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CHAPTER I

INTRODUCTION

1.1 The Philosophy of the Coarse Approach to Metric Spaces

The goal of coarse geometry is to bring to bear the power of topological ideas to

discrete spaces. By their nature, discrete spaces have no interesting topology. As a

motivating example, we would like the coarse geometry of Z to be a direct analog

of the topology of R. One way to e�ect this is to examine both Z and R from a

metaphorical distance. As the distance increases, the two spaces appear increasingly

alike.

To be more precise, let (X, dX), (Y, dY ) be metric spaces. Then we say that a

function f : X → Y is coarse if, for positive numbers R and S, there exist numbers R′

and S ′ so that dY (f(x), f(x′)) < S ′ whenever dX(x, x′) < S and dY (f(x), f(x′)) > R′

whenever dX(x, x′) > R. Two spaces are coarsely equivalent if there is a coarse

function f fromX to Y and a coarse function g from Y toX where sup{dY (f◦g(y), y) |

y ∈ Y } < ∞ and sup{dX(g ◦ f(x), x) | x ∈ X} < ∞. Thus the inclusion map

f : Z → R and the greatest integer map g : R → Z show that Z and R are coarsely

equivalent. We de�ne these notions in more detail in Section 2 of Chapter II.

A fundamental topological property is dimension. We begin this dissertation by

considering a notion of dimension that is a coarse invariant, i.e. is invariant under

this notion of coarse equivalence. This so-called asymptotic dimension is the coarse

analog to topological covering dimension. We will also be considering other coarse
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invariants related to asymptotic dimension, such as property A, asymptotic property

C and �nite decomposition complexity in Chapters III, IV and V.

The original motivation for this asymptotic approach comes from the geometry

of �nitely generated groups. Asymptotic dimension itself was introduced by Gromov

in [Gro93] as an invariant of �nitely generated groups, that is, not dependent on the

presentation of the group. Smith showed in [Smi06] that countable groups carry a

unique left-invariant proper metric coarse structure, discussed further in Section 3

of Chapter II. Thus, this large-scale setting is the natural one for considering metric

properties of such objects.

1.2 Our Main Focus

Asymptotic dimension rose to prominence after Yu proved the Novikov higher

signature conjecture (see [FRR95]) for �nitely generated groups with �nite asymp-

totic dimension, in [Yu98]. For his result, having �nite asymptotic dimension (FAD)

was a su�cient but not necessary condition, as there are �nitely generated groups

with in�nite asymptotic dimension that satisfy the conjecture. This motivated the

introduction of similar properties such as Yu's property A in [Yu00], Dranishnikov's

asymptotic property C in [Dra00], and Guentner, Tessera and Yu's �nite decompo-

sition complexity in [GTY12]. In [Roe03], Roe introduces coarse structures, which

unify a number of notions of topological control. In the metric setting, these coarse

structures reduce to the coarse approach de�ned above.

We have three main goals in this dissertation. The �rst is to present a number

of permanence results for �nite asymptotic dimension, asymptotic property C, �nite

decomposition complexity and property A; i.e. to determine to what extent these
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properties are preserved by unions, direct products, free products and other such

constructions. Our second goal is to generalize asymptotic property C and �nite

decomposition complexity to all coarse structures and explore the relationships be-

tween them. Our third goal is to implement algorithms in Sage for building certain

constructions from computational topology.

1.3 Our Results

In Chapter II, we recall some basic de�nitions needed for the rest of the paper.

In Chapter III, we recall the de�nitions of two large-scale metric invariants: asymp-

totic dimension (asdim) and property A (PA). We present numerous previously known

permanence results for these invariants that lead up to our main result of that section:

Theorem III.27. Let Γ be a countable graph that contains no complete subgraph with

more than k vertices. Let G be a collection of �nitely generated groups with asymptotic

dimension bounded above by some positive number n indexed by the vertices of Γ. Then

the asymptotic dimension of the graph product ΓG, de�ned in Section 1 of Chapter

II, is at most nk.

This extends Antolín and Dreesen's result in [AD13], where Γ is presumed to be

�nite, but requires a completely new set of tools. On the other hand, their techniques

can be directly applied to prove the following theorem:

Theorem III.25. Let Γ be a �nite graph. Let G be a collection of �nitely generated

groups with property A. Then ΓG, de�ned in Section 1 of Chapter II, has property A.

In Chapter IV, we recall the de�nition of asymptotic property C (aPC) from

[Dra00] and introduce a generalization to the coarse category as follows. The precise

de�nitions of a coarse space and entourages can be found in Section 4 of Chapter II.
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De�nition IV.6. A coarse space (X, E) has coarse property C (cPC) if for any

sequence L1 ⊂ L2 ⊂ L3 ⊂ · · · of entourages there is a �nite sequence U1,U2, . . . ,Un

so that

(1) U =
⋃n
i=1 Ui covers X;

(2) each Ui is uniformly bounded; and

(3) each Ui is Li-disjoint.

We discuss the relationship between cPC and the notions of coarse �nite asymp-

totic dimension (cFAD) and coarse property A (cPA) introduced in [Roe03]. In

addition, a number of previously known permanence properties are presented in this

chapter, and we add to that collection a union theorem (Theorem IV.3). Although

Theorem IV.3 contains several technical assumptions, it immediately implies the fol-

lowing simple �nite union theorem.

Corollary IV.4. Let (Z, d) be a metric space with Z = X ∪ Y . If (X, d) and (Y, d)

have asymptotic property C, then so does Z.

In Chapter V, we recall the de�nitions of �nite decomposition complexity (FDC)

and straight �nite decomposition complexity (sFDC) from [GTY12] and introduce

generalizations of both to the coarse category. A number of previously known per-

manence results are presented here as well. We also discuss the relationships between

the di�erent varieties of �nite decomposition complexity.

We will prove an analog to Guentner, Tessera and Yu's �bering theorem from

[GTY12]. In particular, we will show the following:
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Theorem V.7. Let X and Y be metric spaces and let f : X → Y be a coarse map.

Assume that Y has sFDC and that for every bounded family V in Y , the inverse image

f−1(V) has sFDC. Then, X has sFDC.

A number of permanence results follow readily from this theorem. This includes

graph products, using the same machinery as in [AD13] and in Theorem III.25.

Table 1. Permanence results in the metric setting

Operation FAD APC sFDC PA

Direct Product [BD08] [GTY13] [Yu00]

Unions [BD11] Prop. IV.3 [GTY13] [Bel03]

Free Product [Dra08] [GTY13] [Bel03]

Amalgamated Product [Dra08] [GTY13] [Bel03]

Finite Graph Product [AD13] Cor. V.10 Thm. III.25

In�nite Graph Product Thm. III.27

Table 2. Permanence results in the coarse setting

Operation cFAD cProp C cFDC

Direct Product [Gra05] Thm V.25

Unions Thm IV.23 Thm IV.21 Thm V.27
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Figure 1. Relationships in the metric setting
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?
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Figure 2. Relationships in the coarse setting

In Chapter VI, we discuss two constructions that allow us to build a simplicial

complex whose vertices are points in a metric space: the �ech complex and the Rips

complex. We present algorithms for constructing both of these complexes. A Sage

implementation of these algorithms appears in Appendix A. Finally, we consider how

one might use these algorithms to compute another large-scale invariant, simply called

Gromov's invariant in [BD08]. This was originally de�ned by Gromov in [Gro93] and

is a measure of control of the sets in a cover.
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CHAPTER II

PRELIMINARIES

2.1 The Word Metric on a Finitely Generated Group

Let (G, ·) be a group and let S be a non-empty subset of G. The set of S-words

in G is the set {s1 · s2 · · · · · sk | si ∈ S, k ∈ N} consisting of all formal �nite products

of elements in S. We will call k the length of the word s1 · s2 · · · · · sk. As usual,

we will suppress the product notation to concatenation in what follows. Let g ∈ G

be a group element. We say that the S-word s1s2 · · · sk is a presentation of g if g

and s1s2 · · · sk are equal as elements of G. It is possible that many di�erent S-words

could present the same element g. By convention, every set of S-words contains a

presentation of the identity element, denoted by e, as the empty word. We call S a

generating set for G if every g ∈ G has a presentation as an S-word. In this case we

will also say that S generates G.

We say that S is a symmetric generating set if whenever s ∈ S, then the group

element s−1 is also in S.

A group is called �nitely generated if it has a �nite generating set. Observe that

any �nite group is �nitely generated. It is easy to show that the group of rational

numbers under addition is not �nitely generated.

Fix a �nitely generated group G with �nite symmetric generating set S. There is

a natural notion of distance that can be associated to the pair (G,S). For every
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element g ∈ G, let ‖g‖S denote the length of the shortest S word presenting g. The

left-invariant word metric on G corresponding to S is de�ned by

dS(g, h) = ‖g−1h‖S.

The metric is called left-invariant because, for every g ∈ G, the map x 7→ gx

is an isometry from G to G, i.e. it preserves this metric: dS(x, y) = ‖x−1y‖S =

‖x−1g−1gy‖S = dS(gx, gy)

The Cayley graph of a pair (G,S) is a graph ΓG so that

(1) the vertex set of ΓG is G;

(2) for any element g ∈ G and generator s ∈ S, there is an edge between g and gs.

s

r

r

s

r

r

s

r
r

sr

r

s

r
r

Figure 3. Cayley graph of D10 = 〈r, s | r5 = s2 = e〉

If we assign each edge of ΓG length 1, then the distance between any two ele-

ments of G will be the same in the word metric and the edge length metric, which

is de�ned as the length of a shortest path between the two vertices. Any path be-

tween g and h in the Cayley graph is given by a sequence of vertices as follows,

g, gs1, gs1s2, . . . , gs1s2 · · · sk = h. Therefore, s1s2 · · · sk is a presentation of g−1h. So
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we have that the shortest path between g and h corresponds to the shortest presen-

tation of g−1h.

Figure 4. Cayley graph of the free group on two letters.

We will be dealing with four main operations on groups: the direct product, the

amalgamated product, the free product and the graph product. We use the notation

of [LS01] to de�ne the amalgamated product of groups and let A = 〈SA | RA〉 and

B = 〈SB | RB〉 where SA and SB are generating sets and RA and RB are sets of

relations, and let C be a group with injective homomorphisms φA : C → A and

φB : C → B. The free product of A and B amalgamated over C is denoted A ∗C B

and is de�ned to be the group generated by the disjoint union of SA and SB with a

set of relations that is the disjoint union of RA and RB, with the additional relations

that φA(c) = φB(c) for all c ∈ C.

The free product of A and B, denoted A∗B, is de�ned as the amalgamated product

A ∗C B where C = {e}.

Finally, we de�ne the graph product of groups. Let Γ be an undirected graph

without loops or multiple edges. Let V (Γ) and E(Γ) be the set of vertices and edges

of Γ, respectively. Suppose that G = {Gv | v ∈ V (Γ)} is a collection of groups

indexed by the elements of V (Γ). The graph product ΓG of the collection G over the
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graph Γ is de�ned to be the free product of the Gv with the additional relations that

whenever {v, v′} is an edge in Γ, then gg′ = g′g for all g ∈ Gv and g′ ∈ Gv′ . Thus,

if E(Γ) = ∅, ΓG is the free product of the vertex groups. If Γ is the complete graph

on n vertices, ΓG is the direct product of the vertex groups. Graph products were

introduced by Green in [Gre90] and were the focus of her dissertation.

Let g ∈ ΓG. We say that g = g1 · · · g` is an expression of g in syllables if each gi

is a non-trivial element of a single vertex group, and no two consecutive gi and gi+1

belong to the same vertex group.

2.2 Coarse Equivalence

Because the de�nition of the word metric relies on a generating set, a single group

can be endowed with many di�erent metric structures. We would like to de�ne an

equivalence relation on metric spaces so that two metric structures placed on the

same group are equivalent. The notion of coarse equivalence introduced in Chapter I

provides such a relation, which we will make precise as follows.

De�nition II.1 ([Roe03]). Let (X, dX) and (Y, dY ) be metric spaces. We say that

f : X → Y is a coarse embedding if there exist positive valued, non-decreasing maps

ρ1 and ρ2 that go to in�nity so that for every two points x1, x2 in X, ρ1(dX(x1, x2)) ≤

dY (f(x1), f(x2)) ≤ ρ2(dX(x1, x2)).

De�nition II.2 ([Roe03]). Let (X, dX) and (Y, dY ) be metric spaces. If f : X → Y

is a coarse embedding, and there exists a R > 0 such that for all y ∈ Y there exists

an x ∈ X with d(f(x), y) < R, then f is called a coarse equivalence and X and Y are

said to be coarsely equivalent.
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Using the notation from Chapter I, we have that given R and S, one can take

ρ1(R) = R′ and ρ2(S) = S ′. It is easy to show that coarse equivalence de�nes an

equivalence relation on metric spaces.

Example II.3. Let G be a �nitely generated group. The metric spaces (G,S) and

(G, T ) are coarsely equivalent, where S and T are two �nite generating sets for G.

We let f be the identity map and see that the de�nition is satis�ed by R = 1,

ρ1(x) = 1
λ
x and ρ2(x) = λx with λ = max{λ1, λ2}, where λ1 = max{||s||T | s ∈ S}

and λ2 = max{||t||S | t ∈ S}.

Remark. In geometric group theory, one encounters a similar notion of equivalence:

A quasi-isometric embedding is a map f : X → Y for which there exists λ ≥ 1, ε ≥

0 such that 1
λ
dX(x1, x2) − ε ≤ dY (f(x1), f(x2)) ≤ λdX(x1, x2) + ε. This is more

restrictive that we require however.

Example. Any metric space of �nite diameter is quasi-isometric (and thus coarsely

equivalent) to a point. We let f be any function that identi�es the single point to

some point in X and see that the de�nition is satis�ed by ρ1(x) = ρ2(x) = x and

R = diam(X).

Example. In the Euclidean metric, Zn and Rn are quasi-isometric (and thus coarsely

equivalent). We let f : Zn → Rn be the inclusion. Then we see that the de�nition is

satis�ed by ρ1(x) = ρ2(x) = x and R = 1.

Example. The map f : Z → Z, f(n) = n2, where Z is equipped with the standard

metric, is not a coarse equivalence, since d(n, n+1) = 1 and d(f(n), f(n+1)) = 2n+1.

As 2n+1 will grow to in�nity with n, there can be no ρi that will satisfy the de�nition.
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Example II.4. Let X be any unbounded space and let Y be any bounded space

with diamX = k. Then X and Y are not coarsely equivalent. Let f : X → Y . Then

we note that dY (y, y′) ≤ k for all y, y′. Thus, for any ρ1 such that ρ1(dX(x1, x2)) ≤

dY (f(x1), f(x2)), ρ1(dX(x1, x2)) ≤ k and thus ρ1 does not go to in�nity.

2.3 Countable Groups and Coarse Invariants

When G is not �nitely generated, it is no longer the case that the identity map

from the group to itself with di�erent generating sets must be a coarse equivalence.

For example, we can consider S = { 1
n
|n ∈ Z} and T = Q both as generating sets of

Q. Then (Q, dT ) is bounded, while (Q, dS) is unbounded. Therefore, as we saw above

in Example II.4, (Q, dT ) and (Q, dS) cannot be coarsely equivalent.

To work around this, we modify the de�nition of the word metric in the following

way. We de�ne a weight function on a generating set S = S−1 for a group to be a

function w : S → [0,∞) for which

(1) if w(s) = 0 then s = e;

(2) w(s) = w(s−1); and

(3) for each N ∈ N, w−1([0, N ]) is �nite.

One then de�nes a norm by ‖g‖ = inf{
∑
w(si) | g = s1s2 · · · sn}, where the norm

of the identity is de�ned to be 0 (i.e. it is presented by the empty product). Then

as before, we de�ne the metric by d(g, h) = ‖g−1h‖. This metric is proper; i.e. every

closed ball is compact. It is also left-multiplication invariant. We note that if w ≡ 1,

then S must be �nite and this de�nition reduces to the word metric as previously

de�ned.
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In [Smi06], J. Smith showed that on any countable group G any left-invariant

proper metrics arises from a weight function in this way. Moreover, such a metric

is unique up to coarse equivalence. Therefore, any property that is invariant under

coarse equivalence can be seen as a property of G, that is independent of the choice

of metric.

Later in this dissertation, we introduce the notions of �nite asymptotic dimension

from [Gro93], property A from [Yu00], asymptotic property C from [Dra00] and �nite

decomposition complexity from [GTY12]. These properties are invariant under coarse

equivalence and therefore can be seen as properties of groups.

2.4 The Coarse Category

Let (X, d) be a metric space. For any r > 0, we de�ne Er = {(x, y) ∈ X × X |

d(x, y) ≤ r}. The sets Er are symmetric and contain the diagonal ∆X = {(x, x)}.

Finite unions of two of these sets result in another set of this form, as we have that

Er∪Es = Et where t = max{r, s}. If we de�ne the collection E =
⋃
r≥0P(Er), then we

also have that E is closed under the composition Er◦Es := {(x, z) | ∃y∈X with (x, y) ∈

Er and (y, z) ∈ Es}.

Without relying on a metric, we can de�ne a collection of subsets of X ×X with

similar properties.

De�nition II.5 ([Gra05,Roe03]). A coarse structure on a space X is a collection E

of subsets of X ×X called entourages or controlled sets such that:

(1) a subset of an entourage is an entourage;

(2) a �nite union of entourages is an entourage;
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(3) the diagonal ∆X := {(x, x) | x ∈ X} is an entourage;

(4) the inverse E−1 := {(y, x) | (x, y) ∈ E} of an entourage E is an entourage; and

(5) the composition of two entourages E1 and E2 as de�ned above is an entourage.

We call the pair (X, E) a coarse space.

In this context, spaces are said to be connected if every point of X×X is contained

in some entourage. For E ∈ E and A ⊂ X, we de�ne E[A] := {x ∈ X | (x, a) ∈

E for some a ∈ A} and denote E[{x}] as E[x]. Then, a set is said to be bounded if it

is of the form E[x] for some x ∈ X and E ∈ E . If X is a topological space, we call a

subset E ⊂ X ×X proper if E[K] and E−1[K] are relatively compact whenever K is

relatively compact.

To give an idea of what coarse structures can look like, we present the following

list of examples from [Gra05].

Example. Let X be any set and let E = P (X ×X). Then (X, E) is a coarse space

and E is called the maximal coarse structure on X.

Example. Let (X, d) be a metric space, and let E be the collection of subsets E of

X ×X such that sup{d(x, y) | (x, y) ∈ E} < ∞. Then (X, E) is a coarse space and

E is called the bounded coarse structure on X associated with d.

Example. Let X be any set and let E be the collection of all subsets of X ×X that

contain only �nitely many points not in ∆X . Then (X, E) is a coarse space and E is

called the discrete coarse structure on X.

Example. Let X be a topological space and let E be the collection of all proper

E ⊂ X × X. Then (X, E) is a coarse space and E is called the indiscrete coarse

structure on X. If X is compact, this is the same as the maximal coarse structure.
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Example. Let (X, E) be a coarse space and Y ⊂ X. Then we de�ne the coarse

structure inherited from X to be EY = {E ∩ (Y × Y ) | E ∈ E}. Then (Y, EY ) is a

coarse space.

Example. Let X and Y be coarse spaces. Then we can get the product coarse

structure on X ×Y by saying that a subset of (X ×Y )× (X ×Y ) is controlled if and

only if both its projection to X ×X and to Y × Y is controlled.

In the next de�nition, we establish terminology for function between coarse spaces.

De�nition II.6 ([Gra05]). Let X and Y be coarse spaces and f : X → Y be a

function.

(1) We call f coarsely proper if the inverse image of every bounded set is bounded.

(2) We call f coarsely uniform if the image of each entourage of X under the map

f × f is an entourage of Y .

(3) We call f a coarse map if it is coarsely proper and coarsely uniform.

(4) We call f a coarse embedding if it is coarsely uniform and the inverse image of

an entourage of Y under f × f is an entourage of X. We note that a coarse

embedding is a coarse map.

(5) Let S be a set. Then the maps f : S → X and g : S → X are called close if

the set {(f(s), g(s)) | s ∈ S} is an entourage of X.

(6) We call f a coarse equivalence if f is a coarse map, and if there exists a coarse

map g : Y → X such that g ◦ f is close to idX and f ◦ g is close to idY .
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CHAPTER III

ASYMPTOTIC DIMENSION AND PROPERTY A

3.1 Introduction

We begin by recalling some well-known de�nitions from coarse geometry. For the

following de�nitions, let (X, dX) and (Y, dY ) be metric spaces.

De�nition III.1. A function f : X → Y is called uniformly expansive if there is a

non-decreasing ρ2 : [0,∞)→ [0,∞) such that

dY (f(x), f(x′)) ≤ ρ2(dX(x, x′)).

De�nition III.2. The function f : X → Y is called e�ectively proper if there is some

proper, non-decreasing ρ1 : [0,∞)→ [0,∞) such that

ρ1(dX(x, x′)) ≤ dY (f(x), f(x′)).

In these terms, the de�nition of coarse embedding given in Chapter II can be

reformulated by saying that f : X → Y is a coarse embedding if f is both uniformly

expansive and e�ectively proper.

Let R > 0 be a (large) real number. A collection U of subsets of the metric

space X is said to be R-discrete if there is a uniform bound on the diameter of

the sets in U and if, whenever U 6= U ′ are sets in U , then d(U,U ′) > R, where

d(U,U ′) = inf{d(x, x′) | x ∈ U, x′ ∈ U ′}. We will often refer to such families as being
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uniformly bounded and R-disjoint. Gromov [Gro93] describes this situation by saying

that
⋃
U∈U U is 0-dimensional on R-scale.

De�nition III.3 ([Gro93]). We say the asymptotic dimension of the metric space

X does not exceed n, and write asdimX ≤ n, if for each (large) R > 0, X can be

written as a union of n+ 1 sets with dimension 0 at scale R.

In [Yu00], G. Yu de�ned property A for discrete metric spaces as a generalization

of amenability of groups.

De�nition III.4 ([Yu00]). A discrete metric space X has property A if for any r > 0

and any ε > 0, there is a collection of �nite subsets {Ax}x∈X , where Ax ⊂ X ×N, so

that

(1) (x, 1) ∈ Ax for each x ∈ X;

(2) for every pair x and y in X with d(x, y) < r, |Ax∆Ay |
|Ax∩Ay | < ε; and

(3) there is some R so that if (y, n) ∈ Ax, then d(x, y) ≤ R.

There are a number of equivalent characterizations of both asymptotic dimension

and property A. In order to state them, we give some preliminary de�nitions. We

will primarily be concerned with spaces X such that X is a discrete metric space

with bounded geometry, that is, every ball of �nite radius has �nite cardinality. We

begin with a set of de�nitions that concern themselves with U , a cover of X, that is,

a collection of subsets of X such that
⋃
U∈U U = X. We do not require the subsets

be open.

De�nition III.5. Let X be a discrete metric space with bounded geometry and U a

cover of X.
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(1) For d ≥ 0, we say the d-multiplicity of U is supx∈X{card{U ∈ U | U ∩ Bd(x) 6=

∅}}. The 0-multiplicity is also called the multiplicity.

(2) A Lebesgue number of U is a number δ > 0 such that every subset of X having

diameter less than δ is contained in some member of U .

(3) A cover U is said to be uniformly bounded if there exists a D > 0 such that

diam(U) ≤ D for all U ∈ U .

Let K be a simplicial complex. We say that K is a uniform simplicial complex

when it is given the metric inherited from an a�ne embedding into `2(N) obtained

by sending each vertex v to a distinct basis element..

De�nition III.6. Let K be a uniform simplicial complex and let X and Y be metric

spaces.

• A map φ : K → `2 is uniformly cobounded if diam(φ−1(σ)) is uniformly bounded

for all simplexes σ.

• A map φ : X → Y is ε-Lipschitz if dY (φ(x1), φ(x2)) ≤ εdX(x1, x2).

We will use the notation d <∞ to indicate that d is a large, positive number.

Theorem III.7 ([BD11]). Let X be a discrete metric space with bounded geometry.

The following conditions are equivalent:

(1) asdimX ≤ n;

(2) for every d <∞ there exists a uniformly bounded cover V of X with d-multiplicity

≤ n+ 1;
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(3) for every λ < ∞ there is a uniformly bounded cover W of X with Lebesgue

number > λ and multiplicity ≤ n+ 1; and

(4) for every ε > 0 there is a uniformly cobounded, ε-Lipschitz map φ : X → K to

a uniform simplicial complex of dimension n.

Theorem III.8 ([HR00]). Let X be a discrete metric space with bounded geometry.

Then X has property A if and only if for each n ∈ N, x ∈ X there exists a functions

anx : X → [0, 1] satisfying:

(1) Σz∈Xa
n
x(z) = 1;

(2) for every n > 0 there is an R = R(n) > 0 such that supp(anx) ⊂ BR(x) for all

x ∈ X; and

(3) for every K > 0,

lim
n→∞

sup
d(z,w)<K

||anz − anw||1 = 0.

Higson and Roe de�ne this condition for all metric spaces. If it happens that the

metric space is discrete, with bounded geometry, then their de�nition is equivalent

to the one given by Yu.

Theorem III.9 ([HR00]). Let X be a discrete metric space with bounded geometry.

If X has �nite asymptotic dimension, then X has property A.

In addition to permanence results for certain topological constructions such as

direct products and unions, we wish to prove some permanence results for more

group-theoretic constructions. These group theoretic constructions still grow from a

19



topological root however, and have topological applications, as we see with the case

of the amalgamated product, the �rst of the group theoretic constructions we will

consider. For example, if we let Γ = π1(X), then if we have X = U ∪ V where U

and V are open path-connected subspaces of X and U ∩ V is path-connected and

non-empty, we have that, by Seifert Van Kampen, Γ = π1(U) ∗π1(U∩V ) π1(V ). This is

of use to us thanks to the following important theorem:

Theorem III.10 (�varc-Milnor Lemma, [dlH00]). Let X be a proper geodesic space

and let Γ act properly on X (that is, for all compact K, |{γ | γ.K ∩K 6= ∅}| < ∞)

such that Γ\X is compact. Then, for any x0 ∈ X, the map Γ → X : γ 7→ γ.x0 is a

quasi-isometry.

As an example, take a compact proper geodesic space X, π1(X) acts properly on

the universal cover of X, EX, by deck transformations, and since π1(X)\EX = X,

we have that π1(X) is quasi-isometric to EX.

We will also consider how both asymptotic dimension and property A are preserved

by group actions, group extension and �nally, graph products of groups.

3.2 Background Results

We will begin this section by establishing that �nite asymptotic dimension and

property A are in fact coarse invariants, and then present a number of permanence

results.

Theorem III.11 ( [BD11]). If f : X → Y is a coarse equivalence and if asdimX =

n <∞, then asdimY = n.

Theorem III.12 ([Wil06]). If f : X → Y is a coarse equivalence and if Y has

property A, then so does X.
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The following variation of the de�nition of asymptotic dimension will be useful in

a number of permanence results we wish to prove. A family of metric spaces {Xα}

satis�es the inequality asdimXα ≤ n uniformly in α if for d < ∞ one can �nd an R

and R-bounded d-disjoint families U0
α, . . . ,Unα of subsets of Xα such that the union⋃

i U iα is a cover of Xα.

We wish to show that these properties are preserved by �nite unions and certain

in�nite unions. To do so, we require a preliminary de�nition and proposition. Both

are from [BD11]. Later we will use similar techniques in the coarse setting, so we will

reproduce the proofs here.

Let V and U be families of subsets of a metric space X. Given V ∈ V and

d > 0, we denote by Nd(V,U) the union of V and all sets U ∈ U where d(U, V ) =

inf{d(x, y) | x ∈ U, y ∈ V } ≤ d. The d-saturated union of U and V is denoted

U
⋃
d V = {Nd(V,U) | V ∈ V} ∪ {U ∈ U | d(U, V ) > d ∀ V ∈ V}.

Proposition III.13 ([BD11]). Assume U is d-disjoint and R-bounded with R ≥

d. Assume that V is 5R-disjoint and D-bounded. Then V ∪d U is d-disjoint and

D + 2(d+R)-bounded.

Proof. First we note that there are two types of elements in V ∪d U , coming from

the two di�erent collections in the de�nition. Pairs of elements of type U (that is,

that are also elements of U) are clearly d-disjoint. Also, an element of type U and an

element of type Nd(V,U) are also clearly d-disjoint. Now, consider elements Nd(V,U)

and Nd(V
′,U), with V 6= V ′. They are contained within the (d+R)-neighborhoods of

V and V ′ respectively. Since V and V ′ are 5R-disjoint, and R ≥ d, the neighborhoods

will be d-disjoint.

Finally, we have that diamNd(V,U) ≤ diamV + 2(d+R) ≤ D + 2(d+R).
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Theorem III.14 ([BD11]). Let X =
⋃
αXα where asdimXα ≤ n uniformly in α.

Suppose that for any r there exists Yr ⊂ X with asdimYr ≤ n and such that the family

{Xα \Yr} is r-disjoint in the sense that if α 6= α′, then d(Xα \Yr, Xα′ \Yr) ≥ r. Then

asdimX ≤ n.

Proof. Let d be given. Consider R-bounded families U0
α, . . . ,Unα from the de�nition

of the uniform inequality asdimXα ≤ n. We may take R > d as necessary. Let

r = 5R and consider Yr given by our assumptions and �nd r-disjoint, D-bounded

families V0, . . . ,Vn from the de�nition of asdimYr ≤ n. Let U iα be the restriction of

U iα to Xα \ Yr. Let U i = ∪αU
i

α. We note that the family U i will be d-disjoint and

R-bounded. For each i, we de�ne W i = V i ∪d U
i
. By the above proposition, the

family W i is d-disjoint and uniformly bounded. As the original U iα covered X, we

have that the saturated union with also cover X and therefore, asdimX ≤ n.

Corollary III.15 ([BD11]). Let (Z, d) be a metric space with Z = X ∪ Y . If (X, d)

and (Y, d) have �nite asymptotic dimension, then so does Z. Speci�cally, asdimZ ≤

max{asdimX, asdimY }.

Proof. To see this, we consider the family of spaces {A,B} and let Yr = B and apply

the previous theorem.

Theorem III.16 ([Bel03]). Let X =
⋃
αXα where the Xα have property A uniformly,

that is R(n) is independent of α. Suppose that for any r there exists Yr ⊂ X with

property A such that the family {Xα \ Yr} is r-disjoint. Then X has property A.

Corollary III.17 ([Bel03]). Let (Z, d) be a metric space with Z = X ∪ Y . If (X, d)

and (Y, d) have property A, then so does Z.

22



Proof. Similarly, we consider the family of spaces {A,B} and let Yr = B and apply

the previous theorem.

Theorem III.18 (Hurewicz Theorem, [BD06]). Let X be a geodesic metric space and

let f : X → Y be an ε-Lipschitz map such that for every R > 0, asdim f−1(BR(x)) ≤ n

uniformly in x. Then asdimX ≤ asdimY + n.

Theorem III.19 ([BD08]). Let X and Y be two discrete metric spaces with bounded

geometry and �nite asymptotic dimension. Then X ×Y has �nite asymptotic dimen-

sion. Speci�cally, asdimX × Y ≤ asdimX + asdimY

Theorem III.20 ([Yu00]). Let X and Y be two spaces with property A and let X×Y

be given the `2 product metric. Then X × Y has property A.

Theorem III.21 ([Dra08]). Let A and B be two groups with �nite asymptotic di-

mension. Then A ∗C B has �nite asymptotic dimension. Speci�cally,

asdimA ∗C B ≤ max{asdimA, asdimB, asdimC + 1}.

This bound is sharp, as we can see in the following example from [BD04]. Let

A = B = C = Z (and therefore have asdimA = asdimB = asdimC = 1) and let

both inclusions, C → A and C → B be given by multiplication by 2. Then A ∗C B

is isomorphic to the fundamental group of the Klein bottle. By the �varc-Milnor

Lemma, this means that A ∗C B is quasi-isometric to the universal cover of the Klein

bottle, which is R2. Therefore, asdimA ∗C B = 2.

Theorem III.22 ([Dyk04,Tu01,Bel03]). Let A and B be two groups with property

A. Then A ∗C B has property A.
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3.3 Graph Products

In this section we extend the result of Antolín and Dreesen in [AD13] concerning

asymptotic dimension of graph products of groups in two directions. First, we show

that one can replace �nite asymptotic dimension everywhere with property A and

arrive at the corresponding conclusion. Second, we extend the asymptotic dimension

result to include certain in�nite graphs.

We begin by recalling their result.

Theorem III.23 ([AD13, Theorem 6.3]). Let Γ be a �nite graph and let G be a family

of �nitely generated groups indexed by vertices of V (Γ). Let G = ΓG. Let C be the

collection of subsets of V (Γ) spanning a complete graph. Then

asdimG ≤ max
C∈C

∑
v∈C

max(1, asdimGv).

For our present purposes, we need a slightly weaker result that we state as a

corollary. For a graph Γ, we recall that the clique number ω(Γ) is the maximum

number of vertices in a clique in Γ; i.e., the size of the largest set of vertices for which

each pair is connected by an edge in Γ.

Corollary III.24. Let Γ be a �nite graph with ω(Γ) ≤ k and let G be a collection

of �nitely generated groups indexed by v ∈ V (Γ) such that 0 < asdimGv ≤ n for all

v ∈ V (Γ). Then, asdim ΓG ≤ nk.

Proof. We have that max(1, asdimGv) = asdimGv for each v. Also, there is at least

one C ∈ C with ω(Γ) elements. Thus,

asdimG ≤ max
C∈C

∑
v∈C

max(1, asdimGv) ≤ ω(Γ) max
v∈V (Γ)

{asdimGv} ≤ kn.
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All that is necessary for the preceding proof to work is that at least one of the Gv

should be in�nite, forcing n > 0. If all Gv are �nite, then asdimG ≤ k instead of the

estimate given above, which would be 0 = nk.

The techniques of proof in [AD13, Theorem 6.3] immediately imply the following.

Theorem III.25. Let Γ be a �nite graph. If all the Gv have property A, ΓG has

property A.

Proof. We proceed by induction on |V (Γ)|. We note that if |V (Γ)| = 1, then ΓG = Gv

which is assumed to have property A.

Now we suppose that |V (Γ)| = n > 1 and also that the theorem holds for graphs

with fewer than n vertices.

Then let v ∈ V (Γ) be any vertex, and put A = {v}∪lk(v), B = Γ−{v}, C = lk(v).

Then, by [Gre90] we have that ΓG = GA ∗GC GB.

Now, we have two cases, either A = Γ or A ⊂ Γ. In the �rst case, A = Γ. In that

case, we must have that ΓG = Gv × GC . Now Gv has property A by assumption.

Since |V (C)| < |V (Γ)| the induction hypothesis implies that GC has property A.

Since property A is preserved by direct products as we saw above, ΓG has property

A.

In the second case, where A 6= Γ, we have then that |V (A)| < |V (Γ)|. By

de�nition, we have that |V (B)| < |V (Γ)|. And so, by our induction hypothesis, GA

and GB both have property A. Since by Theorem III.22, amalgamated free products

preserve property A, we conclude that ΓG has property A.

We can go further when we consider �nite asymptotic dimension and allow Γ to

be a countable graph, rather than a �nite one.
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Let Γ be a countable graph. De�ne a weight function w̄ : V (Γ) → N by taking

any one-to-one correspondence between V (Γ) and N. For each vertex v ∈ V (Γ), let

Gv be a �nitely generated group, with generating set Sv. We insist that the set Sv be

closed under inverses and not contain the identity element. De�ne a weight function

from the disjoint union of Sv as follows: w :
⊔
Sv → N by w(s) = w̄(v), where s ∈ Sv

is a generator. Clearly, w is a weight function.

Next, suppose that r > 0 is given. De�ne a graph Γr by setting the vertex set

of Γr equal to w̄−1([0, r]). The edge set of Γr contains precisely those edges in Γ for

which both vertices are also in Γr. Let g ∈ ΓG. We will say that a reduced word

g1 · · · gk is a presentation of g in Γr-standard form if

(1) g = g1 · · · gk with each gi a reduced syllable and

(2) Whenever g = h1 · · ·hk is a reduced word in reduced syllables presenting g we

have

max{i | gi /∈ ΓrG} ≥ max{i | hi /∈ ΓrG}.

This second condition amounts to saying that each Γr syllable is commuted as far

to the right of the word as possible. Call an element x of ΓG permissible if the

standard form of x does not end with a non-trivial element of ΓrG. In other words, x

is permissible if no reduced word that presents the element x can be made to end with

any non-trivial Γr syllable. In this way, we will consider the identity to be permissible.

Lemma III.26. Let ΓG be a graph product of �nitely generated groups G = {Gv}

with the metric described above. Let r > 0 be given and take Γr as above. Then, each
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element of ΓG can be written in the form xb, where x is permissible and b ∈ ΓrG.

Moreover, if x 6= x′ are permissible, then d(xb, x′b′) > r.

Proof. First, we check that each element has such a form. To this end, let g ∈ ΓG be

given and write g = g1 · · · gt as an expression in syllables. We proceed by induction

on the number of syllables t. If t = 1, then either g1 is in ΓrG or not. In the �rst

case, it can be written as xg1, where x = e. In the latter case, x = g1 is permissible.

Suppose now that every word of syllable length at most t−1 can be written in the

form xb with x permissible and b ∈ ΓrG. Then, consider g = g1 · · · gt. Since g1 · · · gt−1

has syllable length shorter than t it can be written in the form xb. Therefore, express

x and b in syllables so that we have g = x1 · · ·xpbp+1 · · · bt−1gt. If gt itself is in ΓrG,

then this word is already in permissible form.

Suppose therefore, that gt /∈ ΓrG. If it commutes with bt−1, then we can write

bt−1gt = gtbt−1 and therefore we have g = x1 · · · bt−1gt = x1 · · · gtbt−1. Now, since its

length is less than t, the element x1 · · · gt can be written as some x′b′ in permissible

form. But, then g = x′b′bt−1 is a permissible presentation of g.

Finally, we consider the case in which gt does not commute with bt−1. If any

rearrangement of this word allows gt to commute past a syllable, then we apply the

argument of the preceding paragraph to obtain a word in permissible form. Otherwise,

x = g is already permissible.

Now, we show the disjointness condition holds. Suppose that x and x′ are distinct,

but permissible. Then, write x−1x′ = z for some z ∈ ΓG. Observe that z /∈ ΓrG, as,

if it were, then xz would be a presentation of x′ that ends with a non-trivial element

of ΓrG, which is not allowed. Thus, z must contain some element that is
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not in ΓrG. Hence it contains a generator s from a group with weight > r. Thus,

d(xb, x′b′) = ‖b−1zb′‖ ≥ ‖s‖ > r.

Theorem III.27. Let Γ be a countable graph with clique number ω(Γ) ≤ k. Suppose

that {Gv}v∈V (Γ) is a collection of �nitely generated groups with 0 < asdimGv ≤ n for

all v ∈ V (Γ). Then, in a left-invariant proper metric, asdim ΓG ≤ nk.

Proof. For a given r > 0 we will construct a cover by nk + 1 uniformly bounded,

r-disjoint families of subsets of ΓG. Since ΓG is a countable group that is not �nitely

generated, we endow it with a metric arising from a weight function w̄ : V (Γ) → N

as described above.

De�ne a subgraph Γr of Γ by setting V (Γr) = w̄−1([0, r]) and by de�ning an edge

between two vertices of Γr if and only if there is an edge between these vertices in

Γ. By Corollary III.24, we know that asdim ΓrG ≤ nk. Thus, there is a cover by

nk+1 r-disjoint families of uniformly bounded sets, say U0,U1, . . . ,Unk. Let P ⊂ ΓG

denote the set of all Γr-permissible elements.

For each i de�ne the collection {xU | x ∈ P,U ∈ U i}. We claim that for each

i, the collection is r-disjoint and uniformly bounded. Moreover, we claim that the

union of these collections covers ΓG.

Since the metric on ΓG is left-invariant, we know that d(xu, xu′) = d(u, u′), for

all xu and xu′ in xU . Since diam(U) is uniformly bounded, we have that diam(xU)

is also uniformly bounded.

Next, suppose that xU and x′U ′ are distinct sets, where U,U ′ ∈ U i. If x = x′, then

we have d(xU, x′U ′) = d(xU, xU ′) = d(U,U ′), and since these sets must be di�erent

(yet still in the same family U i), they are at least r-disjoint. If x 6= x′, then by the

previous lemma d(xu, x′u′) > r and so these two sets are r-disjoint.
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Finally, we show that the collection of all such families covers ΓG. To this end,

let g ∈ ΓG be given. Then, by the lemma g = xb, where x ∈ P and b ∈ ΓrG. Thus,

there is some i and some U ∈ U i so that b ∈ U . Thus, g ∈ xU , as required.

We note by the following examples that both bounds k and n from the above

Theorem are required.

Example. Let Γ be the Cayley graph of 〈a, a−1|〉. Let Gv = Z|v|. Then there is no

n such that 0 < asdimGv ≤ n for all v ∈ V (Γ). Also, we have that asdim ΓG is not

�nite, as there is a quasi-isometrically embedded copy of Zn in ΓG for all n.

Example. Let Γ0 be the Cayley graph of 〈a, a−1|〉. Let Γ be the graph that replaces

each vertex v with a complete graph on |v| vertices. Then there is no k such that

ω(Γ) ≤ k. Also, we have that asdim ΓG is not �nite, as there is a quasi-isometrically

embedded copy of Zn in ΓG for all n.

3.4 Open Questions

Another related invariant of groups, discussed by Gromov in [Gro93], is the asymp-

totic behavior of the dimension function, which is de�ned as follows.

De�nition III.28. Let Γ be the Cayley graph of a group G. Let δ > 1. Let k = k(δ)

be the minimal number of colors so that we can color vertices of Γ in k colors and there

are no arbitrary long monochromatic δ-paths without repeated vertices. Then k(δ)−1

is called the dimension growth function of Γ. We note that asdimG = maxk{k(δ)−1}.
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Question III.29. How does the dimension function of ΓG grow?

Now that it has been shown that �nite graph products preserve property A, it

seems plausible that the result could be extended to certain in�nite graph products,

as we did for �nite asymptotic dimension.

Question III.30. Let Γ be a countably in�nite graph with ω(Γ) < ∞ and suppose

that all Gv ∈ G have property A. Then in a proper, left-invariant metric, does ΓG

have property A?

As we mentioned in the �rst chapter, one of the key reasons �nite asymptotic

dimension and property A are so important is that they imply that the group is

coarsely embeddable into Hilbert space, which itself implies that the group satis�es

the Novikov higher signature conjecture. In [AD13], they show that �nite graph

products of groups that are coarsely embeddable into Hilbert space are themselves

coarsely embeddable into Hilbert space, which leads to the following question.

Question III.31. Let Γ be a countably in�nite graph and suppose that all Gv ∈ G

are uniformly coarsely embeddable in an `p space. Then in a proper, left-invariant

metric, is ΓG coarsely embeddable in an `p space?
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CHAPTER IV

PROPERTY C

4.1 Permanence Properties of Asymptotic Property C

Dranishnikov de�ned the notion of asymptotic property C for metric spaces in his

work on asymptotic topology in an e�ort to extend the class of properties of metric

spaces that imply coarse embeddability into Hilbert space.

De�nition IV.1 ([Dra00]). A metric space X has asymptotic property C if for any

number sequence R1 ≤ R2 ≤ R3 ≤ · · · there is a �nite sequence of uniformly bounded

families of open sets {Ui}ki=1 such that the union
⋃k
i=1 Ui is a covering of X and every

family Ui is Ri-disjoint.

It is clear that a metric space with �nite asymptotic dimension will have asymp-

totic property C. Dranishnikov showed that a discrete metric space with bounded

geometry and asymptotic property C also has property A [Dra00, Theorem 7.11].

Asymptotic property C is another large-scale invariant and is also preserved by a

number of other constructions. For this section, we will show it is preserved by certain

in�nite unions and free products. Notably, it is not preserved by direct products.

We begin by proving that it is a large-scale invariant. The proof is similar to the

corresponding result for asymptotic dimension.

Theorem IV.2 ([Dra00]). If f : X → Y is a coarse equivalence and if X has

asymptotic property C, then Y has asymptotic property C.
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Proof. As X has asymptotic property C, for any given number sequence R1 ≤ R2 ≤

R3 ≤ · · · we can �nd a a �nite sequence of uniformly bounded families of sets {Ui}ki=1

such that
⋃k
i=1 Ui covers X and every family Ui is Ri-disjoint. Let the uniform bound

be D. Now, as NR(f(x)) = Y we have that NR(f(U i)) collectively cover Y .

So, since f(U i) is ρ1(Ri)-disjoint and ρ2(D)-bounded, we have that NR(f(U i))

is (ρ1(Ri) − 2R)-disjoint and 2R + ρ2(D)-bounded. As ρi → ∞ and R is �xed, we

can choose a number sequence Ri in order to satisfy the requirements that Y have

asymptotic property C.

Now, we consider the case where X can be expressed as a union of a collection of

spaces with uniform property C as de�ned below with the additional property that

for each r > 0 there is a �core� space with asymptotic property C whose removal

leaves the families r-disjoint. We will be following the scheme used in [BD01]; the

same scheme we used to prove a similar result for asymptotic dimension.

We will say that the family Xα satis�es asymptotic property C uniformly in α if

for every sequence R1 < R2 < · · · there exist B1 < B2 < · · · so that for each α there

exist families U iα of Ri-disjoint, Bi-bounded families (i = 1, . . . , n) so that ∪ni=1U iα

covers Xα.

Theorem IV.3. Suppose that X =
⋃
αXα is a countable union of spaces that have

uniform asymptotic property C. Suppose further that for each r > 0 there is a Yr ⊂ X

so that Yr has asymptotic property C and such that the family {Xα−Yr}α is r-disjoint.

Then, X has asymptotic property C.

Proof. Let d1 < d2 < · · · be a sequence of positive numbers. For each α, choose

families Uαi of di-disjoint, Ri-bounded sets, i = 1, 2, . . . , n. Since Ri are upper bounds
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on diameters, we may take them to be increasing and insist that Ri ≥ di. Put

r = 5Rn. Take Yr as in the statement of the theorem.

Let V1,V2, . . . ,Vk be 5Ri-disjoint, Bi-bounded families of sets whose union covers

Yr.

Let U iα denote the restriction of U iα to Xα−Yr. Next, put U i = ∪αU iα. Note that U i

is Ri-bounded and di disjoint. Finally, setW i = V i∪di U i, for i = 1, 2, . . . ,max{k, n}.

Here, we take V i = ∅ or U i = ∅ if i > k or i > n, respectively. Thus, in these cases,

we have W i = U i or W i = V i, respectively. By Theorem III.13, W i is di-disjoint and

uniformly bounded. It is clear that this collection covers X.

Corollary IV.4. Let (Z, d) be a metric space with Z = X ∪ Y . If (X, d) and (Y, d)

have asymptotic property C, then so does Z.

Proof. To see this, we consider the family of spaces {A,B} and let Yr = B and apply

the previous theorem.

We note that we have no permanence result for the direct product of two spaces

with asymptotic property C. This is still unknown, and common thought has it that

it is likely not true, as topological property C is not preserved by direct product. In

fact, Pol and Pol, in [PP09], have an example of a space X with topological property

C where X ×X does not have topological property C.

We do have the following weaker result from [She11].

Theorem IV.5 ([She11]). Let X be a metric space such that X has asymptotic

property C and let Y be a metric space such that asdimY = n < ∞. Then X × Y

has asymptotic property C.
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Proof. Let R1 ≤ R2 ≤ . . . be a number sequence. We consider the subsequence

Rn+1 ≤ R2(n+1) ≤ . . .. As X has asymptotic property C, there must exist a �nite

sequence of uniformly bounded families of open sets {Ui}ki=1 such that the union⋃k
i=1 Ui is a covering of X and every family Ui is Ri(n+1)-disjoint.

Let R = Rk(n+1). As asdimY = n, we can �nd a collection {V0, . . .Vn} of R-

disjoint, D-bounded sets such that the collection covers Y .

Now, we de�ne Wj(n+1)+i−1 = Uj+1×V i for j = 0, 1, . . . , k− 1 and i = 0, 1, . . . , n.

We note that
⋃k(n+1)
i=1 Wi covers X×Y as

⋃k
i=1 Ui covers X and

⋃n+1
i=1 V i covers Y . We

also note that eachWi is uniformly bounded, as each Ui and V i is uniformly bounded.

To show that each Wi is Ri-disjoint, we let U1 × V1, U2 × V2 be distinct ele-

ments of Wi. We have that, as Ui is Ri(n+1)-disjoint and Vj is R-disjoint, Ui × Vj is

min{Ri(n+1), R}-disjoint. By our choice of R, min{Ri(n+1), R} ≥ Ri(n+1) ≥ Ri. So, we

have that d(U1 × V1, U2 × V2) ≥ Ri and therefore Wi is Ri-disjoint. And so X × Y

has asymptotic property C.

4.2 Coarse Property C

If we translate the notions from the category of metric spaces to coarse spaces

in the sense of Roe [Roe03], we obtain the following de�nition, which we call coarse

property C. See also [Gra06].

De�nition IV.6. A coarse space (X, E) has coarse property C if for any sequence

L1 ⊂ L2 ⊂ L3 ⊂ · · · of entourages there is a �nite sequence U1,U2, . . . ,Un so that

(1) U =
⋃n
i=1 Ui covers X;

(2) each Ui is uniformly bounded; and
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(3) each Ui is Li-disjoint.

We can also de�ne a coarse analog to asymptotic dimension.

De�nition IV.7 ([Roe03, Gra05]). A coarse space (X, E) satis�es the inequality

asdimX ≤ n if for any entourage L there exists a �nite sequence U1,U2, . . . ,Un

so that

(1) U =
⋃n
i=1 U i covers X;

(2) each U i is uniformly bounded; and

(3) each U i is L-disjoint.

In this setting, we similarly have that coarse property C is a coarse invariant,

along with permanence results along the same lines as in the metric setting. Grave

and Roe also show this for coarse asymptotic dimension [Roe03,Gra06].

Proposition IV.8. Coarse property C is a coarse invariant.

Proof. Let f : X → Y be a coarsely uniform embedding and suppose that (Y,F)

has coarse property C. Let L1 ⊂ L2 ⊂ L3 ⊂ · · · be a sequence of entourages in E .

Then we have that (f × f)(Li) = Ki is a sequence of entourages in F such that

K1 ⊂ K2 ⊂ K3 ⊂ · · · .

Therefore, since (Y,F) has coarse property C, there is a �nite sequence U1,U2, . . . ,Un

as above. Let Vi = {f−1(A)|A ∈ Ui}. Since U =
⋃n
i=1 Ui covers Y , we have that

V =
⋃n
i=1 Vi covers X.

Now, denoting
⋃
V ∈V V × V by ∆V , we have that ∆V =

⋃
U∈U f

−1(U)× f−1(U) =

(f × f)−1(
⋃
U∈U U × U) = (f × f)−1(∆U). Since (Y,F) has coarse property C, U is
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uniformly bounded and so ∆U is an entourage. Since f is coarsely proper, we have

that (f × f)−1(∆U) = ∆V is an entourage and therefore V is uniformly bounded.

It remains to show that Vi is Li disjoint. Let A,B ∈ Vi, with A 6= B. Then

A = f−1(A′) for some A′ ∈ Ui and B = f−1(B′) for some B′ ∈ Ui, with A′ 6= B′. So

A×B ∩ Li ⊂ (f × f)−1(A′ ×B′ ∩Ki) = (f × f)−1(∅) = ∅ since Ui is Ki disjoint.

Therefore the sequence V1,V2, . . . ,Vn satis�es our requirements, and (X, E) has

coarse property C

Coarse property C also passes nicely to subsets.

Proposition IV.9. If Y ⊂ X where X has coarse property C and Y has the coarse

structure inherited from X, then Y has coarse property C.

Proof. Let L1 ⊂ L2 ⊂ L3 ⊂ · · · be a sequence of entourages in Y . Then L1 ⊂ L2 ⊂

L3 ⊂ · · · is a sequence of entourages in X, and since X has property C, we have

a �nite sequence U1,U2, . . . ,Un so that U =
⋃n
i=1 Ui covers X, each Ui is uniformly

bounded and each Ui is Li-disjoint.

We consider the �nite sequence V1,V2, . . . ,Vn where Vi = {U ∩ Y |U ∈ Ui}. Then

each Vi is still Li-disjoint and since ∆V = ∆U ∩ (Y × Y ) we have that V is uniformly

bounded. Since U covers X, we also have that V covers Y . Therefore, Y has property

C.

Our coarse de�nition reduces to the asymptotic case when the metric space is

given the bounded coarse structure, that is, the structure E where E ∈ E if and only

if sup{d(x, x′) | (x, x′) ∈ E} is �nite.

36



Proposition IV.10. Let (X, d) be a metric space. Let E denote the bounded coarse

structure. Then (X, d) has asymptotic property C if and only if (X, E) has coarse

property C.

Proof. Suppose �rst that (X, d) has asymptotic property C. Let L1 ⊂ L2 ⊂ · · · be a

sequence of controlled sets. For each i, put Ri = sup{d(x, x′) | (x, x′) ∈ Li}. Then

each Ri is �nite, by the de�nition of the bounded coarse structure and moreover

R1 ≤ R2 ≤ · · · .

Since (X, d) has asymptotic property C, there are families U1,U2, · · · ,Uk that cover

X, that consist of uniformly bounded sets, and that are Ri-disjoint (i = 1, 2, . . . , k).

We need to show that the Ui are coarsely uniformly bounded and Li-disjoint.

The collection Ui is coarsely uniformly bounded if and only if ∆Ui =
⋃
α U

i
α × U i

α

is in E . But, ∆Ui ∈ E if and only if

sup{d(x, y) | (x, y) ∈ ∆Ui} <∞,

which is implied by our assumption that the family has uniformly bounded diameter,

i.e.

sup
α
{diam(U i

α)} <∞.

Next, to show that the Ui are Li-disjoint, we must show that
(
U i
α × U i

β

)
∩ Li = ∅

whenever U i
α 6= U i

β. Suppose that a ∈ U i
α and b ∈ U i

β and (a, b) ∈ Li. Then, we have

d(a, b) ≤ Ri, which contradicts the fact that the family Ui is Ri-disjoint.
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Suppose now that (X, E) has coarse property C and let R1 ≤ R2 ≤ · · · be given.

De�ne a sequence of controlled sets Li as follows:

Li = {(x, y) ∈ X ×X | d(x, y) ≤ Ri}.

Using this sequence, we �nd a cover of X by uniformly bounded U1,U2, . . . ,Uk, where

each Ui is Li-disjoint.

As above, we see that the set Ui is coarsely Li-disjoint if and only if it is metrically

Ri-disjoint and coarsely uniformly bounded if and only if it is metrically uniformly

bounded.

We can also prove some relationships between coarse property C and coarse asymp-

totic dimension, as we had in the metric case.

Theorem IV.11. Let (X, E) be a coarse space such that asdimX ≤ n. Then X has

coarse property C.

Proof. Given a sequence of entourages L0 ⊂ L1 ⊂ L2 ⊂ L3 ⊂ · · · , we let L = Ln.

Then we can �nd a �nite sequence U0,U1,U2, . . . ,Un that satis�es the de�nition of

asdimX ≤ n. This sequence satis�es the requirements of the de�nition of coarse

property C as well, since Li ⊂ Ln = L for all i ≤ n.

In the metric case, we showed that asymptotic property C implies property A.

A coarse de�nition of the property A is not so easily constructed. However, we can

consider a series of maps similar to those in the de�nition of property A such that

coarse property C implies thhe existence of such a series of maps. We require a few

preliminaries �rst.
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Proposition IV.12. Let (X, E) be a coarse space and let E ∈ E such that E = E−1.

De�ne D : X ×X → R+ ∪ {+∞} by D(x, y) = min{k ≥ 0 | (x, y) ∈ Ek+1}. Then we

have that D is symmetric, D(∆) = 0 and D(x, y) ≤ D(x, z) +D(z, y) + 1.

Proof. As E = E−1, we have that Ek = (Ek)−1 and so if (x, y) ∈ Ek+1 then (y, x) ∈

Ek+1 and thus D(x, y) = D(y, x). As E ∈ E , we have that ∆ ⊂ E and therefore

D(∆) = 0.

For D(x, y) ≤ D(x, z)+D(z, y)+1, we note that if D(x, z) = k, then (x, z) ∈ Ek+1

and ifD(z, y) = l, then (z, y) ∈ El+1. Therefore, (x, y) = (x, z)◦(z, y) ∈ Ek+1◦El+1 =

Ek+l+2 and thus D(x, y) ≤ (k + l + 2)− 1 = D(x, z) +D(z, y) + 1.

We will use this function to de�ne a function based on a nice cover of X.

Proposition IV.13. Let (X, E) be a coarse space and let E ∈ E such that ∆ =

E0 ( E1 ( En ( · · · . Fix n ∈ N, n > 1 and suppose X has a cover U1, . . . ,Uk by

Eni-disconnected sets. Put

φij(x) = max{0, n
i

4
−D(x, U i

j)}.

Then

(1) for each i and x, there exists at most one j = jx(i) such that φxj (i)(x) 6= 0

(2) |φij(z)− φij(w)| ≤ D(z, w) + 1 for all i, j, z, w.

Proof. For (1), we suppose j 6= j′ and φij(x) 6= 0 6= φij′(x). Then, ni

4
> D(x, U i

j) and

ni

4
> D(x, U i

j′). If zij and zij′ in U i
j and U i

j′ , respectively, realize D(x, U i
j) + 1 and

D(x, U i
j′) + 1, then we see that (x, zij) ∈ ED(x,U ij)+1 and (x, zij′) ∈ E

D(x,U i
j′ )+1 together

imply that (zij, z
i
j′) ∈ E

2
(

max{D(x,U ij),D(x,U i
j′ )}+1

)
and yet max{D(x, U i

j), D(x, U i
j′)} <
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ni

2
, so that max{D(x, U i

j), D(x, U i
j′)} + 1 < ni. Thus, there are u and v in U ij and

U ij′ , respectively, so that (u, v) = (u, x) ◦ (x, v) ∈ ED(x,U ij) ◦ED(x,U i
j′ ) ⊆ Eni . This is a

contradiction since U i is ni-disconnected; i.e., U i
j × U i

j′ ∩ Eni = ∅.

For (2), we consider by cases. First, we consider the case j = jz(i) = jw(i).

There are three possibilities. If z and w are both in U i
j , then |φij(z) − φij(w)| =

0 ≤ D(z, w) + 1. If z ∈ U i
j and w /∈ U i

j , then |φij(z) − φij(w)| = |D(w,U i
j)| ≤

D(w, z) < D(w, z) + 1, since z ∈ U i
j . Finally, when both z and w are not in U i

j , then

|φij(z) − φij(w)| = |D(z, U) −D(w,U)|, which, by an elementary argument applying

the �triangle inequality� from Proposition IV.12, does not exceed D(z, w) + 1, as

required.

If jz(i) 6= jw(i), then the fact that U i
jz(i)×U i

jw(i)∩Eni = ∅ implies thatD(z, w) ≥ ni

and so φijz(i)(z) < ni ≤ D(z, w). Similarly, φijw(i)(w) ≤ D(z, w).

Next, we will construct a function into `1(X) that will provide the underlying

basis of our analog to property A.

Proposition IV.14. Let (X, E) be a coarse space and let E ∈ E such that ∆ =

E0 ( E1 ( En ( · · · . Fix n ∈ N, n > 1 and suppose X has a cover U1, . . . ,Uk by

Eni-disconnected sets. For each pair (i, j) take xij ∈ U i
j . De�ne b

n : X → `1(X) by

bnx(y) = Σk
i=1n

k−i+1φijx(i)(x)δxi
jx(i)

(y).

Then

(1) 0 < ‖bnx‖1 <∞

(2) for each n, {(x, y) | y ∈ supp(bnx)} is controlled;
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Proof. For (1), we consider ‖bnx‖1 =
∑

y∈X
∑k

i=1 n
k−i+1φijx(i)(x)δxi

jx(i)
(y). Each term∑k

i=1 n
k−i+1φijx(i)(x)δxi

jx(i)
(y) = 0, unless y ∈ {x1

jx(1), x
2
jx(2), . . . , x

k
jx(k)}, so ‖bnx‖1 ≤

k
∑k

i=1 n
k−i+1φijx(i)(x) ≤ k2nk

nk

4
<∞.

Similarly, we claim that ‖bnx‖1 ≥ nk+1

4
for any x ∈ X. Indeed,

‖bnx‖1 =

∥∥∥∥∥∑
i,j

nk−i+1φij(x)δxij

∥∥∥∥∥
1

=
k∑
i=1

nk−i+1|φijx(i)(x)|.

But, there is some i0 for which x ∈ U i0
jx(i0) and so

k∑
i=1

nk−i+1|φijx(i)(x)| ≥ nk−i0+1 · n
i0

4
=
nk+1

4
.

For (2), we again have that if
∑k

i=1 n
k−i+1φijx(i)(x)δxi

jx(i)
(y) 6= 0, then y belongs to

{x1
jx(1), x

2
jx(2), . . . , x

k
jx(k)}. Fix some t and consider xtjx(t); then n

k−t+1φtjx(t)δxtjx(t)
(xtjx(t)) 6=

0 is equivalent to φtjx(t) > 0. Thus, there is some m < ni

4
and some z ∈ U t

jx(t) so that

(x, z) ∈ Em. Now (x, xtjx(t)) = (x, z) ◦ (z, xtjx(t)) ∈ Em ◦ (U t
j × U t

j ), which is con-

trolled. Thus, the set of all (x, y) for which anx(y) 6= 0 is contained in a �nite union

of controlled sets (for a �xed x) and so (2) holds.

Proposition IV.15. Let (X, E) be a coarse space and let E ∈ E such that ∆ = E0 (

E1 ( En ( · · · . Fix n ∈ N, n > 1 and suppose X has a cover U1, . . . ,Uk by

41



Eni-disconnected sets. For each pair (i, j) take xij ∈ U i
j . De�ne bn : X → `1(X) as

above. Then

‖bnz − bnw‖1 ≤
3n(nk − 1)

n− 1
(D(z, w) + 1) .

Proof. We begin by estimating ‖bnz − bnw‖1 using φij as follows:

‖bnw − bnz‖1 =

∥∥∥∥∥
k∑
i=1

nk−i+1φijw(i)δxijx(w)
−

k∑
i=1

nk−i+1φijz(i)δxijx(z)

∥∥∥∥∥
1

≤

∥∥∥∥∥∥∥
k∑
i=1

j=jz(i)=jw(i)

nk−i+1
(
φij(z)− φij(w)

)
δxij

∥∥∥∥∥∥∥
1

+

∥∥∥∥∥∥∥
k∑
i=1

j=jz(i)6=jw(i)

nk−i+1φij(z)δxij

∥∥∥∥∥∥∥
1

+

∥∥∥∥∥∥∥
k∑
i=1

j=jw(i)6=jz(i)

nk−i+1φij(w)δxij

∥∥∥∥∥∥∥
1

≤
k∑
i=1

j=jz(i)=jw(i)

nk−i+1
∣∣φij(z)− φij(w)

∣∣
+

k∑
i=1

nk−i+1|φij(w)|+
k∑
i=1

nk−i+1|φij(z)|

Now, by Proposition IV.13 we have that |φij(z)− φij(w)| ≤ D(z, w) + 1. Thus, we

conclude that

‖bnz − bnw‖1 ≤
k∑
i=1

nk−i+1 (D(z, w) + 1) + 2
k∑
i=1

nk−i+1 (D(z, w))

≤ 3n
nk − 1

n− 1
(D(z, w) + 1) .
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Finally, we will show that coarse property C implies the existence of a sequence

of functions reminiscent of asymptotic property A.

Theorem IV.16. Let (X, E) be a coarse space with coarse property C. Let E ∈ E such

that ∆ = E0 ( E1 ( En ( · · · . Then, there is a sequence an of maps an : X → `1(X)

such that

(1) ‖anx‖1 = 1 for each x ∈ X and n ∈ N;

(2) for each n, {(x, y) | y ∈ supp(anx)} is controlled;

(3) for each K > 0,

lim
n→∞

sup
(x,y)∈EK

{‖anx − any‖} = 0.

Here, we write anx for the function an(x) ∈ `1(X).

Proof. We may assume that E = E−1. If not, replace E with E ∪ E−1. Fix n and

form the (increasing) sequence E,En, En2
, . . . and observe that each element of the

sequence is controlled. Using this sequence, we can �nd a �nite family U1,U2, . . . ,Uk

covering X so that each U i is Eni-disconnected, as X has coarse property C.

De�ne bnx as above. Then put anx =
bnx
‖bnx‖

. This is well de�ned, by Proposition

IV.14, as 0 < ‖bnx‖ <∞ and clearly, ‖anx‖1 = 1 for each x ∈ X and n ∈ N.

For (2), if y ∈ supp(anx), then y ∈ supp(bnx) and so by Proposition IV.14, {(x, y) |

y ∈ supp(anx)} is controlled.
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For (3), we have, by Proposition IV.14 and Proposition IV.15 that

‖anz − anw‖1 =
1

‖bnz‖1

‖bnz − ‖bnz‖1a
n
w‖1

≤ 1

‖bnz‖1

∥∥∥∥‖bnz‖1

‖bnw‖1

bnw − bnw
∥∥∥∥

1

+ ‖bnw − bnz‖1

=
1

‖bnz‖1

‖bnw‖1
|‖bnz‖1 − ‖bnw‖1|

‖bnw‖1

+ ‖bnw − bnz‖1

≤ 1

‖bnz‖1

2‖bnw − bnz‖1

≤ 6n(nk − 1)
nk+1

2
(n− 1)

(D(z, w) + 1) ≤ 12(D(z, w) + 1)

n− 1

which goes to zero as n→∞ for all z, w with D(z, w) ≤ K.

As before, we wish to show that coarse property C is preserved by unions. For

�nite unions, we require a coarse analog of saturated unions, such as we had in the

metric case.

De�nition IV.17 ([Gra05]). Let U and V be families of subsets of X. Let V ∈ V

and L be an entourage. We de�ne

NL(V,U) := V ∪
⊔
U∈U ,

L∩U×V 6=∅

U.

The L-saturated union of V in U is denoted V ∪L U and is given by V ∪L U :=

{NL(V,U)|V ∈ V} ∪ {U ∈ U|Li ∩ U × V = ∅ ∀V ∈ V}.

The following two results closely follow Grave in [Gra05], leading to an analog of

Theorem 3.29 in that paper. We use L∆UL∆UL as in [Gra05], replacing the 5R we
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used earlier in the metric case, as that provides us with the appropriate contradiction

in Proposition IV.18, providing the analogous extension of L necessary to ensure the

L-saturated union remains L-disjoint.

Proposition IV.18. If U is uniformly bounded and L-disjoint, for some symmetric

entourage L and V is uniformly bounded and L∆UL∆UL-disjoint then V ∪L U is

L-disjoint and uniformly bounded.

Proof. We begin by observing that NL(V,U) ⊆ ∆UL[V ] and so V ∪L U is uniformly

bounded.

To show that V ∪L U is L-disjoint, let A,B ∈ V ∪L U , with A 6= B. We will

proceed by cases.

Case 1: A,B ∈ {U ∈ U|L ∩ (U × V ) = ∅∀V ∈ V}. In this case, we have that

L ∩ A×B = ∅ since U is L-disjoint.

Case 2: A ∈ {NL(V,U)|V ∈ V}, B ∈ {U ∈ U|L ∩ (U × V ) = ∅∀V ∈ V}. Then

L ∩ (A × B) = ∅ since L ∩ (V × B) = ∅ and L ∩ (U × B) = ∅,∀U such that

L ∩ (U × V ) 6= ∅.

Case 3: A,B ∈ {NL(V,U)|V ∈ V}. Let A = NL(VA,U), B = NL(VB,U). We note

that we then have that VA 6= VB. Then (VA×VB)∩L = ∅ since V is L∆UL∆UL-disjoint

and L ⊂ L∆UL∆UL. Also, we have that (VA × B \ VB) ∩ L = ∅ by the construction

of NL(VB,U), and similarly (A \ VA×B)∩L = ∅. Finally, (A \ VA×B \ VB)∩L = ∅

by the L-disjointedness of Ui since we claim that if U was part of NL(VA,U), then it

could not be part of NL(VB,U).

To prove our claim, it remains to show that if (V ×U)∩L 6= ∅ then (V ′×U)∩L = ∅

whenever V ′ 6= V . If we suppose that (V ′ × U) ∩ L 6= ∅, then since L is symmetric,

we must have that (U × V ′) ∩ L 6= ∅. Let (u, v′) ∈ (U × V ′) ∩ L and (v, u) ∈
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(V × U) ∩ L. Then (v × u)(u× u′)(u′ × v) = (v × v′) ∈ (V × V ′) ∩ L∆UL∆UL which

is a contradiction.

Theorem IV.19. Let X = X1 ∪ X2 be a coarse space. If X1 and X2 have coarse

property C then X does.

Proof. We follow closely the techniques of [Gra05] in Theorem 3.29 where he proves

that �nite coarse asymptotic dimension is preserved by �nite unions. Let L1 ⊂ L2 ⊂

L3 ⊂ · · · be a sequence of symmetric entourages containing ∆X .

Since X1 has coarse property C, there exists a �nite sequence U1,U2, . . . ,Un such

that U =
⋃n
i=1 Ui covers X1, each Ui is uniformly bounded and each Ui is Li-disjoint.

Since X2 has coarse property C, there exists a �nite sequence V1,V2, . . . ,Vn such that

V =
⋃n
i=1 Vi covers X2, each Vi is uniformly bounded and each Vi is Li∆ULi∆ULi-

disjoint.

Set Wi = Vi ∪Li Ui. We observe that since U and V cover X1 and X2 respectively,

W =
⋃n
i=1Wi covers X, since V ⊂ NLi(V,Ui) and if U ∈ Ui is such that L∩U×V 6= ∅

then U ⊂ NLi(V,Ui) and if U ∈ Ui is such that L ∩ U × V = ∅ then U ∈ Wi.

By Proposition IV.18, we have thatWi will be uniformly bounded and Li-disjoint,

so we have that X has coarse property C.

In order to show that coarse property C is preserved by some in�nite unions, we

also require a de�nition of a uniform coarse property C.

De�nition IV.20. A family of coarse spaces (Xα, Eα) has uniform coarse property

C if for any sequence L1 ⊂ L2 ⊂ L3 ⊂ · · · of entourages there is a sequence of

entourages K1 ⊂ K2 ⊂ K3 ⊂ · · · and a N ∈ N such that for each α there exists a

�nite sequence U1
α,U2

α, . . . ,Unα with n ≤ N so that
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(1) Uα =
⋃n
i=1 U iα covers Xα;

(2) for each α,∆Uiα ⊂ Ki, that is U iα is Ki-bounded; and

(3) each U iα is Li-disjoint.

We note that the families U iα will also be uniformly bounded, since a subset of an

entourage is also an entourage. An example of this, in a bounded coarse structure

derived from a metric on the space, this corresponds to a uniform bound on the

diameter of the covers.

Theorem IV.21. Suppose that X =
⋃
αXα, where the family Xα has uniform coarse

property C and for each entourage L ∈ E there is a subset YL ⊆ X with coarse property

C such that {Xα \ YL} forms an L-disjoint collection. Then, X has coarse property

C.

Proof. Let L1 ⊆ L2 ⊆ · · · be a sequence of entourages. For each α, choose families U iα

of Li-disjoint, Ki-bounded sets, where Uα = ∪ni=1U iα is a cover of Xα. Let U = ∪αUα

and put K = Ln∆ULn∆ULn. Take YK as in the statement of the theorem.

Since YK has coarse property C, let V1,V2, ...,Vk be Li∆ULi∆ULi-disjoint, uni-

formly bounded families of sets whose union covers YK .

Let U iα denote the restriction of U iα to Xα \ YK and put U i = ∪αU iα. Since U iα

are each Li-disjoint and Xα \ YK are K-disjoint and thus Li-disjoint ∀i, we have that

U i is Li-disjoint. We note that ∆Ui ⊂ Ki, since each U iα ⊂ Ki and therefore U i is

uniformly bounded.

Now, set W i = V i ∪Li U i for i = 1, 2 · · · ,max{k, n}. By Proposition IV.18, W i is

Li-disjoint and uniformly bounded. Clearly,W = ∪W i covers X and so X has coarse

property C.
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We can similarly show that �nite coarse asymptotic dimension is preserved by

some in�nite unions.

De�nition IV.22. A family of coarse space (Xα, Eα) satis�es the inequality asdimXα ≤

n uniformly if for any entourage L there is an entourage K such that for each α there

exists a �nite sequence U1
α,U2

α, . . . ,Unα so that

(1) Uα =
⋃n
i=1 U iα covers Xα;

(2) for each α,∆Uα ⊂ K, that is U iα is K-bounded; and

(3) each U iα is L-disjoint.

Theorem IV.23. Suppose that X =
⋃
αXα, where asdimXα ≤ n uniformly and for

each entourage L ∈ E there is a subset YL ⊆ X with asdimYL ≤ n such that {Xα\YL}

forms an L-disjoint collection. Then, asdimX ≤ n.

Proof. We will follow the techniques in [BD01, Theorem 1]. Let L be an entourage.

For each α, choose families U1
α, · · · ,Unα of L-disjoint, K-bounded sets, where Uα =

∪ni=1U iα is a cover of Xα. Let U = ∪αUα and put M = L∆UL∆UL. Take YM as in the

statement of the theorem.

Since asdimYM ≤ n, let V0,V1, ...,Vn be M -disjoint, uniformly bounded families

of sets whose union covers YK .

Let U iα denote the restriction of U iα to Xα \ YK and put U i = ∪αU iα. Since U iα are

each L-disjoint and Xα \ YM are M -disjoint and thus L-disjoint, we have that U i is

L-disjoint. We note that ∆Ui ⊂ K, since each ∆Uiα ⊂ K and therefore U i is uniformly

bounded.

Now, setW i = V i∪LU i for i = 0, 1 · · · , n. By Proposition IV.18,W i is L-disjoint

and uniformly bounded. Clearly, W = ∪W i covers X and so asdimX ≤ n.
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4.3 Open Questions

Question IV.24. Is asymptotic property C preserved by free products?

Our current plan to pursue the previous question relies on some of the tools from

the proof of the permanence of �nite asymptotic dimension in regards to free products.

It uses the action of the group on a tree of cosets to create the cover necessary.

Question IV.25. Is asymptotic property C preserved by amalgamated products?

Question IV.26. Is asymptotic property C preserved by direct products?

If the answers to the previous two questions are both yes, then it would immedi-

ately follow that the following question also has a positive answer.

Question IV.27. Let Γ be a �nite graph. If all the Gv have asymptotic property C,

does GΓ have asymptotic property C?

If the answer to that question is yes, one could additionally ask the following.

Question IV.28. Let Γ be a countably in�nite graph with bounded clique number.

Suppose that all Gv have asymptotic property C. Then, in a proper, left-invariant

metric, does G have asymptotic property C?
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CHAPTER V

DECOMPOSITION COMPLEXITY

5.1 Metric Notions of Decomposition Complexity

Guentner, Tessera and Yu [GTY13,GTY12] de�ned another coarse invariant of

groups that is applicable when the asymptotic dimension is in�nite: �nite decomposi-

tion complexity. Following this, Dransihnikov and Zarichnyi de�ned a related notion

in [DZ13]: straight �nite decomposition complexity. Let X and Y be familes of metric

spaces. For a positive R, we say that X is R-decomposable over Y and write X R−→ Y

if for any X ∈ X one can write

X = Y 0 ∪ Y 1 where Y i =
⊔

R-disjoint

Y ij, for i = 0, 1,

where the sets Y ij ∈ Y and the notation means d(Y ij, Y ij′) > R if j 6= j′.

We begin by describing the metric decomposition game for X. In this game two

players take turns. First, Player 1 asserts a number R1. Player 2 responds by �nding

a metric family Y1 and a R1-decomposition of {X} over Y1. Then, Player 1 selects a

number R2 and Player 2 again �nds a family Y2 and an R2-decomposition of Y1 over

Y2. Player 2 wins if the game ends in �nitely many steps with a family that consists

of uniformly bounded subsets.

De�nition V.1 ([GTY13]). The metric space X is said to have �nite composition

complexity or FDC, if there is a winning strategy for Player 2 in the metric decom-

position game for X.
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De�nition V.2 ([DZ13]). The metric space X has straight �nite decomposition com-

plexity sFDC if for every sequence R1 ≤ R2 ≤ · · · there exists an n and metric families

Y i (i = 1, 2, . . . , n) so that X R1−→ Y1, Y i−1 Ri−→ Y i for i = 2, 3, . . . , n, and such that

Yn is uniformly bounded.

It follows clearly from these de�nitions that �nite decomposition complexity im-

plies straight �nite decomposition complexity.

Theorem V.3 ([GTY13, Theorem 4.1]). Let X be a metric space. Then, if X has

�nite asymptotic dimension, X has �nite decomposition complexity.

Theorem V.4 ([DZ13]). Let X be a metric space. Then, if X has asymptotic property

C, X has straight �nite decomposition complexity.

Proof. Let R1 ≤ R2 ≤ · · · be a number sequence. Then, as X has asymptotic

property C, there exists uniformly bounded families of open sets {Ui}ki=1 such that

the union
⋃k
i=1 Ui is a covering of X and every family Ui is Ri-disjoint. Let Y1 =

U1 ∪ {X \ (
⋃
U1)}. Then X = Y 0 ∪ Y 1 where Y 0 =

⊔
U1 and Y 1 = {X \ (

⋃
U1)}.

For any set Y ∈ Y1, if Y ∈ U1 then Y is bounded and we can decompose it. If

Y = {X \ (
⋃
U1)}, then we decompose it by considering the intersection of U2 and Y .

In the k-th step, the decomposition will be uniformly bounded, as each Ui is.

Since �nite asymptotic dimension implies asymptotic property C, we have the

following easy corollary.

Corollary V.5. Let X be a metric space. Then, if X has �nite asymptotic dimension,

X has straight �nite decomposition complexity.

The goal of this section is to apply the techniques of Guentner, Tessera and Yu

[GTY13, GTY12] to the notion of straight �nite decomposition complexity de�ned
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by Dranishnikov and Zarichnyi [DZ13]. It is shown in [DZ13] that sFDC is a coarse

invariant, is preserved by �nite unions, and is preserved by some in�nite unions

(analogous to our theorem above about property C). We extend these results to show

that sFDC is preserved by �berings and conclude that it is preserved by amalgamated

products and graph products.

We begin by recalling some of the results from [DZ13].

Theorem V.6. [DZ13, Theorem 3.1] If f : X → Y is a coarse equivalence between

the metric spaces X and Y and if Y has sFDC, then so does X.

We include a proof for the reader's convenience and also because we will use the

same technique to prove our �bering theorem.

Proof. Let f : X → Y be uniformly expansive and e�ectively proper. Suppose that

ρ : [0,∞)→ [0,∞) is an increasing function for which d(f(x), f(x′)) ≤ ρ(d(x, x′)) for

all x and x′ in X.

Let R1 < R2 < · · · be given and set Si = ρ(Ri) for each i. By way of notation,

put {Y } = V0. Then, since Y has sFDC, there is some m ∈ N and metric familes

V1,V2, . . . ,Vm so that V0 S1−→ V1 S2−→ V2 S3−→ · · · Sm−−→ Vm with Vm bounded. According

to [GTY13, Lemma 3.1.1], if V i−1 Si−→ V i then f−1(V i−1)
Ri−→ f−1(V i).

More explicitly, write Y = V 1
0 ∪ V 1

1 , where

V 1
i =

⊔
S1-disjoint

V 1
ij ,

and V 1
ij ∈ V1. Then X = f−1(Y ) = f−1(V 1

0 ) ∪ f−1(V 1
1 ), with

f−1(V 1
i ) =

⊔
R1-disjoint

f−1(V 1
ij).
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Then, for each V ∈ V1, write V = V 2
0 ∪ V 2

1 where

V 2
i =

⊔
S2-disjoint

V 2
ij ,

and V 2
ij ∈ V2. Then, as above, obtain an R2-decomposition of f−1(V1) over f−1(V2).

We continue in this way until we eventually �nd an Rm-decomposition of f−1(Vm−1)

over f−1(Vm). Since f is e�ectively proper and Vm is bounded, we apply [GTY13,

Lemma 3.1.2] to conclude that f−1(Vm) is bounded, as required.

Next, we obtain a version of [GTY13, Theorem 3.1.4] for straight �nite decompo-

sition complexity.

Theorem V.7. Let X and Y be metric spaces and let f : X → Y be a uniformly

expansive map. Assume that Y has sFDC and that for every bounded family V in Y ,

the inverse image f−1(V) has sFDC. Then, X has sFDC.

Proof. Let R1 < R2 < · · · be given. Since Y has straight �nite decomposition

complexity, and since f is uniformly expansive, we take Si = ρ(Ri) as in the previous

theorem to �nd families V1,V2, . . . ,Vm so that V i−1 Si−→ V i and for which Vm is

bounded. Then, as before, we pull these families back to X to obtain f−1(V i−1)
Ri−→

f−1(V i). Since we assume that f−1(Vm) has straight �nite decomposition complexity,

we take the sequence Rm+1, Rm+2, . . . , and �nd n and families Um+1,Um+2, . . . ,Um+n

so that Um+j−1 Rm+j−−−→ Um+j with Um+n bounded. Then, with U i = f−1(V i) for

i = 1, 2, . . . ,m, we have U i−1 Ri−→ U i for all i = 1, 2, . . . ,m+ n, as required.

Proposition V.8. Let G be a countable group expressed as a union of subgroups

G = ∪Gi where each Gi has straight �nite decomposition complexity. Then, G has

straight �nite decomposition complexity.
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Proof. We equip G with a proper, left-invariant metric. Let R1 < R2 < · · · be

given. Since the metric is proper, there is some Gi that contains BR1(e). Then, the

decomposition of G into cosets of Gi is R1-disjoint and each coset is isometric to Gi,

which is assumed to have sFDC.

The �bering theorem and the fact that the map g 7→ g.x for a group acting by

isometries on a metric space is uniformly expansive [GTY13, Lemma 3.2.2] immedi-

ately imply:

Proposition V.9. Let G be a countable group acting on a metric space X with

straight �nite decomposition complexity. If there is a x0 ∈ X so that for every R > 0

the R-coarse stabilizer of x0 has straight �nite decomposition complexity, then G has

straight �nite decomposition complexity.

Corollary V.10. The following results easily follow from this theorem.

(1) sFDC is closed under group extensions.

(2) sFDC is closed under free products with amalgamation and HNN extensions.

(3) sFDC is closed under �nite graph products.

(4) FDC is closed under �nite graph products.

Proof. (1) Suppose that 1 → K → G
φ−→ H → 1 is an exact sequence of countable

groups with H and K both having straight �nite decomposition complexity.

Let G act on H by the rule g.h = φ(g)h. The R-coarse stabilizer is coarsely

equivalent to K, so it has sFDC. Thus, by the theorem, G has sFDC.
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(2) This follows from the Bass-Serre theory of graphs of groups. More precisely, if

G is an amalgamated product (or HNN extension), then there is a tree T and

an action of G on that T by isometries with vertex stabilizers isomorphic to the

factors of the amalgam. The coarse stabilizers of the action will therefore have

sFDC and so G itself will.

(3) This follows from parts (1) and (2) using the technique of Corollary III.8 or

[AD13].

(4) This is immediate from the results of [GTY13] using the technique of Corollary

III.8 or [AD13].

5.2 Coarse Notions of Decomposition Complexity

Following the scheme of Chapter 3, we can translate these notions to coarse spaces

in the sense of Roe [Roe03]. Doing so, we obtain the following de�nition for coarse

version of �nite decomposition complexity. As above, we can modify this de�nition

to get us a coarse version of straight �nite decomposition complexity. Also, we can

de�ne a weak version of �nite decomposition complexity that is necessary for this

setting.

Let (X, E) be a coarse space. Let L ∈ E be a controlled set. An L-decomposition

of X over the coarse family Y is a decomposition

X = X0 ∪X1 Xi =
⊔
L

Xij
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where each Xij ∈ Y and the union is L-disjoint in the sense that Xij 6= Xij′ implies

Xij ×Xij′ ∩ L = ∅. We call the coarse family Y bounded if ∪Y ∈YY × Y is controlled.

We say that the family X admits an L-decomposition over Y if every X ∈ X

admits an L-decomposition over Y .

The decomposition game for the coarse space X works as follows. Player 1 asserts

a controlled set L1. Player 2 responds with a family Y1 and an L1-decomposition of

X over Y1. Then, Player 1 asserts another controlled set L2 and Player 2 responds

with an L2-decomposition of Y1 over a family Y2. The game ends and Player 2 wins

if at some �nite stage, the family over which the decomposition can be taken to be

bounded.

De�nition V.11. The coarse spaceX is said to satisfy the coarse �nite decomposition

complexity if Player 2 has a winning strategy in the decomposition game.

De�nition V.12. The coarse space X is said to satisfy the coarse straight �nite

decomposition complexity if for any sequence of controlled set L1 ⊂ L2 ⊂ · · · there

exists some �nite sequence Y1,Y2, . . . ,Yn so that Yi−1
Li−→ Yi with Yn bounded.

In the metric setting, the proof that �nite asymptotic dimension implies �nite

decomposition complexity relies on embedding the space with �nite asymptotic di-

mension into a product of trees. The construction of these universal spaces relies on a

sequence of anti-Cech approximations, which are not guaranteed to exist in the coarse

setting. This motivates two lines of questioning. The �rst is whether we can prove

the implication as in the metric case, if we assume the existence of anti-Cech ap-

proximations. The second is whether there is a way to weaken the de�nition of �nite

decomposition complexity so that the implication holds without needing anti-Cech
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approximations. We have followed this second line of questioning for the following

de�nition.

Given an entourage L ∈ E , we say that X admits a weak (L, d)-decomposition

over Y if

X = X0 ∪X1 ∪ · · · ∪Xd

so that, for each i = 0, . . . , d,

Xi =
⊔
L

Xij

where each Xij ∈ Y and the union is L-disjoint in the sense that Xij 6= Xij′ implies

Xij ×Xij′ ∩ L = ∅.

De�nition V.13. We will then say that the space X has weak coarse �nite decom-

position complexity if the second player has a winning strategy in the weak coarse

decomposition game.

We have some implications among these properties and the ones we have men-

tioned in previous chapters.

Proposition V.14. Let (X, E) be a coarse space such that asdim(X, E) ≤ n. Then

(X, E) has coarse weak �nite decomposition complexity.

Proof. Given an entourage L ∈ E , we have that there exists a L-disjoint uniformly

bounded cover U1, · · · ,Un of X, by the de�nition of �nite asymptotic dimension.

Then we have that X = ∪Xi where Xi =
⊔
L Uij, with Ui = {Uij}. Therefore we have
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that X admits a weak (L, n)-decomposition over U and therefore the second player

can win on the �rst phase of the coarse weak �nite decomposition game.

The following proof follows the same scheme as in [DZ13] for the corresponding

result in the metric case.

Proposition V.15. Let (X, E) be a coarse space with coarse property C. Then (X, E)

has coarse straight �nite decomposition complexity.

Proof. Given a sequence of entourages L1 ⊂ L2 ⊂ · · · , we have that there exists

families U1, · · · ,Un such that U = ∪ni=1Ui covers X and each Ui is uniformly bounded

and Li-disjoint.

We de�ne Yi = {X \ ∪ij=1Uj}
⋃

(∪ij=1Uj). For the �rst stage, we can decompose

X the following way: X = X0 ∪X1 with X0 = X \ ∪Ui and X1 =
⊔
L1
U1.

For the following stages, we can decompose Y ∈ Yi−1 the following way: if Y 6= X\

∪i=1
j=1Uj, then Y ∈ Yi and so Y = Y0∪Y1 with Y0 = ∅ and Y1 = Y . If Y = X \∪i−1

j=1Uj,

then Y = Y0 ∪ Y1 with Y0 = X \ ∪ij=1Uj and Y1 =
⊔
Li
Ui.

With such construction, we have that Yi−1
Li−→ Yi and, since U covers X, we have

that Yn = U and is therefore bounded.

Corollary V.16. Let (X, E) be a coarse space such that asdim(X, E) ≤ n. Then

(X, E) has coarse straight �nite decomposition complexity.

Proof. Since coarse �nite asymptotic dimension implies coarse property C, by the

previous theorem, we have that coarse �nite asymptotic dimension implies coarse

straight �nite decomposition complexity.

Theorem V.17. Let (X, E) be a coarse space such that X has coarse �nite decom-

position complexity. Then (X, E) has coarse straight �nite decomposition complexity.
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Proof. Given a sequence of entourages L1 ⊂ L2 ⊂ · · · , we can play the decomposi-

tion game where Player 2 always gives the next entourage in the sequence on their

turn. Since X has coarse �nite decomposition complexity, Player 1 has a winning

strategy, which will provide a �nite sequence Y1,Y2, . . . ,Yn so that Yi−1
Li−→ Yi with

Yn bounded.

Coarse straight �nite decomposition itself implies coarse weak �nite decomposition

complexity. To show this, we will use the following lemma.

Lemma V.18. Let X ,Y , and Z be families of coarse spaces. Then if X admits an

(L1, d1)-decomposition over Y and Y admits an (L2, d2)-decomposition of Z, then X

admits a weak (L1 ∩ L2, d1 ∗ d2)-decomposition over Z.

Proof. Given any space X ∈ X , we have that X = X0∪ . . .∪Xd1 where Xi =
⊔
L1
Yij,

each Yij ∈ Y and if j 6= j′ then we have that (Yij × Yij′) ∩ L1 = ∅. Since Yij ∈ Y , we

have that Yij = Y ij
0 ∪ . . . ∪ Y

ij
d2

where Y ij
k =

⊔
L2
Zij
kl, each Z

ij
kl ∈ Z and if l 6= l′ then

we have that (Zij
kl × Z

ij
kl′) ∩ L2 = ∅.

Therefore, we can write X = ∪d1i=0 ∪
d2
k=1

⋃
j,l Z

ij
kl. We will proceed by cases to show

that the collection {Zij
kl}j,l is L1 ∩ L2-disjoint. We take two distinct elements of that

collection Zij
kl and Z

ij′

kl′ .

Case 1: j 6= j′ In this case, we have that Zij
kl ⊂ Y ij and Zij′

kl′ ⊂ Y ij′ and so

therefore (Zij
kl × Zij′

kl′ ) ∩ L1 = ∅. Since (L1 ∩ L2) ⊂ L1, we therefore have that

(Zij
kl × Z

ij
kl′) ∩ (L1 ∩ L2) = ∅.

Case 2: j = j′ and therefore, since the two elements are distinct, we much have

that l 6= l′ In this case, we have that (Zij
kl × Z

ij
kl′) ∩ L2 = ∅. Since (L1 ∩ L2) ⊂ L2, we

therefore have that (Zij
kl × Z

ij
kl′) ∩ (L1 ∩ L2) = ∅.
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As a corollary, we can simplify the de�nition of coarse weak �nite decomposition

complexity.

Corollary V.19. Let X be a family of coarse spaces. If X has coarse weak �nite

decomposition complexity, the weak decomposition game can be won by Player 2 on

the �rst turn.

Proof. Suppose that the game for X could be won in a �nite number of rounds, say

k. Then Player 2 will play the game as follows: when Player 1 asserts a controlled

set Li, Player 2 will �nd a decomposition using the controlled set L1 ∪ . . . ∪ Li. This

will satisfy the game, as Li ⊂ L1 ∪ . . . ∪ Li. Then in the last round, Player 2 will

have found an (L1 ∪ . . . ∪ Lk, dk)-decomposition of Yk−1 over Yk, with Yk bounded.

By the above, Player 2 then can �nd an (L1, d1 ∗ . . . ∗ dk)-decomposition of X over

Yk as L1 =
⋂
i ∪ij=1Lj. Therefore, Player 2 could have won on turn one.

Theorem V.20. Let (X, E) be a coarse space such that X has coarse straight �nite

decomposition complexity. Then (X, E) has coarse weak �nite decomposition complex-

ity.

Proof. Given L ∈ E , take L1 ⊂ L2 ⊂ · · · be a sequence of controlled sets with Li = L

for all i. Then there exists some �nite sequence Y1,Y2, . . . ,Yn so that Yi−1
L−→ Yi with

Yn bounded. Then by the above, X admits an (L, 2n)-decomposition over Yn and Yn

is bounded. Therefore, X has coarse weak decomposition complexity.

As in the metric case, we can show that these properties are preserved by coarse

embeddings and subspaces.
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Theorem V.21. Let f : X → Y be a coarsely uniform embedding. Then,

(1) X has coarse �nite decomposition complexity if and only if Y has coarse �nite

decomposition complexity ;

(2) X has coarse straight �nite decomposition complexity if and only if Y has coarse

straight �nite decomposition complexity;

(3) X has coarse weak �nite decomposition complexity if and only if Y has coarse

weak �nite decomposition complexity .

Proof. Let f : X → Y be a coarsely uniform embedding and suppose that Y has

coarse weak �nite decomposition complexity. To construct a winning strategy for the

decomposition game for X, we will play a parallel game for Y as follows: For the �rst

stage, Player 2 is given a controlled set L1 and we take as our initial controlled set in

the parallel game to be K1 = (f×f)(L1). Then, as Y has coarse �nite decomposition

complexity, we can �nd a family Y1 and a K1-decomposition of Y over Y1. We claim

that X has an L1-decomposition over the family X1 = {(f × f)−1(B)|B ∈ Y1}.

Now, since

Y = Y 1
0 ∪ · · · ∪ Y 1

d1
Y 1
i =

⊔
K1

Yij

where each Yij ∈ Y1 and the union is K1-disjoint in the sense that Yij 6= Yij′ implies

Yij × Yij′ ∩K1 = ∅, we have that

X = X1
0 ∪ · · · ∪X1

d1
X1
i =

⊔
L1

Xij
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where X1
i = (f × f)−1(Y 1

i ) and Xij = (f × f)−1(Yij). So therefore each Xij ∈ X1

and the union is L1-disjoint, as Xij 6= Xij′ implies Yij 6= Yij′ and Xij × Xij′ ∩ L1 ⊂

(f × f)−1(Yij × Yij′ ∩K1) = (f × f)−1(∅) = ∅. This proves our claim.

On the i-th stage, Player 2 has a family Xi−1 over X and is given a controlled set

Li. We note that Yi−1 = {(f × f)(A)|A ∈ Xi−1} by the previous construction and

de�ne Ki = (f×f)(Li). As before, we can �nd a family Yi and a Ki-decomposition of

Yi−1 over Yi, and again, it is true that Xi−1 has an Li-decomposition over the family

Xi = {(f × f)−1(B)|B ∈ Yi}.

Since Y has coarse weak �nite decomposition complexity, after a �nite number of

stages, Yi will be bounded, and therefore so will Xi since f is a coarse embedding.

Therefore, Player 2 has a winning strategy for the decomposition game over X and

so X has coarse weak �nite decomposition complexity.

We note that since di for X in any given stage is the same as di for Y , this also

proves that coarse �nite decomposition complexity is a coarse invariant, since in that

case di = 2 for all i.

If instead we have that Y has coarse straight �nite decomposition complexity,

then we begin with L1 ⊂ L2 ⊂ · · · a sequence of controlled sets of X. Then we have

that Ki = (f × f)(Li) is a sequence of controlled sets such that K1 ⊂ K2 ⊂ · · · as

f is coarsely uniform. Therefore, since Y has coarse straight �nite decomposition

complexity, there exists Y1,Y2 · · · ,Yn such that Yi−1
Ki−→ Yi with Yn bounded.

Let Xi = {(f × f)−1(B)|B ∈ Yi}. As above, we then have that Xi−1
Li−→ Xi

and also that Xn is bounded. Therefore, X has coarse straight �nite decomposition

complexity.
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Proposition V.22. If Y ⊂ X and Y has the coarse structure inherited from X, then

if

(1) X has coarse �nite decomposition complexity then Y has coarse �nite decompo-

sition complexity;

(2) X has coarse straight �nite decomposition complexity then Y has coarse straight

�nite decomposition complexity;

(3) X has coarse weak �nite decomposition complexity then Y has coarse weak �nite

decomposition complexity.

Proof. Given an entourage L of Y , it is also an entourage of X and therefore we

have a coarse family X and an L-decomposition of X over X with X = X0 ∪ X1,

Xi =
⊔
LXij, Xij ∈ X . Then we de�ne Y = {U∩Y |U ∈ X} and have that Y = Y0∪Y1

with Yi = Xi ∩ Y =
⊔
LXij ∩ Y =

⊔
L Yij, Yij ∈ Y .

Therefore, any winning strategy for Player 2 in any version of the coarse �nite

decomposition game for X gives us a winning strategy for Player 2 in that version of

the coarse �nite decomposition game for Y and so the theorem holds.

Provided we have a nice �bering, these properties are preserved by any coarsely

uniform map.

Theorem V.23. Let (X, E) and (Y,F) be coarse spaces where Y has coarse �nite

decomposition complexity. Let f : X → Y where f is coarsely uniform such that,

for every bounded family V in Y , f−1(V) has coarse �nite decomposition complexity.

Then X has coarse �nite decomposition complexity. If Y and f−1(V) have coarse

weak �nite decomposition complexity, then X has coarse weak �nite decomposition
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complexity. If Y and f−1(V) have coarse straight �nite decomposition complexity,

then X has coarse straight �nite decomposition complexity.

Proof. If we suppose that Y has coarse (weak) �nite decomposition complexity, then

we can construct a winning strategy for the decomposition game for X by playing a

parallel game for as above for the �rst n stages, until Player 2 wins in Y .

At that point, we have Yn is bounded, and thus f−1(Yn) = Xn has coarse (weak)

�nite decomposition complexity and we can therefore �nd a winning strategy to �nish

the decomposition game for X.

For Y with coarse straight �nite decomposition complexity, we let L1 ⊂ L2 ⊂ · · ·

be a sequence of entourages in X. Then Ki = (f × f)(Li) gives us an increasing

sequence of entourages in Y , so there exists Y1, · · · ,Yn such that Yi−1
Ki−→ Yi with

Yn bounded.

Then, as before, we pull these back to X to obtain X1, . . . ,Xn, Xi−1
Li−→ Xi.

By assumption, Xn has coarse straight �nite decomposition complexity, so we can

take the sequence Ln+1 ⊂ Ln+2 ⊂ · · · and have that there is an m and families

Xn+1,Xn+2, · · · ,Xn+m so that Xn+j−1
Ln+j−−−→ Xn+j with Xn+m bounded.

Together we have Xi−1
Li−→ Xi for i = 1, 2, · · · , n + m and therefore X has coarse

straight �nite decomposition complexity.

To show that coarse straight �nite decomposition is preserved by products, we

require a basic result on products with bounded sets.

Proposition V.24. Let E be a bounded subset of some coarse space X, and give

E×Y the product coarse structure and E the subspace coarse structure. Then E×Y

is coarsely equivalent to Y .
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Proof. Let f : E × Y → Y : (e, y) 7→ y. We will show this is a coarsely uniform

embedding.

Let K be an entourage in Y . Then (f × f)−1(K) = (E ×K)× (E ×K) which is

an entourage in E × Y since E is an entourage in E, as it is bounded, and K is an

entourage in Y .

Let L be an entourage in E × Y . Then L = E × Y ∩M × K where M is an

entourage in X and K is an entourage in Y . So, (f × f)(L) = K and is therefore an

entourage in Y .

Therefore, f is a coarsely uniform embedding and therefore E × Y is coarsely

equivalent to Y

Now we are in a position to prove that these properties are preserved by direct

products.

Theorem V.25. Let (X, E) and (Y,F) be coarse spaces where X and Y have coarse

straight �nite decomposition complexity. Then X × Y has coarse straight �nite de-

composition complexity.

Proof. We note that the projection map f : X × Y → X is coarsely uniform and if V

is a bounded family in X, then the family f−1(V) = {V × Y |V ∈ V}.

By Proposition V.24, f−1(V ) = V ×Y is equivalent to Y since V ∈ V is bounded,

as V is a bounded family. Therefore, f−1(V) has coarse straight �nite decomposition

complexity, since each element is equivalent to Y and thus has coarse straight �nite

decomposition complexity. So, by Theorem V.23, X × Y has coarse straight �nite

decomposition complexity.
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As in the previous chapters, the �nite decomposition complexity is preserved by

unions. Although the �nite union theorem is a corollary of our in�nite union theorem,

we state it separately and give an alternate proof that cannot be extended to the

in�nite case.

Theorem V.26. Let X = X1 ∪ X2 be a coarse space. If X1 and X2 have coarse

�nite decomposition complexity then X does. If X1 and X2 have coarse straight �-

nite decomposition complexity then X does. If X1 and X2 have coarse weak �nite

decomposition complexity then X does.

Proof. Let X be a coarse space, X = X1 ∪X2. Suppose that both X1 and X2 have

coarse (straight) �nite decomposition complexity. Then, given an entourage L1 we

write

X = X1 ∪X2

as an L1-decomposition of X over the family Y1 = {X1, X2}. Then, apply the coarse

(straight) �nite decomposition complexity property to the family Y1 to �nd that X

has this property.

Now, we consider the case where X can be expressed as a union of a collection of

spaces with the property that for each r > 0 there is a �core� space such that removing

this core from the families leaves the families L-disjoint. We will be following the

same scheme we used to prove the corresponding results for asymptotic dimension

and property C, adapting it for use in the coarse case. In this situation, however, we

do not require a separate uniform version of the property.
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Theorem V.27. Let X = ∪X . If for each entourage L, there exists YL ⊆ X such

that {Xα \ YL} = XL forms an L-disjoint collection, then

(1) if X has coarse straight �nite decomposition complexity and YL has coarse �nite

decomposition complexity ∀L, then X has coarse �nite decomposition complex-

ity;

(2) if X has coarse straight �nite decomposition complexity and YL has coarse

straight �nite decomposition complexity ∀L, then X has coarse straight �nite

decomposition complexity; and

(3) if X has coarse weak �nite decomposition complexity and YL has coarse weak

�nite decomposition complexity ∀L, then X has coarse weak �nite decomposition

complexity.

Proof. For the �rst part, we will follow the techniques in [DZ13], Theorem 3.6. Given

L1 ⊆ L2 ⊆ · · · a sequence of entourages, then we consider the family Y1 = {YL1}∪XL1

and write X = X0∪X1, where X0 = YL1 and X1 = ∪XL1 . Since X0 is a single element

of the family, it is L1-disjoint and we have that XL1 is L1-disjoint by assumption, so

therefore we have an L1-decomposition of X over Y1.

Now, X has coarse straight �nite decomposition complexity and thus XL1 has

coarse straight �nite decomposition complexity. Therefore, since YL1 also has coarse

straight �nite decomposition complexity, we have a natural number n and families

Yi, i = 2, 3, · · · , n such that Yi−1
Li−→ Yi for i = 2, · · · , n and Yn is a bounded family.

Therefore, X has coarse straight �nite decomposition complexity.

For the second part, we are given an entourage L. We consider the family Y =

{YL} ∪ XL and write X = X0 ∪ X1, where X0 = YL and X1 = ∪XL. Since X0 is
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a single element of the family, it is L-disjoint and we have that XL is L-disjoint by

assumption, so therefore we have an L-decomposition of X over Y .

Now, X has coarse �nite decomposition complexity and thus XL has coarse �nite

decomposition complexity. Therefore, since YL also has coarse �nite decomposition

complexity, Player 2 has a winning strategy for each element of Y and therefore, X

has coarse �nite decomposition complexity.

If one tries to play the decomposition game with property C, then one obtains a

coarse version of Dranishnikov and Zarichnyi's game-theoretic property C, [DZ13].

De�nition V.28. The coarse space (X, E) has game-theoretic coarse C if there is a

winning strategy for Player 2 in the following game. Player 1 selects an entourage L1

and Player 2 �nds a uniformly bounded family U1 of sets that are L1-disjoint. Then,

Player 1 gives an entourage L2 and Player 2 responds with an L2-disjoint, uniformly

bounded family U2. The game ends and Player 2 wins if there is some k for which

U = ∪ki=1Uk covers X.

As in the case with Dranishnikov and Zarichnyi's metric version, the attempt to

de�ne game-theoretic property C gives rise to precisely the same class of spaces with

coarse asymptotic dimension 0.

Proposition V.29. A coarse space (X, E) has game theoretic coarse C if and only if

asdim(X, E) = 0.

Proof. If asdim(X, E) = 0, then it is clear that X the game ends in one step regardless

of what L is asserted by Player 1.

On the other hand, suppose that X has game theoretic coarse C and there is

some entourage L for which X has no uniformly bounded L-disjoint cover. Then,
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Player 1 selects any entourage L1 that properly contains L. Player 2 responds with

a uniformly bounded family U1 that is L1-disjoint. Player 1 then responds with

the entourage L2 = L1∆U1L1∆U1L1. Player 2 responds with U2 and Player 1 gives

L3 = L2∆U2L2∆U2L2. This continues until at some point Player 2 returns Uk so that

the family U = U1 ∪ · · · ∪ Uk covers X.

Set Vk−1 = Uk ∪Lk−1
Uk−1. Then, this family is uniformly bounded and Lk−1

disjoint. Also, it covers Uk ∪ Uk−1. Next, put Vk−2 = Vk−1 ∪Lk−2
Uk−2 and so on.

Finally, one obtains a single family V1 that is uniformly bounded, L1-disjoint, and

covers X. This contradicts the choice of L.

5.3 Open Questions

As we mentioned in chapter 3, an analog to property A for coarse spaces is di�cult

to de�ne and manipulate. However, we can attempt to look for a sequence of maps

reminiscent of those for property A.

Question V.30. Does coarse straight �nite decomposition complexity imply the exis-

tence of a sequence an of maps an : X → `1(X) such that

(1) ‖anx‖1 = 1 for each x ∈ X and n ∈ N;

(2) for each n, {(x, y) | y ∈ supp(anx)} is controlled;

(3) for each K > 0,

lim
n→∞

sup
(x,y)∈EK

{‖anx − any‖} = 0?

As we mentioned above, there is a second line of questioning regarding the rela-

tionship between �nite coarse asymptotic dimension and coarse �nite decomposition
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complexity.

Question V.31. If a coarse space X has �nite coarse asymptotic dimension and an

anti-Cech approximation, does it have coarse �nite decomposition complexity?

Alternately, we could use the tools of the proof in the metric case.

Question V.32. If X is a coarse space with �nite asymptotic dimension, does it embed

into a product of trees?
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CHAPTER VI

COMPUTATIONS

6.1 Introduction

In [Car09], Gunnar Carlsson presents the idea that data has a shape and that

the shape of the data matters. This shape is given by a distance function. In some

situations, our data might be known to be a sample from a manifold, and we might

use the inherited distance function to analyze the data. In that case, one hopes to

recover the topological properties of that underlying space from the sample. In other

situations, we might de�ne a metric on the data that re�ects how similar any two

data points are. In this case, we might discover the topological properties on the

newly created metric space to make statements about the overall similarity of the set

of data.

In both these situations, we would like to place a topological structure on top of

our data set that re�ects the sample space. There are a few ideas that one holds in

mind when attempting to construct these spaces. One is that our structures should

not depend on the given coordinates of the data, but only on the distance between

points. We also want to make sure that we can continue to represent the space on a

computer. There are a number of constructions that satisfy these requirements. For

the purposes of this dissertation, we focus on two, the Rips complex and the �ech

complex. The de�nitions below follow the notation found in [EH10].

A k-simplex σ is the convex hull of k+ 1 a�nely independent points in Euclidean

space, denoted S = {v0, . . . vk}. We call those points vertices. Any subset T ⊂ S
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de�nes a face of σ. A simplicial complex K is a �nite set of simplices such that every

face of a simplex in K is in K and also the intersection of any two simplices in K is in

K. A �ag complex is a simplical complex K such that if σ is a subset of the vertices

of K, and each pair of vertices in σ is itself a simplex of K, then σ is a simplex of K.

De�nition VI.1 (Vietoris, Rips). Given a �nite metric space S and a positive real

number r, we de�ne the Rips complex of S at scale r by:

Ripsr(S) = {σ ⊂ S | diamσ ≤ r}.

De�nition VI.2 (�ech). If we have a �nite set S of points of Rn and a positive real

number r, we can de�ne the �ech complex of S at scale r by:

�echr(S) = {σ ⊂ S |
⋂
x∈σ

Br(x) 6= ∅}.

We note that if r0 ≤ r, we have that �echr0(S) ⊆ �echr(S).

These two constructions are closely related. The �ech complex does rely on em-

bedding the �nite set on points into some Euclidean space, while the Rips complex

merely requires that there be a metric on the space of points. The Rips complex is

also a �ag complex, while the �ech complex need not be. However, by [EH10], we do

have that Ripsr(S) ⊆ �ech√2r(S) and also that �echr(S) ⊆ Ripsr(S).

Another way of stating the de�nition of the �ech complex is that it is the nerve

of the collection of sets U = {Br(x) | x ∈ S}.

Theorem VI.3 (Nerve Theorem, [Bor48]). Given X a metric space and U a cover

of X by closed, convex sets, then the nerve of U and X are homotopy equivalent.
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Figure 5. A comparison of the �ech and Rips complex. On the top is the �ech
complex on 4 points with r=.56 and below is the Rips complex on the same 4 points

Therefore, provided we can �nd a suitable r, we can approximate X by a sampling

S and have some relationship between the homotopy type of X and of �echr(S).

6.2 Algorithm

The central idea of the algorithm for constructing the �ech complex relies on a

slightly di�erent formulation of what a simplex in �echr(S) looks like. We note that

σ ∈ �echr(S) if and only if
⋂
x∈σ Br(x) 6= ∅ which is the case if and only if the centers

of each of these balls live inside a single ball of radius r. We de�ne the miniball of a set

S to be the unique smallest closed ball containing S. We then note that σ ∈ �echr(S)

if and only if the miniball of σ has radius ≤ r.

So therefore our basic algorithm is as follows:
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Algorithm 1 Calculate �ech(r) of S

for all σ ⊆ S do

if the radius of MiniBall(σ, ∅) ≤ r then

Put σ ∈ �ech(r)

end if

end for

The bulk of the calculations are hidden in the MiniBall(σ, ∅) subroutine. An

algorithm based on [EH10] allows us to �nd both the center and the radius of the

miniball, though we mostly concern ourselves with the radius. The two inputs are to

allow us to proceed recursively. We split our point set as T ∪N where T is the set of

points that are allowed to be interior points and N is the set of points that must be

on the boundary.

74



Algorithm 2 Welzl's miniball algorithm

if T = ∅ then

if N = ∅ then

return ball with radius 0, centered at the origin

end if

if N 6= ∅ then

return B = Ball(N)

end if

end if

if T 6= ∅ then

let P ∈ T

B = Miniball(T \ {P}, N)

if P /∈ B then

return B = Miniball(T \ {P}, N ∪ {P})

end if

if P ∈ B then

return B

end if

end if

We can be sure the recursion terminates, since the terminating condition is that

T = ∅ and each non-terminating step results in removing an element from T . How-

ever, again, the bulk of the calculations are hidden away, this time in the Ball(N)

subroutine. The Ball(N) subroutine �nds the center and radius of the ball that
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contains the points in the set N on its boundary. The calculations there are not

hidden, and the matrices and computation involved are derived from [CHM06].

This algorithm makes much use of the SimplicialComplex package included in

Sage. That package is well suited for this project, as it asks for a set of vertices, and

allows one to de�ne a complex by setting subsets of the vertices as faces. So, in order

to �nd the �ech complex of a set of data, once we �nd the Miniball of a subset of the

given data and compare its radius to r, then to include that subset as a simplex, we

simply de�ne it to be a face of our �nal SimplicialComplex.

The computations within the Miniball algorithm were easily handled with Sage's

implementation of the matrix arithmetic, along with some use of the set and list data

types.

The programming of the Rips complex algorithm bene�ted greatly from the un-

derlying commands in Sage. The Rips complex can be constructed entirely based on

pairwise distances, as whether a subset is a face of the complex depends on the diam-

eter of the subset, which is computed by taking a maximum of the pairwise distances

between elements. Thus, once we have calculated the 1-skeleton of the complex as a

graph object in Sage by adding an edge if two data points are within r of one another,

the pre-existing method �clique_ complex()� generates the Rips complex for the data

set.

6.3 Persistent Homology

Once we have built these complexes on top of our data, we can recover a large

amount of information from them. One piece of information that we often focus on

are the Betti numbers, where the n-th Betti number is the rank of the n-th homology
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group. For low n - that is, 0, 1, and 2 - these give us the number of connected

components, the number of holes and the number of voids, three very important

features of the space.

However, converting these data sets into a complex requires a choice of our pa-

rameter r. If we set r to be too small, we are likely to generate a 0-dimensional

complex. If we set r large enough, we will generate a complex consisting of a single,

high-dimensional simplex. Even between these two extremes we are unlikely to �nd

a single optimal r that captures every feature of the underlying set exactly, with no

artifacts.

A solution to this problem is to construct a pro�le of the space, which tracks the

features of the complexes over a sequence of radii. One such is called the barcode

of the space, which [Ghr08] calls an analog to Betti numbers. This keeps track of

the components, holes and voids that give rise to β0, β1, β2 as r increases along the

horizontal axis. Once we build the barcode, we then have that the longer bars should

correspond to real features, and the shorter bars are more likely to represent artifacts.

Figure 6. The �ech complex. Given at three di�erent stages based on an example
from [Ghr08].
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r = .15 r = .45 r = .65 r = .85

H0

H1

H2

Figure 7. The set of barcodes for Figure 6

6.4 Gromov Invariant

We recall from above that a space X has asdimX ≤ n if it can be covered by n+1

sets with dimension 0 on R-scale. If we denote the uniform bound on these sets by

D, then we can �nd a new quasi-isometric invariant de�ned in [Gro93] by considering

the behaviour of the function Dp(R) as R → ∞, where Dp(R) is the minimal D so

that X can be covered by p+ 1 D-bounded R-disconnected sets.

Example ([Gro93]). If X = Rn then Dp(R) = constn,pR.

Example ([Gro93]). If X is an in�nite tree, then Dp(R) = p−1R.

Let X be some simply connected space, and take a sample S of p points of X. We

can use my code to �nd a series of �ech or Rips complexes for an increasing sequence

of R-values. Let r0 be the smallest r such that �echr(S) (or, equivalently, Ripsr(S))

is simply connected. Testing could be done to see if there is any relationship between

Dp(R) and r0.
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For su�ciently complicated spaces X, we might need to consider S a sample of a

closed and bounded subset Y ⊂ X. In this case, d = diam(Y ) will most likely need

to �gure into the relationship between Dp(R) and r0.

6.5 Open Questions and Extensions

Question VI.4. Can we use a quick computation of the �ech complex to approximate

Gromov's invariant for a sampled space?

Extension VI.5. The algorithm as given uses the standard Euclidean metric, but some

work could be done to extend it to any metric. This could be useful either in the case

that our data can be embedded into a known space with a di�erent metric, or in the

case that our data comes equipped with its own concept of "close-ness".

Extension VI.6. This version of the algorithm bogs down when working in Rd with

d > 20. Optimization of the Ball subroutine in particular could extend the useful

range of dimensions.
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APPENDIX A

CODE

Miniball computation

"""

FUNCTIONS:

Miniball(T,N)

Ball(N)

_containedIn(B,P)

_rotationContained(N, pair)

"""

def Miniball(T, N, n, **kwds):

r"""

This function finds the smallest ball with the point set T

in its interior and N on its boundary.

INPUT:

- ``T`` - a set of points in R^n

- ``N`` - a set of points in R^n

- ``n`` - the dimension of the Euclidean space being worked

in

- ``dimension check `` - boolean (optional , default True)
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OUTPUT: pair [r, c] with r being the radius of the miniball

with the point set T in its interior and N on its

boundary and c being its center

``T`` and ``N`` should be lists or tuples or sets (anything

which may be converted to a set) whose elements are

tuples (or lists , etc) of real numbers

``n`` should be an integer

If ``dimension_check `` is True , check that each tuple (or

list , etc) in N and T have the same length and that

length is ``n``.

EXAMPLES:

::

sage: Miniball ([(2,1,3,-1) ,(-2,3,-1,0) ,(1,3,-1,-2)

,(0,2,3,-3) ,(2,-1,3,5) ,(0,0,0,0) ,(3,1,2,0)],[],4)

[4.61737819233406 , (0.957177989548109 ,

0.966830617891177 , 1.65244389794036 ,

1.18576698432216)]

sage: Miniball ([(2,1,3,-1) ,(-2,3,-1,0) ,(1,3,-1,-2)

,(0,2,3,-3) ,(2,-1,3,5)],[(0,0,0,0)],4)

[6.10292806326925 , (1.70816326530612 , 4.47142857142857 ,

2.99795918367347 , 2.31224489795918)]
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sage: Miniball ([(0,0,0,0,1), (0,0,0,0,-1) ,(0,0,0,0,0)

],[],5)

[1.00000000000000 , (0.000000000000000 ,

0.000000000000000 , 0.000000000000000 ,

0.000000000000000 , 0.000000000000000)]

NOTES:

Based on the algorithm given in "Computational Topology: An

Introduction" by Edelsbrunner and Harer , otherwise

known as Welzl's miniball algorithm. Could use

improvement in the case of high dimension points ,

possibly using the algorithm in "Fast Smallest -Enclosing

-Ball Computation in High Dimensions" by Fischer ,

Gartner and Kutz.

AUTHORS:

- Dani Moran (2011 -05 -24)

"""

# process kwds

if 'dimension_check ' in kwds:

dimension_check = kwds['dimension_check ']

else:
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dimension_check = True

# done with kwds

if dimension_check:

for i in xrange(len(T)):

if len(T[i]) != n:

raise ValueError , "The point T[%s]does not have

the appropriate dimension." %i

for j in xrange(len(N)):

if len(N[j]) != n:

raise ValueError , "The point N[%s]does not have

the appropriate dimension." %j

sT = Set(T)

lT = list(sT)

sN = Set(N)

lN = list(sN)

if sT.cardinality () == 0:

if sN.cardinality () == 0:

c = tuple ([0 for i in xrange(n)])

return [0, c]

else:

B = Ball(N, dimension_check = False)

else:

P = lT.pop()

86



nT = sT.difference(Set([P]))

B = Miniball(nT, N, n, dimension_check = False)

if _containedIn(B, P) == False:

nN = sN.union(Set([P]))

B = Miniball(nT, nN, n, dimension_check=False)

return B

def _containedIn(B,P):

r"""

This function determines whether or not a given point is

contained in a given closed ball

INPUT:

- ``B`` - a ball defined by its radius r and its center c

- ``P`` - a point in R^n

OUTPUT: boolean value

EXAMPLES:

::

NOTES:
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AUTHORS:

- Dani Moran (2011 -05 -24)

"""

r = B[0]

c = B[1]

n = len(B[1])

d = 0

for i in xrange(n):

d += (abs(c[i] - P[i]))^2

d = sqrt(d)

if d <= r: return True

else: return False

def Ball(N, **kwds):

r"""

This function finds the smallest ball with the point set N

on its boundary.

INPUT:

- ``N`` - a set of points in R^n

- ``dimension check `` - boolean (optional , default True)
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OUTPUT: pair [r, c] with r being the radius of the miniball

with the point set N on its boundary and c being its

center

``N`` should be a list or tuple or set (anything which may

be converted to a set) whose elements are tuples of real

numbers

If ``dimension_check `` is True , check that each tuple (or

list , etc) in N and T have the same length and that

length is ``n``.

EXAMPLES:

::

sage: Ball([(2,1,3,-1) ,(-2,3,-1,0) ,(1,3,-1,-2)

,(0,2,3,-3) ,(2,-1,3,5)])

[108.806020054039 , ( -19.5000000000000 ,

-94.5000000000000 , -35.0000000000000 ,

-29.5000000000000)]

sage: Ball ([(0,0,0,0,1), (0,0,0,0,-1)])

[1.00000000000000 , (0.000000000000000 ,

0.000000000000000 , 0.000000000000000 ,

0.000000000000000 , 0.000000000000000)]

sage: Ball ([(0,0,0,0,1), (0,0,0,0,-1) ,(0,0,0,0,0)])
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There is no ball with N on its boundary.

NOTES:

Matrices based on the computations in "On the Smallest

Enclosing Balls" by Cheng , Hu and Martin

AUTHORS:

- Dani Moran (2011 -05 -24)

"""

# process kwds

if 'dimension_check ' in kwds:

dimension_check = kwds['dimension_check ']

else:

dimension_check = True

# done with kwds

if dimension_check:

dim = len(N[0])

for j in xrange(len(N)):

if len(N[j]) != dim:

raise ValueError , "The point N[%s]does not have

the appropriate dimension." %j
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sN = Set(N)

lN = list(sN)

n = len(lN[0])

k = len(lN) - 1

if k == 0:

return [0, lN[0]]

Q = matrix(RR, k, n)

M = matrix(RR, k, k)

for i in xrange(k):

for j in xrange(n):

Q[i,j] = lN[i+1][j] - lN[i][j]

if j < k: M[i,j] = lN[i+1][j] - lN[i][j]

if k == n: A = Q

else:

mu = det(M)

MU = matrix(RR, k, n-k)

for i in xrange(k):

MU_I = copy(M)

for j in xrange(n-k):

for l in xrange(k):

MU_I[l,i] = lN[l+1][k+j]-lN[l][k+j]

MU[i,j] = det(MU_I)
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H = matrix(RR, n-k, n)

for i in xrange(n-k):

for j in xrange(n):

if j < k: H[i,j] = MU[j][i]

elif j == k+i: H[i,j] = -mu

A = Q.stack(H)

if A.is_invertible () == False:

FirstKs = Subsets(n,k)

for sub in FirstKs:

a, r, c = _ColSwap(lN, sub)

if a == True:

return [r, c]

print "There is no ball with N on its boundary."

return None

B = matrix(RR, k,1)

for i in xrange(k):

for j in xrange(n):

B[i,0] += lN[i+1][j]^2 - lN[i][j]^2

B[i,0] = (1/2)*B[i,0]

if k != n:

h = matrix(RR, n-k,1)

for i in xrange(n-k):
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for j in xrange(n):

h[i,0] += H[i][j]*(lN[1][j] + lN[0][j])

h[i,0] = (1/2)*h[i,0]

B = B.stack(h)

d = A.inverse ()*B

d = list(d)

c=[]

for i in xrange(len(d)):

c.append(d[i][0])

c=tuple(c)

r = 0

for i in xrange(n):

r += (abs(c[i] - lN[0][i]))^2

r = sqrt(r)

return [r,c]

def _ColSwap(N, firstK):

n = len(N[0])

k = len(N) - 1

last = Subsets(n,n)[0]. difference(firstK)
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perm = list(firstK) + list(last)

swappedN = []

tempElt = [0 for i in xrange(n)]

for i in xrange(k+1):

for j in xrange(n):

tempElt[j] = N[i][perm[j] - 1]

swappedN.append(tuple(tempElt))

tempElt = [0 for l in xrange(n)]

Q = matrix(RR, k,n)

M = matrix(RR, k, k)

for i in xrange(k):

for j in xrange(n):

Q[i,j] = swappedN[i+1][j] - swappedN[i][j]

if j < k: M[i,j] = swappedN[i+1][j] - swappedN[i][j

]

mu = det(M)

MU = matrix(RR, k, n-k)

for i in xrange(k):

MU_I = copy(M)

for j in xrange(n-k):

for l in xrange(k):

MU_I[l,i] = swappedN[l+1][k+j]-swappedN[l][k+j]

94



MU[i,j] = det(MU_I)

H = matrix(RR, n-k, n)

for i in xrange(n-k):

for j in xrange(n):

if j < k: H[i,j] = MU[j][i]

elif j == k+i: H[i,j] = -mu

A = Q.stack(H)

if A.is_invertible () == False:

return False , 0, 0

B = matrix(RR, k,1)

for i in xrange(k):

for j in xrange(n):

B[i,0] += swappedN[i+1][j]^2 - swappedN[i][j]^2

B[i,0] = (1/2)*B[i,0]

h = matrix(RR, n-k,1)

for i in xrange(n-k):

for j in xrange(n):

h[i,0] += H[i][j]*( swappedN [1][j] + swappedN [0][j])

h[i,0] = (1/2)*h[i,0]
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B = B.stack(h)

d = A.inverse ()*B

d = list(d)

c=[0 for i in xrange(n)]

for i in xrange(len(d)):

c[perm[i]-1] = d[i][0]

c=tuple(c)

r = 0

for i in xrange(n):

r += (abs(c[i] - N[0][i]))^2

r = sqrt(r)

return True , r, c

�ech complex computation

"""

FUNCTIONS:

CechComplex(S,r)
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"""

def CechComplex(S, r, **kwds):

r"""

This function finds the Cech complex of a point set T with

radius r.

INPUT:

- ``S`` - a set of points in R^n

- ``r`` - the desired radius

- ``dimension check `` - boolean (optional , default True)

OUTPUT: simplicial complex of S with radius r isomorphic to

the Cech complex of S and r

``S`` should be a list or tuple or set (anything which may

be converted to a set) whose elements are tuples (or

lists , etc) of real numbers

``r`` should be a real number

If ``dimension_check `` is True , check that each tuple (or

list , etc) in N and T have the same length and that

length is ``n``.
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EXAMPLES:

::

sage: CechComplex ([(2,1,3,-1) ,(-2,3,-1,0) ,(1,3,-1,-2)

,(0,2,3,-3) ,(2,-1,3,5) ,(0,0,0,0) ,(3,1,2,0)],4)

Simplicial complex with 7 vertices and 2 facets

sage: S=CechComplex ([(2,1,3,-1) ,(-2,3,-1,0) ,(1,3,-1,-2)

,(0,2,3,-3) ,(2,-1,3,5) ,(0,0,0,0) ,(3,1,2,0)],4)

sage: S.facets ()

{((-2, 3, -1, 0), (0, 0, 0, 0), (0, 2, 3, -3), (1, 3,

-1, -2), (2, 1, 3, -1), (3, 1, 2, 0)), ((0, 0, 0, 0)

, (2, -1, 3, 5), (2, 1, 3, -1), (3, 1, 2, 0))}

sage: CechComplex ([(0,0,1) ,(0,0,-1)],.5)

Simplicial complex with vertex set ((0, 0, -1), (0, 0,

1)) and facets {((0, 0, 1) ,), ((0, 0, -1) ,)}

sage: CechComplex ([(0,0,1) ,(0,0,-1)],1.5)

Simplicial complex with vertex set ((0, 0, -1), (0, 0,

1)) and facets {((0, 0, -1), (0, 0, 1))}

NOTES:

AUTHORS:

- Dani Moran (2011 -05 -24)

"""
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if S == []:

return SimplicialComplex(S)

n = len(S[0])

# process kwds

if 'dimension_check ' in kwds:

dimension_check = kwds['dimension_check ']

else:

dimension_check = True

# done with kwds

if dimension_check:

for j in xrange(len(S)):

if len(S[j]) != n:

raise ValueError , "The point S[%s]does not have

the appropriate dimension." %j

for i in xrange(len(S)):

if i == 0:

faces = list(Subsets(S,1))

elif i == 1:

for sub in Subsets(S,2):

if _distance(sub[0],sub [1]) <= 2*r:

faces.append(sub)

else:
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for sub in Subsets(S,i+1):

B = Miniball(sub ,[],n)

if B[0] <= r:

faces.append(sub)

return SimplicialComplex(S, faces)

def _distance(P,Q):

r = 0

n = len(P)

if n != len(Q):

print "Unmatched dimensions for distance."

for i in xrange(n):

r += (abs(P[i] - Q[i]))^2

r = sqrt(r)

return r

Rips complex computation

"""

FUNCTIONS:

RipsComplex(S,r)

TODO: Non -euclidean metrics?

"""
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def RipsComplex(S, r, **kwds):

r"""

This function finds the Vietoris Rips complex of a point

set T with radius r.

INPUT:

- ``S`` - a set of points in R^n

- ``r`` - the desired radius

- ``dimension check `` - boolean (optional , default True)

OUTPUT: simplicial complex of S with radius r isomorphic to

the Rips complex of S and r

``S`` should be a list or tuple or set (anything which may

be converted to a set) whose elements are tuples (or

lists , etc) of real numbers

``r`` should be a real number

If ``dimension_check `` is True , check that each tuple (or

list , etc) in N and T have the same length and that

length is ``n``.

EXAMPLES:
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::

NOTES:

AUTHORS:

- Dani Moran (2014 -04 -14)

"""

if S == []:

return SimplicialComplex(S)

n = len(S[0])

# process kwds

if 'dimension_check ' in kwds:

dimension_check = kwds['dimension_check ']

else:

dimension_check = True

# done with kwds

if dimension_check:

for j in xrange(len(S)):

if len(S[j]) != n:

raise ValueError , "The point S[%s]does not have

the appropriate dimension." %j

g = Graph()
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k = len(S)

for i in xrange(k):

for j in range(i+1,k):

if _distance(S[i],S[j]) < r:

g.add_edge(S[i],S[j])

return g.clique_complex ()

def _distance(P,Q):

r = 0

n = len(P)

if n != len(Q):

print "Unmatched dimensions for distance."

for i in xrange(n):

r += (abs(P[i] - Q[i]))^2

r = sqrt(r)

return r
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