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The provision of security on most of computer networks is based on the obtaining

and exchange of a unique key between the communicating parties. It is, however,

difficult to come up with a truly unique and random secret between two parties with

the help from physical randomness. In this work, we focus on the problem of unique

random number generation or derivation between users in online social networks.

As a result of rapid development of Internet, online social networks provide a vast

set of different user comments on different products and services. Such comments

can inherently reflect the mindset or cultural background of those people who wrote

them and it is possible to derive some unique randomness from such texts with some

maneuver. We select movie reviews as the sandbox for our investigation. To manage

textual content and search for certain hidden relations, the methodologies of text

matching are studied. By looking the similarities of movie reviews from different

users, we can refer insights into the cultural background and even predict future

preferences from past comments. We present all of our findings here to aspire further

investigation. We have investigated the correlation of movie reviews and studied the

values of different weight assignments to the sentence and word relation. According

to our results, synonym relations are the dominant positive association that impacts

correlation value. We calculate correlation between review sets containing multiple

reviews to avoid randomness. These correlations have then been used to evaluate and

derive a unique random number. We target at a single review, and put it together

with other reviews to obtain correlation values from different pairs of reviewers. Then

the correlation value is binning to a 1-bit binary number. Through such a simplified

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/345081266?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


extraction, a unique random number can be generated by repeating the process of

binning. Such unique random number is able to facilitate to secure information

exchanges between the users. In our future work, we will explore such correlations to

generate a practically usable unique secret for secret keys.
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CHAPTER I

INTRODUCTION

The provision of security on most of computer networks is based on the obtaining

and exchange of a unique key between the communicating parties. Such unique keys

usually require the equipment of random number generation. The aim of random

number generation is to produce a number or a sequence of numbers which do not

indicate any predictable pattern. In this way, every generated number is indepen-

dent from its precedent [17]. The random numbers are classified into "true" random

numbers and pseudo-random numbers. "True" random numbers are generated based

upon physical phenomenon such as the noise. while pseudo-random numbers are usu-

ally generated from computer programming [10]. In our work, we aim to generate

random numbers base on the correlation value between two specific movie reviews.

We the use the generated unique random number to identify movie reviewers who

have something in common of their culture background.

1.1 Development of Movie Industry on Internet

Movie serves as a media of information broadcast, a carrier of entertainment and

also a repository of knowledge. It impacts people’s life in a variety of ways. There

was a survey of visitors to Notting Hill in London, the location of the famous movie

"Notting Hill" by Hugh Grant and Julia Roberts [20]. The result indicated that

most visitors to Notting Hill had a relatively clear image about the destination. The

majority of those visitors also planned to travel to other film locations in the future.

It is quite persuasive that movie does have some positive impacts on tourism. In
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addition, movie clips have been proved to be effective in improving education in the

effective domain by Blasco et al. [5]. When discussing why they chose movie as the

methodology, they stated that because movie is familiar, evocative, and nonthreaten-

ing for students. The experiment on movie clip teaching methodology indicated that

it is well suited to the students who were immersed in the audiovisual culture. The

students who need to learn effective and cognitive dimensions achieved significant

high levels of motivation and involvement. Therefore, movie is also considered as one

of the powerful resources which promotes reflective attitudes and provides learning

linked to experience. Important as movie is, it becomes valuable for people to explore

more about it from different aspect.

Due to the surprisingly rapid development of Internet, more and more human ac-

tivities are moving from real society to this newly built virtual community. Obtaining

newest information all over the world, studying profound knowledge from a large scale

of fields and enjoying entertainment through various platforms are getting easier for

everyone connected to Internet. Traditionally, people watch movie either in cinema or

on television. However, as Internet has become the most crucial part of people’s daily

life, more and more movies become available through the Internet and people discuss

their opinions of such movies. One of most famous platforms for online streaming is

likely the Netflix. It provides not only movies but also all kinds of TV shows. The

market value of Netflix was exposed to be about $1.48 billions at the year of 2006,

and customers of Netflix spend around $40 on average [11]. By the time of 2009,

Netflix hosted upwards of 100,000 titles on DVD and the number of subscribers is

over 10 million [26]. Google play and Apple store are also ranked as the most popular

online movie provider behind Netflix. Besides, there are a large number of websites
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which provides either online streaming or downloading. Compared to the settings in

a theater, watching movie on computer, tablet or even cellphone has turned into a

new norm in nowadays fast-pace life.

1.2 Importance of Movie Review

It is interesting to see that almost every website not only includes the description of

movies but also provides a place for users to leave reviews or comments. Online review

is proved to have significant impact on movie’s box office revenue by some studies [7].

Thus, it becomes valuable to obtain more information of the consumers. The problem

is how to collect or retrieve as much information as possible in an effective way. In

social networks, such as Facebook and Twitter, user information is easier to collect.

Detailed profile for a specific user is usually exposed for everyone, or at least part of

the users, on the Internet. In addition, their activities, including webpages that they

liked, games that they played or people whom they followed, all contribute to identify

themselves more precisely. However, to retrieve user information on movie website

is another story. On most websites, the only useful pieces of information are the

reviews. It becomes significantly more difficult to retrieve the correct information for

a specific user because of the limited information on user profile and lack of evident

activity which implies the background of the user.

1.3 Text Matching Methodologies

To manipulate movie review for secret generation could be considered as a problem

of text matching. No need to mention, search engines, leading by Google, are the

most authoritative expertise for the domain of text matching. By typing fewest pieces

of information, the powerful search engine is able to crawl throughout the Internet
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and hunt for what the exact information the users might be looking for [23]. To

a search engine, relevance is not only about finding the Web page with the right

words. But back to the early years, search engines did not do much more than

this simplistic step. As a consequence, the search results were a limit number of

value. Over the years, however, hundreds of factors have been added to determine

the relevance, thus more accurate results are able to achieve. In recent years, the

development of search engine also contributes the distribution of advertisement, which

is much more accurate and relevant than the days when search engine just emerged.

In social networks, Facebook and Twitter also have done overwhelmingly excellent

job on advertising and recommendation of friends, public IDs, software and games

using their tremendous user dataset. Another successful example of text matching

is job searching websites [4], such as Indeed and Monster. They are able to match

every detail displays on the resume, including skills and locations, and search the

suitable positions or candidates for their users. With the development of technology

in this field, talents have higher probability to find suitable positions and make better

use of what they master. Moreover, text matching is frequently and widely used in

academic. The best example is the softwares for plagiarism detection. Copying the

content directly or just making few changes of words is easy to be detected by those

softwares.

There are various text matching algorithms for all these methods of information

manipulation and delivery. Famous as TF–IDF(term frequency–inverse document fre-

quency) serves as the fundamental of other derived algorithms. The TF–IDF scheme

is usually used to reflect the importance of a specific term in certain textual content

by whitening each of the term. We will discuss TF–IDF as well as other schemes in
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detail in next chapter. To manage textual content and search for certain hidden re-

lations, the methodologies of text matching from all of the previous mentioned areas

can be referred to.

1.4 Network Security

The flourish of information retrieval and exchange inevitably raised a number

of issues. Network security is certainly one of them. Network security is all about

processing, transmitting and storing data in a secure approach so that it keeps unau-

thorized users away from manipulating the data illegally. There are mainly four

aspects that should be concerned, i.e. secrecy, authentication, non repudiation and

integrity control. Secrecy is to avoid information leaking caused by unauthorized ac-

tions, such as the spread of private information through some unprotected websites.

Authentication is to issue permission to identify users so that the communication can

be established with exchange of confidential information. Non repudiation is to keep

signatures of users from being misused. And Integrity control is to protect online busi-

ness, such as banking and online transaction [13]. Cryptography is the infrastructure

for most network security issues. The mechanism of cryptography is to transform and

encode the data so that it is not recognizable by unauthorized user or organizations

during transmission. At the destination, the same cryptography mechanism is used to

decode and convert data into a readable format. Cryptography becomes increasingly

indispensable during recent years as human activities with confidential information

exchange have frequently taken place on Internet.

Such cryptographic maneuvers usually require a secret key since Internet is a

expansive place, every piece of information can travel to the corners of networks. It is

thus necessary to build up a mechanism so that texts information can be exchanged
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inexplicably. The provision of security on most of computer networks is based on the

generation and exchange of a unique key between the communicating parties. A key

used during data transmission contains information which is known only by the sender

and receiver. The modern usage of cryptographic key is divided into two categories,

one is symmetric key and the other is public key. In symmetric key, the keys used for

encryption and decryption are only accessible to the sender and receiver. Encryption

key is set visible to both sender and receiver, but decryption key need to be obtained

by computation on encryption key. As for public key, it can be inferred from the

name that the key used for encryption is visible to public. However, the information

used to calculate decryption key is protected and only accessible to the receiver [14].

It is however difficult to come up with a truly unique and random secret between

two parties. In the field of computer science, the key usage is used as a methodology of

determination for certificate restriction. Key usage defines the number of operations

that are needed for a certificate. To apply a similar method to the algorithm we

try to design, we use a unique random number to signal the correlation or similarity

between two texts. The unique random number is generated based on a vector of

correlation values between two users. By calculating the similarity, users have high

correlation value in history will obtain the same unique number when they write

another new review. This methodology certainly prevent the users from exchange

information directly and thus protect the user privacy from leaking.

In this work, we focus on the problem of unique random number generation or

derivation between users in online social networks. As a result, a user should be able

to guess what the other user will be writing if given a certain number of reviews. We

are trying to find a similar yet different approach to better serve the requirements
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for our target. The limit of information that can be retrieved increases difficulty to

accomplish the result.

1.5 Document Organization

The following paper is divided into four chapters followed by the references and

the appendix.

• Chapter II introduces the related work.

• Chapter III explains our schema and solution in detail.

• Chapter IV shows the simulations results to evaluate our work.

• Chapter V summarizes our work and discuss future works.
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CHAPTER II

RELATED WORK

While there are many techniques related to what we are focusing on in this work,

our work is highly related to text matching. Other areas such as network security

and graph theory have been briefly discussed in Chapter I.

The technique of text matching is considered far more important in recent years.

Thanks to the emergence of search engine and social networks, abundance of algo-

rithms are out there. These have indeed inspired our work here. In the process of

information retrieval, the traditional way is to compute the similarity between the

targeted texts and given queries (in the case of queries). Several models have already

been developed, including reverse document model, vector space model, and latent

semantic model [28]. In this chapter, we discuss some of the algorithms.

2.1 Term Frequency–Inverse Document Frequency

Term frequency–inverse document frequency, also known as TF–IDF, is widely

used for information retrieval and text mining. Term frequency is simply the times

of a word that appears in a collection or corpus. And inverse document frequency is

the methodology to assign each word with a weight so that the impact of commonly

used words, such as "the", is diminished. TF–IDF is the product of term frequency

and inverse document frequency. There are variants of both TF and IDF weights in

different schemes. For TF weighting scheme, there exists binary, raw frequency, log

normalization, double normalization 0.5 and double normalization K. The simplest

choice is to use the raw frequency of a given word in the content. For IDF weighting
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scheme, there exits unary, inverse frequency, inverse frequency smooth, inverse fre-

quency max and probabilistic inverse frequency. The inverse document frequency is

used for indicating whether a word repeats frequently or rarely across all the docu-

ments. Then the TF–IDF is calculated as:

tfidf(t, d,D) = tf(t, d) · idf(t,D) (2.1)

Here the IDF is calculated as:

idf(t,D) = log
N

|{d ∈ D : t ∈ d}|
(2.2)

In Equation (2.2), N is number of documents in the corpus in total, t represents the

target word, d represents the chosen document, and D is the corpus (i.e., the large

structured set of texts that are used for statistical analysis, hypothesis testing, and

frequency checking). The denominator represents the number of documents which

contain word t. Then, IDF is calculated as the logarithm of the quotient.

TF is simply calculated as the frequency of the target word t appears in document

d.

TF–IDF has high efficiency on matching the words in a specific query to doc-

uments which are relevant to the given query [19]. Although it is a relatively old

scheme, its robustness and effectiveness still make it a basic factor for building other

more advanced algorithms. In the year of 2007, a new algorithm developed based on

TF–IDF was published [24]. Tata and Patel discussed why estimating the selectivity

of cosine similarity predicates is a very difficult problem, and proposed a solution
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based on careful empirical observations about the distribution of the dot product of

typical queries. They demonstrated that cosine similarity perform surprisingly accu-

rate for measuring similarity between two strings. Having evaluation of the algorithm

over three different dataset, it hits over 40 percent of accuracy of the actual selectiv-

ity. Their work also showed that space efficient and time efficient are both achieved

by the proposed approach.

Berger et al. [2] also published a paper which examined the performance of sev-

eral algorithms derived from TF–IDF on answer-finding, including adaptive TF–IDF,

query expansion, statistical translation and Latent variable models. The adaptive

TF–IDF adjusts IDF factors by hill-climbing for each word so that the correspond-

ing answer is closer to its question. And in query expansion, they try to investigate

and build relationship between questions and answers by generating a mapping from

both the terms inside queries and that of responses. Statistical translation applies

"translation model" to a query-response system. For example, words indicating loca-

tions are translated with high probability into a query word "where". At last, Latent

variable models is a combination of several different models. The authors imported

factored model and translation model to improve performance on question-answering

systems. To achieve the result of their experiment, they imported two dataset: a

collection of Usenet FAQs and a set of customer–response dialogues. All of the four

algorithms they presented performed better than the traditional TF–IDF on the task

of retrieving the correct answer to a question from a large candidate answer set. The

techniques are diverse, and they are able to be unified by exploiting the availability of

a training corpus of question and answer pairs. They also concluded the techniques
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based on statistical translation and aspect models performed better on bridging the

"lexical chasm" between questions and answers than the TF–IDF techniques.

Ramos claimed in the paper [19] in 2003 that TF–IDF is a simple and efficient

algorithm for matching a query to the desired documents. From the data he col-

lected, results demonstrated that TF–IDF is capable of retrieving the highly relevant

information for a specific query. Moreover, since TF–IDF scheme is relatively easy to

program, it has the potential to become the ideal fundamental for more complicated

and comprehensive algorithms. However, TF–IDF does have its limitations. That

is, it does a weak job when it comes to synonyms. For example, if a user wants to

find information about "priest", according to Berger and Lafferty [3], TF-IDF will

skip relevant documents which are using a synonym such as "reverend". Indeed, syn-

onyms in movie reviews would introduce a lot of issues for our research, as we will

demonstrate in the rest of the work.

2.2 Latent Semantic Analysis

LSA, the abbreviation of Latent Semantic Analysis, is a theory for extracting

and representing the contextual–usage meaning of words by statistical computations

applied to a large corpus of text [15]. This technique only takes the raw text which

is parsed into words and meaningful passages as its input [16]. It runs without any

humanly defined concepts or tools related to semantics. It divides text into different

parts and represents the text in a matrix. In the matrix, each row stands for a

unique word and each column contains a text passage or some other context. The

frequency of a unique word from a given passage or context will be recorded into the

corresponding cell. In addition, cell entries are also weighted by a function, which

computes the importance of the unique word as well as the degree to which the word
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type carries information in the domain of discourse in general. Lastly, singular value

decomposition will be applied to the constructed matrix. In the article [16], LSA was

proven to have the ability to achieve important components of the lexical and passage

meanings by humans. However, it is also found that LSA lacks the capability to make

use of some complex information with details and order.

In article [12], Hofmann developed a new approach called Probabilistic Latent

Semantic Indexing. By implementing with the Expectation Maximization algorithm,

the new method achieves the ability to handle synonyms and polysemous. In the

experiment, the performance of PLSI was compared with the standard term matching

method of term frequency, term frequency–inverse document frequency as well as

Latent Semantic Indexing. Four medium size datasets, including 1033, 1400, 3204

and 1460 documents respectively, were used to conduct the experiment. Results

showed that PLSI outperformed other methodologies by significant gain. PLSI takes

advantage of statistic standard methods for model fitting, overfitting control and

model combination. However, PLSI still has the shortcoming as LSA does, that is

lack of the capability to use detailed and ordered information.

2.3 Vector Space Model

The vector space model is used to represent text documents into vectors. It is

usually used in the context of information retrieval. To construct a vector space, the

first step is classifying the importance of each term within the documents and choose

the terms which will best represent the content of each document. Both documents

and index terms build the basic vectors in a linear space. Therefore the space is

determined by both the terms and the documents. The occurrence of a term in a

document is stored in the vectors. The queries are also represented as basic vectors.

12



When comparing the query to the documents, the vectors representing the queries and

documents are in turn relatively measured in the vector space. Wong and Raghaven

proposed some important properties of the vector space in 1984 [27]:

a) The ability to add any two elements of the system to obtain a new
element of the system

b) The ability to multiply any element by a real number
c) The vectors obey several basic algebraic rules

Based on VSM, Becker and Kuropka [1] proposed a new algorithm called Topic–based

Vector Space Model (TVSM). This approach assume the dependence of terms by im-

plementing stopword–list, stemming and thesaurus. This makes it possible to research

the dependencies among those algorithms. Also, it provided a potential methodology

to optimize natural language processing models.

Another article [22] proposed ConfWeight to solve the Text Categorization prob-

lems. It is based on VSM as well. The experiment was conducted by using following

text collections, Reuters–21578, Ohsumed and Reuters Corpus Vol. 1. As concluded

in the article, ConfWeight outperforms both TF–IDF and GainRatio by gaining a

significant improvement in terms of accuracy. Additionally, the authors claimed that

ConfWeight also has the ability to achieve better performance even if there is no

feature selection.

The shortcoming of VSM is that it assumes independence relationship among

terms, the lack of term relationship may lead to the loss of some hidden information.

Although Becker and Kuropka’s method may have solve the problem, term–to–term

relationship still cannot be preserved.

13



2.4 Other Algorithms

Similarly, an algorithm for text similarity computation based on hamming distance

was proposed by Zhong et al. [28]. Hamming distance is represented by the number

of different characters in two strings. Here texts are transformed into corresponding

vectors, and it is the vectors that are used for hamming distance calculation. Another

algorithm for text similarity detection is SimHash. Introduced by Sadowski and Levin

[21], the new hash function has the opposite goal to the common hash function. It

produces the same or similar hash key for the texts with similar content, then the

difference between two texts can be calculated by computing the distance between

those two hash keys. Unfortunately, the author claimed that they only tested the

method in a test set of 10000 files due to the limitation of time. Thus, its performance

on large dataset is unclear.

Though the algorithms discussed above reveal different aspects to deal with text

similarity problem, none has tried to use such computed results to generate unique

random numbers. This is indeed the goal of this work. To reach our ultimate aim, a

new approach based on cosine similarity will be introduced in next section.
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CHAPTER III

SCHEME DESIGN

3.1 Overview

In this chapter, we introduce a new algorithm for text matching with the goal

of unique random number generation. The algorithm is built upon the hypothesis

that the correlation value of two movie reviews from two culturally related reviewers

is higher than two random reviewers. Language usage can be diverse from different

regions. People from different countries express themselves differently even if they

share the same native language, such people from U.S.A. and England. The difference

is even greater between native and non–native speakers. Boroditsky stated in [6] that

one’s native language plays a significant important role in shaping habitual thought.

Since we are not able to obtain any information about the cultural background of a

movie reviewer, the following approaches will facilitate to demonstrate our hypothesis.

One of the approach is to allow two reviewers to generate a unique secret without

explicit exchange of any information other than the movie reviews. An intermediate

goal can be to ask them to pick the same number between 0 and Z = 1000. In another

way, we can assume that Reviewer A and B share N number of reviews and then each

of them writes a new review on a movie. They can keep the new review secret, but

then they can guess what the other reviewer writes about the new movie based on

their review history.
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3.2 Text Processing

Different from the algorithms which have been discussed in chapter II, we intend

to construct an algorithm that has the ability to obtain all the relationships among

words and phrases. Before stepping into more detail about how to preserve the

relationships, we first introduce two powerful tools which facilitate to text process.

ReVerb

ReVerb is a open source information extraction software that identifies and ex-

tracts binary relationships automatically from given texts. It extracts information

which cannot specify the target relations in advance [9]. ReVerb first identifies the

relation phrases from target text that satisfy the syntactic and lexical constraints.

Base on the results, it matches a pair of noun-phrase arguments to each of the result-

ing relation phrase. The final extractions are assigned with a confidence score using

a logistic regression classifier.

ReVerb takes a POS–tagged and NP–chunked sentence and returns a set of (x, r, y)

extraction triples. POS (Part–Of–Speech) tagger is a software that reads text and

assigns parts of speech to each word, such as noun, verb, adjective, etc. [25]. Given

an input sentence s, ReVerb uses the following extraction algorithm:

Relation Extraction: For each verb v in s, find the longest sequence
of words rv such that (1)rv starts at v, (2)rv satisfies the syntactic con-
straint, and (3)rv satisfies the lexical constraint. If any pair of matches
are adjacent or overlap in s, merge them into a single match.

Argument Extraction: For each relation phrase r identified in relation
extraction, find the nearest noun phrase x to the left of r in s such that x
is not a relative pronoun, WHO-adverb, or existential "there". Find the
nearest noun phrase y to the right of r in s. If such an (x, y) pair could
be found, return (x, r, y) as an extraction [8].
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To better elaborate how ReVerb works, we take an example of the extraction

algorithm in action, consider the following input sentence:

Jim is addicted to Java, which is a programming language.

The first step identifies three relation phrases that satisfy the syntactic and lexical

constraints: is, addicted to, and is. The first two phrases are adjacent in the sentence,

so they are merged into the single relation phrase is addicted to. The second step

searches left and right of each relation phrase to find an argument pair. For is addicted

to, the nearest NPs are (Jim, Java). For is, the extractor skips over the NP which

and chooses the argument pair (Java, programming language). Then the results are:

result1: (Jim, is addicted to, Java)
result2: (Java, is, programming language)

As shown in above example, texts are divided into short extractions in the form

of 3–tuple. By analyzing the extractions from ReVerb, a positive consequence that

each extraction constructs a complete and meaningful sentence is achieved. Thus, we

are able to eliminate redundant information as well as preserve the meaning of the

original text.

WordNet

Our goal is to determine whether two specific movie reviewers have something

in common about their cultural background. Only compare the original meaning of

the movie review can hardly be sufficient. Since reviewers are likely to use different

semantic sentences to express their ideas, a tool which deals with synonym becomes

a key component to implement our algorithm. Because every sentence from texts is

the combination of different meaningful words, the system requires the information
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about the set of meaningful words to process natural language. This information

is usually retrieved by human from traditional dictionaries, but there are more and

more dictionaries designed for machine available recently. WordNet is one of them

which provides a combination of traditional lexicographic information and modern

computing. It is an online lexical database designed for use under program control.

The speech parts nouns, verbs, adjectives and adverbs of English are classified into

different sets of synonyms. The synonym sets are connected by semantic relations.

The semantic relations in WordNet include two important advantages. First, they

apply to common used English broadly. Second, they are familiar to most users and

easy to understand, even for users who have no professional knowledge to linguistics.

Table 1 illustrates all the semantic relations in WordNet and some examples for each

of them [18].
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Table 1. Semantic Relations in WordNet

Semantic Relation Syntactic Category Examples

Synonym

(similar)

Noun, Verb,

Adjective, Adverb

pipe, tube

rise, ascend

sad, unhappy

rapidly, speedily

Antonymy

(opposite)

Adjective, Adverb

(Noun, Verb)

wet, dry

powerfuly, powerless

friendly, unfriendly

rapidly, slowly

Hyponymy

(subordinate)

Noun sugar maple, maple

maple, tree

tree, plant

Meronymy

(part)

Noun brim, hat

gin, martini

ship, fleet

Troponomy

(manner)

Verb march, walk

whisper, speak

Entailment Verb drive, ride

divorce, marry

With the powerful semantic relation sets in WordNet, our system will become

practicable not only to preserve relations of words and phrases from texts but also to

build new relations from the original ones.
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3.3 Convert Texts into Matrices

In this section, we will elaborate the crucial part of our novel method. As stated

in previous sections, the fundamental mechanism is to keep all the semantic relations

from two given movie reviews by ReVerb, and introduce new semantic relations based

upon original ones by exploring the hidden information using WordNet. Then, we

transform texts into matrices, and illustrate all the semantic relations obtained.

The intention for transforming texts into matrices is to generate semantic relation

mathematically so that correlations are computable. To achieve two comparable

matrices, we need all resulting words from previous processing of both movie reviews.

Assume that we have two reviews r1 and r2, the word sets for each review are denoted

as ws1 = {w11, w12, ..., w1m1} and ws2 = {w21, w22, ..., w2m2}. The set of all words

from both reviews is then computed by the intersection of ws1 and ws2, denoted by

wsfull = {w1, w2, ..., wn}. The resulting matrix is shaped as in Table 2.

Table 2. Word Matrices Built from Two Reviews



w1 w2 w3 w4 . . . wn

w1 n11 n12 n13 n14 . . . n1n

w2 n21 n22 n23 n24 . . . n2n

w3 n31 n32 n33 n34 . . . n3n

w4 n41 n42 n43 n44 . . . n4n

...
...

...
...

...
...

...

wn nn1 nn2 nn3 nn4 . . . nnn
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Unlike other algorithms as discussed in Chapter II, we assign a value, called "la-

bel", to each cell indicating the relation between two words other than the most used

"frequency". We use the example extracted from ReVerb, "Reporter Maria; like; car",

to elaborate how our labeling system works. And here we assume that the synonyms

retrieved for "reporter" and "car" are "journalist" and "vehicle" respectively. The

relations are labeled as "CN_SYNONYMS", "CN_INTRA_PHRASE", "CN_IN-

TER_PHRASE" and "CN_SYNONYMS_INTER_PHRASE". "CN_SYNONYMS"

is the relation between a word and all its synonyms produced by WordNet. "CN_-

INTRA_PHRASE" and "CN_INTER_PHRASE" represent the relation of words

within a single phrase and the relation of words from different phrases respectively. At

last, "CN_SYNONYMS_INTER_PHRASE" connects the synonyms of two words

from different phrases. Thus, from the previous example, the words "reporter" and

"journalist" are connected by "CN_SYNONYMS"; "reporter" and "Maria" are con-

nected by "CN_INTRA_PHRASE"; "Maria" and "like" are connected by "CN_IN-

TER_PHRASE"; "journalist" and "vehicle" are connected by "CN_SYNONYMS_-

INTER_PHRASE". Table 2 illustrates the matrix of connection labels we are build-

ing, while Table 3 illustrates how this labeling system works.
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Table 3. Labeling System for Word Relations

Label Word Relation Example

CN_SYNONYMS Word and its synonyms reporter-journalist

CN_INTRA_PHRASE Words within same

phrase

reporter-Maria

CN_INTER_PHRASE Words from different

phrases

Maria-like

CN_SYNONYMS_

INTER_PHRASE

Synonyms of words

from different phrases

journalist-vehicle

3.4 Correlation Computation Using Cosine Similarity

Having generated the desired matrices, we step into the next phase which is to

calculate the similarity. In our work, cosine similarity is used for this specific task.

Cosine similarity is a measure of similarity between two vectors of an inner product

space that measures the cosine of the angle between them. It is a judgment of

orientation which leaves out the influence of magnitude. It is particularly important

that these bounds apply for any number of dimensions. Given two vectors A and B,

the cosine similarity is represented as:

cos(θ) =
A ·B
‖A‖‖B‖

=

∑n
i=1Ai ·Bi√∑n

i=1(Ai)2 ·
√∑n

i=1(Bi)2
(3.1)

22



There are two key factors which impact the choice of our similarity computation

algorithm. One is the simplicity. Since cosine similarity takes in two vectors and

calculates the inner product of them to achieve the similarity value between them,

we merely need to transform the matrices into vectors to serve as the input of cosine

similarity. Also, the inner product is trivial in terms of programming, which is likely

to reduce the time consumption for program runtime. The other important factor is,

cosine similarity abstract out the magnitude of given vectors. That is, it takes out

the influence of the document length, thus only the value inside the vector matters.

In our case, we only care about half of the resulting matrix since it is sym-

metric by diagonal. Thus, we consider to transform the right top half of each

matrix into a vector. Half of the matrix we used for transforming is shown as

in Table 4. By this method, we obtain the resulting vectors in the form of v =

{n12, n13, n23, n14, n24, n34, n15, ..., n(n−1)n}.

Table 4. Half of Word Matrices Built from Two Reviews



w1 w2 w3 w4 . . . wn

w1 n12 n13 n14 . . . n1n

w2 n23 n24 . . . n2n

w3 n34 . . . n3n

w4
. . . ...

... n(n−1)n

wn
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The algorithm is now completed by equipping all these tools and methodologies

introduced in this section. We will test the functionality by using real data to analyze

the applicability in Chapter IV.
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CHAPTER IV

EXPERIMENTATION AND EVALUATION

4.1 Data Collection and Processing

5%
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4%

8%

16%

58%

 

 200 more
100~200
80~100
60~80
40~60
20~40

Figure 1. A Pie Graph of Reviewer Groups. The graph illustrates the number of
reviewers from each group. Reviewers are divided into groups by the number of
reviews they wrote. The review number of each group are shown as in the legend.

In order to ensure both accuracy and practicability of the evaluation, all the movie

reviews in our dataset are retrieved and collected from websites through Internet.

From the dataset, no personal information other than user ID can be obtained. Thus,

data processing and manipulation are concentrated on the review content only. There

are approximately 2 million reviews from 889,036 reviewers in total after we eliminated
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duplicate copied. However, among those reviews, only 7,201 of them wrote more than

20 reviews. An illustration of the sectional graph for those reviews we concentrate

on is shown in Figure 1. As shown in the graph, most of the reviewers in our dataset

have 20 to 40 reviews.
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Figure 2. Comparison of Reviewer Groups Sharing Common Reviews. Results are
between correlation values from 5 different pairs of reviewers. They are reviewers who
have 5, 10, 20, 50 and 100 common reviews respectively. For each pair of reviewers,
we compute the correlation value of each pair of common movie reviews. Then we
use those values to calculate the average correlation value of each pair of reviewers.
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Figure 3. The Standard Deviation for Figure 2.

For the purpose of excluding incorrect result from distracting random data, we

only execute our algorithm and analyze the data base on the reviewers with more than

20 reviews. We conducted some computations on different reviewers with different

numbers of movie reviews. The comparisons are between different pairs of reviewers

who have 5, 10, 20, 50 and 100 reviews. We compute the correlation value, i.e. the

cosine similarity, of each pair of the common movie reviews, and then we compute

the average and standard deviation of the correlation values. The results are shown

in Figure 2 and 11. According to the result, correlation values between two reviewers

who have less common reviews are more likely to fluctuate in a larger range. The

elimination of reviewers have few reviews seems to have bias on the dataset. However,
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the actual impact is small since reviewers with fewer reviews are not likely to watch

movies frequently, and thus their reviews may be written in low quality. Such movie

reviews also tend to mislead our results to become incorrect.

4.2 Experiment Results Analysis
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Figure 4. Correlation of Different "CN_SYNONYMS". Results are from 3 pairs of
random reviews. Testing on variation of "CN_SYNONYMS" value of 0, 1, 2, 3, 5, 9
and 20. Other connection values are set to 1.
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Figure 5. Correlation of Different "CN_INTRA_PHRASE". Results are from 3
pairs of random reviews. Testing on variation of "CN_INTRA_PHRASE" value of
0, 1, 2, 3, 5, 9 and 20. Other connection values are set to 1.

Then the examination on how the semantic relations impacts the correlation value

is conducted. Labels as shown in Table 3 are assigned different values to build multi-

ple combinations for test. First tested connection is "CN_SYNONYMS". We assign

the value 0, 1, 2, 3, 5, 9 and 20 to it and value 1 to other connections, and compute

the correlations of 3 random pairs of reviews. The results indicate a positive associa-

tion between "CN_SYNONYMS" value and correlation value as illustrated in Figure

4. However, the results of "CN_INTRA_PHRASE" fail to show a regular change

based upon the similar examination as in Figure 5. There are both positive and neg-

29



ative association between "CN_INTRA_PHRASE" value and correlation value for

different pairs of movie reviews.
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Figure 6. Correlation of Different "CN_INTER_PHRASE". Results are from 3 pairs
of random reviews. Testing on variation of "CN_INTER_PHRASE" value of 0, 1,
2, 3, 5, 9 and 20. Other connection values are set to 1.
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Figure 7. Correlation of Different "CN_SYNONYMS_INTER_PHRASE". Results
are from 3 pairs of random reviews. Testing on variation of "CN_SYNONYMS_-
INTER_PHRASE" value of 0, 1, 2, 3, 5, 9 and 20. Other connection values are set
to 1.

We experiment the same combination variation on "CN_INTER_PHRASE" and

"CN_SYNONYMS_INTER_PHRASE" connections as well, but the increase of con-

nection values does not have significant impact on correlation values for both of the

connections as depicted in Figure 6 and 7.
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Figure 8. Correlation of Different Synonym and Inter Connections. Results are from
3 pairs of random reviews. Testing on variation of "CN_SYNONYMS" value of 1,
2, 3, 5 and 9. "CN_INTRA_PHRASE" connection is set to 1 and other connection
values are set to 9.

Since our aim is to find out the hidden relation of two texts other than just term

frequency, we assign a relatively larger value to the label "CN_INTER_PHRASE"

and "CN_SYNONYMS_INTER_PHRASE" to investigate the impact of relations

between different phrases on "CN_SYNONYMS" relation. Figure 8 shows the re-

sult from different combinations. We set both the "CN_INTER_PHRASE" and

"CN_SYNONYMS_INTER_PHRASE" connections to 9, and "CN_SYNONYMS"

connection increases from 1 to 9. It can be seen from the figure that when assigning

a large value to the "CN_INTER_PHRASE" and "CN_SYNONYMS_INTER_-
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PHRASE" connections, the impact of "CN_SYNONYMS" is minimized nearly to

none. We can infer from the results that computation results would be less ran-

dom by setting a relative larger connection value to "CN_INTER_PHRASE" and

"CN_SYNONYMS_INTER_PHRASE" connections.
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Figure 9. Correlation of Different "SYNONYMS" and "INTRA". Results are from
one random pair of movie reviews. Testing on combinations of "CN_SYNONYMS"
and "CN_INTRA_PHRASE" value of 1, 2, 3, 5 and 9. x-axis represents "CN_-
INTRA_PHRASE" values, y-axis represents correlation values. 5 lines represent 5
different "CN_SYNONYMS" values as shown in legend.

We also experiment the relation of "CN_SYNONYMS" and "CN_INTRA_-

PHRASE" by testing different combinations of label assignments as illustrated in
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Figure 9. Connections are assigned with value 1, 2, 3, 5 and 9. According to the

result, it is clear "CN_SYNONYMS" relation has a more significant impact on cor-

relation value than "CN_INTRA_PHRASE" relation.
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Figure 10. Correlation of Different Partitions of 60 Reviews. We compute the correla-
tion of single review pairs as well as the correlation of multiple reviews concatenated
together. In this experiment we examine the results of 2, 3, 5 and 10 reviews put
together.
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Figure 11. The Standard Deviation of Correlation in Figure 10.

Having the results from previous experiments, we put multiple movie reviews

together and calculate the correlation of them. Two random reviewers with more than

60 review are selected to conduct the test. The 60 reviews are randomly selected and

divided into groups of 1, 2, 3, 5, 10 reviews respectively. We calculated the average

correlation value and standard deviation of each group. The results is shown in Figure

10 and 11. The results illustrate that the more movie reviews we put together, the

larger correlation we can achieve, and the standard deviation of the correlation is

smaller.
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Figure 12. Correlations of 20 Pairs of Reviewers. The average correlation between
a specific reviewer and 20 reviewers who have more than 10 common movie reviews.
Each pair randomly picks out 20 movie reviews to calculate the average.

According to the previous results, we focus on the computation of variations of

"CN_SYNONYMS" and "CN_INTER_PHRASE" connections. Now we need to

analyze the data between some unique reviewers. First, we pick a specific reviewer

and 20 reviewers who have more than 10 common movie reviews. Then we randomly

pick 20 common reviews from the specific reviewer and each of the other 20 reviewers,

and calculate the average of each pairs of reviewer. The results are shown in Figure

12. For the 20 chosen pairs of reviewers, the largest correlation is close to 0.06, and

the smallest value is around 0.01. Having a list of reviewers of different correlations,

we are able to make further comparison among these reviewers.

36



We expect that the culture factor can be inferred by the correlation value. Thus

we calculate the correlation of reviews from the reviewer himself, and use that value

as a benchmark because people are certainly culturally related to themselves. We

use the same specific reviewer as mentioned above, say rt ,and randomly choose 20

pairs of reviews to calculate correlation. The average correlation value is 0.039. Then

we choose the reviewer, say r1, having large correlation with rt as listed in Figure

12, randomly pick out 20 pairs of reviews between rt and r1 to calculate correlation.

Also, we choose the reviewer with smallest correlation, say r2, in the same way as

previous one.
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Figure 13. Average Correlation of Random Reviews. The average correlation of 20
random movie reviews between a specific reviewer rt and two other reviewers r1, r2.
r1 has high correlation with rt on common movies. r2 has low correlation with rt
on common movies. rt − rt represents correlation between reviews of rt and himself.
rt−r1 represents correlation between reviews of rt and r1. rt−r2 represents correlation
between reviews of rt and r1.

It illustrates in Figure 13 that correlation value between rt and r1 is very close to

correlation of rt with himself, and is much larger than correlation between rt and r2.

This result confirms our hypothesis positively.
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Figure 14. Correlation of 10 Combined Reviews A. We select a single review to
serve as a "new" review, put it together with other 9 random reviews from the same
reviewer. Then we select 10 random reviews from another reviewer and put them
together. The correlation value is calculated between the two sets of reviews. In the
figure we selected a random single review from reviewer rt, r1 and r2 respectively,
and then execute the computation. rt − r1 represent that we select a random single
review from rt and calculate correlation with reviews from r1. The other four legend
are similar. Connection labels are set to a5b1c9e1.
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Figure 15. Correlation of 10 Combined Reviews B. We select a single review to
serve as a "new" review, put it together with other 9 random reviews from the same
reviewer. Then we select 10 random reviews from another reviewer and put them
together. The correlation value is calculated between the two sets of reviews. In the
figure we selected a random single review from reviewer rt, r1 and r2 respectively,
and then execute the computation. rt − r1 represent that we select a random single
review from rt and calculate correlation with reviews from r1. The other four legend
are similar. Connection labels are set to a9b1c5e1.

Since it is proved that correlation value is related to a reviewer’s culture back-

ground. We will try to make connection of two culturally related reviewer without

sharing information directly. The methodology is to compare a newly written review

of rm to a random amount of reviews of rn, and calculate the average of correlation.

Then compare a newly written review of rn to a random amount of reviews of rm,

and calculate the average of correlation. We use the same reviewers rt, r1 and r2

40



as in previous experiments. Figure 14 and 15 illustrate the results by using label

assignments "a5b1c9d1" and "a9b1c5d1" respectively.

From the results, we can see the correlation of rt and r1 is greater than that of rt

and r2. By having this difference among correlation values, we are able to generate

1-bit binary number by data binning. For example, in Figure 14 we can assign any

correlation value greater than 0.15 to a binary number "0", and the number "1"

for correlation smaller than 0.15. By calculating correlation values continuously, a

unique key can be generated by repeating this process and concatenating the binary

numbers.
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CHAPTER V

CONCLUSIONS AND FUTURE WORKS

In this work, we have investigated the correlation of movie reviews and studied the

values of different weight assignments to the sentence and word relation. From the

experiment results, we conclude that "CN_SYNONYMS" is the dominant positive

association that impacts correlation value, and "CN_INTRA_PHRASE" is neither a

positive association nor a negative association of correlation value. When we calculate

correlation between two single reviews, the results usually fluctuate in a large range.

Then we put multiple reviews together and execute computation on them, the results

show a significant reduction on randomness. Further exploration of reviewers on

culture related factor is facilitated by the experiment results.

These correlations have then been used to evaluate and derive a unique random

number. We select a specific reviewer and investigate the correlation values to other

reviewers who have common movie reviews with the selected reviewer. We target

a single review of those reviewers, and put it together with other reviews to obtain

correlation values from different pairs of reviewers. Then the correlation value is

binned to a 1-bit binary number. Through such a simplified extraction, a unique

random number can be generated by repeating the process of binning. The unique

random number is able to facilitate secure information exchanges between the users.

In our future work, we will explore such correlations to generate a practically usable

unique secret for secret keys.
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