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ABSTRACT 
 
 

YAN NI. Data analysis workflow for gas chromatography mass spectrometry-
based metabolomics studies. (Under the direction of DR. XIUXIA DU) 

 
 

Metabolomics has emerged as an integral part of systems biology research that 

attempts to comprehensively study low molecular weight organic and inorganic 

metabolites under certain conditions within a biological system. Technological advances 

in the past decade have made it possible to carry out metabolomics studies in a high-

throughput fashion using gas chromatography coupled with mass spectrometry. As a 

result, large volumes of data are produced from these studies and there is a pressing need 

for algorithms that can efficiently process and analyze the data in a high-throughput 

fashion as well. To address this need, we have developed computational algorithms and 

the associated software tool named an Automated Data Analysis Pipeline (ADAP). 

ADAP allows data to flow seamlessly through the data processing steps that include de-

nosing, peak detection, deconvolution, alignment, compound identification and 

quantitation. The development of ADAP started in 2009 and the past four years have 

witnessed continuous improvements in its performance from ADAP-GC 1.0, to ADAP-

GC 2.0, and to the current ADAP-GC 3.0. As part of the performance assessment of 

ADAP-GC, we have compared it with three other software tools. In this dissertation, I 

will present the computational details about these three versions of ADAP-GC, the 

capabilities of the software tool, and the results from software comparison. 
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CHAPTER 1: INTRODUCTION 
 
 

1.1 Background of Metabolomics 

1.1.1 What is Metabolomics?  

System biology is focused on the study of biological components and their 

complex interaction to define emergent properties of biological systems [1, 2]. 

Metabolomics (also known as metabonomics) has emerged as an integral part of systems 

biology research that attempts to comprehensively study low molecular weight organic 

and inorganic metabolites (typically <1,500 Da) under certain conditions within a 

biological system [3, 4]. In parallel to the terms 'transcriptome' and 'proteome', the set of 

metabolites synthesized by a biological system constitute its 'metabolome' [3]. 

Metabolites are regarded as the end products of cellular regulatory processes, and the 

changes in their levels in cells, blood, or tissues reflect the ultimate response of biological 

systems to diseases, genetic changes, or environmental perturbations. 

1.1.2 Applications of Metabolomics

Metabolomics is a small-molecule-based science in the “omics” field, which 

enables the dynamic and holistic measurement of endogenous metabolites in the 

biological systems in response to genetic or environmental changes [5]. Compared to 

other ‘omics’, metabolome is closest to the phenotype of a biological system. Monitoring 

the metabolome using metabolomics technologies allows a quick assessment of the 

overall system status (normal or abnormal) [6] and facilitates disease diagnosis [7-10]. In 



	   2 

the meantime, environmental, developmental, or genetic perturbations can cause changes 

in the identity and quantity of metabolites along the metabolic pathways [11]. 

Metabolomics allows researchers to capture these metabolic changes and then study the 

biochemical mechanisms of diseases, develop effective drugs [12-14], and carry out 

toxicology research [15, 16]. Lastly, metabolomics makes it possible to comprehensively 

assess nutritional status, which is becoming increasingly essential as our society realizes 

the importance of nutrition to our health and disease prevention [17, 18].  

1.1.3 Metabolomics Approaches and Workflow 

A metabolomics study typically involves five steps: study design, sample 

collection and storage, sample preparation and analysis, data processing and analysis, and 

final biochemical pathway analysis and interpretation [19]. In general, metabolomics 

experiments can be subdivided into targeted analyses and untargeted analyses [3]. 

Targeted metabolomics involves accurate quantitation of a list of metabolites from 

related metabolic pathways of interest, whereas untargeted analyses use a more global 

approach to measure as many metabolites as possible without bias [20]. Sometimes, 

metabolic fingerprinting is used to consider the total metabolic profile as a unique pattern 

characterizing a snapshot of the metabolism in a particular cell line or tissue [21].  

Regardless of the approach that is used, the metabolomics workflow generally 

consists of six steps as shown in Figure 1.1.  
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Figure 1.1. The general workflow of a metabolomics study 
 
 

1.1.4 Analytical Platforms for Metabolomics 

Many analytical platforms have been used for metabolomics studies [22], 

including nuclear magnetic resonance (NMR) spectroscopy, direct infusion mass 

spectrometry (MS), Fourier transform infrared (FT-IR) spectroscopy, gas 

chromatography coupled to mass spectrometry (GC-MS), two-dimensional GC coupled 

to MS (GCxGC-MS), liquid chromatography coupled to MS (LC-MS), and capillary 

electrophoresis coupled to MS (CE-MS) [19]. The advantages of NMR include high 

reproducibility, potential for high-throughput fingerprinting, minimal requirement for 

sample preparation, and non-destructive nature [23]. The disadvantages of NMR 

spectroscopy, however, are also obvious: first, the technique shows relatively low 

sensitivity; second, it consumes relatively large sample materials when compared to MS. 

In contrast, MS-based metabolomics method is highly sensitive, which makes it the 

method of choice for studies that involve the identification and quantitation of low-
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concentration metabolites from complex samples.  

For MS-based metabolomics studies, both GC-MS and LC-MS are usually 

required to obtain a good coverage of the metabolome. The GC-MS platform is well 

suited for metabolites that are volatile and thermally stable, provides high 

chromatographic resolution and permits separation of structurally similar compounds 

[24]. The LC-MS platform is not limited by sample volatility and thermal stability and 

can analyze groups of compounds that are not amenable to GC-MS. Figure 1.2 shows the 

complementary nature of these two platforms. Primary mass analyzers that are coupled to 

GC separation are quadrupole and TOF instruments. Compared to conventional GC-MS, 

GC-time-of-flight-MS has been one commonly used platform in metabolite profiling 

experiments, providing rapid metabolite detection with high mass accuracy, fast scan 

speed, and high mass resolution to increase laboratory throughput [25]. Primary mass 

analyzers that are coupled to LC separation include quadruple, TOF and Orbitrap. 

 

Figure 1.2. Coverage of identified metabolites using GC-MS and LC-MS platforms. 
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1.2 Metabolomics Bioinformatics 

High-throughput mass spectrometry-based metabolomics studies usually generate 

very complex and large volume of data. In particular, running large-scale projects with 

hundreds to thousands of samples from clinical or epidemiology studies is on the verge of 

becoming routine. As a result, automated computational algorithms and software tools 

are necessary for extracting metabolite information from the raw mass spectrometry data 

and for making sense of the data. This need gave birth to the field of metabolomics 

bioinformatics. Specifically, the last three sequential steps in Figure 1.1 including data 

processing, data analysis, and data interpretation constitute the core of metabolomics 

bioinformatics research. Data processing extracts the qualitative and quantitative 

information of metabolites from the raw MS data. Data analysis determines statistically 

significant metabolites and identifies patterns of metabolite changes based on the 

quantitative metabolite information. Data interpretation places the metabolite information 

in the context of biological pathways using online databases such as KEGG 

(http://www.kegg.jp), human metabolome database (HMDB) (http://www.hmdb.ca), as 

well as available literature.  

In the past decade, many free software tools have been developed that can handle 

one, two, or all of the three aforementioned bioinformatics tasks. These tools include 

AMDIS [26], XCMS [27, 28], MZmine [29, 30], MetAlign [31], MetaboAnalyst [32], 

MeltDB [33], MetaQuant [34], MathDAMP [1], MAVEN [35], MetabolomExpress [36], 

MetaboliteDectetor [37], MetIDEA [38], MetDAT [39], TargetSearch [40], and 

TagFinder [41, 42]. Among these, AMDIS, MetIDEA, MAVEN, spectconnect, 

TargetSearch and TagFinder are primarily for data processing; XCMS, MZmine and 
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MeltDAT provide some basic statistical analysis modules in addition to data processing; 

MetaboAnalyst and MeltDB primarily carry out data analysis based on the qualitative and 

quantitative metabolite information that is extracted by other software tools (e.g., XCMS 

and AMDIS). In addition to these free software tools, commercial tools have also been 

developed that include Mass Profiler Pro (Agilent), MarkerLynx (Waters), ChromaTOF 

(LECO), and AnalyzerPro (SpectralWorks). Despite the successful applications of these 

software tools, various limitations exist. These limitations include low throughput, 

inaccuracy in the extraction of qualitative and quantitative information, and incomplete 

workflow. In particular, any inaccuracy in the extracted qualitative and quantitative 

metabolite information will cause misleading results in the subsequent data analysis and 

interpretation. High throughput metabolomics studies call for a fully automated 

computational workflow that can handle all of the three data handling steps in an equally 

high-throughput fashion and overcome the existing limitations. 

1.3 Algorithms Development, Implementation and Integration  

My dissertation research focuses on developing novel algorithms for 

comprehensively processing and analyzing GC-MS data in metabolomics studies with the 

goal to improve the accuracy of metabolite identification and quantitation. This 

dissertation research is a part of the overarching ADAP bioinformatics system for mass 

spectrometry-based metabolomics studies. Specifically, an automated data analysis 

pipeline has been developed with full capabilities of de-noising, peak detection, 

deconvoluion, alignment, and compound identification and quantitation. Among them, 

peak detection and deconvolution are two critical steps that have witnessed continuously 

optimization and improvements in compound identification and quantitation from 
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ADAP-GC 1.0, to ADAP-GC 2.0, and to the current ADAP-GC 3.0. As part of the 

performance assessment of ADAP-GC 3.0, we have compared it with three existing 

software tools, i.e., ChromaTOF, AMDIS, and AnalyzerPro. Finally, the data processing 

algorithms have been integrated with visualization and statistical analysis package 

together to provide an automated and integrated software tool for users (Figure 1.4).  

In the next three chapters, chapter two focuses on the development of novel 

computational algorithms for GC-MS data processing and methodological advances in 

each release of ADAP-GC. ADAP-GC 1.0 and 2.0 has been published in 2010 [43] and 

2012 [44], respectively. The current version ADAP-GC 3.0 optimized based on previous 

versions will be submitted for review. Chapter three focuses on comparative evaluation 

of ADAP-GC 3.0 with three existing software tools in terms of compound identification 

and quantitation. Finally, chapter four introduces the development of visualization 

software and statistical methods for GC-MS data analysis in metabolomics studies. These 

two manuscripts on comparative evaluation with existing algorithms (chapter three) and 

ADAP-GC software (chapter four) will be submitted for review soon.  
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Figure 1.4. The stucture of integreating data processing algotithms, visualization, and 
statitstical analysis together for ADAP-GC pipeline. 



	  

	  

CHAPTER 2: DEVELOPMENT OF COMPUTATIONAL ALGORITHMS FOR 
PROCESSING GC-MS DATA  

 
 

2.1 Introduction 

Processing of GC-MS-based metabolomics data involves five steps including de-

nosing, peak detection, spectral deconvolution, chromatogram alignment, and compound 

identification and quantitation [48]. The MS signals resulting from GC-MS 

measurements can be contaminated by different sources of technical variations that de-

noising makes it possible to remove the random noises from signals [49]. Peak detection 

aims to detect all the peaks with different peak widths and shapes in total ion current 

chromatogram (TIC) and each extraction ion current chromatogram (EIC). A peak is an 

observed, temporal, and bell-shaped signal intensity pattern in the chromatogram and is 

numerically represented by one peak apex, one left and one right boundary, and the signal 

intensity pattern between the two boundaries. Deconvolution is a critical process for 

extracting pure mass spectrum of a same compound for identification and quantitation, 

which is particularly challenging in GC-MS where compounds with similar biochemical 

properties frequently co-elute from GC column that produce a mass spectrum with a 

mixture of fragments from multiple compounds (Figure 2.1). In GC-MS-based 

metabolomics, retention time variations/drifts are common in chromatography due to the 

variations in column performance or column overloading with sample especially when a 

large number of samples are analyzed [50]. Thus, after deconvolution, alignment is 
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important to align peaks originating from a same metabolite to an identical retention time. 

Finally, the combination of compound identification and quantitation results enables 

further statistical analysis and biological interpretation.  

 

Figure 2.1. A simplified diagram of extracting ion chromatograms of a compound in the 
process of deconvolution. (A) A raw mass spectrum consists of fragments from mulitple 
compounds. (B) EICs from a same compound have similar chromatograms in terms of 
similar peak shapes and RTs. (C) Deconvolution is a process to extract fragment ions 
with similar peak shapes and RTs that correspond to a same compound. This figure is 
from the Agilent website http://www.chem.agilent.com/Library/applications/5990-
5052EN.pdf. 
 

The success to identify and quantify compounds from complex biological samples 

lies in the robustness and accuracy of data processing. Unfortunately, the development of 

data processing algorithms is slow due to the technical challenges and complexities, thus 

most of existing software tools that have been applied for GC-MS data analysis in 
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metabolomics do not have comprehensive capabilities of data processing. For example, 

MetabAnalyst, MetIDEA, and Spectconnect focus only on quantitation and statistical 

analysis so that they have to rely on third party software (e.g., AMDIS and XCMS) for 

data processing when dealing with raw MS data. Furthermore, only four individual 

software tools have their own capability of spectral deconvolution (AMDIS, 

AnalyzerPro, ChromaTOF, and MetaboliteDectctor) (Table 1.1). A comparative 

evaluation work of the deconvolution performance of AMDIS, ChromaTOF, and 

AnalyzerPro [51] has discussed that none of existing programs met the challenges and 

needs for metabolomics, and thus called for more efficient, automated, flexible and 

reliable data handling systems.  

In this chapter, we present the novel computational algorithms that we have 

developed for extracting the qualitative and quantitative metabolite information from GC-

MS metabolomics data. Among the five steps of data processing,, peak detection and 

deconvolution are the two most critical components and have witnessed continuous 

optimization and improvements in compound identification and quantitation from 

ADAP-GC 1.0, to ADAP-GC 2.0, and to the current ADAP-GC 3.0. Next, the 

computational algorithms of data processing in each version of ADAP-GC pipeline are 

introduced and compared in detail.  

2.2 Experimental Procedures and Testing Datasets  

2.2.1 Testing Datasets 

(1) Calibration curve (CC) samples for testing ADAP-GC 1.0. Ten calibration 

curve samples were prepared at different dilutions from the original mixture of 20 fatty 
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acid standards (Table 2.3). These fatty acids vary in biochemical properties with different 

number of carbons and double bonds, or different double bond positions.  

(2) Liver injury (LI) samples for testing ADAP-GC 1.0. Serum samples were 

collected from male Sprague-Dawley rats. Ten rats had acute liver injury and 10 served 

as healthy control.  

(3) Mixture of standard compounds (Sample I): a total of 38 standard compounds 

were carefully selected and mixed together with known ratios (Table 2.1). Criteria for 

selecting those compounds are: (i) They should contain different classes of compounds 

that include amino acids, organic acids, fatty acids, polyamines, and ketones; (ii) They 

should be common in human urine or blood samples, and (iii) The retention times of 

compounds are spaced across the entire 30-minute time range. Both ADAP-GC 1.0 and 

ADAP-GC 2.0 applied the datasets of sample I to evaluate their performance in 

metabolite identification. 

(4) Mixture of standard compounds (Sample II): seven calibration curve samples 

with each containing 27 standard compounds were prepared at different concentrations 

(0.2, 0.4, 0.6, 0.8, 1, 2 and 5 µg/ml of each compound). We designed this sample sets 

carefully, requiring standards from different compound classes spaced across 30 minutes 

of the entire elution time span and having 4 pairs of co-eluting compounds. This enabled 

us to evaluate the performance of ADAP-GC 2.0 and 3.0 in terms of identifying and 

quantifying different classes of compounds and co-eluting compounds.  

 (5) Urine samples with standard mixtures spiked in (Sample III):  sample III was 

prepared by spiking each of the seven calibration curve samples of Sample II and an 

additional sample consisting of 0.1 µg/ml of each standard compound into a pooled urine 
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sample. Sample III was used for evaluating the performance of ADAP-GC 2.0 and 3.0 in 

terms of processing complex samples. 

 
Table 2.1. List of 38 standard compounds in mixed standards samples. 
No Compounds ET Injection (ng) NIST Score 
1 L-α-alanine 6.2908 70 949 
2 L-leucine 8.51 105 896 
3 L-Proline 8.8917 94 762 
4 Glycine 9.0025 141 957 
5 Succinic acid  9.13 94 924 
6 L-Serine 9.721 94 772 
7 pipecolinic acid 9.815 141 886 
8 beta-Alanine 10.645 188 953 
9 4-Hydroxy-L-proline 11.8733 94 700 
10 trans-Cinnamic acid 12.2384 188 866 
11 L-cysteine 12.248 94 0 
12 creatinine，anhydrous 12.248 141 937 
13 α-Ketoglutaric acid 12.5142 188 933 
14 L-asparate 12.605 188 954 
15 L-Phenylalanine 13.1708 141 604 
16 n-Dodecanoic acid 13.5467 141 864 
17 L-(+)-Arabionse 13.5758 141 736 
18 DL-Homocysteine 13.6375 281 822 
19 L-Asparagine 14.2058 188 797 

20* L-(+)-Rhamnose monohydrate 14.3375 141 910 
14.4433 876 

21 L-(-)-arabitol 14.3833 234 952 
22 1,4-diaminobutane 14.675 117 938 
23 L−Ornithine monohydrochloride 15.8158 234 718 

24 1,5-Diaminopentane 
dihydrochloride/Cadaverine 16.13 281 947 

25 n-Tetradecanoic acid(myristic acid) 16.3825 141 548 

26* D-Fructose 16.6117 141 940 
16.7575 943 

27 L-Histidine 17.3875 281 766 
28 Indol-3-acetic acid 18.1075 188 925 

29 Palmitic acid/hexadecanoic acid 19.5183 234 938 
 

30 Dopamine hydrochloride 19.9408 234 946 
31 3-indolepropionic acid 20.0175 117 938 
32 Oleic acid 22.2967 281 946 
33 n-Octadecanoic acid 22.7617 469 956 
34 uridine 25.36 375 803 
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35 n-Eicosanoic acid 25.3725 703 912 
Table  2.1 (continued) 
36 Sucrose 26.7083 234 950 
37 estradiol 27.1392 375 955 

38* Testosterone 27.3892  938 967 
27.4458 973 

 Average 
  855 

Note: Searched against in-house library 

 
2.2.2 GC-TOF-MS Instrument Analysis 

Five different types of samples were analyzed on a GC-TOF-MS platform. All the 

standard mixtures, serum and urine samples were prepared, derivatized, and analyzed 

following previously published protocols [52, 53]. Briefly, after TMS derivatization, each 

1 µL aliquot of the derivatized solution was injected in splitless mode into an Agilent 

6890N GC system (Santa Clara, CA, USA) that was coupled with a Pegasus HT TOF-MS 

(LECO Corporation, St. Joseph, MI, USA). Separation was achieved on a DB-5 ms 

capillary column (30 m × 250 µm I.D., 0.25-µm film thickness; Agilent J&W Scientific, 

Folsom, CA, USA), with helium as the carrier gas at a constant flow rate of 1.0 ml/min. 

The temperature of injection, transfer interface, and ion source was set to 260°C, 260°C, 

and 210°C, respectively. The GC temperature programming was set to 2 min isothermal 

heating at 80°C, followed by 10°C/min oven temperature ramps to 220 °C, 5 °C/min to 

240°C, and 25°C/min to 290 °C, and a final 8 min maintenance at 290°C. Electron impact 

ionization (70 eV) at full scan mode (m/z 40-600) was used, with an acquisition rate of 

20 spectra/second in the TOF-MS setting. 
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Figure 2.2. The TICs of selected three datasets from Sample I (A), II (B) and III (C), 
respectively. 

 

2.3 Computational Algorithms for GC-MS Data Processing 

The raw data consisting of original mass spectra and chromatogram information is 

exported as NetCDF format from GC-TOF-MS platform after sample analysis. The TICs 

of three representative samples are illustrated in Figure 2.2. In order to extract pure mass 
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spectra of compounds for their identification and quantitation, deconvolution is one of the 

most critical steps in data processing. De-noising and peak detection are two prerequisite 

steps in order to remove noises and reduce their interferences and to then detect peak 

apex and boundaries of all the peaks in both TIC and EIC. After deconvolution, 

alignment is performed to correct retention time shifts of a same compound among 

different samples. With the goal to develop a fully integrated and robust pipeline, the 

computation algorithms have been witnessed the continuous progress and improvement 

from ADAP-GC 1.0, ADAP-GC 2.0 to the current ADAP-GC 3.0 (Figure 2.3). Next, 

computational algorithms to extract pure mass spectra (de-noising, peak detection and 

deconvolution) in three versions of pipelines are introduced in detail.  

 

 

Figure 2.3. Improvement of compuational algorithms in three versions of ADAP-GC 
pipeline. 
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2.3.1 Peak Detection and Deconvolution in ADAP-GC 1.0 

2.3.1.1 Smoothing Window-based Peak Detection 

A number of algorithms have been developed and a thorough examination and 

comparison of these existing algorithms can be found in the review by Yang et al [54]. 

These algorithms usually perform a de-noising step that includes chromatogram 

smoothing and/or baseline correction before peak detection. Here, peak detection is 

performed before de-noising so that all of the EIC peaks can be extracted. This prevents 

the removal of true EIC peaks from happening that can be caused by imperfection in the 

de-noising algorithm, and ultimately benefits identification of compounds in terms of 

both confidence and total number of identifications. The rationale behind this is three-

fold. Firstly, the observation of a larger number of fragments that belong to the same 

compound increases the likelihood that the identification is correct. Secondly, observing 

fragments of large mass has a positive impact on compound identifications because a 

larger mass is usually given a heavier weight in library search [26]. Since fragments of 

large masses tend to produce low intensity peaks in a spectrum, measures that are taken 

to preserve these peaks will facilitate identifications. Lastly, many compounds of interest 

such as biomarkers in biological studies are in the low concentration range. Due to these 

reasons, we chose to preserve as much information as possible at each stage of the data 

processing.  

Here, peak detection consists of two sequential steps: peak picking and peak 

filtering. Peak picking is accomplished by first searching for the apex within a time 

window (Figure 2.4). Here, this window spans nine scans, which translates to 9/20 

seconds. The window width is a parameter that is specified by users based on the 
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characteristics of their data. If the window were too narrow, the peak picking process 

would be very susceptible to noise. On the other hand, if the window is too wide, true 

apexes can be missed. Following the apex detection, the corresponding left and right 

boundaries of each EIC peak are determined, and peak height and shape are recorded. 

After all of the peaks in an EIC have been characterized, peak filtering is performed to 

remove peaks that most likely have resulted from noise. Specifically, the EIC is divided 

into equal-length time windows. Within each window, a window-specific threshold is 

calculated as the product of the lowest peak intensity and a preset factor (that is like a 

signal-to-noise ratio). Any other peaks with intensity below the threshold are filtered out. 

Figure 2.4. Peak detection in an EIC. Different extracted ion chromatograms are denoted 
by different colors with their peak apexes marked as small circles and their masses shown 
on the far right. The inset is a zoomed-in depiction of a small segment of the EIC and 
shows the EIC peaks that have been detected. 
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2.3.1.2 K-medoids-based Deconvolution 

When compounds in a sample are fully resolved by GC, their mass spectra can be 

easily constructed by simply assigning peak intensity values obtained above to the 

corresponding fragment mass. However, when two or multiple compounds elute from the 

GC system in close proximity, peaks of fragments ions from different compounds will 

overlap and deconvolution has to be performed in order to construct their mass spectra. 

Traditional deconvolution was based on the assumption that fragment ions with similar 

apex elution time belong to the same component [55, 56]. However, this assumption will 

not hold when the apex elution time of different components are indistinguishable. This 

scenario is not uncommon in complex samples and Figure 2.5 A depicts one such 

scenario where EICs of fragment ions from two components have nearly the same apex 

elution time.  

A closer examination of the EIC peaks reveals that a distinguishing feature of the 

coeluting components lies in the shape of the EIC peaks (or profiles). This shape 

difference can be captured by the normalized dot product. Specifically, let the abundance 

of the EIC profiles of two peaks be represented as two vectors. The similarity between 

two EIC profiles can be measured by the normalized dot product. 

  

 (Equation 2.1) 
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where  and  are the abundance values at retention time , and   represents 

the dot product.  

To separate co-eluting components, the  values of all pairs of EIC peaks that are 

in a narrow deconvolution time window (10 scans in this study) are calculated and a 

similarity matrix is formed for this window. Compounds that elute within this window 

are considered co-eluting and thus indistinguishable based on their apex elution time 

only. Subsequently, k-medoids clustering is applied on this matrix to cluster the fragment 

ions. Figure 2.5 B depicts the clustering results for one time window within which two 

compounds co-elute. The k-mediods clustering requires an initial assignment of k, the 

number of clusters. However, k is unknown prior to deconvolution. To resolve this issue, 

the silhouette score [57] is used in this study to assess the clustering quality and 

determine the k value. 

 (Equation 2.2) 

where S is the silhouette score of a cluster,  is the intra-cluster distance and is 

calculated as the average pairwise distance between objects within the cluster, is the 

inter-cluster distance and is the minimum average distance from all of the other clusters 

to this cluster. The clustering is performed for different values of k and the k that results 

in the largest silhouette score is ultimately selected. To avoid falsely splitting fragments 

from the same component into two or more groups, an intra-cluster distance threshold is 

specified. When is smaller than this threshold, the corresponding k is accepted and 

the search stops. After deconvolution, each component that is detected in one sample is 

associated with its sample-specific mass spectrum and apex elution time. Due to 
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differences in experimental conditions such as temperature and column conditions, the 

apex elution time that is observed for the same compound is usually shifted differently 

across samples and, as a result, alignment is needed to correct this shift.  

Figure 2.5. Illustration of deconvolution and identification of components. (A) 
Unresolved TIC peak and EIC peaks. The apex elution time of these EIC peaks is hardly 
distinguishable. (B) Optimal clustering of the EIC peaks into two groups that are shown 
in red and blue, respectively. (C) Separation of EIC peaks based on shapes of elution 
profiles. (D) Construction of mass spectra from the separated EIC peaks. (E) 
Identification of compounds by searching the spectra obtained in (D) against the NIST 
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reference library. The two coelutin compounds are found to be trans-cinnamic acid and 
creatinine. 
 

2.3.2 Peak Detection and Deconvolution in ADAP-GC 2.0 

Through testing, k-medoids-based deconvolution method has limitations in 

identifying and quantifying co-eluting compounds that two or more compounds elute 

from the chromatography column and their TIC and common EIC peaks overlap partially 

or completely in retention time. Specifically, for a fragment ion that is produced by only 

one of the co-eluting components, the grouping is usually quite successful in terms of 

correctly assigning it to its originating component. For a fragment ion that is produced by 

more than one co-eluting components, its chromatographic peak actually results from 

summation of signals that are produced by these components. However, this observed 

peak could be assigned to only one component using k-medoids-based deconvolution 

method. Consequently, the intensity pattern of the fragmentation spectrum constructed 

for this component deviates from the true pattern due to the abnormally high intensity of 

this fragment ion; the fragmentation spectra constructed for the other co-eluting 

components are incomplete since this fragment ion is missing. Ultimately, both the 

identification and quantification of these co-eluting metabolites are affected (Figure 2.6). 

To resolve this issue, an observed, shared peak should be decomposed back into 

individual peaks each of which corresponds to its originating co-eluting compound. 
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Figure 2.6. Comparison of constructed mass spectra and subsequent metabolite 
identification results with and without accurate deconvolution of shared peaks from two 
co-eluting compounds, uridine (Left) and n-Eicosanoic acid (Right). (A) Raw EICs of 
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selected masses. Mass 43, 73, and 117 marked with red circles are shared by both 
compounds. Mass 217 is unique to uridine while mass 132 is unique to n-Eicosanoic acid. 
(B1-2) Constructed mass spectra of uridine (B1) and n-Eicosanoic acid (B2) after 
deconvolution using ADAP-GC 1.0. The shared masses 43, 73, and 117 are only included 
either in the spectrum for n-Eicosanoic acid or in uridine. Their matching scores are 810 
and 881, respectively. (C1-2) Constructed mass spectra after deconvolution that 
decomposes shared peaks. Each of the shared masses, 43, 73, and 117, is included in the 
spectra for both n-Eicosanoic acid and uridine. Their matching scores are 909 and 948, 
respectively. (D1-2) Reference spectra from an in-house library. 
 

2.3.2.1 Simple and Composite Peak Detection 

To our knowledge, a peak could result from the elution of either a single or 

multiple co-eluting components. In the latter case, the peak overlaps with its neighboring 

peaks and they must participate in the subsequent deconvoluton process together as a 

whole. In order to discriminate these two cases, we define chromatographic peak features 

(CPFs). A CPF is the elution profile of a minimum number of components that makes the 

elution profile complete, with “complete” meaning that the elution profile lasts from the 

beginning to the end of the elution of the component(s). A CPF that results from a single 

component is defined as a simple CPF and a CPF that results from summing signals of 

two or more components is defined as a composite CPF. A simple CPF has only one local 

maximum and a composite CPF could have one, two, or more local maxima. Figure 2.7 

shows an example of each. 
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Figure 2.7. Examples of a simple and composite chromatographic peak feature  
 

The MS signals resulting from GC-MS measurements can be contaminated by 

different sources of technical variations that can be removed by prior processing steps. In 

particular, de-noising makes it possible to remove random noises from signals [49]. The 

de-noising process consists in removing noise while preserving the useful information in 

the signal. In ADAP-GC 2.0, the de-noising and following peak detection are performed 

on each extracted ion chromatogram (EIC), thus the EIC for every observed mass is first 

extracted from the raw data. After extraction, each EIC undergoes smoothing and 

baseline correction. A moving average is used for smoothing while the baseline is 

identified for every EIC using the LOWESS (locally weighted scatterplot smoothing) 

regression algorithm and is subsequently subtracted from the EIC.  

After de-noising, in order to detect peak apexes, a window of certain width moves 

along the entire EIC in one direction one unit of time at a time. The width of the moving 

window needs to be such that the window can cover about half of the peak width for most 

of the relatively low-intensity peaks. If the window width is 2n+1 units of time, then a 
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peak apex is found when the same point on the EIC is the maximum for n+1 consecutive 

moving windows. Peak boundaries are determined using a similar approach, except that 

the minimum is used. Each resulting quadruple that includes the left and right boundary 

time, apex time, and the relative intensity pattern between the two boundaries form a 

peak. To determine if a peak is a simple CPF or part of a composite CPF, we calculate the 

ratio of the intensity values at the boundaries to the intensity value at the peak apex. If 

one of the ratios is higher than an empirical threshold (e.g. 0.3), this peak is part of a 

composite CPF. All of the neighboring incomplete peaks are then merged to form a 

composite CPF.  

2.3.2.2 Model Peak-based Deconvolution 

The new deconvolution is based on a chromatographic model peak approach. For 

a component that does not co-elute with other components, it is no more than collecting 

all the corresponding simple CPFs and forming a fragmentation spectrum using all of the 

mass and apex intensity pairs. But for a component that does co-elute with other 

components, deconvolution decomposes composite CPFs into simple features and then 

groups the resultant simple features based on their CPF similarities. The general process 

of deconvolution consists of four sequential steps: (a) determination of deconvolution 

windows, (b) selection of model CPFs for decomposing composite CPFs, (c) construction 

of the mass spectrum for each observed component, and (d) correction of splitting issues. 

The concept of model CPF is the same as that of “model peak” used by Dromey et al [58] 

and Stein in AMDIS [26]. In comparison with AMDIS, ADAP-GC 2.0 employs multiple 

factors including “sharpness” (to be described) for evaluating CPFs whereas AMDIS uses 

the sharpness value only.  



	   29 

(1) Determination of deconvolution windows: A deconvolution window delimits 

the temporal span wherein deconvolution is carried out. These windows are determined 

based on TIC CPFs detected in the previous step of peak detection. Basically, the left and 

right boundaries of each TIC CPF define a deconvolution window. Any EIC CPF whose 

peak apex falls in this window will participate in the window-specific deconvolution. It is 

worthwhile to point out that part of the EIC features could be outside of the 

deconvolution window. This TIC-based determination of deconvolution windows is fully 

automated and produces windows that are data-dependent, which avoids possible 

problematic issues associated with fixed windows. After deconvolution windows are 

determined, deconvolution proceeds sequentially for all the windows. 

 (2) Selection of model CPFs:  A model CPF is defined as the elution profile of a 

compound when it elutes from a chromatographic system alone and its concentration is 

within the linear dynamic range of the mass analyzer of the mass spectrometer. As such, 

the elution profile is produced from this compound only with less interference from 

neighboring compounds and has a relatively high signal-to-noise ratio (SNR). ADAP-GC 

2.0 constructs/selects the best model CPF for each observed component based on all of 

the EIC CPFs that correspond to this component. The construction/selection process is 

deconvolution window-specific and consists of two sequential steps: selecting good 

candidate CPFs, and determining the number of components and the model CPF for each 

component. 

(a) Select good candidates of model CPFs. For each EIC CPF within a 

deconvolution window, five metrics are used to measure how well it can be used as a 
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candidate model peak. These include sharpness, SNR, apex intensity, Gaussian similarity, 

and mass. Details on each metric are as follows.  

(i) The sharpness indicates how quickly the abundance values of the 

corresponding mass change with time. The higher the sharpness value, the more likely 

the EIC feature is generated by a single component. The sharpness value is calculated as 

(Equation 2.3) 

where  is the total number of time points for a CPF,  is the time index of the 

apex, and  is the abundance value at time index .  

(ii) The SNR is estimated based on the high and low frequency signal components 

of the CPF, which is calculated using the continuous wavelet transform that has been 

described in the section of peak detection [59, 60]. 

(iii) The apex intensity is used to gauge how well the measured peak profile 

represents the true concentration of the component in the sample. The higher the 

intensity, the more robust the intensity measurement by the mass analyzer, in that the 

intensity measurement is less likely affected by background noise. Clearly, the apex 

intensity compensates SNR.  

(iv) The Gaussian similarity measures how well a CPF can be modeled by a 

Gaussian curve. The reason why we use it to select good candidate CPFs is that, based on 

our observation of GC-TOF-MS data, the elution profile of a large portion of compounds 

exhibits a symmetric bell shape when they elute alone. The similarity score between an 

EIC CPF and the Gaussian curve that best fits it is calculated as the normalized dot 

product between them [61]. 
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In the meantime, we have observed that some compounds exhibit either fronting 

peaks (the left side of the CPF spans a longer time range than the right side) or tailing 

peaks (the right side of the CPF spans a longer time range than the left). Tailing can occur 

due to various reasons, including column contamination, poor column installation, or co-

eluting compounds. In the latter case, the shorter side of a tailing CPF is usually produced 

by a single component and therefore is still valuable for selecting model CPFs. To make 

use of it, ADAP-GC 2.0 constructs a complete CPF by appending a mirror image to the 

shorter side and calculates its Gaussian similarity.  

(v) The mass value of an EIC CPF is indicative of the likelihood that it is unique 

to a component. The higher the mass value, the more likely it is unique. 

With all the five aforementioned metrics calculated for measuring the qualities of 

EIC CPFs, two-step screening method to select good candidates of model CPFs is 

applied. Firstly, three separate filters are used to remove those CPFs with very low SNR, 

sharpness, or Gaussian similarity scores. Secondly, for each CPF that passes all the three 

filters, a composite score is calculated as: 

Score = C1×Mass+C2×Gaussian Similarity+C3×Intensity+C4×SNR (Equation 2.4) 

To be noticed, the sharpness value is not considered in the composite score 

because we have found from many rounds of testing that the sharpness value is a very 

reliable measure in itself and including it in the total score does not have significant 

influence on the final performance. The four weights, , have been 

systematically tested and adjusted, and ultimately set as 0.1, 0.3, 0.2, and 0.2 for optimal 

performance for the analytical platform we used. Based on the total score of all of the 

CPFs that have passed the first filtering step, a threshold is calculated as. Those CPFs 

c1,c2,c3,c4
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whose composite score is higher than the threshold are considered good candidates of 

model CPFs (Figure 2.8). 

Threshold = min (total scores) + 0.25 × range (total score) (Equation 2.5) 

 

 

Figure 2.8. Formation of candidate model CPFs and calculation of their total scores based 
on Equation (2). (Top) A candidate model CPF in blue produced from a simple CPF in 
red. The mirror image of the shorter side (i.e., the right side in this case) of the CPF is 
appended to the shorter side to form a candidate model CPF. (Bottom) Two candidates of 
model CPFs in blue produced from a composite CPF in red. The far left side of the 
composite CPF has most likely been produced by a single component and therefore can 
be used to construct a candidate model CPF. The same is true for the far right side of the 
composite CPF. One candidate model CPF is produced from the far left side of the 
composite CPF (Bottom Left) and the other candidate is produced from the far right side 
of the composite CPF (Bottom Right).    
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(b) Determine the total number of components and the model CPF for each 

component.  The good candidates of model CPFs then participate in a hierarchical 

clustering for determining the most likely number of components in the current 

deconvolution window. The pair-wise peak feature dissimilarity is used as the distance 

measure in the clustering and the threshold for obtaining the clusters is determined in an 

empirical fashion. Each resulting cluster corresponds to a specific component and the 

CPF with the highest total score within this cluster is selected as the model peak. With 

model peaks determined, we are ready to decompose each EIC composite CPF into 

simple features and construct a fragmentation mass spectrum for each component. 

(3) Construction of the mass spectrum for each observed component. Each 

composite CPF results from a linear summation of simple CPFs. In order to determine the 

constituent simple features for each composite feature, we apply constrained optimization 

[62] by minimizing the residual between the composite CPFs and a linear combination of 

the model peaks. The residue is calculated as: 

(Equation 2.6) 

where  represents the composite CPF,  is the total number of time points,  

is the total number of model peaks within this deconvolution window, and 

represent model peaks and corresponding weighting coefficients, 

respectively. The optimization gives rise to the weights a1, a2, …ak. For all of the CPFs 

within the current deconvolution window, the resulting weights that correspond to the 

same model peak yield the mass spectrum of a component. Clearly, the intensity pattern 

of different masses of the spectrum is reflected in the relative magnitudes of the weights.  
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(4) Correction of splitting issues. It could happen that two or more model CPFs 

are constructed/selected for the same component within a deconvolution window. As a 

result, all of the EIC features that contain this component are split into two or more 

groups of simple CPFs, which give rise to more than one mass spectrum. Since one single 

spectrum is split into more than one and different masses could be split differently, the 

accuracy of the resulting mass spectra and the estimated concentration of the component 

will be reduced. To resolve this issue, a post-deconvolution checking step is performed 

by computing pair-wise mass spectrum similarity within each deconvolution window. 

When highly similar spectra are found, the model peak with the highest total score 

calculated in Eqn. (2) is selected to represent this component and the other similar model 

CPFs are discarded. A second deconvolution is then carried out to produce a more 

accurate mass spectrum. In computing the mass spectrum similarity, both the signal 

similarity and the time shift between two spectra are considered. Figure 2.9 depicts one 

example where the splitting issue was corrected.   
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Figure 2.9. Resolving compound splitting issues and improving ADAP-GC 2.0 
performance in terms of both identification and quantitation. This is an example from one 
of the datasets in Sample III. ADAP-GC 2.0 originally selected two model CPFs 
(corresponding to masses 357 and 286) with a three-scan time shift between them. (A) 
Resolved spectrum based on model peak mass 357. (B) Resolved spectrum based on 
model peak mass 286. Both spectra were matched with glycerolphosphate and mass 299 
was selected as the quantitation mass. The mass spectra shown in (A) and (B) are highly 
similar with a matching score between them > 850, so a second deconvolution was 
performed using the model peak 357 because it has a higher total score as calculated in 
Eqn. (2). (C) Resolved spectrum after the second deconvolution. Based on this spectrum, 
both of the matching score and the peak height of the quantitation mass increased 
considerably, with the latter reflecting the true concentration of the compound in the 
sample. (D) Reference spectrum of glycerolphosphate in the user library. 
 
 

2.3.3 Peak Detection and Deconvolution in ADAP-GC 3.0 

2.3.3.1 Continuous Wavelet Transform (CWT)-based Peak Detection 

The previous peak detection method relies on finding local extrema within a 

window of specified width. Since different chromatographic peak features in a same EIC 

can have different widths, it is almost impossible to find one width parameter that fits all 

real peak features while ignoring noise signals. So the challenge with peak detection is to 
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develop a method that is robust to varying peak width. To our knowledge, wavelet 

transform represents a one-dimensional signal in a two-dimensional space with the 

second dimension representing scale, as a result, each peak apex that wavelet transform 

detects has a peak width (i.e., scale) associated with it (Figure 2.10). Therefore, it is not 

necessary to specify the window width parameter that the local maximum method 

requires since wavelet transform automatically finds both the peak apex and peak width. 

Here, we applied a package of wavelet methods for time series analysis called “wmtsa” in 

R and modified parameters accordingly to fit the characteristics of GC-TOF-MS data. 

 

 

Figure 2.10. Wavelet transform-based peak detection on an EIC. 
 
 

Each individual peak feature detected using wavelet method will be further 

examined to determine whether it is a simple/unique peak feature or belongs to a 
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composite peak feature. Here, two criteria are used for the determination: (1) boundary to 

peak apex: the ratio of intensity values at the left and right boundary, respectively, over 

the intensity value at the peak apex; (2) boundary difference to peak apex: the ratio of the 

intensity difference between the left and right boundary over the intensity value at the 

peak apex. Any peak feature that either of three ratios is higher than an empirical 

threshold (e.g. 0.3) is considered as a part of composite peak feature, which is going to be 

combined with neighboring peaks together for deconvolution. And those features that all 

of three ratios are smaller than the threshold are considered as unique peaks as the 

candidates of model peaks. Meanwhile, the continuous wavelet transform calculates the 

signal to noise ratio (SNR) based on the high and low frequency signal components of 

peak features. With empirical SNR cutoff, noisy peaks with low SNR values (e.g. < 10) 

are not considered. In order to examine the purity of unique peak features, local maximal 

method is simultaneously applied to check if there exists small peaks, which may not be 

detected by wavelet transform (Figure 2.11). For those initially assigned as unique peak 

features do exist small peaks between the left and right boundary, they are corrected as 

composite peak features. The combination of wavelet transforms and local maximum 

method makes peak detection more flexible and robust to determine unique and 

composite peak features, and select high-quality unique peak features for model peaks. 
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Figure 2.11. (A) An example of composite peak feature successfully detected by wavelet 
transform with two significant peak apexes (red circles) and their corresponding 
boundaries (green circles). (B) An example of a peak feature initially defined as a simple 
peak feature by wavelet transform with one peak apex and then corrected by the local 
maximum by finding more minor peaks (blue circles) around indicating it as a composite 
peak feature. 
 

2.3.3.2 Model Peak-based Deconvolution 

The challenge of deconvolution is to find a model peak that could represent the 

real elution profile for each co-eluting compound, which determines the purity of mass 

spectrum for compound identification and quantitation. The second version of 

deconvolution favors model peaks that are symmetric and resemble a Gaussian curve by 

using five metrics of peak qualities: signal to noise ratio, sharpness value, Gaussian curve 

fitting, absolute peak apex intensity and mass value. But later, we observed that some 

compounds especially at low concentrations or multiple compounds co-eluting together 

with large concentration variation, might not exhibit significant, smooth and Gaussian 

curve-like peak features. Thus, the criteria are so strict that their model peak features can 

be filtered out, leading to those compounds undetected. In order to solve this problem, the 
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third version of deconvolution does not require Gaussian peak shape; instead, it focuses 

on detecting the unique peak features for each component and selects the one with the 

highest sharpness value as the model peak. In addition, two sequential hierarchical 

clustering are applied in order to improve the determination of co-eluting compounds 

within a deconvolution window.  

(1) The first hierarchical clustering calculates the eluting time distance among all 

unique and composite peak features within a deconvolution window in order to determine 

the minimal number of co-eluting compounds. For compounds eluting with more than 60 

scans away (which equals to 3 seconds in our study), they can be easily distinguished 

while it could be relatively difficult for those compounds eluting within 60 scans with 

overlapping peak features. Thus, the distance cutoff has been set as 60 scans to meet 

three goals: (1) peaks with greater than 60 scans distance can be analyzed separately so 

that those peak features within 60 scans distance can be grouped together for the second 

hierarchical clustering without the bias of distant nodes; (2) an individual cluster with 

less than a total of two peak features could be considered as random noise or background 

signals and will be removed to minimize their interference in the following analysis; (3) 

the number of clusters decides the minimal number of components within this 

deconvolution window. If the total number of components is less than this number after 

the 2nd hierarchical clustering, which means there exists at least one cluster that has not 

any component detected, thus the mass spectrum at the median position will be extracted 

directly to reduce the possibility of missing any true positive compound. 

(2) Determine the total number of components and the model peak for each 

component. At first, a simple filtering using an empirical threshold of signal to noise ratio 
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(e.g. 50) is used to select unique peak features as candidates for model peaks, because 

they are able to represent the corresponding compound elution profiles with minimal 

interference from noise and/or co-eluting compounds. After that, the 2nd hierarchical 

clustering is performed on these candidates within each RT cluster produced in the first 

step. As a result, the individual cluster may produce one or more components and the 

total number of co-eluting components can be determined within each deconvolution 

window.  

The next step is to select the best candidate as the model peak for each component. 

Here, the new deconvolution approach applies a characteristic of sharpness to evaluate 

the degree of purity of model peak candidates. Our previous method to calculate 

sharpness does not consider peak width factor, so that some wide peaks could have high 

sharpness values due to cumulative summary of point-to-point change. This makes our 

previous method insensitive to describe the true sharpness characteristics of peaks. 

Borrowing the idea of how AMDIS calculates the sharpness of peak shape, we provide a 

simple but effective measure. Sharpness values between the maximum abundance Amax 

and an abundance value located n scans from the maximum An are defined as: 

Sharpness = 
( maxA − nA ) / n

n=1

N

∑
N (Equation 2.7)

 

The median sharpness values on each side are found and then averaged, and then 

the averaged sharpness value is used to describe the individual unique peak feature. Three 

reasons are behind for this sharpness calculation as compared to AMDIS: (1) GC-TOF-

MS data always has more collection/sampling points, so it’s not necessary to perform 

fitting and time shifting as AMDIS indicated; (2) ADAP performs baseline correction 
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before peak detection, so that the noise factor could not reflect the estimated noise any 

more in our case; (3) More abundant peaks usually present sharper and smoother peak 

shape with fewer effects of noise. Thus, the absolute abundance difference between the 

Amax and An is chosen so that abundant peak features with larger sharpness values have 

more chances being selected as model peaks.  

Next, as the same approach in the deconvolution of ADAP-GC 2.0, the 

constrained optimization method is applied by minimizing the residual between the 

detected peak features (both unique and composite peak features) and a linear 

combination of the model peaks. As a result, the mass spectrum of each compound is 

constructed based on the resulting weights corresponding to the representative model 

peak. It might be possible that two or more model peaks are selected for a same 

compound which further affects the accuracy of compound identification and 

quantitation, thus the pairwise mass spectra similarity within a same deconvolution 

window is calculated in order to correct such splitting issue.  

2.3.4 Alignment 

A number of algorithms have been developed for chromatogram alignment [63]. 

Most of them were designed primarily for aligning TIC. However, TIC-based alignment 

can be inaccurate when different compounds within the same TIC peak shift differently 

along the retention time axis. A better approach is to do component-based alignment. 

Specifically, the same components across samples are identified based on their spectrum 

similarity, component-specific time shifts are determined, and ultimately, components are 

aligned accordingly. 
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To search for the same components across samples, a measure of confidence 

needs to be defined that takes into account both the spectra similarity and retention time 

similarity between two spectra. In ADAP, this measure is: 

 (Equation 2.8) 

where  and  denote two spectra.  is adopted from the spectra 

similarity measure used in AMDIS and is a linear, weighted combination of the pure and 

impure score [56].  is calculated by: 

 (Equation 2.9) 

with  being the difference in their apex retention time and  being the 

maximum retention time shift that is acceptable for components in a particular 

experiment. Components whose retention time difference exceeds  should be 

considered as different components.  

The incorporation of  into  facilitates distinguishing components 

that have similar spectra and whose apex elution time difference is less than , 

particularly in the case of isomers. This approach that uses a combination of mass 

measurement and elution time information has been used in the proteomics field to 

identify and quantify peptides [64, 65]. The final  is scaled so that it is between 0 

and 999. This is the same numerical scale that the NIST library search uses. 

The alignment process starts with the earliest component and sequentially aligns 

every component for which a spectrum has been constructed. What lies at the core of 

aligning a component in ADAP is the accomplishment of two tasks: 1) identification of 

mass spectra that correspond to the same component across samples, and 2) selection of 
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the best representative spectrum for the component. These two tasks are accomplished 

via a two-phase searching algorithm as follows: 

Phase 1. Among all the samples, identify the earliest component that has not been 

aligned and define a global alignment window that starts with this component and is of 

width . Within this alignment window, use the spectrum of the earliest component as a 

reference and search for components in other samples that produce  greater than 

a certain threshold (750 in this study). From these high-scoring components, select the 

one that produces the highest  for each sample.  

Phase 2. Use each sample-specific best-matching component as a reference and 

repeat the searching process in Phase 1 to find the best matching components in other 

samples. As a result, a group of spectra are identified for each reference.  

For each component, the best representative spectrum across all the samples is 

determined by selecting the component that produces the highest average  when 

it is used as a reference in Phase 2. This component will be used as the final reference to 

align spectra across samples. The rationale behind this is as follows. Each mass spectrum 

that is constructed for a component consists of two parts: the pure part that corresponds to 

the component itself and the impure part due to experimental noise and/or interference 

from coeluting components. Since the spectrum that primarily consists of the pure part 

should be the most reproducible and, consequently, give rise to the highest average 

, it is apparently the best representation. 

Ultimately, alignment is carried out with the best overall spectrum serving as the 

reference. ADAP requires that only these components that are observed in a sufficient 

number of samples be aligned. Phase 2 is a refinement of Phase 1 in that spectra 
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identified in Phase 1 may not be the best representation of the component in the 

corresponding samples. This can happen when the earliest spectrum that is used in Phase 

1 is not the best representation. Therefore, the two-phase approach should improve the 

alignment performance compared to a one-phase approach where only Phase 1 is used. 

Specifically, more samples can be aligned and a better representative spectrum can be 

found for compound identification. Table 2.2 demonstrates these improvements. Figure 

2.12 illustrates the necessity of alignment and compares the EICs before and after 

alignment. Deviations of retention time for the 19 standard compounds are depicted in 

Figure 2.12 K. This deviation profile is consistent with the temperature change in the 

experimental process, i.e. the maximum deviation occurs at the time when the 

temperature reaches its peak (approximately 20 min in this example).  

 
Table 2.2. Performance Comparison of the One-Phase versus Two-Phase Alignment with 
the CC Samples 
RT 
(min) Compound Name 

One-phase alignment Two-phase alignment 
SmpNr1 Score SmpNr Score 

11.065 Decanoic acid 11 887 11 893 
13.443 Laurate 11 855 11 863 
14.559 Tridecanoic acid 11 883 11 890 
16.626 Pentadecanoic acid 11 690 11 836 
17.481 Palmitoleic acid 11 NA 11 880 
17.74 Palmitic acid 3 605 11 819 
18.852 Heptadecanoic acid 2 744 11 876 
19.691 Linolic acid 10 479 11 798 
19.768 Linolenic acid 6 NA 7 676 
19.799 Oleic acid NA2 NA 11 494 
19.848 Elaidic acid 3 769 3 795 
20.076 Stearic acid 11 749 11 914 

20.464 
8.11.14-Eicosatrienoic 
acid NA NA 11 840 

21.254 Arachidonic acid 9 750 11 929 
21.298 Eicosapentaenoic acid 2 651 11 812 
21.567 11.14-Eicosadienoic acid 11 855 11 882 
21.601 11-Eicosenoic acid 10 717 11 880 
21.773 Arachidic acid 6 NA 11 NA 
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Table 2.2 (continued) 
22.504 Decosahexaenoic acid 11 813 11 837 
Average  8 746 10 829 
Note: 1.SmpNr refers to the total number of samples in which a compound was observed. 
2. NA means that the corresponding metabolite was not detected with high confidence 
because the matching score is below the cutoff value that was set at 750. 

 

 

Figure 2.12. Necessity of alignment and comparison of EICs before and after alignment. 
The 15 MS samples are considered and each sample is represented by one unique color. 
(A-C) TICs within three different time intervals. (A) One component elutes with two 
distinct TIC peaks; (B) two components elute with two distinct TIC peaks; (C) two 
components elute with two peaks that are barely distinguishable; (D) TICs of the 15 MS 
samples. (E-G) EICs before alignment; (H-J) EICs after alignment. EIC pairs E-H, F-I, 
and G-J correspond to TIC segments (A), (B), and (C), respectively. For the two EIC 
pairs (F and I) and (G and J), two coeluting components became distinguishable only 
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after alignment. (K) Deviation of the elution time of 19 compounds in the MS samples 
with respect to the elution time of the alignment reference. 
 

2.3.5 Compound Identification and Quantitation 

2.3.5.1 Compound Identification or Qualification (QUAL)) 

Compound identity is determined by searching the corresponding mass spectrum 

against a library of spectra by measuring their similarities. ADAP-GC pipeline is 

equipped with the capabilities to perform library searching against user library or 

commercial library such as from NIST or to export extracted mass spectra in standard 

MSP format that can be read by NIST MS searching software [9] or other third-party 

software to perform library searching. The similarity of extracted mass spectrum against 

the standard mass spectrum in a library is measured by calculating their dot product of 

two mass spectra vectors: 

( (𝑋 ∗ 𝑌)!/!)!

𝑋 ∗ 𝑌
(Equation  2.10) 

After calculation, the similarity score is then normalized to 999 to keep consistent 

with AMDIS, the higher matching score indicates the more accurate mass spectrum 

extracted from raw data.  

2.3.5.2 Compound Quantitation (QUAN) 

Quantitation (QUAN) is achieved by selecting a quantitation mass of each 

compound and then calculates its peak height or area to represent the concentration of 

this compound in a sample. Each compound has all the fragment ions identified, and 

ADAP-GC provides three options for the compound quantitation: using the peak area or 

intensity values of the model CPF, most intense mass, or most intense unique mass. The 
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most intense mass is the mass with the highest overall intensity in the mass spectrum of 

each compound. “Unique” here means that a mass is not shared with neighboring 

compounds. In many cases, these three masses are the same for a compound. Since peak 

area and peak height are directly related to the concentration of compounds in a sample, 

either of them can be used for quantification.  

At the end of the QUAL/QUAN, a table is generated that contains the identities 

and relative quantities of all compounds within each sample and is ultimately exported 

for statistical analysis and biological exploration (Figure 2.13). 

 

 

Figure 2.13. An example of an QUAL/QUAN table obtained after data processing 
 
 

2.4 Results and Discussion 

2.4.1 ADAP-GC 1.0  

ADAP-GC 1.0 is the first version of pipeline, which consists of four sequential 

steps: peak detection, deconvolution, alignment, and library search. ADAP-GC 1.0 was 

able to identify 37 out of 38 standards in Sample I with the average matching score 855 

(Table 2.1) and 19 out of 20 fatty acids in the calibration samples with the average 

matching score 829 (Table 2.2). The r-squared values are calculated for the abundance 

values of 19 fatty acids vs. the true concentration of the compounds in the 11 CC 
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samples. All of their the r-squared values are close to 1 (data not shown), which indicates 

the accuracy of ADAP-GC 1.0 in extracting quantitative information of compounds.  

ADAP-GC 1.0 allows data to flow seamlessly through these processing steps as a 

high-throughput pipeline: (1) it is fully automated and no human intervention is needed in 

the entire process; (2) the computationally intensive deconvolution and alignment are 

written in C++ and applies parallel computing using MPI, and (3) special care has been 

taken to accelerate computations by optimizing memory usage and data structure. Table 

2.3 lists the number of samples and the corresponding processing time for the three sets 

of data. ADAP used less than 3 min to analyze 15 datasets from Sample I or 20 datasets 

from liver injury samples. To our knowledge, ADAP is much faster compared to other 

existing software tools including ChromaTOF.  

 
Table 2.3. Measures of ADAP-GC 1.0 performance 
 Sample I CC LI 
Total number of Samples 15 11 20 
Average sample data size (MB) 123 67 118 
Average number of peaks detected per 
sample 

125686 562018 281913 

Average number of components detected per 
sample 

405 596 388 

Ttal number of components after alignment 478 304 277 
Processing time (s) 

Peak picking + deconvoluion 75 62 103 
Alignment 10 25 118 
Total 85 97 132 
 
 

From 20 rat serum samples of a liver injury experiment, a total of 277 

components were produced after alignment. The resultant quantitation data was imported 

into the SIMCA-P 12.0 software package (Umetrics, Umeå, Sweden) for multivariate 

statistical analysis [66]. Specifically, mean-centering and auto-scaling were used for data 
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pretreatment [67]. Subsequently, PCA (Principal Component Analysis) was applied and a 

clear separation between the diseased and control groups (Figure 2.13 A) was observed 

with the first two components explaining 29.8% of the total variance. Lastly, a supervised 

PLS-DA model (Partial Least Squares Discriminant Analysis) was constructed (Figure 

2.13 B) to identify the deferential metabolites that contribute to the separation between 

two groups. A total of 55 significant components were selected using VIP statistics (VIP 

≥ 1, variable importance in the projection) and Pearson correlation coefficients (|Corr(t, 

X)| ≥ 0.45) of the cross-validated PLS-DA model [68]. The cutoff value of correlation 

coefficients was used to select the variables that were most correlated with the PLS-DA 

discriminant scores (PC1) at a significant univariate level of 0.05. Ten compounds have 

been identified via a NIST library search and they are Alanine, Lysine and Phenylalanine 

(amino acids), Citrate and 2-Oxoglutarate in TCA cycle (energy metabolism), ornithine 

and urea in urea cycle, Linoleate (unsaturated fatty acid), Creatinine and Cholesterol. 

Among them, Alanine, Urea and Phenylalanine were also identified in the tissue samples 

in a previous study [69]. These analysis results provide valuable pointers for further 

biological investigations about liver injury-induced metabolic disorder. 
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Figure 2.13. Multivariate statistical analysis of the quantitative metabolites data extracted 
from the LI samples by ADAP. Black and red markers correspond to liver injury (n=10) 
and healthy controls (n=10) samples, respectively. (A) PCA score plot. The first four 
principal components account for 45.6% of the total variance. (B) PLS-DA score plot. 
R2Y = 0.996 and Q2Y = 0.641 using two principal components in total. 
 

2.4.2 ADAP-GC 2.0 

Figure 2.14 illustrates the sequential data analysis workflow of ADAP-GC 2.0 

using a pair of co-eluting compounds in Sample II. The width of the moving window for 

detecting TIC and EIC peak apexes is 9 scans for analyzing Sample I, II, and III. Figure 

2.14 A depicts TIC peak apexes marked by red, green, and blue circles. Red and green 

indicate peak apexes of co-eluting components with red for the locally most intense one. 

The combined peaks marked by red and green form composite CPFs indicating the 

existence of co-eluting components. CPFs marked in blue are simple CPFs. Based on TIC 

CPFs, deconvolution windows were automatically determined (blue vertical lines) with 

co-eluting components in the same window. For the deconvolution window ranging from 

19.75 to 20.0 minutes, all of the EIC CPFs whose peak apexes were within the window 

were determined. Subsequently, the aforementioned two-step filtering process filtered out 
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EIC CPFs that did not meet the criteria, and finally selected 46 good candidates for model 

CPFs. Figure 2.14 B and 2.14 C depicts the raw chromatogram and the constructed 

mirror images of all candidates. These candidates then participated in a hierarchical 

clustering for determining the number of components (Figure 2.14 D). Based on the 

empirical distance cutoff indicated by the red dashed line, two clusters were identified, 

which indicated that two components existed in this deconvolution window. Within each 

cluster, the CPF with the highest total score was designated as a model CPF. The two 

model CPFs corresponding to masses 273 and 245 are displayed. Subsequently, all of the 

EIC CPFs were decomposed into a linear combination of the model CPFs using 

constrained optimization (Figure 2.14 E). The resulting weights gave rise to the mass 

spectra depicted in Figure 2.14 F. By searching the spectra against an in-house library, 

they were matched to citric and iso-citric acid with the matching score being 975 and 

935, respectively. The peak elution time of the two compounds were found to be at 19.82 

and 19.88 min, respectively. 

2.4.2.1 QUAL/QUAN Analysis 

To evaluate the overall performance of ADAP-GC 2.0 in terms of compound 

identification, we have analyzed Sample I that contains a mixture of 38 standard 

compounds and compared the results with that from ADAP-GC 1.0 (Table 2.4). Clearly, 

ADAP-GC 2.0 was able to identify all of the compounds. Furthermore, the matching 

score calculated by AMDIS [26] for most of the compounds is higher by using the mass 

spectra constructed from ADAP-GC 2.0. The average matching score sees a 40-point 

increase, which demonstrates the significant improvement of the overall identification 

performance compared to ADAP-GC 1.0 (pairwise student t-test, p=0.017). In particular, 
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ADAP-GC 2.0 was able to identify cysteine that was sandwiched between cinnamic acid 

and creatinine around 12.25 mins. Because they shared multiple intense fragments and 

ADAP-GC 1.0 did not have the capability to decompose EIC CPFs of shared masses, 

ADAP-GC 1.0 was not able to identify cysteine at all. 

We used Sample II and III wherein mixtures of 27 standard compounds were 

prepared at different concentrations to evaluate the quantitation performance of ADAP-

GC 2.0. In particular, we used Sample III to test the capability of ADAP-GC 2.0 to 

identify and quantify compounds from complex samples. Table 2.5 lists all of the 27 

standard compounds, their matching scores, and the coefficients of determination R2  

(estimated quantity vs. true quantity) for Sample II and III, respectively. The magnitude 

of the R2 is an indicator of the performance of ADAP-GC 2.0 in terms of accurately 

extracting the quantitative information of compounds. In this work, the masses of model 

peaks are selected as the quantitation mass. In table 2.5, 2-chlorophenylalanine is an 

internal standard with a constant concentration across samples. It was used to evaluate the 

stability of the analytical platform and facilitate normalization of the estimated quantity 

of other compounds. After normalization, the R2 value of each compound across samples 

was calculated. The higher (approaching to 1) the value, the more accurate the 

quantitation that is based on the deconvolution results. As we can see, all of the 26 

compounds (excluding the internal standard chlorophenylalanine) in Sample II show very 

good linearity with high R2 values (>= 0.99) as well as good identification results with 

high matching scores (average score = 890). 
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Figure 2.14. Illustration of the sequential data analysis workflow of ADAP-GC 2.0 using 
a pair of co-eluting compounds in Sample II. (A) Detection of CPFs from TIC and 
determination of deconvolution windows. Boundaries of deconvolution windows are 
marked by blue vertical lines. Two representative CPFs are displayed: one simple CPF 
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marked by a blue solid circle at the apex and one composite CPF marked by red and 
green solid circles at the apexes. Deconvolution of the EIC CPFs that have given rise to 
this composite TIC CPF is depicted in the subsequent sub-figures from (B) to (F). (B) 
Raw EICs of 46 good candidates. (C) The constructed mirror images of the 46 good 
candidates. (D) Determination of the number of components and corresponding model 
CPFs for each component using hierarchical clustering. The red dashed line indicates the 
empirical cutoff for determining the number of clusters.  (E) The composite CPFs of 
mass 73, 147, 245 and 273 (solid line) were decomposed into simple CPFs (dashed line). 
(F) Two mass spectra were constructed with the maximum intensity normalized to 100. 
The two co-eluting components were identified as citric acid and iso-citric acid. 

 

Table 2.4. Identification results of the 38 standard compounds from analyzing Sample I 
using ADAP-GC 2.0, in comparison with the results obtained using ADAP-GC 1.0. 
No. Compounds ET (Min) NIST Score 

(II) 
NIST Score 
(I) 

1 L-α-alanine 6.29 969 949 
2 L-leucine 8.51 910 896 
3 L-Proline 8.89 892 762 
5 Succinic acid  9.01 962 924 
4 Glycine 9.14 820 957 
6 L-Serine 9.72 908 772 
7 Pipecolinic acid 9.82 821 886 
8 β-Alanine 10.65 971 953 
9 4-Hydroxy-L-proline 11.88 922 700 
10 Trans-Cinnamic acid 12.25 929 866 
11 L-cysteine 12.25 658  
12 Creatinine 12.25 945 937 
13 α-Ketoglutaric acid 12.52 969 933 
14 L-asparate 12.61 883 954 
15 L-Phenylalanine 13.11 757 604 
16 n-Dodecanoic acid 13.55 961 864 
17 L-(+)-Arabionse 13.58 789 736 
18 DL-Homocysteine 13.65 856 822 
19 L-Asparagine 14.21 927 797 
20* L-(+)-Rhamnose 

monohydrate 
14.34 893 910 

 L-(+)-Rhamnose 
monohydrate 

14.45 927 876 

21 L-(-)-arabitol 14.39 846 952 
22 1,4-diaminobutane 14.68 927 938 
23 L-Ornithine 

monohydrochloride 
15.82 783 718 

24 1,5-Diaminopentane 16.14 978 947 
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dihydrochloride/Cadaverine 
25 n-Tetradecanoic 

acid(myristic acid) 
16.39 963 548 

26* D-Fructose 16.62 913 940 
 D-Fructose 16.76 980 943 
27 L-Histidine 17.40 764 766 
28 Indol-3-acetic acid 18.11 936 925 
29 Palmitic acid/hexadecanoic 

acid 
19.52 969 938 

30 Dopamine hydrochloride 19.95 973 946 
31 3-indolepropionic acid 20.03 957 938 
32 Oleic acid 22.30 964 946 
33 n-Octadecanoic acid 22.77 915 956 
34 uridine 25.37 854 803 
35 n-Eicosanoic acid 25.38 932 912 
36 Sucrose 26.71 955 950 
37 Estradiol 27.14 980 955 
38* Testosterone 27.40 982 967 
 Testosterone 27.45 926 973 
 Average  906 876 
* The same compound was identified twice at two different elution times. 
 
 
Table 2.5.  Identification and quantification results of the 27 standard compounds from 
analyzing Sample II and III using ADAP-GC 2.0 
  Sample II Sample III 
No. Compound 

Name 
RT 
(Min) 

Scor
e 
 

R2 
 

N1 
 

RT 
(Min) 

Scor
e 
 

R2 
 

N 
 

1 Pyruvic acid 5.17 925 1.000 7 5.17 949 0.978 8 
2 Propanoic acid 5.34 974 0.991 7 5.34 970 0.998 8 
3 β-Amino 

isobutyric acid 
7.47 737 0.999 7 7.47 743 0.854 8 

4 L-Leucine 8.40 915 0.999 7 8.40 863 1.000 8 
5 Iso-leucine 8.73 750 0.998 7 8.74 838 0.998 8 
6 Proline 8.78 960 0.999 7 8.78 894 0.996 8 
7 Glyceric acid 9.34 973 0.999 7 9.34 969 0.999 8 
8 Threonine 10.31 979 0.997 7 10.31 972 0.994 8 
9 5-oxoproline 12.80 775 0.998 7 12.81 779 0.986 8 
10 L-Cysteine 13.57 707 N.A.2 1 13.53 823 0.333 5 
11 Creatinine 13.57 888 0.862 6 13.59 965 0.371 8 
12 Citrulline 14.85 977 0.999 7 14.85 714 0.994 8 
13 d-Xylose 15.94 955 1.000 7 15.94 781 0.978 8 
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14 Asparagine 16.15 798 0.987 7 16.16 760 0.993 7 
13(2) d-Xylose 16.16 955 0.997 7 16.17 968 0.992 8 
15 1,4-

Butanediamine 
17.59 708 0.999 7 17.60 704 0.999 8 

16 Glycerolphosph
ate 

18.51 917 0.990 7 18.52 915 0.994 8 

17 I.S. 18.95 951 /3 7 18.96 932 /3 8 
18 Citric acid 19.81 964 0.999 7 19.85 980 0.000 8 
19 Iso-citric acid 19.87 929 0.999 4 19.88 923 0.984 8 
20 L-Histidine 21.92 925 0.999 5 21.95 933 0.980 8 
21 L-Lysine 21.96 958 0.996 7 21.97 952 0.998 8 
22 Mannitol 22.61 946 0.981 7 22.63 939 0.953 8 
23 Galic acid 22.87 987 0.999 7 22.88 775 0.975 8 
24 N-Acetyl 

glucosamine 
methoxime 

25.97 792 0.999 6 25.97 703 0.999 4 

25 L-Tryptophan 27.94 968 0.995 7 27.94 965 0.997 8 
26 Adenosine 31.38 812 0.996 7 31.38 793 0.998 8 
27 Guanosine 32.30 782 0.985 7 32.31 834 0.995 8 
 Average value  890 0.991   869 0.901  
Note: 1. “N” is the number of samples from which a compound is identified. 2. N.A. 
means “not available.” The R2 value for L-Cysteine is not available because it was 
identified from only one sample. 3. “/” means “not calculated.” The R2 value was not 
calculated for 2-Chlorophenlyalanine because it served as an internal standard and its 
concentration was constant across all samples. I.S. is an internal standard: 2-
Chlorophenylalanine. 
 
 

It is worth noting that there are four pairs of co-eluting standard compounds with 

different degrees of overlapping in Sample II and III: (1) Asparagine and d-xylose: 

Higher and wider EIC peaks of d-xylose cover asparagine’s smaller peaks under the left 

tails (Figure 2.15 A1), which caused shared EIC peaks to have more extended left side 

than the right (i.e., fronting); (2) Histidine and lysine: The degree of overlap between 

them is similar to that between asparagine and d-xylose, but the EIC of the early-eluting 

L-Lysine is not completely covered by that of the more intense L-Histidine, so the left 

tails of EIC peaks of shared fragments display significant fronting (Figure 2.15 A2); (3) 

Citric acid and iso-citric acid: They have similar mass spectra and their EIC peaks of 
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common fragments are characterized by two distinct humps (Figure 2.14 B); (4) 

Creatinine and cysteine: Their individual CPFs show high similarity because they co-

elute almost entirely (Figure 2.16 B). All of these four pairs were accurately identified 

and quantified based on the deconvolution results of ADAP-GC 2.0. The accuracy of 

deconvolution is largely dependent upon the steps to select good peaks and 

select/construct model CPFs. In the process of developing and testing ADAP-GC 2.0, we 

have systematically evaluated EIC peak qualities, and tested the multiple metrics (SNR, 

Gaussian similarity, sharpness, peak apex intensity, and mass) and the best way to 

combine them into the total score as calculated in Eqn. (2) for selecting/extracting model 

CPFs. With this optimal combination of parameters, ADAP-GC 2.0 identified a total of 

425 components from Sample III, requiring that each component exist in more than four 

of the eight samples. Because Sample III comprises of mixtures of standard compounds 

and urine samples, a component could come from the standards mixture, urine, or both. 

For those components that come from both, including creatinine, citric acid, and mannitol, 

their R2 values are on the low end (Table 2.5). After examining the raw data, we found 

that they exist in high concentration in the urine sample and are beyond the linear 

dynamic range of the mass analyzer. Among the 425 components identified from Sample 

III, 308 components were resolved from decomposing composite CPFs and 220 

components co-elute with their neighbors within 2 seconds. This indicates that a high 

percentage of potential compounds co-elute in real biological samples. Therefore, 

accurate deconvolution is essential for accurate QUAL/QUAN. 
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Figure 2.15. Deconvolution of two pairs of co-eluting components in two situations with 
different degrees of overlapping: almost complete overlap (Left) and partial overlap 
(Right) (A1) Raw EIC CPFs of masses 73, 103, and 116 (solid) and resulting simple 
CPFs (dashed) after deconvolution. The model CPFs are shown in green and blue 
corresponding to masses 103 and 116, respectively. (B1, C1) Mass spectra of the two 
components constructed from deconvolution results in (A1). They are identified as 
Asparagine and D-xylose, respectively, after library match.  (A2) Raw composite EIC 
CPFs of masses 73, 154, and 174 (solid) and resulting simple CPFs (dashed) after 
deconvolution. The model CPFs are shown in green and blue corresponding to masses 
154 and 174, respectively. (B2, C2) Mass spectra of the two components constructed 
from deconvolution results in (A2). They are identified as L-Histidine and L-Lysine. 
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Figure 2.16. Comparison of cysteine co-eluting with neighboring compounds in Sample I, 
II, and III. (A) Cysteine co-elutes with cinnamic acid and creatinine in Sample I. ADAP-
GC 2.0 successfully detected cysteine based on the slight difference in its elution profile 
from the co-eluting compounds. (B) The elution profile of cysteine overlaps with that of 
creatinine almost entirely in Sample II, which causes the failure of ADAP-GC 2.0 to 
detect cysteine from six of the seven samples. (C) Cysteine and creatinine were well 
resolved by chromatography in Sample III. ADAP-GC 2.0 successfully detected both of 
them. 
 

2.4.2.2 Compound Splitting Issue 

Compound splitting occurs when two or more model CPFs are 

constructed/selected for the same component within a deconvolution window. The last 

step of the deconvolution algorithm attempts to correct this issue and it is usually able to 

detect a majority of the cases. However, the solution is not targeted at the cause of the 

splitting and is therefore unable to resolve all the cases. The cause of the splitting issue 

lies in the hierarchical clustering, wherein a pre-specified distance cutoff is used to 

determine the number of components.  

Prior to clustering, a combination of metrics is used to catch as many good 

candidates for model CPFs as possible. In particular, good candidates could be captured 

from low-intensity components that could otherwise be lost if without employing 
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multiple metrics. As a result, the probability of losing potential compounds is 

significantly reduced. On the other hand, too many CPFs participating in clustering 

dilutes the differences between the CPFs and can lead to more clusters than the actual 

number of components, i.e. the splitting issue. Therefore, there is a performance trade-off 

in the current deconvolution algorithm. The trade-off is between detecting as many 

compounds as possible and suffering from splitting issues. A better solution to the 

splitting issue demands a more robust method to determine the number of components in 

a deconvolution window.  

2.4.2.3 Degree of Co-elution 

The degree of co-elution of neighboring components influences the success rate 

of component detection. Take cysteine that exists in all of the three sample sets as an 

example (Figure 2.16). In Sample I, cinnamic acid co-elute with cysteine and creatinine 

sharing a number of intense fragment ions that include masses 45, 59, 73, 100, and 147 

(Figure 2.16 A). However, the slight difference in apex elution time allows ADAP-GC 

2.0 to extract model CPFs for the three compounds that correspond to masses 202, 329, 

and 218, respectively, and ultimately enables the successful identification of the three 

compounds. In Sample II, model CPFs from cysteine and creatinine (mass 218 and 115) 

are so similar (1.22° as calculated from the normalized dot product between two 

corresponding CPFs) that cysteine was detected only once from the seven constituent 

samples (Figure 2.16 B). In Sample III, cysteine and creatinine were well resolved by the 

chromatography and the resulting model CPFs are well separated (Figure 2.16 C). Masses 

of model CPFs for cysteine and creatinine are 163 and 115, respectively. With this 

distinct separation between the model CPFs, both compounds were identified with 
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matching scores above 800, even though cysteine appears to co-elute with another 

component based on CPFs of masses 45 and 73.  

Clearly, the same set of neighboring components could have different degrees of 

co-elution in different samples. As long as a representative model CPF can be found for 

each co-eluting component, these components can usually be identified. However, when 

the difference between the elution profiles of co-eluting components is too small, we will 

have to resort to better chromatography systems to resolve them. 

2.4.2.4 Robustness and Flexibility 

ADAP-GC 2.0 has been developed using data generated primarily by a GC-TOF-

MS platform that is configured to acquire spectra at a relatively high speed and produce 

integer mass measure. However, the pipeline can be applied to analyzing data from 

instruments with different scan acquisition rate, mass measurement resolution, and 

spectral bias (e.g, TOF is known to lose sensitivity at higher m/z) as well. This can be 

achieved by adjusting analysis parameters of ADAP, taking advantage of the built-in 

robustness of the deconvolution algorithm, and/or using existing capabilities of ADAP 

that are beyond the scope of this manuscript and thus not presented in the description of 

the data analysis method.  

For instruments with lower scan acquisition rate, an EIC peak will consist of 

fewer sampling points. As a result, the moving window that is used to detect peak apexes 

and boundaries will cover fewer scans. If the width of the moving window is represented 

by the number of scans (alternatively by time), we will need to lower it to a smaller value. 

Additionally, since scan acquisition rate could affect the SNR of EIC peaks, the SNR 

threshold used to determine model CPFs usually needs to be adjusted accordingly. We 
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have tested ADAP-GC 2.0 on 14 standard mixture datasets generated from an Agilent 

7890A gas chromatography system coupled with an Agilent 5975C inert XL EI/CI mass 

spectrometric detector (MSD) system (Agilent Technologies, Santa Clara, CA, USA).  

The scan acquisition rate was 2.57 scans/second. ADAP-GC 2.0 was able to successfully 

detect all the 17 standard compounds after parameter adjustment (data not shown). 

For instruments with higher mass measurement resolution, three steps in the 

pipeline will need adjustment: extraction of EIC, detection of peaks, and selection of 

model CPFs. Extracting EICs for integer masses is achieved by simply grouping all of the 

observed intensity values based on the corresponding mass and then order each group by 

time or scan number. However, extracting EICs for high-resolution mass is more 

complicated. ADAP already has the module for this purpose. Peaks from the resulting 

EICs could have fewer sampling points than those from EICs of integer masses since 

masses that are within the same 1 m/z unit bin could be divided into multiple EICs when 

high-resolution mass measures are available. As a result, the same set of aforementioned 

parameters in the case of low scan acquisition rate need to be adjusted. 

ADAP-GC 2.0 uses multiple factors in selecting/constructing model CPFs. The 

complementary nature of these factors makes the pipeline robust in processing data from 

different instruments. In the meantime, the possibility to adjust analysis parameters based 

on data makes the pipeline flexible. Currently, this adjustment has to be done manually. 

Ideally, the pipeline should be able to determine the optimal set of parameters based on 

the data to analyze, thus making the pipeline self-adjustable.    
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2.4.3 ADAP-GC 3.0 

Based on ADAP-GC 1.0, we developed ADAP-GC 2.0 with improved 

deconvolution performance by implementing simple/composite peak feature detection, 

five metrics of peak qualities to select model peaks, and the constrained optimization to 

decompose shared peak features into a linear combination of simple ones [70]. Despite 

the significant progress in the accuracy of compound identification and quantitation, we 

continue exploring the limitations of ADAP-GC 2.0 especially in peak detection and 

model peak selection. During peak detection, the simple local extrema (maxima for peak 

apex and minimum for peak valley) method is very sensitive to the window width 

parameter. For model peak selection, peaks that are symmetric and resemble a Gaussian 

curve are favored. However, fronting and tailing do occur and cause asymmetric peak 

shapes to happen even when a compound elutes from the chromatography system alone. 

In addition, ADAP-GC 2.0 determines the number of co-eluting compounds by carrying 

out a hierarchical clustering of good candidates for model peaks. However, hierarchical 

clustering is very sensitive to the distance threshold and therefore it is very challenging to 

select an appropriate threshold and strike the balance between compound splitting that 

occurs when the distance threshold is too low and compound merging that occurs when 

the distance threshold is too high.  

Thus, ADAP-GC 3.0 is developed in order to address these issues in peak 

detection, model peak selection, and hierarchical clustering. During peak detection, 

ADAP-GC 3.0 applies the wavelet transform to automatically identify peaks with 

different widths and peak shapes, and then uses local extrema to examine if there exists 

significant spikes to ensure the purity of unique/simple peak features. After that, unique 



	   64 

peak features with the highest sharpness values are considered as model peaks to 

represent the elution profiles of corresponding compounds. The criteria for unique peak 

features together with signal to noise ratio and sharpness values have replaced the 

previous five matrices of parameters to select model peaks, which is a linear combination 

of Gaussian curve fitting value, signal to noise ratio, mass, and intensity values at apex. 

Finally, two rounds of hierarchical clustering are applied to determine the total number of 

co-eluting compounds by measuring the closeness of retention time and similarity of peak 

shape of EIC peak features. With the sophisticated strategy to select model peaks and 

perform two rounds of clustering, and apply less number of parameters for tuning, 

ADAP-GC 3.0 has been developed as a robust and adaptive pipeline, and is able to 

identify metabolites at low concentration levels and/or co-eluting compounds overlapping 

very closely with neighbors. In this paper, we report the new computational approach and 

the associated algorithms of peak detection and deconvolution, as well as the 

improvement in terms of compound identification and quantitation as compared with the 

previous version. ADAP-GC 3.0 algorithms are prototyped in R and being incorporated 

into our developing stand-alone software tool which integrates data processing, statistical 

analysis, compound identification and visualization.  

As compared to the previous version, ADAP-GC 3.0 has major improvements on 

peak feature detection, model peak selection and the clustering strategy to determine the 

total number of co-eluting components. Figure 2.17 illustrates the key steps of 

deconvolution in ADAP-GC 3.0 using a pair of co-eluting compounds from one standard 

mixture sample. Within the deconvolution window spanning from 8.62 to 9.91 minutes 

(Figure 2.17 A), the 1st hierarchical clustering produced three clusters, and the one with 
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only mass 89, whose absolute abundance is as low as 237, is considered as a noisy peak 

then removed (Figure 2.17 C). The 2nd clustering is performed on the selected unique 

peak features of each cluster, producing one component from each with the distance 

cutoff as 15 (Figure 2.17 D-E). Each component shows significantly similar unique peak 

features in terms of elution time and elution profiles (Figure 2.17 F-G). The unique peak 

features of mass 158 at 8.83 min and mass 147 at 8.78 min have the highest sharpness 

values thus are selected as model peaks (Figure 2.17 B). Finally, two mass spectra are 

resolved and identified as compound iso-leucine and proline with matching score 846 and 

988, respectively (Figure 2.17 H-I). 

By using the same testing datasets wherein 27 standard compounds were carefully 

selected and mixed at different concentrations, it is direct to compare the performance of 

compound identification and quantitation between ADAP-GC 3.0 and the previous 

version. Table 2.6 lists all of these 27 standard compounds identified from Sample II and 

III using ADAP-GC 3.0. It is clearly that compound identification and quantitation results 

have been improved in terms of the increased average matching scores against the user 

library and the linearity coefficient R2 values. The result indicates that it is successful that 

ADAP-GC 3.0 applies the combination of wavelet transform and local extrema for peak 

detection and selects the unique peak features as model peak candidates. Also, the unique 

peak with the highest sharpness value is able to represent the elution profile of 

corresponding compound.  
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Figure 2.17. Illustration of the first and second round of hierarchical clustering in order to 
determine the number of co-eluting components and their corresponding model peaks. 
 
 

For the previous ADAP-GC 2.0, most missing compounds were at lower 

concentration levels and their peak features generally exhibit noisy, zigzag, less close to 

standard Gaussian curves, so that none candidate peak features had met the criteria of 

five matrices of parameters for model peaks. For example, the iso-citric acid and histidine 

had not been identified previously from Sample II at the concentrations of 0.2 and 0.4 

µg/mL. Iso-citric acid coelutes with citric acid, sharing most peak features together 

(Figure 2.18 A1, B1). Histidine exhibits much lower concentration as compared to the 

coeluting compound lysine (Figure 2.18 C1). So it is difficult to find all model peaks for 

both pairs of coeluting compounds using ADAP-GC 2.0. However, ADAP-GC 3.0 is able 

to identify these compounds in both Sample II and III (Table 2.6) since it is able to find 

the qualified unique peak features as model peaks or extract the mass spectra nearby 

through the careful examination of two rounds of clustering (Figure A2, B2 and C2). To 

note, among 27 standard compounds in Sample II, it is difficult to automatically 

deconvolute the co-eluting cysteine and creatinine due to that they elute within only two 

scans and most of their peak features overlap exhibiting as simple peak features. Except 

for this particular case, ADAP-GC 3.0 is able to correctly find back those standard 

compounds in Sample II undetected by the ADAP-GC 2.0, and has identified all the 

standard compounds from Sample III. 
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Figure 2.18. (A1-A2). At the lowest concentration of 0.2 µg/mL, citric acid and iso-citric 
acid share most peak features together and only the unique peak feature 245 is qualified 
as the model peak for iso-citric acid while the mass spectrum of citric acid can be 
extracted at the position at 19.81 min indicated by the 1st round of clustering. (B1-B2) At 
the higher concentration 0.4 µg/mL, both citric acid and iso-citric acid have identified 
their model peaks. (C1-C2). At the concentration 0.4 µg/mL, histidine exhibits much 
lower abundance than the co-eluting compound lysine, thus only the unique peak feature 
174 is selected for compound identification while the mass spectrum of histidine can be 
extracted at the position 21.91 min. 
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2.5 Conclusion 

ADAP-GC 1.0 has established the basic framework of an automated data analysis 

pipeline for GC-MS data analysis with features peak picking, deconvolution, alignment, 

and identification. In particular, we also developed the novel component-based alignment 

that has been validated the robustness and efficiency in multiple datasets. However, 

Deconvolution needs to be improved to deconvolute EICs of shared ions more accurately. 

So ADAP-GC 2.0 defined the concept of simple and composite peak feature during peak 

detection, and developed the model peak-based deconvolution method using five metrics 

of peak qualities to select model peaks. However, ADAP-GC 2.0 heavily relies on 

multiple parameters in peak detection and deconvolution, which made it difficult to select 

optimal parameter settings for datasets from different sources. Thus, ADAP-GC 3.0 has 

been developed as a flexible and robust pipeline with new algorithms implemented in 

peak detection, hierarchical clustering, and model peak selection. Furthermore, ADAP-

GC 3.0 has been validated its superior performance in compound identification and 

quantitation compared to the previous ADAP-GC 1.0 and ADAP-GC 2.0. 



	  

	  

CHAPTER 3: COMPARATIVE EVALUATION OF SOFTWARE FOR 
COMPOUND IDENTIFICATION AND QUANTITATION OF GC-TOF-MS 

DATA IN METABOLOMICS STUDIES 
 

 
3.1 Introduction 

Data processing plays a critical role in translating raw signals into mass spectra 

and peak abundance of biochemical compounds, thus has big impact on extent and 

quality at which metabolite identification and quantitation can be made as well as on the 

ultimate biological interpretation of results [71]. Among five critical steps for GC-MS 

data processing, i.e., de-noising, feature detection, deconvolution, alignment, compound 

identification and quantitation [71], deconvolution is particularly important during feature 

detection due to that a large number of compounds frequently co-elute after one-

dimensional GC separation [44]. As summarized in Table 1.1, a variety of methods and 

software packages have been developed and applied in GC-MS based metabolomics 

studies for data processing in recent years. However, only five different software tools 

have their own capability of spectral deconvolution: AMDIS, ADAP-GC 3.0, 

AnalyzerPro, ChromaTOF, and MetaboliteDectctor. Among them, MetaboliteDetector 

frequently met crashes during the time of our testing, thus ADAP-GC 3.0, AMDIS, 

AnalyzerPro, and ChromaTOF are selected in this study for comparing their performance 

on compound identification and quantitation. Lu et al. compared the deconvolution 

performance of AMDIS, ChromaTOF, and AnalyzerPro [51]. As far as we know, this is 

the first time a comparison was carried out, which is invaluable. However, it was done 

from a user’s point of view by simply calculating the false positive and negative rate of
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compound identifications as the criterion to evaluate the deconvolution performance, and 

studied the effect of combinations of parameters used in the data processing stage. 

Further analysis of the challenges for data processing and causes of limitations for current 

software tools will be critical for future development and improvement. 

In this study, four representative software tools, ADAP-GC 3.0, AMDIS, 

AnalyzerPro and ChromaTOF, are selected for comparison. Specifically, these four 

software tools perform peak feature detection and deconvolution on raw data of two 

different sample sets, which are seven standard mixture samples and eight pooled urine 

samples mixed with standards analyzed by GC-time of flight-MS platform. GC-TOF-MS 

provides higher mass resolution and mass accuracy compared to conventional GC-MS, 

and its faster scan rate improves Gaussian peak shape, which is very useful for accurate 

deconvolution [24]. Through identifying and quantifying a total of 27 standard 

compounds, we evaluate their advantages and limitations in peak feature detection and 

spectral deconvolution of GC-TOF-MS data for metabolomics studies. Our work is 

helpful for software users to better understand data processing results and select 

appropriate software tools for data analysis. Also, further discussion of common 

limitations and possible solutions will guide our software developers to develop novel 

computation algorithms and strategies efficient enough for processing metabolomics data, 

especially in peak detection and deconvolution. 
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3.2 Materials and Methods 

3.2.1 Experimental Procedures and Testing Data  

Two different sample sets are used and analyzed by four representative software 

tools for comparison, and they are sample II and III that have been introduced in details 

in chapter two. 

3.2.2 Software Comparison 

ADAP has been developed since 2009 for GC-MS-based metabolomics studies, 

with features of de-noising, peak detection, deconvolution, alignment, and compound 

identification and quantitation [43]. The second version ADAP-GC 2.0 applies “model 

peak” method to improve spectral deconvolution significantly [44]. ADAP-GC 3.0 is the 

newest version, which has improved peak detection and model peak selection, and has 

trayoptimized clustering strategy to determine the number of co-eluting compounds. 

National Institute of Standards and Technology (NIST) developed AMDIS in 1999. 

AMDIS (Version 2.71) has been a commonly used freeware for spectrum extraction and 

compound identification from GC-MS data [26]. A 15-day trial of AnalyzerPro (Version 

3.0.0.0) is vendor-independent software, which is provided by Spectralworks Ltd, UK. 

AnalyzerPro enables batch processing of multiple datasets from metabolomics studies, 

and provides baseline correction, smoothing, peak finding, deconvolution, compound 

identification and quantitation for GC-MS data. ChromaTOF software (version 4.34) is 

developed exclusively for the use with LECO separation science instruments, e.g., GC-

TOF-MS. It is powerful with comprehensive features including baseline correction, peak 

finding, deconvolution, alignment, compound identification and quantitation, as well as 

user-friendly interfaces for data overview, transfer and report. 
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Raw NetCDF format data produced from GC-TOF-MS instrument was processed 

at first to extract mass spectra and peak abundance information, which involves de-

nosing, peak detection, and deconvolution. Parameters of data processing for each 

software tool have been set appropriately to keep their performance comparable. Their 

key parameters and specific report formats are listed in Table 3.1. To note, ADAP-GC 

3.0 is able to output resolved mass spectra and peak abundance information automatically, 

while for others, extra programming work is necessary in order to interpret software 

specific reports into detailed spectra and abundance information.  

After obtaining extracted mass spectra and peak abundance information of 

resolved components, we applied our user library to search for a total of 27 standard 

compounds in each sample of Sample II and III. The matching score threshold is set as 

700 for identification, the greater matching score is (maximal value is 999), the more 

accurate mass spectra resolved from deconvolution step. Meanwhile, R2 coefficient value 

(estimated quantity vs. true quantity) of each standard compound is calculated to measure 

its linearity across calibration samples. Since different model peaks or quantitation mass 

could be selected for a same compound from different samples, the most frequent one is 

considered as the common quantitation mass for R2 coefficient calculation. Overall, 

performance of each software is evaluated based on: (1) compound identification: the 

total number of deconvoluted components from each dataset, matching scores of 

identified standard compounds and the true positive rate; (2) compound quantitation: 

linearity of estimated concentration of each standard compound across samples;  (3) 

analysis of mass spectra accuracy from four software tools to examine their advantage 

and shortcomings in peak detection and deconvolution. The workflow to compare the 
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performance of compound qualification and quantitation of four software tools has been 

summarized in Figure 3.1. 

 

Figure 3.1. Workflow of comparative evaluation of software tools on the performance of 
compound qualification and quantitation 
 

Table 3.1. List of key parameters and specific report formats of four software tools 

3.3 Results 

3.3.1 Compound Identification 

Table 3.2 and 3.3 summarize the identification and quantitation results of a total 

of 27 standard compounds from Sample II and III. ADAP-GC 3.0, AMDIS, AnalyzerPro, 

Software  Key parameters Report formats 
ADAP-GC 3.0 Minimum S/N = 10; 

Hierarchical clustering distance cutoff = 15; 
Score cutoff for splitting correction = 750; 

Extracted mass spectra list (.MSP); excel table 
saving the abundance information of all peaks 
(.CSV) 

AMDIS Minimum S/N = 10; 
Component width = 32; 
Adjacent peak subtraction = 1 
Resolution = medium; 
Sensitivity = very low; 
Shape requirements = high. 

Extracted mass spectra and peak abundance  
(.ELU and .FIN); excel table saving the 
quantitation mass abundance of each component 
(.CSV) 
 

ChromaTOF Minimum S/N = 10; 
Baseline offset = 1.0; 
Data points for averaging = 3; 
Peak width = 2.5. 

Extracted mass spectra list (.MSP); excel table 
saving the quantitation mass abundance of each 
component (.CSV) 
 

AnalyzerPro Area threshold = 500 
Height threshold = 1% 
Minimum mass = 6 
S/N threshold = 10 
Smoothing = 3 
Width threshold = 0.01 min 
Resolution = low 
Scan window = 2 
 
 

Excel table peak abundance and mass 
information (.XLS) 
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and ChromaTOF could identify 25, 21, 20 and 24 standards, respectively, within seven 

datasets of Sample II, and 27, 15, 25 and 27, respectively, in eight datasets of Sample III. 

It seems that ADAP-GC 3.0 and ChromaTOF produced comparable results in terms of 

the number of identified compounds and their matching scores. Among five pairs of co-

eluting compounds in Sample II, cysteine and creatinine co-elute so close within only one 

to two scans distance near 13.57 minutes and share most common peak features together 

(Figure 3.2 A), thus it is difficult to completely resolve them. But they elute much more 

independently in urine samples with 12 to 30 scans distance, so that it becomes easier to 

separate them during deconvolution. Besides cysteine and creatinine, ChromaTOF failed 

to identify histidine at the lowest concentration (0.2 µg/ml). It seems mass 154 is the only 

significant peak feature unique to histidine, however, its noisy profile and relatively low 

abundance compared to co-eluting lysine at 21.95 minutes prevents it to be detected 

easily (Figure 3.2 B). But ADAP-GC 3.0 had noticed that there existed at least one 

compound at 21.92 minutes based on the hierarchical clustering of eluting times of EIC 

peak features at the beginning of deconvolution.  

Compared to ADAP-GC 3.0 and ChromaTOF, AMDIS and AnalyzerPro have 

missed more compounds in Sample II and III with different reasons. AMDIS tends to 

produce more than one mass spectrum for a compound, and co-eluting compounds with 

higher intensities could dominate and affect the extraction of mass spectra nearby. Take 

histidine for example which was only identified at 5 µg/ml in Sample II, a total of 12 

mass spectra were identified as lysine from 21.92 to 21.97 minutes at 2 µg/ml (Figure 

3.3), but none of them was qualified as histidine with confident matching score (the 

threshold is 700). AnalyzerPro lost even more compounds because more than 50% of 
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those missing compounds have obtained incomplete mass spectra and their common 

quantitation mass was failed to be extracted for quantitation. For example, there are two 

incomplete mass spectra resolved at 15.932 and 15.938 minutes matched against d-xylose 

with score 793 and 791, respectively (Figure 3.4). However, both of them seem to be a 

part of the standard mass spectrum of d-xylose. Further, the one with higher matching 

score does not have the quantitation mass 73, thus this compound had not been quantified 

successfully. 

 

 

Figure 3.2. (A) An example of TIC (grey) and EIC (black and in color) peak features for 
cysteine and creatinine in Sample II. (B) TIC and EIC eluting profiles of histidine at the 
lowest concentration, peak feature of mass 154 is zoomed in and labeled in red.  
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Figure 3.3. Comparison of extracted mass spectra from 21.92 min to 21.97 min from a 
sample of Sample II (2 µg/ml) that have been matched to lysine with scores greater than 
700 and standard spectra of compound histidine and lysine. 
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Figure 3.4. An example of two incomplete mass spectra resolved at 15.93 min by 
AnalyzerPro from a sample in Sample II (0.6 µg/ml), where theoretically exist d-xylose 
(bottom left). 
 
 

Average matching scores of 27 standard compounds are 919, 899, 873, and 924 in 

Sample II and 903, 906, 875, and 913 in Sample III for ADAP-GC 3.0, AMDIS, 

AnalyzerPro, and ChromaTOF, respectively. Higher matching scores indicate more 

accurate extraction of mass spectra from original data. However, these software tools 

produced much more components than the theoretical number 28 in Sample II, and 

surprisingly, AMDIS produced around 5000 to 6000 thousands of components (Table 
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5.4). In the urine samples of Sample III, ADAP-GC 3.0, AnalyzerPro, and ChromaTOF 

produced relatively reasonable number of components, however, AMDIS still produced 

too many even a single component could employ different models for spectra 

construction. With the advantages of fast acquisition rate, GC-TOF-MS is able to produce 

chromatographic features with more scan points and improved Gaussian peak shapes. But 

for AMDIS, which is not originally developed for TOF data, if peak tops are broad, e.g. 

from GC-TOF-MS, with several local maxima present, more than one spectrum could be 

produced and identified for a compound. Similarly, noisy peaks are broad as well to 

AMDIS, thus extra false positive components have been produced in both datasets. Even 

though AMDIS has provided options of peak filtering, only signal to noise threshold was 

used and set as low as 10 to make parameter settings comparable with other two software 

packages. The parameter “sensitivity” during deconvolution was set “very low” to reduce 

the possibilities of noisy and broad peaks determined. However, these parameter 

adjustments did not change a lot.  

Table 3.4.  List of the number of components resolved by three software tools in each 
dataset of Sample II and III. Sample ID “S0.1” indicates the concentration of each 
standard compound is 0.1 ug/ml in this sample. 
Sample ID ADAP-GC 3.0 AMDIS AnalyzerPro ChromaTOF 
 II III II III II III II III 
S0.1  960  5563  743  938 
S0.2 151 956 6015 5770 87 777 229 963 
S0.4 134 978 5893 5746 90 757 221 986 
S0.6 147 1044 5960 5740 110 837 237 1035 
S0.8 141 1054 5942 5735 116 838 238 999 
S1 144 1017 5975 5708 120 785 235 995 
S2 178 982 5551 5776 145 788 260 999 
S5 190 1031 5994 5742 217 813 302 1065 
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3.3.2 Compound Quantitation 

ADAP-GC 3.0 selects model peak abundances to represent the relative 

concentrations of compounds, whose peak features are unique and have the highest 

sharpness values. AMDIS also selects model profiles through measuring sharpness 

characteristics of EIC peaks. But their measurements of sharpness are different: AMDIS 

considers noise factor while ADAP-GC 3.0 does not because it has de-noising as the first 

step of data processing. AnalyzerPro does not provide options how to select quantitation 

mass, thus the base peak with the highest intensity for each component is used for 

quantitation. Both ADAP-GC 3.0 and ChromaTOF provides multiple choices of 

quantitation mass for customized analysis, e.g. the most abundant unique peak or the 

summary of all EIC peak abundance. As a result, ADAP-GC 3.0 and ChromaTOF are 

found that they shared more than 70% of quantitation mass for 27 standard compounds.  

Higher matching scores indicate more accurate mass spectra resolved for 

compound identification and quantitation. Together with high average matching scores 

for compound identification, all four software tools produced good quantitation results in 

Sample II with average R2 values greater than 0.99. However, quantitation of standards in 

urine samples is complex because there exist hundreds of metabolites with diverse 

biochemical properties and a wide range of concentrations. As a result, a total of 17, 10, 

17, and 17 compounds out of 27 have R2 values greater than 0.99 in Sample III for 

ADAP-GC 3.0, AMDIS, AnalyzerPro, and ChromaTOF, respectively. The lower R2 

values of others indicate different degrees of impurity or inaccuracy of resolved mass 

spectra affected by noise or co-eluting compounds. Three out of 27 standard compounds 

(i.e., creatinine, citric acid and mannitol) have poor quantitation performance because 
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they themselves exist in the urine samples and their high concentrations have been 

beyond the linear dynamic range of TOF-MS analyzer.  

3.3.3 Mass Spectra Comparison 

It is interesting to compare resolved mass spectra of 27 standard compounds from 

four different software tools with standard spectra from our user library, as well as to 

compare their pairwise similarities to evaluate overall deconvolution performance. From 

Table 3.5, mass spectra from ADAP-GC 3.0, AMDIS and ChromaTOF have high 

similarities, even higher than their average matching scores against library. This indicates 

high consistency and accuracy of mass spectra resolved from these three software tools 

while the standard spectrum from our user library exists minor difference from them. For 

example, fragments 245 and 273 consistently appeared in the top candidate of iso-citric 

acid from ADAP-GC 3.0, ChromaTOF and AMDIS, and particularly, mass 273 has 

higher abundance level than the other. On the contrary, the standard spectrum has higher 

abundance level of mass 245 than that of mass 275 (Figure 3.6). We also noticed that 

ADAP-GC 3.0 and ChromaTOF showed the highest similarity score, indicating their 

deconvolution performance are very comparable. However, it is clearly that mass spectra 

extracted from AnalyzerPro have least similarities with others, which also explains the 

effects of incomplete mass spectra from deconvolution step.  

3.4 Discussion and Conclusion 

Four software tools with their own spectral deconvolution algorithms for GC-MS 

data are compared through identifying and quantifying a total of 27 standard compounds 

from standard mixtures and urine samples mixed with standards. All four software tools 

are able to identify most of standard compounds with matching scores greater than 700, 
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and quantify these compounds across calibration samples with R2 coefficients greater 

than 0.99. Among them, ADAP-GC 3.0 and ChromaTOF performed the best and 

produced comparable results in terms of the percentage of true positives, the selected 

quantitation mass, average matching scores and R2 coefficients. While AMDIS tend to 

produce multiple mass spectra for a compound from GC-TOF-MS data, which makes it 

difficult for automated compound identification. Also, abundant co-eluting compounds 

could easily affect the extraction of mass spectra of compounds nearby. AnalyzerPro 

produced much fewer false positives than AMDIS. However, incomplete mass spectra 

are found common from AnalyzerPro results, thus more compounds were failed 

identified. 

 
Table 3.5. Average similarities of resolved mass spectra from four software tools against 
library of 27 standard compounds in each sample of Sample II (first four columns) and 
their pairwise similarities. “AD”, “AM”, “Chrom”, and “An” are short for ADAP-GC 3.0 
AMDIS, AnalyerPro, and ChromaTOF, respectively. 
Sample 
ID 

AD AM C An AD-
AM 

AD-An AD-C C-Am C-An Am-
An 

S0.2 900 863 902 860 923 588 922 904 553 609 
S0.4 911 885 924 870 948 549 950 927 506 411 
S0.6 911 895 931 864 946 549 962 941 504 562 
S0.8 923 907 931 860 949 549 959 934 547 550 
S1 931 918 934 882 959 532 970 949 504 571 
S2 930 929 935 900 960 507 971 966 497 522 
S5 935 932 932 903 962 478 985 963 479 520 
Average 920 904 927 877 950 536 960 941 513 535 
Note: AD, AM, C, An represents software ADAP-GC 3.0, AMDIS, ChromaTOF, 
AnalzyerPro, respectively. 
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Figure 3.6. Comparison of mass spectra identified as iso-citric acid from ADAP-GC 3.0, 
ChromaTOF, and AMDIS with standard library. 
 
 

Comparing different software in terms of compound identification and 

quantitation enables us to find their common issues in deconvolution: large amount of 

false positive components, and multiple mass spectra for a same compound (known as 

splitting issue), which affect the purity of extracted mass spectra for compound 

identification and quantitation. At least three steps of data processing are correlated with 

these problems: (1) de-nosing: noises that are wrongly considered as signals will increase 
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false positive components; (2) peak detection: it is difficult to keep the balance to find 

peaks with different widths because small peaks are easily undetected which results in 

incomplete mass spectra resolved and too sensitive methods, e.g. local maxima, could 

detect multiple local tops within a broad peak feature which result in multiple mass 

spectra resolved; (3) component perception which is the step to determine the number of 

co-eluting components, e.g., ADAP-GC 3.0 applies hierarchical clustering based on 

similarities of peak features and closeness of their retention times, and AMDIS evaluates 

whether there exists a sufficient number of ions maximizing together. The improper 

parameter setting related with component perception could directly result in compound 

missing or splitting issue.  

In the future, development of software packages for GC-MS data processing with 

application in metabolomics should consider these factors to improve the performance of 

compound identification and quantitation. Based on our own experience, it is highly 

recommended to utilize samples from background runs and/or quality controls to reduce 

the interferences of background and random noises. In order to satisfy different 

chromatographic peak conditions, robust methods are highly required to comprehensively 

identify peaks with different feature characteristics, e.g., ADAP-GC 3.0 has combined 

transformed wavelets and local maxima together to improve peak detection. Lastly, it 

should be admitted that it is difficult to determine the number of components in an 

untargeted way for unknown biological samples, thus relevant parameter settings play a 

critical role in this step. The window or case specific parameter settings could be flexible 

and helpful to develop automated and robust methods during deconvolution.  
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In conclusion, both ADAP-GC 3.0 and ChromaTOF perform well in terms of 

compound identification and quantitation by processing two different sets of GC-TOF-

MS data, while AMDIS and AnalyzerPro seems to be inappropriate to deconvolute GC-

TOF-MS data in an untargeted way for compound identification and identification, and 

should require extensive correction, filtering and reorganization for metabolomics 

studies. ADAP-GC 3.0 is promising in the field of GC-MS based metabolomics studies 

because continuous efforts have been made to improve data processing performance 

since its’ first version published in 2009. It aims to be developed as a freely available 

software tool with automated data processing and sophisticated statistical analysis 

capabilities. ChromaTOF is a commercial software tool, but it has been validated 

powerful in processing and analyzing GC-TOF-MS-based metabolomics data, and users 

benefit a lot from recent new features, e.g., statistical analysis methods and user-friendly 

interfaces.



	  

	  

CHAPTER 4: DEVELOPMENT OF VISUALIZATION SOFTWARE AND 
STATISTICAL ANALYSIS METHODS FOR GC-MS DATA ANALYSIS 

 
 

4.1 Introduction 

Modern analytical technologies afford comprehensive and quantitative 

investigation of a large number of metabolites. And running large-scale projects with 

hundreds to thousands of samples in metabolomics studies is on the verge of being 

routine. Thus, the resultant large and complex datasets require advanced bioinformatics 

tools for data processing, analysis and biological interpretation. Like other omics, 

sophisticated computational tools are vital for efficient and high-throughput analysis, to 

eliminate systematic bias and to explore biologically significant findings [72].  

In metabolomics, data handling generally include three sequential steps: data 

processing, data pretreatment and statistical analysis. Data processing aim to extract 

identity and quantity of compounds from original data [71], however, only a few software 

packages (e.g., MetAlign [31] and MET-IDEA [38]) may own and develop novel 

algorithms to process GC-MS, particularly GC-TOF-MS data. Data pretreatment methods 

include normalization, centering, scaling and transformation, that have been applied in 

metabolomics with the goal to focus on biological information and to reduce the 

influence of disturbing factors such as measurement noise [67]. It has been pointed out 

that data pretreatment is a crucial step that can drastically change the 
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pertinence and the outcome of data analysis [73]. Finally, advanced multivariate 

statistical methods are often used together with univariate analysis, e.g., student t-test, to 

investigate relationships between different groups and to highlight differential 

metabolites that contribute to the relationship. Popular multivariate analysis methods 

used for metabolomics include principal component analysis (PCA) to examine natural 

clustering of samples and partial least squares discriminant analysis (PLS-DA), clustering 

analysis, and support vector machines (SVM) to supervise the group difference (e.g., 

case-control) [74, 75]. 

In this study, we develop ADAP-GC software based on the novel algorithms of 

data processing in ADAP-‐GC	   2.0	   and a statistical package for data pretreatment and 

analysis. Specifically, ADAP-GC software has four main features: (1) an integrated tool 

with seamless data processing, identification and quantitation (QUAL/QUAN) analysis, 

statistical analysis, visualization, and customized summary report. (2) handling and 

controlling each step internally so that we do not have to rely on other software that may 

change methods in the future. (3) Modular based pipeline: data processing and analysis 

happens in steps so that each step is saved to ensure rollback. It is very important to save 

time when running large scale data sets like in epidemiology studies: if certain 

parameters need to be adjusted at one step, the user could start from this step instead of 

starting over; (4) Quality checking and correction allow user interaction with ADAP-GC 

software. Both identification and qualification results could be checked manually by 

experienced analysts and allow semi-automatic correction of compound identification 

and missing values. 
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4.2 ADAP-GC Software  

4.2.1 Workflow of ADAP-GC Software 

The general workflow of ADAP-GC software can be divided into five modules: 

(1) analysis for parameter settings of automated data processing and analysis; (2) 

visualization of raw TIC/EIC chromatograms, extracted mass spectra, identified peaks 

and details about deconvolution, which is helpful to users to understand high-dimensional 

data, evaluate data processing performance and interpret analysis results; (3) Qual/Quan 

table listing the compound identification and quantitation result and allowing manual 

checking and correction; (4) statistics for basic data pretreatment and statistical analysis; 

and (5) a customized html report.  

ADAP-GC software accepts netCDF format data produced from GC-MS 

platform. All the raw data and intermediate results from data processing will be organized 

and saved in a SQL database to facilitate easy and fast data retrieval for computation and 

visualization. To use ADAP-GC software, it usually starts with the raw netCDF files, and 

proceeds through data processing, Qual/Quan analysis, data pretreatment, statistical 

analysis and final report (Figure 4.1). Once a job finishes, a project folder is then created 

that stores raw netCDF files, intermediate data processing results and final data analysis 

report (Figure 4.2). Among them, the extracted mass spectra are saved in NIST format so 

that users could apply MSsearch software for further compound identification. And 

qual/quan tables are exported in CSV format allowing further statistical analysis and data 

exploration. 
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Figure 4.1. ADAP-GC software architecture 
 
 

 

Figure 4.2. The structure of a project folder created by ADAP-GC software 
 
 

4.2.2 Parameter Settings  

ADAP-GC software provides full choices of parameter settings for each step of 

data processing and analysis (Figure 4.3): (1) smoothing and baseline correction have 
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window size to adjust, their default values are 20 and 240 scans respectively; (2) Peak 

picking covers the ratio of boundary intensities to peak apex intensity, window size for 

peak apex and boundary detection, the allowed maximal peak width and signal to noise 

ratio. (3) Deconvolution has a total of ten parameters, such as sharpness, signal to noise 

ratio (SNR), and Gaussian curve fitting score for model peak selection, the cutoff of 

pairwise spectra similarity to examine compound splitting issue. During deconvolution, 

one or more standard libraries in NIST format can be used for compound identification, 

where the default score cutoff for library matching is set as 750. (4) Alignment provides 

four parameters: instrumental acquisition rate, retention time tolerance, spectra similarity 

score, and the minimal number of samples having a same compound identified. (5) One 

or more standard libraries can be used for library searching after alignment, and users 

could decide the number of top candidates displayed in the Qual/Quan table. More details 

about parameters and data processing algorithms have been introduced Chapter three of 

ADAP-GC 2.0. Default parameters are optimal for GC-TOF-MS data with the acquisition 

rate set as 20 spectra per second; however, users are allowed to explore different 

parameter settings according to specific GC-MS instrument conditions and data analysis 

requirements.  

4.2.3 Statistical Analysis  

The goal to develop statistical package within ADAP-GC software is to analyze 

data directly from data processing steps without having to use third-party software, and to 

integrate commonly used statistical methods for metabolomics studies within a same 

pipeline. In the current version of ADAP-GC software, computational functions of 

statistical methods were written in R language by applying many available functions and 
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libraries from Cran (http://cran.r-project.org) and Bioconductor 

(http://www.bioconductor.org), including PCAMethods, mixOmics, pls, gplots, and 

limma. The statistical package can be divided into three parts: data pretreatment 

(normalization and scaling), data exploration (clustering and PCA) and significance 

analysis (univariate and multivariate analyses) (Figure 4.4). More statistical methods that 

are increasingly used for metabolomics studies will be added to our software in the 

future. For example, receiver operator characteristic (ROC) curves have been applied in 

recent translational biomarker discovery of clinical metabolomics [76]. 

 

 

Figure 4.3. A screenshot of parameter settings within ADAP-GC software 
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Figure 4.4. The ADAP-Stats architecture 
 
 

4.3 Result Interpretation 

A total of 20 data sets from Sample III in Chapter Two were selected and 

analyzed by ADAP-GC software, which were rat serum samples (10 animal models vs. 

10 healthy controls) in an animal experiment of liver injury and analyzed by GC-TOF-

MS platform. As introduced, ADAP-GC software is able to automatically analyze these 

raw netCDF data in a batch, proceeding through de-noising, peak picking, deconvolution, 

alignment, and compound identification and quantitation. Next, more details on data 

visualization, Qual/Quan analysis, and statistical analysis will be introduced. 

4.3.1 Data Visualization 

In the VISUALIZATION page, raw TIC and EIC chromatograms, extracted mass 

spectra, intermediate results from peak picking and deconvolution steps can be displayed. 

First, the identified peaks on TIC or each EIC can be labeled in black triangles, helping 
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users to decide whether all peaks of interest are successfully identified by ADAP-GC 

software (Figure 4.5 A). Within the 2nd panel, it is optional to display original mass 

spectrum alone, or ‘head to tail’ comparison between original/library and extracted mass 

spectra (Figure 4.5 B1-3). An extracted mass spectrum refers to a potential compound, 

thus the comparison of extracted mass spectrum and standard spectrum is helpful to 

examine the accuracy of peak identification and ion extraction during deconvolution. In 

addition, ADAP-GC software has provided comprehensive information regarding each 

identified component, including the retention time (Figure 4.5 C), compound information 

(Figure 4.5 D), model peak information (Figure 4.5 E), and the process of peak feature 

extraction (Figure 4.5 F). To summarize, our goal of developing VISUALIZATION 

module is to help users to examine characteristics of original GC-MS data and evaluate 

peak detection and deconvolution performance, which is crucial for quality control and 

troubleshooting and none software tools have provided such detailed information yet. 

4.3.2 Qual/Quan Analysis 

As introduced in the chapter of ADAP-GC 2.0, there are four options for users to 

select quantitation mass for compound quantitation: model peak mass, most intense mass, 

or the most intense unique mass, or summarization of all extracted masses. 

Correspondingly, four qualification and quantitation (qual/quan) tables could be 

displayed for visualization, manual check and semi-automatic modification. Each table 

includes both library searching and quantitation results (Figure 4.6 A): compound 

identification results provide unique ID, retention time, quantitation mass, molecular 

weight and formula, compound name, and matching score of each identified compound, 
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whereas quantitation results provide the estimated concentrations of all potential 

compounds in terms of extracted peak intensities of selected quantitation mass.  

 

 

Figure 4.5. Visualization of chromatographic peak picking and component deconvolution 
within ADAP-GC software 
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Figure 4.6. Module of qualification and quantitation analysis within ADAP-GC software 
 
 

In practice, it is very useful to provide the option for users to check and modify 

the automatically produced results of compound quantification and qualification. (1) 

Compound identification check. Ten or less top candidates are listed in a table (Figure 4.6 

B), and the one with the highest matching score is usually selected as the matched one. 

However, it is optional to select any candidate as the correct identified compound after 

examination of extracted mass spectra and quantitation results (Figure 4.6 D-E). (2) 
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Missing value correction. Missing value are very common in mass spectrometry that can 

result from several mechanisms [77]: (1) A compound can be present but with very low 

concentration that below the detection limit of mass spectrometry. (2) A compound is 

truly absent due to biological reasons thus could be not detected. (3) A compound fails to 

be detected due to technical issues related to data processing, such as inappropriate 

parameter settings in peak picking, deconvolution, and alignment. The missing value 

problem would directly affect the following statistical analysis and data interpretation, 

which usually take researchers tons of time for manual checking and correction. Thus, it 

is worthwhile to automate or semi-automate the checking and correction of missing 

values that are most likely coming from the inappropriate data processing. ADAP-GC 

software provides the capability for users to check raw data where a missing value exists 

(Figure 4.6 C) and correct automatically if these exists signals. After modifications, a 

new Qual/Quan table will be generated and updated in the backend database for 

subsequent statistical analysis. 

4.3.3 Statistical Analysis 

The qual/quan table with identification and quantitation results for all datasets is now 

moving forward for statistical analysis in ADAP-GC software. Normalization has two 

options, one is to select an internal standard and another is percentage normalization. 

Scaling has multiple choices including auto, pareto, centering, vast, range, level. Data 

analysis provides univariate, clustering, PCA and PLS-DA methods that are commonly 

applied in metabolomics. All the analysis can be performed automaticaly after users 

select appropriate parameters for data pretreatment and analysis, as a result, the 

corresponding results are immediately exported in two formats: (1) excel tables listing 
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significant metabolites with their corresponding p values, fold changes, and correlation 

coefficients. (2) high-resolution figures, e.g. volcano plot (Figure 4.7) , PCA and PLS-

DA scores and locading plot, and summary of multivariate models  (Figure 4.8). 

 

Figure 4.7. Volcano plot from ADAP-GC software.  
 
 

4.4 Conclusion 

ADAP-GC software is an integrated tool to process and analyze GC-MS data for 

metabolomics studies, which implement novel algorithms of data processing from 

ADAP-GC 2.0, advanced statistical analysis methods, and comprehensive capabilities of 

data visualization, compound identification and quantitation. Seamless data processing, 

automatic statistical analysis, and semi-automatic missing value imputation are very 

helpful to users, thus ADAP-GC 3.0 is promising in the field of metabolomics studies in 

the near future. 
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A stand-alone version of ADAP-GC software running in the LINUX system is 

available, however, user-friendly interfaces, structure optimization of SQL database, and 

accessibility across operating systems are expected and under development. Meanwhile, 

original algorithms of data processing are currently written in R, computational intensive 

parts, e.g. peak picking and deconvolution, are being recoded into Java using 

multithreading for fast data analysis.  

 

 

Figure 4.8. Example of automatic output from statistical analysis  
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