be identified were used in this step. First, the binary raster shade 

reference layer created for the previous accuracy assessment method was used to create polygons of 

shade shapes for individual trees using the ArcMap “Raster to Polygon” tool. Similarly, the SfM 

shade map was used to create polygons of shade shapes for the same individual trees.  Symmetry 

between reference shade polygons and SfM shade map polygons was assessed by comparing the 

symmetric difference of their areas and shapes using the following equation (Colby and Dobson, 

2010; Guedot et al., 2004): 

 

 
Error(%) = �

Area(Poly) + Area(RefPoly) − 2xArea(Poly∩ RefPoly)
Area(RefPoly) � x 100 (2) 

 

where Poly is the polygon of the predicted shade shape and RefPoly is the polygon of the ortho-image 

shade shape. 

Results  

3-D SfM Point Cloud Dataset Characteristics 

 The final 3-D SFM point cloud covered an area of approximately 17,500 m2 and contained 

20,884,427 points with an average spacing of 3.9 cm and an average density of 1193 points/m2. All 

four land cover types were well represented although their point densities varied (Table 2). Flat turf 

areas had an average point density of 604 points/m2 and contained little noise as evidenced by a low 

standard deviation among z values. The average standard deviation among points for thirty samples of 

turf was 2.0 cm. The river bed had a similar point density with an average of 644 points per m2 and 

likewise contained little noise as evidenced by a standard deviation of 1.7 cm amongst points for 

thirty sample areas. Areas of evergreen and deciduous forest also appeared well constructed with 

average point densities of 1954 points/m2 and 1480 points/m2 respectively. Although the deciduous 

and conifer forests had greater point densities, points were less evenly distributed than in turf areas or 
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the river. Some areas of deep shadow were completely lacking in points which left several gaps in 

both the deciduous and conifer forest point clouds. For thirty sample areas in the deciduous forest, 

densities ranged from 635 points/m2 to 2744 points/m2. For thirty samples in the evergreen forest, 

densities ranged from 140 points/m2  to 4284 points/m2. In contrast, densities for thirty turf samples 

ranged from 566 points/m2 to 759 points/m2 and densities for thirty river samples ranged from 579 

points/m2 to 624 points/m2.  

Table 2. 3-D SfM Point Cloud Densities by Land Cover Type.  
Area Average Density 

(m2) 
Max Density 
(m2) 

Min Density 
(m2) 

Range 

Turf 604 759 566 193 
River 644 624 579 45 
Deciduous forest 1480 2744 635 2109 
Conifer forest 1954 4284 140 4144 

 

The very high density of the point cloud, in combination with RGB values determined from 

the images, created a final product that had a photographic like appearance (Figure 3). As such, the 

point cloud had a high level of detail and features such as medium sized rocks and sediment lines in 

the river were discernible. In Figure 3 the features that can be discerned, such as trees and shrubs are 

formed by the SfM points and the black areas are locations where there is no data due to a lack of 

points. Figure 3 illustrates various views of strictly the 3-D SfM point cloud dataset. In effect, a three 

dimensional photo was created with which a viewer could gather useful information such as the type 

of land cover, river morphology and the relative heights of vegetation.  
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Figure 3. Nadir (A and B) and oblique (C and D) view of the dense 3-D SfM point cloud dataset. 
Points are displayed by RGB value. 

RMSE of Vegetation And Buildings 

 The model fit between field measured tree heights and tree heights from the SfM point cloud 

was very good with r2 = .96 and an RMSE = 1.25 m (Figure 4). There was a slight tendency for SfM 

measured tree heights to be lower than field measured tree heights with 61% of SfM measured tree 

heights lower than corresponding field measured tree heights. This is likely due to the fact that SfM 

processes can have difficulty with identifying tall thin objects such as the highest branch forming the 

peak of a tree crown (Liesein et al., 2013). The result of missing the tallest branch would be a slightly 
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shorter tree in the 3-D SfM point cloud dataset. In contrast, the technique employed to field measure 

trees reliably picked out tall individual branches forming the highest point of a tree crown. 

 
Figure 4. SfM measured tree and building heights versus field measured tree and building heights. 

 

The fit between ground measured picnic shelter heights and SfM DSM picnic shelter heights 

was also good with a vertical RMSE = 9.6 cm. As a reference, the vertical RMSE between field 

measured picnic shelter heights and picnic shelter heights from the LiDAR-DSM was 7.1 cm. 

However, both picnic shelters were not represented by the SfM DSM with the same degree of 

accuracy. As can be seen in Table 3 there was consistently a higher level of height error associated 

with the north shelter than with the south shelter. The southern picnic shelter was represented more 

accurately as evidenced by a vertical RMSE = 8.85 cm. This is in contrast with the poorer results 

from the northern picnic shelter which had a vertical RMSE = 12.65 cm. 

 

 

29 
 



Table 3. SfM DSM Measured Picnic Shelter Heights versus Ground Measured Picnic Shelter 
Heights 

 
Field 

Height 
SfM Height 

North Shelter 
SfM North 

Shelter Error 
SfM Height 

South Shelter 
SfM South 

Shelter Error 
Corner 1 240 235 5 236 4 
Peak 1 280 260 20 274 6 
Corner 2 240 248 -8 246 -6 
Corner 3 240 228 12 247 -7 
Peak 2 280 266 14 276 4 
Corner 4 240 229 11 240 0 

 

Horizontal dimensions of picnic shelters as determined directly from the dense 3-D SfM point 

cloud dataset were approximately 3% larger than horizontal dimensions as measured in the field. 

Table 4 displays the differences between ground measured horizontal picnic shelter dimensions and 

3-D SfM point cloud dataset measured horizontal picnic shelter dimensions. Both picnic shelters were 

square with each side of a roof measuring 244 cm. The average length of picnic shelter sides as 

determined from the SfM point cloud was 252 cm.  The average length of a side for the southern 

shelter was more accurate than for the northern shelter, with average lengths of 248 cm and 256 cm 

respectively. The horizontal RMSE between field measured picnic shelter lengths and SfM measured 

picnic shelter lengths was 9.0 cm. Once again, the southern picnic shelter was represented more 

accurately with a horizontal RMSE = 4.5 cm while the northern picnic shelter had a horizontal RMSE 

= 12 cm. 

Table 4. 3-D SfM Point Cloud Measured Picnic Shelter Horizontal Dimensions versus Field 
Measured Picnic Shelter Horizontal Dimensions 

 Field Length 
(cm) 

SfM North 
Shelter (cm) 

SfM North Shelter 
Error (cm) 

SfM South 
Shelter (cm) 

Sfm South 
Shelter Error 

(cm) 
North 
Side 244 255 11 250 6 

East 
Side 244 254 10 245 1 

South 
Side 244 259 15 246 2 

West 
Side 244 255 11 250 6 

Average 244 256 11.75 248 3.75 
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The SfM DSM and the LiDAR DSM were moderately well matched with an overall RMSE = 

2.7 m (Table 5). Also seen in Table 5 is that the fit for areas of flat turf was better than for either areas 

of deciduous or conifer forest.  

Table 5. Root Mean Square Error Between 3-D SfM Point Cloud Dataset and 3-D LiDAR Point 
Cloud Dataset by Land Cover Type 

Area RMSE (m) 
Overall 2.7 
Turf 0.0094 
Deciduous forest 3.7 
Conifer forest 3.2 

 

Figure 5 presents an overview of the DSM-Diff. As can be seen in this figure, for the majority 

of the study area SfM DSM elevation values were greater than LiDAR DSM elevation values. This is 

an interesting result given that theoretically the difference between the SfM DSM and LiDAR DSM 

should be minimal and the image seen in Figure 5 should be an even light blue layer. But the 

differences between the SfM DSM and the LiDAR DSM are such that almost all features in the study 

area can be discerned. This suggests that the heights for all features as determined from the 3-D SfM 

point cloud dataset were different than heights as determined from the 3-D LiDAR point cloud 

dataset.  
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Figure 5. DSM-Diff created by subtracting the LiDAR DSM from the SfM DSM. 
 

Figure 6 presents a cross sectional view of the DSM-Diff where once again the tendency of 

the elevation values of the SfM DSM to be greater than the elevation values of the LiDAR DSM in 

forested areas can be seen. In Figure 6 it is possible to see the greater similarity between the SfM 

DSM and the LiDAR DSM for turf areas than for either deciduous or conifer forest. 
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Figure 6. Cross-sectional view comparing the Lidar DSM with the SfM DSM. 

Shade model 

 Using the SfM DSM in conjunction with the GRASS GIS r.sunmask module successfully 

produced a binary raster file of shade patterns (Figure 7). As can be seen in Figure 7, an initial visual 

inspection comparing predicted shade to shade as derived from the aerial photographs revealed that 

modeled shade followed expected patterns; most of the predicted shade shapes closely matched the 

associated objects casting the shade. That is to say, small round trees appropriately had smaller 

rounded shade patterns and angular objects, such as the picnic shelters, had square shaped shade 

patterns. 
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Figure 7. Binary raster layer of reference shade created using the ortho-image (A).  Binary raster 
layer of predicted shade created using the 3-D SfM DSM and GRASS GIS r.sunmask module (B).  

 

A confusion matrix (Congalton, 1991) produced with the two hundred randomly selected 

check points confirmed that the shade modeling process had resulted in an over prediction of shade in 

the study area. The overall accuracy of the shade map was 80% with a Kappa Coefficient = 60%. In 

addition to an overall accuracy the confusion matrix calculated measures for each class known as 

user’s (errors of omission) and producer’s (errors of commission) accuracy. User’s error refers to the 

probability that a given point classified as a specific category actually is that category. Producer’s 

error refers to the probability of a given point being correctly assigned to a class. For example, a 

producer’s accuracy = 100% for the shaded category means that 100% of all shaded areas were 

included in the shade category while a producer’s accuracy = 80% for the non-shaded category means 

that most, but not all non-shaded areas were classified as such. In this example the tendency of the 

producer is to classify areas as shaded when they are not resulting in the higher producer’s accuracy 
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for the shaded category. For the shade map produced in this study the non-shaded category had a 

user’s accuracy = 98% and a producer’s accuracy = 72%. The shade category had a user’s accuracy = 

62% and a producer’s accuracy = 97%.  

 A confusion matrix produced with the 136 check points randomly selected from flat turf areas 

and the riverbed found that shade was also over predicted in these areas, but to a lesser extent. Overall 

accuracy for these locations was 85% with a Kappa Coefficient = 71%. The non-shaded category had 

a user’s accuracy = 100% and a producer’s accuracy = 77% while the shade category had a user’s 

accuracy = 70% and a producer’s accuracy = 100%.   

Analysis of shade shapes for individually selected trees also confirmed that the shade 

modeling process had over predicted shade (Table 6). In Table 6 it can be seen that for the eleven 

trees and the one picnic shelter chosen, the area of predicted shade exceeded the area of reference 

shade by about 14%. Also seen in Table 6 is that predicted shade shapes for trees varied with some 

having a low percent symmetrical error while for others it was much higher.  (These results are 

discussed in greater detail in the discussion section.) A low percent symmetrical error suggests that 

two shapes are similar with high overlap while a high percent symmetrical error indicates that two 

shapes are different or have less overlap. The best was Tree 6, with 25% of predicted shade outside 

the area of reference shade while the worst was Tree 8 with 176% of predicted shade outside the area 

of reference shade (Table 6).  
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Table 6. Predicted Shade Versus Reference Shade for Selected Trees and Picnic Shelter 
 Predicted Shade 

(m2) 
Reference Shade 

(m2) 

Difference (m2) 
(Pred. Shade – 

Ref Shade) 

Percent 
Symmetrical 

Error 
Tree 1 12.2 12.3 -0.1 31 
Tree 2 13.2 11.6 1.6 35 
Tree 3 3.2 2.6 0.6 37 
Tree 4 19.4 17.9 1.5 25 
Tree 5 18.0 15.6 2.4 46 
Tree 6 11.0 10.9 0.1 25 
Tree 7 4.1 4.1 0 60 
Tree 8 8.6 3.8 4.8 176 
Tree 9 1.7 1.4 0.3 74 
Tree 10 4.1 2.7 1.4 98 
Tree 11 6.4 5.8 1.6 100 
Picnic Shelter 5.4 4.8 0.6 35 
Average 8.9 7.8 1.1 62 

Discussion 

Point Cloud Characteristics 

 As previously mentioned, the SfM point cloud produced was extremely dense with a very 

high number of points (1193 points/m2  and 3.9 cm spacing). When compared with previous research, 

this level is on the high end of the scale but within the range of what would be considered typical for 

3-D SfM point cloud datasets. For example, Westoby et al. (2012) found point densities of up to 1808 

points/m2 for a 3-D SfM point cloud dataset representing an area of bare earth, exposed rock, and 

vegetation. 

 Additionally, greater point densities were found in forested areas than in turf and water areas. 

This result is consistent with the work of Dandois and Ellis (2013) who similarly found that point 

cloud densities varied depending on land cover type with forested areas having higher point densities 

than areas of turf or water. However, Rosnell and Honkavara (2012) found less points were produced 

in forested areas compared to turf areas. These contrasting results may have occurred due to the use 

of different software packages.  PhotoScan was used for both this study and by Dandois and Ellis 

(2013) while Bae Systems SOCET SET and Microsoft’s Photosynth® were used by Rosnell and 

Honkavara (2012). How well different land cover types are represented by an SfM point cloud may 
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be dependent on the proprietary processing methods and algorithms used by different software 

packages. Thus selecting a software package proven to represent vegetation well may be an important 

consideration when using SfM methods for ecological modeling applications. 

Even with a high level of image overlap and high point density, there were still several 

locations in forested areas that had no points and left noticeable gaps in the point cloud. All such 

areas were locations cast in deep shadow by the angle of the sun. Failure of SfM methods to produce 

points in areas of deep shadow has been noted in previous studies and is a known issue with this 

technology.  

3-D SfM Point Cloud Dataset Accuracies 

Accuracy of Turf Areas 

 The study area encompassed several distinct types of land cover including turf, wetted river 

bed, and riparian deciduous and evergreen forest. Of these, flat turf areas were the least complex and 

therefore also the easiest land cover with which to evaluate the quality of the 3-D SfM point cloud 

dataset. In areas of flat turf the 3-D SfM point cloud dataset appeared to be accurate and of high 

quality as evidenced by both comparison to the LiDAR DSM and the analysis of 3-D SfM point cloud 

dataset z value statistics. Analysis of SfM points for the thirty turf  plots found the average per plot z 

value range to be 9.4 cm with a standard deviation of 2.0 cm. Analysis of LiDAR data for the same 

thirty sample turf areas found the average per plot z value range to be 10.4 cm with a standard 

deviation of 2.5 cm. Owing to the very flat nature of the turf area, SfM points located there should 

have been very close together in their z values. The lack of large deviations in z values suggests that 

little noise existed in the 3-D SfM point cloud dataset. Furthermore, the small range in z values for 

each sample area validates that these locations were in fact represented as close to flat in the 3-D SfM 

point cloud dataset. Additionally, the RMSE between the SfM DSM and LiDAR DSM for flat turf 

areas was low (9.4 cm). As such, the LiDAR point cloud (5 cm vertical RMSE) helped to validate that 

the 3-D SfM point cloud dataset accurately represented flat turf areas. Such results are consistent with 
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previous studies that have found high accuracy levels for 3-D SfM point cloud datasets representing 

flat areas without a high level of vegetative mass. Additionally, a vertical RMSE value of 9.4 cm 

qualifies for the United States Geological Surveys (USGS) Quality Level 3 Standards for Airborne 

LiDAR scanning data which require that the vertical RMSE  must be less than or equal to 20 cm. 

Although the vertical RMSE of the SfM DSM was 9.4 cm, the vertical accuracy of the 3-D LiDAR 

point cloud dataset used as reference was 5.0 cm meaning that the RMSE of the SfM DSM may have 

been up to 14.4 cm.  

Accuracy of Picnic Shelters 

 In addition to flat turf areas, picnic shelters provided a second convenient place to gauge the 

accuracy of the 3-D SfM point cloud dataset. Picnic shelters were approximately 270 cm high and 

easily measured with a measuring tape. As such, they provided distinct objects from which centimeter 

accuracy reference measurements could be taken. An initial visual inspection of the 3-D SfM point 

cloud dataset and the SfM DSM found that the picnic shelters were correctly represented as square 

with straight edges and 90 degree corners and there were no obvious distortions. In addition to the 

visual inspection, comparing field measurements to measurements taken from the SfM DSM 

confirmed that the picnic shelters were well represented by the 3-D SfM point cloud dataset. The low 

vertical and horizontal RMSE (9.6 cm and 9.0 cm respectively) values between picnic shelter heights 

as measured in the field and picnic shelter heights as measured in the SfM DSM would meet the 

standards for the USGS Quality Level 2 Airborne LiDAR scanning standards.  

Although both picnic shelters had good accuracies, it is interesting to note that each one was 

represented in the 3-D SfM point cloud dataset with a different degree of accuracy. The most obvious 

reason for such a difference is that the southern picnic shelter was brightly illuminated by full sun 

while the north picnic shelter was partially shaded.  
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Accuracy of Vegetation 

 Establishing the accuracy with which the 3-D SfM point cloud dataset represented vegetation 

was more difficult than for either turf areas or picnic shelters. Comparing the LiDAR DSM with the 

SfM DSM for areas of deciduous and conifer forest resulted in an RMSE = 3.7 and 3.2 m 

respectively. As a reference, Dandois and Ellis (2013) found an RMSE = 2.3 m when comparing 

LiDAR and SfM DSMs for an area of deciduous forest. However, in their study the LiDAR data and 

the SfM data were collected only days apart. One possible reason that the RMSE in this study was not 

lower is that the LiDAR point cloud was collected in April of 2012 and the SfM imagery was 

collected late in August of 2014. Vegetation in the study area was at a different stage of seasonal 

growth and almost three cycles of annual growth had occurred between the LiDAR data collection 

and the SfM data collection. The difference in foliage present in the study area is illustrated by the 

fact that in aerial images taken concurrently with the collection of the LiDAR data, four picnic 

shelters are evident in the study area while in the SfM imagery only two are visible and the remaining 

two are obscured by tree canopies. Furthermore, the same LiDAR aerial images reveal that a large 

number of trees in the study area had not yet leafed out, while in the SfM images all trees had full 

canopies 

 A better gauge of the accuracy with which vegetation was represented was the comparison 

between field measured tree heights and the LiDAR/SfM CHM measured tree heights. The high 

agreement between the two datasets (r2 = .96, RMSE = 1.25 m) strongly supports that the SfM 

methods employed in this study were able to accurately represent vegetation height. These results are 

consistent with studies by Dandois and Ellis (2013) and Lisein et al. (2013) that found field measured 

tree heights were positively correlated with SfM measured tree heights with values of r2 = 0.84 and r2 

= 0.91 respectively.  

In addition to height, it is also useful to understand how well a point cloud represents the 

overall shape of vegetation. The results of the shade modeling process provided evidence that 

vegetation was represented by the 3-D SfM point cloud dataset accurately, but in a simplified form. In 
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other words, trees were represented as simpler, more compact shapes with definite boundaries instead 

of complex shapes with amorphous boundaries.  

Additionally, the results of the shade modeling process suggest that the accuracy with which 

the SfM process represented the three dimensional shape of vegetation was affected by the physical 

characteristics of specific types of trees. There was a better match between predicted shade and 

reference shade when a tree was geometrically simple with a dense, symmetrical, rounded crown 

(Figure 8). As can be seen in Figure 8 (D-F), reference shade shape and predicted shade shape were 

similar for symmetrically simple trees. For such trees the percent error between actual and predicted 

shade shapes was around 30%, meaning that approximately 70% of predicted shade area was 

accurate. In Table 7 Trees 1 through 6 are in this geometrically simple category. In contrast, trees 

with more complex shapes and thinner canopies appeared to be rendered with less accuracy (Figure 

8). As can be seem in Figure 8 (A-C), reference shade and predicted shade were quite different for 

geometrically complex trees. In Table 7 Trees 7 through 11 are in this category. In such cases the 

SfM process resulted in a truncated shape that often omitted large individual branches extending out 

from the central area of the tree. This likely occurs due to a difficulty in establishing matching points 

between photographs for tall thin objects such as single branches (Lisein et al., 2013). For these trees 

the percent error between actual and predicted shade was on average around 92%. Such a result 

demonstrates that in these cases shade shape of the predicted shade was very different than the shape 

of the actual shade.   
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Figure 8. Apple tree (Malus Domestics) where shade was poorly predicted (A) and the same tree 
with reference shade polygon (B) and predicted shade polygon (C). Example of a Red Maple Trees 
(Acer Rubrum) where shade was predicted more accurately (D) with reference shade polygon (E) 
and predicted shade polygon (F). 

Shade Modeling Process 

When an accuracy assessment was used to evaluate shade across the entire study area instead 

of for individual trees, overall accuracies of 80 percent and 85 percent were found. Although the 

overall shade accuracies found by this study were reasonable, accuracies of the individual shade and 

non-shaded categories were respectively lower and higher. Users accuracies for the non-shaded 

category were very high (user’s accuracy = 97% and 100%), while user’s accuracies for the shade 

category were much lower (user’s accuracy = 52% and 70%) for both the entire study area and for flat 

surfaces. In contrast, producer’s accuracies for the non-shaded category were lower (producer’s 

accuracy = 72% and 77%), while producer’s accuracies for the shade category were much higher 

(producer’s accuracy = 97% and 100%) for both the entire study area and for flat surfaces. The high 
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producer’s accuracy for the shade category is evidence that almost 100% of shaded areas were 

classified as such. The over prediction of shade ensured that almost all shaded areas were included in 

the shade category thus resulting in the high shade category producer’s accuracy. However, the 

consequence of the over prediction of shade was that non-shaded areas were also erroneously 

included in the shade category thus resulting in the lower user’s accuracy. In effect, areas identified as 

non-shaded were rarely shaded but areas identified as shade were often non-shaded and the net result 

was an over prediction of shade.  

 As a comparison, Greenberg et al. (2012) used a LiDAR DSM to predict shade cast by 

vegetation and performed a similar accuracy assessment process. An overall accuracy of 92% was 

found. Not mentioned was whether or not shade was over or under estimated. One possible reason 

given for the inaccuracy found was that LiDAR may miss the outermost branches and leaves of 

vegetation resulting in an under representation of vegetative structure.  

For this study it is thought that the shade was over predicted for two reasons. The first is that 

the SfM DSM is not 3-D in nature but rather what is known as 2.5-D. As such, specific features, such 

as overhanging branches running parallel to the ground appear in the SfM DSM as a continuous 

vegetative mass spanning the distance from the ground to the height of the branch (Figure 9). This 

results in a large over prediction of shade for a given area as sunlight that would pass under the 

branch and illuminate the ground would be calculated as blocked by the erroneously constructed 

vegetation. This effect is well illustrated in Figure 9 where actual shade cast by an overhanging 

branch has a smaller area than predicted shade cast by the 2.5-D model. 
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Figure 9. Example of an area where shade was over predicted due to limits of the 2.5-D modeling 
process.   

 

 A second reason for the over prediction of shade is that all surfaces in the SfM DSM are 

treated as being opaque. In reality, vegetation is a highly complex structure of transparent, semi-

transparent and opaque materials. Resultantly, a large amount of the light shining on a tree passes 

through and creates a pattern that is a mix of sun and shade. In contrast, the completely opaque nature 
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of the SfM DSM blocks all light, thus creating a homogeneous shade pattern that does not recreate the 

sun speckled nature of true shadows.  

One last factor to be considered when interpreting the results of the shade assessment is that 

the open nature of the study area created a bias in favor of the non-shaded category. The majority of 

the non-shaded category was in wide open sections of turf and river with homogeneous solar 

illumination. In contrast, areas of the shade category were located in or close to vegetation with 

extremely complex, heterogeneous shade patterns. Resultantly, non-shaded checkpoints were likely to 

be located in areas where shade was easier to model while shade checkpoints were likely to be located 

in areas where shade was much harder to model.   

The results of the shade accuracy assessment suggest that the applicability of SfM methods 

for shade modeling is dependent on what surface area the shade is cast upon, and also on the type of 

vegetation found in the study area. In other words SfM methods may be appropriate for predicting 

shade cast upon the ground by tree species well represented by SfM methods while being 

inappropriate for predicting shade cast upon more complex surfaces or by tree species not well 

represented by SfM methods. For example, the presence of Apple Trees (Malus Domestics) with 

irregular and sparse canopies resulted in a gross over prediction of shade while Red Maple Trees 

(Acer Rubrum) with full, rounded canopies resulted in a more accurate shade prediction. Additionally, 

predicted shade was more accurate for flat areas such as turf and water (Overall accuracy = 85%) than 

for the study area as a whole (Overall accuracy = 80%). This is likely due to the fact that much of the 

study area was covered by forest canopy with its extremely complex and heterogeneous shade 

patterns. Predicting shade across the vegetative canopy was extremely challenging as the surface is 

highly irregular and semi-transparent to sunlight.  In contrast, modeling shade in flat turf areas and 

the river was simpler.   
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Conclusion   

A UAS system was successfully designed and utilized to collect a set of photographs appropriate 

for the purpose of constructing a 3-D point cloud dataset using SfM methods. From those 

photographs a 3-D point cloud was created that represented all land cover types (turf, river, deciduous 

and conifer forest) in the study area with an adequate density of points. Comparison of a DSM 

derived from the 3-D SfM point cloud dataset with a LiDAR derived DSM resulted in a good fit for 

turf areas and a moderate fit for areas of deciduous and conifer forest. The fit for turf areas was good 

enough to qualify for the United States Geological Surveys (USGS) Quality Level 3 Standards for 

Airborne LiDAR scanning data which require that the vertical RMSE must be less than or equal to 20 

cm. A high level of both vertical and horizontal accuracy was found when ground truth building 

heights and widths were compared with building heights and widths derived from the 3-D SfM point 

cloud dataset. Tree heights established from a LiDAR/SfM CHM were highly predictive (r2  = 0.96) 

of tree heights established through ground truth methods. The use of the GRASS GIS module 

r.sunmask to predict shade patterns using a DSM derived from the 3-D SfM point cloud data set 

found that horizontal and vertical accuracies of vegetation as represented by the DSM appeared to be 

dependent on the characteristics of vegetation with compact, round trees being represented more 

accurately than trees with complex shapes.  

 Overall, the results of this study support that SfM methods are affordable, highly mobile, and can 

be used for scientific studies of vegetation depending on the level of accuracy required and the type of 

vegetation involved. Although the results produced by this study were less accurate than those 

produced by professional ALS methods, they were also much less expensive with a one-time cost of 

only approximately $13,000 required. Additionally, the methods employed were highly mobile and 

able to be deployed on short notice at the discrepancy of the researcher using the data. This opens up 

the possibilities for capturing 3-D data at a high temporal resolution.  

One possible application of the SfM methods employed by this study is the documentation of 

changes to vegetation occurring at or above the meter level. For example, changes resulting from 
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human caused events, such as logging, or stochastic events such as forest fires or die-offs of trees 

from disease could be documented using SfM methods. Such events result in changes to canopy 

height on the order of several meters and could thus be documented using SfM methods with an error 

bound such as was found in this study. Another potential application of SfM methods is studies 

researching the effects of solar irradiation on riverine ecosystems. Despite the limitations of the 

methods employed, an overall accuracy level of 85% was found for shade predictions in the area of 

the river. Depending on the specific nature of the study, such an accuracy level may be acceptable.  

.  
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