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Abstract: 

In this article we study support vector machine (SVM) classifiers in the face of uncertain 
knowledge sets and show how data uncertainty in knowledge sets can be treated in SVM 
classification by employing robust optimization. We present knowledge-based SVM classifiers 
with uncertain knowledge sets using convex quadratic optimization duality. We show that the 
knowledge-based SVM, where prior knowledge is in the form of uncertain linear constraints, 
results in an uncertain convex optimization problem with a set containment constraint. Using a 
new extension of Farkas' lemma, we reformulate the robust counterpart of the uncertain convex 
optimization problem in the case of interval uncertainty as a convex quadratic optimization 
problem. We then reformulate the resulting convex optimization problems as a simple quadratic 
optimization problem with non-negativity constraints using the Lagrange duality. We obtain the 
solution of the converted problem by a fixed point iterative algorithm and establish the 
convergence of the algorithm. We finally present some preliminary results of our computational 
experiments of the method 

Keywords: robust optimization | robust Farkas' lemma | support vector machines | uncertain 
knowledge sets | quadratic optimization | duality | 65K10 | 90C25 | 90M45 

Article: 

1. Introduction 

Support vector machines (SVMs) 3,20 are an optimization-based solution method for data 
classification problems. The SVM models are generally formulated as linear or convex quadratic 
programming problems. The knowledge-based SVM formulation generates separating 
hyperplanes by training on data and utilizing prior knowledge 16,19. Incorporating prior 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/345080695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://libres.uncg.edu/ir/uncg/clist.aspx?id=584
http://wwww.tandfonline.com/10.1080/02331934.2012.703667


knowledge into SVMs in the form of knowledge sets often improves correctness of the classifier 
or reduce the amount of training data needed. Knowledge-based SVM approaches have been 
successfully examined in many recent studies 12–14,16, where knowledge sets are assumed to be 
known with certainty. In reality, however, they are inherently performed under uncertainty 
because the data inputs of prior expert knowledge, such as doctor's experience, often suffer from 
experimental or prediction errors. Consequently, it is of great interest to examine the ways of 
developing SVM classifiers that are capable of handling data uncertainty in knowledge-based 
classification and mining. 

In this article, we study knowledge-based SVMs within the framework of robust optimization 
that incorporates prior knowledge in the form of uncertain linear constraints. Robust 
optimization 1 has emerged as a powerful approach for dealing with data uncertainty and it treats 
uncertainty as deterministic, but does not limit data values to point estimates. In this framework, 
one associates with the uncertain optimization problem its robust counterpart 2,9,11,15 where the 
uncertain constraints are enforced for every possible value of the data within their prescribed 
uncertainty sets. 

Key to our approach is the reformulation of the robust counterpart of an uncertain knowledge-
based SVM model as a convex quadratic optimization problem using a generalized Farkas' 
lemma. The reformulated problem is then simplified as a quadratic optimization problem with 
non-negativity constraints using the Lagrange duality. A solution of the simplified quadratic 
problem is then obtained by a fixed-point iterative algorithm. Our approach extends the method 
of simultaneous classification and feature selection of 5,21,22, which recently led to the 
development of a screening algorithm for HIV-associated neurocognitive disorders4. 

The outline of this article is a follows. Section 2 presents preliminaries on knowledge-based 
SVMs. Section 3 develops a generalization of the Farkas lemma to systems of uncertain linear 
inequalities. Section 4 formulates the robust knowledge-based SVM as a convex quadratic 
programming problem. Section 5 describes duality and converts the robust SVM as a simple 
quadratic optimization problem with non-negativity constraints. It also presents a fixed-point 
pseudo-algorithm and its convergence to the solution of the robust SVM. Section 6 gives 
preliminary results on the computational experiments of the method. Section 7 concludes with a 
discussion on further research. 

2. Preliminaries on knowledge-based SVMs 

The conventional SVM problem is formulated as discriminating between m data points in ℝ n . 
The points are stored in an m × nmatrix A, with the ith point a i stored on the ith row of A. Each 
point is defined to be belonging to either class 𝒜 or ℬ, which is recorded along the diagonal of 
the diagonal matrix D ∈ ℝ m×m . The diagonal elements D ii  = +1, if the point a i belongs to 𝒜, 
and D ii  = −1, if the point belongs to ℬ. 

We discriminate between the two data sets with the hyperplane: 



 

Naturally, if the convex hulls of the two sets of points are disjoint, then there exists a hyperplane 
such that all points are correctly classified. However, most practical problems will involve sets of 
points which cannot be perfectly separated using a hyperplane, so we form an optimization 
problem whose objective is to minimize some measure of the misclassification. Further, we 
introduce two parallel-bounding hyperplanes in the middle of which the separating hyperplane 
lies. We separate the two classes of points by these two hyperplanes, namely 

 

which bound the classes 𝒜 and ℬ, respectively. The capacity of the classifier is the distance 

between the two bounding hyperplanes given by . Maximizing the capacity has been shown 
to increase generalization of the classifier to new data points3. 

If the two groups are not linearly separable, we introduce a slack variable y i  ≥ 0 for each data 
point. Then, (2) is reformulated as 

 

We also want our separating hyperplane to generalize well to additional data points. In order to 
do this, we need to find the right balance between minimizing the error y of the classifier and 
maximizing the capacity of the classifier. We see that maximizing this distance is analogous to 
minimizing the size l(w) of w, the normal of the separating hyperplane. This is performed in the 
following formulation 20: 

 

where μ is a weighting parameter and w ∈ ℝ n , γ ∈ ℝ, y ∈ ℝ m and e ∈ ℝ m is a vector of ones. 

When , (SVM) reduces to a quadratic program. In the case 
where , the above formulation is equivalent to the following linear 
program: 

 



where w, t ∈ ℝ n , γ ∈ ℝ, y ∈ ℝ m . When , the model (SVM) becomes the 
doubly regularized SVM21: 

 

Assume that we now have prior information in the form of a knowledge set, determined by the 
inequalities , i = 1, 2, … , k, where h i 's and d i 's are uncertain and they belong to the 
interval uncertainty set, i.e. 
,  with  and  with , for i = 0, 1, … , k. We further assume that 
the knowledge set belongs to class 𝒜 (Figure 1). 

 

 

Figure 1. The two bounding planes which define the separating plane with a margin of  for 
groups 𝒜 and ℬ. Knowledge sets for classes 𝒜 and ℬ are regions inside the uncertain polyhedral 
sets 



In other words, the uncertain knowledge set  lies on class 𝒜's 
side of the bounding hyperplane w T z = γ + 1. This is performed in the following knowledge-
based SVM model under data uncertainty 6,16: 

 

where h i  ∈ ℝ n and d i  ∈ ℝ n are uncertain for i = 1, 2, … , k. In particular, 

when , (KBP) reduces to the doubly regularized knowledge-based 
SVM under uncertainty: 

 

where h i  ∈ ℝ n and d i  ∈ ℝ n are uncertain for i = 1, 2, … , k. 

Following robust optimization approach, the robust counterpart 1 of the doubly regularized 
knowledge-based SVM under uncertainty is a deterministic optimization problem, given by 

 

In the next section, we derive an extension of Farkas' lemma that enables us to convert the above 
robust counterpart as a convex quadratic program. 

Table 1. Performance of the algorithms for three public datasets. 

Data set (m x n) Training 
accuracy 

Formulation  Testing 
accuracy 

% No. of selected 
features 

PID (768 x 9)  RK-pq-SVM  0.7802  0.7781  0.4675 
 pq-SVM  0.7789  0.7766  0.4750 
 L-SVM  0.7711  0.7727  0.4500 
WDBC (569 x 30)  RK-pq-SVM  0.9857  0.9830  0.7100 
 pq-SVM  0.9825  0.9821  0.7133 
 L-SVM  0.9849  0.9821  0.7267 
Correlated data (100 x 
10)  

RK-pq-SVM  0.8500  0.8456  0.4700 

 pq-SVM  0.8411  0.8400  0.6600 



 L-SVM  0.8367  0.8300  0.4300 
 

3. Robust Farkas' lemma 

In this section, we establish an extension of Farkas' lemma 7 to systems involving uncertain 
linear inequalities with the weighted norm uncertainty. The generalized Farkas' lemma plays a 
key role in reformulating the doubly regularized knowledge-based SVM with an uncertain 
knowledge set as a convex quadratic program. 

To do this, let us first recall that the usual p-norm of x = (x 1, … , x n ) T  ∈ ℝ n , p ≥ 1, defined by 

 

The corresponding dual p-norm of x is given by , where p* 

satisfies . More generally, for a w = (w 1, … , w n ) T  ∈ ℝ n with w j  > 0, the weighted p-
norm of x is given by 

 

and the corresponding dual-weighted p-norm of x is given by 
, where 

 

We now present a robust version of the Farkas lemma under the weighted p-norm uncertainty. 

Theorem 3.1 (Robust Farkas' lemma) 

Let p ∈ ℝ, p ≥ 1. Let , i = 1, … , k with , c ∈ ℝ n and 
r ∈ ℝ. Define  and , where , , 
ε i , δ i  ∈ ℝ+ for i = 0, 1, … , k.Suppose that one of the following two conditions holds: 



1. p = 1 or p = + ∞ 

2. p ∈ (1, +∞) and there exists x 0 ∈ ℝ n such that , for all (a i , β i ) ∈ 𝒰 i  × 𝒱 i . 

Then, the following statements are equivalent: 

i. . 

ii
. 

 

. 

Proof [(i) ⇒ (ii)] 

Define , i = 1, … , k. Then, 

 

Then, (i) can be equivalently rewritten as 

 

If the assumption (1) holds, then each g i is a polyhedral function. On the other hand, if the 
assumption (2) holds, then the Slater condition (i.e. {x: g i (x) < 0, i = 1, … , k} ≠ ∅) is verified. In 
both cases, the classical Farkas' lemma shows us that there exists a λ i  ≥ 0 such that 

 

This implies that 

 

The first condition is equivalent to the inclusion 



 

where ∂ is the standard convex subdifferential 18. This means that (due to the fact 
that ) there exists a u i  ∈ ℝ n with ‖u i ‖ p  ≤ 1 such that 

 

Thus, statement (ii) holds. 

[(ii) ⇒ (i)] Take x ∈ ℝ n such that , ∀(a i , β i ) ∈ 𝒰 i  × 𝒱 i . Then, 

 

This together with statement (ii) implies that 

 

Thus, statement (i) holds.▪ 

Remark 3.1 

It should be noted that, in the special case of p = + ∞, ε i  = 0 and δ i  = 0, i = 1, … , k, Theorem 3.1 
reduces to the celebrated Farkas lemma (cf. 7). Various extensions of the Farkas lemma can be 
found in 8,10. 

We now examine the robust Farkas lemma of Theorem 3.1 in the case of interval uncertainty. 
This case will enable us to reformulate the knowledge-based SVM with uncertain knowledge 
sets as a standard quadratic program in the next section. Moreover, the interval uncertainty is the 
simplest and most commonly used uncertainty in robust optimization 1. 



We see that the interval uncertainty case can be obtained as a special case of the weighted ∞-
norm uncertainty. To see this, consider , 

,  with . Let . Let w = (w 1, … , w n ) 

with , . Then, we obtain 

 

Proposition 3.1 

Let  with  and  with , for i = 0, 1, … , k. Then, the following 
statements are equivalent: 

i. 
 

ii.   

Proof 

Let p = + ∞, . Let  with , . 
Then, we have  So, Theorem 3.1 shows us that there exist 
a such 
that  and  where 

. Note that 

 

So, the first condition can be equivalently rewritten as 

 

This is, in turn, equivalent to 

 

▪ 



4. Knowledge-based SVMs under uncertainty 

In this section, we use Proposition 3.1 to derive an equivalent quadratic program for the 
uncertain (KBP) with the interval knowledge data uncertainty, extending the recent doubly 
regularized SVM model 4,5. 

Let  be our uncertain knowledge set for points in class 𝒜. We 
would like the robust counterpart of the knowledge set to be in the region w T z ≥ γ + 1 . Thus, our 
robust counterpart of the set containment constraint in (KBP) is 

 

Now Proposition 3.1 shows that 

 

Incorporating these constraints into the doubly regularized SVM formulation, we obtain the 
following robust knowledge-based doubly regularized SVM problem: 

 

Adding slack variables  and β ≥ 0 and minimizing their L 1 norm, the model becomes 



 

We see that in the absence of knowledge sets in (P 0), where w = 0 and γ = − 1, our robust 
knowledge-based doubly-regularized SVM problem reduces to 

 

which is equivalent to the following doubly regularized SVM problem proposed in 5: 

 

Therefore, the model problem (P 0) is an extension of the SVM model considered in 5 by 
incorporating uncertain knowledge sets. 

Let w = p − q, where p = (p 1, … , p n ) and q = (q 1, … , q n ), be defined by 



 

Then, 

 

So, the robust knowledge-based doubly regularized SVM problem (P 0) can be rewritten as 

 

We now further simplify this model to a form of quadratic program in the matrix form. To do 
this, denote 

 

 

 

 



 

 

and 

 

Then, we can write the robust knowledge-based regularized SVM problem (P 0) into the 
following matrix form: 

 

Using a similar idea to that of Mangasarian for the LSVM 16, we 
replace b T y by y T y and  by . This allows us to remove the non-negative 

constraints y ≥ 0 and v ≥ 0. Moreover, we also append an additional  to the objective function 
as done in 17. This in effect maximizes the margin between the parallel separating planes. These 
modifications give rise to the following optimization problem: 

 

where μ ∈ ℝ is an additional tuning parameter. 

5. Duality and algorithm 

Jump to section 

In this section, we present an algorithm for finding a solution of (P) by solving its Lagrangian 
dual problem. We also provide a proof for the convergence of the algorithm. 



To formulate its Lagrangian dual, we define the Lagrangian as follows: 

 

Then, the Lagrangian dual problem becomes 

 

This can be expressed as 

 

Solving the constraints gives us that 

 

Substituting these two relations into the Lagrangian dual, we get 

 

Note that , and so, the dual problem can be 
rewritten as 

 

Letting , we see that Q is positive definite as for 
each x ∈ ℝ m+2n+1, 

 

This shows that the dual is equivalent to the following strictly concave quadratic maximization 
problem with non-negativity constraints: 



 

The following theorem presents the duality relationship between (P) and (D). 

Theorem 5.1 

Let (y, v, γ) ∈ ℝ2n+k  × ℝ m+2n+1 × ℝ and z ∈ ℝ m+2n+1. Then z is a solution of (D) if and only 
if  is a solution of (P). Moreover, we have 

 

Proof 

Clearly, 

 

So, it follows from the Lagrangian duality theorem that 

 

Note that 

,  and So, the conclusion follows.▪ 

Now, to solve the dual problem, let us look at its optimality condition, which is a simple 
nonlinear complementary problem 0 ≤ z⊥ Qz − ê ≥ 0. By using the following elementary 
equivalence 

 

the optimality condition reduces to 

 

This leads us to the following simple iterative fixed point algorithm: 

 

where α is a real number satisfying 0 < α < 2. 

To summarize, we formulate the pseudo-algorithm (Algorithm 1) as follows. 



Algorithm 1 

Tuning procedure 

Construct a grid with each grid point corresponding to the pair 

 

Select a tuning parameter and tuning set. 

Inner problem 

For the selected tuning parameter μ,λ1, determine the matrix 

 

where C is defined as in (4.7),  is defined as in (4.8), Â is defined as in (4.9) and ê is defined as 
in (4.6). Solve the inner problem with the following steps. 

 Step 1 let z 0 = Q −1ê, set it = 0 and i = 0 

 Step 2  z old  = z 0 + ê 

 Step 3 While it < maxiter and ‖z old − z i ‖ > tol 

z old = z i 

z i+1 = Q −1(ê + ((Qz i  − ê;) − α z i ))+) 

it = it + 1 and i = i + 1; 

end 

 
Step 4 Calculate . Identify p, q by . 
Output γ andw = p − q and record the test accuracy, CPU time and the useful features by 
removing all features corresponding to weights satisfying |w i |/‖w‖∞ < 0.25. 

Updating the tuning parameter 

Using the 10-fold cross-validation and update the tuning parameter. 

Output 



Determine the optimal tuning parameters by choosing the highest average testing accuracy. Then 
output the corresponding testing accuracy, training accuracy, average CPU time and average 
selected features. 

Now, we present the convergence of our algorithm. 

Theorem 5.2 

Let 0 < α < 2 and let μ, λ1 be arbitrary tuning parameters. Let  be a sequence generated by 
the inner problem. Then z iconverges to a unique solution z of the dual problem (D). 

Proof 

As D is a strictly concave maximization problem, it has a unique solution provided the solution 
set is non-empty. Now, denote the unique solution by z. Let a = Qz and a i  = Qz i for each i = 0, 
1, … . To show z i  → z, we only need to show a i  → a as Q is positive definite (and so, 
invertible). By the optimality condition, we see that 

 

and hence 

 

On the other hand, by our algorithm, z i+1 = Q −1(ê + ((Qz i  − ê) − αz i )+). 
So, a i+1 = ê + (u i  − ê − αQ −1 a i )+, 

 

Now, using the projection theorem, which states that the distance between any two points is not 
less than the distance between their projections on any convex set (here is the nonnegative 
orthant), the above relation gives us 

 

To finish the proof, it suffices to show that ‖I − αQ −1‖ < 1. To see this, note that 0 < α < 2 
and x T Qx ≥ ‖x‖2 for each x. So, for each z, we have ‖z‖ ‖Q −1 z‖ ≥ z T Q −1 z ≥ ‖Q −1 z‖2. Thus, 
‖Q −1‖ ≤ 1. So, whenever α ∈ (0, 2), ‖I − αQ −1‖ < 1. Hence, the conclusion follows.▪ 

6. Computational experiments 

In this section, we provide details on the computer implementation of our proposed algorithm. 

Datasets 



To conduct the analysis, three publicly available datasets were utilized. These datasets are 
accessible via the Wisconsin machine learning website: ftp://ftp.ics.uci.edu/pub/machine-
learning-databases/ 

For the reader's interest, a short summary of each dataset is included below. 

• Wisconsin Breast Cancer dataset The Wisconsin Breast Cancer dataset (WDBC) 
consists of 30 real-valued features, constructed from 10 characteristics within the lump 
of 569 women with suspected breast cancer. 

• Pima Indians dataset The Pima Indians dataset (PID) consists of 768 observations, each 
with eight features describing attributes such as blood pressure and body mass index of 
both healthy patients and those displaying signs of diabetes among the Pima Indian 
population. 

• Correlated data This dataset was constructed using MATLAB, and consists of 10 
features; the first five of which are highly correlated. These correlated features are 
referred to as signal variables, whereas the remaining features are regarded as noisy, 
irrelevant variables. The class +1 follows a normal distribution with mean μ+ = (1, 1, 1, 
1, 1, 0, 0, 0, 0, 0) T and with a covariance matrix 

 

where Σ* is a (5 × 5) matrix such that each diagonal element is 1 and each off-diagonal 
element is 0.8. The class −1 is also normally distributed with the same covariance 
matrix but with mean μ− = (−1, −1, −1, −1, −1, 0, 0, 0, 0, 0) T . 

Methods 

• Robust knowledge-based pq-SVM (RK-pq-SVM) method (Algorithm 1): In particular, 
the uncertain knowledge set is generated by the following procedures: we first took a 
small part of the data in the given dataset to form a preliminary knowledge set. Then, we 
randomly generated 100 independent copies from this preliminary knowledge set by 
adding Gaussian noises. Then, the lower-bound (  and ) and upper-bound (  and ) 
of the uncertain knowledge set were determined as the smallest lower-bound and biggest 
upper-bound of these 100 copies. 



• The pq-SVM method (Code was based on 5). 

• The Lagrangian-SVM (L-SVM) method (Code was based on Mangasarian 17). 

Comparison 

From Table 1, we can see that the RK-pq-SVM slightly outperforms pq-SVM and Lagrangian-
SVM in terms of both training accuracy and testing. In terms of selecting the fewer features, the 
L-SVM is comparable with the RK-pq-SVM and pq-SVM, and RK-pq-SVM slightly 
outperforms pq-SVM. 

6.1. Visualization of the results 

In this subsection, we present graphs to visualize how incorporating robust knowledge sets 
affects the resulting separation planes. To see the results, we pick the first two features in each of 
the two datasets and plot the two classes of data sets, separation hyperplanes and the uncertain 
polyhedral knowledge sets. The results for the datasets MDBC and Correlated_Data are given 

below.  



7. Conclusion and future research 

In this article, we have shown how data uncertainty in knowledge sets can be treated in SVM 
classification by employing robust optimization. We examined knowledge-based SVMs within 
the framework of robust optimization that incorporates prior knowledge in the form of uncertain 
linear constraints. By using a new robust version of Farkas' lemma under uncertainty, we 
reformulated the knowledge-based SVM problem as a standard quadratic optimization problem. 
A solution of the reformulated problem was then obtained using the Lagrangian duality scheme 
and a fixed point iterative algorithm. We also proved the convergence of the algorithm. We 
finally provided some preliminary results on the implementation of our numerical scheme. Our 
approach raises some interesting questions for further research. 

For instance, it is known that the use of nonlinear kernels in SVM formulations is generally 
effective in knowledge-based classification. It would be of interest to extend our approach to 
solve classification problems with positive semidefinite nonlinear kernels. On the other hand, an 
efficient construction of uncertainty sets is a key modelling issue in the area of robust 
optimization. Consequently, it would be beneficial from the point of view of practical 
applications to study robust optimization models with other broad classes of uncertainty sets, 
such as the ellipsoidal uncertainty, and to examine efficient ways of constructing these 
uncertainty sets for SVM classification. These issues will be investigated in a forthcoming study. 
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