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Abstract 

A robust optimization approach is proposed for generating nondominated robust solutions for multiobjective linear 
programming problems with imprecise coefficients in the objective functions and constraints. Robust optimization is used 
in dealing with impreciseness while an interactive procedure is used in eliciting preference information from the decision 
maker and in making tradeoffs among the multiple objectives. Robust augmented weighted Tchebycheff programs are 
formulated from the multiobjective linear programming model using the concept of budget of uncertainty. A linear 
counterpart of the robust augmented weighted Tchebycheff program is derived. Robust nondominated solutions are 
generated by solving the linearized counterpart of the robust augmented weighted Tchebycheff programs. 
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1. Introduction 

 This study develops an interactive procedure to solve multiobjective linear programming problems with 
imprecise information. Robust optimization is used in solving robust augmented weighted Tchebycheff 
programs formulated from the multiobjective linear programming model using the concept of budget of 
uncertainty [1]. Tradeoffs among the objective functions are made in the interactive procedure through 
progressive articulation of the preference information from the decision maker (DM) so as to locate the most 
preferred solution. 

Interactive methods are the most promising approaches for solving multiobjective programming problems 
[2]. Many interactive multiobjective programming procedures have been developed in the last 50 years. 
Researchers are continuing to develop new interactive procedures for different types of multiobjective 
programming problems. Two phases, a solution generation phase and a solution evaluation phase, are 
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performed alternately in an interactive procedure. A set of representative trial solutions, usually efficient or 
nondominated, are generated in the solution generation phase. The set of representative trial solutions is 
presented to the DM in the solution evaluation phase. The DM articulates his/her preference information 
through the evaluation of the representative solutions. In the next iteration, the solution space is reduced using 
the preference information from the DM, new representative trial solutions are generated from the reduced 
solution space and presented to the DM, the DM articulates his/her preference information and so on. This 
process continues until a satisfactory solution has been found or a predefined stopping condition has been 
reached. 

The majority of mathematical programming formulations in the literature are based on deterministic data. 
However, in many real world applications, the input data are very difficult to estimate. Consequently, 
stochastic [3, 4] and fuzzy [5, 6] approaches are introduced to the classical multiobjective programming 
formulations to address the issue of imprecise and incomplete information. However, both of these approaches 
assume distribution details for the coefficients in the model, an assumption which is sometimes inapplicable for 
ground-breaking endeavors, such as in R&D project portfolio selection and in new product (e.g., cancer 
treatment drug) development. 

Robust optimization is a relatively new approach which addresses imprecise and incomplete information by 
way of set inclusion, i.e., the true value of data is contained within an interval without any assumption on its 
distribution. Robust optimization addresses the problem of data uncertainty by guaranteeing the feasibility and 
optimality for the worst instances of the problem. Since it is naturally a worst case approach, feasibility often 
comes at the cost of performance and the solutions obtained are usually overly conservative [7]. Bertsimas and 
Sim [1] developed an approach called “the budget of uncertainty” to control the cumulative conservativeness of 
uncertain coefficients in the problem. 

The current study develops a robust optimization approach to generate robust nondominated solutions for 
multiobjective linear programming problems with interval uncertainties in the coefficients of the objective 
functions and constraints. The concept of the budget of uncertainty is used in robust optimization in this study. 
The developed approach can then be embedded in interactive procedures when representative nondominated 
solutions need to be generated. This approach is the first method that uses robust optimization for 
multiobjective programming problems contaminated with uncertainties.  

2. Problem definition 

Let K , m  and n  represent the numbers of objective functions, constraints and decision variables, 
respectively, in the multiobjective programming model. The multiobjective linear programming model is stated 
formally in the following 

 
min ( )k kz f x  k  

(1)s.t. ( )i ig bx  i  
 0jx  j . 

 
In the model, nx  is the vector of decision variables, 1( ) kj j

n
k jf c xx  is the k th objective function, and 

1( ) n
ij ji ijg a x bx  is the i th constraint. The above model is called the nominal model assuming the values 

of ija  , ,i j , and kjc , ,k j , are exactly known. Since the objective functions are usually in conflict, model 
(1) usually does not have a single feasible solution that simultaneously minimizes all objective functions. The 
optimal solution is defined to be a feasible solution that maximizes the DM’s value function [2]. Because the 
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DM’s value function is not readily available, the solution process to model (1) is the searching for a solution 
which is most preferred by the DM. 

The following concepts are from Steuer [2]. The set of solutions satisfying all constraints, i.e., 
{ | ( ) , , 0, }n

i i jX g b i x jx x , is the feasible region, and a point Xx  is a feasible solution in 
decision space. The set { | ( ) | }K

k kZ z f Xz x x  is the feasible region in criterion space. A point 
Zz  is a feasible solution in criterion space or a feasible criterion vector. A point Zz  is a nondominated 

criterion vector if there does not exist any other criterion vector Zz , such that z z  and z z . Z  is used 
to represent the set of all nondominated solutions in criterion space. A point Xx  is an efficient solution in 
decision space if Zz  such that ( )k kz f x , k . X  is used to represent the set of all efficient solutions in 
decision space. A criterion vector ˆ Zz  is optimal if it maximizes the DM’s value function. An optimal 
solution must be nondominated, i.e., ˆ Zz . A point * Kz , such that * min{ ( ), }k kz f Xx x , k , is the 
ideal point. For most multiobjective programming problems, * Zz , i.e., *z  is infeasible. A point * nx , 
such that * *( )k kz f x , k , usually does not exist [8]. A point ** Kz , such that ** *

k k kz z , where 0k  
and small, is called a utopian point. 

When a multiobjective programming problem is solved, especially when an interactive procedure or an 
approach requiring posteriori articulation of the DM’s preference information is used, many nondominated 
solutions are generated as trial solutions. These trial nondominated solutions are usually evaluated by the DM 
as a means to elicit preference information. Nondominated solutions are usually generated by solving 
augmented weighted Tchebycheff programs derived from the nominal multiobjective programming model (1) 
[2].  

The weighting vector space is defined as 
 
 1

{ | 0, 1}KK
k kk

w wW w .  (2)
 
Any w W  is a weighting vector. For a given w W , an augmented weighted Tchebycheff program for the 
nominal model (1) is formulated as in (3) in the following 
 

min **
1
( )K

k kk
z z   

(3)

s.t. **( )k k kz zw  k  
( )k kz f x  k  

( )i ig bx  i  
0jx  j  

kz  unrestricted k  
0 ,  

 
where 0  is a small scalar. Usually 0.001  is sufficient. 

The augmented weighted Tchebycheff program (3) is a single objective linear programming problem. If its 
optimal solution is represented by the composite vector ( , , )w w wx z , then Xwx  and Zwz , i.e., wx  is 
efficient and wz  is nondominated. For a given w W , the augmented weighted Tchebycheff program (3) 
generates a given nondominated solution. By using a widely dispersed set of weighting vectors in W , a widely 
dispersed set of representative nondominated solutions are generated. 
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As previously stated, the values of the coefficients in the multiobjective linear programming model (1) are 
not known with certainty and, hence, the solution obtained for the nominal model (1) may not be close to the 
true most preferred solution of the DM or, even worse, could be infeasible for some realizations of these 
imprecise coefficients. Given that ija  , ,i j , and kjc , ,k j , are imprecise and their exact values are unknown 
but within certain intervals, the focus of this study is on finding a solution to model (1) such that the solution 
not only is feasible with a very high probability, but also is very close to the most preferred solution of the DM. 
An interactive procedure, such as the interactive weighted Tchebycheff procedure [2, 10], is proposed for this 
purpose. 

3. The robust optimization approach for linear programming problems 

Consider the following standard linear programming problem 
 

min ( )f x   
(4) s.t. ( )i ig bx  i  

 l x u   
 
where 1( ) n

ij ji ijg a x bx , as in (1), is the i th constraint and 1( ) n
j jjf c xx  is the single objective 

function of the problem. The standard linear programming model in (4) with precise ija , ,i j , is the nominal 
formulation. Now assume that each ija  is an imprecise coefficient with unknown exact value in the interval 

ˆ ˆ[ , ]ij ij ij ija a a a  where ija  is the nominal value and ˆija  is the half-interval width of ija . The precise value of 
jc , j , is assumed to be known. The purpose of robust optimization is to find an optimal solution, called the 

robust solution, which remains feasible for almost all possible realizations of the uncertain problem 
coefficients. We quantify this concept by reformulating the nominal model in (4) as follows. The absolute value 
of the scaled deviation from its nominal value of the uncertain coefficient ija , denoted by ij , is defined as 
 
 ˆ|( ) / |ij ij ij ija a a ,i j . (5) 
 
Apparently, ij  takes values in the interval [0,1] . A budget of uncertainty i  is imposed to the i th constraint 
in the following sense 
 

 1

n
ij ij 0 i n , (6) 

 
where 0i  and i n  correspond to the nominal and worst cases, respectively. Bertsimas and Sim [1] 
showed that letting the budget of uncertainty i  vary in the interval [0, ]n makes it possible to build a model 
where performance is appropriately adjusted against robustness. When each ija  is treated as a variable, the 
nonlinear robust formulation of the nominal model in (4) can be stated as 
 

min ( )f x   

(7) s.t. 1
max[ ( , )| ]

i

n
i i ij i ij

g b
a

a x  i  

 l x u ,  
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where ia  is the vector of uncertain coefficients in the i th constraint with each ˆ ˆ[ , ]ij ij ij ij ija a a a a  and 

1( , ) n
ij ji i jg a xa x is the counterpart of ( )ig x  in (4) but with each ija  treated as a variable. Bertsimas and 

Sim [1] proved that the nonlinear robust formulation in (7) has the following robust linear counterpart  
 

min 1

n
j jj

c x   

(8) 

s.t. 1 1

n n
ij j i i ij ij j

a x q r b  i  

 ˆi ij ij jq r a y  ,i j  
 ,j j j j j jy x y l x u  j  
 0iq  i  
 0jy  j  
 0ijr  ,i j . 

 
A highly attractive feature of this formulation is that this linear counterpart is of the same class as the 

nominal model in (4) which can be easily solved with standard optimization packages. Moreover, Bertsimas 
and Sim [1] showed that even if the budget of uncertainty constraints are not satisfied, the robust solution will 
remain feasible with a very high probability. 

4. Application to multiobjective problems 

Under uncertainty, the problem coefficients in (1) are uncertain and, hence, the solution must be robust, i.e., 
the solution should remain feasible (constraint robust), efficient and most preferred by the DM (objective 
function robust) under almost all possible realizations of uncertain coefficients. Both ija  and kjc  are 
considered uncertain and their uncertainty is captured using the interval uncertainty discussed earlier. The 
nominal value and the half-interval width of kjc  are represented by kjc  and ˆkjc , respectively. The k th 

uncertain objective function is expressed as 1( , ) n
kj jk k jf c xc x  where kc  is the vector of uncertain 

coefficients in the k th objective function with each ˆ ˆ[ , ]kj kj kj kj kjc c c c c . While being the counterpart of 

( )kf x  in (1), ( , )k kf c x  is a function of both kc  and x  since each kjc  is treated as a variable. Similar to ij  
defined for ija  in (5), the absolute value of scaled deviation kj  of kjc  from its nominal value kjc  is defined as 

 
 ˆ|( ) / |kj kj kj kjc c c ,i j . (9) 

 
Similar to (6), a budget of uncertainty k  is imposed to the k th objective function such that 
 

 1

n
kj kj 0 k n , (10) 

 
where 0k  and k n  correspond to the nominal and worst cases, respectively. Note that while i  
controls the robustness of the i th constraint, k  controls the robustness of the k th objective function against 
the level of conservatism. For notational convenience, let m  and K  be the vectors of budgets of 
uncertainty for the constraints and for the objective functions, respectively. Imposing the budgets of uncertainty 
on the constraints and the objective functions will ensure that the solution will remain both constraint robust 
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and objective function robust. The nonlinear robust formulation of the nominal multiobjective programming 
model in (1) is stated as  
 

min 1
max ( , ) |

k

n
k k k kj kj

z f
c

c x  k  

(11) s.t. 1
max ( , ) |

i

n
i i ij i ij

g b
a

a x  i  

 0jx  j . 
 
Unlike the single objective model (7), each kjc  in the objective functions is also considered uncertain in (11). 

Any feasible solution to the above model is called a robust feasible solution. The set of all robust feasible 
solutions, i.e., 1{ | max[ ( , ) | ] , 0}

i

n n
i i ij i i jjX g b i x

a
x a x , is called the robust feasible region in 

decision space for a given vector . A Xx  is called a robust feasible solution in decision space. The set 
,

1{ | max[ ( , ) | ], }
k

K n
k k k kj kjZ z f X

c
z c x x  is the robust feasible region in criterion space for 

the given vectors  and . A ,Zz  is called a robust feasible solution in criterion space or a robust 
criterion vector. A nondominated robust criterion vector ,Zz , an efficient robust solution Xx , and an 
optimal robust solution ,ˆ Zz  can be defined similarly to their counterparts for the nominal model (1). The 
robust ideal point * Kz is defined as *

1min{max[ ( , ) | ], }
k

n
k k k kj kjz f X

x c
c x x . A robust utopian point 

is also defined as ** Kz  such that ** *
k k kz z  with 0k  and small. 

For a given weighting vector w W , a robust augmented weighted Tchebycheff program for the nonlinear 
programming model in (11) is formulated from (3) as the following 

 
min **

1
( )K

k kk
z z   

(12) 

s.t. **( )k k kz zw  k  

 1
max[ ( , ) | ]

k

n
k k k kj kj

z f
c

c x  k  

 1
max[ ( , )| ]

i

n
i i ij i ij

g b
a

a x  i  

 0jx  j  
 kz  unrestricted k  
 0 .  

 
Similar to the coefficients in the objective function of model (7), the coefficients in the objective function of 
model (12) are exactly known. 

An optimal solution to (12) minimizes the augmented weighted Tchebycheff metric between **z  and any 
,Zz  while respecting the budget of uncertainty constraints. The solution to this formulation has some 

interesting properties. First, it is a nondominated solution for the selected  and . Second, unlike its 
nominal counterpart, it is robust, i.e., insensitive to uncertainties in the coefficients of both the objective 
functions and constraints. This means that given all possible realizations of ija  and kjc , the solution of (12) not 
only will have a much higher probability of feasibility than the nominal solution of (3) but also will have a 
corresponding criterion vector which performs comparable to the nondominated nominal criterion vector. 
These properties are significant because model (12) can assist the DM as a tool in finding nondominated robust 
solutions by properly balancing performance versus robustness. Using this formulation, the nominal solution 
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closest to the nominal **z , measured by the augmented weighted Tchebycheff metric, is slightly sacrificed but 
in return, this sacrifice is compensated by the robustness of the solution. 

 
Proposition. Model (12) has the following linear programming counterpart 
 

min d   

(13) 

s.t. 1
0K

kk
d   

 0k kw  k  

 **
1 1

n n
kj j k k kj k kj j

c x q r z  k  

 1 1

n n
ij j i i ij ij j

a x q r b  i  

 ˆk kj kj jq r c y  ,k j  
 ˆi ij ij jq r a y  ,i j  
 j jx y , 0jy , 0jx  j  
 0iq  i  
 , 0k kq  k  
 0kjr  ,k j  
 0ijr  ,i j  
 , 0d .  

 
Proof. Model (12) is first reformulated as 
 

min d    

s.t. kk
d  k   

 k kw  k   

 **max[ ( , ) ]
k

k k kj k kj kf z
c

c x  k   

 max [ ( , ) ]
i

i i ij i ij
g b

a
a x  i   

 0jx  j .  
 
Using the derivation of (8) from (7), (13) follows.   
 

The linear programming counterpart (13) of the robust augmented weighted Tchebycheff program (12) can 
be directly used to generate nondominated robust solutions. By using dispersed weighting vectors, dispersed 
nondominated robust solutions are obtained that can be used within an interactive procedure, such as the 
interactive weighted Tchebycheff procedure [2, 9, 10]. Each iteration of the interactive weighted Tchebycheff 
procedure has two phases. In the solution generation phase, a set of weighting vectors is generated and then 
filtered to a widely dispersed subset, a robust augmented weighted Tchebycheff program is solved to generate a 
nondominated robust criterion vector for each weighting vector in the subset, and the resulting nondominated 
robust criterion vectors are filtered to obtain a smaller subset of dispersed ones. In the solution evaluation 
phase, this subset of nondominated robust criterion vectors is presented to the DM who articulates the 
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preference information by selecting the most preferred one. In the next iteration, the weighting vector space is 
reduced around the weighting vector corresponding to the current most preferred solution selected by the DM. 
New dispersed weighting vectors are then generated in this reduced weighting vector space, new nondominated 
robust solutions are generated, and so on. The procedure terminates after a predetermined number of iterations 
have been performed or when the DM is satisfied with a nondominated robust solution that has already been 
identified. 

5. Conclusions 

Multiobjective linear programming problems with imprecise coefficients in the objective functions and 
constraints are considered. A robust augmented weighted Tchebycheff program is formulated and its linear 
counterpart is developed that can be employed to generate nondominated robust solutions within an interactive 
procedure. An extraordinary strength of this approach is that robustness is achieved without bothering the DM 
in supplying unknown distribution details for the imprecise coefficients. This approach can be applied to a wide 
variety of multiobjective linear programming problems with imprecise data. 
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