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 Use of noninformative priors with the Posterior Predictive Checks (PPC) method 

requires more attention. Previous research of the PPC has treated noninformative priors 

as always noninformative in relation to the likelihood, regardless of model-data fit. 

However, as model-data fit deteriorates, and the steepness of the likelihood’s curvature 

diminishes, the prior can become more informative than initially intended.  

 The objective of this dissertation was to investigate whether specification of the 

prior distribution has an effect on the conclusions drawn from the PPC method. Findings 

indicated that the choice of discrepancy measure is an important factor in the overall 

success of the method, and that different discrepancy measures are affected more than 

others by prior specification.   
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CHAPTER I 

 

INTRODUCTION 

 

 

Wainer (2010) has said that Bayesian methods are a suite of tools researchers 

must have in order to successfully tackle research problems looming in the future. He 

says, “Bayesian methods allow us to do easily what would be hard otherwise,” 

continuing, “[and] facility with them is a must for anyone who intends to make 

contributions to measurement in the future” (p. 7). There has been a great emphasis on 

Bayesian methods of late (Ames & Samonte, in press; Andrews & Baguley, 2013). 

Further, it has been suggested that researchers should become familiar with not just the 

terms and broad concepts of Bayesian methods, but that topics related to prior 

distributions and the Metropolis-Hastings Markov chain Monte Carlo (MCMC) algorithm 

should become second nature (Wainer, 2010).  

Some have already heeded Wainer’s (2010) advice. The previous twenty years 

have seen a proliferation of studies using Bayesian methods in statistical research and 

publications, coinciding with advances in Monte Carlo methods. In fact, topics related to 

Bayesian methods now represent approximately 20% of published articles in statistics 

(Andrews & Baguley, 2013).  This signifies a very important trend, or, more specifically, 

a paradigm shift. Andrews and Baguley, editors of a British Journal of Mathematical and 

Statistical Psychology special issue on the theory and practice of Bayesian statistics in 

psychology, comment that this shift will lead to an increased adoption of Bayesian 
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methods, which will have profound implications for the theory and application of data 

analysis. These implications will range in scope from journal editorial choices to how 

statistics is taught to university students (Andrews & Baguley, 2013).  

This trend towards increasing numbers of Bayesian articles has also been 

witnessed in educational research, and, more specifically, item response theory (IRT) 

modeling. To illustrate this growing trend in the advancement of MCMC, a brief 

overview of the number and types of applications in IRT using MCMC methods in the 

past five years (2009 – 2013) is provided in Table 1.  

The breadth of models found in Table 1 illustrates the broad use of Bayesian 

methods in educational methodology. MCMC methodology has been applied to 

dichotomous models (e.g., the two-parameter logistic model in Patz & Junker, 1999), 

polytomous models (e.g., the graded response model in Baldwin, Bernstein, & Wainer, 

2009), and more complex models such as the cognitive diagnostic assessment fusion 

model (Jang, 2009), mixture Rasch with response time (Meyer, 2010), and logistic 

positive exponent (Bolfarine & Bazan, 2010), among others.  
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Table 1. Applications of MCMC for IRT from 2009 – 2013 

Author Year Journal Model I N Software 
Burn-

in 
Iter 

Baldwin 2009 
Statistics in 

Medicine 
Graded response model 20 12 SCORIGHT 

16500

0 
20000 

Bolfarine 2010 

Journal of 

Educational and 

Behavioral 

Statistics 

Logistic positive exponent 18 974 WinBUGS   

Choo 2013 

Journal of 

Statistical 

Computation 

and Simulation 

Mixture Rasch model 18 2156 WinBUGS   

Curi 2011 

Statistical 

Methods in 

Medical 

Research 

IRT for embarrassing items 20 348 WinBUGS   

De Gooijer 2011 

Computational 

Statistics and 

Data Analysis 

Two-parameter logistic (2PL) 6 25200    

de la Torre 2009 

Applied 

Psychological 

Measurement 

MIRT with ancillary 

information 
77 1500 Ox 5000 20000 

de la Torre 2009 

Applied 

Psychological 

Measurement 

Higher-order IRT 90 2255 Ox 3000 15000 

de la Torre 2010 

Applied 

Psychological 

Measurement 

Higher-order IRT 90 2255 Ox 1000 10000 
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Author Year Journal Model I N Software 
Burn-

in 
Iter 

de la Torre 2009 

Applied 

Psychological 

Measurement 

IRT subscoring methods 90 2255 Ox 2000 10000 

de la Torre 2009 

Journal of 

Educational and 

Behavioral 

Statistics 

Deterministic-input noisy-AND 

(DINA) model 
15 2144 Ox   

Edwards 2010 Psychometrika Confirmatory item analysis 
10

2 
3000    

Entink 2011 
Statistics in 

Medicine 

Mixture multilevel IRT with 

survival model 
30 668 

BOA R 

package 
5000 10000 

Entink 2009 Psychometrika Multivariate multilevel IRT 
22, 

65 

286, 

388 
R 

10000, 

10000 

5000, 

20000 

Finke 2009 

Journal of 

Theoretical 

Politics 

Two-parameter logistic (2PL) 61 82 GAUSS 10000 15000 

Fragoso 2013 
Biometrical 

Journal 

Non-compensatory and 

compensatory MIRT two-

parameter 

21 1111 

 

5000 100000 

Fu 2009 

Journal of 

Statistical 

Computation 

and Simulation 

Multidimensional three-

parameter logistic (3PL) 
6 36 MATLAB 1000 15000 

Fukuhara 2011 

Applied 

Psychological 

Measurement 

Bifactor MIRT for testlets 45 2000 WinBUGS 7000 15000 
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Author Year Journal Model I N Software 
Burn-

in 
Iter 

Geerlings 2011 Psychometrika 
Hierarchical IRT for items in 

families  

33 

(11 

fa

mil

ies

) 

1350 

 

20000 100000 

Henson 2009 Psychometrika Log-linear cognitive diagnosis  12 2144 MPLUS 5000 10000 

Hsieh 2010 

Multivariate 

Behavioral 

Research 

Generalized linear latent and 

mixed model 
13 838 WinBUGS 4000 12000 

Huang 2013 

Applied 

Psychological 

Measurement 

Hierarchical IRT 

24

7, 

76 

5000, 

987 
WinBUGS 1000 9000 

Hung 2011 

Multivariate 

Behavioral 

Research 

Random-situation random-

weight model with internal 

restrictions on item difficulty 

(MIRID) 

10 268 WinBUGS 1000 4000 

Hung 2010 

Multivariate 

Behavioral 

Research 

Multigroup multilevel 

categorical latent growth curve 
7 264 WinBUGS 5000 10000 

Hung 2012 

Journal of 

Educational and 

Behavioral 

Statistics 

Generalized multilevel facets 

model for longitudinal data 
5 238 WinBUGS 8000 4000 

Jang 2009 
Language 

Testing 
Fusion model (CDA) 37 2703 Arpeggio 13000 30000 

Jiao 2013 

Journal of 

Educational 

Measurement 

One-parameter (1PL) testlet 54  WinBUGS 1000 2000 
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Author Year Journal Model I N Software 
Burn-

in 
Iter 

Jiao 2012 

Journal of 

Educational 

Measurement 

Multilevel testlet 32 1644 WinBUGS 2000 3000 

Kang 2009 

Applied 

Psychological 

Measurement 

Polytomous models (focus on 

model selection indices) 
5 3000 WinBUGS 5000 6000 

Kieftenbeld 2012 

Applied 

Psychological 

Measurement 

Graded response model      

Kim 2009 
Communication

s in Stat 

SEM for ordinal response data 

w/ missingness 
25 70548 FORTRAN 1000 10000 

Li 2012 
Statistics in 

Medicine 

Generalized Partial Credit 

Model 
5 500  2000 152000 

Li 2009 

Applied 

Psychological 

Measurement 

Mixture IRT 48 1200 WinBUGS 3000 10000 

Luo 2013 
Statistics in 

Medicine 
Multilevel IRT 32 361 OpenBUGS 45000 50000 

Meyer 2010 

Applied 

Psychological 

Measurement 

Mixture Rasch with response 

time 
60 524 OpenBUGS 39999 30001 

Saito 2010 

International 

Journal of 

Methods in 

Psychiatric 

Research 

Two-parameter logistic (2PL) 14 353 SAS/IML 1000 10000 

Santos 2013 

Journal of 

Applied 

Statistics 

Skew multiple group IRT 
20-

80 

295-

568 
Ox   
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Author Year Journal Model I N Software 
Burn-

in 
Iter 

Soares 2009 

Journal of 

Educational and 

Behavioral 

Statistics 

Integrated Bayesian for DIF 56 7998 MATLAB   

Stone 2009 

Applied 

Measurement in 

Education 

Multidimensional IRT 59 10545 WinBUGS   

Tao 2013 

Japanese 

Psychological 

Association 

Two-parameter logistic testlet 

with testlet-level discrimination 
28 1289  5000 30000 

Usami 2011 

Japanese 

Psychological 

Association 

Generalized graded unfolding 

model 
20 313 R 50000 50000 

van den 

Hout 
2010 

Journal of the 

Royal Statistical 

society 

Randomized response 3 2227 WinBUGS 50000 50000 

Wang 2010 
Statistics in 

Medicine 
Testlet with covariates 21 718  10000 20000 

Yao 2010 

Journal of 

Educational 

Measurement 

MIRT, bifactor 
21

7 
3953 BMIRT   

Note, The column titled Author represents first author only, Year is the year of publication, and Journal is the journal in which 

the study was published. Related to the MCMC modeling, the Model column of Table 1 is a brief description of the model 

estimated under the MCMC framework, I refers to number of items, N refers to number of respondents/subjects, Software is 

the software program implementing the MCMC algorithm, Burn-in is the number of burn-in iterations, and Iter is the number 

of MCMC samples drawn after the burn-in period. 
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Software for implementation of Bayesian estimation methods for IRT has also 

garnered increased attention. The development of multiple software packages, both 

commercial and open source, has aided the rapid adoption of Bayesian methods. Software 

to implement MCMC estimation has been described and illustrated in several sources, 

such as Curtis (2010), who provided BUGS (Lunn, Thomas, Best, & Spiegelhalter, 

2000), which contains code for common dichotomous and polytomous IRT models. 

Several (n = 17) of the applications in Table 1 rely on BUGS software for conducting the 

MCMC analysis. Li and Baser (2012) provide a detailed explanation of how to perform 

MCMC estimation with the R (R Development Core Team, 2010) package R2WinBugs 

(Gelman, 2013) used in conjunction with BUGS. Working solely in the R environment, 

the package MCMCPack (Martin, Quinn, & Park, 2011) is another option for MCMC 

estimation. MPLUS (Muthén & Muthén, 2011) also has the capability to perform MCMC 

estimation, although not yet implemented in the applications found in Table 1. Yao 

(2003) developed BMIRT for MCMC of multidimensional IRT models. Recently, Ames 

and Samonte (in press) illustrated how to use SAS PROC MCMC (SAS Institute, Inc., 

2014) for estimation of IRT models.  

 With several software options easily and freely available for MCMC 

implementation and the growing use of these software tools for IRT modeling, attention 

to the details of Bayesian methods and the potential associated pitfalls should be given 

considerable attention. These details include (a) specifying the likelihood model, (b) 

specifying the parameter for prior distribution(s), (c) obtaining the posterior distribution 

analytically using Bayes’ Theorem or through sampling methods such as MCMC, and (d) 
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making appropriate inferences (O’Hagan, 1994). Each of these details can be considered 

a stage of the Bayesian modeling process and each has associated with it difficulties that 

may yet not have been sufficiently addressed. This research will address each stage of the 

modeling process, providing particular attention to both the second stage, prior 

specification, and a particular aspect of the inferential stage, that of model criticism. 

 Inevitably, the Bayesian versus Frequentist controversy enters into the discussion 

at some point with the investigation of Bayesian methods. One of the concerns raised by 

Frequentists is of interest to the remainder of this research, namely that Bayesian methods 

make subjective, rather than objective, claims. This concern has been repeatedly raised 

partly due to the early champions of Bayes methods. These pioneers argued, rather 

forcefully, that all statistical calculations should be done after one’s prior beliefs on the 

subject had been carefully evaluated and quantified (Carlin & Louis, 1996), which 

resulted in apprehensions that results could easily be manipulated by the statistician, 

research funding body, or bureaucratic entities, leading to conclusions and policies that 

were not objectively valid. A brief introduction with more detail on the modeling stages 

is needed to describe the role of the prior and to facilitate the discussion of the potential 

subjectivity of the prior. What follows is a short discussion on these stages and general 

Bayesian terms. 

Definition of Key Terms Used in Bayesian Practice 

 All statistical probability models describe a mechanism, or relationship, that has 

generated the observed data as a function of unobserved parameters. One example is the 

interaction between people and items, resulting in dichotomous response data, often 
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modeled using IRT. The item parameters include difficulty or discrimination and the 

person parameters are defined by an individual’s ability. However, information about the 

item parameters is not completely known, which introduces uncertainty into the 

relationship between the item response data and the item parameters. The fundamental 

difference between Bayesian and Frequentist methods lies in the treatment of this 

uncertainty. In the Bayesian paradigm, parameters are regarded as random variables (i.e., 

incorporate the uncertainty) and an entire distribution of possible parameter values is 

estimated, while Frequentist methods consider parameters as fixed, but unknown, 

quantities.  

One of several modeling stages in the Bayesian approach is the specification of a 

model for the observed data. This model simply describes the process giving rise to the 

data in terms of the unknown parameters (O’Hagan, 1994). The model for observed data 

is often termed the likelihood. The likelihoods observed in recent IRT applications can be 

found in Table 1 in the Model column.  

 Specification of parameter uncertainty before any data are observed is another 

stage in Bayesian modeling. This uncertainty specification is termed the prior 

information because it represents information known about the parameter before 

observing any data. Prior beliefs could be elicited, coming from other observed data and 

research or representing expert opinions from the field (Fox, 2010). Alternatively, the 

prior information could reflect a relative lack of understanding surrounding the 

parameters. This type of information is considered noninformative. These noninformative 

priors are those in which nearly, or completely, identical probability is given to all 
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possible parameter values (Lambert et al., 2005). Noninformative priors are often termed 

flat and used so that the data and likelihood drive the estimation procedure rather than the 

prior. 

 In the next stage, after the data are observed, prior information on the parameters 

is combined with the likelihood to provide a distribution of parameter information. This 

combination of the likelihood and priors comes via Bayes’ Theorem. Because the 

combination occurs after the data are observed, the distribution of potential parameter 

values is known as the posterior parameter distribution (Fox, 2010). Posterior 

distributions express what is known about parameters once the data has been observed. 

They specify the probability that each parameter equals a particular value, or lies in a 

certain range of values.  

 In the final stage, the inferential stage, both the likelihood and priors must be 

assessed in terms of their appropriateness to the data at hand (Gelman & Shalizi, 2013). 

Misspecification of either or both of the likelihood and the priors could lead to 

inappropriate inferences (Evans & Moshonov, 2006). Several approaches for Bayesian 

evaluation of model-data fit exist, including (a) examining the sensitivity of inferences to 

changes in the prior distribution and the analysis model, (b) checking the sensibility of 

posterior inferences against the researcher’s substantive knowledge, and (c) checking that 

the model fits the data (Gelman, Meng, & Stern, 2003).  

Description of the Problem  

 The majority of the focus of Bayesian IRT model-data fit has come via the third 

approach, introduced above, termed posterior predictive checks (PPC; Gelman et al., 
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2003), which consists of assessing the plausibility of data simulated from the posterior 

against the observed data. However, while PPC has proven to be a useful tool for 

evaluating fit of IRT models (Sinharay, 2006), specifically the likelihood component, 

there has been little consistency in the implementation of simulation studies in the area 

when applied to IRT. For instance, several studies (Sinharay, 2005; Sinharay & Johnson, 

2003; Sinharay, Johnson, & Stern, 2006) have used noninformative priors for 

dichotomous models. Sinharay (2006) used informative priors with similar simulation 

conditions to his other studies in the area. Ames (2014) used noninformative priors for 

PPC applied to polytomous models. In contrast, Zhu and Stone (2011) used more 

narrowly focused priors for the graded response model (GRM; Samejima, 1969), which 

were based on asymptotic parameter distributional assumptions.  

 Bayesian parameter recovery studies have also varied the use of priors. For 

instance, Kieftenbeld and Natesan (2012) used noninformative priors for parameter 

recovery of the GRM with good model-fit data. Another parameter recovery study 

(Wollack, Bolt, Cohen, & Lee, 2002) used a different version of noninformative priors 

for recovery of item parameters in the nominal response model (again with good model-

fit data).  

Use of noninformative priors also has come under criticism for several other 

reasons. It has been recommended that noninformative priors should be used only as a 

placeholder in Bayesian methods rather than a final prior specification, that is, the 

researcher can use the noninformative prior to get the analysis started but if the resulting 

posterior inferences lack precision, or do not make sense, the prior information should be 
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modified (Gelman & Shalizi, 2013). Additionally, previous research (Gelman et al., 

1996; Zhu, 2009) has also shown situations in which the use of noninformative priors has 

been too strong, with the result being that the noninformative priors represented very 

strong prior information instead of the intended role of having minimal influence.  

An additional criticism of noninformative priors stems from the previously 

discussed parameter recovery studies (Kieftenbeld & Natesan, 2012; Wollack et al., 

2002). Kieftenbeld and Natesan (2012) found that almost all item discrimination 

parameters were positively biased, likely due to the mean of the noninformative prior 

being larger than any of the generating discrimination values. In their study, good model-

data fit was assumed, as the data-generating model was the same as the data-analysis 

model. However, despite the good model-data fit, Kieftenbeld and Natesan (2012) found 

that the noninformative priors likely induced positive bias in some item parameter 

estimates, which could be potentially problematic when applying the PPC method. 

Because the data are simulated from misspecified posteriors, then the simulated data will 

likely be systematically dissimilar to the observed data and the PPC method will find 

evidence of misfit due to the misspecified posterior. Because the data were generated 

according to the same likelihood model to which the data were fit, the finding of model-

data misfit would be incorrect. 

This brings to light a critical point surrounding the definition of noninformative 

and use of this type of distribution for a prior. A prior distribution should be considered 

noninformative only if the prior is flat relative to the likelihood function. If the likelihood 
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is flat relative to the prior, then the prior will still be relatively informative despite the 

researcher’s attempts to let the likelihood and the data drive the posterior estimation.  

In IRT, aberrant response patterns across items or across people will tend to result 

in a flatter likelihood (Drasgow, Levine, & McLaughlin, 1991). These aberrant response 

patterns represent a form of model-data misfit. The flatter the likelihood, the less likely 

that a flat prior will have a minimum role on posterior inferences as is intended 

(O’Hagan, 1994). Therefore, the use of noninformative priors in PPC studies may have, 

in fact, introduced strong prior information, which could influence the model-data fit 

conclusions regarding the likelihood.  

 Figure 1 illustrates the flatness of the likelihood and the role of the prior as the 

likelihood becomes less curved. In the four panels, in each case the prior is held constant 

(dashed line). The curvature of the likelihood is varied (dotted line) and the resulting 

posterior (solid line) changes accordingly. In the top left panel, the likelihood is almost 

flat and the prior, while specified noninformative, drives the posterior construction as 

much as the likelihood does. As the likelihood becomes less flat in relation to the prior, 

the likelihood begins to shape the posterior’s shape and curvature. In the bottom right 

panel, the posterior’s construction is driven almost entirely by the likelihood, which is 

very peaked in relation to the prior.  
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Figure 1. Likelihood Curvature (dotted line) in Relation to the Prior (dashed line) and 

Effects on the Posterior (solid line)  

 

 

 Thus, despite specification of a noninformative prior, the flatness of the likelihood 

relative to the prior is the determining factor in the shape of the posterior. It does not 

appear that this has been considered in PPC for IRT studies. The PPC studies applied to 

IRT have only discussed flatness of the prior and have not provided a discussion on the 

curvature of the likelihood in relation to the curvature of the prior. Further, whenever 
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surprising or aberrant data are observed, sensitivity of posterior inferences to prior 

specification should be suspected (O’Hagan, 1994). Thus, specification of the prior in 

PPC studies requires careful consideration and it might be the case that using more 

informative priors would be useful for PPC studies.  

Purpose 

Use of noninformative priors with the PPC method requires more attention. 

Previous research of the PPC has treated noninformative priors as always noninformative 

in relation to the likelihood, regardless of model-data fit. However, as model-data fit 

deteriorates, and the steepness of the likelihood’s curvature diminishes, the prior can 

become more informative than initially intended.  

Further research is required to determine which priors best reflect inconsistencies 

between data and the null hypotheses and will best detect model-data misfit using the 

PPC method (Berkhof, van Mechelen, & Hoijtnk, 2000). The objective of this study is to 

investigate whether specification of the prior distribution has an effect on the conclusions 

drawn from the PPC method regarding model-data fit. Specifically, the following four 

research questions will be addressed. 

Research Questions 

1. To what extent does prior specification influence the results of the PPC method 

for model-data fit of unidimensional, dichotomous IRT models?  

2. How does sample size affect the influence of prior specification on the results 

of the PPC method for model-data fit of unidimensional, dichotomous IRT 

models? 
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3. How does the type of misfit affect the influence of prior specification on the 

results of the PPC method for model-data fit of unidimensional, dichotomous IRT 

models?  

4. How does the interaction of sample size and type of misfit affect the influence 

of prior specification on the results of the PPC method for model-data fit of 

unidimensional, dichotomous IRT models?  

 Organization of the Study  

To answer the four research questions, a review of the relevant literature on PPC 

and prior sensitivity will be provided as well as a detailed proposal of the methodology to 

be used in the study. Chapter Two reviews the literature in the area, beginning with a 

discussion of Bayesian and PPC methods, specifically of work related to Bayesian IRT 

modeling and prior specification in these studies. Chapter Three outlines appropriate 

methodologies to answer each of the four research questions, including operationalization 

of the variables and details of the analysis methods which will be used to answer the 

research questions.   
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CHAPTER II  

 

REVIEW OF THE LITERATURE 

 

 Bayesian estimation methods require specification of a likelihood model as well 

as specification of parameter priors (Gelman, Carlin, Stern, & Rubin, 2003). After the 

data is observed, prior information on the parameters is combined with information from 

the likelihood to provide a posterior distribution of parameter information. 

Misspecification of either the likelihood or the priors could lead to inappropriate 

inferences (Evans & Moshonov, 2006; O’Hagan, 1994). The extent to which inferences 

are sensitive to prior or likelihood misspecification is an important consideration in a 

Bayesian analysis (O’Hagan, 1994). In IRT, specification of the likelihood has been 

checked by PPC. However, little attention has been paid to the potential sensitivity of the 

PPC method to a misspecified prior parameter or the appropriateness of the prior itself.  

 What follows in this chapter is a discussion of the details of the Bayesian 

modeling stages, which will be used to facilitate discussion of the literature regarding 

prior specification and the PPC method. This chapter begins with a discussion of 

Bayesian modeling stages, including likelihood specification, prior specification, 

construction of the posterior via MCMC, and making inferences. The final stage of 

making inferences involves the PPC method. Following the Bayesian model stages, 

examination of the potential confounding of prior specification and the PPC method will 

be described.  
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Bayesian Modeling Stages 

The likelihood. Assume the observed item response data, x, are used to measure 

some parameter, θ. To express the prior information on θ, f ( θ ) is used. The likelihood 

function of x is denoted by f ( x | θ ) and the posterior of θ is denoted by f ( θ | x ), 

representing the conditional distribution of both: (a) parameters given the prior beliefs 

and (b) the observed data. Bayes’ Theorem provides the link between the prior, 

likelihood, and posterior and is represented via 

 

𝑓(𝜃|𝑥)  =  
𝑓(𝑥|𝜃)𝑓(𝜃)

∫ 𝑓(𝑥|𝜃)𝑓(𝜃)𝑑𝜃
 .     (1) 

 

 

The likelihood function, f ( x | θ ), describes the probability of observing the item 

response data given the parameter values. In the Bayesian framework, the data are 

assumed to affect the posterior inference only through the likelihood (Gelman at al., 

2003). 

 This study will focus on the IRT likelihood models, with an emphasis on models 

for unidimensional dichotomous items. In this proposal, i will represent the item of 

interest (i = 1, 2, …, I items) and n will represent the examinee (n = 1, 2, …, N 

examinees). The examinee’s latent ability trait will be denoted by θ.  Item responses will 

be denoted by x, with the nth examinee’s response to the ith item denoted by xni. Thus, 

 

𝑥𝑛𝑖 = {
1,   𝑖𝑓 𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑒 𝑛 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 𝑖𝑡𝑒𝑚 𝑖 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

    0,   𝑖𝑓 𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑒 𝑛 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 𝑖𝑡𝑒𝑚 𝑖 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦
 . 
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Two fundamental concepts of IRT are that the performance of an examinee on an 

item can be predicted by θ and that there is a link between an examinee’s response to an 

item and θ (Hambleton, Swaminathan, & Rogers, 1991). The latter concept, the link 

between item responses and θ, is referred to as the item response function (IRF). The IRF 

for xni = 1 specifies the probability of correct response as a function of θ. The shape of the 

IRF implies that individuals with higher levels of the trait should have a higher chance of 

getting the item correct than individuals with lower levels of the trait. An example of this 

can be found in Figure 2. Looking at Item 1 in Figure 2 (solid black line), as the 

individual’s θ increases, so too does the height of the curve, which represents the 

probability of correct response.   

 

 

Figure 2. IRFs for the Correct Option of Three Dichotomous Items. For Item 1, a1 = 1, b1 

= 1, c1 = 0; for Item 2, a2 = 1.75, b2 = 0, c2 = 0; and for Item 3, a3 = 1, b3 = 0, c3 = 0.2. 
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The particular shape and location of an IRF reflects the psychometric properties 

of the item, such as difficulty, discrimination, and guessing (Hambleton et al., 1991; 

Lord, 1980). The different forms of the three IRFs shown in Figure 2 reflect differences 

in the items’ difficulty, discrimination, and guessing. Location of the curve is dictated by 

the item’s difficulty parameter. The IRF for Item 1 reflects the highest level of difficulty. 

Steepness of the curve is dictated by the item’s discrimination parameter. The IRF for 

Item 2, with the steepest slope, reflects the highest degree of discrimination. The lower 

asymptote of the curve – the lowest probability of correct response an examinee has for 

answering the item correctly – is dictated by the guessing parameter. The IRF for Item 3, 

which has a lower asymptote near 0.2, reflects the highest degree of guessing.  

The IRF for xni = 1 is defined by the mathematical model. In MCMC studies, 

there are two model types commonly used for IRT: the normal ogive models (often used 

due to their desirable mathematical properties), and special cases of the general logistic 

regression model. The two forms of IRT models closely resemble each other when the 

logistic item parameter values are multiplied by a constant scaling factor of 1.7. With this 

scaling, for different levels of θ, the response probabilities differ by no more than 0.01 

(Hambleton et al., 1991).  

A simple IRF for xni = 1 is the one-parameter normal ogive (1PNO; Lord and 

Novick, 1968) model in which the IRF is based on a cumulative normal distribution. The 

1PNO models probability of correct response via 

 

𝑃(𝑥𝑛𝑖 = 1|θ𝑛 , 𝛿𝑖) = Φ(θ𝑛 − 𝛿𝑖),    (2) 
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where 𝛿𝑖 is the item’s difficulty measure, θn is an examinee’s scalar latent ability, and  

Φ(∙) is the cumulative normal distribution function. Item discrimination is introduced 

through 𝛼𝑖, a positive scalar, and the two-parameter normal ogive (2PNO) is denoted by 

 

𝑃(𝑥𝑛𝑖 = 1|θ𝑛 , 𝛼𝑖 , 𝛿𝑖) = Φ(𝛼𝑖θ𝑛 − 𝛿𝑖).   (3) 

 

 

The three-parameter normal ogive (3PNO) is denoted by  

 

𝑃(𝑥𝑛𝑖 = 1|θ𝑛 , 𝛼𝑖 , 𝛿𝑖, 𝜑𝑖) = 𝜑𝑖 + (1 − 𝜑𝑖)Φ(𝛼𝑖θ𝑛 − 𝛿𝑖),  (4) 

 

 

where 𝜑𝑖 is the lower asymptote for the IRF, bounded between 0 and 1.   

 Similar to the 1PNO is the one-parameter logistic (1PL), where the IRF for xni = 1 

is modeled by 

 

𝑃𝑛𝑖(𝑥𝑛𝑖  =  1|θ𝑛 , 𝑎, 𝑏𝑖)  =  
exp (𝑎(θ𝑛−𝑏𝑖))

1+exp (𝑎(θ𝑛−𝑏𝑖))
 .     (5) 

 

 

where 𝑏𝑖 is the item’s difficulty measure, and item discrimination is denoted by 𝑎.  

The two-parameter logistic (2PL) is represented by 

 

𝑃𝑛𝑖(𝑥𝑛𝑖  =  1|θ𝑛 , 𝑎𝑖 , 𝑏𝑖)  =  
exp (𝑎𝑖(θ𝑛−𝑏𝑖))

1+exp (𝑎𝑖(θ𝑛−𝑏𝑖))
 .                                     (6) 

 

 

The three-parameter logistic (3PL; Birnbaum, 1968) is akin to the 3PNO and is a more 

general model for dichotomous responses. The 3PL is represented by the statistical IRT 

model 
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𝑃𝑛𝑖(𝑥𝑛𝑖  =  1|θ𝑛 , 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖)  =  𝑐𝑖 + (1 − 𝑐𝑖)
exp (𝑎𝑖(θ𝑛−𝑏𝑖))

1+exp (𝑎𝑖(θ𝑛−𝑏𝑖))
  ,                         (7) 

 

 

where ci is the lower asymptote for the IRF, bounded between 0 and 1.  For simplicity in 

notation, the IRF for xni = 1 will be shortened to Pni1 for the remainder of this text. For 

example, for the 3PL in Equation , 𝑃𝑛𝑖(𝑥𝑛𝑖  =  1|θ𝑛 , 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖) = 𝑃𝑛𝑖1.   

The models described in Equations 2 - 7 provide a probabilistic model of the data, 

each with a set of underlying assumptions. Each IRT model is falsifiable, indicating the 

model may or may not be appropriate for the data (Hambleton et al., 1991). Assessment 

of these assumptions is crucial to ensuring that valid inferences are drawn from the IRT 

models (Hambleton et al., 1991; Kang & Chen, 2008). When an IRT model demonstrates 

poor adherence to the assumptions, several undesirable outcomes are possible, such as 

biased ability and item parameter estimates (Wainer & Thissen, 1987; Yen, 1981). These 

consequences of the model not adhering to its assumptions complicates the application of 

IRT models in such areas as test development, equating, and computer adaptive testing 

(Kang & Chen, 2008). More detail on the methods for assessing appropriateness of model 

assumptions is found in the section on drawing inferences, but it is crucial that the 

likelihood model of interest be subject to rigorous testing to ensure the relevant model 

assumptions are upheld and valid inferences are being made. 

 Specification of priors. The priors define a probabilistic model for the model 

parameters. This is a key distinction between Bayesian and Frequentist paradigms: The 

Bayesian paradigm is founded on the notion that model parameters can be described by a 
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distribution representing the probability that the parameter equals each possible value, 

whereas the Frequentist paradigm assumes a single, fixed point value for the parameter.  

 The prior distribution can be viewed as an assumption of the model (Gelman & 

Shalizi, 2013), similar to the assumptions underlying the likelihood. Similar to the 

likelihood assumptions, prior assumptions must also be assessed for their 

appropriateness. Specification and assessment of prior distributions may result in the 

decision that they are incorrectly specified. The prior specification may then need to be 

revised, revisited, or completely thrown out. As with evaluating the IRT model, criticism 

of priors is based upon their suitability to the data being studied (Gelman & Shalizi, 

2013).  

 Recognizing that the prior distribution is a testable part of the whole Bayesian 

model is a critical part of prior specification (Gelman & Shalizi, 2013). One sphere of 

thought is that there are unique, objectively correct prior distributions for each situation 

(Jaynes, 1968). However, attempting to devise these has proven unproductive (Kass & 

Wasserman, 1996). Given this lack of correct distributions, it is more likely that 

practitioners will choose among some general classes of prior distributions 

The researcher has several options for incorporating the prior information into the 

Bayesian modeling process (Albert & Louis, 2000). Elicited priors are those in which the 

information is elicited from experts with information about the substantive question of 

interest, but who are not involved in the model construction process. These elicited priors 

could also arise from a collection of possible values of the parameter informed 

sequentially through previous studies in the area. For instance, suppose two independent 
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samples are collected from year 1 and year 2. The posterior for the full data can be 

obtained by first finding the posterior for the first year’s data set and then using this 

posterior as the prior for the second year’s data (Albert & Louis, 2000).  

Prior specification could also arise from common distributional families, such as 

the Normal or Gamma distributions, which are tied to distributional assumptions. These 

are also considered elicited priors. As an example, latent ability estimates from 

unidimensional IRT models are often considered to come from a Normal( 0 , 1 ) 

distribution to avoid indeterminacy of the parameterization of several IRT models (Lord, 

1980; Tsutakawa, 1992). Elicited priors could be strong and narrowly focused, or they 

could be weak, reflecting a less focused range of inference, but still with some 

informative qualities. Typically, the strength of a prior distribution is controlled by the 

distribution’s variance, with smaller variances demonstrating more strength and prior 

precision. For instance, a Normal( 0 , 1 ) prior distribution would be considered more 

precise and stronger than a Normal( 0 , 100 ) prior distribution.  

In the case where the posterior distributions are in the same distributional family 

as the prior distribution, the prior is called a conjugate prior (Raiffa & Schlaifer, 1961). 

The benefit of these conjugate priors is that they can help permit posterior distributions to 

emerge without numerical integration, a decided benefit for practitioners looking to avoid 

complicated integrals. Conjugate priors play an important role in estimation of IRT 

models through MCMC methods. They are desirable in that the use of a conjugate prior 

results in a posterior distribution of a known functional form, and, thus make sampling in 

MCMC more computationally efficient (Kim & Bolt, 2007). An additional benefit is that 
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the posterior predictive distribution (PPD; the distribution of future model data) of an 

exponential-family random variable with a conjugate prior can be written in closed form 

(Gelman et al., 2003). 

Another option for the specification of the prior is the use of noninformative 

priors. In the Bayesian paradigm, noninformative priors are recommended when no 

reliable information about the parameter exists (Albert & Louis, 2000) or if maximum 

likelihood estimates of item or person parameters are desired (Patz & Junker, 1999). 

However, use of noninformative priors negates many Bayesian method advantages by 

essentially reducing the estimation solution to a maximum likelihood estimate (Fox, 

2010). Further, use of noninformative priors implies that the posterior arose from the data 

only and that all resulting inferences were completely objective rather than subjective.  

A closely related notion to the noninformative prior is that of the reference prior. 

These are treated as a convenient place to begin an analysis (Kass & Wasserman, 1996; 

Carlin & Louis, 2000). An example of a reference prior for IRT modeling could be the 

approach wherein all items are assigned a difficulty value of a standard Normal 

distribution and then the prior’s performance is evaluated under a prior sensitivity 

analysis framework. If changes to the prior are deemed warranted, the reference prior can 

be abandoned or modified.  

 Prior distributions specified as uniform are often used as both reference and 

noninformative priors. These uniform priors are often termed flat, as they indicate the 

value of the parameter is equally likely across the specified range. However, Carlin and 

Louis (2000) show that the uniform prior is not invariant under reparameterization. 
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Another problem with the use of a flat prior is that they are usually improper, meaning 

they cannot be normalized to integrate to a value of one, a requirement for all probability 

densities. The improper prior could lead to an improper posterior, resulting in invalid 

inferences (Ghosh, Ghosh, Chen, & Agresti, 1997).   

An alternative to the flat prior is the Jeffreys prior (Jeffreys, 1961), which is 

invariant under reparameterization and results in a proper posterior. The Jeffreys prior is 

a reference prior and defined for θ as the prior which maximizes the empirical usefulness 

of a test (Markon, 2013). As the number of items on a test increases towards infinity, test 

information does not increase evenly across the range of θ, but rather increases 

proportional to the Fisher information function. The shape of the Fisher information 

function is used to define the Jeffreys prior for θ, allowing the placement of maximum 

prior probability on regions of θ parameters where the test has optimal power to 

distinguish among examinees (Markon, 2013).  

When using a Jeffreys prior, the form of the likelihood helps to determine the 

prior because the Jeffreys prior is proportional to the square root of the test information 

function, specified via 

 

𝑃∗(𝜃) =
√𝐼(θ)

∫ √𝐼(θ)
 ,     (8) 

 

 

where I( θ ) is the equation for the Fisher’s information function. Information is 

proportional to the second derivative of the log-likelihood function, which reflects the 

curvature of the log-likelihood at a particular value of θ.  
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 Multiple researchers have provided suggestions on choosing priors for IRT 

models. The suggestions have been quite varied. For instance, when Bayesian estimation 

and MCMC was first applied via Gibbs sampling to IRT, Albert (1992) used 

noninformative priors. Kim and Bolt (2007) suggest noninformative priors as well, 

indicating their use is appropriate if the marginal maximum likelihood solution is 

desirable. However, the specification provided for discrimination parameters was chosen 

to reflect that of the IRT calibration software PARSCALE (Muraki & Bock, 1997), and 

the priors in Kim and Bolt (2007) are more informative than many other so-called 

noninformative specifications (e.g., ai ~ lognormal( 0 , 0.5 )). Conversely, Begun and 

Glas (2001) and Glas and Meijer (2003) used very precise priors for the 3PNO. 

Tsutakawa (1992) reparameterized the 3PL, specifying the probability of correct response 

for any three ordered points on the ability scale. He then proposed using a constrained 

Dirichlet prior distribution on these probabilities. This is in direct contrast to Patz and 

Junker (1999) who assumed that the parameters are a priori independent of one another, 

using standard normal priors for examinee ability and item difficulty, and lognormal 

priors for discrimination parameters. 

 Sheng (2010) investigated the role of prior specification on parameter recovery of 

3PNO IRT models. The informativeness of the priors was manipulated by the variance of 

the prior distribution, with the mean of each prior distribution held constant at 0. 

Informativeness of the prior affected not only convergence rates, the rate at which the 

MCMC algorithm closed in on the posterior distribution of the parameter given the data, 

but the precision and accuracy of parameter posterior point estimates as well. This was 
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particularly true for small sample sizes and small numbers of items. Sheng also noted that 

small prior variances result in Bayesian estimates that are closer, or shrunken in, towards 

the prior mean than those estimates resulting from larger prior variances. Thus, if the 

prior distribution is appropriately informative, the Bayesian point estimates will be less 

likely to take on unreasonable values. Sheng’s findings indicate that for the 3PNO, 

appropriately specified informative priors should be adopted for discrimination and 

difficulty parameters to obtain more efficient and accurate parameter estimates with small 

samples and/or short tests. With little prior information, informative priors were not 

recommended.  

 Howell and Janosky (1991) found a similar feature with the 2PL. With large data 

sets, the informativeness of the prior distribution had little effect on parameter estimates. 

However, with small samples and/or short exams, informative and appropriately specified 

priors can have a profound effect on the resulting MCMC estimates. The benefits of 

informativeness are contingent on appropriately specified prior distributions. With 

informative but inaccurate priors, biased estimates and incorrect posterior inferences can 

result (Mislevy, 1986).   

 The above parameter recovery studies were undertaken with the expectation of 

good model-fit data, but just as much variation in prior specification has been witnessed 

in the presence of poor model-fit data. When trying to detect misfit via the PPC method, 

several studies (Sinharay, 2006; Sinharay, Johnson, & Stern, 2006; Sinharay, 2005; 

Sinharay & Johnson, 2003) have used noninformative priors for dichotomous models 

(log(ai) ~ Normal( 0 , 10 ) and bi ~ Normal( 0 , 10 )) in the presence of simulated misfit. 
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In contrast, Sinharay (2006) used more informative priors (log(ai) ~ Normal( 0 , 1 ) and bi 

~ Normal( 0 , 1 )). Ames (2014) used noninformative priors for PPC applied to 

polytomous models. In contrast, Zhu and Stone (2011) used more narrowly focused 

priors for the GRM (e.g., log(ai) ~ Normal( 0 , 1 ) and bik ~ Normal( 0 , 1 )). Another 

study on dichotomous items (Toribio & Albert, 2011) failed to provide any information 

on the prior parameters used.  However, regardless of the prior specification, the prior 

must be evaluated as other model assumptions are; several researchers have even stressed 

that, with Bayesian analysis, it is important for interpretation of results to disentangle the 

role of the likelihood and the prior on the posterior distribution (Muller, 1989).  

 Construction of the posterior distribution. Often, estimating the posterior is not 

directly possible via Bayes’ Theorem because of the analytical complexity involved in 

integrating the complex IRT likelihoods. MCMC, which is a general purpose sampling 

method that relies on the Monte Carlo principle, is used instead for the task of 

constructing the posterior when the analytical complexity becomes too great for direct 

computation.  The Monte Carlo principle states that anything a practitioner wishes to 

know about a random variable can be learned by sampling many times from the 

probability distribution of that random variable (Jackman, 2009). Therefore, if the 

practitioner wishes to learn about the posterior of θ, they must sample many times from 

the posterior of θ. If the posterior is a common distribution (e.g., Normal), sampling from 

the posterior is relatively simple because it has a known form. However, the posterior is 

often not a simple distribution and MCMC is then needed in order to learn about the 

posterior.   
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A Markov chain (a sequence of random variables) is used to sample from an 

unknown distributional form. The sequence has a particular property: the random variable 

at the current time depends only on its immediate predecessor (i.e., if θ  represents the 

random variable, then the value of θ in time t of the sequence depends only on the value 

of θ in time t-1). Once constructed, the Markov chain represents the posterior distribution 

and each point in the chain represents a sample of the posterior.    

 The posterior can be thought of as a combination of the prior and the likelihood. 

Intuitively, the posterior is determined by the amount of information contained in both 

the likelihood and the prior. In general, if the prior information is weak relative to the 

information contained in the likelihood, then the posterior will be relatively unaffected by 

the form of the prior and by prior misspecification (O’Hagan, 1994). Inferences drawn 

from a posterior would be relatively unaffected by the prior misspecification in this case. 

Similarly, if likelihood information is weak relative to the information contained in the 

prior, then the posterior will be relatively unaffected by the form of the likelihood and 

less vulnerable to likelihood misspecification. Inferences drawn from a posterior would 

be relatively unaffected by this type of misspecification (O’Hagan, 1994).  

 Inferences made from the posterior. This section concerns the inferences drawn 

from the parameter posterior distribution constructed via MCMC methods. Inferences can 

be made once the posterior is constructed.  Each of the examinee ability and item 

parameter posterior distributions provides complete information about the associated 

parameter (Fox, 2010). In Bayesian inference, the posterior is often summarized by 

several statistics and figures, providing information on where most of the posterior mass 
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is located (Fox, 2010) and these summaries often include the mode, mean, and standard 

deviation of the posterior distribution. 

The extent to which inferences made from parameter posteriors are sensitive to 

prior and/or likelihood misspecification is an important consideration in a Bayesian 

analysis (O’Hagan, 1994). The likelihood component, the IRT model of interest, must be 

checked for misspecification - that is, their adherence to model assumptions needs to be 

deemed adequate before inferences can be validly drawn. Misspecification testing can 

take place in a Frequentist framework (see Spanos, 2007, for error testing and 

misspecification; Ames and Penfield, under review, for a review of commonly used 

Frequentist approaches) as well as a Bayesian framework.  

The IRT model assumptions to be checked in misspecification tests are (a) 

unidimensionality, (b) local independence, and (c) that the probabilistic model reflects 

the true link between latent traits and item responses (Hambleton et al., 1991). The first 

assumption, unidimensionality, specifies that only one latent trait is measured by the 

items on the test. Typically, this assumption is not met in an absolute sense because other 

factors interact with an examinee’s response to an item such as test anxiety and other 

cognitive skills (Hambleton et al., 1991). What is required for the unidimensionality 

assumption to be adequately met is the presence of a single, dominant trait being 

measured on the test. For instance, an item purporting to measure algebra ability should 

be dominated by the latent algebra ability trait, and not by an examinee’s reading ability. 

Several multidimensional IRT models have been proposed, allowing for the presence of 
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more than one latent trait. For a review of multidimensional models, see van der Linden 

and Hamilton (Section III, 1997).  

Another assumption of IRT models is that of local independence, meaning that, 

after conditioning on examinee ability, responses to any particular item are statistically 

independent (Hambleton et al., 1991). When the assumption of unidimensionality holds 

true, local independence is automatically obtained (Lord, 1980; Lord & Novick, 1968). 

The property of local independence yields the result that, for a given response pattern, the 

probability of that pattern on a set of items is equal to the product of the probability of 

responses to the individual items (Hambleton et al., 1991). This results in dichotomous 

models having the following joint likelihood  

 

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = 𝐿 = ∏ ∏ 𝑃𝑛𝑖1
𝑥𝑛𝑖(1 − 𝑃𝑛𝑖1)(1−𝑥𝑛𝑖)𝐼

𝑖=1
𝑁
𝑛=1 ,   (9) 

 

 

and log-likelihood  

 

𝐿𝑜𝑔 − 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = 𝐿𝐿 =  ∑ ∑ [𝑥𝑛𝑖 ∗ log(𝑃𝑛𝑖1) +𝐼
𝑖 = 1

𝑁
𝑛 = 1 (1 − 𝑥𝑛𝑖) ∗ log(1 − 𝑃𝑛𝑖1)] ,  

(10) 

 

 

where Pni1 represents the IRF for the particular model under consideration.  

The final assumption is that the IRF reflects the true link between latent traits and 

item responses. This is often referred to as model-data fit. When the IRF reflects the true 

link between latent traits and item responses, the IRF represents the same link, regardless 

of the group of examinees responding to the item. That is, the IRF is invariant across the 

groups of examinees. When the IRF does not reflect the true link between latent traits and 
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item responses, the model will not yield invariant item and ability parameters (Hambleton 

et al., 1991).  

Beyond a lack of invariance, another consequence of model-data misfit is seen in 

the informativeness of the likelihood. The weaker the amount of information in the data, 

the flatter the distributional shape and the less informative the likelihood will be 

(Drasgow, Levine, & McLaughlin, 1991). Weak information could come from aberrant 

response patterns across people or across items. These aberrant response patterns would 

flag an item as “misfitting” using traditional model-data misfit statistics. Another term 

also used to describe data which are a good fit to the given model is strong data. These 

strong data result in a likelihood that is quite “peaked,” with negligible information 

outside of a small region around its maximum (O’Hagan, 1994). Weak data present the 

opposite: the likelihood is less-peaked and there is less information at the maximum.  

Assessment of how well the true link is represented by the model is, therefore, an 

important task. One method of assessing model-data fit, and, therefore, the 

informativeness of the likelihood, is through an examination of predicted responses 

compared to actual, observed responses. Frequentist methods provide an important 

element in the Bayesian model criticism process. Further, the Bayesian procedures can be 

conceptualized as an extension of the Frequentist approach. 

Frequentist Approaches to Model-Data Fit 

Suppose the IRF posits a high probability of correct response for an examinee 

resulting in the prediction that the examinee will answer the item correctly. If the 

examinee does answer correctly, the prediction is accurate. However, if the examinee 



  

35 

 

does not answer correctly, the prediction would be considered inaccurate. Frequentist 

methods for evaluating IRT model-data fit are based on examining how closely the 

observed responses fit those predicted by the model. As the difference between observed 

and predicted data increases, the fit of the model to the observed data decreases, which 

provides evidence of misfit.  

The difference between the observed response and the predicted response is 

termed the residual (rni), and is denoted by 

 

𝑟𝑛𝑖 = 𝑥𝑛𝑖 − 𝑃𝑛𝑖1.                                                 (11) 

 

 

One limitation of interpreting fit using the individual-level residuals shown in Equation 

11 is that the individual-level residuals will typically not be zero, even in the presence of 

relatively good model-data fit. As a result, individuals are grouped according to specific 

ranges of ability, referred to as bins, and then the difference between the observed 

proportion correct for each bin and the proportion correct predicted for each bin is 

considered. The bin-level residual for bin h is given by 

 

𝑟ℎ𝑖 = 𝑂ℎ𝑖1 − 𝑃ℎ𝑖1,       (12) 

 

 

where Ohi1 represents the observed proportion of individuals in the hth bin having a 

correct response to the ith item and Phi1 is the probability of correct response for that bin. 

The bins will be denoted here by h = 1, 2, …, H, such that H represents the total number 

of bins.  
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 Several different statistical approaches have been developed for evaluating fit, all 

of which involve the concept of the residual. Despite the voluminous options, most 

follow one of two general approaches: a chi-square approach and a likelihood-ratio 

approach. The chi-square approach to evaluating model-data fit in dichotomous items is 

given by the general form of 

 

𝜒𝑖
2 = ∑ 𝑁ℎ𝑖

(𝑟ℎ𝑖)2

𝑃ℎ𝑖1(1−𝑃ℎ𝑖1)

𝐻
ℎ=1  ,                  (13) 

  

 

where Nhi represents the number of people in bin h responding to item i. The chi-square 

statistic in Equation 13 represents the sum of squared, standardized residuals. The chi-

square approach embeds the bin-level residuals directly so that as the residuals increase, 

so too do the values of the chi-square statistic. Examples of this statistic are Yen’s Q1 

(1981) and Bock’s χ2 (1960). The likelihood-ratio based statistic for dichotomous items is 

given by the form 

 

𝐿𝑅𝑖 = 2 ∑ [𝑁ℎ𝑖1ln (
𝑁ℎ𝑖1

𝑁ℎ𝑖𝑃ℎ𝑖1
) + 𝑁ℎ𝑖0ln (

𝑁ℎ𝑖0

𝑁ℎ𝑖(1−𝑃ℎ𝑖1)
)]𝐻

ℎ=1  ,            (14) 

 

 

where Nhi1 and Nhi0 represent the number of people in bin h answering item i correctly 

and incorrectly, respectively. Some minor algebraic manipulation reveals that the natural 

log of bin-level residuals is involved. The term ln (
𝑁ℎ𝑖1

𝑁ℎ𝑖𝑃ℎ𝑖1
) expands to ln(𝑁ℎ𝑖1) −

ln (𝑁ℎ𝑖𝑃ℎ𝑖1), which is the natural log of observed bin-level correct responses less the 

natural log of expected bin-level correct responses. An example of the likelihood ratio 

type statistic is the G2 statistic (McKinley & Mills, 1985). 
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 The differentiating properties of the various indices and tests of model-data fit are 

based on three primary dimensions. The first dimension is whether the chi-square or 

likelihood ratio approach is taken. The next dimension is the manner in which bins are 

defined. The bins can be defined in several different ways, from having each individual 

serving as a unique bin, to having bins defined according to a particular number of 

individuals. The final dimension is the manner in which Phi1 is computed.  

 One common criticism of traditional chi-square type approaches (e.g., Yen’s Q1) 

and traditional likelihood ratio approaches (e.g., G2) is their use of ability estimates (θ̂) 

for creating bins of people. As Yen (1981) discusses, a poorly fitting model could result 

in biased ability estimates. Thus, binning on biased ability estimates may provide an 

invalid item-fit statistic.  This limitation highlights the need for alternative approaches for 

creating bins that are not based on θ.  

 One approach for creating bins that are θ-independent is to define bins according 

to observed test scores (e.g., summated scores) rather than θ estimates (Orlando & 

Thissen, 2000). For instance, if an assessment has 15 items, there will be 14 bins 

representing those earning a summated score of 1, 2, …, 12, 13, 14 on the assessment. 

The bins range from 1 to I – 1 because the probability of correct response for an item is 

always zero at a summated score of 0 (in which a person answers no items correct) and is 

always 1 at a summated score of I (in which a person answers all items correct). 

Applying this approach to the chi-square form of Equation 13 yields the S-X2 statistic, 

and applying this approach to the likelihood-ratio approach of Equation 14 yields the S-

G2 statistic (Orlando & Thissen, 2000). For both S-X2 and S-G2, df = I-1 less the number 



  

38 

 

of model parameters estimated by the model. For instance, for a 15-item test, with the 

item of interest estimated using a 3-PL, df = 15 - 1 - 3 = 11.  

 Orlando and Thissen (2000) argued that because the expected proportion of 

correct responses from the IRF is based on model-dependent ability estimates, the 

statistic’s distribution is unclear and conclusions drawn from these statistics may be 

invalid. To address this issue, S-X2 and S-G2 compute Phi1 using a recursive algorithm. 

The reader is referred to Lord and Wingersky (1984) for a description of this recursive 

algorithm.  

 Two related fit indices that follow the chi-square approach of Equation 13 are 

OUTFIT and INFIT (Wright & Panchapakesan, 1969). While these approaches are based 

on the same general form of Yen’s Q1, they adopt a notably different approach to bin 

definition. Both OUTFIT and INFIT assign only one individual per bin, such that each 

individual serves as a unique bin. Therefore, the residual adopted in Equation 13 for the 

chi-square approach is the individual-level residual. In addition, because there is a single 

individual per bin, the observed proportion correct for each bin is simply the individual’s 

scored response to the item (i.e., 0 or 1), and the value of Phi1 is the value of the item’s 

IRF for correct response at the individual’s estimated ability level.  

While OUTFIT and INFIT share the property of having one individual per bin, 

and thus adopting the individual-level residual of Equation 2, they differ in how much 

weight they assign to each individual. OUTFIT is computed using 

 

 𝑂𝑈𝑇𝐹𝐼𝑇𝑖 =
1

𝑁
𝜒𝑖

2,      (15) 
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where 𝜒𝑖
2 is the general chi-square form represented in Equation 4 with one individual 

per bin (Nhi  = 1 for all h) and N represents the total number of individuals in the sample. 

Because OUTFIT divides 𝜒𝑖
2 by N, OUTFIT is not actually a chi-square statistic, but 

rather an index of the magnitude of lack of fit that can be interpreted as the typical 

squared, standardized residual in the sample. Values of OUTFIT close to 1 indicate good 

model-data fit and values much greater, or much less, than 1 indicate the model-data fit is 

problematic. One suggestion has been to flag an item as misfitting if OUTFIT is less than 

0.5 or greater than 1.5 (de Ayala, 2009, pg. 53) or use a transformed t statistic with values 

less than -2 or greater than 2 indicating misfit (Bond & Fox, 2007; de Ayala, 2009).  

OUTFIT assigns each individual the same weight in its computation, which can 

be a limitation because it can be heavily impacted by the potential of very large 

individual-level residuals of people for which the probability of correct response is 

considerably low or considerably high. INFIT addresses this limitation by assigning more 

weight to individuals having an ability level (θ) closer to the item difficulty value (bi). An 

individual whose ability is close to the item's difficulty should give better insight into that 

item's performance than an individual who has ability that is substantially different than 

item difficulty. The weight assigned to each individual-level residual is equal to the 

Rasch model information function (see Hambleton et al. 1991 for an accessible 

description of the information function) at the individual’s level of ability, which is given 

by Phi1(1 – Phi1). This leads to INFIT being less sensitive to extreme responses than 

OUTFIT (Bond & Fox, 2007). For this reason, stronger consideration typically is given to 

INFIT (de Ayala, 2009). The general heuristic for flagging an item as misfitting using 
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INFIT is similar to that used for OUTFIT; items are flagged when INFIT values are less 

than 0.5 or greater than 1.5. Similarly, the transformed t statistic is also provided for 

INFIT in Winsteps (Linacre, 2011), with values less than -2 or greater than 2 indicating 

poor model-data fit.  

Bayesian Approaches to Model-Data Fit 

  There are several options, which are similar to the Frequentist approaches, for 

Bayesian evaluation of model-data fit. These include (a) examining the sensitivity of 

inferences to changes in the prior distribution and the analysis model, (b) checking the 

sensibility of posterior inferences against the researcher’s substantive knowledge, and (c) 

checking that the model fits the data (Gelman, Meng, & Stern, 2003). The majority of the 

focus of Bayesian IRT model-data fit has come via the latter method, typically assessed 

via PPC (Gelman, Meng, & Stern, 2003). The PPC method consists of assessing the 

plausibility of PPD against observed data, similar to the concept of residuals in the 

Frequentist paradigm discussed above. In both approaches, if the predictions resemble the 

observations, then the model is deemed a good fit to the data. If the model is a good fit to 

the data, then future data simulated from the model should look very much like observed 

data. Conversely, if the model is a poor fit to the data, then future simulated data will 

look different from the observed data.  

The general procedure for PPC is as follows. First, PPD data is simulated from the 

parameter posteriors. The data is simulated by randomly drawing values from the 

posterior distributions of item and person parameters and generating data which would 

likely arise if these were true parameter values. Another set of values is then drawn 
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randomly and used to generate another data set which would likely arise from this second 

value. This process is repeated until the desired number of simulated data sets is 

generated. Next, a comparison is made between the simulated and observed data. If the 

data sets are similar, the conclusion is that the model fits the data well (Lynch, 2007). A 

diagram of the PPC approach is found in Figure 3.  

 

 

Figure 3. Illustration of Posterior Predictive Checks 

 

 

Tests using Bayesian p-values are available for drawing conclusions regarding the 

similarity of the simulated and observed data sets are. Let T(x) be a statistic applied to the 

observed data, where the observed data is denoted by x. The statistic T( ) could be any 

commonly available item fit statistic, such as G2 or S-X2, or other descriptors of the data, 

such as the observed percent correct on an item.  The same statistic is then applied to 

each of the simulated data sets (T(xsim), where xsim represents the simth generated data set). 
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This results in one value of the statistic for the observed data, T(x), and sim values for the 

simulated data, T(xsim), one for each xsim. The Bayesian p-value is 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛(𝑇(𝑥𝑠𝑖𝑚) ≥ 𝑇(𝑥)).   (16) 

 

 

This posterior predictive p-value (PPP) is the proportion of simulated data sets 

whose function values T(xsim) exceed that of the function T(x) applied to the original data. 

PPP values close to 0 or 1 indicate model misfit due to the systematic differences 

between observed and simulated data. Typically, PPP values less than .05 or greater than 

.95 are used to flag a misfitting item (Sinharay, 2006). One complication of using the PPP 

value is that it can be sensitive to small samples (Meng, 1994).  

There is no limit on the number of statistics that could be used to obtain Bayesian 

PPP values, illustrating the flexible nature of the Bayesian method (Lynch, 2007). The 

term discrepancy measure is defined as the use of the discrepancy, or difference, between 

observed and simulated data in the PPC analysis (Meng, 1994). The previous discussion 

of Frequentist approaches illustrates possible discrepancy measures for the PPC 

approach. However, careful consideration should be given to the choice of discrepancy 

measure. For instance, Sinharay and Johnson (2003) found that the use of  the percentage 

correct (or percent of respondents per category) as a discrepancy measure did not permit 

model-data misfit detection. Toribio and Albert (2011) investigated OUTFIT (Wright & 

Panchapakesan, 1969), Yen’s Q1 (Yen, 1981), G2
 (McKinley & Mills, 1985), S-X2 and S-

G2 (Orlando & Thissen, 2000), finding all performed equally well as discrepancy 

measures. However, their computation of S-X2 and S-G2 was a simplified version of the 
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original statistics’ intended methodology and their results might not be applicable for 

these discrepancy statistics. 

To summarize the discussion thus far, IRT models have a set of assumptions that 

must be checked for adequate specification before valid inferences can be drawn. One 

such assumption is that the form of the IRF is appropriate for the data at hand. 

Frequentist methods typically apply one of two approaches, either a chi-squared statistic 

or a likelihood ratio statistic. In the Bayesian framework, evaluation of model-data misfit 

is often assessed through the PPC method. There has been considerable research on the 

effects of model-data misfit on parameter estimation in the Frequentist framework. 

However, the effect of model-data misfit on posterior estimation has been given 

relatively little attention.  

Prior Specification in PPC  

 PPC has proven to be a useful tool (Sinharay, 2006), but there has been little 

consistency in the specification of priors in this area. Multiple studies (Sinharay et al., 

2006; Sinharay, 2005; Sinharay & Johnson, 2003) have used noninformative priors for 

dichotomous models such as log(ai) ~ Normal( 0 , 10 ) and bi ~ Normal( 0 , 10 ). 

Similarly, Ames (2014) used noninformative priors for PPC applied to polytomous 

models (truncated log(ai) ~ Normal( 0 , 10 ) and bi ~ Normal( 0 , 10 )). In contrast, Zhu 

and Stone (2011) used more narrowly focused priors for the GRM such as log(ai) ~ 

Normal( 0 , 1 ) and bik ~ Normal( 0 , 1 ). Sinharay (2006) also used informative priors. 

Another study on dichotomous items (Toribio & Albert, 2011) failed to provide any 

information on the prior parameters used.  
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 Parameter recovery studies involving Bayesian methods have also varied the use 

of priors. Sheng (2010) varied the informativeness of the parameter priors for ai and bi as 

follows: (a) noninformative uniform prior, (b) noninformative normal prior with a large 

variance (1010) and mean of 0, (c) more informative prior (with a variance of 4 and mean 

of 0), and (d) precise prior (with a variance of 1 and mean of 0). Three priors were 

considered for guessing: (a) noninformative Beta prior (Beta(1,1)), (b) informative Beta 

prior with mean 0.22 and standard deviation of 0.131 (Beta(2,7)), and (c) very 

informative Beta prior with mean 0.22 with smaller standard deviation of 0.007 

(Beta(5,17)). Sheng found that relatively informative priors, when accurately specified, 

should be adopted for the discrimination and difficulty parameters.  

 Kieftenbeld and Natesan (2012) used noninformative priors for parameter 

recovery of the GRM including log-normal priors for the discrimination parameters 

(log(ai)~N ( 0, 21/2 ), implying mean(ai) = 2.718 and var(ai) = 6.871) and a 

noninformative uniform prior on the interval (-5, 5) for the threshold parameters (subject 

to an ordering restriction). They found that almost all discrimination parameters were 

positively biased, likely due to the mean of the noninformative prior being larger than 

any of the generating discrimination values. In Wollack, Bolt, Cohen, and Lee (2002), all 

priors were distributed Normal( 0 ,  100 ) so as to have a “negligible effect on item 

parameter estimation” of the nominal response model.  

 The above-mentioned studies were based upon recovery of parameters with good 

model-data fit. However, despite the good model-data fit, Kieftenbeld and Natesan 

(2012) found that the noninformative priors likely induced positive bias in some item 
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parameter estimates when using the posterior mean as a point estimate. This bias is 

potentially problematic for application of the PPC method because data are simulated 

from draws from the posteriors. If data are simulated from posteriors that are the result of 

model misspecification, then the simulated data will likely look different from observed 

data. The PPC method will then find evidence of misfit due to the misspecified posterior 

and not the actual presence of misfit. It is clear from this that the use of noninformative 

priors in the PPC method requires more attention. 

 With model-data misfit, the likelihood tends to be flatter than those likelihoods 

arising from good model-data fit (Drasgow et al., 1987). Drasgow and colleagues (1987) 

examined nine appropriateness measures to identify inappropriate test scores. In each 

approach, response patterns were quantified to determine the degree to which an 

observed response vector is atypical, an approach similar to determining aberrant 

responses for an item across individuals. In their paper, they discussed two indices, the 

jackknife variance estimate (Mosteller & Tukey, 1968) and a comparison of the expected 

and observed likelihood curvatures (Efron & Hinkley, 1978), which provide a measure of 

the flatness of a likelihood function. These indices are based upon the notion that 

responses not fitting the expected or predicted pattern will flatten the likelihood function 

near its maximum because no single ability parameter estimate exists that will provide a 

good fit to the response profile. The result is that the likelihood is relatively flat and will 

not have a sharp maximum (Drasgow et al., 1987).  

 The flatter the likelihood, the larger the role of the prior in formation of the 

posterior distribution (see again Figure 1; Muller, 1989). Thus, specification of the prior 
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in such studies requires careful consideration. With both a flat prior and flat likelihood, 

the posterior will tend to be flat as well, providing very little information and possibly 

affecting the results of the PPC method. The result would be potentially assigning large 

probabilities to a very broad range of parameter values.  

 Simulating data from this type of posterior would provide very inconsistent 

predictive data, since parameter values would be chosen from a broad range of values, 

and the resulting data sets might or might not differ in a systematic way. As an example, 

assume a draw is being taken from a parameter posterior which resembles a standard 

normal distribution (Normal( 0 , 1 )). If the true parameter value is actually centered one 

standard deviation above the estimated parameter posterior (e.g., Normal( 1 , 1 )), then 

predictive data will likely be systematically different than observed data. However, this 

may depend on the values chosen for the flat parameters.  For example, for a parameter 

posterior coming from a flat prior and a flat likelihood (Normal( 0 , 10 )), the predictive 

data has relatively the same chance for appearing similar to the observed data as it has for 

appearing different from it.  

 Checking the Bayesian model also implies checking for prior-data conflicts – 

situations in which the prior’s distribution does not match that of the observed data 

(Evans & Moshonov, 2006) - but the PPC method only addresses sampling model 

appropriateness. Evans and Moshonov (2006) claim that if, when checking the 

appropriateness of the sampling model, the researcher finds that the model is 

inappropriate, checking for prior-data conflict isn’t necessary. However, they provide no 

evidence that prior-data conflicts do not confound model checking procedures such as 
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PPC. It would seem in the case of Kieftenbeld and Natesan (2012) that the 

misspecification of the prior may have induced model misfit which would have been 

detected by the PPC method. Clearly the prior-data conflict in Kieftenbeld and Natesan 

(2012) would have interfered with the PPC method if the researchers had gone on to 

investigate model-data fit.  

 Two attempts to circumvent the prior-data conflict have been used in simulation 

studies investigating the PPC method. The first is to use large sample sizes when 

generating the data sets, in the hope is that prior will have less of a role in MCMC 

parameter estimation and, therefore, the PPC method (Sinharay & Johnson, 2003). The 

large sample size also has been used to ensure that the analysis model is estimated 

precisely and that the PPC results will not be affected by any inaccuracy in model 

parameter estimation (Zhu & Stone, 2011). For instance, Sinharay and Johnson (2003), 

Sinharay (2006), and Sinharay et al. (2006) used 2500 individuals. Some smaller sample 

sizes were investigated by Toribio and Albert (2011), who used 1000 individuals.  

However, this procedure undermines one of the benefits of Bayesian methods – that they 

are desirable with sparse data and small sample sizes when asymptotic theory is unlikely 

to hold and Frequentist approaches are limited (Fox, 2010). Further, parameter estimates 

from MCMC estimation are influenced not only by the sample size, but by the 

specification of the prior distribution. 

 The second approach employed to avoid prior-data conflict has been to specify 

noninformative priors when conducting the PPC method. As previously discussed, 

noninformative priors are often used so that the data drives the MCMC estimation 
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process rather than the priors (Sinharay, 2006). However, as previously discussed, the use 

of noninformative priors may have problems when used with the PPC method.  

 Gelman, Bois, and Jiang (1996) commented that if parameters are well-estimated 

from the data, PPC give results similar to classical model-checking procedures, 

irrespective of the “reasonable” prior used. But the parameters may be poorly estimated 

in the presence of model-data misfit and prior specification may become more important. 

For instance, with model-data misfit, there are known problems with parameter 

estimation, some of the most critical problems being IRT parameter invariance no longer 

holds and bias in the ability estimates (Bolt, 2002; Rupp & Zumbo, 2004; Shepard, 

Camilli & Williams, 1984). The biased ability estimates are potentially problematic for 

the PPC method. In the data simulation step of the PPC, draws are taken off the posteriors 

of both item and ability parameters. If either, or both, of the posteriors are biased, the 

resulting PPD sets might also be biased. In this case, the PPC method would also be 

checking the accuracy of posterior estimates and not just model-data misfit. Stern and 

Sinharay (2005) extended Gelman and colleague’s concern about the effect of prior 

distributions on PPC methods. They stated that model failures are detected only if the 

posterior inferences under the likelihood model seem flawed. If the prior used is 

unsuitable, posterior inferences may still be deemed reasonable if the prior has little 

effect on the posterior, such as the case with a flat prior or large sample sizes (p. 178). 

However, again, this argument seems to rely upon the flatness of the prior relative to the 

likelihood.   
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  Two more studies address the effect of priors on the PPC method. In the first, 

Gelman, Meng and Stern (1996) apply PPC to a study fitting a latent two-class mixture 

model to the data from an infant temperament study. Dirichlet parameter priors were 

chosen so that the multinomial probabilities for a variable (e.g., motor activity) were 

centered on values elicited from psychological theory, but with a large variance. The use 

of a weak, but not uniform, prior distribution was used to help identify the mixture 

classes (Gelman et al., 1996). The authors computed PPP values under a variety of prior 

distributions. The center of each class of the prior was chosen to either match the values 

suggested by theory or to represent a uniform distribution. The strength of the prior 

(informativeness) was also varied.  

 Gelman and colleagues found that as long as the prior distributions were not 

particularly strong, the center of the prior distribution had little effect on the PPC method 

and the size of the PPP values remained relatively constant (Gelman et al., 1996). With 

incorrect and very strong priors (which are the opposite of noninformative in that they 

narrow the mass of the likelihood onto a narrow region), the PPP value could be quite 

misleading. However, with correct and very strong priors, the PPP values reflected true 

model-data misfit rates of the mixture models. Sinharay and Johnson (2003) note (in 

connection with Gelman et al.’s findings) that a strong prior distribution, with reasonable 

trustworthiness, can be used to more effectively assess the fit of the likelihood part of the 

model. However, despite this recommendation, Sinharay and Johnson (2003) used large 

samples and noninformative priors for their PPC study.    
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 Often, informative priors may prove more useful to IRT practitioners than 

noninformative priors. For instance, Fox (2010) concluded that the elicited hierarchical 

prior proved more useful for the 2PL model than did noninformative priors, especially 

with relatively small datasets when prior information can significantly influence the item 

parameter estimates. Tsutakawa (1992) used information from a previous years’ test 

administration to help guide the specification of elicited priors.  When comparing joint 

maximum likelihood to Bayesian estimation, Gifford and Swaminthan (1990) found 

specification of the priors had modest effects on the Bayesian estimates, but concluded 

that the effect of the prior was greater for more complex models, particularly for the 

lower asymptote parameter of the 3PL model. Similarly, Swaminathan and colleagues 

(2003) found that the incorporation of ratings provided by subject matter experts 

produced estimates that were more accurate than those obtained without using such 

information. The improvement was observed for all item response models, but the 

improvement was positively related to the number of parameters estimated. Thus, as 

model complexity grew, the need for specifying informative priors grew in importance.  

  Albert and Ghosh (2010) showed that noninformative priors for IRT models 

often lead to improper posteriors. Because of this, their recommendation is to choose a 

prior that is proper to ensure that posterior distributions are also proper. They state this is 

most important with extreme data, which is often the type of data simulated in IRT 

model-data fit studies, such as outliers and unexpected response patterns, which would 

then be investigated via the PPC method.   
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 A final point related to the prior’s influence on PPC methods concerns the manner 

by which the Bayes factor summarizes the evidence provided by the data in favor of one 

statistical model in comparison to another. (Please see Kass and Raftery (1995) for a 

comprehensive review of Bayes factors, including information about their interpretation.) 

There has been considerable research in the area of the role of the prior in the use of the 

Bayes factor, which is known to be highly sensitive to choice of the prior distribution 

(Sinharay & Stern, 2002). However, the role of the prior with PPC has not received the 

same attention as the Bayes factor. Therefore, the need for investigating the role of the 

prior on the PPC method warrants the more attention.  

 In summary, because IRT model-data misfit results in a flatter likelihood, use of 

noninformative priors with the PPC method could be problematic. It might be the case 

that using more informative priors might prove more useful for conducting tests of 

model-data misfit than using noninformative priors. This is because the likelihood will 

have less of an effect on the posterior with increasing model-data misfit. 
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CHAPTER III  

 

METHODS 

 

 

 This chapter presents the methodology which is proposed to address the gap 

identified in the literature on prior specification for the PPC method. To summarize the 

literature found in the previous chapter, the PPC method might be sensitive to choices in 

specification of the prior distributions because of the flatness of the likelihood in the 

presence of model-data misfit. The likelihood will show decreased curvature as model-

data misfit increases. With increased flatness, the prior will have more of an effect on 

posterior distributions and PPD. 

 Consistency of the studies in PPC has been lacking in regards to how priors have 

been specified. However, it is common for researchers to use noninformative priors in 

this approach, relying on the belief that the noninformative prior will have little effect on 

the procedure (Sinharay, 2006). This may be true for models exhibiting adequate model 

data fit and a sufficiently peaked likelihood. However, with model-data misfit present, 

the likelihood will be less peaked, and the posterior may be more influenced by the 

noninformative prior than initially intended.  

 A posterior resembling a noninformative prior would assign high probabilities to 

parameters across a very broad range of values. Thus, when sampling from the posterior 

to simulate PPD, a wide range of parameter values would have a nearly identical 

probability of being sampled and systematic differences may be more difficult to detect. 
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Further, IRT parameters have specific distributional assumptions and noninformative 

priors may not be appropriate in the theoretical realm either.   

 The methods discussed in this chapter will provide guidance on assessing the PPC 

approach’s sensitivity to prior specification as well as under which conditions researchers 

must be most attentive to the choice of priors for PPC. The four research questions 

posited at the end of Chapter 1 will guide the research design and methodology described 

in this section.   

Research Plan 

 This section describes the research plan, including simulation conditions and 

other considerations.  

Choice of Simulation Conditions 

 General. Harwell and colleagues (1996) recommend no fewer than 25 

replications for simulation studies in IRT. With improved computational efficiency (see 

Ames & Samonte, in press), studies involving MCMC methods can now perform more 

than 25 replications. Levy et al. (2009) used 50 replications. Sinharay (2006), Sinhray 

and Johnson (2003), Sinharay et al. (2006) and Toribio and Albert (2011) all used 100 

replications. Further, Sinharay subsequently has recommended a minimum of 100 

replications (personal communication, April 14, 2014). To be in keeping with previous 

studies, 100 unidimensional, dichotomous IRT data sets for each condition will be 

simulated, with each data set representing one replication for the simulation.   

 This study will use the methodological approach described in Gelman, Meng, and 

Stern (1996) to explore the role of prior specification on the PPC method and the effects 
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of sample size and type of misfit on the role of the prior, on the PPC method. This 

procedure was also followed in Sinharay (2006), Sinharay and Johnson (2003), and 

Sinharay et al. (2006).  

 Consider a data-generating model (GM) and an analysis model (AM), where the 

AM is never more complex than the GM. Each GM model may be one chosen from the 

2PL, 3PL, and logistic positive exponent (LPE; Samejima, 2000) models. When the GM 

is the LPE, the AM include the LPE, 3PL, 2PL, and 1PL. When the GM is the 3PL, the 

AM include the 3PL, 2PL, and 1PL. When the GM is a 2PL model, the 2PL and 1PL 

could be used as AM. Situations in which the GM is equal to the AM, good model-data 

fit is expected. However, when the GM is not the same as the AM, model-data misfit may 

occur. An explanation of the introduction of model-data misfit follows in the next 

section. Figure 4 provides an illustration of the possible GM-AM combinations.  

 

 
Analysis Model 

1PL 2PL 3PL LPE 

Generating Model 

2PL X X   

3PL X X X  

LPE X X X X 

 

Figure 4. Generating and Analysis Model Combinations 

 

 

 Introduction of Misfit. Simulating misfit in IRT models should be given careful 

consideration because the type of IRT misfit may be one of several, depending in part on 

the model being fit (Wells & Bolt, 2008). Wells and Bolt (2008) consider several sources 

of misfit, distinguished by the location along the latent ability scale at which the largest 

amount of misfit was introduced. Several types of misfit are illustrated in Figure 5. 
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Figure 5. Types of Misfit in IRFs 

 

 



  

56 

 

 Good model-data fit is expected when the GM is the same type as the AM. This is 

illustrated in the top panel of Figure 5. However, when the AM is a less complex version 

of the GM, model-data misfit can arise. For instance, consider the case when the GM is 

the 3PL with a lower asymptote of ci = 0.2. If a restricted AM, such as the 2PL, is fit to 

the data simulated from the 3PL GM, misfit will be present in the lower range of θ. This 

type of misfit is evident in the second panel of Figure 5. There are several consequences 

of such a type of misfit, such as difference in difficulty parameter estimates between the 

two models. The difficulty estimates will be, in general, lower for the 2PL than for the 

3PL, resulting in the appearance that the items are less difficult than the true item 

difficulty (Bergan, 2010). Another consequence of this type of misfit is that the test 

information curves can be misleading, with the correctly specified 3PL showing a test 

information function that reaches its maximum at a value of θ higher than that of a test 

information function for a (effectively) misfitting 2PL model.  

 Most attention related to the specification of the functional form of the IRF has 

been in the context of fitting a traditional AM to a traditional GM, such as a combination 

chosen from among the 3PL, 2PL, or 1PL. Another type of misfit is introduced when the 

GM is the LPE and the AM is a simpler, traditional IRT model. Bolt and colleagues 

(2014) introduced this type of misfit in the context of model misspecification for 

measuring growth in vertical scaling. A LPE-2PL model is represented by the following 

equation:  

 

𝑃𝑛𝑖(𝑥𝑛𝑖  =  1|𝜃𝑛 , 𝑎𝑖 , 𝑏𝑖 , 𝜉𝑖)  =  [
exp (𝑎𝑖(𝜃𝑛−𝑏𝑖))

1+exp (𝑎𝑖(𝜃𝑛−𝑏𝑖))
]

𝜉𝑖

 ,    (17) 
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where 𝜉𝑖 is the acceleration parameter, representing the complexity of the item. In reality, 

any of the 1PL, 2PL, or 3PL models in Equations 5-7 could serve as the basis for the 

LPE, with appropriate restrictions, similar to restrictions imposed on traditional IRT 

models. The 3PL version of the LPE (LPE-3PL) is represented via  

 

𝑃𝑛𝑖(𝑥𝑛𝑖  =  1|𝜃𝑛 , 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖, 𝜉𝑖)  = 𝑐𝑖 + (1 − 𝑐𝑖) [
exp (𝑎𝑖(𝜃𝑛−𝑏𝑖))

1+exp (𝑎𝑖(𝜃𝑛−𝑏𝑖))
]

𝜉𝑖

 .       (18) 

 

 

 The acceleration parameter in Equations 17 and 18 introduces asymmetry to the 

IRF. This is accomplished through accelerating (i.e., pushing higher) the ability location 

at which the IRF’s slope is maximized. When 𝜉𝑖  = 1, the IRFs are symmetric and the 

formula reduces to the traditional form of the IRF. When 𝜉𝑖 > 1, the asymmetry is such 

that the IRF more rapidly increases on the left side of the inflection point than it 

decelerates on the right side of the inflection point (Bolt et al., 2014; Samejima, 2000). 

With 𝜉𝑖 < 1, just the opposite occurs and the LPE results in asymmetric ICCs with 

positively skewed slopes. One implication of this is that the estimated discrimination 

parameter of data fitted to a traditional 2PL, or 3PL, will generally be lower when 

estimated for a group of higher ability. The role of the acceleration parameter on the 

shape of the IRF is illustrated for the 2PL version of the LPE in Figure 6. The amount of 

misfit generated through the LPE in relation to traditional IRFs is not substantial, but can 

be used to introduce misfit at varying locations along the θ scale. One example is found 

in Figure 5 in the third panel, where misfit occurs at the higher range of θ. 
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Figure 6. IRFs for Hypothetical 2PL LPE Items (ai = 1, bi = 0 for all items). 

 

 

 The magnitude of the misfit is equally as important as the location (Bolt, 2002; 

Wells & Bolt, 2008). One option for quantifying the magnitude of misfit is found by 

summing the weighted differences between the GM and AM at k equally spaced θ values, 

ranging from -3 to 3 as follows 

 

𝑀𝐼𝑆𝐹𝐼𝑇 =  √∑ 𝑤(θ𝑘)(𝑃𝐺𝑀,𝑘 − 𝑃𝐴𝑀,𝑘)2601
𝑘=1  ,   (19) 

 

 

where  𝑤(θk) is a normalized weight defined by the standard normal density. The 

probability of correct response at the kth level of θ, according to the nonparametric curve 

of the generating model (i.e., the empirical IRF), is denoted by 𝑃𝐺𝑀,𝑘  and 𝑃𝐴𝑀,𝑘 is the IRF 

of the Bayesian model fit to the data using the posterior Bayes modal estimate (Wells & 
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Bolt, 2008). The weighting factor is used to weight the difference between the empirical 

and modeled curve according to the expected number of examinees at each ability 

location. 

 This study will simulate two classes of misfit. Following Wells and Bolt (2008), a 

cut-off of 0.020 will be used to distinguish between items with small versus medium to 

large misfit. If an item exhibits a MISFIT value of 0.020 or above, it will be considered 

as a medium to large misfit. If an item exhibits a MISFIT value of below 0.020, it will be 

considered as a small misfit. 

 Data-generating parameters. In keeping with the approach of Sinharay, 

Johnson, and Stern (2006), test length will be fixed at 30 items. In their study, when the 

GM was the 3PL, all of the item parameters found in Table 2 were used. When the GM 

was the 2PL, only the discrimination and difficulty parameters were used and when the 

1PL was used, the average of the item discriminations (a=1.36) and difficulty parameters 

was used. This approach appears to be a common practice in PPC simulation studies, 

with the technique adopted again in Sinharay and Johnson (2003), Sinharay (2006), and 

Toribio and Albert (2011).  

  



  

60 

 

Table 2. Generating Model Parameters in Sinharay, Johnson, and Stern (2006) 

Item ID 1 2 3 4 5 6 7 8 9 10 

ai 0.70 1.89 1.32 1.36 1.17 0.56 1.10 1.68 1.01 0.88 

bi 1.81 -0.52 0.26 -1.48 -0.52 0.44 -2.15 0.96 -0.87 1.70 

ci 0.08 0.06 0.14 0.17 0.17 0.14 0.30 0.25 0.10 0.22 

Item ID 11 12 13 14 15 16 17 18 19 20 

ai 1.19 0.60 1.49 2.01 2.40 2.00 1.48 1.10 1.52 1.45 

bi -2.41 -0.56 -0.27 0.04 -0.79 -0.38 0.14 -1.53 0.11 -0.21 

ci 0.23 0.21 0.12 0.20 0.18 0.17 0.13 0.14 0.20 0.12 

Item ID 21 22 23 24 25 26 27 28 29 30 

ai 0.80 0.67 0.83 1.17 1.43 2.40 1.53 1.20 1.70 2.05 

bi -0.52 -0.43 -1.25 -0.52 -0.27 -0.44 1.75 -0.80 0.40 -0.93 

ci 0.11 0.12 0.18 0.13 0.15 0.40 0.25 0.24 0.16 0.26 

 

 

 However, with the item parameters in Table 2 and the approach described above, 

potential problems can occur. To illustrate, consider a scenario with 2500 individuals 

randomly drawn from a standard normal distribution. Let the GM be the 3PL and the AM 

be the 2PL. The MISFIT values for the 30 items under this illustration are found in Table 

3, showing that 19 of the 30 of the items (63%) had MISFIT values classified as medium 

to large. The items with the smallest MISFIT values were those with difficulty 

parameters below 0, indicating that the 2PL tends to adequately fit a 3PL item as long as 

the item is relatively easy, a finding consistent with Wells and Bolt (2008). In Table 3, an 
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asterisk indicates the item has been classified as having medium to large misfit based on 

a cutoff of 0.02. 

 

Table 3. MISFIT for GM=3PL and AM=2PL 

 

Item MISFIT Item MISFIT 

1 0.017 16* 0.030 

2 0.011 17* 0.028 

3* 0.024 18 0.009 

4* 0.021 19* 0.032 

5* 0.021 20* 0.031 

6* 0.020 21 0.014 

7 0.009 22 0.008 

8* 0.057 23 0.016 

9 0.008 24* 0.028 

10* 0.025 25* 0.020 

11 0.003 26* 0.055 

12 0.019 27* 0.050 

13* 0.026 28* 0.021 

14* 0.044 29* 0.040 

15* 0.031 30* 0.026 

 

 The preponderance of misfitting items has implications for this study. When 

multiple misfitting items are present, dependency in the items can occur (Yen, 1981). 

This dependency results in parameter estimation of one item which is not independent 

from the parameter estimation of another item. Therefore, having 63% of the items 

simulated with medium to large misfit could confounded parameter recovery with misfit. 

In an effort to control for this confounding, this study will implement varying levels of 

the degree of representation of misfitting items on the test. Following the approach 

outlined by Wells and Bolt (2008), there will be four levels regarding the percent of 
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misfitting items: 0% (nitems = 0), 10% (nitems = 3), 30% (nitems = 9), and 50% (nitems 

= 15). The generating item parameters for the study can be found in Tables 4 through 6, 

with detail provided below.  

For the condition where the GM is the LPE-2PL, the generating item parameters 

are found in Table 4. When the GM is the LPE, the AM include the LPE, 3PL, 2PL, and 

1PL. Parameters were borrowed from Table 2 (originally found in Sinharay et al., 2006) 

when items were intended to induce misfit. The 2PL-LPE (Equation 17) was chosen 

rather than the 3PL-LPE (Equation 18) to isolate the location of the misfit to the higher 

end of the ability scale only, as the 3PL GM can induce misfit at the lower end of the 

ability scale. To further induce this form of misfit, only acceleration parameters greater 

than 1 were considered.  

 To ensure that the items introduce adequate levels of misfit, a MISFIT index will 

be computed for each of the items in each replication of the conditions. An approximate 

value of the MISFIT index, using quadrature rather than simulated data, can be found for 

the GM-LPE, AM combinations in Table 4 using quadrature.  

 For the condition where the GM is the 3PL, the generating item parameters are 

found in Table 5. When the GM is the 3PL, the AM include the 3PL, 2PL, and 1PL. An 

approximate value of the MISFIT index, using quadrature, can be found for the GM-3PL, 

AM combinations in Table 5. For the condition where the GM is the 2PL, the generating 

item parameters are found in Table 6. When the GM is the 2PL, the AM include the 2PL 

and 1PL. An approximate value of the MISFIT index, using quadrature, can be found for 
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the GM-2PL, AM combinations in Table 6. In Tables 4-6 it can be seen that MISFIT 

values tend to be larger when the GM is the LPE or 3PL than when the GM is the 2PL.  
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Table 4. LPE-2PL Generating Model Parameters 

I 
0% Misfitting 10% Misfitting 30% Misfitting 50% Misfitting MISFIT 

ai bi 𝜉𝑖  ai bi 𝜉𝑖  ai bi 𝜉𝑖  ai bi 𝜉𝑖  AM- 3PL AM-2PL AM-1PL 

1 1 -2 1 1 -2 1 1 -2 1 1 -2 1 -- -- -- 

2 1 -1.9 1 1 -1.9 1 1.45 -0.21 1.5 1.45 -0.21 1.5 0.022 0.015 0.039 

3 1 -1.7 1 1 -1.7 1 1 -1.7 1 1.17 -0.52 2 0.066 0.062 0.060 

4 1 -1.6 1 1 -1.6 1 1 -1.6 1 1 -1.6 1 -- -- -- 

5 1 -1.4 1 1 -1.4 1 1.53 1.75 2 1.53 1.75 2 0.084 0.035 0.053 

6 1 -1.3 1 1 -1.3 1 1 -1.3 1 0.56 0.44 4 0.157 0.123 0.120 

7 1 -1.2 1 1 -1.2 1 1 -1.2 1 1 -1.2 1 -- -- -- 

8 1 -1.0 1 1 -1.0 1 1 -1.0 1 1.48 0.14 2 0.093 0.060 0.065 

9 1 -0.9 1 1 -0.9 1 1 -0.9 1 1 -0.9 1 -- -- -- 

10 1 -0.8 1 1.68 0.96 2 1.68 0.96 2 1.68 0.96 2 0.091 0.049 0.066 

11 1 -0.6 1 1 -0.6 1 1 -0.6 1 1.32 0.26 4 0.140 0.108 0.110 

12 1 -0.5 1 1 -0.5 1 1 -0.5 1 1 -0.5 1 -- -- -- 

13 1 -0.3 1 1 -0.3 1 2.40 -0.79 4 2.40 -0.79 4 0.105 0.087 0.077 

14 1 -0.2 1 1 -0.2 1 1 -0.2 1 1 -0.2 1 -- -- -- 

15 1 -0.1 1 1 -0.1 1 2.01 0.04 1.5 2.01 0.04 1.5 0.067 0.010 0.053 

16 1 0.1 1 1 0.1 1 1 0.1 1 1 0.1 1 -- -- -- 

17 1 0.2 1 1 0.2 1 1 0.2 1 1 0.2 1 -- -- -- 

18 1 0.3 1 1 0.3 1 1 0.3 1 1.53 1.75 2 0.084 0.035 0.054 

19 1 0.5 1 1 0.5 1 1 0.5 1 1 0.5 1 -- -- -- 

20 1 0.6 1 1.70 0.40 4 1.70 0.40 4 1.70 0.40 4 0.129 0.097 0.101 

21 1 0.8 1 1 0.8 1 1 0.8 1 1 0.8 1 -- -- -- 

22 1 0.9 1 1 0.9 1 1 0.9 1 1 0.9 1 -- -- -- 
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I 
0% Misfitting 10% Misfitting 30% Misfitting 50% Misfitting MISFIT 

ai bi 𝜉𝑖  ai bi 𝜉𝑖  ai bi 𝜉𝑖  ai bi 𝜉𝑖  AM- 3PL AM-2PL AM-1PL 

23 1 1.0 1 1 1.0 1 1 1.0 1 0.60 -0.56 2 0.099 0.072 0.085 

24 1 1.2 1 1 1.2 1 1 1.2 1 1 1.2 1 -- -- -- 

25 1 1.3 1 1 1.3 1 1.52 0.11 2 1.52 0.11 2 0.092 0.035 0.064 

26 1 1.4 1 1 1.4 1 1 1.4 1 1 1.4 1 -- -- -- 

27 1 1.6 1 1 1.6 1 2.00 -0.38 4 2.00 -0.38 4 0.123 0.100 0.093 

28 1 1.7 1 1 1.7 1 1 1.7 1 1 1.7 1 -- -- -- 

29 1 1.9 1 1 1.9 1 1 1.9 1 1 1.9 1 -- -- -- 

30 1 2.0 1 2.40 -0.44 6 2.40 -0.44 6 2.40 -0.44 6 0.135 0.115 0.123 

Note, Items in bold indicate the items manipulated to include misfit 

 

 

Table 5. 3PL Generating Model Parameters 

 

  

Item 
0% Misfitting 10% Misfitting 30% Misfitting 50% Misfitting MISFIT 

ai bi ci ai bi ci ai bi ci ai bi ci AM-2PL AM-1PL 

1 1 -2 0 1 -2 0 1 -2 0 1 -2 0 -- -- 

2 1 -1.9 0 1 -1.9 0 1.45 -0.21 0.12 1.45 -0.21 0.12 0.019 0.022 

3 1 -1.7 0 1 -1.7 0 1 -1.7 0 1.17 -0.52 0.13 0.018 0.019 

4 1 -1.6 0 1 -1.6 0 1 -1.6 0 1 -1.6 0 -- -- 

5 1 -1.4 0 1 -1.4 0 1.53 1.75 0.25 1.53 1.75 0.25 0.070 0.081 

6 1 -1.3 0 1 -1.3 0 1 -1.3 0 0.56 0.44 0.14 0.025 0.046 

7 1 -1.2 0 1 -1.2 0 1 -1.2 0 1 -1.2 0 -- -- 

8 1 -1.0 0 1 -1.0 0 1 -1.0 0 1.48 0.14 0.13 0.025 0.022 

9 1 -0.9 0 1 -0.9 0 1 -0.9 0 1 -0.9 0 -- -- 



  

 
 

66 

10 1 -0.8 0 1.68 0.96 0.25 1.68 0.96 0.25 1.68 0.96 0.25 0.062 0.041 

11 1 -0.6 0 1 -0.6 0 1 -0.6 0 1.32 0.26 0.14 0.027 0.022 

12 1 -0.5 0 1 -0.5 0 1 -0.5 0 1 -0.5 0 -- -- 

13 1 -0.3 0 1 -0.3 0 2.40 -0.79 0.18 2.40 -0.79 0.18 0.022 0.046 

14 1 -0.2 0 1 -0.2 0 1 -0.2 0 1 -0.2 0 -- -- 

15 1 -0.1 0 1 -0.1 0 2.01 0.04 0.20 2.01 0.04 0.20 0.038 0.036 

16 1 0.1 0 1 0.1 0 1 0.1 0 1 0.1 0 -- -- 

17 1 0.2 0 1 0.2 0 1 0.2 0 1 0.2 0 -- -- 

18 1 0.3 0 1 0.3 0 1 0.3 0 1.53 1.75 0.25 0.070 0.051 

19 1 0.5 0 1 0.5 0 1 0.5 0 1 0.5 0 -- -- 

20 1 0.6 0 1.70 0.40 0.16 1.70 0.40 0.16 1.70 0.40 0.16 0.034 0.025 

21 1 0.8 0 1 0.8 0 1 0.8 0 1 0.8 0 -- -- 

22 1 0.9 0 1 0.9 0 1 0.9 0 1 0.9 0 -- -- 

23 1 1.0 0 1 1.0 0 1 1.0 0 0.60 -0.56 0.21 0.029 0.034 

24 1 1.2 0 1 1.2 0 1 1.2 0 1 1.2 0 -- -- 

25 1 1.3 0 1 1.3 0 1.52 0.11 0.20 1.52 0.11 0.20 0.038 0.032 

26 1 1.4 0 1 1.4 0 1 1.4 0 1 1.4 0 -- -- 

27 1 1.6 0 1 1.6 0 2.00 -0.38 0.17 2.00 -0.38 0.17 0.026 0.037 

28 1 1.7 0 1 1.7 0 1 1.7 0 1 1.7 0 -- -- 

29 1 1.9 0 1 1.9 0 1 1.9 0 1 1.9 0 -- -- 

30 1 2.0 0 2.40 -0.44 0.40 2.40 -0.44 0.40 2.40 -0.44 0.40 0.061 0.066 

Note, Items in bold indicate the items manipulated to include misfit 
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Table 6. 2PL Generating Model Parameters 

 

Item 
0% Misfitting 10% Misfitting 30% Misfitting 50% Misfitting MISFIT 

ai bi  ai bi  ai bi  ai bi AM-1PL 

1 1 -2  1 -2  1 -2  1 -2  -- 

2 1 -1.9  1 -1.9  1.45 -0.21  1.45 -0.21  0.019 

3 1 -1.7  1 -1.7  1 -1.7  1.17 -0.52  0.008 

4 1 -1.6  1 -1.6  1 -1.6  1 -1.6  -- 

5 1 -1.4  1 -1.4  1.53 1.75  1.53 1.75  0.022 

6 1 -1.3  1 -1.3  1 -1.3  0.56 0.44  0.026 

7 1 -1.2  1 -1.2  1 -1.2  1 -1.2  -- 

8 1 -1.0  1 -1.0  1 -1  1.48 0.14  0.019 

9 1 -0.9  1 -0.9  1 -0.9  1 -0.9  -- 

10 1 -0.8  1.68 0.96  1.68 0.96  1.68 0.96  0.027 

11 1 -0.6  1 -0.6  1 -0.6  1.32 0.26  0.014 

12 1 -0.5  1 -0.5  1 -0.5  1 -0.5  -- 

13 1 -0.3  1 -0.3  2.40 -0.79  2.40 -0.79  0.044 

14 1 -0.2  1 -0.2  1 -0.2  1 -0.2  -- 

15 1 -0.1  1 -0.1  2.01 0.04  2.01 0.04  0.036 

16 1 0.1  1 0.1  1 0.1  1 0.1  -- 

17 1 0.2  1 0.2  1 0.2  1 0.2  -- 

18 1 0.3  1 0.3  1 0.3  1.53 1.75  0.022 

19 1 0.5  1 0.5  1 0.5  1 0.5  -- 

20 1 0.6  1.70 0.40  1.70 0.40  1.70 0.40  0.027 

21 1 0.8  1 0.8  1 0.8  1 0.8  -- 

22 1 0.9  1 0.9  1 0.9  1 0.9  -- 

23 1 1.0  1 1.0  1 1.0  0.60 -0.56  0.024 

24 1 1.2  1 1.2  1 1.2  1 1.2  -- 

25 1 1.3  1 1.3  1.52 0.11  1.52 0.11  0.021 

26 1 1.4  1 1.4  1 1.4  1 1.4  -- 

27 1 1.6  1 1.6  2.00 -0.38  2.00 -0.38  0.036 

28 1 1.7  1 1.7  1 1.7  1 1.7  -- 

29 1 1.9  1 1.9  1 1.9  1 1.9  -- 

30 1 2.0  2.40 -0.44  2.40 -0.44  2.40 -0.44  0.044 
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 Sample size.  Several sources have noted that, with small sample sizes, 

noninformative priors have a more profound effect on the estimation of the posterior 

distributions, which in turn can affect the PPC procedure (Berkhof, et al. 2006; Lambert, 

2005; O’Hagan, 1994). Typical studies of PPC for IRT have used very large sample 

sizes. For instance, Sinharay and Johnson (2003); Sinharay (2006); and Sinharay, 

Johnson, and Stern (2006) used 2500 individuals. At such large sample sizes, it is 

anticipated that the role of the prior will be negligible. However, there is a lack of 

information in the literature regarding the performance of PPC using smaller sample sizes 

and to what extent the prior specification will affect the method. Sinharay (2006) 

performed a simulation with 500, 1000, 2000, and 4000 individuals. Some other sample 

sizes were investigated by Toribio and Albert (2011), who used 1000 individuals. 

However, Levy et al. (2009) investigated PPC for multidimensional IRT using 250, 750, 

and 2500 individuals. A parameter recovery study of the unidimensional 3PL by Sheng 

(2010) used 100, 300, 500, and 1000 individuals. In practical terms, sample sizes under 

500 would rarely be used when fitting a 3PL in an operational setting. Therefore, sample 

sizes of 500, 1000, and 2500 individuals will be used in the current study.  

 Discrepancy statistics.   In the PPC process, if the IRT model is a good fit to the 

data, then future item response data simulated from the model should look very much like 

observed data. Conversely, if the model is a poor fit, then future simulated data will look 

different from observed data (Lynch, 2007). Determining how similar the simulated and 

observed data are requires choice of an indicator, often termed discrepancy statistic to 
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highlight the focus on measuring discrepancies, or differences, between a model and the 

data (Meng, 1994).  

The literature does not show a consensus as to the best choice of discrepancy 

statistic. For example, Sinharay, Johnson, and Stern (2003) examined a comparison of 

observed-score and predicted-score distributions to assess fit of the model to the data. 

Sinharay (2006) used S-X2 and S-G2, showing their type I error rates and false alarm rates 

did not exceed the nominal level. However, the tests were also shown to be conservative, 

failing to detect some misfitting items. Toribio and Albert (2011) examined OUTFIT, 

INFIT, Bock’s Pearson-type χ2 index (1972), Q1, G
2, S-X2 and S-G2, with some 

conflicting results from those reported by Sinharay (2006) (possibly caused by the 

alternative computation method used by Toribio and Albert for S-X2 and S-G2).  

 Since the focus of this work is not on the performance of individual discrepancy 

measures, only a selected few which have been studied in previous simulations will be 

used. For example, in the Frequentist framework, Sinharay (2006) concluded that S-X2 is 

the best choice and provides acceptable, if not slightly conservative, false positive error 

rates.  This study will examine the percent correct (p-value), S-X2, and INFIT, in part 

because these have been examined in previous studies, but also because a value as simple 

as percent correct could greatly increase the speed with which a PPC procedure could be 

performed.  

 Choice of priors. Multiple studies (Sinharay et al., 2006; Sinharay, 2005; 

Sinharay & Johnson, 2003) have used noninformative priors for dichotomous models 

such as log(ai) ~ N( 0 , 10 ) and bi ~ N( 0 , 10 ). Sinharay (2006) used more informative 
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reference priors of log(ai) ~ N( 0 , 1 ), bi ~ N( 0 , 1 ), and logit(ci)~NIID(logit( 0.2 )). 

Sheng (2010) varied the informativeness of the parameter priors ai and bi in several ways: 

(a) noninformative uniform prior; (b) noninformative Normal prior with a large variance 

of 1010; (c) more informative prior, with a variance of 4; and (d) informative prior with a 

variance of 1.  Doing this, Sheng found that relatively informative priors, when 

accurately specified, should be adopted for the discrimination and difficulty parameters. 

Sheng also considered three priors for guessing: (a) noninformative Beta prior (Beta( 1 , 

1 )); (b) informative Beta prior with mean 0.22 and standard deviation of 0.131 (Beta( 2 , 

7 )); and (c) very precise Beta prior with mean 0.22 with standard deviation of 0.007 

(Beta( 5 , 17 )). 

 Sinharay and Johnson (2003) comment that strongly informative priors may 

seriously affect the results of posterior predictive checks, and that the replicated data sets 

obtained under strong, and incorrect prior distributions may be systematically far from 

observed data. The result would be a very large or very small PPP value, which may lead 

the researcher to conclude incorrectly that model-data misfit exists. However, a strong 

and accurate prior distribution can help the researcher assess the fit of the likelihood more 

effectively (Gelman et al., 1996; Sinharay & Johnson, 2003). Sheng (2010) followed a 

different procedure and investigated each specification in isolation. For example, when 

the estimation of the discrimination parameter for the 3PNO was of interest, the prior 

variance was manipulated for the discrimination parameter only, keeping the difficulty 

and guessing parameters noninformative. However, it appears more common to specify 

all the parameters as either noninformative or informative (e.g., Levy et al., 2009; 
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Sinharay, 2005; Sinharay, 2006; Sinharay et al., 2006; Sinharay & Johnson, 2003).These 

studies will guide my choice of the prior specifications. All parameters will be specified 

in a similar fashion such that if one parameter is noninformative, all parameters are 

noninformative. The prior specifications are found in Table 7.  

 

Table 7. Prior Specification 

 

Prior 

Specification 
Discrimination Difficulty Guessing 

Noninformative 
ai ~ N(0,∞)(0 , 

100)  
bi ~ N(0,100) 

ci ~ Beta(1 , 

1) 

Informative-

Accurate 
ai ~ N(0,∞)(1 , 1) 

bi ~ N(µb,1), where µb reflects the 

percent correct (p-value) for the 

item placed on a similar metric as 

the IRT scale 

(−ln (
𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖

1−𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖
)). 

 

ci ~ Beta(2 , 

7) 

Informative-

Inaccurate 
ai ~ N(0,∞)(3 , 1) 

bi ~ N(µb,1), where µb reflects the 

percent correct (p-value) for the 

item placed on a similar metric as 

the IRT scale, but inaccurate 

(ln (
𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖

1−𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖
)) 

ci ~ Beta(5 , 

4) 

Noninformative-

Inaccurate 
ai ~ N(0 , 100)  

bi ~ N(µb,100), where µb reflects 

the percent correct (p-value) for 

the item placed on a similar 

metric as the IRT scale, but 

inaccurate (ln (
𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖

1−𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖
)) 

ci ~ Beta(10 

, 7) 

 

  

In summary, Table 8 contains the conditions proposed to answer the research questions.  
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Table 8. Simulation Conditions 

Condition Values 

Percent of misfitting 

items 

0%, 10%, 30%, 50% 

Sample size 500, 1000, 2500 

Prior Specification Noninformative, Informative-Accurate, Informative-

Inaccurate, Noninformative-Inaccurate   

Degree of misfit Small (MISFIT < 0.020), Medium to Large (MISFIT ≥ 

0.020) 

Type of misfit introduced GM-LPE with AM-3PL, 2PL, 1PL;  

GM-3PL with AM-2PL, 1PL;  

GM-2PL with AM-1PL 

 

  

Estimation 

 Each data set will contain responses of N examinees to I dichotomous items. The 

generating parameter values (for items and examinees) are the same for all 100 data sets 

within a GM and are shown in Tables 4 though 6. For each of the 100 data sets generated, 

the AM is fit to the data using an MCMC algorithm. The MCMC algorithm will be 

implemented in SAS version 9.4 (SAS Institute, Inc., 2013), per Ames and Samonte (in 

press). A review of the MCMC procedure to be implemented in SAS is provided below.  

As described in Chapter 2, MCMC is a method of sampling which uses a Markov 

chain and the Monte Carlo principle (Jackman, 2009) to sample from a posterior 

distribution which is not a common type. Once constructed, the Markov chain represents 

the posterior distribution and each point in the chain represents a sample of the posterior. 

For a more technical and detailed description of MCMC for IRT, see Patz and Junker 

(1999) and Kim and Bolt (2007). 
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The Metropolis-Hastings (MH; Hastings, 1970; Metropolis et. al., 1953; 

Metropolis & Ulam, 1949) algorithm is one method for creating the Markov chain 

sequence. I will use the MH algorithm because SAS PROC MCMC implements the 

random walk MH algorithm. The chain starts with a beginning value of the parameter, 

bstart, which can be a completely random value or a value specified by the practitioner to 

represent a belief about the parameter. The algorithm transitions to the next value of the 

parameter (i.e., the next element of the chain), bnext, using the following general steps for 

this algorithm: 

1. Begin with bnext, a candidate value for the Markov chain, drawn from a 

proposal distribution. A popular proposal distribution is the “random walk” 

proposal. That is, a value is randomly sampled from somewhere near the 

current point (bnext = bstart + random error). The proposal distribution can 

change over iterations, a process referred to as tuning. 

2. Compute an acceptance ratio, r, which represents the plausibility of the 

candidate value, bnext. The acceptance ratio ranges from 0 to 1 and represents 

how likely the candidate value is to have come from the posterior. Low 

acceptance ratios indicate the candidate value is not likely to have come from 

the posterior. High acceptance ratios indicate the candidate value is quite 

likely to have come from the posterior.  

3. If r >1, move to the candidate value, bnext. Otherwise, move to the candidate 

value with probability, r, and remain at the existing value, bstart, with 

probability 1-r.  
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4. Repeat a specified number of times. The exact number of repetitions is 

specified by the practitioner. With each repetition of the algorithm, or 

iteration, the starting value is either the previous iteration’s accepted candidate 

or the previous iteration’s starting value. Once enough iterations have been 

completed, the sequence represents values of the posterior distribution and the 

information can be summarized.  

Depending on the starting value, the first several elements of the chain are 

typically not very good representations of the parameter and are thrown away. These 

throw-away elements are called the burn-in. As the algorithm continues through the 

parameter space, the algorithm will narrow in on one general location, the central mass of 

the distribution. Information about each instance of the algorithm, which provides 

information about the posterior, is saved.  

Extending the MH algorithm to a higher-dimensional parameter space is 

straightforward (Chib and Greenberg (1995) provide a tutorial on the algorithm for 

multiple dimensions). Let the k-dimensional parameter vector be represented by 𝜼 =

 (𝜂1, … , 𝜂𝑘). An initial start value for each 𝜂𝑘  is chosen and a multivariate version of the 

random walk proposal distribution, such as a multivariate normal distribution, is used to 

select a k-dimensional new parameter. Other steps remain the same as those previously 

described.  

In keeping with the procedure used by Sinharay (2006), an initial 10,000 

iterations will be run after a burn-in of 2,000 (total iterations=12,000).  However, these 
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values may be adjusted depending upon the convergence of the posterior.  A standard 

convergence statistic reported by SAS PROC MCMC is the Geweke diagnostic (Geweke, 

1992), which assesses whether the posterior estimates have converged by comparing 

means from the early and latter part of the Markov chain. This is accomplished via a two-

sided test based on a z-score statistic. If the 10,000 iterations are not enough to achieve 

convergence, the values will be increased until convergence is achieved. For 1000 draws 

in the final posterior sample, a replicated data set will be simulated and values of the 

realized and predictive discrepancy measures will be computed. PPP values will be 

computed for each of the simulation conditions.  

Outcomes 

 The two outcomes of interest will be the Type I error rate and Power rate, for each 

discrepancy measure. If an item is simulated to contain misfit and the PPP value is less 

than .05 or greater than .95, then the item is correctly identified as misfitting. However, if 

an item is not simulated to contain misfit, and the PPP value is less than .05 or greater 

than .95, then the item is incorrectly identified as misfitting. The proportion of items 

incorrectly identified as misfitting is the Type I error rate. If an item is not simulated to 

contain misfit, and the PPP value is between .05 and .95 (inclusive), then the item is 

correctly identified as fitting well. The proportion of items correctly identified as fitting 

well is the Power rate.  

Analysis 

 A fully crossed, four-way ANOVA (prior specification as one factor, sample size 

as the second factor, percent of misfitting items as the third factor, and degree of misfit as 
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the final factor) will be used to determine whether differences in Type I error and Power 

values exist given the factors of interest for each discrepancy measure. The four-way 

ANOVA will be performed for each of the three discrepancy measures (S-X2, INFIT, 

percent correct).  
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CHAPTER IV 

 

RESULTS 

 

 

 This chapter presents results from the simulation study. The simulation was 

designed to address the four research questions posited at the end of Chapter One. To 

summarize the problem and literature described in Chapter Two: the studies in PPC lack 

consistency with respect to how priors have been specified. The PPC method might be 

sensitive to choices in specification of the prior distributions because of the flatness of the 

likelihood in the presence of model-data misfit, specifically the likelihood will show 

decreased curvature as model-data misfit increases. With a decreased curvature, the prior 

will have more of an effect on posterior distributions and PPD. However, it is common 

for researchers to use noninformative priors in this approach, relying on the belief that the 

noninformative prior will have little effect on the procedure (Sinharay, 2006).  

 The methods detailed in Chapter Three provided guidance in assessing the PPC 

approach’s sensitivity to prior specification, as well as under which conditions 

researchers must be most attentive to the choice of priors for PPC. Conditions tested in 

the study design included sample size (500, 1000, 2500), percent of misfitting items (0%, 

10%, 30%, 50%), degree of misfit (small, medium-large), and the type of misfit 

introduced when the GM and AM differed.  
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 The results are organized as follows: First, I present a discussion of the 

convergence diagnostics and the time to converge. Second, I address the results 

pertaining to each of the four research questions, specifically:  

1. To what extent does prior specification influence the results of the PPC method 

for the model-data fit of unidimensional, dichotomous IRT models?  

2. How does sample size affect the influence of prior specification on the results 

of the PPC method for the model-data fit of unidimensional, dichotomous IRT 

models? 

3. How does the type of misfit affect the influence of prior specification on the 

results of the PPC method for model-data fit of unidimensional, dichotomous IRT 

models?  

4. How does the interaction of sample size and type of misfit affect the influence 

of prior specification on the results of the PPC method for model-data fit of 

unidimensional, dichotomous IRT models?  

I used false positive error rates and hit rates as measures of how the PPC method 

performs.   

Convergence 

The Geweke diagnostic (Geweke, 1992) is a standard convergence statistic 

reported by SAS PROC MCMC, and it assesses whether the posterior estimates have 

converged by comparing means from the early and latter part of the Markov chain. This 

is accomplished via a two-sided test based on a z-score statistic - specifically, two, non-

overlapping sequences of the Markov chain (i.e., the parameter posterior distribution) for 
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any parameter, such as θ, are considered (𝜃1
𝑡: 𝑡 = 1, … , 𝑖𝑡𝑒𝑟1;  𝜃2

𝑡: 𝑡 =

𝑖𝑡𝑒𝑟𝑎 , … , 𝑖𝑡𝑒𝑟 where 1 < 𝑖𝑡𝑒𝑟1 < 𝑖𝑡𝑒𝑟𝑎 < 𝑖𝑡𝑒𝑟 and 𝑖𝑡𝑒𝑟 =

interation of the Markov chain). Let  

 

𝜃̅1 =
1

𝑖𝑡𝑒𝑟1
∑ 𝜃1

𝑡𝑖𝑡𝑒𝑟1
𝑡=1  𝑎𝑛𝑑 𝜃̅2 =

1

𝑖𝑡𝑒𝑟2
∑ 𝜃2

𝑡𝑖𝑡𝑒𝑟
𝑡=𝑖𝑡𝑒𝑟𝑎

 ,    (20) 

 

 

where 𝑖𝑡𝑒𝑟2 = 𝑖𝑡𝑒𝑟 − 𝑖𝑡𝑒𝑟𝑎 + 1. If the ratios 
𝑖𝑡𝑒𝑟1

𝑖𝑡𝑒𝑟⁄  and 
𝑖𝑡𝑒𝑟2

𝑖𝑡𝑒𝑟⁄  are fixed, 

𝑖𝑡𝑒𝑟1+𝑖𝑡𝑒𝑟2

𝑛
< 1, and the chain is stationary, then the following statistic converges to a 

standard normal distribution as the number of iterations approaches infinity: 

 

𝑍𝑖𝑡𝑒𝑟 =
𝜃̅1−𝜃̅2

√
𝑠̂1(0)

𝑖𝑡𝑒𝑟1
+

𝑠̂2(0)

𝑖𝑡𝑒𝑟2

 .      (21) 

 

 

In Equation 21, 𝑠̂1(0) and 𝑠̂2(0) denote consistent spectral density estimates at zero 

frequency. Large absolute values of the Geweke Z statistic indicate rejection of the null 

hypothesis of convergence.  

In addition to the Geweke diagnostic, I also used visual analysis of trace plots to 

assess convergence. Trace plots of posterior samples on the vertical axis against the 

iteration index on the horizontal axis can be very useful in assessing convergence. The 

trace plot is used in conjunction with Geweke statistics to determine if the chain has not 

yet converged to its stationary distribution, which would indicate whether the chain needs 

a longer burn-in period and whether the chain is mixing well. The aspects of convergence 

that are most recognizable from a trace plot are a relatively constant mean and variance.  
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 Noninformative, Informative-Accurate, and Informative-Inaccurate Priors. 

In keeping with the procedure used by Sinharay (2006), I ran an initial 10,000 iterations 

after a burn-in of 2,000 (total iterations=12,000).  However, I subsequently modified 

these values, based on sample runs of one replicate per condition, for the condition when 

the percent of misfitting items was 50%, there were 2500 people, the prior specification 

was noninformative, GM=LPE, and AM=3PL. After increasing the number of iterations 

incrementally, by 1,000 iterations at a time, a total of 12,000 iterations were used after a 

burn-in of 5,000 iterations (total iterations=17,000) for the remainder of the simulation.  

 Noninformative-Inaccurate Priors. For MCMC algorithms using a 

noninformative-inaccurate prior distribution, the number of tuning loops reached 26 (the 

maximum value of the MH algorithm in SAS PROC MCMC). Tuning is the process of 

finding a good proposal distribution for each block of parameters. The tuning phase 

consists of a number of loops and each loop lasts for a number of iterations. By default, 

SAS PROC MCMC uses 500 iterations at the end of each loop. At the end of every loop, 

the acceptance probability for each parameter block is examined. If the probability falls 

within the acceptance tolerance range, the current proposal distribution is kept. 

Otherwise, the proposal distribution parameters are modified before the next tuning loop.  

 For the simulations using a noninformative-inaccurate prior distribution, some 

parameters had acceptance probabilities either outside of the target range of 0.159 to 

0.309 or below the target probability of 0.6. This indicates that the proposal distributions 

were not fully tuned, resulting in potentially bad mixing of the Markov chain.  
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 Initially, even after performing 5,000 burn-in iterations and 12,000 iterations to 

generate the Markov chain samples, Geweke diagnostics could not be computed because 

the variances of the two segments used in computation of the Geweke diagnostic were 

both 0. This was caused by the Markov chain being a constant vector. I then doubled both 

the number of burn-ins and replications (to 10,000 burn-ins and 24,000 Markov chain 

samples, respectively), but the resulting proposal distributions were still not fully tuned. 

Model-checking would not occur if this were the case. Hence, the remaining results are 

discussed only for the noninformative, informative-accurate, and informative-inaccurate 

prior distributions, and not for the noninformative-inaccurate priors.  

Time to Converge 

 Previous research (Sheng, 2010) has found that the informativeness of priors 

affects not only the convergence of Markov chains, but also the time needed for the 

MCMC algorithm to converge. Time to converge was therefore monitored because it can 

be a factor in adoption of MCMC methods. Figure 7 provides a comparison of the 

average time to converge, across prior informativeness.  
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Figure 7. Average Time to Converge, in minutes, by Type of Prior 

 

 

 As illustrated in Figure 7, in all instances, the use of informative-accurate priors 

resulted in faster times to converge than when noninformative or informative-inaccurate 

priors were used. When the percent of misfitting items was low (0% or 10% misfitting), 

noninformative priors tended to result in slightly faster convergence times than those of 

informative-inaccurate priors. However, when the percent of misfitting items was high 
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(30% or 50% misfitting), noninformative priors tended to result in slower convergence 

times than those of informative-inaccurate priors. Convergence times, compared across 

priors, were closest together with smaller sample sizes, and distributed farther apart for 

larger sample sizes. In all cases, time to converge increased as sample size increased 

because the MCMC algorithm estimates a person ability parameter posterior. Thus, as 

sample size increases, so too does the number of parameter posterior distributions.  

Analysis 

 Three discrepancy statistics (S-X2, INFIT, and percent correct) were evaluated 

separately for false positive error rates (similar to Type I error, a false positive error 

occurs when an item is flagged as misfitting when it does not contain simulated misfit) 

and hit rates (similar to power, a hit occurs when an item is correctly flagged when it was 

generated to be misfitting).  

 An example of both of these terms – hit rate and false positive rate - is shown in 

Table 5 and the condition with 50% misfit: Item 1 was not generated to be a misfitting 

item, so if the PPC procedure indicates the item is misfitting, this is considered a false 

positive; conversely, Item 2 is generated to have misfit, so if the PPC procedure indicates 

the item is misfitting, this is considered a hit.  

 Results for each research question are discussed separately, and are further 

divided by item being evaluated (false positive error rates, hit rates) and by discrepancy 

statistic. Fully crossed factorial analysis of variance (ANOVA) tests were performed to 

investigate mean differences among hit rates and false positive error rates. The false 

positives and hits were averaged across 100 replications to create mean hit rates. Because 
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of the large data set size, the significance level for the ANOVA tests was set to .001. For 

the multiple comparison procedure, Tukey’s Honest Significant Difference (HSD; Tukey, 

1949) was used and a significance level of .001 was again set to indicate significant mean 

differences.  

Research Question 1: To What Extent Does Prior Specification Influence the 

Results of the PPC Method for the Model-data Fit of Unidimensional, Dichotomous 

IRT models?  

 This section provides results of the first research question.  

Hit Rate 

 Table 9 provides a summary of the hit rate results for research question 1. Also 

included in Table 9 are partial eta-squared effect sizes (𝜂𝑝
2). These effect sizes can be 

interpreted as follows. Consider the 𝜂𝑝
2 for INFIT in Table 9 of .062. This would indicate 

that 6.2% of the variation in the hit rates outcome is explained by prior specification. 

Suggested heuristics for interpreting partial eta-squared are provided by Cohen (1988) as 

small = 0.01; medium = 0.06; and large = 0.14. Thus, the effect size for INFIT is 

considered medium whereas the effect size for S-X2
 is considered small and considered 

small to medium for percent correct.  

 

Table 9. Mean Hit Rates by Prior Specification 

 

 
Informative-

Accurate 

Informative-

Inaccurate 
Noninformative Significance 𝜂𝑝

2 

S-X2 .35 .37 .35  .002 

INFIT .63 .73 .44 *** .062 

Percent correct .03 .07 .01 *** .016 

Note, *** indicates statistical significance of the one-way ANOVA at the .001 level. 
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 S-X2. As indicated in Table 9, a one-way ANOVA was performed on mean hit 

rates for misfitting items. Using S-X2 as the discrepancy statistic, the ANOVA was not 

significant (F(2, 2913) = 0.26, p = .7737) for the main effect of prior informativeness. 

This indicates that the mean hit rates were not significantly different either for 

noninformative priors (Mhit = 0.35), informative-accurate priors (Mhit = 0.35) or 

informative-inaccurate priors (Mhit = 0.37).  

 INFIT. Using INFIT as the discrepancy statistic, the ANOVA was significant 

(F(2, 2913) = 96.35, p < .0001) for the main effect of prior informativeness, indicating 

that the mean hit rates were significantly different for noninformative priors (Mhit = 0.44), 

informative-accurate priors (Mhit = 0.63) and informative-inaccurate priors (Mhit = 0.73); 

in more detail,  the hit rate for noninformative priors was found to be significantly lower 

than the hit rate for informative-accurate priors (Mhit_diff = 0.19, where hit_diff designates 

the difference in hit rates) and significantly lower than the hit rate for informative-

inaccurate priors (Mhit_diff = 0.29). Further, the hit rate for informative-accurate priors was 

found to be significantly lower than the hit rate for informative-inaccurate priors (Mhit_diff 

= 0.10). 

 Percent correct. Using percent correct as a discrepancy statistic, the ANOVA 

was significant (F(2, 2913) = 23.44, p < .0001). This indicates that the mean hit rates 

were significantly different for noninformative priors (Mhit = 0.01), informative-accurate 

priors (Mhit = 0.07) and informative-inaccurate priors (Mhit = 0.03); more precisely, the hit 

rate for noninformative priors was found to be significantly lower than the hit rate for 

informative-accurate priors (Mhit_diff = 0.06) and significantly lower than the hit rate for 
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informative-inaccurate priors (Mhit_diff = 0.02). The hit rate for informative-accurate priors 

was also significantly lower than the hit rate for informative-inaccurate priors (Mhit_diff = 

0.04).  

False Positive Error  

 Table 10 provides a summary of the false positive rate results for research 

question 1. For S-X2 and INFIT, false positive rates are elevated above the traditional .05 

level. Because the PPC procedure flags an item as misfitting is the PPP value is below .05 

or above .95, the type I error for this case is .10 rather than .05. Thus, the false positive 

rates in this chapter should be compared to .10. Again, the effect size partial eta-squared 

is included in Table 10.  

 

Table 10. Mean False Positive Rates by Prior Specification 

 

 
Informative-

Accurate 

Informative-

Inaccurate 
Noninformative Significance 𝜂𝑝

2 

S-X2 .19 .20 .19  .000 

INFIT .23 .34 .19 *** .028 

Percent correct .02 .04 .01 *** .006 

Note, *** indicates statistical significance of the one-way ANOVA at the .001 level. 

 

 

 S-X2. Using S-X2 as the discrepancy statistic, the one-way ANOVA on false 

positive error rates was not significant (F(2, 10041) = 0.02, p = .9766) for the main effect 

of prior informativeness, indicating that the mean false positive error rates were not 

significantly different for noninformative priors (Mfalse+ = 0.19), informative-accurate 

priors (Mfalse+ = 0.19) or informative-inaccurate priors (Mfalse+ = 0.20). However, all were 

greater than .10, the type I error for the PPC procedure.  
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 INFIT. Using INFIT as the discrepancy statistic, the ANOVA on false positive 

error rates was significant (F(2, 10041) = 144.68, p < .0001). This indicates that the mean 

false positive error rates were significantly different for noninformative priors (Mfalse+ = 

0.19), informative-accurate priors (Mfalse+ = 0.23) and informative-inaccurate priors 

(Mfalse+ = 0.34) - specifically, the false positive error rate for noninformative priors was 

found to be significantly lower than the false positive error rate for informative-accurate 

priors (Mfalse+_diff = 0.04) and significantly lower than the false positive error rate for 

informative-inaccurate priors (Mfalse+_diff = 0.15). In addition, the false positive error rate 

for informative-accurate priors was found to be significantly lower than the false positive 

error rate for informative-inaccurate priors (Mfalse+_diff = 0.11). Similar to the S-X2 

ANOVA results, all false positive error rates were elevated above the desirable level of 

0.10. 

 Percent correct. Using percent correct as a discrepancy statistic, the ANOVA 

was significant (F(2, 10041) = 31.71, p < .0001). This indicates that the mean false 

positive error rates were significantly different for noninformative priors (Mfalse+ = 0.01), 

informative-accurate priors (Mfalse+ = 0.02) and informative-inaccurate priors (Mfalse+ = 

0.04) - specifically, the false positive error rate for noninformative priors was found to be 

significantly lower than the false positive error rate for informative-accurate priors 

(Mfalse+_diff = 0.01) and significantly lower than the false positive error rate for 

informative-inaccurate priors (Mfalse+_diff = 0.03). The false positive error rate for 

informative-accurate priors was also found to be significantly lower than the false 

positive error rate for informative-inaccurate priors (Mfalse+_diff = 0.02).  
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Summary  

 Significantly different mean hit rates for each type of prior used were found when 

using INFIT and percent correct as discrepancy statistics. INFIT had the highest overall 

hit rates, peaking when using informative-inaccurate priors. Using percent correct had the 

lowest overall hit rates, and was at its lowest with noninformative priors. Figure 8 

illustrates mean hit rates for each discrepancy statistic, across the different types of 

priors.  

 

 

Figure 8. Mean Hit Rates, by Type of Prior 

 

 

 Significantly different mean false error positive rates, for each type of prior used, 

were found when using INFIT and percent correct as discrepancy statistics. INFIT had the 
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highest overall false positive error rates, peaking when using informative-inaccurate 

priors. Figure 9 illustrates mean false positive error rates for each discrepancy statistic, 

across the different types of priors. Based on these results, informative-inaccurate priors 

tend to categorize most items as misfitting, regardless of whether the item was generated 

to contain misfit or not.  

 

 

Figure 9. Mean False Positive Rates, by Type of Prior 

 

 

Research Question 2: How Does Sample Size Affect the Influence of Prior 

Specification on the Results of the PPC Method for Model-data Fit of 

Unidimensional, Dichotomous IRT Models? 

 This section provides results of the second research question.  
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Hit Rate 

 Table 11 provides a summary of the mean hit rates for Research Question 2 and 

Figure 10 provides a summary of these results for all three discrepancy statistics.  

 

Table 11. Mean Hit Rates by Prior Specification and Sample size 

Prior Sample size S-X2 
INFIT Percent  

Correct*** 

Informative-

Accurate 

500 .20 .54 .01 

1000 .35 .60 .05 

2500 .52 .75 .16 

Informative-

Inaccurate 

500 .23 .65 .02 

1000 .35 .72 .04 

2500 .52 .83 .05 

Noninformative 

500 .18 .40 .01 

1000 .35 .42 .01 

2500 .54 .50 .02 

Note, *** indicates statistical significance of the two-way ANOVA at the .001 level. 
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Figure 10. Mean Hit Rates, by Type of Prior, Sample size, and Discrepancy Statistic 

 

 

Partial eta-squared effect sizes for research questions two through four are found in Table 

12, for both main effects and interactions. 
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 Table 12. Effect Sizes for Research Questions Two Through Four 

 

  Hit Rates False Positive Rates 

Research 

Question  
Effect 

𝜂𝑝
2 𝜂𝑝

2 

S-

X2 
INFIT 

Percent  

Correct 

S-

X2 
INFIT 

Percent  

Correct 

Two 

Prior .000 .063 .017 .000 .028 .007 

Sample size .074 .021 .022 .002 .026 .023 

Prior*Sample size .001 .002 .019 .000 .000 .006 

Three 

Prior .000 .073 .017    

Size .029 .004 .001    

Location .044 .112 .031    

Prior*Size .000 .003 .000    

Prior*Location .000 .050 .015    

Prior*Size*Location .002 .011 .002    

Four 

Prior .000 .076 .018    

Size .033 .004 .001    

Location .049 .117 .033    

Sample size .082 .026 .024    

Prior*Size .000 .004 .000    

Prior*Location .000 .052 .016    

Prior*Size*Sample size .003 .006 .021    

Prior*Location*Sample size .026 .003 .030    

Prior*Size*Location .003 .012 .002    

Prior*Size*Location*Sample 

size 
.004 .009 .001    

 

 

 S-X2. Using S-X2 as the discrepancy statistic, the interaction term of the two-way 

ANOVA was not significant (F(4, 2907) = 0.60, p = .6659) between sample size and 
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prior informativeness. Significant main effects were observed for sample size (F(2, 2907) 

= 116.47, p < .0001), but not prior informativeness (F(2, 2907) = 0.28, p = .7582). The 

main effect of sample size showed significant mean hit rate differences between 500 

people (Mhit = 0.20) and 1000 people (Mhit = 0.35, Mhit_diff  = 0.15, p < .0001) and 2500 

people (Mhit = 0.52, Mhit_diff  = 0.32, p < .0001). Significant mean hit rate differences also 

occurred between 1000 people and 2500 people (Mhit_diff  = 0.17, p < .0001).   

 INFIT. Using INFIT as the discrepancy statistic, the interaction term of the two-

way ANOVA was not significant (F(4, 2907) = 1.34, p = .2517) between sample size and 

prior informativeness. Significant main effects were observed for sample size (F(2, 2907) 

= 31.50, p < .0001) and prior informativeness (F(2, 2907) = 98.42, p < .0001). The main 

effect of sample size showed significant mean hit rate differences between 500 people 

(Mhit = 0.53) and 2500 people (Mhit = 0.70, Mhit_diff  = 0.17, p < .0001). Significant mean 

hit rate differences also occurred between 1000 people (Mhit = 0.58) and 2500 people 

(Mhit_diff  = 0.12, p < .0001).  

 Mean hit rates were significantly different for noninformative priors (Mhit = 0.44), 

informative-accurate priors (Mhit = 0.63) and informative-inaccurate priors (Mhit = 0.73). 

Specifically, the mean hit rate for noninformative priors was found to be significantly 

lower than the mean hit rate for informative-accurate priors (Mhit_diff = 0.19) and 

significantly lower than the mean hit rate for informative-inaccurate priors (Mhit_diff = 

0.29). Further, the hit rate for informative-accurate priors was found to be significantly 

lower than the hit rate for informative-inaccurate priors (Mhit_diff = 0.10).  
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 Percent correct. Using percent correct as the discrepancy statistic, the interaction 

term of the two-way ANOVA was significant (F(8, 2907) = 21.06, p < .0001) between 

sample size and prior informativeness. Within informative-accurate priors, the effect of 

sample size was significant, with the mean hit rate for 500 people significantly lower than 

the mean hit rate for 2500 people (Mhit_diff = 0.15, p < .0001) and the mean hit rate for 

1000 people significantly lower than the hit rate for 2500 people (Mhit_diff = 0.12, p < 

.0001). Within informative-inaccurate priors and noninformative priors, on the other 

hand, there were no significant mean differences between hit rates for the three sample 

sizes. The mean hit rates, when using percent correct as the discrepancy statistic, were 

lower than those found with the other two discrepancy statistics.  

False Positive Error  

 Table 13 provides a summary of the mean false positive rates for Research 

Question 2 and Figure 11 presents the results graphically.  
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Table 13. Mean False Positive Rates by Prior Specification and Sample size 

 

Prior Sample size S-X2 INFIT Percent correct*** 

Informative-

Accurate 

500 .17 .17 .001 

1000 .19 .21 .01 

2500 .20 .33 .05 

Informative-

Inaccurate 

500 .17 .30 .01 

1000 .18 .31 .01 

2500 .21 .46 .09 

Noninformative 

500 .16 .12 .000 

1000 .18 .16 .01 

2500 .21 .28 .03 

Note, *** indicates statistical significance of the two-way ANOVA at the .001 level. 
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Figure 11. Mean False Positive Rates, by Type of Prior, Sample size, and Discrepancy 

      Statistic 

 

 

 S-X2. Using S-X2 as the discrepancy statistic, the interaction term of the two-way 

ANOVA was not significant (F(4, 10035) = 0.23, p = .9201) between sample size and 

prior informativeness for false positive error rates. Significant main effects were observed 

for sample size (F(2, 10035) = 9.95, p < .0001) but not prior informativeness (F(2, 

10035) = 0.02, p < .0001). The main effect of sample size showed significant mean false 

positive error rate differences between 500 people (Mfalse+ = 0.16) and 2500 people 

(Mfalse+ = 0.21, Mfalse+_diff  = 0.05, p < .0001). As with hit rates, as sample size increased, 

so too did the false positive error rates, within levels of prior informativeness.  
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 INFIT. Using INFIT as the discrepancy statistic, the two-way ANOVA was not 

significant (F(4, 10035) = 0.64, p = .6365) between sample size and prior 

informativeness for false positive error rates. Significant main effects were observed for 

sample size (F(2, 10035) = 134.85, p < .0001) and prior informativeness (F(2, 10035) = 

148.52, p < .0001). The main effect of sample size showed significant mean false positive 

error rate differences between 500 people (Mfalse+ = 0.19) and 2500 people (Mfalse+ = 0.36, 

Mfalse+_diff  = 0.17, p < .0001). Significant mean false positive error rate differences also 

occurred between 1000 people (Mfalse+ = 0.23) and 2500 people (Mfalse+_diff  = 0.13, p < 

.0001).   

 Mean false positive error rates were significantly different for noninformative 

priors (Mfalse+ = 0.19), informative-accurate priors (Mfalse+ = 0.23) and informative-

inaccurate priors (Mfalse+ = 0.34) - specifically, the false positive error rate for 

noninformative priors was found to be significantly lower than the false positive error 

rate for informative-accurate priors (Mfalse+_diff = 0.04) and significantly lower than the 

false positive error rate for informative-inaccurate priors (Mfalse+_diff = 0.15). Further, the 

false positive error rate for informative-accurate priors was found to be significantly 

lower than the false positive error rate for informative-inaccurate priors (Mfalse+_diff = 

0.11). The false positive error rates were all greater than the desirable level of .10. As 

with hit rates, as the sample size increased, so too did the false positive error rates within 

the prior specification.  

 Percent correct. Using percent correct as the discrepancy statistic, the interaction 

term of the two-way ANOVA was significant (F(8, 10035) = 21.06, p < .0001) between 
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sample size and prior informativeness for false positive error rates. Within informative-

accurate priors, the effect of sample size was significant, with the false positive error rate 

for 500 people (Mfalse+ = 0.002) significantly lower than the false positive error rate rate 

for 2500 people (Mfalse+ = 0.05, Mfalse+_diff = 0.048, p < .0001) and the false positive error 

rate for 1000 people ((Mfalse+ = 0.01) significantly lower than the false positive error rate 

for 2500 people (Mfalse+_diff = 0.049, p < .0001). Within informative-inaccurate priors, 

there were no significant mean differences between hit rates for the three sample sizes. 

Within noninformative priors, the false positive error rate for 1000 people (Mfalse+ = 

0.005) was significantly lower than the false positive error rate for 2500 people (Mfalse+ = 

0.03, Mfalse+_diff = 0.025, p < .0001). False positive error rates for the percent correct 

discrepancy statistic were much lower than for the other discrepancy statistics.  

Summary  

 Hit rates and false positive error rates showed a significant interaction between 

sample size and prior informativeness when using percent correct as a discrepancy 

statistic.  For all three discrepancy statistics, the main effect of sample size was 

significant. As sample size increased, hit rates and false positive error rates also 

increased, within prior specification and across discrepancy statistics.  

Research Question 3: How Does the Type of Misfit Affect the Influence of Prior 

Specification on the Results of the PPC Method for the Model-data Fit of 

Unidimensional, Dichotomous IRT Models?  

 Two types of misfit were investigated: size of misfit and type of misfit. Size of 

misfit had two levels, small and medium-large, as described in Chapter 3. Type of misfit 
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refers to the location along the latent ability continuum where the largest difference 

between the GM and AM occurs. For example, if the GM is the 3PL and the AM is the 

2PL or 1PL, the largest degree of misfit occurs at the lower end of the ability continuum. 

If the GM is the LPE and the AM is the 3PL, 2PL, or 1PL, the largest degree of misfit 

occurs at the higher end of the ability continuum. If the GM is the 2PL and the AM is the 

1PL, the type of misfit relates to the steepness of the slope of the IRFs.   

 Hit rates only were considered for this research question, as all items generated to 

have adequate model-data fit would have only a small degree of misfit. False positive 

error rates would not have sufficiently varying levels of size of misfit. A fully-crossed, 

three-way ANOVA, with location of misfit, size of misfit, and informativeness of prior 

distributions as factors was conducted for this research question. 

Hit Rates   

 Table 14 provides a summary of the mean hit rates used to answer Research 

Question 3 and Figure 12 illustrates the hit rate means.  
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Table 14. Mean Hit Rates by Prior Specification, Sample size, and Type if Misfit 

 

Prior Type Size SX2 INFIT*** Percent correct 

Informative-Accurate 

lower Medium-Large .42 .40 .01 

 Small .06 .11 .06 

slope Medium-Large .57 .92 .00 

 Small .22 1.00 .00 

upper Medium-Large .29 .69 .14 

 Small .00 1.00 .08 

Informative-Inaccurate 

lower Medium-Large .42 .67 .00 

 Small .00 .67 .00 

slope Medium-Large .58 .93 .01 

 Small .33 .89 .00 

upper Medium-Large .32 .72 .07 

 Small .00 .67 .00 

Noninformative 

lower Medium-Large .42 .43 .01 

 Small .00 .06 .00 

slope Medium-Large .54 .94 .00 

 Small .44 .89 .00 

upper Medium-Large .30 .32 .02 

 Small .00 .00 .00 

Note, *** indicates statistical significance of the three-way ANOVA at the .001 level. 
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Figure 12. Mean False Positive Rates, by Type of Prior, Sample size, and Discrepancy 

      Statistic  

 

 

 S-X2. Using S-X2 as the discrepancy statistic, the main effects of size of misfit 

(F(1, 2898) = 88.44, p < .0001) and location of misfit (F(2, 2898) = 25.02, p < .0001) 

were significant. There were no significant two-way or three-way interactions. The main 

effect of size of misfit showed significant hit rate mean differences between small misfit 

(Mhit = 0.22) and large misfit (Mhit = 0.43, Mhit_diff  = 0.21, p < .0001).  

 The main effect of location of misfit showed significant mean hit rate differences 

between misfit at the lower end of the ability continuum (Mhit = 0.22) and misfit related 

to steepness of the IRF slope (Mhit = 0.45, Mhit_diff  = 0.23, p < .0001). There was also a 

significant mean hit rate difference between misfit at the upper end of the ability 
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continuum (Mhit = 0.15) and misfit related to steepness of the IRF slope (Mhit_diff  = 0.30, p 

< .0001). The PPC procedure had almost no ability to detect small degrees of misfit when 

the misfit was located at the upper end of the ability continuum. 

 INFIT. Using INFIT as the discrepancy statistic, the three-way interaction was 

significant (F(6, 2898) = 5.43, p < .0001) between size of misfit, location of misfit, and 

prior informativeness. Within informative-accurate priors, for items with large misfit, 

there were significant mean differences between misfit at the lower end of the ability 

continuum (Mhit = 0.40) and the upper end of the ability continuum (Mhit = 0.69, Mhit_diff = 

0.29, p < .0001) and slope steepness (Mhit = 0.92, Mhit_diff = 0.52, p < .0001). There were 

also significant mean hit rate differences between misfit at the upper end of the ability 

continuum and misfit related to slope steepness (Mhit_diff = 0.23). Within informative-

accurate priors, for items with small misfit, there were significant mean differences 

between misfit at the lower end of the ability continuum (Mhit = 0.11) and the upper end 

of the ability continuum (Mhit = 0.99, Mhit_diff = 0.88, p < .0001) and slope steepness (Mhit 

= 0.99, Mhit_diff = 0.88, p < .0001).  

 Within informative-inaccurate priors, for items with large misfit, there were 

significant mean differences between misfit at the lower end of the ability continuum 

(Mhit = 0.67) and slope steepness (Mhit = 0.93, Mhit_diff = 0.27, p < .0001). There were also 

significant mean hit rate differences between misfit at the upper end of the ability 

continuum (Mhit = 0.72) and misfit related to slope steepness (Mhit_diff = 0.21, p < .0001). 

Within informative-inaccurate priors, for items with small misfit, there were no 

significant mean differences between misfit at the lower end of the ability continuum 
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(Mhit = 0.67), the upper end of the ability continuum (Mhit = 0.67), or slope steepness (Mhit 

= 0.89). 

 Within noninformative priors, for items with large misfit, there were significant 

mean differences between misfit at the lower end of the ability continuum (Mhit = 0.43) 

and slope steepness (Mhit = 0.94, Mhit_diff = 0.51, p < .0001). There were also significant 

mean hit rate differences between misfit at the upper end of the ability continuum (Mhit = 

0.32) and misfit related to slope steepness (Mhit_diff = 0.52, p < .0001). Within 

noninformative priors, for items with small misfit, there were significant mean 

differences between misfit at the lower end of the ability continuum (Mhit = 0.06) and 

slope steepness (Mhit = 0.89, Mhit_diff = 0.83, p < .0001). There were also significant mean 

hit rate differences between misfit at the upper end of the ability continuum (Mhit = 0.02) 

and misfit related to slope steepness (Mhit_diff = 0.87, p < .0001). 

 In Figure 12, the left panel provides a comparison of results for INFIT. It appears 

INFIT performs best when the misfit is large or related to slope steepness. As with the S-

X2 results, when the misfit is small or at the upper end of the ability continuum, the PPC 

procedure does a poor job of detecting misfit.  

 Percent correct. Using percent correct as a discrepancy statistic, the three-way 

ANOVA had no significant main effects or interactions. This is likely due to the very low 

hit rates across all conditions when using percent correct as the discrepancy statistic.  

Summary 

 A significant mean difference in hit rates occurred for the main effects of size and 

location when using S-X2 as the discrepancy statistic. A significant three-way interaction 



  

104 
 

occurred between prior informativeness, size, and location of misfit when using INFIT as 

the discrepancy statistic. The PPC procedure performed best when misfit was large and 

related to steepness of slope.  

Research Question 4: How Does the Interaction of Sample Size and Type of Misfit 

Affect the Influence of Prior Specification on the Results of the PPC Method for the 

Model-data Fit of Unidimensional, Dichotomous IRT Models?  

 Following the same approach as was used for Research Question 3, two types of 

misfit were investigated: size of misfit and type of misfit. A fully-crossed, four-way 

ANOVA, with type of misfit, size of misfit, sample size, and informativeness of prior 

distributions was conducted for this research question. Hit rates only were considered for 

this research question, as all items generated to have adequate fit would have only a small 

degree of misfit.  

Hit Rates   

 S-X2. Using S-X2 as the discrepancy statistic, there were no significant two-way 

interactions, three-way interactions, or four-way interactions. The main effects of size of 

misfit (F(1, 2862) = 98.15, p < .0001), location of misfit (F(2, 2862) = 73.12, p < .0001), 

and number of people (F(2, 2862) = 128.57, p < .0001) were significant.  

 INFIT. Using INFIT as the discrepancy statistic, the four-way interaction was not 

significant (F(12, 2862) = 0.27, p = .0090) between size of misfit, location of misfit, 

sample size, and prior informativeness. The three-way interaction was significant, as it 

was for Research Question 3.  
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 Percent correct. Using percent correct as the discrepancy statistic, the four-way 

interaction was not significant (F(12, 2862) = 2.22, p = .9938) between size of misfit, 

location of misfit, sample size, and prior informativeness. The three-way interaction was 

significant, as it as for Research Question 3.  

Summary 

 None of the three discrepancy statistics indicated a significant four-way 

interaction between size of misfit, location of misfit, sample size, and prior 

informativeness. This indicates that the effect of sample size on prior specification and 

the PPC procedure is not influenced by type of misfit present.  

Other Considerations 

 Percent of misfitting items. The percent of misfitting items was also considered 

as a factor for all conditions. When used in a two-way ANOVA for hit rate, none of the 

discrepancy statistics showed significant mean differences for the main effect of percent 

of misfit or for the two-way interaction of percent of misfit and informativeness of prior 

distributions.  

 When used in a two-way ANOVA for false positive error rates, there was a 

significant interaction between prior informativeness and percent of misfitting items (F(6, 

10032)=12.77, p < .0001) with INFIT used as the discrepancy statistic. The same 

significant interaction is not present when S-X2 or percent correct are used as the 

discrepancy statistic. These results are presented in Table 15 and Figure 13.  
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Table 15. Mean False Positive Rates by Type of Prior and Percent of  

                Misfitting Items, for INFIT 

 

Prior Percent Misfitting INFIT 

Informative-Accurate 

0% 0.09 

10% 0.19 

30% 0.38 

50% 0.40 

Informative-Inaccurate 

0% 0.16 

10% 0.29 

30% 0.57 

50% 0.58 

Noninformative 

0% 0.09 

10% 0.14 

30% 0.30 

50% 0.29 
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Figure 13. Mean False Positive Rates, by Type of Prior, Percent of Misfit, for INFIT 

 

 

 Specifically, within informative-accurate priors, there were significant mean 

differences for false positive error rates between 0% misfitting (Mfalse+ = 0.09) and 10% 

misfitting (Mfalse+ = 0.19, Mfalse+_diff = 0.10, p < .0001), between 0% misfitting and 30% 

misfitting (Mfalse+ = 0.38, Mfalse+_diff = 0.29, p < .0001), and between 0% misfitting and 

50% misfitting (Mfalse+ = 0.40, Mfalse+_diff = 0.31, p < .0001). There also were significant 
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mean differences for false positive error rates between 10% misfitting (Mfalse+ = 0.09) and 

30% misfitting (Mfalse+_diff = 0.19, p < .0001), and between 10% misfitting and 50% 

misfitting (Mfalse+_diff = 0.21, p < .0001).  

 Within informative-inaccurate priors, there were significant mean differences for 

false positive error rates between 0% misfitting (Mfalse+ = 0.16) and 30% misfitting 

(Mfalse+ = 0.57, Mfalse+_diff = 0.41, p < .0001), and between 0% misfitting and 50% 

misfitting (Mfalse+ = 0.58, Mfalse+_diff = 0.42, p < .0001). There also were significant mean 

differences for false positive error rates between 10% misfitting (Mfalse+ = 0.29) and 30% 

misfitting (Mfalse+_diff = 0.29, p < .0001), and between 10% misfitting and 50% misfitting 

(Mfalse+_diff = 0.29, p < .0001).  

 Within noninformative priors, there were significant mean differences for false 

positive error rates between 0% misfitting (Mfalse+ = 0.09) and 30% misfitting (Mfalse+ = 

0.30, Mfalse+_diff = 0.21, p < .0001), and between 0% misfitting and 50% misfitting (Mfalse+ 

= 0.29, Mfalse+_diff = 0.20, p < .0001). There also were significant mean differences for 

false positive error rates between 10% misfitting (Mfalse+ = 0.14) and 30% misfitting 

(Mfalse+_diff = 0.16, p < .0001), and between 10% misfitting and 50% misfitting (Mfalse+_diff 

= 0.15, p < .0001). As the percent of misfitting items increased, so too did the false 

positive error rates.  

 Figures 14 through 19 show the differences in hit rates for the combination of 

percent misfitting items and size of misfit as well as the combination of percent misfitting 

items and location of misfit. It can be seen in these results that choice of discrepancy 

statistic influences the hit rates. When INFIT is used, and misfit is small or large, 
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informative-inaccurate priors had the highest hit rates, except in the case of 500 people 

and 50% misfitting items. Noninformative priors always had the lowest mean hit rates 

when INFIT was used. There were no items with small misfit for conditions with 10% 

misfitting items, which is why the lower left panel is blank in Figure 14.  

 In Figure 15, INFIT is still the discrepancy statistic, but the patterns regarding 

location of misfit are not as clear. What is evident is that for misfit related to steepness of 

the slope (for instance, when GM=2PL, AM=1PL), the PPC procedure performs best, 

with hit rates as high as 0.99, regardless of prior specification used. In general, 

noninformative priors had the lowest hit rates, regardless of the location of the misfit.  

 

 

Figure 14. Hit Rates, with INFIT as Discrepancy Statistic, by Size of Misfit and Percent 

           Misfit  
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Figure 15. Hit Rates, with INFIT as Discrepancy Statistic, by Location of Misfit and 

      Percent Misfit 

 

 

 Figures 16 and 17 illustrate that, when S-X2 is used as the discrepancy statistic, 

there is little divergence in hit rates for each type of prior used. One exception is the case 

of 50% misfitting items and small misfit and 1000 people - in this scenario, informative-

accurate priors tend to do best and noninformative priors perform the worst. Another 

exception is 50% misfitting items, misfit related to slope steepness, and 1000 people, in 
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which  informative-accurate priors also tend to do best and noninformative the worst. 

There were no items with small misfit for conditions with 10% misfitting items, which is 

why the lower left panel is blank in Figure 16.  

 

 

Figure 16. Hit Rates, with S-X2 as Discrepancy Statistic, by Size of Misfit and Percent  

      Misfit 
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Figure 17. Hit Rates, with S-X2 as Discrepancy Statistic, by Location of Misfit and 

      Percent Misfit 

  

 

 Figures 18 and 19 show the patterns related to prior informativeness with percent 

correct as the discrepancy statistic, but the hit rates are so low that the discrepancy 

statistic is deemed inadequate in all scenarios. There were no items with small misfit for 

conditions with 10% misfitting items, which is why the lower left panel is blank in Figure 

18.  
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Figure 18. Hit Rates, with Percent correct as Discrepancy Statistic, by Size of Misfit and  

      Percent Misfit 
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Figure 19.  Hit Rates, with Percent correct as Discrepancy Statistic, by Location of 

      Misfit and Percent Misfit 

 

 

Summary 

 In this chapter, I have presented the results of the simulation study used to address 

the four research questions. The conditions tested in the study design included sample 

size (500, 1000, 2500), percent of misfitting items (0%, 10%, 30%, 50%), degree of 
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misfit (small, medium-large), and type of misfit introduced when the GM and AM were 

different.   

 Geweke diagnostics and trace plots were used to assess convergence. The number 

of burn-in iterations and total iterations had to be increased to achieve convergence of the 

Markov chain for parameter posterior distributions. The final overall number of iterations 

used was 5,000 for burn-in with 12,000 iterations following the burn-in. This was 

adequate to achieve convergence in one replication of each scenario for the cases when 

priors were specified as informative-accurate, informative-inaccurate, and 

noninformative. When the prior specification was noninformative-inaccurate, the 

proposal distributions were not fully tuned and convergence could not be assessed. At 

this stage, model-data fit would not be able to be assessed, consequently this prior 

specification was not included in subsequent analyses.  

 For the prior specifications that did converge, informative-accurate priors resulted 

in faster convergence, on average. When the percent of misfitting items was low (0% or 

10% misfitting), noninformative priors tended to result in slightly faster convergence 

times than those of informative-inaccurate priors. However, when the percent of 

misfitting items was high (30% or 50% misfitting), noninformative priors tended to result 

in slower convergence times than those of informative-inaccurate priors. Convergence 

times, compared across priors, were closest together with smaller sample sizes, and 

farther apart for larger sample sizes. In all cases, time to converge increased as sample 

size increased. 
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 Each of three discrepancy statistics (S-X2, INFIT, and percent correct) were 

evaluated separately for false positive error rates  and hit rates. Fully crossed ANOVAs 

were performed to investigate mean differences among hit rates and false positive error 

rates, with the significance level for the ANOVA tests and follow-up tests set to .001.  

 For the one-way ANOVA, investigating only the main effects of prior 

specification, the discrepancy statistics of INFIT and percent correct showed significant 

mean differences for hit rate and false positive error rate. Informative-inaccurate priors 

had the highest hit and false positive error rates for these discrepancy statistics. This 

indicates that the use of informative-inaccurate priors, and, in particular, INFIT as the 

discrepancy statistic, tends to flag most items as misfitting. Use of percent correct had the 

lowest false positive error rates across all prior specifications, but the hit rate was 

unacceptably low for this discrepancy statistic.  

 Two-way ANOVAs indicated that as sample size increased, so too did hit rates 

and false positive error rates, regardless of which prior specification was used. However, 

when informative-inaccurate priors were used, and INFIT was the discrepancy statistic, 

false positive error rates were greater than not only the .05 traditionally desirable level, 

but also the false positive error rates of the other prior specifications.  

 As the size of the misfit increased from small to medium-large, so too did the hit 

rates for all three discrepancy statistics. When the location of misfit was investigated, 

misfit related to the steepness of the IRF slope tended to show the highest hit rates when 

S-X2 and INFIT were used. None of the three discrepancy statistics indicated a significant 

four-way interaction between size of misfit, location of misfit, sample size, and prior 
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informativeness. As the percent of misfitting items increased, so too did false positive 

error rates, but only when INFIT was used as the discrepancy statistic.   

 



  

118 
 

 

 

CHAPTER V  

 

DISCUSSION AND IMPLICATIONS 

 

 

Conclusions 

  First, a brief summary is presented of the findings for each of the four research 

questions.  

 Research question 1: Prior specification on PPC results. Fully crossed 

ANOVAs were performed to investigate mean differences among hit rates and false 

positive error rates. There were differences in both hit rates and false positive error rates, 

for the discrepancy statistics of INFIT and percent correct, depending on prior 

specification. Informative-inaccurate priors had the highest hit and false positive error 

rates for these two types of discrepancy statistics. However, the use of percent correct 

was a poor choice for discrepancy statistic, since, while the false positive error rate 

tended to be very low for this discrepancy statistic, it also had very low hit rates. The use 

of informative-inaccurate priors, and, in particular, with INFIT as the discrepancy 

statistic, tended to classify most items as misfitting, resulting in elevated false positive 

error rates.  

 Research question 2: Prior specification, sample size on PPC results. In 

general, as sample size increased, so too did hit rates and false positive error rates, 

regardless of which prior specification was used. However, when informative-inaccurate 

priors were used, and INFIT was the discrepancy statistic, false positive error rates were 
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greater than not only the .05 traditionally desirable level, but also the false positive error 

rates of the other prior specifications.   

 Research question 3: Prior specification, type of misfit on PPC results. As 

size of misfit increased, the hit rates for all three discrepancy statistics also increased. 

When the location of misfit was investigated, misfit related to the steepness of the IRF 

slope tended to show the highest hit rates when S-X2 and INFIT were used. As percent of 

misfitting items increased, so too did false positive error rates, but only when INFIT was 

used as the discrepancy statistic.   

 Research question 4: Prior specification, sample size, type of misfit on PPC 

results. None of the three discrepancy statistics indicated a significant four-way 

interaction between size of misfit, location of misfit, sample size, and prior 

informativeness.  

Implications 

 The PPC procedure hit rates appear to be influenced by prior specification, but 

only in some instances. The effect of prior informativeness is tied to the choice of 

discrepancy measure used. For instance, returning to Figure 9, when INFIT is used as the 

discrepancy statistic, hit rates for informative-inaccurate priors were higher than for 

informative-accurate priors, with noninformative priors having the lowest hit rates. When 

S-X2 or percent correct were used, the effect of prior was negligible. Previous research in 

PPC for IRT has varied the discrepancy statistic, while keeping the prior unchanged 

within a study, which likely masked these types of differences.  
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 The PPC procedure false positive rate also appears to be influenced by prior 

specification. Again, this is not a blanket statement and is applicable only in some 

instances. For hit rates, the effect of prior informativeness is also tied to the choice of 

discrepancy measure used. Again, with INFIT used as the discrepancy statistic, false 

positive rates for informative-inaccurate priors were higher than for informative-accurate 

priors and noninformative priors. When S-X2 or percent correct were used, the effect of 

prior was negligible on false positive rates.  

 In general, the use of INFIT and S-X2 produced very high false positive rates. For 

example, mean false positive rates, found in Table 11, are as high as .46 (INFIT as the 

discrepancy statistic, 2500 individuals, and informative-inaccurate priors). This is well 

above the nominal .10 error rate for the PPC method. Regarding informative-accurate and 

noninformative priors, the false positive rates were similar to what some other studies 

investigating PPC for IRT have found. For instance, Toribio and Albert (2011) found 

false positive rates as high as .16 for detecting misfit of unidimensional IRT models. Glas 

and Meijer (2003), for tests with 30 items, some person-fit discrepancy measures saw 

error rates of .18 and .19, and even higher for longer tests (as high as .26). Sinharay 

(2005) found much lower error rates (below .05) for detecting misfit of unidimensional 

IRT models. However, this study used different thresholds for extreme PPP values. 

Rather than PPP < .05 or PPP > .95, Sinharay (2005) used PPP < .025 or PPP > .975 to 

flag an item as misfitting, which effectively makes the PPC method more conservative.  

 Changing the PPP extreme values from PPP < .05 or PPP > .95 to PPP < .025 or 

PPP > .975, had a considerable impact for informative-inaccurate priors. The percent of 
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items flagged as misfitting decreased by 14% as a result of this change when INFIT is 

used as the discrepancy statistic. When S-X2 is used as the discrepancy statistic, for 

informative-inaccurate priors, changing the PPP extreme value resulted in 32% fewer 

items flagged as misfitting. And when percent correct is used as the discrepancy, the 

same change in extreme PPP values saw a 42% decrease in items flagged as misfitting. 

This small adjustment to the PPC procedure provides a significant change to the outcome 

and should be given more attention in future studies.  

Item and Person Location 

 INFIT is more sensitive to prior specification than S-X2 due to the method of 

computation for the statistics. As described in Chapter 2, INFIT is an information-

weighted sum (Bond & Fox, 2001). The statistical information in an item is related to its 

variance, which is larger for well-targeted observations and smaller for extreme 

observations. In other words, INFIT is sensitive to unexpected responses near the 

person’s ability estimate.  

 The data were generated with random person ability parameters, drawn from a 

standard normal distribution (θ ~ N( 0 , 1 )). As seen in Tables 4, 5, and 6, item difficulty 

values on misfitting items were never made more extreme than item difficulty values on 

items with adequate model-data fit. Item 2 in Table 5 is an example of this - when the 

item is designed to fit, the item’s difficulty value is -1.9, 1.9 standard deviations below 

the center of the generating person ability distribution. In the conditions where item 2 is 

designed to contain misfit (i.e., 30% misfitting items or 50% misfitting items), the item’s 
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difficulty value is -0.21, which is still below the center of the source person ability 

distribution, but less than one quarter of a standard deviation away.  

 Item difficulty values inadvertently were moved closer to the center of the 

generating person ability distribution. Table 16 illustrates the change in center and 

standard deviation of the difficulty values. Although the mean difficulty value remained 

relatively consistent, close to zero, the spread of values decreased as misfit increased. 

Since there are more values close to the center of the ability distribution, INFIT is at an 

advantage in that it is better able to detect misfit in this region.  

 

Table 16. Mean Item Difficulty Values 

 

 
0% 

Misfitting 

10% 

Misfitting 

30% 

Misfitting 

50% 

Misfitting 

Mean 0 -0.029 0.015 0.175 

Standard 

Deviation 
1.2135 1.159 1.066 0.999 

 

Type of Misfit 

 Items with misfit related to steepness of slope were also detected with a higher hit 

rate than other forms of misfit. Ideally, test statistics should be chosen to reflect aspects 

of the model that are relevant to the scientific purposes to which the inference will be 

applied (Gelman et al., 2003, p. 172; Sinharay, 2005). Use of S-X2 to detect misfit at the 

lower end of the ability continuum has been investigated by Orlando and Thissen (2005). 

They found that when the generating model was the 3PL and the analysis model (what 

they refer to as the “calibrating model”) is the 1PL, the estimated IRF underestimated the 

proportion of correct responses at the low end of the latent ability continuum, where there 
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were fewer observations. This, they concluded, made it more difficult to detect misfit 

associated with the lower end of the latent ability continuum.  

 They also found that S-X2 was most likely to detect misfit when the generating 

discrimination parameter was highest. This reflects a misfit due to the steepness of the 

slope. Steepness of slope relates to misfit in the center of the ability distribution, rather 

than at the extremes, such as that introduced by a non-zero lower asymptote or 

acceleration parameter. Location of misfit is tied to the distribution of individuals in 

relation to items. 

Sensitivity of S-X2 to Prior Informativeness 

 Results indicated that the S-X2 statistic was not sensitive to choice of prior 

distribution. In the frequentist realm, a study by Sinharay and Lu (2007) indicated that 

test condition (e.g., average item difficulty, discrimination, and lower asymptote values) 

did not affect the type I errors or power of the S-X2 statistic. It could be the case that this 

statistic is simply less sensitive in computation to misfit, resulting in more uniformly 

distributed PPP values under the PPC approach.  

 The fit statistic S-X2 is computed via Equation (13) with modifications for 

creating bins that are θ-independent, defining bins according to observed test scores (e.g., 

summated scores) rather than θ estimates (Orlando & Thissen, 2000). There are several 

reasons for this. First, θ is a latent variable, preventing the comparison to observed data in 

a meaningful way (Orlando & Thissen, 2000) except in the case of the 1PL in which the 

number correct score is a sufficient statistic. Second, grouping examinees into equal-

sized groups is highly sample-dependent and the cut-off points, as well as the number of 
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intervals, affect the resulting statistic. If examinees are grouped according to latent ability 

level, rather than an equal number of examinees per group, the result is homogenous bins, 

which also affect the resulting statistic (Orlando & Thissen, 2000).  

 The S-X2 statistic avoids this model parameter-dependency, as well as sample 

dependency, by constructing bins according to number correct scores. Lord and 

Wingersky (1984) briefly describe the method for predicting joint likelihood distributions 

for each number correct score. Computing S-X2 involves the expected proportion of 

examinees at each score group (k) for item i, calculated via  

 

𝐸𝑖𝑘1 =
∫ 𝑃𝑖1(𝜃)𝑓∗𝑖(𝑘−1|𝜃)𝜙(𝜃)𝜕𝜃

∫ 𝑓(𝑘|𝜃)𝜙(𝜃)𝜕𝜃
  ,   (22) 

 

 

where 𝑓∗𝑖(𝑘 − 1|𝜃) and 𝑓(𝑘|𝜃) are computed using the recursive algorithm and 𝜙(𝜃) is 

the population distribution of 𝜃 (e.g., the prior). The integrals in Equation 22 are then 

approximated using Gauss-Hermite quadrature.  Computing the expected proportion can 

be done using only the estimated item parameters for any group of examinees by 

imposing a distribution of ability parameters, usually Gaussian in nature (Thissen, 

Pommerich, Billeaud, & Williams, 1995). This eliminates the influence of ability 

parameter estimation on the model-data fit statistic and ma make it less-sensitive overall.  

Recommendations 

 As with other studies of PPC methods, it was found that percent correct does not 

have an adequate ability to detect model-data misfit, regardless of the type of prior 

specification used. Informative-inaccurate priors tended to over-classify items as 

misfitting, resulting in the highest hit rates, but also the highest false positive error rates. 
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Informative-accurate priors tended to have the highest hit rates, regardless of type of 

misfit (slope or location on the ability continuum), particularly with INFIT as the 

discrepancy statistic. Noninformative priors (with INFIT as the discrepancy statistic) 

resulted in lower overall hit rates for misfit related to the extremes of the ability 

continuum. If the location of the misfit is suspected to be in an extreme, then 

noninformative priors are not recommended.  

 It will be informative to generate an item-person map, similar to the one produced 

by Winsteps (Linacre, 2011), mapping summary statistics from ability posterior 

distributions to summaries of item locations. For items in the general range of the ability 

parameters, we should have reasonable confidence in the hit rates.  

Limitations 

 One limitation in this study is the use of convergence diagnostics. Diagnostic 

statistics, such as Geweke, and trace plots, are not a guarantee that the Markov chain has 

converged. Rather, these methods usually only provide evidence that a chain has not 

converged (Hoff, 2009). Since Geweke diagnostics were only performed on one 

replication per condition, the possibility exists that convergence in other conditions was 

not attained.   

 Several researchers have recommended that PPC methods be used as pieces of 

statistical evidence for, rather than a test of, data-model misfit (Berkhof, van Mechelen, 

& Gelman, 2004; Stern, 2000). This is motivated by recommendations concerning the 

general practice of using statistical information regarding fit in a larger, theory-guided 

approach to model criticism (Sinharay, 2005). From this perspective, PPC and PPP 
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values are viewed as diagnostic measures aimed at assessing model strengths and 

weaknesses rather than whether the model is true (Fu et al., 2005; Gelman et al., 1996; 

Levy et al., 2009). I have treated the PPC method as the latter, and I recognize that 

conclusions would not be made as starkly as “fit or misfit” without more evidence.  

 Another limitation is in the comparability of this study to other studies on PPC for 

IRT. Specifically, the estimation methods were different between this study and others 

(e.g., Sinharay, 2006; Sinhray & Johnson, 2003; Sinharay et al., 2006; and Toribio and 

Albert, 2011). This study relied upon the Metropolis Hastings algorithm, whereas the 

previously mentioned studies all used Gibbs sampling. Gibbs sampling is a special case 

of Metropolis-Hastings where the proposal distribution is constructed differently, the 

acceptance rate is always one, and Gibbs sampling performs a random walk where at 

each iteration, the value is randomly updated according to the conditional distribution. 

 The difference in the algorithms is due to the difference in choice of software and 

native algorithms to each software program. However, Ames and Samonte (in press) 

showed the Metropolis-Hastings algorithm used in PROC MCMC can recover item 

parameters as well as other software programs that use Gibbs sampling, and at a quicker 

convergence speed.  

Directions for Future Research  

 The use of other discrepancy statistics will be informative to practitioners, 

particularly those statistics that are sensitive to model misfit in the extremes of the latent 

ability continuum. The PPC methods did an adequate job of detecting misfit related to 

slope steepness (i.e., at the center of the latent ability continuum) rather than misfit in the 
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lower or upper ends of the ability continuum. To control for higher false positive rates, 

varying the extreme cutoff PPP value should be investigated, as well as how this cutoff 

might vary with prior specification.  

 Prior specification was shown to play an important role in the PPC method. In 

general, noninformative priors had lower hit rates than did informative-accurate prior 

specifications. Two studies address the effect of priors on the PPC method. In the first, 

Gelman and colleagues (1996) apply PPC to a study fitting a latent two-class mixture 

model to the data from an infant temperament study. Dirichlet parameter priors were 

chosen so that the multinomial probabilities for a variable (e.g., motor activity) were 

centered on values elicited from psychological theory, but with a large variance. The use 

of a weak, but not uniform, prior distribution was used to help identify the mixture 

classes. The authors computed PPP values under a variety of prior distributions. The 

center of each class of the prior was chosen to either match the values suggested by 

theory or to represent a uniform distribution. The strength of the prior (informativeness) 

was also varied.  

 The authors reported that, as long as the prior distributions were not particularly 

strong, the center of the prior distribution had little effect on the PPC method and the size 

of the PPP values remained relatively constant. With incorrect and very strong priors, 

which are the opposite of noninformative in that they narrow the mass of the likelihood 

into a smaller region, the PPP value could be quite misleading. However, with correct 

and very strong priors, the PPP values reflected the true model-data misfit rates of the 

mixture models. Sinharay and Johnson (2003) commented on the findings of this study, 
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noting that a strong prior distribution, with reasonable trustworthiness, can be used to 

more effectively assess the fit of the likelihood part of the model. Despite this 

recommendation, however, Sinharay and Johnson (2003) used large samples and 

noninformative priors for their PPC study.    

 Often, informative priors may prove more useful to IRT practitioners than 

noninformative priors. For instance, Fox (2010) concluded that the elicited hierarchical 

prior  proved more useful for the 2PL model than did noninformative priors, especially 

with relatively small datasets when prior information can significantly influence the item 

parameter estimates. Tsutakawa (1992) used information from a previous years’ test 

administration to help guide the specification of elicited priors.  When comparing joint 

maximum likelihood to Bayesian estimation, Gifford and Swaminthan (1990) found that 

specification of the priors had only modest effects on the Bayesian estimates, but that the 

effect of the prior was greater for more complex models, particularly for the lower 

asymptote parameter of the 3PL model. Similarly, Swaminathan and colleagues (2003) 

found that the incorporation of ratings provided by subject matter experts produced 

estimates that were more accurate than those obtained without using such information. 

The improvement was observed for all item response models, but the improvement was 

positively related to the number of parameters estimated. Thus, as model complexity 

grew, the need for specifying informative priors grew in importance (Swaminathan, et al., 

2003).  

Prior sensitivity analysis is the next stage of research in this area and may provide 

an alternative to assessing the adequacy of the likelihood model. The basic tool of prior 



  

129 
 

sensitivity analysis is to change the prior specification and then to recompute the 

posterior quantity of interest. If there is a practical change in the posterior, the conclusion 

is that the results are sensitive to the prior specification. If there is no practical change, 

the data are considered highly informative and the posterior conclusions may be 

considered indifferent to the prior specification (Albert & Louis, 2000).  

 Finally, to date, no studies have compared the parameter recovery of IRT model 

parameters from Metropolis Hastings algorithm to the Gibbs Sampling algorithm. Nor 

have any studies compared performance of the PPC method for these two algorithms. 
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