
PYDAC: A DISTRIBUTED RUNTIME SYSTEM AND PROGRAMMING
MODEL FOR A HETEROGENEOUS MANY-CORE ARCHITECTURE

by

Bin Huang

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Electrical Engineering

Charlotte

2014

Approved by:

Dr. Ronald R. Sass

Dr. James M. Conrad

Dr. Bharat Joshi

Dr. Jennifer W. Weller

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/345080572?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

c© 2014

Bin Huang

ALL RIGHTS RESERVED

iii

ABSTRACT

BIN HUANG. PyDac: a distributed runtime system and programming model for a
heterogeneous many-core architecture.

(Under the direction of DR. RONALD R. SASS)

Heterogeneous many-core architectures that consist of big, fast cores and small,

energy-efficient cores are very promising for future high-performance computing (HPC)

systems. These architectures offer a good balance between single-threaded perfor-

mance and multithreaded throughput. Such systems impose challenges on the design

of programming model and runtime system. Specifically, these challenges include (a)

how to fully utilize the chip’s performance, (b) how to manage heterogeneous, un-

reliable hardware resources, and (c) how to generate and manage a large amount of

parallel tasks.

This dissertation proposes and evaluates a Python-based programming framework

called PyDac. PyDac supports a two-level programming model. At the high level,

a programmer creates a very large number of tasks, using the divide-and-conquer

strategy. At the low level, tasks are written in imperative programming style. The

runtime system seamlessly manages the parallel tasks, system resilience, and inter-

task communication with architecture support. PyDac has been implemented on

both an field-programmable gate array (FPGA) emulation of an unconventional het-

erogeneous architecture and a conventional multicore microprocessor. To evaluate

the performance, resilience, and programmability of the proposed system, several

micro-benchmarks were developed. We found that (a) the PyDac abstracts away

task communication and achieves programmability, (b) the micro-benchmarks are

scalable on the hardware prototype, but (predictably) serial operation limits some

micro-benchmarks, and (c) the degree of protection versus speed could be varied in

redundant threading that is transparent to programmers.

iv

ACKNOWLEDGMENTS

I would like to thank my parent, whose deep love fueled my courage to pursue

this degree.

v

TABLE OF CONTENTS

LIST OF TABLES vii

LIST OF FIGURES viii

CHAPTER 1: INTRODUCTION 1

1.1 CMOS Technology 2

1.2 Programming Paradigms 4

1.3 Proposed Approach 5

1.4 Thesis Question 6

CHAPTER 2: BACKGROUND 11

2.1 Basics of CMOS 11

2.2 Architectural Trends 13

2.2.1 Homogeneous Architecture vs. Heterogeneous Architecture 13

2.2.2 Memory Wall 15

2.3 Hardware-Software Codesign at OS Level 16

2.4 Programming Model 18

CHAPTER 3: GREEN-WHITE ARCHITECTURE 24

3.1 Modeling Techniques 24

3.2 Theoretical Model of Green-White Architecture 26

3.3 An Implementation of Green-White Architecture 30

3.3.1 Hardware Simulation 30

3.3.2 Hardware Prototype 31

CHAPTER 4: DESIGN OF PYDAC PROGRAMMING FRAMEWORK 34

4.1 Programming Model 35

4.1.1 Divide-and-Conquer Strategy 36

4.1.2 Two-Level Programming Model 37

4.1.3 Fibonacci Algorithm Coding Example 39

vi

4.2 Design of PyDac Runtime 40

4.3 Concluding Remarks 43

CHAPTER 5: EVALUATION 45

5.1 Performance Evaluation 45

5.1.1 Benchmark Suite 45

5.1.2 Scalability 46

5.1.3 Resilience 47

5.2 Evaluating Programming Productivity by Case Study 55

5.2.1 Strassn’s Algorithm 55

5.2.2 Symmetrical Tridiagonal Eigenvalue Decomposition 56

5.2.3 Recursive FFT 58

5.2.4 Analysis 60

CHAPTER 6: CONCLUSION 67

CHAPTER 7: FUTURE WORK 70

REFERENCES 72

vii

LIST OF TABLES

TABLE 3.1: Summary of the hardware prototype. 32

viii

LIST OF FIGURES

FIGURE 1.1: High-level block diagram of conventional runtime system. 8

FIGURE 1.2: High-level block diagram of distributed runtime system. 8

FIGURE 3.1: High-level block diagram of the green-white architecture. 27

FIGURE 3.2: High-level block diagram of a green core. 28

FIGURE 3.3: High-level diagram of green-white prototype on an FPGA device. 32

FIGURE 4.1: PyDac algorithm template 38

FIGURE 4.2: Fibonacci algorithm implemented in PyDac. 40

FIGURE 4.3: Proposed resilient runtime system on green-white architecture. 41

FIGURE 4.4: Control flow of user-level thread library 42

FIGURE 5.1: Speedup on green-white architecture. 48

FIGURE 5.2: Performance impact of adding second SPM: one green core 49

FIGURE 5.3: Performance impact of adding second SPM: six green cores 50

FIGURE 5.4: Normalized runtime on green-white architecture. 53

FIGURE 5.5: Strassen’s algorithm 56

FIGURE 5.6: Strassen’s algorithm implemented in PyDac 57

FIGURE 5.7: Symmetric Tridiagonal Eigenvalue Algorithm 58

FIGURE 5.8: Symmetric Tridiagonal Eigenvalue PyDac Implementation 59

FIGURE 5.9: A Divide-and-Conquer Algorithm for Radix-2 FFT 60

FIGURE 5.10: Recursive FFT implemented in PyDac 61

CHAPTER 1: INTRODUCTION

The technologies used to implement integrated circuits have profound impacts

on computer system design and programming paradigm design. For many decades,

the dominant technology—complementary metal oxide semiconductor (CMOS)—has

enabled frequency scaling and doubling transistor density. This has kept computer

architecture research narrowly focused on making single core faster, year after year,

which also reinforced a sequential programming paradigm.

Although CMOS technology is slowing in terms of clock frequency growth rate,

it is still expected to double the number transistors per chip every two years for

many generations [1]. Moore’s Law, a trend observed by Gordon Moore [2], states

that the density of transistors on a chip doubles every two years. Moore’s Law has

fundamentally fueled the advancement of computing technology in the past.

Three notable changes in the fundamental assumption with CMOS technology

have occurred. First, the Dennard Scaling [3], which states that the reduction in the

transistor feature size is accompanied by improvement in power efficiency, had reached

its end in the 2000’s. Secondly, the reliability of CMOS has become more difficult

to sustain, primarily due to process variation and single-event upset. Thirdly, the

energy cost of moving data has become comparably more expensive than computation.

Because of these changes, the characteristics of future computing devices are likely

to be very different, leading to dramatically different chip architectures. Moreover,

the new chip architectures have already required new programming paradigms, or at

least a renewed emphasis on parallel programming paradigm. We will take a closer

look at the impacts next.

2

1.1 CMOS Technology

Due to the end of Dennard Scaling, power efficiency has emerged as a first-class

design constraint. The chip industry has attacked this problem at different levels, such

as voltage scaling and architectural innovation. For example, research has shown that

aggressive supply voltage scaling greatly improves the energy efficiency of a single

processing unit [4]. For another example, the chip industry introduced multicore

microprocessor chips [5, 6] to work around the power efficiency issue. However, the

introduction of multicore technology was not completely satisfactory. Esmaeilzadeh

et. al [7] have predicted transistor under-utilization on future chips due to a stringent

power budget. They suggest radical micro-architectural innovations beyond CPU-like

or GPU-like multicore designs. Examples of such unconventional chip architecture

have been proposed with a heterogeneous mix of complex and simple cores [8, 9, 10].

The heterogeneous many-core architecture promises a good balance between single-

threaded performance and multithreaded throughput. More importantly, it utilizes

transistors in an energy-efficient manner by dedicating resources to an individual

application or a group of applications sharing common compute kernels.

In addition to power, reliability will be more difficult to sustain in the future.

First, advantages of low-power techniques (e.g., aggressive supply voltage scaling) are

not free. There is a tradeoff between power and reliability; specifically, power effi-

ciency from voltage scaling is achieved at a cost of an increasing soft error rate [11].

Secondly, parameter variation will pose a major challenge for the design of future high

performance microprocessors [12]. One serious consideration that must be addressed

is the ability of applications of interest to run through a variety of failures. Cur-

rent high-performance computing (HPC) systems rely on checkpoint/restart (C/R)

to recover from faults. As system size continues to grow, the overhead of global C/R

will likely become a significant percentage of an application’s run time [13, 14]. In

order to save the overhead, local fault confinement and recovery mechanisms have

3

been proposed [15]. Not only does C/R suffer from high overhead, but it also deals

with a subset of possible faults. Silent data corruption (SDC) is a specific class of

fault that the C/R technique could not mitigate [16]. Failing to detect SDC could

significantly undermine the fidelity of simulation results, because invalid results may

still be reported to end users. Replication techniques can detect and mitigate SDC

but have been prohibitive for adoption by HPC systems due to high overhead. As the

system-level size of HPC systems continue to grow, replication techniques have re-

ignited research interest. Ferreira et al. [14] simulated an HPC system with more than

20,000 sockets and proved that replication is a viable alternative to the traditional

C/R approach.

Thirdly, data movement will overtake—if it has not already—the floating-point

operation as the major contributor to power usage [17]. The energy cost of data

movement will limit the usage of hardware design techniques, such as out-of-order

execution. These techniques have been successfully used in high-performance mi-

croprocessors in the past. To further save energy cost of data movement, a more

aggressive memory management scheme may be needed, e.g., only moving data when

it contributes to the solution. One mechanism that has been proposed is to use named

memory segments and make the movement of data more explicit to the programmer

[18]. These authors [18] and others [19] also advocate the use of a form of scratch-pad

memory (i.e., software-controlled memory). Scratch-pad memory does not implement

a tag RAM and complex comparator logic that are found in conventional direct or

set-associative caches, which saves transistors and power. (Low-power embedded sys-

tems have long been leveraging scratch-pad memory [20, 21].) In addition, it reduces

cache contention, further minimizing unnecessary data movement. Adopting scratch-

pad memory was reported to significantly improve energy efficiency in one case of

high-end computing [19].

Assuming there is no miraculous technological breakthrough, these trends suggest

4

that future devices and architectures will be astonishingly different. Most likely,

future CMOS chips will (a) consist of a large mix of heterogeneous computing cores,

(b) use a radically different memory subsystem, and (c) experience higher rates of

faults.

1.2 Programming Paradigms

All architectural changes will have a profound impact on how human programmers

interact with future computing machines. For a good example, explicitly parallel pro-

gramming paradigms have become more mainstream with the industry introduction

of multicore microprocessor chips [5, 6]. We will take a closer look at the impacts on

programming paradigm design next.

First, parallel programming paradigms have replaced the sequential programming

paradigm. Before the multicore era, the sequential programming paradigm was so

central to every computing system that every piece of software—from applications

to libraries to operating systems—could assume compatibility with future devices.

In addition, the frequency scaling granted a “free lunch” that software program-

mers have enjoyed for many years [22]. Due to the free performance lunch, software

programmers added layers of abstractions into their software. This free ride miti-

gated or hid the performance overhead involved with adding layers of abstractions.

More importantly, the resulting portability and programming productivity paid off

the performance overhead many times. For example, high productivity programming

languages, such as Java and Python, are built on top of extra software layers—virtual

machines that provide portability to cross-platform programming. The end of free

performance lunch now makes the use of extra layers of abstractions in software less

viable. More importantly, while removing abstractions from the software stack may

benefit performance, such actions will reduce programming productivity.

Moreover, software has become more fragile than before. Generally, software

programmers could assume infallible hardware, which greatly simplifies software de-

5

velopment. However, it is becoming more difficult to assume infallible hardware.

The overhead of maintaining infallibility will become a significant percentage of an

application’s run time [13, 14]. Therefore, recent programming framework provides

application programming interfaces (APIs) to programmers for expressing resilience

concerns explicitly [15]. Such APIs clearly impose more burdens on programmers.

1.3 Proposed Approach

Combining these facts and trends together, one may wonder how to design more

effective computer systems and programming paradigms. Consequently, the invention

of a novel programming paradigm and an associated runtime system is critical. Com-

plicating this investigation is the fact that the exact nature of these future computing

machines is far from clear, which means that human understanding of the hardware

and software will have to co-evolve. We believe that the best way to address these

issues is to think of them “organically”. In other words, we would like to look at this

problem from a hardware-software codesign perspective. This dissertation focuses on

the software aspect of this evolution.

We chose one of the most well-known parallel design patterns—divide-and-conquer—

to begin this research. Design patterns are useful concepts for programmers, strongly

encouraging and enabling the reuse of successful designs and proven techniques. Each

design pattern describes a problem that repeatedly occurs and then describes the

core of the solution [23]. Not only are design patterns established in sequential pro-

gramming paradigm, there are also design patterns for the development of parallel

applications [24, 25].

Specifically, we designed a two-level programming model and a runtime system

based on the divide-and-conquer strategy. Divide-and-conquer is a well-known strat-

egy for designing algorithms in the computer science community. Three steps are

usually involved in this technique: divide, conquer, and combine. The divide-and-

conquer strategy recursively decomposes a problem into smaller sub-problems, which

6

in turn are decomposed into sub-sub-problems, and so on. Generating a very large

number of parallel tasks without a great deal of programming effort is possible with

this strategy. The two-level programming model is implemented in Python language

as a library extension. It hides task communication, load-balancing, and resilience

from programmers. A runtime system built on distributed Python virtual machines

maps the two-level programming model to heterogeneous many-core architecture.

Due to independent and parallel tasks, the runtime system is able to gracefully de-

grade when the hardware is hit by a fault. In particular, the runtime system monitors

hardware for potential soft errors. If necessary, it resets a faulty core and reissues

the task. However, this is not always enough. For example, output data may be

corrupted, requiring a different technique for the runtime system to detect. In that

case, the runtime system runs multiple copies of identical tasks and checks the results

of those tasks for output data corruption. If data corruption is detected, the runtime

system can either reissue a task or use a voting mechanism to determine the correct

result if enough copies are available.

1.4 Thesis Question

To evaluate the proposed programming model and runtime system, we present a

novel architecture called green-white architecture meant to stand in for some future

“unconventional” chip architecture. It features a mix of simple and complex cores

and a much flatter memory subsystem. Specifically, our model consists of two types

of processor cores. It has many simple, energy efficient—and inherently less reliable—

processor cores (called “green cores”) and a few more robust, protected processor cores

(called “white cores”). The white cores have a conventional memory hierarchy while

the green cores treat the main memory as a collection of write-once memory segments.

The white cores have a conventional symmetric multiprocessing (SMP) operating

system and runtime while the green cores run independently with a “close to metal”

runtime. To test the spectrum, we also have an implementation for conventional SMP

7

architecture.

The key thesis question can be phrased as follows: Is a programming model and

a runtime system built upon distributed virtual machines superior to monolithic run-

time on an architecture under the cross-cutting constraints of performance, resilience,

and productivity? The comparison is illustrated in Figure 1.1 and Figure 1.2. In

Figure 1.1, the conventional runtime system is built entirely upon a monolithic oper-

ating system and SMP hardware. Adding layers of abstractions to the middleware in

a vertically integrated system has been successful. Figure 1.2 presents the proposed

programming model and runtime system built upon a set of decoupled distributed

virtual machines. The choice of virtual machine is motivated by the fact that it is

the foundation for many high productivity languages. In addition, adopting a virtual

machine in the design of a runtime system provides software compatibility across

various architectures.

The thesis question is broken down into three subordinate questions as follows.

1. Does a runtime system built upon a set of decoupled distributed virtual machines

deliver good performance? Performance is measured by time-to-completion for

a given task. In the context of this work, we measure performance under two

different scenarios: (a) the absolute performance of adding more resources to the

system (a.k.a. strong scaling), and (b) the relative performance under faults.

Achieving a linear speedup is usually very difficult due to the incurred over-

head of resource management. Our reasoning is that if there is no speedup in

the first scenario or there is a significant overhead in the second scenario, then

the proposed design is not viable. To answer this question, we will run mul-

tiple micro-benchmarks to measure performance numbers in both a fault-free

environment and a faulty environment.

2. Does a runtime system built upon a set of decoupled distributed virtual machines

sustain transient faults? A conventional monolithic runtime system itself is a

8

Operating System

SMP Architecture

Core

Middleware

Application

....

} Runtime

Core Core Core

Figure 1.1: High-level block diagram of conventional runtime system. The runtime
system is entirely built upon a monolithic operating system and SMP hardware. The
runtime system may be “bloated” because of too many abstractions in the software
stack.

{Runtime
Runtime

Green Cores

OS

White Cores

VM

WC GC

VM

Middleware

Application

... ...

Task

...VM

GC

Task

VM

GC

Task

WC WC

Figure 1.2: High-level block diagram of distributed runtime system. The runtime
system is built upon distributed virtual machines. White cores have a conventional
SMP operating system and runtime while green cores run independently with a “close
to metal” runtime. Virtual machines provide support to high-level programming
language and software compatibility across different architecture.

9

single point of failure. A transient fault could easily cause the monolithic run-

time system to crash. Therefore, the monolithic runtime system heavily relies

on the C/R technique to recover from a fault. However, as the system size and

the degree of parallelism continue to grow, the C/R technique is expected to be

inefficient. A runtime system that can sustain transient faults gives the system

an opportunity to gracefully degrade while increasing resilience. To answer this

question, we will use a fault injection mechanism to emulate transient faults on

hardware and observe how the runtime system behaves.

3. Is the programming paradigm supported by the runtime system productive? Pro-

gramming productivity is equally important to system performance. The con-

ventional programming paradigm in high-performance computing features low-

level language, such as C. While it is easier for programmers to control the

behavior of a machine, it is also counter-productive to express algorithms. High-

level languages have been observed to be preferred when quick implementation

is required. Low-level languages are involved in rewriting the code only when

additional performance is required. Since programming productivity is less mea-

surable than other system indices (e.g., power and performance), case studies

will be conducted to indirectly evaluate the effectiveness of the proposed pro-

gramming model. We will present the source code of multiple micro-benchmarks

and rely on the reader’s judgment to assert our point.

To demonstrate the feasibility and quantify the behavior of the proposed ap-

proach, we implement a hardware prototype of green-white architecture on an field-

programmable gate array (FPGA) device. This hardware is used to represent a mix

of energy-efficient, simple cores and fast, conventional processor cores. We evalu-

ated the proposed programming model by running multiple micro-benchmarks on the

hardware prototype. In addition, we used a fault injection mechanism to emulate

transient faults on the hardware and measured the recovery cost.

10

In addition to the central purpose of this thesis, there are several practical con-

tributions:

• A runtime system based on a set of decoupled distributed virtual machines

sustains transient faults on unreliable heterogeneous hardware through local

fault recovery.

• Designing a runtime system that combines full-fledged virtual machine and

“bare-metal” virtual machine for heterogeneous hardware is feasible.

• Programming a distributed runtime system with a two-level programming paradigm

does not undermine programming productivity.

The rest of the dissertation is organized as follows. Chapter 2 presents technology

trends that have fundamental impacts on chip architecture and reviews the related

works. Chapter 3 details the design of green-white architecture and the hardware

prototype. Chapter 4 shows the design of the PyDac programming model and the

runtime system. Chapter 5 evaluates the proposed system from the perspective of

performance, resilience, and programmability. Chapter 6 summarizes this dissertation

and Chapter 7 discusses future works.

CHAPTER 2: BACKGROUND

This chapter first reviews the technological trends of CMOS in recent years. Then,

it examines the advent of many-core technology and related design issues. Thirdly,

this chapter inspects some hardware-software codesigns from the perspective of the

operating system. Lastly, it reviews parallel programming models and compares them

to the proposed PyDac programming model.

2.1 Basics of CMOS

CMOS will likely remain the dominant technology for integrated circuit design

for another ten years [1]. For the advancement of CMOS technology, Gordon Moore

observed that the transistor density doubles every two years [2]. Engineers have

been able to reduce the transistor feature size and improve power efficiency for many

generations of CMOS technology. Power efficiency was improved by reducing the

total capacitance—as seen by the gates’ outputs—and lowering the supply voltage,

which is also known as Dennard Scaling [3]. This scaling resulted in a constant power

density—a key factor in the design of computer architecture. The return of Dennard

Scaling began to diminish in the early 2000’s. Specifically, supply voltage is close to

the threshold voltage and has leveled off [26]. Further reduction of supply voltage is

costly; it requires a reduction in the threshold voltage, which has a negative impact on

lost power from leakage current [27]. In addition, supply voltage that levels off has a

negative impact on maximum operation frequency. The frequency is roughly linear to

the supply voltage. Given a constant threshold voltage, the lower the supply voltage

is, the longer it takes a signal to propagate. The maximum operation frequency must

decrease accordingly to avoid timing violation. Consequently, the end of Dennard

Scaling forced the chip industry to shift into a new design paradigm. The old paradigm

12

that focused on improvement of single-threaded, sequential programs’ performance

was replaced by a new one that focuses on multithreaded, parallel programs.

The reliability of CMOS transistors is more difficult to sustain as the feature size

continues to shrink. Parameter variation poses a major challenge to the design of

future high performance microprocessors [12]. For example, random dopant fluctu-

ation (RDF), which means that the dopant atoms implanted in the transistor are

unevenly distributed, is a significant variation source [28]. Such variation may lead

to an increase in intermittent or permanent faults, which may result in unexpected

timing violations. The other major cause of the reliability issue is single event upsets

(SEUs). An SEU taking place in dynamic random-access memory (DRAM) may be

caused by high-energy particles (e.g., cosmic rays), which penetrates the die surface

and creates a bit-flip [29]. Logic also becomes more susceptible to SEUs, because of

the reduction in critical charge of logic circuits and the decrease in the feature size

[30].

Data movement, which is significantly distance-dependent, continues to become

more expensive than compute in terms of energy consumption. For instance, for 40-

nanometer technology, moving 64 bits of data just from off-chip to on-chip would cost

a few nanojoules; or moving 64 bits of data for a few millimeters on-chip would cost

hundreds of picojoules. However, performing a double-precision fused multiply add

(FMA) would cost only tens of picojoules [31]. An alternative technology, optical

interconnect, shows that energy consumption is not dependent on distance. However,

optical technology is not ready for production [17], and distance-dependent data

movement poses a challenge to energy-efficient computing.

We have discussed four major technology trends in this section. As Moore’s Law

predicts, CMOS feature size will continue to decrease. For pragmatic reasons, transis-

tors are not getting any faster. In addition, CMOS will become less reliable because

of parameter variation and SEUs. Lastly, data movement will cost more energy than

13

compute. The impacts of these trends on chip architecture will be discussed in next

section.

2.2 Architectural Trends

Chip architectures synthesize what technology grants into compute power. Before

the end of Dennard Scaling, uniprocessor architecture dominated the mass market,

and a software ecosystem had been built on it. The end of Dennard Scaling forced

the industry to shift to the multicore design paradigm. Now parallel architectures

are ubiquitous, from low-end mobile processors to high-end server-class processors.

It is not yet clear whether homogeneous architecture or heterogeneous architecture is

better. We discuss major architectural trends in this section.

2.2.1 Homogeneous Architecture vs. Heterogeneous Architecture

When chip vendors introduced their first multicore microprocessors [5, 6], adding

an identical copy of processor core to the design was a natural choice. Homogeneous

architecture usually contains tens of processor cores. These cores are connected by a

network-on-chip (NOC) with a cache-coherent memory hierarchy. The IBM POWER7

processor [32] is an eight-core design with a large on-chip embedded dynamic random-

access memory (eDRAM) caches. Each core supports a four-way simultaneously mul-

tithreaded operation, and the eight cores provide 32 concurrent threads in total. To

reduce power, the Power7 operates at a modest frequency and focuses on microar-

chitecture innovation for high performance. The Tilera’s TILEPro64TMprocessor [33]

features 64 simple, three-way very long instruction word (VLIW) processor cores

(tiles) connected by an on-chip mesh interconnect. Each tile can run a full Linux

independently, or a group of tiles can run a full SMP Linux. Intel CoreTMi7 processor

[34] is a high-performance general-purpose processor featuring out-of-order specula-

tive microarchitecture.

While the homogeneous architectures have made significant impacts, many re-

searchers and experts suggest heterogeneous many-core architectures as the future

14

direction [8, 35]. Such a statement is based on an empirical observation called Pol-

lack’s rule [36, 37], which states that performance increase is roughly proportional to

the square root of the increase in chip area. Due to the stringent power constraint

and the energy cost of data movement, the return of architectural techniques (e.g.,

deep pipelining) diminishes. Therefore, computer architects leveraged Pollack’s rule

in a way that designs are smaller in terms of area and simpler in terms of data path.

Such smaller and simpler designs consequently deliver less performance per unit. To

further limit power consumption, chips have to run at relatively low clock speeds,

which are expected to remain close to a few GHz, not utilizing the full potential.

(Running at the full speed makes it uneconomical to cool [1].) Hence, there will be

many small, simple, and slow processor cores on the chip [38].

In addition, there are conventional processor cores that are designed for high

single-thread performance. The processor cores are coupled with the small, simple,

and slow processors cores. These may leverage speculative execution and out-of-

order techniques, which bring several benefits: (a) they compensates single-threaded

performance and (b) they may provide a familiar software ecosystem to programmers

(e.g., x86).

Taking these factors into consideration, future architecture is expected to combine

both big, complex cores and small, simple cores to achieve good design trade-offs.

Obviously, such architecture is heterogeneous. In fact, it has been shown that, for

many workloads, heterogeneous hardware achieves better performance and power

efficiency than conventional, general-purpose hardware [39].

System-on-chip (SoC) designs, which target mobile phones and embedded systems,

are already heterogeneous and usually have a very tight power budget and expect a

good performance. For example, the TI OMAP 5432 [40] uses two ARM Cortex-

A15 processors for general-purpose applications and ARM Cortex-M4 processors for

real-time applications. To process graphics and video applications, it has one dedi-

15

cated graphics accelerator and video accelerators. ARM’s big.LITTLETMarchitecture

[41] combines high-performance Cortex-A15 processors and energy efficient Cortex-

A7 processors. Cortex-A7 is an in-order processor that has a pipeline length between

eight stages and ten stages. Cortex-A15 is an out-of-order processor with a pipeline

length between 15-stages and 24-stages. ARM’s report shows that the average per-

formance of Cortex-A15 is two times as much as that of Cortex-A7, while the average

energy efficiency of Cortex-A7 is three times as much as that of Cortex-A15. As

a result, the big.LITTLE system enables threads to be executed on the processing

resource that is most appropriate. From a programmer’s perspective, the difference

between Cortex-A15 and Cortex-A7 is hidden by the operating system.

For high-end computers, the power budget is still tight but less stringent. Acceler-

ators are usually implemented as discrete components to provide higher performance

[42, 43, 44]. These accelerators usually require a host computer for a software environ-

ment that is familiar to users. The Cell processor [45] combines processors optimized

for performance per transistor on compute-intensive applications, with a more conven-

tional processor architecture. The Cell processor also introduces software-controlled

memory to allow overlapping computation with memory transfer. The SARC archi-

tecture [46] reuses Cell Synergistic Processing Elements but adds application-specific

instructions.

2.2.2 Memory Wall

The exponential improvement of CMOS transistor and architectural innovation

results in a tension between processor and main memory (i.e., “memory wall”). For

economic reasons, the manufacturers of main memory have been focusing on the den-

sity instead of the performance [1, 47]. For a long time, memory latency has improved

slower than the chip clock rate. Although the flattening of clock rate has a positive

impact on “memory wall,” the increasing number of cores continues to generate more

concurrent memory requests and thus intensify this issue. The sheer number of par-

16

allel cores in future chips will continue to overwhelm current memory hierarchies,

creating a situation where memory subsystems limit the rate of computation, but not

the availability of parallelism or clock rate. To address this, some have suggested

software-controlled data movement (rather than hardware-controlled) in the memory

hierarchy [48]. Other recent developments suggested a programming model based

on message passing through non-cache-coherent shared memory [49]. Others have

proposed radically new memory hierarchies. In the Fresh Breeze project, Dennis et

al. propose a view of main memory as a collection of write-once memory chunks

[18]. The write-once principle frees programmers from maintaining the consistency

of shared objects and leads to a functional view of memory, because one parallel

task will not overwrite the internal memory of another task. It also enables active

Checkpoint/Restart—the ability to concurrently checkpoint, while the application

continues to progress.

2.3 Hardware-Software Codesign at OS Level

Operating system (OS) is arguably the most important software layer in runtime

system. Heterogeneous architectures poses design challenges to the OS. Reconfig-

urable Computing community has long been successfully leveraging FPGA technology

to deploy architecture that combines conventional processor cores and reconfigurable

accelerators, using hardware-software codesign methodologies [50, 51, 52]. One of

the most important codesign process aspects is to determine the boundary between

the hardware and the software. A proper boundary normally tries to meet certain

requirements. First, the boundary needs to be well understood by both software and

hardware engineers to reduce non-recurring engineering cost. Secondly, the reconfig-

urable accelerators need to be treated as first-class citizens for efficiently utilization.

Codesign methodology often takes advantage of the standardized semantics, such as

UNIX semantics [51] and Pthreads [52], which greatly ease the interaction between

the software and the hardware.

17

Hthread [52] proposed the design of hardware thread that complies with Pthreads

APIs. In the hthread model, programmers specify their applications as a set of

concurrent threads using the Pthreads semantics. A hardware thread shares memory

with other threads and uses Pthreads synchronization primitives for communication.

ReconOS [53] also exploited thread-level parallelism as hthread does. In particular,

the hardware threads are written in hardware description language (HDL) instead of

being generated from a sequential language. When a hardware thread is created

at runtime, a dedicated software thread is also created to represent its hardware

counterpart. The dedicated software thread can communicate with other software

threads through OS primitives.

BORPH [51] proposed the design of hardware process that conforms to the stan-

dard UNIX process semantics. A hardware process has a peer-to-peer relationship

with software processes or other hardware processes and may communicate with its

peers through UNIX file pipe which provides a one-way flow of data.

However, Moore’s Law will grant more processing units per chip, which will force

programmers to invest in parallelization techniques to increase the performance of

their algorithms. In a multithreaded environment, programmers retrofit fine-grain

locking to parallelize applications. Linux is the de facto OS in high performance

computing. Since the chip industry shifted the paradigm from multicore architec-

ture to many-core architecture, Linux has undergone many improvements addressing

scalability issue. Big Kernel Lock (BKL) was first introduced into Linux to ease the

transition to SMP systems. Essentially, the BKL is a global lock that only one thread

in the kernel space can hold it. The BKL was later replaced by fine-grained locking

mechanisms, such as mutex, spin-lock, and Read-Copy Update (RCU) [54]. More

recently, an example of scalability efforts includes an analysis of Linux scalability to a

48-core machine [55]. In a high core count system, finding an optimal lock granular-

ity for threads can be very challenging. The scalability issue in Linux has motivated

18

several new operating system designs. Factored operating systems (FOS) [56] factors

OS services into a set of communicating servers that are bound to distinct processing

cores. An application sends messages to a server, which then executes the OS code

and returns the result. Such design completely avoids global cache-coherent shared

memory and the use of hardware locks. Multikernel [57] treats the machine as a

network of independent cores and assumes no inter-core sharing at the lowest level.

Each core holds a replication of the machine state. These new OS designs highlight

the pressure a conventional monolithic kernel suffers. In addition, future hardware

will be more difficult to sustain its reliability due to the parameter variation [12]. It

is not clear if conventional monolithic kernel, which is a single point of failure, will

be able to handle faults efficiently.

Our approach differs from these works in that we choose semantics of Python

byte code as the core of our codesign. In the green-white architecture, we synthesize

reconfigurable resources into soft processors to run distributed, lightweight Python

virtual machines. Each lightweight Python virtual machine is capable of executing a

parallel task represented by Python byte codes. Parallel tasks are independent in a

way that a faulty green core is recovered locally without interrupting the application.

2.4 Programming Model

Programming models are roughly divided into three categories [58]: pseudo-

comment directives approaches, language-based approaches, and library extension

approaches. PyDac falls into the library extension category by providing program-

mers with a Python library to map tasks to the distributed Python virtual machines.

The library approach ensures portability of the PyDac framework and eases the adop-

tion of the framework by domain scientists.

Message passing interface (MPI) is currently the dominant programming model in

HPC arena. With the emergence of the chip multiprocessors, a hybrid model called

“MPI+X” is expected to better utilize hierarchical features of the hardware. For

19

example, “MPI+OpenMP” [59], which combines the library extension approach and

the pseudo-comment directive approach, builds a distributed memory programming

model on top of a shared-memory programming model. To leverage increasingly

popular heterogeneous hardware, OpenACC is proposed as an OpenMP-like directive

set that supports accelerators, which is based on the concept of separate host and

accelerator memory but emphasizes implicit memory management, which reduces

programming burden on programmers. However, this hybrid model still requires

programmers to invest a great amount of coding effort to utilize cores effectively [60].

In addition, MPI requires the number of processes to be specified when an application

is launched. In the proposed programming model, the number of processes can be

determined through the runtime system by dynamically adjusting the base case size.

OpenMP [61] is a popular programming paradigm for multicore SMP architec-

tures. It inspires many similar programming models, such as CellSs, StarSs, and

OmpSs. CellSs [62] is a programming model specifically designed for the Cell/BE

processor. Similar to OpenMP, CellSs uses the pseudo-comment directives approach

to create parallel tasks. However, when programmers annotate functions that need to

be offloaded to accelerator cores, the annotation does not necessarily indicate parallel

execution of a code section but a candidate for parallel execution. CellSs also fea-

tures a source-to-source compiler by which applications are composed of two types of

binaries. In fact, CellSs is contained in StarSs [63] as one of the instantiations. The

StarSs programming model supports a wider range of architectures including mul-

ticore processor, GPU, Cell/BE, and cluster. Therefore, it provides a more natural

support for heterogeneity than OpenMP, while the portability is not compromised.

StarSs views architectures that feature separate memory spaces (i.e., host and de-

vice memories) as a two-level memory hierarchy and provides a software layer that

implements memory coherence policies. The runtime system of StarSs automatically

handles the data movement in its two-level memory hierarchy.

20

Sequoia [64] and Merge [65] introduce new language constructs to support map-

reduce patterns. Sequoia abstracts a memory hierarchy as a tree of distributed mem-

ory modules and constrains the compute kernels to operate on leaf nodes. Task

variants are generated statically by the compiler to be portable across levels of mem-

ory hierarchy. In contrast to using a task variant to suit different levels of memory

hierarchy, PyDac focuses on a flatter memory hierarchy and generates tasks that

specifically run on the scratch-pad memory. Merge, on the other hand, maps an ap-

plication to a library of function-intrinsics that encapsulate accelerator-specific code.

Merge’s runtime automatically distributes computation to accelerators. In addition,

Merge’s framework removes OS and driver layers for accelerators. Similar to Merge,

PyDac removes OS and driver layers on green cores to eliminate software bloat. How-

ever, PyDac allows tasks to migrate between cores by leveraging virtual machine byte

codes.

Intel Thread Building Blocks (TBB) [24] is a C++ template library that is based

on a work-stealing scheduler and provides control on low-level parallelism. It supports

many popular design patterns, such as pipeline and divide-and-conquer. It abstracts

away the complexity of using native threading packages (e.g., Pthreads). However,

TBB only aims at shared memory architecture. In contrast, PyDac targets not only

shared memory but also a novel memory subsystem that supports write-once memory

model.

Intel Concurrent Collections (CnC) [25] is a programming model that provides

higher level abstraction than TBB. CnC separates the development of parallel ap-

plications into two distinct stages. The first stage requires a domain expert, who

understands data dependency and control dependency in an application but may

not be an experienced parallel programmer, to write program in terms of high-level

application-specific operations. The second stage relies upon tuning experts, who

have expertise in extracting maximum performance from the computer, to tune the

21

program for a specific architecture. In fact, CnC could be built on top of TBB as

an approach to leverage shared memory computers. CnC imposes several important

rules on domain experts. For example, computation (called “step collection” in CnC)

may not reference any global values. Data (called “item collection”) is referenced by

value instead of by its location. In addition, dependency should be explicitly stated.

Such rules are not existent in serial languages, such as C/C++. These rules together

eliminate race condition at the domain expert level and deliver explicit and useful con-

straints to tuning experts. Similarly, PyDac requires a base case to be referentially

transparent. Each green core may reference data by its value instead of by location.

While CnC provides a higher level abstraction to programmers that may require ad-

ditional software support, PyDac intends to bring high-productivity programming

closer to the hardware. In addition, PyDac focuses on the divide-and-conquer design

pattern and provides a direct hardware support.

Microsoft’s Accelerator [66] hides the GPUs details from programmers by provid-

ing C# APIs (each associated to one array operation) and uses just-in-time compi-

lation. PyDac does not use just-in-time compilation technique but requires some C

libraries running on green cores to be statically compiled.

Parallex [67] is a programming model specifically designed for extreme-scale com-

puting systems. Parallex has a view of global address space where objects (e.g., data

and code) are identified by globally immutable names. Parallel threads in Parallex

are first class objects with immutable names. As such, it is possible to move com-

putation to data, which may reduce data movement and save energy. Instead of

statically allocating threads, ParalleX dynamically schedules multiple threads using

message-driven mechanisms for moving the work to the data.

More recently, there is a renewed interest in task-based parallel programming mod-

els [68]. Programmer are responsible for identifying which parts of the application

can be computed in parallel. A runtime environment maps these parallel runnable

22

computations to the available processors in the system. Cilk [69] is a widely available

extension of C, which is a popular example of task-based parallel programming. Cilk

uses keywords, such as spawn and sync, to identify safely runnable parallel computa-

tions. It does not specify any limitation on the size or the simplicity of these parallel

tasks. Atlas [70] is a Java-based runtime system that adapts the Cilk programming

model, extends work-stealing of Cilk scheduler with a hierarchy, and borrows fault

tolerance mechanism from Cilk-NOW [71]. Satin [72] is also a Java-based runtime

system that extended work-stealing with a cluster-aware capability. To the best of our

knowledge, these runtime systems have not yet supported for heterogeneous many-

core architecture with software-controlled memory.

Another important aspect of programming models is productivity. A group of

parallel languages based on Partitioned Global Address Space (PGAS) include UPC

[73], Titanium [73], Co-array Fortran [74], X10 [58], and Chapel [75]. PGAS enables

writing codes in the global view style in which programmers express their algorithms

and data structures as a whole. These languages tend to provide much more fine-grain

control support.

X10 [58] is Java-based language with new language constructs for high-productivity

high-performance parallel programming. Designed for concurrent and distributed

programming, X10 supports notions of non-uniform data access across nodes, parti-

tioning its global address into a set of places. A place contains a collection of data

and activities that operate on the data. Mapping between places and physical loca-

tions is separate from the X10 program. Regarding data access, each activity reads

and writes a shared-memory location synchronously within a place. To read or write

remote data (i.e., another place), an activity may spawn new activity at a remote

place to perform data access. Specifically, asynchronous activity is created and syn-

chronized by language constructs async and finish. Nested async and finish allow

more than one level of a divide-and-conquer phase. It also provides more fine-grain

23

control on the activity with construct future.

Chapel [75] is a productivity-oriented programming language. Instead of giving

programmers access to the threads via low-level fork/join mechanisms and naming,

it provides high-level abstractions for parallelism using anonymous threads. It re-

lies upon the programmers instead of the compiler to identify parallelism. To make

parallel programming friendly to programmers who are more familiar with sequential

languages, Chapel provides a rich set of built-in data structures and broad-market fea-

tures. To manage data distribution and locality, it provides locality-specific construct

locale for tasks that have uniform access to the machine’s memory.

PyDac also emphasizes programming productivity by coding in a global view

style. In PyDac, each green core has it own address space, but these spaces do

not form a global address space. Another approach is to combine productivity-level

languages and efficiency-level languages. SEJITS [76] leverages just-in-time technique

to dynamically generate efficiency-level code from productive-level code. PyDac does

not use just-in-time compilation technique but requires some C libraries running on

green cores to be statically compiled. PyCUDA and PyOpenCL [77] are toolkits that

improve GPU programming productivity by GPU runtime code generation within

Python language. PyDac also intends to leverage Python programming language for

programming heterogeneous hardware (e.g., the green-white architecture).

CHAPTER 3: GREEN-WHITE ARCHITECTURE

This chapter introduces a novel heterogeneous many-core chip architecture—

“green-white” architecture. PyDac programming framework and green-white archi-

tecture are two aspects of a novel hardware-software codesign. The green-white archi-

tecture intends to ride technological trends into the era of heterogeneous many-core

computing. PyDac focuses on solving consequent technological issues, including per-

formance, resilience, and productivity.

To construct a model of the green-white architecture, we take advantage of two

approaches—simulation and hardware emulation. This chapter discusses the advan-

tages and disadvantages of each approach, presents the design of green-white archi-

tecture, and shows a hardware prototype of green-white architecture, which serves as

an experimental setup for evaluating PyDac.

3.1 Modeling Techniques

Computer architects rely on modeling techniques to gain insights about how well

their design may work. Modeling techniques could be divided into three main cate-

gories, depending on cost and accuracy: analytical modeling, simulation, and emula-

tion.

Analytical modeling is usually applied in the earliest stages of design and focuses

on one or more essential mathematical computer system design formulas. In addition,

this technique intentionally ignores most of the design details, making it both faster

and more inaccurate than other techniques. However, the inherent inaccuracy does

not undermine the importance of this technique. Analytical modeling helps designers

to make high-level design decisions and often leads to insights. For example, Hill et

al. extend Amdahl’s law to many-core processor design [35]. Based on a simple hard-

25

ware cost model, they explore three different many-core designs (i.e., homogeneous,

heterogeneous, and dynamic). Despite its simplicity, they came to an insightful con-

clusion that the heterogeneous architecture results in better performance than the

homogeneous architecture. In fact, Hill et al.’s analytical modeling motivates this

research.

Simulation generates more accurate results than analytical modeling by taking

many design parameters into the model for consideration. It is also relatively cheaper

compared to building hardware prototypes. In addition, some simulators provide

software developers with a fully controlled environment. The developers may stop

code execution and examine machine states freely. Such a feature is very helpful for

debugging code; therefore, computer architects extensively apply simulation. For ex-

ample, the gem5 simulator [78] allows complete software stacks, including unmodified

commercial OS to run on the simulator.

In general, emulation can be divided into two groups: (a) emulation through soft-

ware and (b) emulation through hardware. While the difference between simulation

and emulation through software might seem obscure, the latter approach closely re-

sembles the behavior of real systems (i.e., target designs). For example, QEMU [79]

is a machine emulator that dynamically translates target CPU instructions into host

instructions. Also, computer architects commonly use emulation through hardware

(or hardware emulation). Both industry and academia use many different hardware

emulation approaches. Here, we follow a taxonomy presented in Lieven Eeckhout’s

lecture [80]. A functional emulator is a circuit that is functionally equivalent to a

target design, but does not provide any insight on specific design metrics. Its advan-

tages include faster emulation speed than software simulation, because it can execute

code at hardware speed. A model is a representation that is functionally equivalent

and logically isomorphic with the target design. It allows for some abstraction, which

simplifies model development. A prototype is also a functionally equivalent and log-

26

ically isomorphic representation of the target design. However, it implements the

same structure (i.e., the same hardware description language code) as in the target

design. Because a prototype can be used to project performance, it is a useful vehi-

cle for studying the scalability of software. In particular, many computer architects

implement their prototypes through FPGA devices.

An FPGA device is an integrated circuit in which hardware configuration can be

done after manufacturing process. A user may use hardware description language

to program an FPGA device and implement desired hardware functions. Because

an FPGA device can be re-programmed many times, its non-recurring engineering

cost is relatively lower than an application-specific integrated circuit (ASIC) design.

In addition, FPGA devices also benefit from Moore’s Law. Therefore, the density

of FPGA devices is able to grow with newer generations, which allows designers to

emulate more sophisticated designs. Moreover, FPGA emulation is often hundreds of

times faster than simulation, especially when application software and system software

need to run against hardware design.

3.2 Theoretical Model of Green-White Architecture

Based on technology advancements and trends, this work is motivated to pre-

pare for a hardware design that is: (a) heterogeneous many-core, (b) combined with

scratch-pad memory, (c) likely to experience higher rates of faults, and (d) supported

by a flat memory hierarchy. One such chip architecture is called green-white archi-

tecture, as illustrated in Figure 3.1.

This architecture assumes a view of main memory that is similar to Fresh Breeze

[18]. Specifically, it assumes a flatter memory hierarchy coupled with a set of special

compute cores that are denoted as green core (GC) in Figure 3.1. An on-chip network

connects the active memory subsystem, which actively manages chunks of memory,

to the green cores. Each green core consists of a simple processor and multiple, mul-

tiplexed banks of scratch-pad memories (locally byte-addressable blocks of memory)

27

...

...

GC

GC

GC

GC

Active Memory
Subsystem

On-Chip Network

WC
GC

GC

GC

GC

L1 $

L2 $

Memory Controller

Figure 3.1: High-level block diagram of the green-white architecture.

that are actively managed. This is in stark contrast to the conventional memory

subsystem, which consists of multiple layers of reactive caches. If the cores are over-

subscribed with tasks, the proposed arrangement allows the memory subsystem to

actively manage data transfer to one bank while a task is executing out of another

bank, effectively overlapping memory movement and computation [48]. This allows

for better utilization of off-chip memory bandwidth, helps hide latency, and reduces

energy consumption.

The management of data transfer is illustrated in Figure 3.2. The processor inside

a green core accesses one of the banks of scratch-pad memories in byte-addressable

transaction. Such transaction is the same as the transaction between the level-one

cache and a processor core in conventional designs. The cost of switching between

banks is usually negligible, and latency for accessing a bank is very low. There-

fore, enough banks of scratch-pad memories keep the processor busy continuously,

because the processor is never starved for data. From the processor’s perspective,

it never has a cache miss and need not go fetch data from a level-2 cache (which

is why the memory is flat). The data transfer between the scratch-pad memories

28

Scratch-Pad
Memory

Processor

To the Memory Subsystem

DMA Data
Transfers

Byte-Addressable
Memory Transaction

Figure 3.2: High-level block diagram of a green core.

and the memory-subsystem is through direct memory access (DMA). Typically, a

few kilobytes of data can be moved within one DMA transfer. From an active mem-

ory subsystem’s perspective, one DMA transfer may contain one memory chunk or

multiple memory chunks.

The active memory subsystem is co-designed with a programming model from

the beginning. Briefly, the programming model allows programmers to decompose a

problem into sub-problems. The process ends when a sub-problem is small enough

that a fast direct solution (called a base case in the divide-and-conquer strategy) is

possible. The major criterion for a basic case is that it “fits” into the scratch-pad

memory of a green core. High degree of parallelism fundamentally enables latency

hiding through multiple scratch-pad memories. In addition, with a large number

of parallel tasks that fit into the scratch-pad memory, enough memory transactions

will be available for the memory subsystem to efficiently use the memory bandwidth

and keep green cores busy. These parallel tasks are independent from each other

29

and run on the green cores in the green-white architecture. The working data set

for each task essentially is one or multiple memory chunks managed by the active

memory subsystem. Restricted by the programming model, tasks are allowed to

read a memory chunk many times but to write only once. Since multiple tasks may

“subscribe” to the same memory chunk simultaneously, the active memory subsystem

uses reference counting technique to track the number of subscribers. This number

is important, because it allows the active memory subsystem to move a memory

chunk up and down in the memory hierarchy and keeps the most needed memory

chunk always on-chip. In addition, coherence issue is eliminated through a write-once

policy. If one green core subscribes to a memory chunk, then any attempt of writing

to the memory chunk by other green cores creates a new memory chunk instead of

overwriting on the old one.

The processor core inside the green core is slow, small, and simple, presenting itself

to provide increased system throughput (tasks completed per second). Conceptually,

these processor cores incorporate low-power techniques (low clock rate, no protection)

and feature a simpler design (e.g., reduced pipeline depth, no branch-prediction) to

save silicon footprint and reduce power. To achieve the power efficiency (performance

per watt), these processor cores are designed to be more application-specific and less

reliable.

The chip architecture also includes one or more very fast, complex cores—denoted

as white core (WC). The white cores are present to reduce the latency of sequential

tasks and might be hardened to protect against faults. Conceptually, these cores in-

corporate the latest advances in single-thread performance and incorporate techniques

(higher power, protection, hardened) to increase reliability. The on-chip network con-

nects the green cores to a memory subsystem, providing direct access to the blocks of

write-once memory. The white cores have a conventional memory hierarchy. The two

memory subsystems share (off-chip) DRAM memory resources through a multi-ported

30

memory controller.

In summary, the main assumption is that future devices will be a mix of simple

and complex cores. There will be many simple cores (because they are smaller)

and they will use less energy. However, these advantages come at the expense of

reliability. In contrast, the complex cores (which are very expensive in terms of

energy and resources) will be essential for sequential code and as a safe haven for

critical operations. The active memory subsystem manages data transfer for multiple,

multiplexed banks of scratch-pad memories in green cores so that the processor in

the green core never starves.

3.3 An Implementation of Green-White Architecture

This section describes how to construct a model of the green-white architecture

through a combination of two approaches — simulation and hardware emulation. The

green core is first simulated as a subsystem for debugging and software development.

Then, a hardware prototype of green-white architecture is implemented on an FPGA

device.

3.3.1 Hardware Simulation

ARMv2a soft processor (called Amber [81]) is chosen to represent the processor

in the green core because its source code is freely available. The ARMv2a processor

has a three-stage pipeline, a unified instruction and data cache, and is capable of 0.75

DMIPS per MHz. The green core simulator incorporates one ARMv2a processor core

and several peripheral cores, such as a timer, an interrupt controller, and a UART.

The ARMv2a processor core’s HDL code and peripheral cores can be synthesized

into an FPGA device. The green core simulator also incorporates some modules that

can not be synthesized into an FPGA device. These modules include scratch-pad

memories and a clock generator. The green core simulator uses ModelSimTMand

VCSTM.

The green core simulator also provides a sophisticated interface to software devel-

31

opers. A software developer with the knowledge about the hardware configuration of

the green core simulator may write a wide range of applications and quickly verify

applications. These applications may include a test that consists of tens of lines of

assembly code or a Linux OS. When the simulation is launched, the green core sim-

ulator first invokes an ARM cross-compiler. The ARM cross-compiler compiles the

application into an executable. The information that could not be executed, such as

comments and debugging information, are then stripped to save memory space for the

simulator. After that, a custom tool converts the reduced executable into a memory

image, with which the testbench of the green core simulator is initialized. Once the

ARMv2a processor core is reset, it fetches the first instruction from the memory and

starts execution. With the green core simulator, software development could start

very early, which reduces the risk of debugging a very complex software system on

a hardware prototype. In fact, the virtual machine for green core is developed and

debugged on the green core simulator before it is tested on the hardware prototype.

Even though the green core simulator only simulates a portion of the envisioned

green-white architecture, the software developed on this simulator is easily reusable.

This is because the proposed programming model decomposes a problem into many

stateless tasks. In other words, the output of each task only depends on its inputs.

When such task is developed on the green core simulator, the main goal is to verify

that the output of the task is correct. Once it passes verification, it becomes a “black

box” to the final runtime system running across both green cores and white cores.

Later, if a software bug is suspected on the task running on the green core, the

programmer only needs to examine the input of this task.

3.3.2 Hardware Prototype

In order to evaluate the proposed programming model and the runtime system, a

prototype of the green-white architecture was emulated on a Xilinx Virtex 5 FPGA

device on an ML-510 developer board, as illustrated in Figure 3.3. An overview of

32

SPM

ARM

Xilinx Virtex-5 FPGA

...

DMA Engine

PowerPC 440

L1$

Main Memory

SPM SPM

ARM

SPM

Figure 3.3: High-level diagram of green-white prototype on an FPGA device.

Table 3.1: Summary of the hardware prototype.
FPGA Board Xilinx ML510
White Core 1 PowerPC440 at 400 MHz
Green Cores 6 ARM (v2a) cores at 50 MHz

Each with 160 KB scratch-pad
memory

Memory System DMA assisted by software
Interconnect Bus

this prototype is presented in Table 3.1. This prototype combines two type of cores

(one of which owns multiple, multiplexed scratch-pad memories) and features a flat

memory hierarchy.

Each green core is equipped with an ARM processor core and a 160 KB scratch-

pad memory. The ARM processor is clocked at 50 MHz. The prototype has six ARM

processor cores. The available on-chip resources of the FPGA limits the number of

cores. The scratch-pad memories are single-cycle latency on-chip memories. The

160 KB scratch-pad memory is further divided into three banks: one 128 KB bank

and two 16 KB banks. The three banks are all dual-ported: one port interfaces

to the DMA engine and the other interfaces to the ARM processor core. From the

perspective of the runtime system, the 128 KB bank and 16 KB bank are designed for

33

different purposes, and therefore, they show different memory access patterns. The

128 KB bank holds virtual machine executable and ephemeral contents (e.g., heap

and stack) for the ARM processor core. Therefore, the DMA engine only accesses the

128 KB bank for initialization and fault recovery. Unlike the 128 KB bank, the two

16 KB banks that hold the content of parallel tasks are multiplexed on both ports.

The DMA engine frequently accesses the 16 KB banks for moving tasks and data

around without interfering with execution on the ARM processor core. These 16 KB

scratch-pad memories allow overlapping communication with computation.

The white core is a PowerPC 440 core clocked at 400 MHz, with 2.0 DMIP-

S/MHz performance [82]. The PowerPC 440 core integrates a superscalar seven-

stage pipeline, separate instruction and data caches, and a memory management unit

(MMU). The Xilinx Virtex 5 FPGA device on the ML-510 developer board provides

two PowerPC 440 hard cores. However, only one PowerPC 440 core is utilized in this

work, due to the capability of the OS. A bus and a DMA engine are implemented as

the system interconnect, because it was more expedient than a network-on-chip.

The active memory subsystem discussed in the previous chapter is greatly sim-

plified in the prototype. The DMA is a bidirectional streaming engine transferring

data between the scratch-pad memories and the main memory. This engine takes

the “starting address” and “data length” as input, and streams the data without in-

volving the white core or the green core. A memory chunk anticipated by the active

memory subsystem is emulated through data segments specified by the “starting ad-

dress” and “data length.” A software module in the runtime system actually manages

data transfer between main memory and scratch-pad memories without a fully active

memory subsystem.

CHAPTER 4: DESIGN OF PYDAC PROGRAMMING FRAMEWORK

A programming framework normally includes application programming interfaces

(APIs), necessary libraries, compilers, and a runtime system. It provides an abstrac-

tion layer to users who develop application-specific software. Such abstraction visible

to programmers is also known as a programming model. The runtime system also

plays an important role. A runtime system, which is not visible to users, interfaces

to programming model and hardware and provides several responsibilities: (a) it ab-

stracts the underlying hardware, (b) it implements the core behavior of programming

model and programming language, and (c) it maps the core behaviors of program-

ming model and language to hardware and manages resources to meet requirements,

such as power and performance.

Heterogeneous many-core architectures (e.g., green-white architecture) offer a

good balance between single-threaded performance and multithreaded throughput.

Such systems impose many challenges on the design of a programming model and a

runtime system. Specifically, these include: (a) how to fully utilize the chip’s per-

formance, (b) how to manage heterogeneous, unreliable hardware resources, and (c)

how to generate and manage a large amount of parallel tasks.

In this chapter, details are first given about a Python-based programming model

called PyDac, which supports a two-level programming model based on the divide-

and-conquer strategy. This programming model supports green-white architecture.

To test the spectrum, PyDac also runs on conventional SMP architecture. We then

present the design of a runtime system that is specifically co-designed with green-

white architecture. The runtime system seamlessly manages the parallel tasks, system

resilience, and all inter-task communication with architecture support.

35

4.1 Programming Model

The primary goal of the programming model is to make it possible to write pro-

grams that generate a very large number of parallel tasks without a great deal of

programming effort. A functional style of programming [83] is very good at this

but is generally viewed as difficult for computational scientists to use. In addition,

there is a popular belief that the functional programming style leads to a mediocre

performance. Pankratius et al. countered this belief through an empirical study

evaluating Scala—a multi-paradigm programming language—and Java [84]. Their

controlled study showed that programmers whose programs result in superior perfor-

mance wrote about half their programs in a functional style and the other half in an

imperative style. The result indicates the promise of the combination of the func-

tional and the imperative programming styles. This is because using the imperative

style may compensate the functional style for the potential performance loss.

The main idea in this programming model is to implement a two-level program-

ming paradigm. It borrows the concept of the divide-and-conquer strategy from the

functional programming style to decompose data and create tasks. The two-level pro-

gramming paradigm uses the imperative style for individual tasks. The PyDac pro-

gramming model is implemented with the Python programming language. Python is

considered an easy language to learn, it supports both the functional and imperative

styles, and it has popular modules to support scientific applications. (However, there

is no reason that other high-level programming languages could not be used for this

model.) Specifically, a programmer who wants to use this programming model needs

to learn two concepts. The first is the divide-and-conquer strategy, and the second

is how to express it in Python. In this section, a two-level programming model that

suits both the SMP platform and a heterogeneous many-core platform is presented.

Cases are studied to illustrate how applications are developed under this model.

36

4.1.1 Divide-and-Conquer Strategy

Divide-and-conquer is a well-known technique for designing algorithms in the com-

puter science community. Three steps are usually involved in this technique: divide,

conquer, and combine. In other words, the divide-and-conquer strategy recursively

decomposes a problem into smaller sub-problems, which in turn are decomposed into

sub-sub-problems, and so on. The process ends when a sub-problem is small enough

that a fast direct solution is possible. Many algorithms based on this strategy have a

clear performance model described by the Master theorem [85] when base case sizes

are equal. For many algorithms based on this strategy, the number of base cases grows

exponentially with input size, which helps to uncover a significant large amount of

parallel tasks through a finite number of statements in the program.

The divide-and-conquer strategy is also widely applicable. The applications based

upon this strategy include fast Fourier transform (FFT) [86], sorting [87], many linear

algebra problems [88, 89], data visualization [90], biological sequence alignment [91],

pattern recognition [92], neural network [93], image processing [94], graph algorithm

[95], search algorithms, and geometry functions. There are other important algorithm

design paradigms, such as dynamic programming. We focused on the divide-and-

conquer strategy in this work, and other algorithm design paradigms are beyond the

scope of this dissertation.

The divide-and-conquer strategy provides an opportunity to design algorithms

without knowing hardware parameters, such as cache size and cache-line length.

These algorithms are also known as cache-oblivious algorithms [96]. Such algorithms

have many unique features [97]: (a) algorithm designers could design and analyze

their algorithms in a much simpler two-level memory model, (b) the algorithm de-

signed for the two-level memory model works well on an arbitrary many-level memory

hierarchy, and (c) the designers could port code to machines with a different memory

hierarchy easily. Future machine architecture may exhibit a deeper hierarchy to pro-

37

grammers. It is because the system-level size will grow and processor cores will likely

be organized into a hierarchy. Designing an algorithm for a machine with a deep

hierarchy will be more difficult. In addition, manual management of data movement

to achieve good performance and good power efficiency is a challenging task. The

cache-oblivious algorithm based on the divide-and-conquer strategy can alleviate such

burdens on programmers.

Lastly, the divide-and-conquer strategy favors an asynchronous and local commu-

nication pattern as opposed to a synchronous and global one. In a highly parallel

system, the synchronous behavior is very sensitive to variance. For example, Petrini

et al. found that substantial performance loss occurred when an application resonates

with non-orchestrated system activities on the 8,192-processor ASCI Q machine [98].

The asynchronous communication pattern is less sensitive to such variance.

4.1.2 Two-Level Programming Model

The programming model in the PyDac programming framework embodies the

divide-and-conquer strategy in a two-level style. At the higher level of this model, the

recursion follows the functional programming style and decomposes the data. At the

lower level, the base case is solved in an imperative style, which is strongly embraced

by the computational science community. Thus, the programming model follows a

historically successful approach of using productivity-enhancing techniques—such as

object-oriented programming with C++/Java and communicating sequential process-

ing programming with MPI—at the high-level and imperative-style programming at

the low-level.

Figure 4.1 illustrates a common code template that assists programmers to pro-

duce code under the programming framework. The code template starts with a func-

tion that solves base cases that need to be referentially transparent. In other words,

programmers are not allowed to make references to global variables in the base case.

For example, for a low-level language such as C, global variable is not allowed. For

38

the Python language, the keyword “global” is not allowed. Also, the programmer is

not allowed to pass mutable object to the function.

Function base case(sub-problem) is

Solve the sub-problem directly;
return result;

end

Function divide and conquer(problem, base case size) is
Data: Data to be decomposed or data to be processed in base case.

User-specified base case size.
Result: Merged result or direct result from a base case.

if problem size is small enough then
Invoke the function base case();

else
Break the problem into smaller sub-problems;
Invoke the function divide and conquer() and pass sub-problems ;
Merge results from sub-problems;

end
return result;

end

Figure 4.1: PyDac algorithm template

The idea of breaking a large problem into smaller sub-problems, which eventu-

ally leads to a basic problem, is commonly used by functional programming lan-

guages. Despite its advantage in eliminating memory coherence problems, functional

language has been largely rejected by the scientific programming community. In ad-

dition, the computational science community strongly embrace the imperative-style

programming. Therefore, when implementing this programming model, we avoid a

pure functional programming language. Instead, we are in favor of a multi-paradigm

language that supports both the functional style and the imperative style. In addition

to multi-paradigm, language popularity, especially in the scientific community, is one

big concern.

This programming model is implemented in the Python programming language,

which is known for clear syntax, ease of programming and multi-paradigm language

39

(e.g., object-oriented (OO), imperative, and functional programming styles). Python

also provides flexibility in that its functionality can be extended by attaching libraries

of C functions (or even C with extensions for hardware accelerators [99]) into Python

executable. Python has been a desirable language for quick prototyping applications

in the high-performance computing field. Libraries, such as NumPy [100] and SciPy

[101], further allow effective usage of Python in scientific computing. Recent devel-

opments, such as MPI [102] and Cuda [99], have demonstrated the interoperability

of Python with other languages and programming models.

4.1.3 Fibonacci Algorithm Coding Example

To illustrate how this programming model works, we use Fibonacci algorithm im-

plementation as an example. Specifically, the Fibonacci algorithm divides a problem

Fn into two sub-problems Fn−1 and Fn−2 until it reaches the base case F1 and F0. Fig-

ure 4.2 illustrates the implementation of Fibonacci algorithm under this programming

model. Our APIs hide the Python implementation from the programmer. In fact,

this coding example runs on the standard Python implementation (i.e., CPython)

and a variant called Stackless Python [103].

Specifically, line 16 shows how a problem is decomposed into two sub-problems.

Each sub-problem is represented by a Python tuple, which is enclosed by parentheses.

All sub-problems are contained in a Python list, which is enclosed by square brack-

ets (i.e., subpb). At line 17, the sub-problems and the decomposition function (i.e.,

fib op()) are passed into one of the APIs—divide(). The divide() interfaces into the

runtime system that makes the decision on spawning parallel tasks. Unlike the com-

municating sequential processes (CSP) programming model, the communication is

hidden from application developers, and the runtime system carries out synchroniza-

tion. Line 18 presents the “merge” phase in Fibonacci algorithm. In particular, the

results of sub-problems are stored in a Python list (i.e., results) which has one-to-one

correlation with the Python list containing sub-problems.

40

1 def fib_base(n):

2 """Base case in imperative style

3 """

4 a, b = 0, 1

5 for i in range(n):

6 a, b = b, a+b

7 return a

8
9

10 def fib_op(n, bc_size):

11 """Divide-and-conquer in functional style

12 """

13 if (n <= bc_size):

14 result = ship(fib_base, [n])

15 else:

16 subpb = [(n-1, bc_size), (n-2, bc_size)]

17 results = divide(fib_op, subpb)

18 result = results[0] + results[1]

19 return result

Figure 4.2: Fibonacci algorithm implemented in PyDac.

A pivotal parameter bc size (short for base case size) sets the boundary between

the high level and the low level (line 13). Programmers determine the base case

size and may exploit it for performance and resilience purposes. For instance, on an

architecture that supports local recovery of a faulty processor core, this parameter

allows dynamical adjustment of the workload size on the faulty processor core for least

recovery overhead [104]. As shown at line 14, programmers may use the other API—

ship()—to tell the runtime system when the sub-problem becomes small enough.

The runtime system makes the decision whether or not to solve the sub-problem on

co-processors (i.e., green cores).

4.2 Design of PyDac Runtime

The PyDac runtime abstracts the underlying hardware into distributed virtual

machines. Therefore, a complete PyDac runtime consists of the following software

components: (a) distributed virtual machines, (b) Python modules (which includes

41

PyDac
Runtime

VM

WCWC WC GC

Application

... ...

Task

...VM

GC

Task

VM

GC

Task

Linux Kernel

NumPy

Stackless Python VM

User-Level Thread Library

Dispatcher

SciPy

Programming Model Support

Dynamic Translation

NOC

PyDac
Distributed
Runtime

KEY : WC GC NOCVM White Core Green Core Network-on-ChipVirtual Machine Hardware

Figure 4.3: Proposed resilient runtime system on green-white architecture.

a user-level thread library and popular Python packages, such as NumPy [100]), and

(c) independent and parallel tasks. Figure 4.3 presents a very high-level view of this

design. The key features of this runtime system are:

• The runtime system is distributed as multiple virtual machines (VMs)

• OS layer is removed from the software stack on the green cores

• A user-level thread library provides the programming model support

• It reuses Python modules that are popular in the computational science com-

munity

PyDac consists of two types virtual machines: a full-featured Python interpreter

that supports many standard libraries and a lightweight Python interpreter (code-

named PyMite [105]) designed for micro-controllers. The lightweight Python inter-

preter was chosen for the current implementation for two reasons. First, its memory

footprint is small, which makes it fit into an on-chip scratch-pad memory. Therefore,

it does not generate memory requests to the off-chip memory. Secondly, it is built on

the same set of bytecodes (version 2.6) as the full-fledged Python interpreter. Due to

the same bytecode version, a task can be migrated between VMs.

42

Dynamic Translation

app.py

def base():
 #Base case

def dac():
 #Divide &
 #conquer

....

....

Dispatcher

VMVMVMVM

Data
Obj

Function
Obj

VM Monitor

VM

A

B

C

D 1

2

3

Problem

Base Case

....

Figure 4.4: Control flow from dividing a problem to base case computation. Notation
A-B-C-D shows mapping tasks to distributed virtual machines. Notation 1-2-3 shows
monitoring and local recovery.

The user-level thread library in Figure 4.3 is the glue layer between the full-

featured Python interpreter and the lightweight interpreter. Specifically, it consists

of three sub-modules: an interface to programming model, a dynamic translation

layer, and a dispatcher.

This programming model uses a Python implementation called Stackless Python,

which has tasklets. (We implemented this programming model with CPython. That

implementation uses Linux processes instead threads. Our experiments show that

Stackless Python is about 100× faster.) Python has not yet been proven as a scalable

solution due to Global Interpreter Lock (GIL) in the default Python implementation

— CPython [106]. CPython uses a more heavy-weight mechanism than threads for

concurrency. GIL serializes Python’s own execution but does not affect the execution

of non-Python threads. In this divide-and-conquer computation model, Stackless

Python [103] replaces CPython for the benefits of thread-based programming.

43

In the divide-and-conquer programming paradigm, programmers specify a func-

tion name and input data for a compute kernel that solves a basic problem. The dy-

namic translation layer converts the function object (which is treated as a first-class

object in Python) and input data into two C language byte arrays. The lightweight

interpreter treats a function/data pair as an independent parallel task. A function

byte array can be distributed to multiple VM instances in single program multiple

data (SPMD) fashion. As soon as the basic problem is solved, the dynamic translation

layer re-constructs the computation results into objects recognizable to full-fledged

Python.

In the PyDac runtime framework, resilient execution mainly comes from isolation

of function objects and data objects. These objects are scheduled to run on green

cores. If a process running on a green core is hit by a fault, then the dispatcher can

restart it. Since the OS has been removed from the software stack on green cores,

restarting a green core does not affect the OS running on the white core.

Segregation of input parameters for parallel base case tasks enables a functional

view of scratch-pad memory, where input parameters of one task cannot be modified

by other tasks. Also, the internal memory of one task is hidden, and no part of a

task can depend on values outside of internal memory or input memory of the task.

Therefore, the resulting tasks are completely independent.

As is presented in Figure 4.4, the programmer recursively divides the problem

until it reaches the base case. Then, the base cases are translated by the dynamic

translation layer into a byte sequence, the format of which is recognizable to Pymite.

A dispatcher running as a daemon on the complex core schedules base case tasks and

drives multiple VM instances.

4.3 Concluding Remarks

The PyDac programming model is a two-level programming model based on the

divide-and-conquer strategy. This programming model allows generating a large

44

amount of parallel and asynchronous tasks through recursion. A high degree of

parallelism is a key to fully utilizing future high-performance computing systems.

Two-level design reduces incurred programming complexity. The high-level allows

programmers to focus on decomposing problem. Through such a decomposition pro-

cess, the complexity of a problem is reduced to a degree that problem solving can be

done in an imperative style and can be optimized by a close mapping to hardware.

The proposed PyDac programming model is implemented in Python programming

language.

CHAPTER 5: EVALUATION

The hardware prototype of the green-white architecture was used to evaluate

the proposed PyDac programming framework. Several micro-benchmarks were de-

veloped under the PyDac programming model. The performance of running micro-

benchmarks on the hardware prototype was then analyzed. Lastly, the programming

productivity was carefully reviewed through case studies.

5.1 Performance Evaluation

5.1.1 Benchmark Suite

In order to exercise the prototype hardware of green-white architecture, a synthetic

benchmark suite containing compute kernels was developed. These compute kernels

are common seen in high-performance computing area, and they are developed under

the PyDac two-level programming model.

The Strassen micro-benchmark [107] partitions a square matrix into four equally

sized block matrices, which are then further divided in a recursive manner until they

become small enough that the sub-matrix and local variables fit into the scratch-pad

memory of a green core. The time complexity of the Strassen’s algorithm is better

than conventional triple-loop matrix multiplication for large matrices; however, it is

the large degree of parallelism that makes this operation attractive.

The Block Matrix micro-benchmark partitions a multiplicand matrix and a multi-

plier matrix into two equally sized block matrices, by row and by column respectively.

These block matrices are further divided recursively in the same manner (by row or

by column). The resultant matrix from a base case is concatenated with other sub-

matrices into the final product.

This Merge Sort micro-benchmark sorts a set of integer keys, dividing the array

46

into two equally sized sub-arrays. The sub-array is recursively divided until it fits

into the scratch-pad memory. When a base case returns a sorted array, the runtime

program fetches the sorted sub-arrays and merges them into the final sorted array.

The Closest Pair micro-benchmark finds the pair of points with the smallest

Euclidean distance between them, recursively dividing the point set into two subsets.

The base case finds the closest pair points in each smallest subset. When combining

the result, the application also determines if there is any pairing across the two

different subsets.

The K-means micro-benchmark classifies a given data set through a number of

clusters. Specifically, this application handles two-dimensional data set. The com-

putation of Euclidean distance between a point and centroids can be distributed to

green cores. White cores are in charge of finding the new centroids by taking the

mean of all the data points in each cluster.

5.1.2 Scalability

The key goal of the scalability study was to observe the overheads. If dynamic

translation and dispatching of the tasks dominated the execution time, then the

proposed approach would need to be revisited.

We ran the five micro-benchmarks on the green-white architecture hardware pro-

totype and measured the wall clock time for each micro-benchmark. Figure 5.1 shows

the scalability of each micro-benchmark as compared to an ideal speedup. All five

micro-benchmarks demonstrate performance improvement over the range of available

green cores. In particular, Strassen and block matrix multiplication benefit the most

from six green cores and achieved more than 4× speedup. Strassen spawns 2, 401 par-

allel tasks onto the green core while block matrix spawns 256 parallel tasks. When

all six green cores are used, the Strassen and block matrix spent 1.5% of the runtime

on combining computation results into final arrays. The percentage of sequential ex-

ecution in runtime obviously had an impact on speedup. Compared to Strassen and

47

block matrix multiplication, the performance of merge-sort grows slower and appears

to level off around 3× speedup. Although merge-sort spawns a large number of tasks

(2, 048), a detailed look at the algorithm reveals that when using all six green cores,

41.2% of the run time is spent on the white core, assembling solutions from sorted

sub-arrays. This suggests that it would be advantageous if some of the assembly

process could be implemented with parallel tasks and kept on the green cores. The

closest-pair micro-benchmark benefits the least from adding more green cores since

its sequential execution takes 97.0% of total runtime. This micro-benchmark appears

to be a poor candidate for this architecture, or it may need more work to exploit

parallelism.

Figure 5.2 and Figure 5.3 show the performance impact of adding the second bank

of scratch-pad memory to the system respectively with one green core utilized and six

green cores utilized. When only one green core is utilized, all five micro-benchmarks

demonstrate performance improvement after the second bank of scratch-pad memory

is added. In particular, merge-sort and k-means gain about a 40% performance

improvement. When six green cores are utilized, all micro-benchmarks except closest-

pair micro-benchmark benefit from the second bank of scratch-pad memory.

5.1.3 Resilience

5.1.3.1 Fault Injection Mechanism

We have implemented five micro-benchmarks on the prototype green-white archi-

tecture and used fault injection mechanism to test fault recovery mechanism provided

by the runtime system. Our fault model includes two scenarios: (a) an unreliable ex-

ecution affects the output of instructions, and (b) the unreliable execution affects the

instructions themselves. We use different approaches to emulate faults for the two

scenarios.

For the first scenario, we flipped a bit in the input arguments of a task. The fault

injector was actually implemented in the dynamic translation layer. When a task is

48

 0

 1

 2

 3

 4

 5

 6

1 2 3 4 5 6

S
p
e
e
d
u
p

Number of Green Cores

Strassen
Block Matrix
Merge Sort
Closest Pair
K-means
Ideal Speedup

Figure 5.1: Speedup on green-white architecture. Strassen multiplies two 64×64
integer matrices with the base case set to 4×4. Block matrix micro-benchmark mul-
tiplies two 32×32 integer matrices with a 32×2 base case size. Merge-sort sorts a
8192-element integer array with a base case set to 4. Closest-pair finds the pair of
points from a set of 1024 two-dimensional points with a base case set to 4 points.
K-means clusters 1024 two-dimensional points into 4 groups with a base case set to
4 points.

49

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Strassen

Block-M
atrix

M
erge-Sort

C
losest-Pair

K-m
eans

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

1-spm
2-spm

Figure 5.2: The performance impact of scratch-pad memory on green-white architec-
ture. Only one green core is utilized. Strassen multiplies two 64×64 integer matrices
with the base case set to 4×4. Block matrix micro-benchmarks multiplies two 32×32
integer matrices with 32×2 base case size. Merge-sort sorts a 8192-element integer
array with a base case set to 4. Closest-pair finds the pair of points from a set of
1024 two-dimensional points with a base case set to 4 points. K-means clusters 1024
two-dimensional points into 4 groups with a base case set to 4 points.

50

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Strassen

Block-M
atrix

M
erge-Sort

C
losest-Pair

K-m
eans

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

1-spm
2-spm

Figure 5.3: The performance impact of scratch-pad memory on green-white archi-
tecture. Six green cores are utilized. Strassen multiplies two 64×64 integer matrices
with the base case set to 4×4. Block matrix micro-benchmarks multiplies two 32×32
integer matrices with 32×2 base case size. Merge-sort sorts a 8192-element integer
array with a base case set to 4. Closest-pair finds the pair of points from a set of
1024 two-dimensional points with a base case set to 4 points. K-means clusters 1024
two-dimensional points into 4 groups with a base case set to 4 points.

51

migrated from the white core to the green core, the input arguments are represented

by a C byte array. A bit-flip in the C byte array associated to input argument

emulates data corruption. Such faults are silent unless a voting mechanism is used

to detect the injected fault or correct the error in the dispatcher, and the runtime

system generates an error message when it detected faulty results through voting.

The second scenario is more complicated, because such fault can be benign,

masked by the hardware protection, or crash the program. We assume that our

green core does not have hardware protection and such faults always result in pro-

gram crashing. In other words, a virtual machine running on the green core crashes

due to this type of fault. Here the focus is on recovery mechanisms; a complete fault

detection scheme for this type of fault is beyond the scope of this paper. When the

fault is injected, we assume that the executable of the virtual machine is corrupted

and requires a reload. The function and input arguments are not reloaded since the

cost is around 10% of loading the virtual machine executable. The hardware is reset

to a fresh state. Following a re-computation, the results are then sent to the voters.

5.1.3.2 Results

The goal of the proposed runtime is to add system resilience, even if the underlying

hardware is unreliable. To demonstrate this, two key performance questions were

investigated. Scalability of the micro-benchmarks was examined to see the impact of

the runtime system overhead. Resilience characteristics were then explored to see how

redundancy choices impact the time to find the correct solution of each benchmark. A

typical execution for these micro-benchmarks runs for about 30−60 seconds. In many

large cluster environments, this is far too short of a run; however, with a hardware

emulator, it is very easy to get precise measurements where execution times represent

billions of clock cycles. There is no focus on absolute execution times. While the

hardware emulator is very fast when compared to a software simulation, one cannot

compare a 50 MHz processor core to a multi-GHz CMOS processor. To understand

52

the role of these experiments, it is important to refer to the architectural assumptions

explained in Chapter 2.

PyDac offers the ability to implement resilient computation of tasks scheduled

on the green cores. This is user-defined and entirely transparent, meaning that the

application does not need to be modified in any way to compute resiliently. This

greatly reduces the programmer overhead for developing resilient applications and,

particularly on lower-reliability hardware, can be beneficial.

This is implemented in PyDac with two different degrees of Redundant Multi-

Threading (RMT): Dual Modular Redundancy (DMR) or Triple Modular Redun-

dancy (TMR). TMR is perhaps the more familiar concept where tasks are triplicated

and processed independently by different green cores. Results are compared by the

white core and voted on such that any two that produce the same answer “win.” In

the extremely rare case when none of the three results are the same, the entire set of

three tasks are recomputed (rolled-back) and tried again.

DMR is a simpler form of the above voting technique where each task is duplicated

and voted on. In this case, if the voting does not match then both are recomputed.

DMR generally performs better in situations where systems are somewhat unreliable.

TMR works well in systems with real-time sensitivities (e.g., a roll-back might cause

too much delay in a result) as well as systems that are highly unreliable.

To demonstrate this capability in PyDac, micro-benchmarks were executed in

DMR, TMR, and without any redundancy. These results are presented in Figure 5.4.

Then, a single bit-flip fault was injected into each application during a DMR and

TMR run. In Figure 5.4, DMR-0 and TMR-0 indicate runs without any faults and

demonstrate the overhead imposed by this feature in PyDac. The DMR-1 and TMR-

1 bars depict the runtime when a single fault was injected. It is important to realize

that in all of these runs, the micro-benchmarks produced the correct answer; even in

the presence of a soft error.

53

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Base-line

D
M

R
-0

D
M

R
-1-D

D
M

R
-1-L

TM
R
-0

TM
R
-1-D

TM
R
-1-L

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e

Type of RMT

Strassen
Block Matrix
Merge Sort
Closest Pair
K-means

Figure 5.4: Normalized runtime on green-white architecture. All six green cores are
utilized. Base-line are tests without RMT support. DMR-0 and TMR-0 are tests that
enable RMT in a fault-free environment. DMR-1 and TMR-1 are tests that enable
RMT while the fault injector injects a single soft error.

54

As can be seen from Figure 5.4, the overhead imposed by this technique is largely

dependent on the ratios between white and green core computation time. While

clearly this technique has performance implications as it creates 2× (DMR) and 3×

(TMR) the number of green tasks, the inclusion of it in PyDac eases its adoption for

programmers. Strassen’s algorithm created over 2, 400 green core tasks in the base-

line approach. Clearly this number grows to 4, 800 and 7, 200 in the cases of DMR

and TMR. One would expect considerably more overhead for scheduling these tasks

on only six green cores but PyDac handles all of this easily and with low overhead.

As we continue to scale to larger FPGAs, we expect to be able to deploy more green

cores and this large number of tasks would be more easily processed.

Notice in Figure 5.4 that the closest-pair algorithm does not incur much overhead

from redundancy. This is because, this algorithm runs almost entirely on the white

cores (i.e., not well parallelized). As such, there is very little overhead imposed by

redundant green tasks.

One thing to consider is that with the ease of implementing resilient computa-

tion under PyDac, one could target hardware that is considerably less reliable than

conventional architectures. These less-reliable architectures often come with major

improvements in power and/or performance. This approach focuses on time to com-

pletion rather than instructions per second. Furthermore, PyDac could be a lot more

sophisticated with its use of RMT if it had access to probing information about the

expected fault rates of the machine. For instance, it might run in base-line mode

entirely and only start implementing RMT on some of the cores if they identified

hardware problems. Implementing this kind of approach outside of a task-based pro-

gramming model is costly and complex for a programmer, and PyDac supplies this

through a simple switch.

55

5.2 Evaluating Programming Productivity by Case Study

The programming productivity of the proposed programming model is evaluated in

this section through case studies. Specifically, three numerically intensive algorithms

coded in PyDac illustrate the programming productivity. A commodity SMP server

was used to verify the micro-benchmarks presented in this section. They all stand

up to the double-precision floating point tests. (Due to the lack of floating point

support on green core in the green-white hardware prototype, symmetrical eigenvalue

decomposition and FFT were not tested on the green-white hardware prototype.

Strassen’s algorithm was tested only with integer inputs on the hardware prototype.)

The primary goal of these micro-benchmarks is not to compare absolute performance

between a commodity server and the green-white hardware prototype; rather, the

goal is to make a subjective argument and rely on the reader’s judgment to assert

our point. The detailed analysis for the micro-benchmarks is presented at the end of

this section.

5.2.1 Strassn’s Algorithm

As illustrated in Figure 5.5, Strassen’s algorithm [107] partitions a square matrix

into four equally sized block matrices. These block matrices are further divided in

a recursive manner until they become small enough. The time complexity of the

Strassen’s algorithm is better than conventional triple-loop matrix multiplication for

large matrices; however, it is the large degree of parallelism that makes this operation

attractive.

Figure 5.6 illustrates the recursive implementation under PyDac. We used NumPy

[100] version 1.6.1—a package for scientific computing with Python—to verify that

the implementation produces correct results. In particular, the input matrices con-

tain randomly generated double-precision floating-point numbers with the standard

normal distribution. The result of our implementation is equal to the result from the

NumPy package up to at least the eleventh decimal.

56

Data: Let A and B be two 2n × 2n matrices
Result: The algorithm computes the matrix multiplication of C = A×B

if Matrices A, B are smaller enough then
Directly compute C = A×B;
return Matrix C ;

else

Partition A =

[
A00 A01

A10 A11

]
and B =

[
B00 B01

B10 B11

]
, where each sub-matrix is

2n−1 × 2n−1 ;
Reorganize sub-matrices in a way that:

Q0 = (A00 + A11) × (B00 +B11)
Q1 = (A10 + A11) ×B00

Q2 = A00 × (B01 −B11)
Q3 = A11 × (−B00 +B10)
Q4 = (A00 + A01) ×B11

Q5 = (−A00 + A10) × (B00 +B01)
Q6 = (A01 − A11) × (B10 +B11)

Call this algorithm with Q0, Q1, Q2, Q3, Q4, Q5, Q6 as output;

Form matrix C =

[
C00 C01

C10 C11

]
in a way that:

C00 = Q0 +Q3 −Q4 +Q6

C10 = Q1 +Q3

C01 = Q2 +Q4

C11 = Q0 +Q2 −Q1 +Q5

return Matrix C ;

end

Figure 5.5: Strassen’s algorithm

5.2.2 Symmetrical Tridiagonal Eigenvalue Decomposition

The symmetric tridiagonal eigenvalue decomposition [108] converts a symmetrical

tridiagonal matrix into two half-sized tridiagonal matrices plus a rank-one modifi-

cation. Each half-sized tridiagonal matrix could be recursively partitioned until the

sub-matrix is small enough for a direct solution. The base case returns the eigenvalues

and eigenvectors of input sub-matrix. At the merge stage, the algorithm combines

returned eigenvalues and eigenvectors into a temporary matrix, which is a diagonal

matrix plus a rank-one update. The temporary matrix is useful in that it simplifies

the process of finding the final eigenvalues. The final eigenvectors also take advantage

57

1 def strassen_base(matrix_a, matrix_b):

2 """nxn matrix multiplication

3 """

4 ret_mat = numpy.dot(matrix_a, matrix_b)

5 return ret_mat

6
7 def strassen_div(matrix):

8 # Divide array into two equal arrays by row

9 matrix_1, matrix_2 = numpy.split(matrix, 2, 0)

10 # Divide sub arrays into four equal arrays by column

11 submat_11, submat_12 = numpy.split(matrix_1, 2, 1)

12 submat_21, submat_22 = numpy.split(matrix_2, 2, 1)

13 return submat_11, submat_12, submat_21, submat_22

14
15 def strassen_concat(m11, m12, m21, m22):

16 m1 = numpy.concatenate((m11, m12), 1)

17 m2 = numpy.concatenate((m21, m22), 1)

18 m = numpy.concatenate((m1, m2), 0)

19 return m

20
21 def strassen_op(matrix_a, matrix_b, bc_size):

22 """Data decomposition in functional style.

23 """

24 if (matrix_a.shape[0] == bc_size):

25 result = ship(strassen_base, [matrix_a, matrix_b])

26 else:

27 a_submatx_11, a_submatx_12, a_submatx_21, a_submatx_22 =

strassen_div(matrix_a)

28 b_submatx_11, b_submatx_12, b_submatx_21, b_submatx_22 =

strassen_div(matrix_b)

29
30 subpb = [((a_submatx_11 + a_submatx_22), (b_submatx_11 +

b_submatx_22), bc_size),\

31 ((a_submatx_21 + a_submatx_22), b_submatx_11, bc_size),\

32 (a_submatx_11, (b_submatx_12 - b_submatx_22), bc_size),\

33 (a_submatx_22, (b_submatx_21 - b_submatx_11), bc_size),\

34 ((a_submatx_11 + a_submatx_12), b_submatx_22, bc_size),\

35 ((a_submatx_21 - a_submatx_11), (b_submatx_11 +

b_submatx_12), bc_size),\

36 ((a_submatx_12 - a_submatx_22), (b_submatx_21 +

b_submatx_22), bc_size)]

37
38 results = divide(strassen_op, subpb)

39
40 c11 = results[0] + results[3] + results[6] - results[4]

41 c12 = results[2] + results[4]

42 c21 = results[1] + results[3]

43 c22 = results[0] + results[2] + results[5] - results[1]

44 result = strassen_concat(c11, c12, c21, c22)

45 return result

Figure 5.6: Strassen’s algorithm implemented in PyDac

58

of the temporary matrix indirectly. Figure 5.7 illustrates this algorithm in details.

Data: Let T be a square (N ×N) symmetric tridiagonal matrix.
Result: The algorithm computes the eigenvalue decomposition of T = QΛQT ,

where the diagonal Λ is the square (N ×N) matrix of eigenvalues and
Q is orthogonal.

if T is smaller enough then
Directly compute T = QΛQT ;
return (Λ, Q);

else

Partition T =

[
T1 0
0 T2

]
+ ρuuT , where ρuuT is a rank-one modification.;

Call this algorithm with T1 as input and Λ1, Q1 as output;
Call this algorithm with T2 as input and Λ2, Q2 as output;
Form D + ρvvT from Λ1, Λ2, Q1, Q2, where ρvvT is a rank-one update;
Find the eigenvalues Λ and the eigenvectors Q′ of D + ρvvT ;

Form Q =

[
Q1 0
0 Q2

]
Q′ which are the eigenvectors of T ;

return (Λ, Q);

end

Figure 5.7: A divide-and-conquer algorithm for symmetric tridiagonal eigenvalue
problem

Figure 5.8 illustrates the recursive implementation under PyDac. NumPy version

1.6.1 was used to verify the implementation producing correct results. In particu-

lar, the input symmetrical tridiagonal matrix contains randomly generated double-

precision floating-point numbers. The result of our implementation is equal to the

one computed by the routine in the NumPy package (i.e., numpy.linalg.eig()) up to

at least the eleventh decimal.

5.2.3 Recursive FFT

As illustrated in Figure 5.9, the recursive fast Fourier transformation (FFT) algo-

rithm is also known as the Cooley-Tukey algorithm [86]. To demonstrate the program-

ming model, we implement the simplest form—radix-2 decimation-in-time FFT—of

the Cooley-Tukey algorithm. With each recursive stage, inputs are partitioned into

two equal-sized groups (i.e., odd-indexed inputs and even-indexed inputs). The algo-

59

1 def symm_eigen_base(sub_T):

2 """Base case for symmetric tridiagonal eigenproblem.

3 """

4 eigen, Q = numpy.linalg.eig(sub_T)

5 return eigen, Q

6
7 def symm_eigen_partition(T):

8 T_1, T_2 = numpy.split(T, 2, 0)

9 T_11, T_12 = numpy.split(T_1, 2, 1)

10 T_21, T_22 = numpy.split(T_2, 2, 1)

11 rho = T_12.item(T_12.shape[0]-1,0)

12 T_11.itemset((T_11.shape[0]-1, T_11.shape[1]-1), T_11.item(T_11.

shape[0]-1, T_11.shape[1]-1) - rho)

13 T_22.itemset((0, 0), T_22.item(0, 0) - rho)

14 return T_11, T_22, rho

15
16 def form_dia_w_rank_one(lambda_1, lambda_2, rho, v_trans):

17 dim = lambda_1.shape[0]

18 D = numpy.diag(numpy.concatenate((lambda_1, lambda_2), 1))

19 dia_w_rank_one = D + rho*v_trans.T*v_trans

20 return dia_w_rank_one

21
22 def product(Q1, Q2, Q3):

23 dim = Q1.shape[0]

24 Q_upper_half = numpy.concatenate((Q1, numpy.zeros((dim, dim))), 1)

25 Q_bottom_half = numpy.concatenate((numpy.zeros((dim, dim)), Q2), 1)

26 Q = numpy.concatenate((Q_upper_half, Q_bottom_half), 0)

27 return Q * Q3

28
29 def symm_eigen_op(T, bc_size):

30 """Data decomposition in functional style

31 """

32 if (T.shape[0] == bc_size):

33 eigen, Q = ship(symm_eigen_base, [T])

34 else:

35 T1, T2, rho = symm_eigen_partition(T)

36 subpb = [(T1, bc_size), (T2, bc_size)]

37 results = divide(symm_eigen_op, subpb)

38 lambda_1, Q1 = results[0]

39 lambda_2, Q2 = results[1]

40 dim = Q1.shape[0]

41 v_trans = numpy.concatenate((Q1[dim-1], Q2[0]), 1)

42 dia_w_rank_one = form_dia_w_rank_one(lambda_1, lambda_2, rho,

v_trans)

43 eigen, Q3 = numpy.linalg.eig(dia_w_rank_one)

44 Q = product(Q1, Q2, Q3)

45
46 return eigen, Q

Figure 5.8: Symmetrical tridiagonal eigenvalue decomposition algorithm implemented
in PyDac

60

rithm recursively decomposes the problem until it reaches base cases.

Data: Let x be an array (x0, x1, ..., xN−1) where N is even
Result: The algorithm computes the discrete Fourier transform of

Xk =
N−1∑
n=0

xne−i2πkn/N , where k = 0, 1, ..., N-1

if Input array x is smaller enough then

Directly compute Xk =
N−1∑
n=0

xne−i2πkn/N ;

return Xk;

else
Partition x into even-indexed x2m and odd-indexed x2m+1, where m = 0, 1,
..., N/2 -1 ;
Call this algorithm with x2m and x2m+1 as input and E and O as output;
for k = 0 to N − 1 do

m = k mod N/2;

Xk = Em + e−i2πk/NOm;

end
return Xk;

end

Figure 5.9: A Divide-and-Conquer Algorithm for Radix-2 FFT

Figure 5.10 illustrates the recursive implementation under PyDac. The implemen-

tation is derived from a code snippet used to generate hardware description language

(HDL) version [109]. We use two methods to verify the implementation. Specifi-

cally, we use the routine (e.g., numpy.fft() provided by NumPy version 1.6.1) and the

direct definition of DFT to verify the implementation produce correct results. The

root-mean-square (RMS) error does not exceed 10 × 10−12.

5.2.4 Analysis

Programmer productivity, “ease of use,” and other similar traits that make a pro-

gramming model desirable are notoriously difficult to quantify. Software engineering

studies in the 1970s and 1980s tried to find surrogate metrics, such as Lines-of-Code,

fog-index, and others, but largely failed. This is because individual programmers’

productivity has an enormous variance. The best programmers can be 10× more

productive than the worst, and to control for this variance in the population, experi-

61

1 def rFFT_base(x, N):

2 """ Base case of recursive FFT

3 """

4 y = [1.0 + 1.0j]*N

5 y = r_[y]

6 for n in range(N):

7 wsum = 0 + 0j;

8 for k in range(N):

9 wsum = wsum + (cos(2*pi*k*n/N) - (1.0j * sin(2*pi*k*n/N)))*x[k]

10
11 y[n] = wsum

12 return y

13
14 def rFFT_op(x):

15 """Data decomposition of recursive FFT

16 """

17
18 n = len(x)

19
20 if (n == 2):

21 F = ship(rFFT_base, [x, n])

22 else:

23 w = getTwiddle(n)

24 m = n/2;

25
26 X = ones(m, float)*1j

27 Y = ones(m, float)*1j

28
29 for k in range(m):

30 X[k] = x[2*k]

31 Y[k] = x[2*k + 1]

32
33 subpb = [[X], [Y]]

34 results = divide(rFFT_op, subpb)

35
36 X = results[0]

37 Y = results[1]

38
39 F = ones(n, float)*1j

40 for k in range(n):

41 i = (k%m)

42 F[k] = X[i] + w[k] * Y[i]

43
44 return F

Figure 5.10: Recursive FFT implemented in PyDac

62

ments require very large sample sizes. These type of human subject experiments are

logistically challenging and very expensive. Instead of using quantitative experimen-

tal data, we will make a subjective argument and rely on the reader’s judgment to

assert our third point.

The proposed programming model is rooted in Python, a modern high-level pro-

gramming language. Python was designed to be a Rapid Application Development

(RAD) language that incorporates features from the imperative, object-oriented, and

functional programming paradigms. From a programmer’s perspective, it presents

as a scripting language although, technically, it is compiled on-the-fly into bytecodes

that are executed by a Virtual Machine. Python’s syntax is succinct, and simple

statements are very similar to the wildly successful family of C-based programming

languages. With careful implementation of global and local namespaces, Python is

able to elegantly incorporate object-oriented and functional features with very few

additional syntactical flourishes.

Python is reputed to be a “high productivity” language, as evidenced by its

widespread acceptance [100, 101] and the numerous contemplative writings [110, 111,

112]. Python language has a significant user base with a 2010 estimation of at least

one million Python users in the world [110]. Such a large user base translates into a

large collection of freely available Python modules. Not only is the number of free

Python modules significant, but also is the number application domains for Python.

In fact, the widespread use of Python is shown by the applications domains includ-

ing graphical user interfaces (GUI), system programming, internet scripting, database

programming, component integration, numeric and scientific programming, and more.

Python is even applied in embedded system domain [105]. As Python has grown in

popularity, it focuses on code quality and readability with no compromise. In fact,

most Python programmers today write their code in pure Python and only “a small

handful of developers integrate external libraries for the majority to leverage in their

63

Python code” [110]. Thus, we take the statement “Python is a highly productive

language,” as a given for the rest of the argument.

Starting with the key assumption that every application consists of mix of nec-

essarily serial operations and potentially parallel operations, the proposed PyDac

programming model is based on two core principles. To fully utilize a chip’s potential

for parallelism, the programming model encourages potentially parallel operations

to be organized in a divide-and-conquer (D&C) style of computation. The second

principle is, at first notice, slightly more restrictive: The base case of the D&C com-

putation must be referentially transparent. Referentially transparent, in practical

terms, means that given the same input, the base case must always produce the out-

put. In other words, the base case cannot change the global state of the machine on

its own. (Its result can suggest a change to the global state of the machine, but it

cannot make the change itself.)

The D&C style is recursive and the base case is required to be referentially trans-

parent, which suggests that computational scientists should stop writing imperatively

and learn to write programs in functional paradigm languages. However, this is not

true. Recursion, and D&C in particular, is not strictly within the domain of functional

languages. In fact, it can be used—with great effect—in the paradigm of imperative

languages. If D&C seems foreign or mystical, then consider these facts: (a) every CS

student learns it in their sophomore year [85], (b) numerical analysis books give D&C

algorithms dating back decades [113], and (c) when computation was done with paper

and pencil, D&C was used to simplify the computation. D&C is not a difficult or

obscure concept! It has been around for much, much longer than electro-mechanical

computing and, in some ways, has been marginalized by the limitations of computing

devices in the 1950s and 1960s.

The second (and most potentially controversial) restriction of the proposed pro-

gramming model is that the base case must be referentially transparent. We would

64

argue that most high-end computer (1000s+ processors) programmers use message-

passing runtime systems such as message-passing interface (MPI). Even if it is not

immediately obvious, these systems have coarse-grain, referentially transparent tasks.

That is, if a task has a global variable x, then it is unique and independent of every

other tasks’ global variable x. To create a global consensus of the value of x, the

programmer must explicitly resolve all of the individual views by resolving them to a

single value in the application. Typically, this is accomplished with either a broadcast

or an all reduce. Regardless, the onus is on the application programmer. A more

recent example is Intel Concurrent Collections (CnC), which directly imposes rules

to ease the difficulty of parallel programming. In CnC, not only are dependencies

explicitly stated, but computation (called step collection in CnC) may not reference

any global values. Such effort is to eliminate race conditions in parallel programming.

The proposed programming model imposes the same responsibility on the program-

mer albeit with a different mechanism (the assembly of the sub-problem solutions).

However, it is worth noting that every D&C algorithm we have investigated has nat-

urally exhibited the referentially transparent property; perhaps it is the case that

historical mechanical computation have inadvertently restricted us to patterns with

unnecessary dependence.

However, the programming model presents a few benefits. First, because the code

is compiled into portable byte-code, the programming model offers wide portabil-

ity. Secondly, the D&C strategy offers an exponential growth in concurrent tasks.

Thirdly, the co-designed memory subsystem is re-organized to support the program-

ming model.

PyDac is source code compatible with all known chip architectures in that if it

runs Python, our source code will run to completion with the correct answer; the only

exception being in non-referentially transparent base cases. The portability will play

a significant role since we do not know what architecture the future will bring. For

65

example, an architecture that combines fast and slow processors will be a challenge

to some existing programming models that assume symmetric processors. The de

facto programming model in high-performance computing domain—MPI—currently

assumes a chip architecture with symmetric processors. With the emergence of chip

multiprocessor, hybrid model called “MPI+X” is expected to better utilize hierarchi-

cal feature of hardware (which is still symmetric). For example, “MPI+OpenMP”

[59], which combines the library extension approach and the pseudo-comment di-

rective approach, builds distributed memory programming model on top of shared-

memory programming model. This hybrid model still requires programmers to invest

a great amount of coding effort to utilize cores effectively [60]. In contrast, PyDac

runs on both with symmetric processors and with an architecture that combines fast

and slow processors. Cross-platform programming—between symmetric processors

and with an architecture that combines fast and slow processors without ports—is

feasible. Hence, the programming model does not require programmers to invest

coding effort to effectively utilize the hardware. With even more revolutionary chip

architecture in the future, the portability offered by our programming model will

benefit programmers.

The programming model meets the challenge of an exponential growth in cores by

effecting exponential growth in concurrent tasks. As is described in section 2.2, the

community must contend with many-core architectures that limit the performance of

single-threaded applications and instead force programmers to invest in parallelization

techniques to increase the performance of their algorithms. PyDac allows for simple

parallelization by breaking up problems into a very large number of small problems,

each of which results in a thread that can be scheduled on an independent processor

core.

In the green-white architecture, the memory subsystem is also re-organized to

support the programming model. The programming model frees programmers from

66

the intellectual bottleneck—the von Neumann bottleneck, as called by John Backus

[83]. The bottleneck arises from the task of exchanging the contents between the

processing unit and the storage. Such data traffic becomes a bottleneck when pro-

grammers are tied to work-at-a-time thinking instead of being encouraged to think in

terms of the larger conceptual units of the task at hand. Object oriented languages,

such as C++, are a good example that encourages programmers to think in terms of

the larger conceptual units. PyDac also follows this concepts to eliminate the intellec-

tual bottleneck. In PyDac, data exchanged between high level and low level is large

conceptual units, such as array or matrix. The memory subsystem in the green-white

architecture does the heavy lifting in a way that processing units (i.e., green cores)

can transmit an object instead of a single word to the storage.

CHAPTER 6: CONCLUSION

Computer architecture has been evolving for the past few decades in order to take

advantage of advancing technology. Based on technology trends, our assumption

about computer architecture design over the next decade is three fold: (a) heteroge-

neous architecture that combines faster, bigger, and more complex cores and slower,

smaller, and simpler cores delivers better performance than homogeneous architec-

ture, (b) cores will become more unreliable, and (c) memory subsystems will become

more active in managing transactions. Porting conventional software stack to such

architecture will be a challenging task, because conventional software design is deeply

rooted in a different set of computer architecture assumptions. However, we believe

that programmers are willing to adapt to a new programming paradigm once the

benefits outweigh the costs.

One such envisioned chip architecture is called green-white architecture. Green-

white architecture treats main memory as a collection of named, write-once, variable-

sized blocks of data that are transferred in and out of the green cores by DMA

engines. Each green core has multiple banks of scratch-pad memory, which is byte-

addressable. The architecture also includes one or more fast, complex cores (the

white cores). Conceptually, these cores incorporate the latest advances in single-

thread performance and incorporate techniques (higher power, protection, hardened)

to increase reliability. The on-chip network connects the green cores to a memory

subsystem, providing direct access to the blocks of write-once memory. The two

memory subsystems share the (off-chip) DRAM memory resources through a multi-

ported memory controller.

The green-white architecture is co-designed with a programming framework called

68

PyDac. The primary goal of the PyDac programming framework is to make it pos-

sible to write programs that generate a very large number of parallel tasks without

a great deal of programming effort. Specifically, a programmer that wants to use

this programming model needs to learn the divide-and-conquer strategy. The run-

time system of the PyDac programming framework has three responsibilities: (a) it

abstracts the underlying green-white architecture into distributed virtual machines,

(b) it implements the core behavior of the PyDac programming model, and (c) it

manages resources to meet requirements, such as resilience.

To explore this research area, we have designed and developed many artifacts.

First, a hardware prototype of green-white architecture was emulated on an FPGA

device. Secondly, a prototype of PyDac programming model was developed. Python

was chosen for implementation because it is considered an easy language to learn, it

supports both the functional and imperative paradigms, and it has popular modules

to support scientific applications. Thirdly, we constructed a runtime system based

on distributed Python virtual machines. Python modules were also developed for

the programming interface, task scheduling, and fault-recovery. Lastly, the PyDac

programming framework was used to developed a set of micro-benchmarks that were

then tested on the hardware prototype.

Five micro-benchmarks were run on the hardware prototype and wall clock time

was measured for each micro-benchmark. All five micro-benchmarks demonstrated

performance improvement over the range of green cores available. In particular,

Strassen and block matrix multiplication benefit the most from six green cores and

achieved more than 4× speedup. Strassen spawns 2, 401 parallel tasks onto the green

core, while block matrix spawns 256 parallel tasks. The percentage of sequential

execution in runtime obviously has an impact on speedup. The closest-pair micro-

benchmark benefits the least from adding more green cores since its sequential ex-

ecution takes 97.0% of total runtime. This micro-benchmark appears to be a poor

69

candidate for this architecture or may need more work to exploit parallelism. Results

also suggest that it would be advantageous if some of the assembly process could be

implemented with parallel tasks and kept on the green cores.

Fault injection mechanism was used to test fault recovery mechanism provided

by the runtime system. Our fault model included two scenarios: (a) an unreliable

execution affecting the output of instructions, and (b) the unreliable execution affect-

ing the instructions themselves. Different approaches were used to emulate faults for

the two scenarios. The goal of the proposed runtime was to add system resilience,

even if the underlying hardware is unreliable. To demonstrate this, two key perfor-

mance questions were investigated. First, the scalability of the micro-benchmarks

was examined to see the impact of the runtime system overhead. Secondly, resilience

characteristics were explored to see how choices for redundancy impact the time to

correct solution of each benchmark. PyDac offers the ability to implement resilient

computation of tasks scheduled on the green cores. This is user-defined and entirely

transparent, meaning that the application does not need to be modified in any way

to compute resiliently. This greatly reduces programming overhead for developing re-

silient applications and, in particular on lower reliability hardware, can be beneficial.

To demonstrate this capability in PyDac, micro-benchmarks were executed in DMR,

TMR, and without any redundancy. Micro-benchmarks produced the correct answer

in all of these runs, even in the presence of a soft error.

All of these features are uncommon in a conventional monolithic runtime. The

experiments and results indicate that the proposed design is not only a viable solution

for green-white architecture, but also it provides performance and resilience without

compromising the programming productivity. This research is just a beginning for

exploring a new era of hardware/software codesign. These ideas will be taken into

our next phases of research and development.

CHAPTER 7: FUTURE WORK

In the future, we plan to switch to more mature processors than ARMv2a. Our

GCC compiler (version 4.4.6) for ARM generates floating-point instructions incom-

patible with ARMv2a. With more mature processors, we will be able to port more

micro-benchmarks to green-white architecture. If the new processor provides hard-

ware multithreading, we would like to explore how to take advantage of the hardware

multithreading in our programming model. Furthermore, we would like to port our

design to a multiple-FPGA platform that facilitates as many as 128 green cores. The

new platform will also allow us to integrate the active memory subsystem, developed

by our colleagues, into the green-white architecture. The integration will also elim-

inate the software module that emulates the active memory subsystem. Hence, the

runtime overhead on the white core will be further reduced. Moreover, a larger FPGA

device will grant us more resources, especially on-chip memory, to explore a larger

size of scratch-pad memories and a larger number of memory banks in the green-white

architecture. With future chips that promise larger on-chip memory, we will be able

to increase sub-matrix size and conduct larger-scale tests.

The PyDac programming model is based on divide-and-conquer strategy. Other

paradigms, such as streaming or pipelining, are also worth exploring. One approach to

do streaming on the green-white architecture is to run different computation kernels

on green cores. The programmers will need to define the computation kernels and

specify the data flow. New language constructs or libraries may need to be developed

for this purpose.

When developing base cases, programmers are not allowed to define a function

outside the scope of base case and then call that function in the base case. In the

71

prototype of PyDac programming model, programmers can make a call to only built-

in functions. This can be improved by the dynamic translation layer detecting the

external function and embedding that function into the naming space of the base case

computation.

In the prototype, the criterion for a task to run on the green core is that it

fits into the scratch-pad memory. With multiple banks of scratch-pad memories on

one green core, combining multiple physical scratch-pad memories into one “virtual”

scratch-pad memory is definitely possible. This virtual scratch-pad memory may free

programmers from thinking about the physical hardware’s size limitations.

One thing to consider is that with the ease of implementing resilient computa-

tion under PyDac, one could target hardware that is considerably less reliable than

conventional architectures. PyDac could be a lot more sophisticated about its use

of RMT if it had access to probing information about the expected fault rates of

the machine. For instance, it might run in base-line mode entirely and only start

implementing RMT on some of the cores if they identified hardware problems. Also,

we are exploring implementing dials and probes on the green cores that allow us to

inject hardware faults and report the presence of these faults to PyDac. This feature

would allow us to dynamically adapt the resilience of the tasks. Finally, using idle

cycles on the white core to replicate work being performed on green cores is currently

under consideration. This approach provides more resiliency while also allowing the

application to “catch up” when faults are observed in real time constrained applica-

tions.

72

REFERENCES

[1] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau,
P. Franzon, W. Harrod, K. Hill, J. Hiller et al., “Exascale computing study:
Technology challenges in achieving exascale systems,” Defense Advanced Re-
search Projects Agency Information Processing Techniques Office (DARPA
IPTO), Tech. Rep, 2008.

[2] G. E. Moore et al., “Cramming more components onto integrated circuits,”
1965.

[3] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc,
“Design of ion-implanted mosfet’s with very small physical dimensions,” Solid-
State Circuits, IEEE Journal of, vol. 9, no. 5, pp. 256–268, 1974.

[4] H. Kaul, M. Anders, S. Hsu, A. Agarwal, R. Krishnamurthy, and S. Borkar,
“Near-threshold voltage (ntv) design: opportunities and challenges,” in Pro-
ceedings of the 49th Annual Design Automation Conference. ACM, 2012, pp.
1153–1158.

[5] J. M. Tendler, J. S. Dodson, J. Fields, H. Le, and B. Sinharoy, “Power4 system
microarchitecture,” IBM Journal of Research and Development, vol. 46, no. 1,
pp. 5–25, 2002.

[6] S. Gochman, A. Mendelson, A. Naveh, and E. Rotem, “Introduction to intel
core duo processor architecture.” Intel Technology Journal, vol. 10, no. 2, 2006.

[7] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger,
“Dark silicon and the end of multicore scaling,” in Computer Architecture
(ISCA), 2011 38th Annual International Symposium on. IEEE, 2011, pp.
365–376.

[8] S. Borkar, “The exascale challenge,” 2010.

[9] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,” Computer,
vol. 41, no. 7, pp. 33–38, Jul. 2008.

[10] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. B. Taylor, “Conservation cores: reducing the
energy of mature computations,” in ACM SIGARCH Computer Architecture
News, vol. 38, no. 1. ACM, 2010, pp. 205–218.

[11] N. Seifert, P. Slankard, M. Kirsch, B. Narasimham, V. Zia, C. Brookreson,
A. Vo, S. Mitra, B. Gill, and J. Maiz, “Radiation-induced soft error rates of
advanced cmos bulk devices,” in Reliability Physics Symposium Proceedings,
2006. 44th Annual., IEEE International. IEEE, 2006, pp. 217–225.

73

[12] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De,
“Parameter variations and impact on circuits and microarchitecture,” in Pro-
ceedings of the 40th annual Design Automation Conference. ACM, 2003, pp.
338–342.

[13] B. Schroeder and G. A. Gibson, “Understanding failures in petascale comput-
ers,” in Journal of Physics: Conference Series, vol. 78, no. 1. IOP Publishing,
2007, p. 012022.

[14] K. Ferreira, J. Stearley, J. H. Laros III, R. Oldfield, K. Pedretti, R. Brightwell,
R. Riesen, P. G. Bridges, and D. Arnold, “Evaluating the viability of process
replication reliability for exascale systems,” in Proceedings of 2011 Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis. ACM, 2011, p. 44.

[15] J. Chung, I. Lee, M. Sullivan, J. H. Ryoo, D. W. Kim, D. H. Yoon, L. Kaplan,
and M. Erez, “Containment domains: A scalable, efficient and flexible resilience
scheme for exascale systems,” Scientific Programming, vol. 21, no. 3, pp. 197–
212, 2013.

[16] S. S. Mukherjee, J. Emer, and S. K. Reinhardt, “The soft error problem: An
architectural perspective,” in High-Performance Computer Architecture, 2005.
HPCA-11. 11th International Symposium on. IEEE, 2005, pp. 243–247.

[17] J. Shalf, S. Dosanjh, and J. Morrison, “Exascale computing technology chal-
lenges,” in High Performance Computing for Computational Science–VECPAR
2010. Springer, 2011, pp. 1–25.

[18] J. Dennis, G. Gao, and X. Meng, “Experiments with the Fresh Breeze
tree-based memory model,” Computer Science - Research and Development,
vol. 26, pp. 325–337, 2011, 10.1007/s00450-011-0165-1. [Online]. Available:
http://dx.doi.org/10.1007/s00450-011-0165-1

[19] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick, “The
potential of the cell processor for scientific computing,” in Proceedings of the
3rd conference on Computing frontiers. ACM, 2006, pp. 9–20.

[20] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel, “Scratch-
pad memory: design alternative for cache on-chip memory in embedded sys-
tems,” in Proceedings of the tenth international symposium on Hardware/soft-
ware codesign. ACM, 2002, pp. 73–78.

[21] B. Egger, J. Lee, and H. Shin, “Dynamic scratchpad memory management
for code in portable systems with an mmu,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 7, no. 2, p. 11, 2008.

[22] H. Sutter, “The free lunch is over: A fundamental turn toward concurrency in
software,” Dr. Dobbs Journal, vol. 30, no. 3, pp. 202–210, 2005.

74

[23] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements
of reusable object-oriented software. Pearson Education, 1994.

[24] “Intel thread building blocks.” [Online]. Available: https://www.
threadingbuildingblocks.org/

[25] Z. Budimlić, M. Burke, V. Cavé, K. Knobe, G. Lowney, R. Newton, J. Palsberg,
D. Peixotto, V. Sarkar, F. Schlimbach et al., “Concurrent collections,” Scientific
Programming, vol. 18, no. 3, pp. 203–217, 2010.

[26] H. Kaul, M. Anders, S. Hsu, A. Agarwal, R. Krishnamurthy, and S. Borkar,
“Near-threshold voltage (ntv) design: opportunities and challenges,” in Pro-
ceedings of the 49th Annual Design Automation Conference, ser. DAC ’12. New
York, NY, USA: ACM, 2012, pp. 1153–1158.

[27] T. Mudge, “Power: A first-class architectural design constraint,” Computer,
vol. 34, no. 4, pp. 52–58, 2001.

[28] K. J. Kuhn, M. D. Giles, D. Becher, P. Kolar, A. Kornfeld, R. Kotlyar, S. T.
Ma, A. Maheshwari, and S. Mudanai, “Process technology variation,” Electron
Devices, IEEE Transactions on, vol. 58, no. 8, pp. 2197–2208, 2011.

[29] T. C. May and M. H. Woods, “Alpha-particle-induced soft errors in dynamic
memories,” Electron Devices, IEEE Transactions on, vol. 26, no. 1, pp. 2–9,
1979.

[30] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi, “Modeling
the effect of technology trends on the soft error rate of combinational logic,” in
Dependable Systems and Networks, 2002. DSN 2002. Proceedings. International
Conference on. IEEE, 2002, pp. 389–398.

[31] M. Hill and C. Kozyrakis, “Advancing computer systems without technology
progress,” 2012. [Online]. Available: http://www.cs.wisc.edu/∼markhill/
papers/isat2012 ACSWTP.pdf

[32] B. Sinharoy, R. Kalla, W. Starke, H. Le, R. Cargnoni, J. Van Norstrand,
B. Ronchetti, J. Stuecheli, J. Leenstra, G. Guthrie et al., “Ibm power7 mul-
ticore server processor,” IBM Journal of Research and Development, vol. 55,
no. 3, pp. 1–1, 2011.

[33] T. Corporation, “Tilepro processor family,” 2014. [Online]. Available:
http://www.tilera.com/products/processors/TILEPro Family

[34] I. Corporation, “Intel core i7 processor,” 2014. [Online]. Available: http:
//www.intel.com/content/www/us/en/processors/core/core-i7-processor.html

[35] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,” Computer,
vol. 41, no. 7, pp. 33–38, 2008.

75

[36] F. J. Pollack, “New microarchitecture challenges in the coming generations of
cmos process technologies (keynote address),” in Proceedings of the 32nd annual
ACM/IEEE international symposium on Microarchitecture. IEEE Computer
Society, 1999, p. 2.

[37] A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and M. Horowitz, “Cpu db:
recording microprocessor history,” Communications of the ACM, vol. 55, no. 4,
pp. 55–63, 2012.

[38] S. Borkar, “Thousand core chips: a technology perspective,” in Proceedings of
the 44th annual Design Automation Conference. ACM, 2007, pp. 746–749.

[39] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai, “Single-chip heterogeneous
computing: Does the future include custom logic, fpgas, and gpgpus?” in
Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Computer Society, 2010, pp. 225–236.

[40] T. Corporation, “Ti omap applications processors,” 2014. [Online]. Available:
http://www.ti.com/lsds/ti/omap-applications-processors/overview.page

[41] P. Greenhalgh, “big.little processing with ARM Cortex-A15 & Cortex-A7,”
White Paper, ARM, September 2011.

[42] J. Reinders, “An overview of programming for intel R© xeon R© processors and
intel R© xeon phi coprocessors,” 2012.

[43] A. Heinecke, M. Klemm, and H.-J. Bungartz, “From gpgpu to many-core:
Nvidia fermi and intel many integrated core architecture,” Computing in Sci-
ence & Engineering, vol. 14, no. 2, pp. 78–83, 2012.

[44] P. Sundararajan, “High performance computing using fpgas,” Xilinx White Pa-
per: FPGAs, pp. 1–15, 2010.

[45] H. P. Hofstee, “Power efficient processor architecture and the cell processor,” in
High-Performance Computer Architecture, 2005. HPCA-11. 11th International
Symposium on. IEEE, 2005, pp. 258–262.

[46] A. Ramirez, F. Cabarcas, B. Juurlink, M. Alvarez Mesa, F. Sanchez,
A. Azevedo, C. Meenderinck, C. Ciobanu, S. Isaza, and G. Gaydadjiev, “The
SARC architecture,” Micro, IEEE, vol. 30, no. 5, pp. 16–29, 2010.

[47] S. Borkar and A. A. Chien, “The future of microprocessors,” Communications
of the ACM, vol. 54, no. 5, pp. 67–77, 2011.

[48] Y. Rajasekhar, “Changing the memory paradigm: A Novel Memory Architec-
ture and Computational Model for Parallel Reconfigurable Architectures (in
progress),” Ph.D. dissertation, University of North Carolina, Charlotte.

76

[49] T. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy, J. Howard,
S. Vangal, N. Borkar, G. Ruhl et al., “The 48-core scc processor: the program-
mer’s view,” in Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis. IEEE
Computer Society, 2010, pp. 1–11.

[50] J. R. Hauser and J. Wawrzynek, “Garp: A mips processor with a reconfigurable
coprocessor,” in Field-Programmable Custom Computing Machines, 1997. Pro-
ceedings., The 5th Annual IEEE Symposium on. IEEE, 1997, pp. 12–21.

[51] H. K.-H. So and R. Brodersen, “A unified hardware/software runtime environ-
ment for fpga-based reconfigurable computers using borph,” ACM Transactions
on Embedded Computing Systems (TECS), vol. 7, no. 2, p. 14, 2008.

[52] E. Anderson, J. Agron, W. Peck, J. Stevens, F. Baijot, E. Komp, R. Sass,
and D. Andrews, “Enabling a uniform programming model across the soft-
ware/hardware boundary,” in Field-Programmable Custom Computing Ma-
chines, 2006. FCCM’06. 14th Annual IEEE Symposium on. IEEE, 2006, pp.
89–98.

[53] E. Lübbers and M. Platzner, “Reconos: An rtos supporting hard-and software
threads.” in FPL, 2007, pp. 441–446.

[54] P. E. McKenney and J. Walpole, “Introducing technology into the linux kernel:
a case study,” ACM SIGOPS Operating Systems Review, vol. 42, no. 5, pp.
4–17, 2008.

[55] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek,
R. Morris, and N. Zeldovich, “An analysis of linux scalability to many cores,”
2010.

[56] D. Wentzlaff and A. Agarwal, “Factored operating systems (fos): the case for
a scalable operating system for multicores,” ACM SIGOPS Operating Systems
Review, vol. 43, no. 2, pp. 76–85, 2009.

[57] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: a new os ar-
chitecture for scalable multicore systems,” in Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles. ACM, 2009, pp. 29–44.

[58] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. von Praun, and V. Sarkar, “X10: an object-oriented approach to
non-uniform cluster computing,” SIGPLAN Not., vol. 40, no. 10, pp. 519–538,
Oct. 2005. [Online]. Available: http://doi.acm.org/10.1145/1103845.1094852

[59] F. Cappello and D. Etiemble, “Mpi versus mpi+ openmp on the ibm sp for the
nas benchmarks,” in Supercomputing, ACM/IEEE 2000 Conference. IEEE,
2000, pp. 12–12.

77

[60] R. Rabenseifner, G. Hager, and G. Jost, “Hybrid mpi/openmp parallel pro-
gramming on clusters of multi-core smp nodes,” in Parallel, Distributed and
Network-based Processing, 2009 17th Euromicro International Conference on.
IEEE, 2009, pp. 427–436.

[61] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-
memory programming,” Computational Science & Engineering, IEEE, vol. 5,
no. 1, pp. 46–55, 1998.

[62] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta, “Cellss: a programming
model for the cell be architecture,” in SC 2006 Conference, Proceedings of the
ACM/IEEE. IEEE, 2006, pp. 5–5.

[63] E. Ayguadé, R. M. Badia, F. D. Igual, J. Labarta, R. Mayo, and E. S. Quintana-
Ort́ı, “An extension of the starss programming model for platforms with multi-
ple gpus,” in Euro-Par 2009 Parallel Processing. Springer, 2009, pp. 851–862.

[64] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y. Park,
M. Erez, M. Ren, A. Aiken, W. J. Dally et al., “Sequoia: programming the
memory hierarchy,” in Proceedings of the 2006 ACM/IEEE conference on Su-
percomputing. ACM, 2006, p. 83.

[65] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng, “Merge: a program-
ming model for heterogeneous multi-core systems,” in ACM SIGOPS operating
systems review, vol. 42, no. 2. ACM, 2008, pp. 287–296.

[66] D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: using data parallelism to
program gpus for general-purpose uses,” in ACM SIGARCH Computer Archi-
tecture News, vol. 34, no. 5. ACM, 2006, pp. 325–335.

[67] H. Kaiser, M. Brodowicz, and T. Sterling, “Parallex an advanced parallel execu-
tion model for scaling-impaired applications,” in Parallel Processing Workshops,
2009. ICPPW’09. International Conference on. IEEE, 2009, pp. 394–401.

[68] E. Mohr, D. A. Kranz, and R. H. Halstead, Jr., “Lazy task creation: A tech-
nique for increasing the granularity of parallel programs,” IEEE Trans. Parallel
Distrib. Syst., vol. 2, no. 3, pp. 264–280, Jul. 1991.

[69] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall,
and Y. Zhou, Cilk: An efficient multithreaded runtime system. ACM, 1995,
vol. 30, no. 8.

[70] J. E. Baldeschwieler, R. D. Blumofe, and E. A. Brewer, “A tlas: an infrastruc-
ture for global computing,” in Proceedings of the 7th workshop on ACM SIGOPS
European workshop: Systems support for worldwide applications. ACM, 1996,
pp. 165–172.

78

[71] R. D. Blumofe and P. A. Lisiecki, “Adaptive and reliable parallel computing on
networks of workstations,” in USENIX 1997 Annual Technical Conference on
UNIX and Advanced Computing Systems, 1997, pp. 133–147.

[72] R. v. Nieuwpoort, J. Maassen, T. Kielmann, and H. E. Bal, “Satin: Simple
and efficient java-based grid programming,” Scalable Computing: Practice and
Experience, vol. 6, no. 3, 2001.

[73] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta, J. Duell, S. L.
Graham, P. Hargrove, P. Hilfinger, P. Husbands et al., “Productivity and per-
formance using partitioned global address space languages,” in Proceedings of
the 2007 international workshop on Parallel symbolic computation. ACM, 2007,
pp. 24–32.

[74] R. W. Numrich and J. Reid, “Co-array fortran for parallel programming,”
SIGPLAN Fortran Forum, vol. 17, no. 2, pp. 1–31, Aug. 1998. [Online].
Available: http://doi.acm.org/10.1145/289918.289920

[75] B. Chamberlain, D. Callahan, and H. Zima, “Parallel programmability and
the chapel language,” International Journal of High Performance Computing
Applications, vol. 21, no. 3, pp. 291–312, 2007.

[76] B. Catanzaro, S. Kamil, Y. Lee, J. Demmel, K. Keutzer, J. Shalf, K. Yelick, and
A. Fox, “Sejits: Getting productivity and performance with selective embedded
jit specialization.”

[77] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih, “Pycuda
and pyopencl: A scripting-based approach to gpu run-time code generation,”
Parallel Computing, vol. 38, no. 3, pp. 157–174, 2012.

[78] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hest-
ness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5 simulator,” ACM
SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[79] F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX Annual
Technical Conference, FREENIX Track, 2005, pp. 41–46.

[80] L. Eeckhout, “Computer architecture performance evaluation methods,” Syn-
thesis Lectures on Computer Architecture, vol. 5, no. 1, pp. 1–145, 2010.

[81] “Amber: Arm-compatible core.” [Online]. Available: http://opencores.org/
project,amber

[82] “Powerpc 440 embedded core.” [Online]. Available: https://www-01.ibm.com/
chips/techlib/techlib.nsf/products/PowerPC 440 Embedded Core

[83] J. Backus, “Can programming be liberated from the von neumann style?: a
functional style and its algebra of programs,” Communications of the ACM,
vol. 21, no. 8, pp. 613–641, 1978.

79

[84] V. Pankratius, F. Schmidt, and G. Garretón, “Combining functional and imper-
ative programming for multicore software: an empirical study evaluating scala
and java,” in Proceedings of the 2012 International Conference on Software
Engineering. IEEE Press, 2012, pp. 123–133.

[85] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to
Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.

[86] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of
complex fourier series,” Mathematics of computation, vol. 19, no. 90, pp. 297–
301, 1965.

[87] C. A. Hoare, “Quicksort,” The Computer Journal, vol. 5, no. 1, pp. 10–16, 1962.

[88] V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathematik,
vol. 13, no. 4, pp. 354–356, 1969.

[89] J. J. Dongarra and D. C. Sorensen, “A fully parallel algorithm for the symmetric
eigenvalue problem,” SIAM Journal on Scientific and Statistical Computing,
vol. 8, no. 2, pp. s139–s154, 1987.

[90] W. De Leeuw, “Divide and conquer spot noise,” in Supercomputing, ACM/IEEE
1997 Conference. IEEE, 1997, pp. 19–19.

[91] F. Zhang, X.-Z. Qiao, and Z.-Y. Liu, “A parallel smith-waterman algorithm
based on divide and conquer,” in Algorithms and Architectures for Parallel
Processing, 2002. Proceedings. Fifth International Conference on. IEEE, 2002,
pp. 162–169.

[92] D. Frosyniotis, A. Stafylopatis, and A. Likas, “A divide-and-conquer method
for multi-net classifiers,” Pattern Analysis & Applications, vol. 6, no. 1, pp.
32–40, 2003.

[93] H.-C. Fu, Y.-P. Lee, C.-C. Chiang, and H.-T. Pao, “Divide-and-conquer learning
and modular perceptron networks,” Neural Networks, IEEE Transactions on,
vol. 12, no. 2, pp. 250–263, 2001.

[94] C. Mota, I. Stuke, T. Aach, and E. Barth, “Divide-and-conquer strategies for
estimating multiple transparent motions,” in Complex Motion. Springer, 2007,
pp. 66–77.

[95] G. Brinkmann, A. W. M. Dress, S. W. Perrey, and J. Stoye, “Two applica-
tions of the divide&conquer principle in the molecular sciences,” Mathematical
programming, vol. 79, no. 1-3, pp. 71–97, 1997.

[96] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-oblivious
algorithms,” in Foundations of Computer Science, 1999. 40th Annual Sympo-
sium on. IEEE, 1999, pp. 285–297.

80

[97] E. D. Demaine, “Cache-oblivious algorithms and data structures,” Lecture
Notes from the EEF Summer School on Massive Data Sets, pp. 1–29, 2002.

[98] F. Petrini, D. Kerbyson, and S. Pakin, “The case of the missing supercomputer
performance: Achieving optimal performance on the 8,192 processors of asci
q,” in Supercomputing, 2003 ACM/IEEE Conference. IEEE, 2003, pp. 55–55.

[99] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, A. Fasih, A. Sarma,
D. Nanongkai, G. Pandurangan, P. Tetali et al., “Pycuda: Gpu run-time code
generation for high-performance computing,” Arxiv preprint, 2009.

[100] T. Oliphant, A Guide to NumPy. Trelgol Publishing USA, 2006, vol. 1.

[101] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific tools
for Python,” 2001–. [Online]. Available: http://www.scipy.org/

[102] L. Dalćın, R. Paz, and M. Storti, “Mpi for python,” Journal of Parallel and
Distributed Computing, vol. 65, no. 9, pp. 1108–1115, 2005.

[103] “Stackless python.” [Online]. Available: http://www.stackless.com/

[104] B. Huang, R. Sass, N. DeBardeleben, and S. Blanchard, “Pydac: A resilient run-
time framework for divide-and-conquer applications on a heterogeneous many-
core architecture,” in The 6th Workshop on UnConventional High Performance
Computing, UCHPC at Euro-Par’13, 2013.

[105] “Python on a chip.” [Online]. Available: http://code.google.com/p/
python-on-a-chip/

[106] D. Beazley, “Understanding the python gil,” PRESENTATION AT PYCON,
2010.

[107] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. JHUP, 1996.

[108] P. Arbenz, D. Kressner, and D.-M. E. Zürich, “Lecture notes on solving large
scale eigenvalue problems,” 2012.

[109] “Recursive fft in python convertible to verilog/vhdl.” [Online]. Available:
http://www.dsprelated.com/showcode/16.php

[110] M. Lutz, Programming python. O’Reilly Media, Inc., 2010.

[111] M. Lutz, Learning python. O’Reilly Media, Inc., 2013.

[112] H. P. Langtangen, Python scripting for computational science. Springer, 2006,
vol. 3.

[113] W. H. Press, Numerical recipes 3rd edition: The art of scientific computing.
Cambridge university press, 2007.

