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ABSTRACT 

 

 
 KATHERINE A. BAKER.  Image Charge Solvation Model (ICSM) for simulating 

 biomolecules and KcsA ion channels. (Under the direction of DR. WEI CAI) 

 

 

We present an order N method for calculating electrostatic interactions that 

has been integrated into the molecular dynamics portion of the TINKER Molecular 

Modeling package. This method, termed the Image-Charge Solvation Model (ICSM), 

and introduced previously by Dr. Lin et al. (1) in 2009, is a hybrid electrostatic 

approach that combines the strengths of both explicit and implicit representations of 

the solvent. In this model, a multiple-image method is used to calculate reaction 

fields due to the implicit solvent while the Fast Multipole Method (FMM) is used to 

calculate the Coulomb interactions for all charges, including the charges in the 

explicit solvent part. 

The integrated package is validated through simulations of liquid water. The 

results are compared with those obtained by the Particle Mesh Ewald (PME) method that 

is built in the TINKER package. Timing performance of TINKER with the integrated 

ICSM is benchmarked on bulk water as a function of the size of the system. In particular, 

timing analysis results show that the ICSM outperforms the PME for sufficiently large 

systems with the break-even point at around 30,000 particles in the simulated system.  To 

demonstrate the capability of the package on large macromolecules, the model is used to 

simulate the potassium channel KcsA. 
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CHAPTER 1: INTRODUCTION 

 

 

1.1.1 Protein Structure 

One of the most exciting and challenging areas of study for scientists today is the 

investigation of proteins.  Of all known molecules, proteins might be the most complex 

and functionally significant (2).  Proteins have many important functions such as acting 

as catalysts, transportation and storage of other molecules such as oxygen, providing 

mechanical support and immune protection, as well as transmitting nerve impulses, and 

they also control growth and differentiation (3).  The structure of a protein drives their 

dynamics, and therefore their function, so we begin with a short overview of that 

structure (4). 

Proteins are built from a simple string of amino acids called the primary structure.  

Although there are at least 300 amino acids in nature, only 20 are found in the structures 

of proteins (Figure 2).  Amino acids are defined as small molecules containing an amino 

group (NH2), a carboxyl group (COOH) and an R group or side chain (Figure 1).  Within 

a protein, multiple amino acids are linked together by peptide bonds which are formed 

when the amino group from one amino acid links to the carboxyl group of another.  Each 

amino acid is unique based on the characteristics of its side chain (5).
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FIGURE 1:  The basic structure of amino acids.   

 

 

 

The largest group are the amino acids which have nonpolar side chains.  These 

include alanine, valine, leucine, isoleucine, proline, phenylalanine, tryptophan, cysteine 

and methionine.  Since these amino acids are nonpolar, they have a low propensity to be 

in contact with polar water and are called hydrophobic.  Other amino acids have side 

chains that have a positive or negative charge.  These include lysine and arginine, which 

are positively charged, and aspartate and glutamate, which are negatively charged.  There 

are also six amino acids with polar side chains: serine, threonine, asparagine, glutamine, 

histidine and tyrosine.  The final amino acid, glycine, has no side chain and often 

provides flexibility to the final protein structure (6). These side chains are instrumental in 

the formation of the secondary structure based on how they interact with the side chains 

of other amino acids in the protein.  In general, charged side chains can form ionic bonds 

with other side chains while polar side chains might form hydrogen bonds.  The nonpolar 

hydrophobic side chains have weak van der Waals interactions with other side chains. 
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FIGURE 2:  The twenty amino acids found in proteins.  The amino acids in the orange area are non-polar 

(hydrophobic.)  The ones in the green area have polar side chains.  The pink area contains amino acids with a negative 

charge while the blue are basic.  Image is by Dr. Robert J. Huskey (retired) University of Virginia (7). 

 

 

 

The secondary structure is made up of two main structures, the alpha helix and 

beta sheets (6).  Alpha helices are formed when the carbonyl oxygen atoms point towards 

the amide NH groups of an amino acid four residues away in the chain.  This interaction 

forms a hydrogen bond.  On the other hand, beta sheets form when strands of the chain 

lie parallel to each other and the carbonyl oxygen in one strand form hydrogen bonds 

with the amino hydrogen in the adjacent strand.  Beta sheets are classified as parallel or 

anti-parallel depending on whether the N-terminus is aligned with the N-terminus or the 

C-terminus of the other strand.  Of these two, the anti-parallel beta sheet is considered to 

be the more stable conformation (8).  Proteins normally have several of these structures 

connected by loops (Figure 3).  The entire ensemble created from the folds and 

formations of these structures is called the tertiary structure. 
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FIGURE 3:  Image of Triose Phosphate Isomerase showing the secondary structure with alpha helices (blue and purple) 

and parallel beta sheets(yellow).  Image created by VMD software. 

 

 

 

The goal of the tertiary structure is to reach maximum stability and the lowest 

energy state.  One important aspect for this stabilization is the formation of disulfide 

bridges by oxidation of the sulfhydryl groups on cysteine, which hold parts of the chain 

together covalently.  In addition, salt bridges form due to ionic interaction of positively 

and negatively charged side chains, which provides further stabilization for the overall 

form of the protein (8).  Nuclear Magnetic Resonance (NMR) has been instrumental in 

the investigation of the structure of proteins however it gives little in terms of the 

function. Molecular dynamics simulations provide a means to explore the link between 

the structure and dynamics of proteins (4). 
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1.1.2 Molecular Dynamics 

Molecular Dynamic simulations are employed to calculate the positions of a 

group of atoms in a molecular system over time using the discretization of Newton’s laws 

of motion over a period of time (9).   In the earliest implementations of this concept, 

scientists attempted to demonstrate these trajectories using physical rods and balls.  In the 

late 50’s and early 60’s, Alder and Wainwright and then later Rahman first introduced the 

method (10; 11) and in 1974, Rahman and Stillinger used the method to simulate a 

realistic liquid system (12).  With the improvement of computer systems, MD simulations 

have been used to study systems ranging in size from tens to hundreds of thousands. 

One standard numerical method for discretizing the Newton’s laws of motions is 

the “leap-frog” or Velocity Verlet method.  The steps of the algorithm are given in (13) 

as follows: 

1. Calculate the acceleration of each particle i at the current time t using: 

          
  

   
 

2. Update the velocity of particle i at the half time step (  
 

 
    using: 

     
 

 
         

 

 
             

  3. Update to new position of particle i at        using: 

                     
 

 
      

Although these equations first appear to be quite simple, the calculation of the force in 

step 1 has become a major research issue for many areas of study over the last few 

decades. 
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The formula used to calculate the potential energy in step 1 for N atoms can be 

written as: 

 
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(1.1) 

In this equation, the first four terms are used to calculate mainly short-ranged 

interactions, whereas the final term is for long-range.  The parameters of Eq. (1.1), which 

define a force field model, have been calculated and compiled for use in energy 

minimization and dynamic simulation packages (14). Some examples of these are Amber 

(15; 16), CHARMM (17; 18), GROMACS (19; 20) and OPLS (21).  The final term, 

which represents the Coulomb electrostatic potential, is by far the most difficult to 

calculate as it represents       operations.  For small systems, this calculation is trivial. 

However, a typical protein or virus may consist of  thousands or perhaps millions of 

atoms, and, therefore, the expense of this calculation is inhibitive even for today’s 

computers.  Many variations of MD methods have sprung from attempting to simplify 

this calculation.  These can be divided into two major sub-categories: explicit methods, 

which use an atomistic representation of the simulated system and periodic boundary 

conditions, and implicit methods, which use implicit representation of the solvent with 

non-periodic boundary conditions. 
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1.1.3 Explicit Representation of the System 

 

In explicit solvation methods, shown in Figure 4, all particles in the system, 

including solute and solvent, are treated in atomistic detail.    

 

 

 

 

FIGURE 4:  The explicit system where all atoms including the solute and solvent are treated in detail.  The explicit 

method is considered to be more accurate but less efficient due to the large number of solvent molecules that must be 

included. 

 

 

 

 

For the boundary conditions, these use periodic boundary conditions (PBC) where 

infinite copies of the central box, situated on a lattice, are used to simulate the solvent (1). 

Some examples of explicit algorithms include: 

1. Simple cutoff methods (22) where the long range forces are truncated 

using artificial, non-bonded cutoffs (9). 

2. Lattice-sum methods such as the original Ewald summation (23), the 

particle-mesh Ewald (PME) (24; 25), and the particle-particle particle-

mesh Ewald (PPPM or P3M) (26; 27; 28).  In these methods the Coulomb 

interaction is split into a screened short-range term, handled exactly by 

direct sum, plus a long-range, smoothly varying term, handled 

approximately in the reciprocal Fourier space (9), and 
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3. Fast Multipole Method (FMM) (29; 30) which divides the system into 

smaller cells and then calculates the Coulombic interactions exactly for particles within 

the same or neighboring sub-cells of the simulation cell and then uses multipole 

expansions to calculate the force for more distant particles (9).  This method will be 

discussed in detail in Section (1.1.6) 

Although PBCs makes it possible to find bulk properties for the simulated 

material in a finite system, they also introduce artifacts due to the interactions of atoms in 

different copies of the box.  One method for improving the accuracy is to increase the 

box size for the system; however this will also increase the computational cost.  These 

artifacts are not significant in homogeneous medium, such as pure solvent, with a large 

enough box size, but in the case of a solvated macromolecule these can be significant (1; 

31)  In their study of a polyalanine octapeptide in 2000, Weber et al showed that 

increasing the box size might actually destabilize the structure of a polypeptide (32) 

1.1.4 Implicit Representation of the System 

As in explicit systems, the atoms comprising the solute under study are treated in 

atomic detail in implicit systems (Figure 5).  The solvent, however, is modeled as a 

dielectric continuum.  The elimination of the solvent molecules reduces the number of 

degrees of freedom, which greatly improves computational costs. Either the Poisson 

equation or the Poisson-Boltzmann system equation is used to calculate the effect of the 

solvent on the solute (33; 34; 35; 36).  Following is a detailed description of the PB 

electrostatic model for clarification as reviewed by Xu and Cai in SIAM Review (14). 

 

 

 



9 

 

 
 

FIGURE 5:  Image of the implicit system with the solute, shown in red, treated explicitly and the solute, shown as the 

gray area, treated as a dielectric continuum with dielectric constant ε.  Image used with permission. 

 

 

 

1.1.4.1 Poisson-Boltzmann Equation 

For a classical continuum approach, the solute can be described as a low dielectric 

region with dielectric constant    where    typically ranges from    .  In this region 

partial charges    located at atomic locations    have a charge density of: 

 

               

 

   

 (1.2) 

 

Typically the partial charges    from molecular mechanics force fields are used 

(37) but could also be calculated through quantum mechanics (38).  These are considered 

to be point charges located at    which are taken as the nuclear centers of the atoms.  As 

shown in Figure 6, the solute boundary Γ can be given by either the vdW surface, which 

is the sum of overlapping vdW spheres or the solvent accessible surface or SAS, which is 

generated by rolling a small sphere on the vdW surface (39).  Outside of this surface is 

the solvent which has a higher dielectric constant.  For instance,       if the solvent is 



10 

 

water.  This solvent is often an ionic liquid with ionic charges       for ions of type i 

(40). 

 

 

 

 

 

 

FIGURE 6:  Molecular surfaces of the carbonic anhydrases-11 (39).  (Left) The van der Waals (vdW) surface of the 

domain composed of the sum of overlapping vdW spheres. (Right) The solvent accessible surface (SAS) generated by 

rolling a small sphere on the vdW surface. In the macroscopic theory, the molecular domain inside the surface is given 

a low dielectric constant and the enclosed atoms are treated explicitly, while the exterior domain is treated as a 

homogeneous continuum medium with a higher dielectric constant. This image was created with VMD software. VMD 

is developed with NIH support by the Theoretical and Computational Biophysics group at the Beckman Institute, UIUC 

 

 

 

In this case, the macroscopic potential     , due to the charges in the solute, the ionic 

charges in the solvent, and the polarization effects of the solvent from the solute charges, 

is governed by the Poisson equation: 

 

                           (1.3) 

where             .   
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There are two required boundary conditions for the interface on Γ to insure the continuity 

of the potentials and the normal displacements, namely: 

 

              
      

  
   

      

  
 (1.4) 

 

for    , where    and    are, respectively, the inner and outer limits at position   and 

n is the outward unit normal to the surface of the solute. 

The solute charges will create an electric field that will affect the mobile ionic 

charges in the solvent.  We assume that the ions will obey the Boltzmann distribution 

(41), under a potential of mean force (PMF)       (42), for the ith type of ions in the 

solvent, 

     
  

 
     
    (1.5) 

 

where   
  is the number density of ions of type i in the bulk solvent in the absence of the 

solute, T is the temperature, and    is the Boltzmann constant. 

The negative gradient of the PMF       gives the average force on a given ion of type i 

due to all other charges in the system.  It is defined by a Gibbs average over all other ions 

and charge configurations, i.e., by a Boltzmann factor weighted integration over the 

positions of all other ions/charges in the phase space (42).  According to the Debye–

Hückel theory, the PMF on an ion of type i,      , can then be approximated by 

multiplying the charge of the ion by the electrostatic potential Φ(r) of the solute-solvent 

system (43), 

             (1.6) 
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therefore the distribution of the ith type of ion is given by: 

 

     
  

 
      
    (1.7) 

 

We can now substitute Eq. (1.7) into Eq. (1.3) and we obtain a nonlinear PB 

equation for the electrostatic potential Φ(r) in the solute-solvent system: 

 

                           
  

 
      
   

 

 (1.8) 

 

Many methods exist for solving these equations including (1): 

1. Finite Difference Method (44; 45; 46), where the derivatives in Poisson-

Boltzmann equations are estimated using finite difference equations, 

2. Finite Element Method (47; 48; 49), which divides the system into smaller 

elements where the equations can be approximated by simpler algebraic 

expressions, and 

3. Boundary Element Method (50; 51; 52; 53) which is based on a surface 

integral representation of the linearized PB equation, which reduces the 3D 

problem into a 2D problem on the surface of the molecule. 

Although a molecular system is simplified once the water molecules are 

integrated out, there are still several drawbacks to these methods.  For instance, the 

arbitrary shape of macromolecules makes the solution of the three-dimensional PB 

equation computationally challenging (1).  Another issue with this type of system is that 

the description of the sharp boundary between the low-dielectric medium of the solute 

and the high-dielectric medium of solvent might not be adequate to accurately describe 



13 

 

the physical system (1; 54).  In 2007, Dai et al. showed that better accuracy could be 

attained by using a more gradual transition of the dielectric between the solute and 

solvent (55). It would appear that the optimal solution would be a combination of the 

explicit and implicit methods for the study of molecular systems. 

1.1.5 Hybrid Representation of the System 

Hybrid systems, which have attracted a great deal of attention in recent years (56; 

57; 58) combine the explicit treatment with the implicit treatment by treating the solute 

and the first solvation layer explicitly and then treating the remaining solvent as a 

dielectric medium (Figure 7).  A buffer region is added between these two areas where 

the particles are treated explicitly but the force is different from the other two areas.  The 

potential in this area can be divided into two distinct parts.  The first is the Coulomb 

potential (Φ ) due to the interaction of the atoms in the explicit area with each other.  The 

second is the potential due to the reaction field (Φ  ) which is the polarization of the 

continuum solvent by the charges inside the explicit region.  The total potential in the 

explicit region is therefore Φ  Φ  Φ  .  The main consideration for this type of 

system is the how to calculate Φ  . 

One method, first applied in the context of solvation by Friedman (59), is to use 

image charges to approximate the reaction field.  It was shown that for charges in a 

spherical cavity embedded in a dielectric medium with dielectric ɛ, one image charge 

could be used to approximate the reaction with an error less than       .  Although this 

approximation is sufficient in systems with solvents with a high dielectric constant such 

as water, it may not be accurate enough in systems with low or moderate dielectric 

constant.  We overcome this drawback of the one-image charge method by using multiple 
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image charges to approximate the reaction field and then using the Fast Multipole 

Method to calculate the Coulomb interactions including those from the reaction field (60; 

40). 

 

 

 

 

FIGURE 7:  Image of a hybrid implicit/explicit system.  All atoms inside the sphere are treated explicitly while the 

reaction field outside the sphere is considered a dielectric continuum with dielectric     

 

 

 

1.1.6 Fast Multipole Method 

The Fast Multipole Method (FMM), introduced by Greengard, et. al. in 1987, has 

become one of the most important algorithm developments in recent history and has 

many applications in both science and engineering such as the calculation of electrostatic 

potential and fast solvers for integral equations for electromagnetic scattering (29; 61; 

62).  The FMM relies on the analytical property of Green’s functions for the Laplace 

operator for calculating the electrostatic potential.  Therefore, the FMM has only been 

used for the cases of homogeneous media of the situations where Green’s functions can 

be obtained by methods of images for layered media (62).  Our method of using multiple 
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discrete images allows us to extend the FMM to the case of a dielectric sphere with 

source point charges inside the sphere.  One important example of this type of system 

would be the calculation of the electric potential for a protein inside a spherical cavity 

with a dissimilar dielectric constant than the surrounding medium. 

Our approach can be traced back to a result obtained over 100 years ago by C. 

Neumann in 1883 (63) and more recently by Lindell in 1994 (64; 65; 66), which extended 

the Kelvin image (67) for a conducting sphere to the case of a dielectric sphere.  In the 

case of a protein inside a dielectric sphere, both the source charge and the field point are 

inside the sphere.  Therefore, in addition to an image point charge at the Kelvin image 

inverse point, there is an image line charge along a ray extending from the inverse point 

to the center of the sphere. Lindell has provided the power law distribution for the line 

charge density along the ray.  In the following sections, we will describe the development 

of the discrete image charges. 

1.1.7 Theoretical Background of Multiple Image Charges 

1.1.7.1 Point Charge in a Homogenous Medium 

 

 

 

 

FIGURE 8:  A point charge (q) embedded in a homogenous medium ɛ. 
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Before covering the details for calculating the reaction field due to multiple 

discrete image charges, we will consider the classical electrostatic theory to find the 

potential of a point charge inside a dielectric sphere.  First consider a dielectric sphere of 

radius a with dielectric constant    , centered at the origin and embedded in an infinite 

homogeneous medium of dielectric constant    (60).  In general terms, given a point 

charge q located on z at z=d, the electric potential at a field point      generated by q is 

(Figure 8): 
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So,   

      
 

     
 

 

    
 

  

    
      

 

   

 

 

(1.11) 

 

Due to the polarization of the dielectric, which must be finite at     , we must add to 

this a reaction potential (40).  Therefore, the total potential would be: 

 

        
 

     
     

 

 

   

       (1.12) 
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FIGURE 9:  A point charge inside a dielectric sphere with dielectric    embedded in a dielectric continuum of dielectric 

    

 

 

 

As all of our point charges of the MD simulation will be inside a sphere defining 

the explicit region of the system, we consider a point charge q located on the x-axis 

inside a sphere at a distance    from the center of the sphere (40).  So, depending on 

whether      or      , we get (Figure 9):  
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Then the potentials inside the sphere take the form: 
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The expansion coefficient    can be determined using the boundary conditions that the 

potentials at the boundary of the sphere are equal and also the flux normal to the 

boundary is the same at either side of the boundary: 

 

   ,   ,  V a V a   ,  

   
       

  
 
    

    
       

  
 
    

 

(1.15) 

 

Using the orthogonality of the Legendre Polynomials, we get: 

   
 

    
 
  
 

     
    

  

      
  

 

(1.16) 

Where     and               . 

 

1.1.7.2 Image Charges and Image Line Charges 

Carl Neumann derived the mathematical formulas for finding the image line 

charges for a point charge inside a dielectric sphere  (63)in 1883(63).  Over the last two 

decades, these results have been investigated independently by both Lindell (64; 65; 66) 

and Norris (68).   

 

FIGURE 10:  Discretization of the line image charge    
     . 
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To calculate the potential inside the sphere due to polarization, we substitute    

from Eq. (1.16) into the last part of Eq. (1.14) to get: 

 

    
           

 

    
 

  
 

     
     

   

      
    

   
 
                                              

 
  

      

 

  
  

 

  
 
 

          

 

   

 

 
 

    

      

 
 

  
 

     
 

 

      
 

 

   

            

       

(1.17) 

Let     ,     , then         from eq. (1.11) for    
  

   

  
. 

Now, 

   
 

    

      

 
 

  
 

     
 

 

      
 

 

   

           (1.18) 

 

 

 

Substitute in    
  

  
, then: 

 

  
 

     
  

   

  

   
 

  
  
  
 

   
 
  

  
   

  

   
 

  
 

  
 

   
 
  

 (1.19) 

 

Using the following integral  
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we get: 

 

   
 

    

      

 
  

   

  

   
 

 
 

 
   
 
    

  
 

  

 

 

   

           (1.20) 

 

Then, after moving the integral to the outside and substituting for     
  

  
 again: 

 

     
 

     

 

 

      

 
 
 

  
 
 
   
 
  

 

 
 
 

 

   

           
 

  

 (1.21) 

 

The inside of the above integral is Eq. (1.11) with     and      and 

represents the potential generated by the charge    
      at x (Figure 10), where    

      

 

 

      

 
 
 

  
 
 
   

 
       

1.1.7.3 Multiple Discrete Images 

The total potential at a field point F( r) inside a sphere, due to an internal point 

charge q, consists of three components:  the potential         from the original source 

point charge q at   , the potential          from the image point charge    
  at the inverse 

point   , and the potential          which is due to the distributed image line charge 

   
     , which we developed previously (40).  So we have: 

 

                                               

 
 

           
 

   
 

           
  

   
     

          
  

 

  

 

(1.22) 

where    
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FIGURE 11:  Visualization of the multiple image charges created from the discretization of the line image charge. 

 

 

 

To approximate the potential due to the image line charge    
       by a small 

number of discrete points we start with the line integral (Figure 11): 

   
 

     
 
 

  
 
 
   
 
  

 

  

 (1.23) 

 

 

First, introduce a change of variable 
  

 
  

   

 
 
 

 with    . Then, 

 

     
   
 
                   

 

  

 (1.24) 

where   
      

 
   and          

    

              
. 

Next, employ a numerical quadrature to approximate the integral  . The value      

corresponds to the Kelvin image location     .  Also,      since        and 

   .  Therefore, we can use Gauss-Radau quadrature based on Jacobi polynomials.  
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The Jacobi polynomials   
   
    on [-1,1] are orthogonal polynomials under the Jacobi 

weight                  , i.e. 

 

             
 

  

  
                       (1.25) 

 

Let                   be the Jacobi-Gauss-Radau points and weights on [-1,1] 

with      ,   
      

 
      .  Then, the numerical quadrature for 

approximating integral   is: 

 

     
   
 
             

 

   

 (1.26) 

 

Then, 

          
   
     

          
   

 

  

 
  
  

          
   

 

   

 (1.27) 

where            ;    
    

   

 
              

  
  

 
, and   

       
 

    
 
 

.  

Note that   
     .  Therefore we can combine together the point image charge    

  with 

the first discrete point charge   
   and 

 

                                

 
 

           
 

   
 

           
  

   
     

          
  

 

  

 

(1.28) 
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becomes: 

 

       
 

           
 

   
    

  

           
  

  
  

          
   

 

   

 (1.29) 

 

1.1.7.4 Images for Ionic Solvent 

To this end, theoretically let us consider a spherical volume   with dielectric 

permittivity    imbedded in an infinite solvent of dielectric permittivity   , the total 

potential      in this setting satisfies the following version of the Poisson-Boltzmann 

equation: 

 

   
                    

                                 
(1.30) 

 

where the                    is the charge distribution inside     which contains all 

explicit charges of the solute and solvent molecules and λ is the inverse Debye-Hückel 

screening length.   

For the boundary conditions, the continuity of the tangential component of the 

electric field and the normal component of the displacement field require that: 

 

          

  
    
  

   
     
  

 

(1.31) 

 

where n is the outward normal and     and      are the potentials inside and outside of 

the cavity.  
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Assume that a single point charge q is located at position    inside the spherical 

cavity.  We can write the solution to the above PB equation in terms of the primary field, 

  , which is the field due to source charge, and the reaction field,      which is the 

potential created by the source-induced polarization of the solvent.  Then the total 

potential can be written as          .  For a spherical cavity with radius a,      

inside the cavity is given by the Kirkwood expansion (1).  In the pure solvent case where 

   , we will have (as discussed in Eq. (1.17): 

 

         
 

     
 

            

           

 

   

 
   
  
 
 

         (1.32) 

 

where    are the Legendre polynomials as in Section 1.1.7.1 and   is the angle 

formed by vectors r and   . 

If we let    
  

  
 be the location of the Kelvin image charge and     

 

  
  be the 

charge, then after some algebraic manipulation Eq. (1.32), the reaction field, can be 

approximated by (see Section 1.1.7 for details on the derivation): 

 

       
  

      
  

 

  
 
 

        

 

   

 
  

     
 

 

   

 

   

 
 

  
 
 

         (1.33) 

 

In this case     
     

       
  and   

  

       
  

The first part of this equation is the potential of the Kelvin image charge.  
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After substituting in the integral identity 
 

   
   

    
 

      
  

 

  
 the second part of the 

equation becomes:  

 

  

     
 

 

   

 

   

 
 

  
 
 

           
     

     
  

 

 
 
 

        

 

   

   
 

  

 (1.34) 

 

Which is the potential          from Eq. (1.28) created by the line image charge  

      
  

 
 
 

  
 
  

     . 

Similar to Eq. (1.28), we can find the multiple discrete image charges for the 

reaction field from an ionic solvent.



 

 

CHAPTER 2: IMAGE-CHARGE SOLVATION MODEL (ICSM) 

 

 

2.1.1 The Setup of ICSM 

 

 

FIGURE 12:  A schematic illustration of the ICSM. Note that the productive region, Region I, can accommodate a 

solute molecule of maximum diameter of                 where L is the size of the cube from which the 

regular TO simulation box Λ is built and τ is the thickness of the buffer zone. Particles in Region I are not periodically 

imaged.  Region II contains particles which  have periodic images in Region III. Region III, the so-called buffer zone, 

contains the nearest periodic images of the particles in Region II. The solvent outside the spherical cavity Γ is modeled 

as a dielectric continuum. Given a source charge q located at position    inside this spherical cavity Γ, the reaction field 

       at position r inside the cavity Γ due to the polarization of the implicit solvent can be approximated by the 

potential created by the image charges,   
    

      , located at positions          , respectively (1). 
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The Image-Charge Solvation Model (ICSM) was first introduced in Ref. (1) as a 

new method for calculating the above electrostatic interactions. Central to the ICSM is, 

for a point charge inside a spherical cavity, how to find the image charges outside a 

central cavity that generate the reaction field inside the cavity, which has been shown 

above to be approximated by multiple image charges. 

The setup of the model itself can be schematically illustrated by Figure 12.  A 

regular truncated octahedron (TO) is employed as the main simulation box. The central 

part of the box, marked as Region I, contains the solute molecule under study, while the 

remaining part of the box (including Region II and the area in Region I not occupied by 

the solute molecule) is filled with solvent. The solute and the solvent molecules inside the 

main simulation box are to be treated in atomic detail. Region III represents a buffer zone 

whose purpose is to eliminate or reduce the surface effects that would otherwise be 

induced by the sharp boundary between explicit and implicit solvents. 

The solvent molecules in Region III are just periodic images of the solvent 

particles in Region II, defined as in the usual periodic boundary condition with respect to 

the TO simulation box  for long range electrostatic calculation. And the solvent outside 

the spherical cavity is modeled as a dielectric continuum whose effect on the solute is 

treated through reaction field corrections.  
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FIGURE 13:  A schematic showing the division of the system into an outside system which is solved using LE and an 

inside system which is solved using FMM. 

 

 

 

Note that the solute particles in Region I are not periodically imaged and only the 

solvent particles in Region II could have periodic images in Region III, leading to a most 

important feature of the ICSM that a solute may be solvated without suffering any 

artificial electrostatic solute-solute interactions. For this reason, Region I is also called 

the productive region in the ICSM. 

After the calculation of the periodic images, all image charges are determined 

using 

 

  
    

   

 
              

  
  

 
, and   

       
 

    
 
 

 from Eq. (1.27).   

 

As initially proposed in reference (41), we could now complete the evaluation of 

these forces with a single FMM run using all of the charges in Λ, the periodic images in 

region III and the image charges outside the sphere Γ and assuming that all charges are 

located in a homogeneous medium of dielectric permittivity   .  However, the image 
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charges are not uniformly distributed, especially the image charges of the original 

charges which are close to the center of Λ.  Therefore, we introduce an additional step 

which divides the system into two separate systems using a reference sphere    of radius 

    as shown in Figure 13.  The field with the TO box Λ due to charges inside    is 

calculated using an adaptive FMM and the field due to charges outside this sphere is 

calculated using a local expansion as described in reference (43). 

Specifically, for any point outside the reference sphere at location (          , 

          with charge    ,           the potential on a charge inside the sphere 

located at           can be described by the local expansion: 

 

         
 

 

    

 

   

  
          (2.1) 

 

where   
       are the spherical harmonics and   

  are the local expansion coefficients 

given by:  

 

  
        

  
         

  
   

 

   

 (2.2) 
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The force                          can then be calculated by (1): 
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                     (2.5) 

 

where       and Im    represent the real and imaginary parts of a complex number 

and 

 

     

 

   

  
            

     

            
   
         

            

   

   

 

   

 

      
        

           
 

   

      
   
             

             
 

   

 

 

   

 

      
    

               
   

 

   

      
   

   
             

             
 

   

 

 

   

 

and  

  
                 

   
      

      
 

 

  



31 

 

2.1.2 Integration of ICSM into TINKER 

As pointed out earlier, the ICSM has been integrated into the molecular dynamics 

portion of the Tinker package to provide a new order N method to calculate charge-

charge electrostatic interactions (69). How the ICSM is integrated into TINKER is 

schematically shown in Figure 14. The changes needed to the original Tinker source files 

are minimal, and will be described in detail later. As a matter of fact, the only significant 

change required is to add in the Tinker source file echarge1.f a call to the ICSM 

subroutine imgmethod() and another subsequent call to the ICSM subroutine fmmle(). In 

this sense, the (modified) Tinker file echarge1.f could be regarded as the interface 

between Tinker and the ICSM. In simulations, the call for the ICSM is controlled by the 

presence of the keyword imgmethod in the keyword parameter file, and when the 

keyword imgmethod is present, the logical variable use_images is set to .true. in the 

(modified) TINKER subroutine prmkey().  It should also be mentioned that a new 

subroutine echarge1h() is added into echarge1.f for calculating electrostatic interactions 

by the ICSM without using the FMM. And whether or not to use the FMM in the ICSM 

is determined by whether another keyword fmmle is also present in the keyword 

parameter file, the logical variable use_fmmle is set to .true. accordingly. 

If the keyword imgmethod is present in the keyword parameter file, the ICSM 

subroutine imgchg() is first called by the TINKER subroutine mechanic() to initialize or 

calculate the variables unique to the ICSM, including the Gauss–Radau quadrature points 

and weights           
  . Then later the ICSM subroutine imgmethod() is called by the 

TINKER subroutine echarge1() to (1) locate periodic images in Region III for those 

solvent particles in Region II of the simulation box Λ, and (2) find image charges of 
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reaction field for all charges inside the spherical cavity Γ . To this end, the atoms in each 

molecule inside the simulation box Λ are first checked to see if they are inside Region II. 

If any part of the molecule is inside Region II, the positions of the periodic images of its 

atoms are calculated and stored in an image-position array, and the charges of these 

periodic images are stored in an image-charge array accordingly. Remember that only 

those periodic images that are indeed located inside the buffer zone are kept and 

contribute to the reaction field corrections.  Once all periodic images are found and 

stored, the locations as well as the magnitudes of image charges are then calculated and 

stored in corresponding arrays for all real and periodic image charges inside the spherical 

cavity Γ if     .  Lastly, the electrostatic forces exerted on all real ‘‘target’’ charges 

inside the simulation box Λ by all ‘‘source’’ charges, including real charges inside Λ, 

periodic images in Region III, and image charges of reaction fields outside the spherical 

cavity Γ, are calculated either by the pairwise method in echarge1h() or by the FMM, 

depending on whether the keyword fmmle is present in the keyword parameter file. Once 

this last step is done, the electrostatic forces are then added to the values in TINKER’s 

force arrays and control is returned to TINKER by the ICSM. 

If the keyword fmmle is present in the keyword parameter file, the ICSM 

subroutine fmmle () is called to calculate the above electrostatic forces by the FMM 

together with the local expansion procedure described in Section 2.1.1.  First, all 

‘‘source’’ charges are split into two groups based on where they are located by calling the 

ICSM subroutine twoGrp(). If a charge is located inside the cut-off reference sphere    , 

it is put in the ‘‘inside’’ group; otherwise it is put in the ‘‘outside’’ group. Next, the 

electrostatic forces exerted on all ‘‘targets’’ inside the simulation box Λ by those 
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‘‘source’’ charges from the ‘‘inside’’ group are evaluated using the FMM.  Then the 

forces exerted on the same ‘‘targets’’ by those ‘‘source’’ charges from the ‘‘outside’’ 

group are calculated using the local expansion (LE). The forces calculated by the FMM 

and the local expansion are then added together to obtain the final total electrostatic 

forces.  Details concerning the installation and use of tinker with the ICSM are included 

in Appendix A:  Installation Instructions. 
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FIGURE 14:  The schematic illustration of the flowchart of the integration of the ICSM into TINKER. The blue boxes 

represent the subroutines that belong to Tinker that were modified.  The red boxes are subroutines belonging to ICSM 

that were added.  The green boxes are conditional statements and the black boxes are modules which are called from 

ICSM. 



 

 

CHAPTER 3: NUMERICAL RESULTS 

 

 

In order to validate the ICSM integrated into the TINKER molecular modeling 

package, we applied TINKER 6.0 with the integrated ICSM to liquid water simulations. 

We ran the same benchmarks on the physical properties of bulk water as in our previous 

paper (1), including the density, the structural oxygen–oxygen radial distribution 

function, the self-diffusion coefficient, and the dielectric constant. The results are 

compared to the PME calculations included in the TINKER package and to the published 

results obtained by the original in-house ICSM software (1). That is, unless otherwise 

specified, for each test, three different kinds of simulations are presented: one by 

TINKER with the built-in PME using neighbor lists, one by TINKER with the integrated 

ICSM using one image charge (    ), and one by the original in-house ICSM program 

used in Ref. (1) also with one image charge. And for convenience, the corresponding 

results are marked as ‘‘TINKER–PME’’, ‘‘TINKER–ICSM’’, and ‘‘ICSM’’, 

respectively. The machine on which we compile the integrated package and perform the 

test simulations is a Red Hat Enterprise Linux 6 server with dual Xeon E5450 processors 

and 32 Gb of memory, and the compiler is gcc-4.4.5-6.
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3.1.1 Testing on Water 

3.1.1.1 Simulation Details 

We use the TIP3P (70) all-atom model to characterize properties of bulk water. 

The implementation details of the in-house ICSM program can be found in Ref. (1). In all 

three approaches employed, positions and velocities of particles are calculated using the 

Velocity Verlet algorithm, coupled with the Nosé–Hoover thermostat.  For each test, 

three different simulation boxes with L = 30, 45, and 60 Å are considered, the number of 

atoms contained in these boxes being 1224, 4224, and 10,275, respectively. The 

corresponding initial coordinates are the identical input files used in Ref. (1), which were 

generated from an equilibrium 200 ps simulation in NPT ensemble, performed by the 

GROMACS program package. Since it was found in reference (1) that the thickness of 

the buffer zone had to be at least 6 Å in order to yield the uniform density of the 

simulated bulk water inside the TO Λ, we use a six Angstrom buffer zone for all tests 

reported in this work, namely, τ = 6 Å. In addition, each dynamics simulation was 1.1 ns 

long with the first 0.1 ns used for equilibration time and the integration time step was set 

to 2 fs.  The simulations were performed under constant temperature conditions at T = 

300 K. The trajectories were recorded at every 0.2 ps for subsequent analysis. In all 

simulations, for the FMM-Yukawa software, the maximum number of particles in a leaf 

box of the adaptive oct-tree structure was set to 80 (nbox = 80). The number of terms in 

the multipole and local expansions and that in the plane wave expansion were both set to 

9 for three-digit accuracy (nterms = 9, nlambs = 9). 
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For the proposed TIP3P liquid water tests, a typical command line for running 

TINKER with the integrated ICSM would be: 

Dynamic water_30A.xyz 550000 2.0 0.2 2 300 

where Dynamic is the TINKER executable, water_30A.xyz represents the input file for 

the 30 Å simulation box, 550,000 is the number of total time steps, 2.0 is the time step 

size in femtoseconds, 0.2 indicates the trajectory is recorded after every 0.2 ps, 2 

indicates to use the NVT ensemble, and 300 is the temperature, respectively.  A 

corresponding example keyword parameter file “water_30A.key” is included in Appendix 

B. 

3.1.1.2 Results and Discussion 

To validate TINKER with the integrated ICSM, as in Ref. (1), first we examine 

the local particle density across the simulation box as a measure of the homogeneity of 

the simulated bulk water. More specifically, we compute the relative density of oxygen 

atoms along the diagonal of the TO simulation box.  First, due to symmetry, we can 

select two opposite vertexes on the TO box and then calculate the density along the line 

that connects them.  To evaluate the density, we consider 11 equally spaced positions on 

this line, draw small spheres of radius r=5Å around each position and then count the 

number of water molecules in each sphere.  This count is then converted to the particle 

density    and then normalized using the number density of the entire box to give   .  

The results of this experiment are shown in Figure 15.  As can be seen, for all three box 

sizes, the relative densities obtained by the three different approaches are in good 

agreement with each other, all showing a uniform density distribution with some 

statistical variations which are quantitatively summarized in Table 1.  
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TABLE 1:  Standard deviations of relative densities along the diagonal of TO simulation boxes. 

  TINKER–ICSM TINKER–PME  ICSM 

30 Å 0.004 0.004  0.002 

45 Å 0.004 0.003  0.003 

60 Å 0.003 0.004  0.004 

   

 

  

 

 

 

FIGURE 15:  Computed relative density along the diagonal of the TO simulation for three different box sizes with L = 

30, 45, and 60 Å, respectively. 
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Next, we examine the structure of the simulated bulk water.  We do this by 

evaluating the structure using       , the oxygen–oxygen radial distribution function 

(RDF), over the entire simulation box.   

The RDF is calculated as (14): 

       
 

       

 

 
    

 

                 

 

 

            (3.1) 

 

where N is the total number of molecules,   is the number density, dr is the window size 

(0.8 Å),        is the minimum image oxygen to oxygen distance between molecules   

and   at time   and      denotes averaging over all trajectory frames (1).   

These results are plotted in Figure 16 - 17.  Recall that the most important features 

of        are the locations as well as the magnitudes of the first three density peaks and 

the first two density minima. As can be seen, for all three box sizes, the RDFs obtained 

by the three different approaches are in excellent agreement with each other, and a closer 

look at        using a higher resolution, shown in the insets of Figure 16 – 17, reveals 

some noticeable but yet slight difference only for the first two maxima and the first 

minimum. For example, the first density maxima all lie at 2.76 Å for all box sizes for all 

three models, while their values are shown in Table 2. On the other hand, the first density 

minima are all located around 3.56 Å and their values are given in Table 3. 

 
TABLE 2:  Magnitudes of the first density maxima in the computed RDFs. 

 

TINKER–ICSM TINKER–PME ICSM 

30 Å 2.740 2.750 2.770 

45 Å 2.720 2.720 2.740 

60 Å 2.700 2.700 2.710 
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TABLE 3:  Magnitudes of the first density minima in the computed RDFs. 

 

TINKER–ICSM TINKER–PME ICSM 

30 Å 0.864 0.866 0.858 

45 Å 0.880 0.881 0.876 

60 Å 0.900 0.901 0.897 

 

 

 

 

FIGURE 16:  Computed Oxygen-Oxygen RDFs for a 30Å TO simulation box.  The insert shows a close-up of the first 

two density minima. 
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FIGURE 17:  Computed Oxygen-Oxygen RDFs for a 45Å TO simulation box.  The insert shows a close-up of the first 

two density minima. 

 

FIGURE 18:  Computed Oxygen-Oxygen RDFs for a 60Å TO simulation box.  The insert shows a close-up of the first 

two density minima. 
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Next, we examined the dynamical properties of the simulated water. More 

precisely, as in (1), we choose to evaluate the self-diffusion coefficient D, a transport 

coefficient characterizing how quickly equilibrium is established in particle density 

following a small perturbation.   These diffusion coefficients were calculated from the 

mean square displacement (MSD) of all oxygen atoms using the Einstein relation (22): 

 

   
   

                        (3.2) 

 

where r(t) is the position of the oxygen atom of the water molecule at time t, D is the 

diffusion coefficient, and the brackets denote averaging over all water molecules and 

time at origins t’.  The diffusion coefficient was estimated from the slope of the linear 

part of the line at long times of MSD versus time plot. The initial part of the line is 

influenced by inertial effects and is not included in this calculation (1). 

The self-diffusion coefficients obtained by the three different approaches are 

recorded in Table 4. As it shows, the self-diffusion coefficient obtained by TINKER with 

the integrated ICSM is consistent, within statistical errors, with both the values obtained 

by the PME included in TINKER and the initial findings from Ref. (1) which were 

obtained using the original in-house ICSM software. Also note that the standard deviation 

decreases as the box size increases. 
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TABLE 4:  Computed self-diffusion coefficients D with standard deviations (unit: 10−9 m2s−1). 

 

TINKER–ICSM TINKER–PME ICSM 

30 Å 6.15(±0.12) 6.16(±0.12) 6.28(±0.03) 

45 Å 6.16(±0.04) 6.24(±0.07) 6.19(±0.02) 

60 Å 6.03(±0.03) 6.06(±0.05) 6.02(±0.01) 

 

 

 

Last, to validate TINKER with the integrated ICSM, we consider a model devised 

by Berendsen (71) in order to determine the dielectric properties of the simulated bulk 

water by computing its dielectric constant ε.  In this model a central sphere with 

permittivity   is centered in a spherical layer with permittivity    and then embedded in 

dielectric continuum with permittivity   .  The spherical layer allows cases where the 

dielectric constant at the explicit/implicit interface may differ from that on either side of 

the boundary. The original cavity model is recovered by setting    to either   or       

The dielectric constant is then given by (1): 

 

  
  

 
   

        
    

 
    

 
 

     
   

  
 
  
           

 
    

 
 

        

  (3.3) 

 

where 
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The expression for B describes the fluctuations on the total dipole moment M(R) 

of a spherical sample with radius R.  Here    is the Boltzmann constant,    is the vacuum 

permittivity, T is the temperature, and V(R) is the volume of the sample (1).  Ballenegger 

and Hansen (72) show that if    is set to   , Eq. (3.3) reduces to: 

 

  
   

   
     

   
 

     

 (3.4) 

 

Further reduction of this expression to the known Kirkwood–Frölich and the 

Clausius–Mossotti formulas is possible by setting    to   and 1, respectively.  Expression 

(3.4) must be applied at relatively large R since it was derived based on continuum 

electrostatics (72).  Although the upper bound for R would be      in our system, we 

limit the radii in our calculations to                 to ensure that no periodic 

images are included in the calculation.  The dielectric constant relies on the quadratic 

fluctuations of the total dipole moment M(R) which scales linearly with the sample 

volume.  Therefore, the inclusion of any periodic images in the sample would violate the 

linear scaling of      and invalidate the fluctuation formula (1).  The water molecules in 

the layer                are, therefore, included as part of the dielectric 

continuum.  The permittivity of the continuum      was set using Eq. (3.3) in our 

calculations and convergence was achieved in just a few iterations (1). 

Once a crossover from a finite-size to macroscopic dimensions is achieved, the 

dielectric constant should be largely independent of the geometry of the investigated 

object. In the case of ε(R), a plateau in the graph is expected to start at some radius. 
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Figure 19 shows the computed dielectric constant ε(R) obtained, respectively, by 

TINKER with the integrated ICSM and the original in-house ICSM software. Again, 

good agreement between these two simulation results can be observed. 

 

 

 

 

FIGURE 19:  Dielectric constant ε(R) as a function of the spherical sample radius R computed using Formula (A3) of 

Ref. [1] for three different TO simulation boxes with L = 30, 45,and 60 Å, respectively. For sufficiently large R, ε(R) is 

seen to level off, and the plateau value in ε(R) is identified as the static dielectric constant of the material. Note that, as 

in Ref. (1), this static dielectric constant is seen to grow from ∼65 at L = 30 Å to ∼80 at L = 60 Å. 

 

 

 

Finally, to test the performance of the ICSM integrated into TINKER, we 

compare the timing required to run TINKER with the integrated ICSM using the FMM 

against the timing required to run TINKER with the built-in PME. To this end, in 

addition to the three simulation boxes used above, larger simulation boxes with  = 80, 

100, 120, and 140 Å are also considered. For each case, the corresponding simulation was 

run for 1000 time steps, and the time required for completion, as calculated using the 

TIME function built into UNIX, is plotted in Figure 20 as a function of the number of 

atoms in the system. As can be seen, for relatively small systems, TINKER with the built-
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in PME runs faster than TINKER with the integrated ICSM, while for sufficiently large 

systems the latter clearly outperforms the former. The break-even point is at around 

30,000 atoms (Figure 20.) 

 

 

 

FIGURE 20:  Results of timing tests using TINKER with the integrated ICSM and TINKER with the built-in PME, 

respectively. Test runs were carried out for 1000 time steps and the time used was calculated using the TIME function 

built into UNIX. TINKER with the integrated ICSM starts to outperform TINKER with the built-in PME at 

approximately 30,000 atoms. 

 

 

 

3.1.2 Testing on KcsA Channel 

3.1.2.1 Ion Channel/KcsA History and Description 

Ion channels are membrane-spanning proteins that form a pathway for the 

movement of ions through cell.  Some examples of their many functions include the 

secretion of hormones into the bloodstream, generating the electrical impulses that 

establish information transfer in the nervous system, and controlling the pace of the heart 
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and other muscles (73).  Although the study of ion channels is relatively new, great 

strides in their structure and function have been made. 

The supposition of the existence of means of transporting ions from the exterior 

of a cell to the interior began a mere 63 years ago with Hodgkin and Huxley’s study of 

the electrical activity in squid giant axon (74; 75).  They showed that both the sodium and 

potassium ions contributed to the ionic current and that the fluxes were opposed.  Twenty 

years later Hladky and Haydon used the small antibiotic gramicidin to actually prove the 

existence of an ionic pathway (74; 76) .  Great technical strides in many diverse areas of 

science culminated in the completion of the x-ray crystal structure of the potassium ion 

channel KcsA (potassium crystallographically-sited activation channel) by MacKinnon in 

1998 (74; 77). 

Potassium channels are specialized proteins able to facilitate and regulate the 

conduction of K+ ions in particular through cell membranes (78; 73).  KcsA is comprised 

of 5,819 atoms (Figure 21) which form four identical proteins(Figure 22) each of which 

contain two alpha-helices connected by a loop of approximately 30 amino acids.  These 

proteins combine to form three primary sections of the channel – the opening pore on the 

side of the cell interior, a small cavity which is filled with water and a mix of sodium 

(Na+) and potassium ions (K+) and the selectivity filter.  The selectivity filter, which is 

comprised of four specific cation binding sites (S1 to S4) (Figure 25) formed by the 

backbone carbonyl groups of conserved residues common to all K+ channels (TVGYG), 

allows fast conduction of K+ while being highly selective for potassium ions over sodium 

ions (Figure 23) (78).   
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FIGURE 21:  All atom model of KcsA from a) Side and b) extracellular end. 

 

 

 

 

FIGURE 22:  View of four identical proteins that make up the channel 
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FIGURE 23:  The amino acids that make up the selection filter – blue – threonine(T), red – valine(V), yellow – 

glycine(G), green – tyrosine(Y). 

 

 

 

3.1.2.2 Simulation Details 

For our testing, we used the file 2A9H.pdb from the RCSB Protein Data Bank 

(www.pdb.org).  It was entered into the PDB after discovery by Nuclear Magnetic 

Resonance(NMR) in 2005 (79).  This version of the structure of KcsA is a closed 

structure with a high-affinity peptide antagonist charybdotoxin attached to the 

extracellular side of the channel.  The data from the PDB was converted to a Tinker input 

file using the built in program pdbxyz.x.  We then removed the toxin and added five 

waters to the central cavity.  We also shifted all of the atoms in the file in order to center 

the channel in a 60 Angstrom TO box.  The system was then minimized with all particles 

allowed to move freely using a program included in Tinker and then run for 200ps for 

initial equilibrium.  While running the following simulations, we used the ACTIVE 

keyword in the key file to lock down all atoms of the channel except for the amino acids 
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making up the selection filter, the waters, and the ions.  We used the parameters 

contained in the Amber99 force field (15; 16), also included in Tinker.  We chose to use 

the Velocity Verlet algorithm and a Nose-Hoover bath set to 300K.  Each time step is 2 

fs, and the trajectory is printed out every .1 ps.  For these simulations, the above system 

for the ICSM was modified slightly to accommodate this unique environment. 

We considered only the amino acids (Figure 23) contained in the selection filter, 

the ions, and the waters in the pore as the solute.  The protein and surrounding membrane 

are treated as the infinite dielectric continuum of dielectric constant     .  Although 

there is water on both the extracellular side and the intercellular side of the channel, we 

considered the opening into the pore to be small enough to disregard this.  The small size 

of the pore as compared to the rest of the protein and the surrounding membrane also 

allows us to treat the protein itself as the buffer zone so Tau in this case is set to 0.  
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FIGURE 24:  A schematic showing the setup for the KcsA system.  The red dots are ions.  The gray area is the 

dielectric continuum with 2o  , the area in the circle is the productive region.  The dielectric inside the TO box is 

1i  .  The area between the dashed black lines represents the size of the cellular membrane. 

 

 

 

 
FIGURE 25:  Example of channel with three ions.  One ion typically remains in the water-filled cavity and two in the 

filter area.  The blue dots represent the carbonyl oxygen from the amino acids that make up the selectivity filter. 

 

 

 



52 

 

3.1.2.3 Numerical Results 

We first collected the data for channel permanent potential using the program 

analyze.x that is included in the Tinker package.  This routine was modified to print the 

energy on a particular ion as it moved through the channel.  The ion was moved 2 

Angstrom at a time and then the potential energy was calculated on the ion at that 

position.  The results for the channel prior to minimization and equilibration are shown in 

Figure 26.  The result closely resembles the channel permanent potential found by Jung, 

Lu and Mascagni for their tests on ERINP (80).  We then allowed all of the atoms to 

move freely in the system and again minimized the file using the minimization program 

built into Tinker.  This file was used as the initial input for the remainder of the testing. 

 

 

 

 

FIGURE 26:  Potential energy profile of KcsA prior to minimization. 
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Next we tested whether or not this current set up of the ICSM will work with an 

ion channel buried in a membrane.  We ran 100 ps simulations for every permutation of 

ion locations in the channel.  We found that regardless of starting position in the filter the 

two ions will come to rest in S2 and S4.  This relaxation period for the ions is very short.  

We found that by .3 ps, the ions and water in the filter had reached their approximate 

final positions.  Table 5 shows the initial and final positions for two ions present in the 

channel.  All of these files were started with one ion in the cavity and then a second ion 

was placed in the filter in positions approximating the binding sites.  The original 

positions for the ions in the filter were calculated by finding the midpoint between the 

carbonyl oxygen of the filter amino acids.  An example of the trajectories for four of 

these simulations can be seen in Figure 27.  In this instance, both of the ions move into 

the filter and come to rest in positions S1 and S3.  This configuration would be a 

transitional phase between an ion exiting the channel and another one entering.  After 

adding a third ion into the cavity, the ion located in position S3 moves into close 

proximity to the carbonyl oxygen belonging to Tyrosine(T).  Figure 28 shows the 

trajectories for four permutations (Cavity/s2/s4, Cavity/s1/s3, Cavity/s1/s4, and 

Cavity/s3/s4) of starting with three ions in the channel.  The starting positions for the 

examples shown can be seen in Table 6. 
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TABLE 5:  Initial and final positions for tests with two ions in the channel 

  Cavity – S4 Cavity – S3 Cavity – S2 Cavity – S1 

  Initial Final Initial Final Initial Final Initial Final 

K1 0.418 8.635 0.418 9.049 0.418 8.957 0.418 8.923 

K2 18.544 14.739 15.800 14.717 13.324 15.387 10.347 13.451 

 

 

 

 

FIGURE 27:  Trajectories for examples of simulations with two ions in the channel. 

 

 

 
TABLE 6:  Initial and final positions for three ions in the channel 

  Cavity/S2/S4 Cavity/S1/S3 Cavity/S1/S4 Cavity/S3/S4 

  Initial Final Initial Final Initial Final Initial Final 

K1 0.418 5.310 0.418 5.404 0.418 8.562 0.418 5.092 

K2 13.324 11.808 10.347 11.813 10.347 12.047 15.800   11.695 

K3 18.544 16.280 15.800 15.727 18.544 16.656 18.544 16.385 
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FIGURE 28:  Trajectories for four examples of simulations with three ions in the channel. 

 

 

 

We ran another test for 200 ps where the initial positions for the three ions are as 

shown in Table 7.  In this test, two of the ions were in the cavity, and one was already 

located in the filter at approximately the location of S3.  We note that in this case the 

second ion pushed a water into the channel.  The results above for three ions in the 

channel have no water in the filter area.  The trajectory for this case is shown in Figure 

29.  The difference in the final resting location for the filter ions is just slightly different 

with the ion that is located close to the Tyrosine shifting slightly into the binding location 

S3.  This result is comparable to the results obtained by Caperner in (81).  We note that 

their assignment for labels S1 to S4 is opposite of the standard used here (S1 is toward 

the exterior of the cell membrane.) 
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TABLE 7:  Starting and Final Positions for the 3 ions in the channel for example case. 

 
Starting Position Final Position 

K1 -5.4184 5.14125 

K2 2.302215 11.59929 

K3 12.3509 16.36362 

 

 

 

 

FIGURE 29:  Relative positions of the ions and water in the selectivity filter to the carbonyl oxygen.  The black lines 

are the two ions in the filter while the blue line is the water. 

 

 

 

In summary, for the investigations into the positioning of the filter ions we find 

that in the transitional state of two ions in the channel the ions prefer locations S1 and S3 

whereas in the three ion state, they come to a resting position of S2 and S4. 
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FIGURE 30:  A close-up of the selection filter after the final time step showing the positions of the carbonyl oxygen 

from two chains (green), the potassium ions (red) and the two waters in the filter (cyan).  These locations correspond to 

the ones shown in Figure 28.  Image created using VMD. 

.



 

 

CHAPTER 4: CONCLUSION AND FUTURE WORK 

 

In this thesis, we studied molecular dynamics and discussed two different 

methods for simulation based on the type of boundary conditions used to calculate the 

electrostatic interactions – using periodic boundary conditions as in explicit models 

versus using non-periodic boundary conditions as in implicit models.  We pointed out 

that both of these methods had inherent issues.  Explicit models could introduce artifacts 

caused by interactions between different copies of the primary simulation box.  Implicit 

models are difficult to implement due to the complexity of solving the 3D Poisson-

Boltzmann equation and the loss of molecular interaction near biomolecular surfaces.  To 

resolve these issues, we proposed a method, together with its theoretical foundations, 

which combines the explicit method and the implicit method by treating the solute and 

nearby solvation shells atomistically and then treating the remaining solvent as a 

dielectric continuum. 

We then showed how this method (ICSM) can be integrated into the open-source 

Molecular Dynamics package TINKER written by J. Ponder (82).  The method was 

extensively tested on bulk water, and it was shown to be able to calculate some physical 

properties of the water including the self-diffusion coefficient, the oxygen-oxygen radial 

distribution function, and the dielectric constant accurately as compared to the results 

from the PME included in TINKER.  We further showed that our method, when 
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combined with the FMM, outperforms the PME for sufficiently large boxes where the 

number of atoms in the box is greater than approximately 30,000 particles. 

As a further test of the capability of the modified Tinker code, we conducted a 

preliminary investigation of the ion channel KcsA to see if the ICSM will handle the 

inhomogeneity of media in the setting of ion channels.  Initial results have shown the 

potential of the ICSM to simulate the physical property of the filter region of the KcsA 

channel and the dynamics of the ions in such a channel.  Further investigation of the ion 

channel by the ICSM model will be conducted including the image charges due to the 

presence of the membrane interfaces.  
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APPENDIX A:  INSTALLATION INSTRUCTIONS 

 

 

To install the integrated TINKER and ICSM package, one needs first to download the 

TINKER package from the website http://dasher.wustl.edu/TINKER/, and extract the 

package to the directory that it will be run from. Note that all source files of the TINKER 

package are located in the source subdirectory. Then, one needs to download the ICSM 

package from http://www.math.uncc.edu/~wcai/TINKER-icsm. After extraction of the 

zip file, the ICSM package contains several modified TINKER files and four top-level 

modules: ICSM, FMM, LE, and EXAMPLES. 

Next, one needs to copy all of the files and directories of the ICSM package into 

TINKER’s source subdirectory. Finally, one needs to modify the make file makefile, 

located in the source directory, to include the run path and computer specifications for the 

system the integrated package will be compiled on. For detailed information on the 

installation see the manual included with TINKER (82). 

As mentioned, several TINKER files were edited. More specifically, the following 

TINKER files have been modified in order to integrate the ICSM into TINKER. 

(a) echarge1.f—added the call to the ICSM to calculate electrostatic interactions. 

(b) prmkey.f—added a few lines required to use the ICSM. 

(c) mechanic.f—added lines to call the initializing routine for the ICSM. 

(d) sizes.i—added parameter settings required to use the ICSM. 

(e) potent.i—added parameter settings required to use the ICSM. 

(f) Makefile. 

The subdirectory ICSM contains the following subroutines for the ICSM. 

(a) imgmethod.f—the main call for the ICSM. 
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(b) fmmle.f—use the FMM and the local expansion to calculate the electrostatic force 

field in the TO box. 

(c) kimgchg.f—initialize variables singular to the ICSM. Also calculate the Gauss–Radau 

quadrature points and weights           
   

(d) findimg.f—find image charges for charges inside the spherical cavity Γ as 

shown in Figure 12. 

(e) imgchgs.i—define variables unique to the ICSM. 

The subdirectory LE contains the files needed for the special local expansion as 

pointed out in Section 2.1.1. On the other hand, the subdirectory FMM contains the 

FMM-Yukawa source files downloaded from the website http://www.fastmultipole.org/ 

but with a few files being modified and renamed. In particular, the new file 

ICSMFMMdriver.f serves as the interface between the ICSM and the FMM. The new file 

ICSMFMMadaplap.f, modified based on and renamed from fmmadaplap.f, now 

calculates both electrostatic potentials and forces. In addition, parm-alap.h is renamed as 

fmm.i for naming consistency. The last subdirectory EXAMPLES contains an input file 

water_30A.xyz and a keyword parameter file water_30A.key needed for a test simulation 

of liquid water for a 30 Å simulation box, using the integrated TINKER and ICSM 

package with one image charge and a buffer layer of thickness Å.6    
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APPENDIX B:  EXAMPLE OF THE KEYFILE USED FOR THE WATER TESTS 

 

 

####################################################################### 

##                                                                                                                                      ## 

##    Test Job on Tinker + Image Charge                                                                         ## 

##                                                                                                                                      ## 

####################################################################### 

 

parameters              none 

#verbose 

 

randomseed              123456789 

octahedron 

thermostat              Nose-Hoover 

vdwtype                 LENNARD-JONES 

vdw-cutoff              10.0 

vdw-list 

radiusrule              geometric 

radiustype              SIGMA 

radiussize              DIAMETER 

epsilonrule             geometric 

dielectric              80.0 

 

######################################################################## 

##                                                                                                                                        ## 

##           Keywords and Parameters for image charge method                                          

## 

##                                                                                                                                       ## 

## values follows "imgmethod" line:                                                                                ## 

##        Thickness of boundary,                                                                                         ## 

##        Number of images for each charge                                                                       ## 

## values follows "fmmle" line:                                                                                        ## 

##        whichfmm                                                                                                             ## 

##        Number of terms in the local expansions,                                                            ## 

##        Cut-off box type for LE: 1-sphere 2-cube,                                                           ## 

##        Factor kap to define the cut-off sphere                                                                 ## 

##                                                                                                                                      ## 

########################################################### ############ 

 

imgmethod               6.0    0 

fmmle                   2      10     1     2.0     

 

a-axis              30.0000 

b-axis              30.0000 

c-axis              30.0000 
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integrate            verlet 

rattle                water 

tau-temperature       0.1 

 

######################################################################## 

##                                                                                                                                        ## 

##                   Water Parameters                                                                                         

## 

##                                                                                                                                        ## 

######################################################################## 

 

atom         1    O     "O Water (TIP3P)"      8     15.9994     2 

atom         2    H     "H Water (TIP3P)"      1      1.008     1 

vdw          1            3.15061     0.152072595 

vdw          2                  0.000     0.000 

bond         1    2             529.6     0.9572 

angle        2    1    2        34.05     104.52 

ureybrad     2    1    2        38.25     1.5139 

charge       1                 -0.834 

charge       2                  0.417 


