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ABSTRACT

HAKIM TOUATI. Automated meta-actions discovery for personalized medical
treatments. (Under the direction of DR. ZBIGNIEW W. RAŚ)

Healthcare, among other domains, provides an attractive ground of work for knowl-

edge discovery researchers. There exist several branches of health informatics and

health data-mining from which we find actionable knowledge discovery is underserved.

Actionable knowledge is best represented by patterns of structured actions that in-

form decision makers about actions to take rather than providing static information

that may or may not hint to actions. The Action rules model is a good example

of active structured action patterns that informs us about the actions to perform

to reach a desired outcome. It is augmented by the meta-actions model that rep-

resents passive structured effects triggered by the application of an action. In this

dissertation, we focus primarily on the meta-actions model that can be mapped to

medical treatments and their effects in the healthcare arena. Our core contribution

lies in structuring meta-actions and their effects (positive, neutral, negative, and side

effects) along with mining techniques and evaluation metrics for meta-action effects.

In addition to the mining techniques for treatment effects, this dissertation provides

analysis and prediction of side effects, personalized action rules, alternatives for treat-

ments with negative outcomes, evaluation for treatments success, and personalized

recommendations for treatments. We used the tinnitus handicap dataset and the

Healthcare Cost and Utilization Project (HCUP) Florida State Inpatient Databases

(SID 2010) to validate our work. The results show the efficiency of our methods.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

Knowledge Discovery, also referred to as data-mining in the business world, is

the process of searching large collections of structured or unstructured data for the

purpose of extracting useful knowledge. This Knowledge is commonly represented

by data patterns along with their properties derived from the data searching process.

The extracted patterns represent structured associations and correlations among data

items that can be interpreted by decision makers as useful information that allow them

to take actions. Data-mining is used in several domains, such as banking, distribution,

and healthcare. In healthcare informatics, data-mining is mainly used for the eval-

uation of the current implemented healthcare system and its providers. Researchers

focus on the healthcare system for the purposes of reducing cost and providing better

hospital logistics and insurance coverage. However, a handful of new companies and

researchers are focusing on improving patients’ care by providing better personalized

treatments. For instance, Flatiron [15] is a business and clinical intelligence Oncol-

ogy Cloud platform for cancer care providers that provides actionable insights based

on their oncology data. Another good example is AudaxHealth [14], which offers a

targeted social network called Zensey for healthcare players and takes a proactive

strategy to engage people in their health early on, before requiring care, by providing
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useful recommendations.

Improving healthcare is a very challenging task due to the privacy policies im-

plemented by HIPPAA [19] resulting in the lack of publicly available datasets. In

this dissertation, we aim at analyzing personalized treatment patterns and their un-

derlying side effects by answering a number of questions: how actionable treatment

patterns should be structured, how data structures of actionable treatment patterns

are mined efficiently, how to present lower costs personalized treatment recommenda-

tions for patients, how possible side effects are identified and avoided, how to cluster

patients for personalized treatments based on side effects, how to present alternative

treatments for severe cases, and finally how to evaluate and optimize actionable tasks.

To answer these questions, we use state of the art research, such as supervised and

unsupervised learning, collaborative filtering, and action rules. Moreover, we develop

new methods of information retrieval and actionable knowledge.

Our main model in this dissertation revolves around structuring the action / reac-

tion to extract actionable data. In other words, we model how we want our actionable

answers (or patterns) to be structured. In healthcare, we partition actions into two

different types. The first type models an action that is yet to happen with its desired

known reactions; for example, a doctor that might know what diagnoses he wants to

cure but does not know the treatment to prescribe yet. In this example, diagnoses

being cured are reactions of actions that have not been taken yet. The second type

is based on modeling an action that already took place and triggers (or results in)

certain reactions that have yet to be extracted; for example, when a doctor takes the

action of prescribing a treatment for a patient, we view the treatment as the action
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that is being taken while we view the treatment effects as the reactions triggered that

are still unknown.

There exist a known model called action rules that structures actions of the first

type into rules. Action rules that were first introduced in [25] observe patterns,

recorded on an information system by domain experts applying their domain knowl-

edge and expertise in real world situations. They provide efficient solutions to help

naive system users solve real world problems. Action rule discovery algorithms are

widely recognized and used in multiple fields. They provide a way of discovering the

best actions to perform to reach a more profitable state. This is done by modeling

the correlation between the values’ transitions of the objects’ properties and the de-

sired decision property values’ transition. The object properties correlation result in a

cascading effect that ultimately triggers a change in the decision value (or outcome).

There has been an increasing interest on action rule discovery algorithms since

their introduction by Raś and Wieczorkowska in [25]. Action rules have been used

in healthcare to understand experts’ practices and improve patients care [24, 38, 40].

They are also used in distribution and customer loyalty systems, and also applicable

in a wide range of industries such as education and banking.

Meta-actions are the triggers to those action rules; they provide a tool to control

action rules execution. Meta-actions are a good example of the second type of ac-

tions that trigger specific reaction called meta-actions’ effects. They are commonly

represented by an influence matrix containing a set of feature values transitions that

they trigger; however, they are also represented by an ontology when multivalued

features are used. Meta-actions are typically defined by domain knowledge and by
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domain experts, and used by system users. When meta-actions are used to trigger

an action rule, they trigger changes in objects state within the system to execute the

action rule. However, they might provoke changes in objects features that will not

only trigger the action rules targeted, but can also cause side effects that could be

negative. The negative side effects can negatively affect (or damage) the objects fea-

tures outside of the executed action rule scope. Naive system users might not know

about those negative side effects; thus, they will not be taken into consideration even

though they might be harmful.

In addition, it is not always the case that meta-actions are provided and available

in a ready-to-use format; therefore, meta-actions often have to be mined and properly

formatted. Meta-actions can be formatted into two types of data structures: action

terms and action sets. Both representations capture the data actionability and the

reactions of objects’ features. Furthermore, action rules are commonly discovered

and then chosen independently of the meta-actions and their negative side effects.

However, action rules and their triggering meta-actions are interrelated, and they

should be discovered together along with taking into consideration the objects and

their related negative side-effects. Since the discovery process is bounded by the

system in use, it is important to integrate the action rules and meta-actions discovery.

In the remainder of this chapter, we will define the problem studied and state

our hypothesis, and we will briefly discuss the state of the art of current research.

In Chapter 2, we will define several concepts that will constitute a big part of the

language and technical jargon used throughout this dissertation. We will then give

a quick overview of the work completed and a description of the datasets used to
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complete this dissertation in Chapter 3. Meta-action is the core model used in this

dissertation. A detailed description and definition of meta-actions is given in Chapter

4 along with examples illustrations. In addition, the representation models, mining

techniques, and evaluation metrics along with a real world dataset mining demonstra-

tion for meta-actions is presented in Chapter 4. After the presentation of our core

model in the meta-actions chapter, we undergo a detailed side effects study and anal-

ysis in Chapter 5; this chapter describes the different types of side effects and their

representations. Furthermore, patients’ grouping schemes based on predefined side-

effects are discussed and analyzed, and patients clustering scheme based on extracted

side-effects is described and analyzed along with a personalized patients side effects

prediction based on treatments. In Chapter 6, we present few projects that describe

the usability of meta-actions and their side-effects. We first start by describing how

we can reduce or substitute action rules to improve their execution confidence and

reduce their side-effects on patients. We then compare meta-actions with action rules

and describe how they can be used to evaluate action rules. The last topic of this

chapter describes the possibility of using meta-actions to recommend personalized

treatments for patients. Finally, we conclude in Chapter 7, by summarizing our con-

tribution in the field of actionable knowledge discovery and state the shortcomings of

the techniques presented in this dissertation.
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1.2 Research Problem

The problem that we address in this dissertation concerns the structure of ac-

tionable knowledge in terms of meta-actions and their effects, along with providing

meta-actions mining and representation techniques. The problem of mining meta-

actions was not studied before and was left to domain experts. In addition, objects

display different behavior for different meta-actions; therefore, there is a need for

personalized action rules extraction based on meta-actions side effects. Furthermore,

meta-actions application introduces negative side effects in some scenarios; hence, the

need for a thorough side effects analysis is critical. In fact, the meta-actions used to

trigger the execution of action rules introduces negative effects. For example, given

a bank customer that is 24 years old, has medium salary, medium monthly expenses,

high savings, low interest rate, and average loan profitability; if we apply meta-actions

to increase the interest rate which would trigger an action rule increasing the loan

profitability, we may as well trigger a decrease in customers savings, thus affecting the

saving account profitability rather negatively. This scenario may not be suitable for

the bank decision maker. Other important problems that we visited in this disserta-

tion concern the medical treatments recommendations in healthcare and the negative

side effects prediction.

Problem Statement: We investigate the problem of structuring actionable patterns

under the form of meta-actions and mining their effects in order to propose methods

to minimize negative side effects for personalized recommendations.

Hypothesis Statement: We believe that meta-actions effects can be mined from pre-

vious object’s behavior in large populations and that personalized action rules can be

extracted based on objects negative side effects (reactions) to meta-actions.
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1.3 State of the Art

In this section, we give a brief background on the work that has been done in the

areas prominent to this dissertation.

*Action Rules: There have been several research efforts on Action rules since their

introduction by Raś and Wieczorkowska in [25]. The first effort to mine action rules

from scratch was done in [12]. After their introduction, multiple action rules discovery

techniques were presented [21, 28, 37, 39]. Actionable patterns were also discussed in

[35]. However, they neither studied the execution of the action rules nor the triggers

to their execution.

Action rules can also be seen as a composition of two classification rules as described

in [23], where the authors described how to compute the support and confidence of an

action rule based on its two composing classification rules. Action rules are already

adopted by the banking industry, distribution industry, and healthcare industry to

discover the right actions to follow in order to increase their profit . They have been

investigated in [10, 12, 23, 2]. For instance, Wasyluk et al. [38] and Zhang et al. [40]

studied action rules in the healthcare domain to improve patients care. There are

a number of software packages available for discovering action rules. For instance,

Action4ft-Miner module of the Lisp-Miner project developed by Jan Rauch’s group

discovers action rules under different constraints, which can be extracted based for

the antecedent part of the rule [27].

*Meta-action: In action rules, neither the execution confidence nor the likelihood of

the rules based on meta-actions were studied. Meta-actions were first introduced in
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[37] as a higher level concepts used in modeling certain generalizations of action rules.

They were described either by an influence matrix or an ontology as a set of value

transitions in flexible attributes. Meta-actions were formalized in [22], and used in

a pruning process with tree classifiers to discover action rules. In [36], the authors

show the cascading effect of meta-actions leading to desired effects when generating

association action rules and action paths. This work is slightly similar in the way

that we use the cascading effect of meta-action atomic terms to model the correlation

with the action rule.

The previous work on meta-actions neither studied the side effects of meta-actions

nor the uncovered set substitutions. In this work we present, a meta-action mining,

and action rules reduction mechanism based on meta-actions and negative side ef-

fects to improve the executability of the rules. We also present a personalized action

rules extraction mechanism based on object grouping and negative side effects. To

our knowledge, this is the first work that utilizes the advantage of meta-actions to

improve the likelihood and confidence of execution of the action rules.

*Treatment Patterns: There has been several work for treatment patterns recognition.

Kathryn et. al. [17] and Ramey et. al. [5] explored treatment patterns for a specific

demographic population along with treatment outcomes. Lorigan et. al. [18] also

explored treatment patterns and outcomes for patients with metastatic melanoma in

the U.K. However, they did not study treatment effects patterns in terms of results.

In [31], the authors mine medical articles for the disease and treatments as well as

underlying side effects. This article is considers all three dimensions of treatments,
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side effects, and disease; however it fails in studying the results from real treatments

prescribed to patients.

*Collaborative Filtering and Recommender Systems: There have been several con-

tributions in the area of collaborative filtering and recommender systems. One of

the first recommender systems is Tapestry [7] that cited the phrase of ”collaborative

filtering (CF)”. In recommender systems, collaboration is not necessarily explicit as

pointed in [29]. The assumption behind CF is that if two users rate several items sim-

ilarly, they will rate other items similarly [8]. This way personalized recommendation

can be derived.



CHAPTER 2: PRELIMINARIES

In this chapter, we present few concepts related to the static and action represen-

tations of data, along with rule based knowledge discovery. We first introduce the

static model and association rules extracted from information systems, then we aug-

ment the definition of an information system to a decision system and introduce the

concepts related to the action model and action rules. Furthermore, we will briefly

visit the evaluation of association rules and action rules, and provide few examples.

The concepts and language defined in this chapter will be used throughout the dis-

sertation.

2.1 Static Model

In this section, we give a brief description of how static data is represented and

stored in information systems. We also describe the state of an object in the context

of information systems.

*Definition 1 (Information System) By information system [20] we mean a triple of

the form S = (X,F, V ) where:

1. X is a nonempty, finite set of objects.

2. F is a nonempty, finite set of features of the form f : X → 2Vf , which is a

function for any f ∈ F , where Vf is called the domain of f .
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3. V is a finite set of attribute values such as: V =
⋃
{Vf : f ∈ F}.

If f(x) is a singleton set, then f(x) is written without parentheses (for instance,

{v} will be replaced by v). Table 1 represents an information system S with a set of

objects X = {x1, x2, x3, x4, x5}, a set of features F = {a, b, c, d}, and a set of feature

values V = {a1, a2, b1, b2, b3, c1, c2, c3, d1, d2}.

Table 1: Information system example.

a b c d
x1 a1 b2 c2 d1
x2 a2 b2 c2 d2
x3 a2 b1 c3 d1
x4 a1 b3 c1 d2
x5 a2 b1 c1 d1

In practice, data is not necessarily organized as we showed in the previous example;

also information systems may not only have multivalued features, but also missing

data and/or variable number of features.

To simplify the concept of objects with variable number of features, and the concept

of features taking several values at the same time (multivalued features), we introduce

the notion of object state and we define it as follows:

*Definition 2 (Object State) The state of an object x ∈ X in an information system

S is defined by the set of features Fx that the object x is characterized by, and their

respective values F (x) =
⋃
{f(x) : f ∈ Fx}

For example, let us take the information system S represented by Table 1. The state

of object x1 ∈ X is represented by F (x1) = {a1, b2, c2, d1}.
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2.2 Association Rules

Association rules are the representations of frequent patterns in transactional data

that imply another associated pattern. They model frequent items in Market Basket

Analysis (MBA). For instance, customers that often buy milk, bread and coffee in their

basket will imply that milk, bread and coffee are associated, and form a frequent item.

There have been several association rule mining algorithms such as [13, 30, 16, 1].

Let us have an information system S with a set of features F , and their respective

values V called literals. The set F (xi) = {f(xi) : f ∈ F} for the object xi ∈ X, can

be seen as a transaction ti in the set of transactions T . We say that A → B is an

association rule if:

• A is a subset of F (xi) for the object xi.

• B is a subset of F (xi) for the object xi.

• A ∩B = Ø.

An association rule is evaluated by its support Sup(A→ B), which is the number

of occurrence of A ∪ B in the transaction set T , or the percentage of occurrence of

A ∪B in the transaction set T . It is also evaluated by its confidence Conf(A→ B),

which is the percentage of occurrence of A∪B in the set of transactions where A only

occurs. Formally, the support and confidence of a rule A→ B are defined as follow:

• Sup(A→ B) = |A ∪B|, where literals in A ∪B ⊆ F (xi) are listed in ti.

• Conf(A→ B) = |A∪B|
|A| , where literals in A ∪B ⊆ F (xi) are listed in ti.
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There have been few algorithms developed for frequent item-sets and association rules

mining such as Apriori and its variations [1].

2.3 Action Model

In this section, we give a brief overview of action rules and some of the concepts

used in the action model. Action rules take place in a decision system of the form

S = (X,F ∪ {d}, V ) that was introduced by Z. Pawlak in [20] and defined as follows:

*Definition 3 (Decision System) By a decision system we mean S = (X,F ∪{d}, V ),

where:

1. X is a set of objects, F is a set of classification features, d is a decision feature.

2. f : X → Vf is a function for any f ∈ F , where Vf is called the domain of f .

3. d : X → Vd is a function, where Vd is called the domain of d.

4. V = VF ∪ Vd, where VF =
⋃
{Vf : f ∈ F}.

Also, for each x ∈ X and f ∈ F , we assume that value f(x) ∈ Vf is classified

as either positive (normal) or negative (abnormal). To be more precise, we assume

that F (x) denotes the set {f(x) : f ∈ F}, and that F (x) = En(x) ∪ Ep(x), where

Ep(x) is a set of positive values and En(x) is a set of negative values for x ∈ X. If

f(x) ∈ En(x), then the value f(x) is interpreted as abnormal (e.g. high temperature,

cough, headache,). If f(x) ∈ Ep(x), then value f(x) is interpreted as a normal value

for the feature f .
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2.4 Action Rules

Action rules are rules that provide a set of actionable patterns to follow in order to

transition the objects population from a certain state to a more profitable state with

respect to a decision feature. They allow users to understand the correlations between

transition patterns in the decision system, and construct actionable tasks that lead

to a desirable outcome. In addition, action rules are composed of a decision feature d

and classification features that are in turn divided into two sets: stable features Fst,

and flexible features Ffl such that F = Ffl ∪ Fst. Stable and Flexible features are

defined next:

*Definition 4 (Stable Features) Stable features are object properties that we do not

have control over in the context of an information system. In other words, actions

recommending changes of these features will fail.

For example, birth date is a stable feature. This type of features is not used to model

actions or transitions since their values do not change. They are commonly used to

cluster the dataset.

*Definition 5 (Flexible features) Flexible features are object properties that can tran-

sition from one value to another triggering a change in the object state.

For instance, salary and benefits are flexible features since their values can change.

Flexible features are the only possible features that can inform us about the possible

changes an object may go through. However, to model possible actions, feature values

transition, we need another concept which is defined as:
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*Definition 6 (Atomic action term in S) also called elementary action term in S, is

an expression that defines a change of state for a distinct feature in S.

For example, (f, v1 → v2) is an atomic action term which defines a change of value

for attribute f in S from v1 to v2, where v1, v2 ∈ Vf . In the case when there is no

change, we omit the right arrow sign; so for example, (f, v1) means that the value of

attribute f in S remains v1, where v1 ∈ Vf .

Atomic action terms model a single feature values transition pattern, but they do

not model the association between feature values transition patterns. We augment

the definition of atomic action terms to action terms by associating several transitions

of feature values.

*Definition 7 (Action terms) are defined as the smallest collection of expressions for

a decision system S, such that:

• If t is an atomic action term in S, then t is an action term in S.

• If t1, t2 are action terms in S and ∧ is a 2-argument functor called composition,

then t1 ∧ t2 is a candidate action term in S.

• If t is a candidate action term in S and for any two atomic action terms (f, v1 →

v2), (g, w1 → w2) contained in t we have f 6= g, then t is an action term in S.

Assuming that S is given, we will use from now on, action term instead of action term in S.

It is often important to have a differentiating factor between different action terms

with regards to their usability. The domain of an action term helps identify them

when needed and is defined as follow:
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*Definition 8 (Domain of an action term) The domain Dom(t) of an action term t

is the set of features values listed in the atomic action terms contained in t.

For example, t = [(f, v1 → v2)∧ (g, w1)] is an action term that consists of two atomic

action terms, namely (f, v1 → v2) and (g, w1). Therefore, Dom(t) = {f, g}.

Action rules are expressions that take the following form: r = [t1 ⇒ t2], where

t1, t2 are action terms. The interpretation of the action rule r is that by triggering

the action term t1, we would get, as a result, the changes of states in action term t2.

We also assume that Dom(t1) ∪Dom(t2) ⊆ F , and Dom(t1) ∩Dom(t2) = Ø.

For example, r = [[(f, v1 → v2) ∧ (g, w2)]⇒ (d, d1 → d2)] means that by changing

the state of feature f from v1 to v2, and by keeping the state of feature g as w2, we

would observe a change in attribute d from the state d1 to d2, where d is commonly

referred to as the decision attribute. In [23] it was observed that each action rule

can be seen as a composition of two classification rules. For instance, the rule r =

[[(f, v1 → v2) ∧ (g, w2)]⇒ (d, d1 → d2)] is a composition of r1 = [(f, v1) ∧ (g, w2)]→

(d, d1) and r2 = [(f, v2)∧(g, w2)]→ (d, d2). This fact can be recorded by the equation

r = r(r1, r2). Also, the definition of support (Sup) and confidence (Conf) of an action

rule is based on support and confidence of the classification rules (see below). Assume

that action rule r is a composition of two classification rules r1 and r2. Then [23]:

• Sup(r) = min{card(sup(r1)), card(sup(r2))},

• Conf(r) = conf(r1) · conf(r2).

The support of a classification rule or association rule can also be defined by the

set of objects affected by the rule rather than their number. By the support of a
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classification rule r = [[(f1, f11) ∧ (f2, f21) ∧ (f3, f31) ∧ · · · ∧ (fk, fk1)] → (d, d1)] in a

decision system S = (X,F ∪ {d}, V ), where (∀i ≤ k)(fi ∈ F & fi1 ∈ V ), d1 ∈ Vd, we

mean the set sup(r) = {x ∈ X : (∀i ≤ k)[fi(x) = fi1] & d(x) = d1}, which represents

the set of all the objects affected by the association.



CHAPTER 3: DATASET AND SOLUTION OVERVIEW

This section presents the datasets used to demonstrate the efficacy of our work in

this dissertation. In the next three chapters, we present the work completed using

the following two datasets and the experimental results.

3.1 Tinnitus Dataset Description

The first dataset used in this dissertation’s experiments is obtained from the Tin-

nitus Handicap Inventory. It represents physician’s observations on patients. The

data contains three categories of observations on patients properties that are affected

by tinnitus, which are: functioning (F), emotions (E), and how catastrophic it is

(C). Each category consists of several related questions describing the patients state.

There are 25 multiple choice questions altogether, and the answers to all of them can

be mapped to numeric scores: Yes is 4, Sometimes is 2 and No is 0. To evaluate

the overall status for each patient, physicians observed three features ScF , ScE, and

ScC, which are the total score of functioning category, the total score of emotions

category and the total score of catastrophic category, respectively. Those three scores

represent the sum of all the answers scores for each category. Then feature ScT (to-

tal score) is generated by adding results of ScF , ScE, and ScC together to measure

the tinnitus severity. The Tinnitus Handicap Inventory is completed during each pa-

tient’s visit and stored with patient’s ID, visit date and number, and patient’s gender
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(g). Another aspect of the data was the treatment performed on the patients at each

visit. The treatments performed on the patients at each visit were divided into four

treatments that are: Hearing Aid (HA), Sound Generator (SG), Combination of HA

and SG noted (CO), and a regular consultation (RC).

To be able to use the data in our experiments we had to perform a cleaning step

along with a discretization step. In fact, the total number of patients visits is 2591 visit

instances; however, there are multiple missing values and incomplete visit instances

that had to be removed in order to be able to complete our experiments with the

most refined data possible. After cleaning the data, we ended up having only 517

visit instances. We assumed that the classification features are the functioning (F),

emotions (E), and catastrophic (C) features, and we kept their score values as they

were already discretized. We further assumed that the side-effects were the three

scores of each category of the features Sc F, Sc E, and Sc C. We discretized the

side effects based on the improvements on the category score (score=1: positive side

effects, which means that the score decreases) and the declining of the category score

(score= 0: negative side effects which means that the score increases). The decision

feature is the total score, and the main goal of the treatments was to decrease the

total score. We also discretized the decision feature, the total score, based on its

improvement and its declining (score=1 if improvement i.e. score decreases) and

(score=0 if declining i.e. score increases).
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3.2 Completed Work Using the Tinnitus Dataset

Improving the condition of patients affected by the tinnitus handicap is a tedious

task that requires a deep analysis. The main challenges of the problem studied and

work completed are presented as follow:

• Mining meta-actions based on action terms: The treatments introduced by

experts in treating the tinnitus data are not always obvious and documented.

For this reason, mining the treatments produced is a necessary task that requires

analyzing the datasets at hand. In this work, we clustered the transactions in

our dataset by patients and introduced a temporal order relationship between

the patient’s visits to mine patient’s properties transitions. We also introduced

two evaluation measures for meta-actions. Those measures are meta-action

confidence and action term confidence and support.

• Action rules substitution: Extracted action rules are executed using meta-

actions that introduce several negative side effects, and do not always result

in desired outcomes. To ensure complete execution of action rules and decrease

the negative side effects, we studied the possibility of substituting action rules

by other action rules that appear to be less attractive and reduce original rules

antecedent side. To evaluate the execution of the rules by meta-actions, we

introduced the execution confidence metric that represents the confidence of

executing a rule using a given set of meta-actions. Another useful metric intro-

duced in this chapter is the utility that is used to compare between the execution

confidences of the different rules and also the number of negative side effects

introduced by the different respective meta-actions used for each rule.

• Personalized action rules based on patient grouping: In another effort to de-

crease the negative side effects, we aimed at extracting personalized action rules

based on negative side effects. In fact, we believe that not all patients have the

same negative side effects; thus, we should extract personalized action rules

and treatments. In this work, we used three grouping schemes based on side

effects to group patients and extract personalized rules. All three grouping

schemes (side effects grouping first, action rules grouping first, meta-actions

grouping first) led to different results. The best grouping was based on meta-

actions first, and the resulting outcome was expected since meta-action are the
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primary connection between the action rules and the negative side effects.

In this work, we analyzed the dataset to mine meta-actions, and presented few

ways of reducing negative side effects and extracting personalized action rules. Later,

we will improve our work by using a larger dataset and introduce new evaluation

metrics to analyze side-effects and improve patient care and treatments.
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3.3 HCUP Dataset Description

In this chapter, we used the Florida State Inpatient Databases (SID) that is part

of the Healthcare Cost and Utilization Project (HCUP). The Florida SID dataset

contains records from several hospitals in the Florida State. It contains over 2.5

million visit discharges from over 1.5 million patients. The dataset is composed of

five tables, namely: AHAL, CHGH, GRPS, SEVERITY, and CORE. The main table

used in this chapter is the Core table. The Core table contains over 280 attributes;

however, many of those attributes are repeated with different codification schemes. In

the following experiments, we used the Clinical Classifications Software (CCS) that

consists of over 260 diagnosis categories, and 231 procedure categories. This system

is based on ICD-9-CM codes. In our experiments, we used fewer attributes that are

described in this section. Each record in the Core table represents a visit discharge.

A patient may have several visits in the table. One of the most important attributes

of this table is the V isitLink attribute, which describes the patient’s ID. Another

important attribute is the Key, which is the primary key of the table that identifies

unique visits for the patients and links to the other tables. As mentioned earlier, a

V isitLink might map to multiple Key in the database. This table reports up to 31

diagnoses per discharge as it has 31 diagnosis columns. However, patients’ diagnoses

are stored in a random order in this table. For example, if a particular patient visits

the hospital twice with heart failure, the first visit discharge may report a heart

failure diagnosis at diagnosis column number 10, and the second visit discharge may

report a heart failure diagnosis at diagnosis column number 22. Furthermore, it is
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Table 2: Mapping between attributes and concepts features.

Attributes Concepts
VisitLink Patient Identifier
DaysToEvent Temporal visit ordering
DXCCSn nth Diagnosis, flexible attribute
PRCCSn nth Procedure, meta-action
Race, Age Range, Sex,.. Stable attributes
DIED Decision Atribute

worth mentioning that it is often the case that patients examination returns less

than 31 diagnoses. The Core table also contains 31 columns describing up to 31

procedures that the patient went through. Even though a patient might have gone

through several procedure in a given visit, the primary procedure that occurred at

the visit discharge is assumed to be the first procedure column. The Core table

also contains an attribute called DaysToEvent, which describes the number of days

that passed between the admission to the hospital and the procedure day. This field

is anonymized in order to hide the patients’ identity. Furthermore, the Core table

also contains a feature called DIED, that informs us on whether the patient died or

survived in the hospital for a particular discharge. There are several demographic

data that are reported in this table as well, such as: Race, Age Range, Sex, living

area, . . . etc. Table 2 maps the attributes from the Core table to the concepts and

notations used in this chapter.

3.4 Completed Work Using HCUP Dataset

We used the HCUP surgical dataset SID to mine meta-actions based on action

sets and develop a set of evaluation metrics. We also showcased some of the possible
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applications of such meta-actions and evaluated them using the HCUP dataset.

• Mining meta-actions based on action sets: In this work, we present a method

to extract personalized meta-actions from surgical datasets with variable num-

ber of diagnoses or multivalued diagnoses. We also presented a meta-action

representation with an ontology for action sets and defined their evaluation

metrics. We used the Florida State Inpatient Databases (SID) that is a part

of the Healthcare Cost and Utilization Project (HCUP) to demonstrate how to

extract meta-actions and evaluate them.

• Side effects analysis and prediction: In this section, we give a brief description

of the possible effects that might be considered as side effects or negative side

effects. Moreover, we demonstrate how we can mine negative side effects based

on action sets, and described how they can be evaluated. Furthermore, we

show how patients negative action sets are used to cluster patients with simi-

lar negative side effects, and propose an incremental study to find the cluster

membership of new patients.

• Meta-actions as a tool to evaluate action rules: In this work, we present the

benefits of meta-actions in evaluating action rules in terms of two measures,

namely Likelihood and Execution Confidence. In fact, in meta-actions, we

extract real features values transition patterns, rather then a composing two

feature values patterns. We also present an evaluation model of the application

of meta-actions based on Cost and Satisfaction. We extracted action rules

and meta-actions and evaluated them on the Florida State Inpatient Databases

(SID) that is part of (HCUP) to evaluate our methodology.

In the following, we will start by presenting the core of our work which is meta-

actions representation and mining. We will then further expend our research to

side-effects analysis and give few examples of meta-actions applications in healthcare.



CHAPTER 4: META ACTIONS

Action rules can be seen as a tool for the analysis of transition patterns that

inform decision makers about the possible changes to perform in order to reach a

desired outcome. However, in order to move objects (patients) from their current

population state to a more desirable population state, decision makers still need to

acquire additional knowledge on how to perform the necessary changes, and what the

triggers are for these changes. For instance, moving a patient from the sick population

state to the healthy population state requires the practitioner to use a treatment such

as an open heart surgery. This actionable knowledge is represented by meta-actions,

and extracted from objects’ state changes that actually occurred in the system.

In this chapter, we describe meta-actions with two different actionable data struc-

tures: action terms, and action sets. We demonstrate how meta-actions are mined

and evaluated for the action terms representation, and show their limitations when

multi-valued attributes are used. Furthermore, we demonstrate how to fix these lim-

itation by mining the effects of meta-actions using action sets. We further evaluate

the action sets extracted. As far as we know, this is the first attempt to mine meta-

actions.
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4.1 Meta-actions Overview

To build the strategies on top of the actionable tasks that action rules provide, we

use meta-actions that are defined as follow:

*Definition 9 (Meta-actions) Meta-actions associated with an information system S

are defined as higher level concepts used to model certain generalizations of actions

rules [37]. Meta-actions, when executed, trigger changes in values of some flexible

features in S.

More formally, let us define M(S) as a set of meta-actions associated with an informa-

tion system S. Let f ∈ F , x ∈ X, and M ⊂M(S), then, applying the meta-actions in

the set M on an object x will result in M(f(x)) = f(y), where object x is converted

to object y by applying all meta-actions in M to x. Similarly, M(F (x)) = F (y),

where F (y) = {f(y) : f ∈ F} for y ∈ X, and object x is converted to object y by

applying all meta-actions in M to x for all f ∈ F .

Example 1. For example, let us take market segmentation for automobiles as a

domain. Then, an automotive company, say company X, would divide its customers

into: sedan cars seekers, sport cars seekers, wagon car seekers, all roads car seekers,

and hash-backs cars seekers. An extensive list of classification features can be used

to classify them. For instance, age would be a good feature that would inform us

that a young person would prefer a hash-back car, and an older person is more likely

to purchase sedan. Another feature such as number of kids would inform us that

bigger families would prefer wagons or all roads rather than smaller cars, marital
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status could be a good indicator of sport cars preference, and so on. Other features

can be analyzed for the purpose of customer satisfaction and segmentation. However,

all features cited earlier are stable features and would not allow values transitions

regardless of meta-actions applied. Let us assume another company Y , a luxurious

car company, would like to acquire new customers, then their market segmentation

would differ from X’s market segmentation. In fact, the new segmentation would be

based on new classification features, some of them are: customers income, car price

range, customer functional needs, car comfort, car quality, and customers favorite

brand. Given those features, the company can classify the customers based on their

favorite brand, and would like to attract customers from other less luxurious brands.

Based on those features, Y can apply a meta-action M that transitions car price

range to match what customers can afford based on their income. This meta-action

M can also affect car comfort and quality negatively to reduce production price while

meeting customers’ functional needs. In this example, Y ’s segmentation is based

on luxurious cars, functional cars, powerful sport cars, and so on. A new customer

segment, called entry luxury cars, can join the brand with the aid of meta-action M

transitioning them from functional cars to entry-luxury cars.

Example 2. To give a new example, let us assume that classification features in S

describe teaching evaluations at some school and the decision feature represents their

overall score. Explaining difficult concepts effectively, Speaking fluent English, Stim-

ulating student interest in the course, and Providing sufficient feedback are examples

of classification features scored in the system. Then, examples of meta-actions asso-
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ciated with S will be: Changing the content of the course, Changing the textbook of

the course, Posting all material on the Web. Clearly, those meta-actions will trigger

changes in some of the features described such as providing sufficient feed back and

stimulating students’ interest in the course; however, none of these three meta-actions

will influence the feature Speaking fluent English values will remain unchanged [37].

Example 3. Another example would be using Hepatitis as the application domain.

Then, the increase in blood cell plagues and the decrease in level of alkaline phos-

phatase are examples of atomic action terms. Drugs like Hepatil or Hepargen are

seen as meta-actions triggering changes described by these two atomic action terms

[26, 38]. It should be noted that Hepatil is also used to get rid of obstruction, eruc-

tation, and bleeding. However, Hepargen is not used to get rid of obstruction, it is

rather used to get rid of eructation and bleeding. Some of the effects of those meta-

actions are not necessary and can be seen as side effects. At the same time, some

needed changes are not triggered by the meta actions used and require the use of

additional meta-actions.

Also, it should be mentioned here that expert knowledge concerning meta-actions

involves only classification features. Now, if some of these features are correlated

with the decision feature, then the change of their values will cascade to the decision

through the correlation. The goal of action rule discovery is to possibly identify all

such correlations.

Depending on the data organization and structure, meta-action effects can be mined

and represented in two different ways. The first representation of meta-action effects
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is by actions terms when a fixed number of single-valued classification features are

used as attributes. The second representation is by action sets that will be defined

later in this chapter. The second representation is used when a variable number of

multivalued-features are present.

4.2 Meta-actions Based on Action Terms

Meta-actions are actions, outside of the features F , performed by decision makers

to transition objects from an initial known state with specific preconditions to a

different state with known postconditions. The changes in flexible features, triggered

by meta-actions in traditionally structured information systems, are represented by

atomic action terms for the respective features, and reported by the influence matrix

presented in [37].

4.2.1 Meta-actions Representation by Influence Matrices

Consider several meta-actions, denoted M1,M2, · · · ,Mn. Each one can invoke

changes within values of some classification features in F = {f1, f2, · · · , fm}. The

expected changes of values of classification features on objects from S triggered

by these meta-actions are described by the influence matrix [36, 22] of the form

{Eij : 1 ≤ i ≤ n & 1 ≤ j ≤ m}. Table 3 describes an example of an influence matrix

associated with 6 meta-actions and three features: a, b, and c.

For instance, let us take meta-action M2. It states that by executing M2 on objects

in S, two atomic action terms will be triggered. They are: (a, a2 → a1) and (b, b2 →

b2). It means that objects in S satisfying the description (a, a2)∧ (b, b2) are expected

to change their description to (a, a1) ∧ (b, b2).



30

Table 3: Meta-actions influence matrix.

a b c
M1 - b1 c2 → c1
M2 a2 → a1 b2 -
M3 a1 → a2 - c2 → c1
M4 - b1 c1 → c2
M5 - - c1 → c2
M6 a1 → a2 - c1 → c2

Meta-actions are often available as domain knowledge and are documented as meta-

data. However, they might be missing in case where domain experts are not aware

of processes to solve unknown or new problems, or even undocumented in case where

experts were not accustomed with meta-actions documentation methodology. There-

fore, it is important to study different ways to mine meta-actions as well as extracting

action rules. In fact, both concepts are interrelated and cannot be explored indepen-

dently.

4.2.2 Meta-actions Mining

Mining meta-actions transformations requires the study of the transactional datasets

in hand. Commonly, transactional datasets do not represent the objects tempo-

ral transformations resulting from applying meta-actions. Figure 1 summarizes the

methodology followed in this thesis to mine meta-actions. To be able to mine meta-

action’s transformations (atomic action terms), objects have to be uniquely identified

along with their transactions and clustered by their identifier (patient’s ID). Object’s

transactions should be ordered based on temporal sequential order. Every two sequen-

tial object’s transactions will be paired for every meta-action based on a temporal
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by Patient
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Mine Frequent 
action terms

Figure 1: Meta-actions mining methodology.

precedence relationship. The resulting pairwise partitioning will model the atomic

action terms transitions for each object given the meta-action applied. For instance,

given a patient’s visit recorded in our dataset with high blood pressure, high fever,

and headache for his/her first visit to the doctor, who gave him/her a treatment m; at

the second visit, the patient is diagnosed with high blood pressure, but shows no fever,

and no headache. In such a case we can extract the following atomic action terms for

this patient’s pair of visits: (fever, high → no), (blood pressure, high → high), and

(headache, yes→ no).

Now, we introduce the set of transactions T . Let us assume that S = (X,F∪{d}, V )

is a decision system, where X is a set of objects, F is a set of classification features, d

is the decision feature, and V is a set of values for features in F , such that f(X) ⊆ V ,

for any f ∈ F . Also, let us assume that M(S) is a set of meta-actions associated with

S. In addition, we define the set {si,j : j ∈ Ji} of ordered transactions associated

with xi ∈ X, such that si,j = [(xi, F (xi)j)], where (∀i, j)[si,j ∈ T ]. The set F (xi)j is

defined as the set of feature values {f(xi) : f ∈ F} of the object xi in the transaction

uniquely represented by the transaction identifier j. Each transaction represents the
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current state of the object when recorded with respect to a temporal order based on

j for all si,j ∈ T .

We define a precedence relationship denoted as ” >p ” on the system S to help

locate the position of each transaction within each object’s ordered transaction set.

Given two transactions si,j and si,k for an object xi ∈ X, the precedence relationship

si,j >p si,k represents the order of the recorded transactions for the object xi, and

states that the transaction si,j was recorded before the transaction si,k.

To strengthen this relationship, we define the set P (S) of pairs (si,j, si,k) such that

(si,j, si,k) ∈ P (S) if and only if si,k occurred directly after si,j (there is no other

transaction between them in the system S).

It should be observed that any pair (si,j, si,k) = ([(xi, F (xi)j)], [(xi, F (xi)k)]) in

P (S) represents a set of atomic action terms {(f, f(xi)j → f(xi)k) : f ∈ F}.

We assume that there is always a set of meta-actions in M applied before any

transaction si,k with the exception of the very first transaction si,1 for each object

xi ∈ X. This suggests that the transaction si,k in the pair (si,j, si,k) is a direct

consequence of applying some set of meta-actions (let us say m ∈ M) to the object

xi ∈ X, and supports the assumption that the state of the objet xi is being affected

by these meta-actions.

As we already observed, each transaction pair (si,j, si,k) encompasses the set of

atomic action terms Aj,k of the form {(f, f(xi)j → f(xi)k) : f ∈ F}, that defines a

change of value f(xi)j derived from the transaction si,j to f(xi)k derived from the

transaction si,k, for each feature f ∈ F and xi ∈ X.
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Now, we can use the sets Aj,k to build the influence matrix covering all m ∈ M .

Sets of action terms representing meta-actions in M can be built from sets of pairs

in P (S). Depending on the objects’ states, some of the atomic action terms in Aj,k

may not be triggered by meta-actions. To be more precise, for a given meta-action

mj, only objects xl ∈ X that satisfy the following condition will be affected:

∃(si,j, si,k) ∈ P (S) such that F (xl) ∩ F (xi)j 6= Ø, where si,j = (xi, F (xi)j).

This way, by applying the meta-action m on xi we will cover the set of feature values

{F (xl)∩F (xi)j}, thus the underlying subset of atomic action terms will be triggered.

This subset can be seen as an action term t containing a set of atomic actions with

the domain Dom(t) = {a ∈ F : a(xl) = a(xi)j}. Multiple action terms can be formed

this way, however, not all possible action terms are applicable to a given dataset. The

number of possible action terms for each meta-action grows monotonously with the

number of extracted pairs, the features’ domains sizes, and the number of transactions

for each object in X.

Ultimately, in the worst case scenario every object is different and reacts differently

to each specific meta-action. This might result in a large number of action terms

for each meta-action. Possible conflicts within the same meta-action scope such as

(a, aj → ak) and (a, aj → al), or non-useful action terms such as (a, aj → aj) for

a ∈ F and aj, ak, al ∈ Va might be extracted. Not all atomic action terms are useful

for all objects; however, it is important to keep a record of the different transitions

for the sake of object personalized meta-actions.

We can evaluate different action terms, composing each given meta-action, to avoid
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conflicts and to use the more appealing ones to the examined object. Similar to the

frequent itemsets used in the Apriori [1] algorithm, frequent action terms can be ex-

tracted from multiple pairs. Multiple action terms of different sizes can be formed

from the resulting atomic action terms (pairs). Frequent action terms are character-

ized by their frequency of occurrence throughout all the meta-action partition of the

dataset (all the meta-action pairs).

4.2.3 Meta-actions and Action Terms Evaluation

To evaluate the meta-actions, we need to evaluate the action terms composing them.

A simple evaluation metric consists of the frequency of occurrence (or support) for

each action term. Pairs, extracted from the data, share common atomic action terms

transitions; thus, they share common action terms. For each action term tj, we define

its likelihood support Like(tj) as:

Like(tj) = card({(si,k, si,l) ∈ P (S) : Left(tj) ⊆ F (xi)k and Right(tj) ⊆ F (xi)l})

(1)

where (si,k, si,l) = ([(xi, F (xi)k)], [(xi, F (xi)l)]), xi ∈ X, Left(tj) is the left hand side

of the frequent action term tj, and Right(tj) is the right hand side of tj.

The likelihood support of an action term measures the transition likelihood of their

feature values but it neither takes into consideration the conflicts of action terms nor

handles the meta-actions comparison in a normalized way. A different way to evaluate

action terms is by computing their likelihood confidence, and thus, a possible meta-

action confidence metric. The likelihood confidence of an action term tj is computed

as follow:
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TermConf(tj) = Like(tj)/sup(Left(tj)) (2)

Given the set of atomic action terms {ti : 1 ≤ i ≤ n} composing a meta-action mj,

we can define the confidence of mj as the weighted sum of its atomic action terms

likelihood confidence, where the weights represent atomic action terms likelihood

support. To be more precise, the meta-action confidence MetaConf(mj) is computed

as follow:

MetaConf(mj) =

n∑
i=1

Like(tj) · Conf(tj)

n∑
i=1

Like(tj)
(3)

where n is the number of atomic action terms in mj.

Note that some action terms will have the likelihood support below the required

threshold value; therefore, they will not be considered as frequent action terms. How-

ever, those action terms are considered as outliers and it is important to keep track

of them in the meta-actions for objects personalized meta-actions.

4.2.4 Tinnitus Meta-actions Mining

To mine the tinnitus meta-actions, we first generated the pairs of transactions

for each patient’s couple (pair) of sequential visits, we then clustered the dataset

by meta-action based on the visits. Some of the patients’ visits may be duplicated

since the second visit of a patient is a consequence of applying a meta-action and

might be as well an initial state of applying another meta-action. We used R 2.15

package software to generate the pairs and cluster the dataset. We obtained 36 pairs
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Table 4: Tinnitus meta-actions evaluation.

Size1 Size2
Action terms→
Meta −
actions ↓

# Ac-
tion
Terms

Avg
Like

Avg
Conf %

# Ac-
tion
Terms

Avg
Like

Avg
Conf %

SG 186 5 2 6360 2 36
HA 65 1 1 844 1 87
RC 225 52 17 18234 8 15

for the Sound Generator SG meta-action (treatment), only 3 for hearing Aid HA,

no Combination CO of HA and SG, and as expected the majority 471 pairs for the

Consultation RC.

The next part of this experiment consists of extracting the atomic action terms and

generating the action terms of size larger than one. We use Weka 3.6.8 to extract the

frequent action terms using the Apriori algorithm and consider each atomic action

term as a feature (pair of features). We also implemented the algorithms described in

this section and used them in our experiments. The results are summarized in Table

4 for action terms of size 1 and size 2.

It is absolutely possible to record all the results up to action terms of size 25 which

is the number of features in our dataset; however, for the sake of space and discussion

simplicity, we recorded only the action terms up to size 2. As can be noted from Table

4 the average likelihood grows monotonously with the number of pairs extracted from

the dataset. Table 4 also shows that the average number of action terms of the meta

action RC is the highest. This is justified by the high support that the meta-action

RC displays. Table 4 shows a poor average confidence, and this is due to the high

number of non-useful action terms. We can also note that the average confidence
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grows when the dataset size increases.

Meta-actions are the main core of action rules, whose execution depend on the

quality and performance of meta-actions. It is then important to study meta-actions

carefully in relation with the action rules discovery process. In this section, we pro-

posed a meta-action mining mechanism to discover all their action terms for single-

valued features information systems with fixed number of features. Furthermore,

we introduced meta-actions main evaluation criteria. We implemented our proposed

approach on the tinnitus handicap data, and evaluated the different meta-actions

mined. We evaluated our approach limiting the size of the action terms mined for

the meta-actions to two. Our experiments depict the meta-actions confidence and

support.
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4.3 Meta-actions Based on Action Sets

The changes in flexible features, triggered by meta-actions, are commonly rep-

resented by action terms for the respective features, and reported by an influence

matrix presented in [37]. However, when an information system contains multivalued

features where the same feature takes a set of values at any given object state and

transitions to another set of values in a different object state, it is best to represent

the transitions between the feature initial set of values and another set of values by

action sets [34] that are defined as:

*Definition 10 (Action Set) An action set in an information system S is an expres-

sion that defines a change of state for a distinct feature that takes several values

(multivalued feature) at any object state.

For example, {f1, f2, f3} → {f1, f4} is an action set that defines a change of values

for feature f ∈ F from the set {f1, f2, f3} to the set {f1, f4} where {f1, f2, f3, f4} ⊆

Vf . Action sets are used to model meta-action effects for information systems with

multivalued features. In addition, the usefulness of action sets is best captured by the

set intersection, between the two states involved, that models neutral action sets, and

set difference, between the two states involved, that models positive action sets. In

the previous example, neutral and positive action sets are respectively computed as

follow: {f1, f2, f3} → [{f1, f2, f3}∩ {f1, f4}] and {f1, f2, f3} → [{f1, f2, f3} \ {f1, f4}].

We are studying surgical meta-action effects that trigger a change in the patients’

state. The patients are in an initial state where the meta-actions are applied and
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move to a new posterior state. We use the set difference (positive action set) between

two patient’s states to observe the diagnoses that disappeared as a positive effect

of applying meta-actions in the initial state. Furthermore, we use set intersection

(neutral action set) to observe the diagnoses that remained the same; in other words,

meta-actions applied had a neutral effect on these diagnoses.

4.3.1 Meta-actions Representation by an Ontology

This type of information concerning meta-actions is represented by an ontology

(personalized) [6]. For instance, the example shown in Figure 2 models a meta-action

composed of positive action sets which are labeled positive and neutral action sets

which are labeled neutral. In addition, positive and neutral are composed of action

sets respectively labeledAsn andAsn, which in turn are composed of diagnoses labeled

Dxn.
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Figure 2: Ontology representation of a meta-action.

4.3.2 Meta-action Extraction

The effects of meta-actions, in the context of healthcare, represent the patient’s

state transition from an initial state to a different state. Those effects are mined
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from large datasets for each patient separately then merged together based on their

common subsets to form state transition patterns. In other words, patients have

to be uniquely identified along with their state transactions and clustered by their

identifier. In this work, each state transaction for a patient represents a doctor

consultation (patient visit to the doctor).

For each patient cluster, each transaction should be ordered based on its temporal

sequential order. Every two consecutive patient’s transactions will be paired for every

meta-action based on a temporal precedence relationship. The resulting pairwise

partition will model the effects of the applied meta-actions.

Given real life data representation in an information system, we defined two meth-

ods to extract meta-actions effects. The first method was defined in [33] and is used

to extract meta-actions effects from traditional informations systems. In this method,

since each feature has a different meaning and a single value at any given object state

in the information system, meta-actions effects are represented with action terms and

saved in an influence matrix to be used by practitioners. However, when multivalued

features are used this method is useless; for instance, we cannot transition the diag-

noses heart failure to the diagnoses skin problem. The second method is defined in

this section and is used to extract meta-actions effects from information systems with

variable number of features and multivalued features. This method is best suited for

the surgical meta-actions mining problem since patients are diagnosed with several

diagnoses at any consultation and have a different number of diagnoses.

Let us assume that M(S), where S = (X,F, V ), is a set of meta-actions associated
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with an information system S. In addition, we define the set T = {vi,j : j ∈ Ji, xi ∈

X} of ordered transactions, patient visits, such that vi,j = [(xi, F (xi)j)]. The set

F (xi)j is defined as the set of feature values {f(xi) : f ∈ F} of the object xi for the

visit uniquely represented by the visit identifier j. Each visit represents the current

state of the object (patient) when recorded with respect to a temporal order based on

j for all vi,j ∈ T . For any particular visit, the patient state is characterized by a set

of diagnoses. Each diagnosis is seen as a feature, and each visit may have a different

number of diagnoses.

For each patient’s two consecutive visits (vi,j, vi,j+1), where meta-actions were ap-

plied at visit j, we can extract an action set. Let us define the set P (S) of pa-

tient’s two consecutive visits as P (S) = {(vi,j, vi,j+1) : xi ∈ X, j ∈ Ji}. The

corresponding action sets are: {(F (xi)j → F (xi)j+1) : xi ∈ X, j ∈ Ji}. We

also define neutral action sets noted as AS, and positive action sets noted as AS.

These action sets are: {(F (xi)j → (F (xi)j ∩ F (xi)j+1)) : xi ∈ X, j ∈ Ji} and

{(F (xi)j → (F (xi)j \ F (xi)j+1)) : xi ∈ X, j ∈ Ji} correspondingly, where F (xi)j

represents the set of diagnoses for a patient xi at visit j.

The action sets resulting from applying meta-actions represent the actionable knowl-

edge needed by practitioners. However, patients do not have the same preconditions

and do not react similarly to the same meta-actions. In other words, some patients

might be partially affected by the meta-actions and might have other side effects not

intended by the practitioners. For this reason, we need to extract the historical pat-

terns of action sets. Let us assume that neutral action set asi,j = F (xi)j ∩ F (xi)j+1
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and positive action set asi,j = F (xi)j \ F (xi)j+1, for any xi ∈ X and j ∈ Ji. Now,

we define some properties for both the neutral and positive action sets extracted as

follow:

1. (∀W ) [W ⊂ as⇒ W ∈ AS]

2. (∀W ) [W ⊂ as⇒ W ∈ AS]

3. (∀xi ∈ X) (∀j ∈ Ji) [asi,j ∪ asi,j ⊆ F (xi)j]

4. (∀xi ∈ X) (∀j ∈ Ji) [asi,j ∩ asi,j = ø]

From the property number 1 and 2, given that any subset of an action set is an

action set of the same meta-action, we can extract all action sets present in any pair

of patient’s visits using power sets. Let us define Pi,j as the power set of neutral

action set asi,j such that Pi,j ∈ AS. Similarly, we can define the set Pi,j as power set

of positive action set asi,j such that Pi,j ∈ AS. Hence, we can have all possible action

sets composing a meta-action using power sets.

4.3.3 Meta-actions and Action Sets Evaluation

To evaluate the actions set patterns, we need to compute their frequency of occur-

rence for all patients. A good measure of frequency is the support and it is seen here

as the likelihood of the occurrence for a specific action set (set of diagnoses disap-

pearing or remaining). The likelihood Like(as) of a neutral action set as is defined

as follow:

Like(as) = card({(vi,j, vi,j+1) ∈ P (S) : as ∈ Pi,j}) (4)
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The likelihood Like(as) of a positive action set as is defined as follow:

Like(as) = card({(vi,j, vi,j+1) ∈ P (S) : as ∈ Pi,j}) (5)

The likelihood support of an action set measures the likelihood of features being

affected by the meta-actions applied, but it does not provide a sense of how confident

the action set is. A more sophisticated way to evaluate action sets would be to

compute their likelihood confidence. The intuition behind the action set confidence

lies in the normalization of the action set with regards to the patient’s precondition.

The likelihood confidence of a neutral action set as is computed as follow:

ActionConf(as) =
Like(as)

card({vi,j : as ⊆ F (xi)j, ∀xi ∈ X})
(6)

The likelihood confidence of a positive action set as is computed as follow:

ActionConf(as) =
Like(as)

card({vi,j : as ⊆ F (xi)j, ∀xi ∈ X})
(7)

Depending on the objects’ states, some of the action sets in AS may not be triggered

by meta-actions. To be more precise, for a given meta-action m, only objects xl ∈ X

that satisfy the following condition will be affected:

(∃(vi,j, vi,j+1) ∈ P (S))(∃vl,k ∈ T )[F (xl)k ∩ F (xi)j 6= ø]

Given the action sets composing a meta-action m, we can define the global con-

fidence of m as the weighted sum of its action sets likelihood confidences where the

weights represent action sets likelihood support. The intuition behind the meta-

action confidence resides in defining how efficient the application of a meta-action is
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for any given patient’s precondition. To be more precise, the meta-action confidence

MetaConf(m) is computed for both neutral and positive action sets as follow:

MetaConf(m) =

n∑
i=1

Like(asi) · ActionConf(asi)

n∑
i=1

Like(asi)
(8)

where n is the number of action sets in m.

4.3.4 Surgical Meta-actions Mining for HCUP

We used our technique to extract meta-actions effects on the Florida SID dataset

for several meta-actions. In this section, we report the confidence ActionConf(as)

and likelihood Like(as) of few action sets for four different meta-actions. You can

note from Table 5 that the positive action sets ActionConf is very high, which means

that patients’ diagnoses disappear after applying meta-actions. In other words, the

surgeries applied are very successful in curing patients diagnoses. On the other hand,

the neutral action sets ActionConf are small, which confirms the assumption that

patients react in a consistently different way to meta-actions with regards to features

that remained unchanged.

Table 5: Action sets confidence and likelihood.

Meta-action Action set Type ActionConf Likelihood
34 {127, 106} Positive 88.88% 32

{108} Neutral 16.57% 29
43 {59, 55, 106} Positive 85.71% 18

{106} Neutral 11.76% 18
44 {62, 106, 55} Positive 94% 16

{257, 101} Neutral 15.62% 10
45 {59, 55} Positive 89% 33

{58} Neutral 14.97% 28
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Figure 3: Meta-action confidence for surgical treatments.

Moreover, the likelihood of neutral action sets extracted is small, which means

that very few diagnoses remain unchanged after the surgeries. Table 5 represents

the meta-actions (procedures) and action sets elements (diagnoses) with their CCS

codification [3].

In addition, we report in Figure 3 the meta-action confidence for 15 different meta-

actions. We show in Figure 3 that the meta-actions are consistently successful for

all their action sets regardless of the patients preconditions for these meta-actions.

Figure 3 shows meta-actions with their CCS codes [3].

Mining surgical meta-actions is a hard task because patients may react differently

to the applied meta-actions, and surgeries outcomes are different from one patient

to another. In this section, we presented a meta-action effects mining technique for

surgical datasets with variable number of diagnoses (multivalued features). Further-

more, we presented the ontology representation of meta-action effects, and used the

SID dataset that is part of HCUP to demonstrate the usefulness of our methodology

in comparison with the action terms based techniques.
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4.4 Chapter Conclusion

In this chapter, we introduced the core model for this dissertation which is refining

the structure of actionability and introducing the actions and their effects represen-

tation for meta-actions. We explored the action terms and action sets structures of

meta-actions and their influence matrix and ontology representations. Furthermore,

we explored the different ways to mine and extract meta-actions effects, and modeled

their evaluation metrics. To demonstrate the usefulness and stability of our model,

we extracted and evaluated meta-actions effects from two large datasets. In fact, we

extracted meta-actions effects from the Tinnitus handicap dataset that is tradition-

ally structured with single valued features and a fixed number of features, and from

the HCUP Florida SID dataset that contains multivalued features. Our results show

that we have a good average action term confidence and action set confidence as well

as a good meta-action confidence for both representations.



CHAPTER 5: SIDE-EFFECTS ANALYSIS AND THEIR USABILITY

Meta-actions are actions that trigger certain changes in objects’ states. These

changes are commonly referred to as meta-action effects that affect certain properties

of the examined objects. Meta-actions effects can be positive, neutral, or negative.

Positive effects help objects positively to transition them into a more desired state.

Neutral meaning does not introduce any effects on the overall state of the objects.

Negative effects that may possibly harm or move the object into an undesired state.

These effects can be seen as side effects when they are not intended by users.

The side effects are not only related to the applied meta-actions, but also to the

objects’ initial state. For this reason, it is important to study the objects in hand

and anticipate the possible side effects when applying specific meta-actions. For

instance, in health care, patients are mainly represented by their diagnoses; however,

their demographic data such as age and gender or additional data such as co-morbid

conditions may possibly affect the application of certain treatments (meta-actions).

In this section, we focus on the evaluation and possible prediction of potential side

effects given an object and the applicable meta-actions.

Meta-action effects are represented by two actionable data structures dividing the

study of side effects into: action term based side effects, and action sets based side

effects. Both representations of side effects are described and analyzed in this section.
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5.1 Side Effects Based on Action Terms

As stated before, the main goal of meta-actions is to trigger action rules. However,

it is often the case that when applying meta-actions for the purpose of executing a spe-

cific action rule, a set of additional unrelated and potentially harmful atomic action

terms is triggered. The additional action terms resulting from the meta-action appli-

cation are called side effects. Meta-actions might move the values of some object’s

features from negative to positive f(x) ∈ En(x) and f(y) ∈ Ep(y) (desirable positive

side effects), and values of some object’s features from positive to negative values

f(x) ∈ Ep(x) and f(y) ∈ En(y) (undesirable negative side effects). Even though the

features transitioning from positive to negative values might result in catastrophic

situations, they were not fully investigated in previous work involving action rules

discovery. In the following, we depict two types of side effects based on action terms

and we give a brief description for each type.

5.1.1 Meta-actions Side Effects

Side-effects based on action terms in the context of meta-actions alone are the

effects that occur for specific small clusters of objects. This type of side effects is

discovered in the meta-action extraction process. It is represented by the action

terms that exhibit very low or unusual likelihood of occurrence. In fact, this type of

action term is very rare in our dataset, and it was extracted from a very small number

of objects. We can think of this type of effects as minor effects of a meta-action that

do not represent the core goal of applying this meta-action. Detecting this type of

side effects is done by setting a minimum likelihood for the action terms, or setting a
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minimum jump in values of likelihood between the action terms.

5.1.2 Action Rules Side Effects

Side-effects based on action terms in the context of action rules are the unintended

changes in the values of some flexible features that meta-actions trigger on objects.

In other words, those effects are triggered by meta-actions but are outside of the

intended action rule scope. To discover those side effects, we can perform two set

operations. We start by performing a set difference operation between the antecedent

side of the action rule and the meta-actions’ action terms reported in the influence

matrix. The result is then intersected with the object’s precondition to get the final

set of side effects.

5.2 Side Effects Based on Action Sets

In healthcare, the study of side effects is mainly related to treatments and patients’

conditions. In this section, we study the representation of side effects with regards

to action sets based meta-actions. Meta-actions mined from information systems

with variable number of features and multi-valued features result in positive and

neutral effects that were studied in Chapter 4. In addition, they might result in

negative side effects when applied to specific patients with particular precondition

states. For instance, applying meta-action treatment m to patient x who is diagnosed

with F (x)t = {Dx1, Dx2, Dx3} at the precondition state time t might transition the

patient to a new state with the following diagnoses F (x)t+1 = {Dx1, Dx4} at time

t+ 1 and introduce a new diagnosis Dx4 that was not present before applying m. In

this example Dx4 is seen as a negative side effect that appeared as a result of applying
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m to x.

In the remainder of this section, we study the negative action sets (negative side

effects) mining and representation. We also show how to cluster patients based on

these negative action sets and analyze the clusters. Furthermore, we attempt to

predict treatments’ negative side effects for patients using an incremental study of

the clustering.

5.2.1 Negative Action Sets Mining

Negative side effects are represented by action sets which model the appearance

of certain diagnoses when applying a meta-action on specific patients. These di-

agnoses were not intended by the physician and can be harmful to the patient.

The negative action sets are part of the meta-action effects described in Section

4.3, and they are best captured by the reverse set difference between the prior and

posterior state of the patient. For example, let us apply a meta-action m to a

patient x with the prior state F (x)t = {Dx1, Dx2, Dx3}, and assume a posterior

postcondition state F (x)t+1 = {Dx1, Dx4} as a result, then the action set result-

ing is described by: {Dx1, Dx2, Dx3} → [{Dx1, Dx4} \ {Dx1, Dx2, Dx3}], where

[{Dx1, Dx4} \ {Dx1, Dx2, Dx3}] represents the reverse set difference between the left

hand side of the action set and its right hand side. Negative side effects are repre-

sented by an ontology as described in Section 4 with the addition of negative action

sets labeled As an represented in red in Figure 4.

Once we define the format of negative action sets, we use the same action set

mining technique described in Section 4.3.2. In fact, we order patients by visit date,
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Figure 4: Ontology representation of a meta-action with negative effects.

and create pairs containing two consecutive visits for each patient. The negative

action sets are then extracted from those pairs for each patient and a power set is

then generated to extract all possible combinations.

5.2.2 Patients’ Clustering Based on Side Effects

Patients react similarly to some treatments that result in the same negative side

effects. Therefore, it is important to keep track of the meta-actions side effects and

cluster the patients who experience similar negative side effects. Clustering the pa-

tients based on the negative side-effects is done using the negative action sets. The

negative action sets are supported by patients that reacted negatively to the treat-

ments (meta-actions) applied with the respective side effects. The supporting patients

for a specific negative action set constitute a cluster of patients; hence, the clustering

is done by grouping those patients.

By the supporting set for a negative action set As = [F (x)t+1 \ F (x)t] of the

form F (x)t → [F (x)t+1 \ F (x)t] in an information system S = (X,F, V ), where

F (x)t = {f(x)t : f ∈ F}, we mean the set of patients x ∈ X represented by the

expression sup(As) = {x ∈ X : (∀f(x) ∈ As) [(f(x) ∈ F (x)t+1) ∧ (f(x) /∈ F (x)t)] }.
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Now, sup(As) represents the set of the objects affected by the association. This way

each supporting set of patients represents a different cluster sup(Asi) labeled by Asi.

5.2.3 Negative Side Effects Evaluation

The negative actions sets are evaluated and analyzed using the same metrics de-

veloped in Chapter 4 to evaluate neutral and positive action sets. In fact, for each

negative action set As, we can compute the likelihood Like(As) as follows:

Like(As) = card(sup(As)) (9)

The likelihood Like(As) is a good measure of the spread or dominance of this negative

side effect for a specific meta-action.

Of course, we can also compute the negative action set confidence ActionConf(As)

as follows:

ActionConf(As) =
Like(As)

card({xi ∈ X : [As ⊆ F (xi)t+1]})
(10)

where F (xi)t represents the initial state of the object or patient xi. Note here that

the ActionConf(As) does not model the confidence of predicting that patients with

the initial state F (xi)t will react with negative side effects to the meta-action; it

rather models the confidence of the action set being a negative action set As and not

a neutral one. In other words, it does not model correlation between F (xi)t and As.

In Chapter 4, we computed the meta-action confidence MetaConf(m) for m to

acquire a general idea on its stability with regards to patients initial states and the

positive and neutral action sets. However, we did not include the negative side effects

because the purpose of the meta-action is to cure the initial diagnoses of the patients.
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On the other hand, the negative side effects may have originated from the correla-

tion between the applied meta-action and some stable or unknown features and not

necessarily from the initial state of the patient.

NegMetaConf(m) =

n∑
i=1

[Like(Asi) · ActionConf(Asi)]

n∑
i=1

Like(Asi)
(11)

where n is the number of extracted negative action sets. The negative meta-action

confidence informs us about how the initial state of the patient is correlated with the

negative action sets.

5.2.4 Negative Side Effects Predictions

An important concern in healthcare is about the possibility of predicting side effects

of meta-actions for specific patients. In fact, we noticed that similar patients with

similar initial states have different reactions to the same treatments. Some of the

patients have severe negative side effects and some do not have any side-effects, which

makes the problem even more challenging.

Once negative action sets are mined for a specific meta-action m, we can then

analyze them and evaluate their correlation to the patient’s state. However, we would

like to predict the unknown negative side effects for the patients resulting from the

application of m. To do so, we use the patients clusters based on the negative actions

sets. We first group patients by their side effects using their negative action sets. The

resulting clusters of patients labeled by negative side effects will then serve as models

for future patients that have to undergo the meta-action m.

We build an incremental study for the clustering approach to include new patients
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in the clusters they belong to. Our assumption is that a patient who is about to

undergo a meta-action m belongs to the cluster which contains the most similar

patients.

Similarity is a very important factor in the prediction, and it is computed using the

patient’s stable and flexible features F = Fst∪Ffl. To compute the similarity wi,j be-

tween two patients xi and xj, we build a feature vector for the patients’ features based

on their type. For single-valued features, we use a binary value such that wi,j(f) = 1

for similar feature values and wi,j(f) = 0 for different ones. For multi-valued features,

we use a none symmetric similarity based on the proportion of similar feature values.

For instance, if F (xi) = {Dx1, Dx2, Dx3, Dx4, } and F (xj) = {Dx1, Dx2, Dx5} and

we would like to predict the side-effects for patient xi given As(xj), then the similarity

for a multi-valued feature f is computed as follows:

wi,j(f) =
card(F (xi) ∩ F (xj))

card(F (xi))
(12)

Once we have computed the individual similarities of all features, we can compute

the similarity wi,j between two patients’ feature vectors using Manhattan similarity

or RBF kernel described as follows:

wi,j = e−(‖xi−xj‖
2/2σ2) ∀xi 6= xj (13)

After computing the new patient’s similarity with all members of a cluster ck for

the negative action set Ask, we can compute the mean of each cluster similarity to

the new patient xi. The new patient is then assigned to the cluster with the highest

mean similarity.
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Another model suggests the computation of the mean vector centroid of the clus-

ter, used in K-means like clustering algorithms [11], once we have all its members,

then compute the distance between the new patient xi and each cluster mean vector

centroid. The new patient xi is then assigned to the cluster with the smallest distance.

5.2.5 Experimental Evaluation

We performed several experiments regarding mining negative action sets and an-

alyzing patients’ clusters based on negative side effects. We used four meta-actions

to extract and analyze side effects. The four meta-actions used are referenced by the

following procedure CCS codes [3]: 34, 43, 44, and 45.

We started by mining the negative action sets and analyzing them with the eval-

uation criteria described in Subsection 5.2.3. We also give a few examples of the

negative action sets mined in Table 9. We then grouped the patients based on side

effects and we analyzed the resulting clusters.

Table 6: Negative clusters analysis for all meta-actions.

Meta-action Average
clusters size

Total number
of clusters

Average
Likelihood

Average
ActionConf

MetaConf

45 4.84 405931 1.69 0.84 0.53
44 4.46 178446 1.49 0.83 0.55
43 4.70 194957 1.37 0.85 0.62
34 4.63 180372 1.44 0.83 0.58

You can note from Table 6 that the MetaConf is smaller than the average confi-

dence since it reflects a better global confidence of the meta-actions with regard to

negative action sets’ Likelihood. However, Figure 5 displays the proportion of action

sets confidence by meta-action, and shows that more than 73% of action sets have
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Figure 5: Negative action sets confidence proportion.

over 90% confidence for all meta-acions. The total number of clusters, the average

likelihood, and the average cluster’s negative action set size are also reported in Table

6 for each meta-action.

Tables 7, 8, 10, and 11 show that the number of clusters follows a Gaussian distri-

bution [9] behavior with regard to their negative action sets sizes. In addition, the

average likelihood decreases when the size of the cluster’s action sets increases. The

action set cluster with size 0 indicates no side effects; in other words, patients in this

cluster did not have any side effects as a result of applying the meta-action. Those

tables show that increasing the size of the cluster action sets, in most of the cases,
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Table 7: Negative clusters analysis for meta-action 34.

Meta-action Action set
clusters size

Number of
clusters

Average Like-
lihood

Average Ac-
tionConf

0 1 2264 1
1 213 60.11 0.73
2 5803 5.86 0.65
3 29814 1.86 0.67
4 52691 1.17 0.78
5 47620 1.02 0.89

34 6 28146 1.00 0.96
7 11794 1.00 0.99
8 3495 1.00 0.99
9 703 1.00 1
10 87 1.00 1
11 5 1.00 1

increases the average of ActionConf . This is due to introducing more constraints in

the action sets. Figure 6 summarizes the trend of the action sets average confidence

in a better way. This figure shows that the average action set confidence is low for

action sets’ clusters with sizes ranging from 1 to 4. This is due to the small number

of supporting patients for these clusters.

Table 8: Negative clusters analysis for meta-action 44.

Meta-action Action set
clusters size

Number of
clusters

Average Like-
lihood

Average Ac-
tionConf

0 1 3905 1
1 219 82.39 0.80
2 6912 5.99 0.67
3 36008 1.67 0.67
4 54893 1.11 0.79
5 43770 1.01 0.91

44 6 23878 1.00 0.97
7 9463 1.00 0.99
8 2700 1.00 0.99
9 532 1.00 0.99
10 66 1.00 1
11 4 1.00 1
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Table 9: Examples of negative action sets for all meta-actions.

Meta-action Negative action set Size Likelihood ActionConf
[1] 1 404 0.99
[238] 1 308 0.83
[134] 1 719 0.88
[155] 1 932 0.84

34 [1 , 155] 2 187 0.89
[134 , 155] 2 366 0.77
[134 , 1 , 155] 3 54 0.87
[134 , 59 , 155] 3 55 0.58
[257] 1 429 0.93
[254] 1 399 1.00
[155] 1 238 0.91
[159] 1 227 0.81

43 [259 , 254] 2 102 0.89
[257 , 254] 2 72 0.96
[113 , 159 , 254] 3 10 1.00
[105 , 254 , 155] 3 8 1.00
[254] 1 403 1.00
[102] 1 276 0.99
[197] 1 272 0.93
[3] 1 214 0.98

44 [2 , 244] 2 111 0.86
[197 , 238] 2 121 0.68
[134 , 2 , 244 , 249 , 157] 5 3 1.00
[2 , 52 , 249] 3 12 1.00
[102] 1 1532 0.97
[130] 1 495 0.91
[153] 1 456 0.91
[60] 1 452 0.96

45 [2 , 244] 2 252 0.90
[153 , 60] 2 127 0.95
[146 , 120] 2 68 0.96
[2 , 244 , 249] 3 58 0.85
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Table 10: Negative clusters analysis for meta-action 43.

Meta-action Action set
clusters size

Number of
clusters

Average Like-
lihood

Average Ac-
tionConf

0 1 2645 1
1 213 64.12 0.78
2 6277 5.46 0.67
3 33158 1.64 0.68
4 54737 1.10 0.80
5 48576 1.01 0.92

43 6 30447 1.00 0.97
7 14476 1.00 0.99
8 5275 1.00 0.99
9 1457 1.00 0.99
10 296 1.00 1
11 41 1.00 1
12 3 1.00 1

Table 11: Negative clusters analysis for meta-action 45.

Meta-action Action set
clusters size

Number of
clusters

Average Like-
lihood

Average Ac-
tionConf

0 1 12076.0000 1
1 225 225.2400 0.77
2 8230 13.2682 0.63
3 59864 2.4103 0.62
4 111169 1.2360 0.77
5 104193 1.0493 0.91

45 6 70782 1.0130 0.97
7 35255 1.0034 0.99
8 12466 1.0006 0.99
9 3143 1.0000 0.99
10 542 1.0000 1
11 58 1.0000 1
12 3 1.0000 1
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Figure 6: Negative action sets confidence by size of clusters.

Mining negative side-effects allows us to cluster patients with similar negative ac-

tion sets in order to extract personalized action rules. The purpose of personalized

action rules is to decrease the negative side effects. We have demonstrated in this

section how negative side effects based on action terms are represented and how neg-

ative action sets are structured and extracted. We then presented negative action

sets evaluations metrics, and analyzed patients’ clusters based on these metrics. We

also presented an incremental clustering scheme similar to K-means [11] using the

similarity among patients and the clusters centroid.
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5.3 Personalized Action Rules Extraction Based on Object Clustering

In this chapter, we study closely the side effects of applying meta-actions. We

acknowledge that those negative side effects are not avoidable in most situations;

therefore, we strive to personalize the action rules and their respective meta-actions

applied to objects based on their reactions to meta-actions. We strongly believe that

action rules should be extracted from data sets describing objects that have the same

negative side effects, and we present three objects grouping techniques based on neg-

ative side effects. We believe that personalized action rules can be extracted based on

the three dimensions: meta-actions, objects and objects’ negative side effects. Figure

7 depicts object grouping based on meta-actions and side effects. In this chapter we

used the tinnitus handicap dataset that was exploited in previous research [40] to

extract action rules. By analyzing the patients negative side effects, and grouping

patients based on their reactions to treatment (meta-actions), we can extract person-

alized action rules. We compred the three grouping schemes and deduced that the

meta-action based grouping result in the best personalized action rules.

5.3.1 Personalized Object Grouping

Unfortunately, the negative side effects resulting from applying meta-actions are

unavoidable in most situations. However, we can still lower the negative side effects

resulting from executing the meta-actions by personalizing the action rules applied

to objects. Action rules dictate the sets of meta-actions to apply to be triggered.

There are multiple subsets of meta-actions that could be applied to different action

rules and result in multiple subsets of negative side effects. We aim to minimize the
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Figure 7: Three dimensional representation of object grouping.

negative side effects for a large number of objects by discovering personalized action

rules while keeping their utility and increasing their support and confidence. In the

following subsections, we define three techniques to group objects based on their side

effects resulting from applying meta-actions for a personalized action rules discovery

system.

5.3.1.1 Side Effects Based Grouping

In this technique, as the title suggests, we group objects based on side effects. In

most situations, objects have known side effects such as patients having allergies.

However, more side effects can be determined based on the possible meta-actions

applied. Let us define the set of meta actions M(S) on the system S = (X,F∪{d}, V ),

such that F (x) = {f(x) : f ∈ F} = En(x) ∪ Ep(x) for x ∈ X. We aim at grouping

objects x ∈ X that have the same negative side effects for any meta-action in M =

{Mk}k∈K ⊆ M(S) where K = {1, . . . , |M |}. This grouping will result in a partition

of X defined by the equivalence relation given in the following:
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xi ≈M xj iff (∀k ∈ K)[En,k(yi) = En,k(yj)] where

[Mk(F (xi)) = F (yi,k)], [Mk(F (xj)) = F (yj,k)], and [xi, xj ∈ X].

Also, we assume here that xi is converted to yi,k and xj is converted to yj,k by Mk ∈M .

In a real setting, as explained earlier, we need to follow a set of steps in order to group

objects in the most optimal way minimizing the negative side effects to extract the

right action rules. In fact, meta-actions result in different negative side effects from

one object to another. We defined the following steps for personalizing action rules

based on common negative side effects:

• We first need to extract the negative side effects from applying the meta-actions

for each object x ∈ X if they are not defined yet. This process is performed by

analyzing our decision system S and extracting all negative side effects En(x)

for all x ∈ X for each transaction (or observation) that happens directly after

applying the meta-actions.

• We then group the objects that have the same side effects using the previously

defined equivalence relation that will result in a partition G. Those groups

encompass the objects observations in our decision system for each object in

the group.

• We extract the personalized action rules for each group g ∈ G using the objects

observation in each group and the algorithms presented in [24, 23].

• Finally, we select the personalized action rules with the best support and con-

fidence pair to apply in each group.
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The personalized action rules extracted for each group of objects will result in the

same negative side effects when applying the related meta-actions to trigger the action

rules. However, grouping the objects by negative side effects first will decrease the

object population for discovering action rules for each group. This might result in

decreasing the support of the rules or even failing to discover all possible rules. To

remediate to this problem, we propose an action rule based grouping that is described

in the following.

5.3.1.2 Action Rules Based Grouping

Another way of grouping objects in X is by grouping action rules with respect to

their common support. Let us assume that ARS is a set of action rules extracted from

a decision system S = (X,F ∪ {d}, V ), and r1 = r1(r11, r12) r2 = r2(r21, r22) ∈ ARS.

The binary relation ≡S⊆ ARS × ARS is defined as follows:

r1 ≡ r2 iff [sup(r11) = sup(r21)].

Clearly, ≡S is an equivalence relation which partitions the action rules in ARS into

classes such that any two action rules in the same class have the same set of support-

ing objects in X. For instance, let us assume that r1 = r1(r11, r12) ∈ ARS , r11 =

[t11 → t12], and sup(r11) = Y1. Also, we assume here that r2 = r2(r21, r22) ∈

ARS, r21 = [t21 → t22], sup(r21) = Y2 , and r1 ≡S r2. Then, Dom(t11) = Dom(t21)

and F (Y1)/Dom(t11) = F (Y2)/Dom(t21), where F (Y1)/Dom(t11) is the set of values

of attributes listed in t11. Now, if t11 = (f1, v11) ∧ (f2, v21) ∧ · · · ∧ (fk, vk1), then

F (Y1)/{f1, f2, . . . , fk} = {(f1, v11), (f2, v21), . . . , (fk, vk1)} displays all properties for

which objects in X have to satisfy in order to be affected by r1 or r2.
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So, the relation ≡S⊆ ARS × ARS partitions the action rules in ARS into equiva-

lence classes in such a way that each class [r1]≡S, where r1 = r1(r11, r12) and r11 =

[t11 → t12], has a unique set of attribute values I([r1]≡S
) for Dom(t11) which is used

as its identifier. In the section above, I([r1]≡S
) = {(f1, v11), (f2, v21), . . . , (fk, vk1)}.

Each identifier defines a subset of all objects in X satisfying all properties listed in it.

This way, we do not only group the objects in X but also identify the largest subset

of objects in X which can be affected by a minimum of one action rule. We still

need to further partition the obtained groups of objects by taking into consideration

personalized action rules based on their negative side effects. We use grouping mecha-

nism similar to the side effects based grouping, presented in the previous section. We

define the following steps for personalizing action rules based grouping with respect

to the negative side effects:

• We first extract the set of action rules ARS from S, next we group the objects

in X based on the equivalence relation ≡S⊆ ARS × ARS. Lets assume that

G = {Gk}k∈K represents that grouping.

• We extract the negative side effects En(x) for all x ∈ X resulting from applying

the meta-actions to trigger the action rules in ARS(x) for each object x ∈ X.

• Then, we split each group Gk ∈ G in such a way that objects having the same

side effects with respect to action rules associated with Gk are placed in the

same sub-groups. For that purpose, we use the equivalence relation ≈M defined

in the previous section. It will result in new sub-groupings Gki of X.

• We merge the sub-groups Gki if their respective action rules trigger the same
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negative side effects.

• Finally, we select the personalized action rules with the best support and con-

fidence pair to apply in each group.

This grouping will not generate smaller groups than the previous technique since

the merging step insures that groups with the same negative side effects are merged

together.

5.3.1.3 Meta-actions Based Grouping

The previous grouping technique based on action rules does not take the meta-

actions into consideration. This may result in groups of objects with their respective

action rules having different meta-actions applied to trigger their rules. Another

grouping technique groups objects first with respect to meta-actions applied to them.

Clearly, meta-actions are not applied randomly to objects; they are either applied

based on an action rule needs, or applied by an administrator making a decision

based on his/her expertise. Let us have a decision system S = (X,F ∪ {d}, V ) and

a set of meta-actions M(S) associated with S which can be applied to objects in X.

We first group objects by meta-actions and then we split the obtained groups further

with respect to the negative side effects which are triggered by them. In order to

group objects in X with respect to a meta-action Mp = {Epk : k = 1, 2, . . . ,m} ∈

M(S), where Epk are atomic actions triggered by Mp, we assume that Dom(Mp) =

{Dom(Epk) : k = 1, 2, . . . ,m} and define the following relation for any xi, xj ∈ X:

xi ≈Mp xj iff [(F (xi) = F (xj)) ∧Mp(F (xi)) = Mp(F (xj))].
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In a similar way, we can group objects in X with respect to any set of meta-

actions, and in particular with respect to a minimal set of meta-actions {Mp}p∈P

triggering a given action rule r(r1, r2). Let us assume that G = {Gk}k∈K represents

that grouping. Next, we split each group Gk ∈ G in such a way that objects having

the same side effects with respect to meta-actions associated with Gk are placed in

the same sub-groups. This strategy is similar to the one presented in section 4.1.

5.3.2 Experiments

In this section, we used R 2.15 to process the data and a built-in software to discover

action rules.

5.3.2.1 Side Effects Based Grouping

In this experiment we used the steps described in our proposed approach. However,

we first cleaned the data and organized it by negative side effects. Since we already

know the three side effects in our dataset, we grouped patients that have the same

negative side effects by codifying the different combinations of side effects values.

Since we have three side effects and two possible values for each side effect (0 for

negative and 1 for positive), we will have eight (23=8) possible groups of patients

(000, 001, 010,. . . , 111) in our partitioning. Grouping patients with regards to same

side effects resulted in the number of patients depicted in Table 12 in each group:

Table 12: Number of patients by side effects groups.

Groups g000 g001 g010 g011 g100 g101 g110 g111
# Patients 46 38 17 54 18 44 32 262
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After grouping the patients by side effects, we extracted the action rules AR(2, 85%)

using our action rules discovery software. We constrained the action rules confidence

to 85% and support to a minimum of 2 in each one of the groups. However, since

different groups might have different support, we increased the support sequentially to

have the highest minimum support that returns actions rules. Furthermore, we fixed

the decision transition from no-improvement to improvement (score, 0 → 1). The

results for each group of action rules discovery after the partitioning are presented in

Table 13:

Table 13: Action rules by side effects groups.

Groups Support Confidence # Rules
g000 - - 0
g001 2 100 251
g010 2 100 8128
g011 5 100 3

5 86 1
g100 2 100 152213
g101 3 100 720
g110 3 100 5
g111 - - 0

Note that the group of only negative side effects g000 and the group of only positive

side effects g111 does not have any action rule. This is due to the decision feature

being the same for all the group. In addition, note that the extracted rules do not

have high support. This is due to shrinking the patients populations in the groups.

An example of an action rule extracted from group g110 is shown in the following:

(F.24, 4 → 4) ∧ (C.8, 4 → 4) ∧ (F.7, 4 → 2) ∧ (C.19, 4 → 4) ∧ (E.10, 4 → 2) ⇒

(ScT, 0→ 1), sup = 3, conf = 100%.
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5.3.2.2 Action Rules Based Grouping

After the data cleaning step, we extracted all possible action rules from the entire

decision system. We used our action rules extraction software setting up the minimal

confidence to 85%, and the starting support at a minimum of 20. This support

was then decreased sequentially until we reached a minimum support that resulted in

discovering at least one action rule. First, we extracted two action rules with minimum

support 20 and minimum confidence 85%. Then, we decreased the minimum support

to 19 to extract more action rules while keeping the confidence at least at 85%. This

way 10 additional action rules has been found. Next, we grouped them into sets of

action rules that have the same antecedent side. Grouping the action rule with same

antecedent side resulted in two groups for the first partition P1 for action rules with

support 20. For the second set of action rules with support 19, we ended up having

a partition P2 of 10 groups. Each one of those groups is summarized in Table 14 and

contains one action rule with a specific confidence and support:

For each action rule antecedent side set, we grouped patients that have the same

preconditions as the antecedent part of action rules set together in the same group.

This type of partitioning is natural since each patient x ∈ X is associated with a set

of possible action rules ARS(x). This step also insures that patients that do not have

possible action rules ARS(x) = ø are not part of the partition grouping.

Each group of action rules led to a number of patients having the same preconditions

as the antecedent side of the rules. This experiment returned the same number of

patients in each group as the support of the respective rules, which is 20 patients
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Table 14: Action rules by antecedent side grouping.

Partitions Groups Support Confidence # Rules
P1 G1 20 86.95 1

G2 20 87.41 1
P2 G1 19 86.36 1

G2 19 85.58 1
G3 19 87.73 1
G4 19 87.55 1
G5 19 86.36 1
G6 19 86.70 1
G7 19 86.85 1
G8 19 86.36 1
G9 19 86.99 1
G10 19 86.85 1

for the two groups of P1 and 19 patient for each group of P2. Note that we do not

get the same group size as the support of the corresponding rules in all situations

since we are using the minimum support method to compute the rule support. We

followed the next step in our described approach where we further partitioned each

group of patients presented in Table 14 to subgroups having the same negative side

effects. Each action rules based group was partitioned into a number of subgroups

with regards to the same negative side effects. This partitioning is represented in

the following Table 15, where you can note that the total number of patients for all

negative side effects sub-group (row sum) is larger than the total number of patients

in each corresponding parent group in the action rules grouping. This is due to an

overlap between the groups for patients having different applicable action rules.

Table 15 also represents the merging step, where the total number of patients in

each sub-group is represented by the partition with respect to side effects. Note that

this number is small due to the patients overlap described earlier in the table for the
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Table 15: Number of patients by side effects and action rules grouping.

Partition Group g000 g001 g010 g011 g100 g101 g110 g111
P 1 G1 8 2 2 4 1 1 1 1

G2 8 6 3 2 0 1 0 0
Total P1 10 8 4 4 1 2 1 1

P 2 G1 7 2 1 4 1 1 2 1
G2 7 2 1 4 1 1 2 1
G3 8 5 2 3 0 1 0 0
G4 7 5 2 3 0 1 1 0
G5 8 5 2 3 1 0 0 0
G6 7 5 3 3 0 1 0 0
G7 8 5 2 2 0 1 1 0
G8 9 5 1 3 0 0 1 0
G9 8 5 2 3 0 1 0 0
G10 8 5 2 3 0 1 0 0

Total P2 9 6 3 6 2 2 2 1

action rules groups. However there is no overlap between the different side effects

groupings.

5.3.2.3 Meta-action Based Grouping

This experiment requires grouping the objects based on meta-actions. Since the

physician already applied treatments (meta-actions) to patients and those treatments

are recorded in the dataset, we just need to start grouping patients in the same group

if the same treatments have been applied to them. After cleaning the dataset and

removing the missing and incomplete values, we ended up having three possible treat-

ments that are Hearing Aid (HA), sound Generators (SG), and Regular Consultation

(RC). Thus, we grouped the patients into those three different groups. The results

of the grouping based on same meta-actions are summarized in Table 16.

We then generated action rules from each group by setting up the minimum con-
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Table 16: Number of patients by meta-action.

Group HA SG RC
# Patients 16 87 414

fidence to 85% and minimum support to 3; however, the support varies from one

group to another depending on the groups action rules strength. We also fixed the

decision feature transition from 0 to 1 (no improvement to improvement in the score

(ScT, 0→ 1). Table 17 summarizes the results of action rules discovery:

Table 17: Action rules by meta-actions groups.

Group Support AVG Con-
fidence

# Rules

HA 3 100 16
SG 4 100 16
RC 21 87.5 1

19 87.56 7

We can note that the minimum support strength of the discovered action rules in

each group is positively correlated to the number of patients in each group. Here is

the example of an action rule discovered in the RC group:

(g, 3→ 3)∧(C.8, 4→ 0)∧(F.7, 4→ 0)∧(C.19, 4→ 0)∧(E.10, 4→ 0)∧(E.17, 4→

0) ∧ (E.16, 4→ 0)⇒ (0→ 1), sup = 15, conf = 100%

Once we have the groups of patients based on the meta-actions, we further partition

each group to sub-groups with respect to the same negative side effects. The results

are summarized in Table 18.
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Figure 8: Patient population by side effect groups.

Table 18: Number of patients by meta-actions and side effects grouping.

Groups g000 g001 g010 g011 g100 g101 g110 g111
HA 2 0 0 2 1 2 1 8
SG 9 6 0 10 4 7 1 50
RC 35 32 17 42 13 35 30 210

5.3.2.4 Grouping Schemes Comparison

All three grouping schemes have their advantages and disadvantages with regards

to action rules personalization. The side effects-based grouping is a patients-centric

scheme with regards to their negative side effects. It allows the extraction of more

personalized action rules since each group dataset used in the action rules discovery

process is exclusive to patients with exactly the same negative side effects. As we can

note from Table 12 and Table 13, and Figure 8, the average group size is relatively
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high and the number of action rules generated is substantially high. In addition

Figure 10 denotes the highest confidence for this scheme. However the support of

the extracted rules is rather small in comparison with the other schemas as seen

in Figure 9. In fact, using the partitioned datasets to extract the rules limits the

number of observations; thus, limits the strength of the action rules. In this sense,

we might argue that the second scheme, action rules based grouping, is more efficient

than the previous schemes. It uses the whole dataset to generate the action rules

first, and then groups patients by their side effects. It allows extracting action rules

with stronger support as seen in Figure 9 and Table 14. This partitioning is the most

fine-grained since it allows distinguishing the patients not only by their side effects

but also by their personalized rules. This is confirmed in our experiment where the
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number of patients in the fine-grained side effects groups is very small as seen in

Figure 8 and Table 15. This is due to shrinking the datasets or groups to only the

action rules domains (patients with extracted applicable action rules ARS(x)). The

total number of patients will get bigger as we decrease the support, since we will

extract more rules. However, the rules confidence is the smallest in this scheme as

seen in Figure 10. In addition, in order to cover all patients in the dataset, we will

eventually have to decrease the support; thus, the strength of the rules. The third

grouping scheme, meta-action based grouping, is the most efficient for our dataset.

As we can note from Table 17 and Figure 9, even though we used only subsets of the

overall dataset in the meta-actions based grouping, we extracted a larger number of

rules with the highest support for the RC group in the later scheme. Furthermore,
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extracted rules have a higher average confidence as seen in Figure 10 than in the

second scheme. In addition, the average number of patients in each side effects based

sub-groups is larger than in the previous scheme and encompasses all patients for our

dataset as seen in Figure 8. Grouping by meta-actions filtered all the noise, such as,

patients that have the same initial state but different decision feature values than the

ones applied in the extracted rules.

In this section, we studied the tinnitus handicap disease, and noted the importance

of filtering negative side effects when applying treatments to patients. We then for-

mally defined the negative side effects, and proposed to extract personalized action

rules based on these side effects. We believe that expert physicians partition patients

with the same pathological state based on their side effects response to treatments

when they are available. Therefore, we proposed three grouping schemes with re-

gards to negative side effects to extract patients personalized action rules. We also

implemented the three grouping schemes and tested them on the Tinnitus handicap

dataset. We further compared the three grouping schemes and discussed their ad-

vantages and disadvantages, and justified our choice to apply the meta-action based

grouping scheme. We trust that personalization is a very important aspect in filtering

noise that skilled experts face when making decisions.

5.4 Chapter Conclusion

Actions rules are very important in modeling expert and domain knowledge. They

were augmented by the introduction of meta-actions that experts use to trigger them.

In this chapter, we analyzed side-effects and mined negative action sets resulting
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from the application of meta-actions. We also proposed treatments’ negative side-

effects prediction technique for patients based on patients’ clusters. Furthermore,

we presented three patient’s grouping schemes based on available side-effects and

compared them. The results of the evaluation and comparison showed that meta-

actions based grouping scheme is the best grouping scheme for personalized action

rules extraction.



CHAPTER 6: HEALTH CARE META-ACTIONS IN PLAY

There are several applications of meta-actions’ effects in the healthcare domain

as well as other domains. Meta-actions play an important role in representing the

actionable knowledge that practitioners need. In this chapter, we present some of the

applications of meta-actions’ effects in healthcare systems.

We first start by using meta-actions’ effects to reduce action rules that are not

executable in their current state and present dangerous side effects. This is done by

analyzing the execution of the action rule at hand, and selecting the meta-actions that

help trigger this rule. In addition, we study patient’s side effects that the selected

meta-actions can introduce on action rules. These side effects are outside of the

action rule scope but in the patient’s precondition. A utility weighted sum is then

introduced to balance the execution of action rules and reduce side effects ratio.

We then present new action rules evaluation metrics based on meta-actions and

demonstrate their usefulness. We used the likelihood and execution confidence to

measure the action rules robustness. Furthermore, we used a cost and satisfaction

model to evaluate the application of meta-actions.

The two applications of meta-actions presented in this chapter are not isolated

cases, but they are good examples on how meta-actions can be applied and offer a

good perspective for future work.
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6.1 Personalized Action Rules Reduction

Action rules model the correlation between the transitions of each objects’ at-

tribute values, and the decision attribute values transitions. They are closely related

to meta-actions, that constitute the main trigger for their antecedent side transitions.

For this reason, it is important to extract action rules and meta-actions and study

their connection in an integrated way. To trigger an action rule, we need to find the

set of meta-actions that cover the whole antecedent side of the action rule. Another

important factor of action rules execution is the number of object’s side effects intro-

duced by meta-actions used. Existing research has proposed the lookup of minimum

number of meta-actions covering an action rule while minimizing the side-effects.

In this chapter, we propose an action rules reduction mechanism [32] to reduce

the meta-actions used, and therefore, reduce the number of side effects introduced.

The reduction process consists of substituting the action rule atomic action terms as

summarized in Figure 11. This process is done by removing the uncovered atomic

action terms and replacing them by highly correlated action terms that are covered

by meta-actions action terms. Similarly, if we start with the meta-actions, an action

rule could be obtained by composing the necessary meta-actions action terms that

are correlated with the desired action rule decision.

6.1.1 Action Rules Substitution

Let us assume that we have a system S = (X,F ∪ {d}, V ), where X is a set of

objects, F = {a, b, c, e, f} is the set of attributes, and V = {a1, a2, b1, b2, c1, c2, e1,

e2, f1, f2, d1, d2} is the domain of attribute values. If we have an action rule of the
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Figure 11: Action rules reduction methodology.

form r = [((a, a1 → a2) ∧ (b, b1 → b2) ∧ (c, c1 → c2)) ⇒ (d, d1 → d2)], an object

x ∈ X such that F (x) = {a1, b1, c1, d1, e1, f1}, and two meta-actions m1, m2 where

m1 = {(a, a1 → a2), (b, b1 → b2), (e, e1 → e2), (f, f2 → f1)}, and m2 = {(a, a1 →

a2), (c, c1 → c2), (e, e1 → e2), (f, f1 → f2)}, we can simply use both meta-actions m1

and m2 to trigger the rule r. We can also reduce the action rules to use only one of

the two meta-actions by computing the correlation between each meta-action action

terms and the uncovered action rule atomic action terms. This way, if we use the

meta-action m1, we obtain the set of uncovered atomic action terms by the rule r,

which will be the set {(c, c1 → c2)}. Next we can compute the possible correlated

action terms between the meta-action and the uncovered set. For example, the action

term [(a, a1 → a2)∧ (e, e1 → e2)] might be correlated with the uncovered action term

(c, c1 → c2) for m1. Similarly, if we use m2, we obtain a different set of uncovered

action terms which will be (b, b1 → b2), and for instance, if the action term (f, f1 → f2)

is highly correlated with (b, b1 → b2), we can substitute (b, b1 → b2) with (f, f1 → f2)

and use only the meta-action m2.

Note that we only use action terms of size one (atomic action term) from the

uncovered set of action terms; however, we may take action terms of any size from
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the meta-actions to compute the two action terms correlation. This correlation is

computed using action rules confidence, which is computed by modeling an action

rule based on the uncovered atomic action terms representing the decision transition,

and the meta-action action terms representing the antecedent side of the action rule.

This way, we can compute the confidence by substituting any uncovered action term

by any available action term in the meta-action or set of meta-actions. This method

will result in a large number of possible substitutions with their respective confidence.

To this extent, we can select action terms triggered by meta-actions with higher

confidence for each uncovered atomic action term to be applied to model the new

action rule. However, we would like to optimize the number of meta-actions used, or

else we could have used the naive solution to cover all the action rule antecedent side.

In addition, we aim to minimize the number of side effects resulting from applying

the meta-actions. We can build an optimization function based on the maximization

of the utility O for each meta-action m and its atomic action terms tj ∈ m covering

both the possible terms of action rule ri and each uncovered atomic action term tu.

The utility O will minimize the number of side effects and maximize the confidence

of the new generated rule ri (action terms correlation) such that:

O(m, ri) = β · Conf(ri) ·
n∏
j=0

[Conf(tj) + (1− β) · |tj ||m(x)| ],

where β is a diffusion coefficient, Conf(ri) is the confidence of the new generated

rule from the action terms tj and tu, and Conf(tj) is the confidence of the coverings

of the uncovered set. The value of Ratio(tj) =
|tj |
|m(x)| represents the ratio between

the negative side effects and the atomic terms used. It is important to note that the
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ratio of the side effects Ratio(tj) is fixed for any given action term extracted from the

same meta-action. Therefore, when using only one meta-action only Conf(ri) will

help us decide which action term to choose for the substitution. On the other hand,

if we have multiple meta-actions involved, it is important to take into consideration

the number of side effects. We also define an execution confidence metric that models

the execution confidence of meta-actions triggering an action rule and reaching the

desired result. We derive the execution confidence metric from the right hand side of

the utility formula as follows:

ExConfi,j =
m∏
i=0

Conf(ri) ·
n∏
j=0

Conf(tj)

Where m is the number of action rules involved, such as the original rule or the

substitution rules, and n is the number of action terms covered by the meta-actions

used.

6.1.1.1 Intra Meta-action Composition

The composition of meta-action action terms can happen within each meta action,

which means that we create new action terms based on the already existing candidate

action terms that are different. This process is pretty tedious since it requires the

combination of all possible atomic action terms extracted from our data, and verifying

that they respect the action term definition introduced in the Preliminaries section.

Algorithm 1 describes the method used to extract all the possible action terms.

In this algorithm, we initialized the set A1 by the atomic action terms that are

action terms by definition. Then, for each possible action term size, we generated the

candidate action term Ck+1 by composing all the previous candidate action terms in
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Ck with atomic action terms in A1. The new candidate action terms of size k+1 were

then evaluated and inserted in the action terms Ak+1 of size k+ 1 if they satisfied the

action term definition.

6.1.1.2 Inter Meta-actions Composition

Inter meta-action composition of action terms is used when the use of more than

one meta-action is necessary. It is more complex than intra meta-action composition

as it involves duplicates of action terms and additional negative side effects. We can

use the previous algorithm to generate the new action terms from multiple meta-

actions since the candidate action terms ck ∈ Ck are defined in sets which will ignore

the duplicates action terms. However, it is important to keep track of the action terms

generated from each meta-action, as well as from multiple meta-actions. Therefore,

we slightly modified the previous algorithm to fit multiple meta-actions. Algorithm

2 describes the method used to extract all the possible action terms from multiple

meta-actions.

Algorithm 2 is used to generate action terms for two meta-actions sets Mi and

Mj by generating all possible compositions of their respective action term sets. If

one of the meta-action sets, Mi for instance, contains only one meta-action, we use

Algorithm 1 to generate its respective action terms set Ai, and if the meta-action set

contains two or more meta-actions, we use Algorithm 2 to recursively generate their

respective action terms set.
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Data: Ak : Set of frequent action terms of size k
Ck : Set of candidate action term of size k
Result: {Ak : k ≥ 1 & card(Ak) ≥ 1}
A1 := {frequent atomic action terms}; k := 1 ;
while card(Ak) ≥ 1 do

Ck+1 := new candidates generated from the combination of Ak and A1;
for for each transaction pair p ∈ P extracted from the database do

increment the count of all candidates in Ck+1 that are contained in p ;
for ck+1 ∈ Ck+1 do

if ck+1 = ck ∧ a1 && for any two atomic action terms
(f, v1 → v2), (g, w1 → w2) contained in ck+1 we have f 6= g) then

Ak+1 := Ak+1 ∪ ck+1 ;
end

end
k := k + 1;

end

end
Algorithm 1: Generating Intra Meta-actions Action Terms.

6.1.2 Experiments and Evaluation

This section describes the experimental setting, the data set used and the different

results obtained. In the following experiments, we have assumed that we already

extracted a set of action rules.

6.1.2.1 Action Rules Reduction Evaluation

In this section, we describe the method used to create new action rules that sub-

stitute the uncovered set of atomic action terms. We implemented a Java program

that reads the different actions terms and computes their likelihood and confidence.

We also generated the uncovered set to create the substitution action rules based on

all the possible meta-actions action terms, and computed their confidence. We then

selected the best substitution action rules to apply using their confidence and utility

described earlier in the action rules reduction. The rest of the experiments assume
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Data: A : Set of sets of frequent action terms Ai for each meta action Mi

Gi,j : Set of frequent action terms for two meta actions Mi and Mj

C : Set of candidate action term of size k
Result: Gi,j : card(Gi,j) ≥ 1
Ai := {frequent action terms of the meta-action mi}; Aj := {frequent action
terms of the meta-action mj}; C := new candidates generated from the
combination of one action term from Ai and one from Aj;
for for each transaction pair p ∈ P extracted from the database do

Increment all candidates C that are contained in P to be able to use them
for c ∈ C do

if c = ai ∧ aj && for any two atomic action terms
(f, v1 → v2), (g, w1 → w2) contained in c we have f 6= g) then

Gi,j := Gi,j ∪ c ;
end

end

end
Algorithm 2: Generating Inter Meta-actions Action Terms.

that the diffusion coefficient β = 0.5; however, it is up to the practitioner to select

which way the bias should be (side-effects, or execution confidence).

We chose one action rule with a confidence of 100% and we ran our program with

this rule [(C.11, 4 → 4), (F.15, 2 → 4), (F.7, 4 → 2) ⇒ (class, 0 → 1)]. When we

used the meta-action RC, all the antecedent side of the action rule r was covered

with an execution confidence of 5.16%, thus there is no need to consider reducing it.

However, when we used the meta-action SG, our program returned that the action

term [(F.15, 2→ 4)] was not covered with this meta-action. Therefore, applying this

meta-action will result in executing the rule r = [(C.11, 4 → 4), (F.7, 4 → 2) ⇒

(class, 0 → 1)]. For the meta-action SG, our reductions mechanism will reduce the

original action rule to an equivalent rule rr = [(C.11, 4 → 4), (F.7, 4 → 2), tj ⇒

(class, 0 → 1)], where tj is the action term providing the best confidence for the

substitution rule rs = [tj ⇒ (F.15, 2→ 4)]. For this meta-action, we found that tj =
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[(C.11, 2→ 4), (F.13, 4→ 4)] provides the best confidence out of all the combinations

of action terms in SG. When we used the meta-action HA, we found the uncovered

set [(C.11, 4 → 4), (F.7, 4 → 2)] that will trigger only the rule r = [(F.15, 2 →

4) ⇒ (class, 0 → 1)]. Similarly, the original rule is reduced to the equivalent rule

rr = [(F.15, 2 → 4), ti, ti ⇒ (class, 0 → 1)] with respect to ti and tj that are the

action terms substituting the two atomic terms in the uncovered set. In addition,

you will notice that any two combinations of our three meta-actions will cover the

whole antecedent side of the original rule. Table 3 compares between the generated

action rules in terms of average Rules Confidence, Execution Confidence, and Utility

O.

Table 19: Tinnitus action rules reduction statistics.

Action terms →
Meta−actions ↓

Action Rule Avg Confi-
dence

Execution
Confidence

Utility O

SG r 48.5 4.4 5.4
rs 54 11.1 13.3

HA r 16.65 8 9.5
rs 42.4 8.6 16.29

RC r 100 5.16 6.4

A practitioner would be more inclined to use the meta-action RC since it covers

all the antecedent side of the original rule and its original confidence is of 100%.

However, Table 19 shows that the execution confidence of using SG is 11.1% or

HA is 8.6% with the rules substitutions is in both cases higher than the execution

confidence of RC which is 5.16%. Furthermore, the respective utilities of SG and

HA are also higher then RC. Table 19 also shows that the average confidence of

the substitution rules rs based on both meta-actions SG and HA are higher than
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the confidence of r. In addition, Figure 12 shows that the execution measures of

the resulting substitution rules are larger then the ones for the original rule in terms

of all average rule confidence, execution confidence, and utility. Therefore, using rs

would lead to a more probable execution of the original action rule. Furthermore, the

substitution rule rs models the correlation between the original rule r and rr, thus

leading to a cascading effect from the rule rr to r.
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(b) Action rules comparison for meta-action HA

Figure 12: Comparison of the execution measures for both SG and HA.

In previous work, action rules were discovered and selected based on their support

and confidence regardless of their executability. Meta-actions were then selected

to trigger the action rules without thorough examination of whether there will be

negative side effects or not. In this chapter, we looked at the problem of action

rules discovery from all angles. We proposed an action rules reduction process that

helped us to refine action rules based on their meta-actions. We implemented our

approach on the tinnitus handicap data, and evaluated our action rules reduction

process. We did not evaluate our mechanism’s execution time performance, which
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will increase with increasing the size of the data and the number of possible action

terms combinations. Our experiments show that using meta-actions in the process

of reduction and substitution of action rules increases the likelihood and execution

confidence results for the action rules. Furthermore, we particularly included the side

effects in the utility optimization process to reduce the negative side effects based on

their correlation with the antecedent side of action rules.
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6.2 Meta-action as a Tool for Action Rules Evaluation

Action rules extraction is a field of Data Mining used to extract actionable patterns

from large datasets. Action rules present users with a set of actionable tasks to follow

in order to achieve a desired result. An action rule can be seen as two patterns of

feature values (classification rules) occurring together and having the same features.

They are evaluated using their supporting patterns occurrences in a measure called

Support. They are also evaluated using their Confidence that represents the product

probability of the two patterns confidences. These two measures are important to

evaluate action rules; nonetheless, they fail to measure the features values transition

correlation and applicability. The core of the action rules extraction process that

extracts independent patterns and constructs an action rule is the reason for failing

to measure the patterns correlation. In this chapter, we present the benefits of meta-

actions in evaluating action rules in terms of two measures, namely Likelihood and

Execution Confidence. In fact, in meta-actions, we extract real features values transi-

tion patterns, rather than a composing two feature values patterns. We also present

an evaluation model of the application of meta-actions based on Cost and Satisfac-

tion. We extracted action rules and meta-actions and evaluated them on the Florida

State Inpatient Databases (SID) that is part of the Healthcare Cost and Utilization

Project (HCUP) to evaluate our methodology.

6.2.1 Meta-Actions Versus Action Rules

Meta-actions and action rules are similar concepts since they aim at extracting

transition patterns from information systems. However, the meta-action extraction
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process extracts a subset of the action terms extracted by the action rule extraction

process. The similarities and differences of both concepts are discussed in this section

and reported in Table 20.

Action rules are commonly used by decision makers to discover possible changes in

objects’ state, which would ultimately transition the objects’ overall state to a more

desirable state with regards to the decision feature. There exist several techniques

to extract action rules. The datasets used to extract action rules are composed of

instances, where each object is described by one instance. In other words, each

object is recorded once in the dataset, and the object state is represented by its

instance features values. All possible transitions from any instance to any other

instance in the dataset are discovered in the action rules discovery process regardless

of the order in which they were recorded. This suggests that there is no temporal

ordering relation amongst instances. Therefore, some transitions discovered in the

action rules discovery process may not be applicable in a real life scenario. For

example, let us assume an information system that models cancer patient visits,

where each patient visit describes the patient pathological state in term of diagnoses.

In this example dataset, each patient visit represents an instance. Now, let us assume

that each visit record includes three diagnoses as features, namely: tumor size, Chemo

level, and number of chemotherapy performed. Also, it includes the information that

indicates whether the patient is stable or unstable, stored as decision feature at the

visit time. The diagnosis features are recorded as TSize for tumor size, CLevel for

chemo level and NChemo for the number of chemotherapy already performed on the

patient, and the patient overall state recorded as State. Note here that each patient
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visit is considered as an object for the action rule discovery process. The following

action rule may be discovered by the system: (TSize, 7 → 4) ∧ (CLevel, 4 →

3) ∧ (NChemo, 5 → 4) ⇒ (State, Unstable → Stable). In this action rule, we are

interested in the patient overall state State, and we would like to move patients from

an unstable state to a stable one. Nonetheless, we cannot transition the NChemo

from 5 to 4 since we already performed 5 chemo on this patient. Therefore, this

action rule would not be applicable in real life. It was discovered using all the visits

in our dataset, where each visit is considered as an object, regardless of the fact that

a patient may have several visits to the hospital. In other words, patients are not

taken into consideration since the object instances are visits and not patients.

Meta-actions on the other hand, represent transitions from instances that occurred

in a specific order for specific objects in real life scenarios, which insures their appli-

cability. Meta-actions do not model rules, they rather model transition effects that

are represented in an influence matrix. By using the previous example and adding a

new feature that describes the visit number, we could sort the visits by their temporal

order. In addition, we treat our system as multiple subsystems of visits identified by

the patient ID. This way, we could mine real transitions in terms of patients patho-

logical state. As a result the transition (NChemo, 5 → 4) would not be extracted

since the chemo number 4 would have taken place before chemo number 5, and the

meta-action mining process takes the visit order into consideration. In addition, dif-

ferent patients might react differently to the chemotherapies with regards to their

cancer level and tumor size. Using meta-actions, we extract transitions that occurred

in real life for each patient. For instance, we may extract the following transitions:
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(TSize, 7 → 6) ∧ (CLevel, 4) ∧ (NChemo, 5 → 6) ∧ (State, Unstable → Stable),

where the left hand side of the action term took place at a visit that occurred prior

to the right hand side. Furthermore, the transitions were mined from instances be-

longing to unique patients. In summary, the introduction of the instances order and

their identifier with regard to the object eliminated any confusion.

Table 20: Meta-actions vs. action rules.

Action Rules Meta-actions
One object is one instance One object is a set of instances
No instance order Temporal instance order
Support is minimum support of classi-
fication rule

Likelihood is the number of real transi-
tions

Confidence independent probability Term confidence and execution condi-
dence

Possible transitions Real transitions
Rules Collection of action terms

The purpose of meta-actions is to trigger transitions in feature values that will

change the object state. Eventually, the transitions triggered by meta-actions will

trigger an action rule and will cascade into transitioning the decision feature value. As

mentioned earlier, meta-actions’ transitions are a subset of the transitions extracted

in the action rules extraction process. In addition, meta-actions play a passive role, in

the sense that they do not change decision feature values. They rather inform decision

makers of possible transitions. On the contrary, action rules play an active role that

help decision makers drive their strategy, and explicitly look into the transitions that

affect the decision feature. In other words, meta-actions are not replacing action

rules; instead, they are enhancing the process of selecting the best amongst them.
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6.2.1.1 Action Rules Selection by Meta-actions

In the effort of selecting the best action rules, meta-actions play an important

role. After extracting action rules, meta-actions inform us, amongst other things, on

whether the extracted action rules are applicable or not. Meta-actions also provide

decision makers with the confidence of executing the antecedent side of an action rule.

Given a set of action rules, and an influence matrix describing meta-actions transitions

in our system, we strive to select the best applicable action rules and their respective

triggers. This is done by first dividing the set of action rules into applicable and not

applicable action rules. Applicable action rules are the rules, whose antecedent sides

are covered by the influence matrix. Then, for each action rule, we select the best

coverings of the action rule from the influence matrix. The best coverings of an action

rule are the maximal action terms in the influence matrix. By maximal action term,

we mean the action term with the highest number of atomic terms covering the action

rule. This is performed by intersecting the antecedent side of the action rule with all

the action terms in the influence matrix. It is important to note that the action terms

with higher number of atomic action terms will have a higher confidence. As one can

guess, two or more action terms maybe required to cover an action rule. Similarly,

two or more meta-actions may be required to cover an action rule.

We described earlier, how to compute the confidence of an action term TermConf

in Chapter 4; however, we still need to define how to compute the confidence of

multiple action terms, namely global confidence GlobConf . Computing the confi-

dence of multiple action terms depends on whether the action terms belong to the
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same meta-action or not. In fact, action terms {t1, t2, . . . , tn} that belong to different

meta-actions are independent since they are extracted from different object popula-

tions; therefore, their confidences are independent and their global confidence is the

product probability of independent confidences, as shown in the following:

GlobConf({t1, t2, t3, . . . , tn}) =
n∏
i=1

TermConf(ti). (14)

On the contrary, action terms that belong to the same meta-action are extracted

from the same object population, and might be extracted from the same objects.

Therefore, such action terms are dependent on the objects, and their global confidence

is dependent on their transition probability. To avoid confusion, and for the sake of

simplicity, we will define the global confidence of action terms from the same meta-

action as follow:

GlobConf({t1, t2, t3, . . . , tn}) = Like(
n⋃
i=1

{ti})/sup(Left(
n⋃
i=1

{ti})) (15)

Global confidence will inform us on how well we can trigger the antecedent side

of an action rule; however, it does not inform us about how well the features values

transitioned by the meta-action will cascade into the desired decision feature value.

For this reason, we define a new metric called execution confidence ExConf that

computes the confidence of execution for an action rule. The execution confidence of

an action rule r triggered by the set of meta-actions m is defined as follow:

ExConf(m, r) = GlobConf(m(r)) · Conf(r) (16)
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where m(r) represents the set of action terms used in triggering the antecedent side

of the action rule r.

With the introduction of the ExConf , one could select the action rules with the

highest execution confidence, along with their corresponding meta-actions. Doing so

would ensure that the action rules chosen are more likely to be accurate. However,

decision makers may also be interested in the highest return on investment solution,

which would be good enough to solve the issue in hand. In fact, meta-actions are

commonly associated with a cost based on the domain of interest. For example, in

the healthcare domain, each treatment is associated with a cost, and patients are

discharged with a bill including all their medical expenses.

Let us assume that cost Ci is associated with each meta-action mi ∈ M(S) used.

Then, a good measure associating the cost Ci and the execution confidence ExConf

would be the satisfaction rate noted as SatRate. The satisfaction rate gives a pointer

to which action rule r is good enough; in other words, which action rule and cor-

responding meta-actions incurs the minimum cost while returning an acceptable ex-

ecution confidence. The satisfaction rate for a rule r and a set of corresponding

meta-actions Mr is computed as follow:

SatRate(Mr, r) =
ExConf(Mr, r)

λ
n∑
i=1

Ci

(17)

where n is the number of meta-actions used, and 0 < λ ≤ 1 is a cost coefficient

chosen by decision makers.
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Table 21: Description of CCS single level procedure codes.

PRCCS1 Description
43 Heart valve procedures
44 Coronary artery bypass graft (CABG)
45 Percutaneous transluminal coronary angioplasty (PTCA)
47 Operations on lymphatic system
48 Insertion; revision, replacement; removal of cardiac pace-

maker or cardioverter/ defibrillator

6.2.2 Experiments

We performed a set of experiments on the Florida State Inpatient Database using

our meta-action and association action rules extraction system. We finally evaluated

the action rules extracted using the meta-actions applied.

6.2.2.1 Meta-action Extraction

We extracted meta-actions action terms from the Florida SID dataset, and com-

puted their likelihood and term confidence. In these experiments, we extracted action

terms for 231 procedures, considered here as meta-actions; however, for the sake of

this chapter, we report the results for five meta-actions described in Table 21 with

their CCS procedure codes. We built an influence matrix like table shown in Table 23

that describes our findings in terms of meta-actions’ action terms. Table 23 reports

few example of action terms of size 1 to 4 extracted for each meta-action; however,

we extracted action terms with more than 4 atomic terms and we may extract action

terms of size up to the features number. We also included the description of the CCS

diagnoses codes for some of the most significant action terms’ features in Table 22.

As mentioned in the dataset description, the flexible attributes represented by
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Table 22: Description of CCS single level diagnosis codes [4].

Diagnosis code Description
101 Coronary atherosclerosis and other heart disease
55 Fluid and electrolyte disorders
62 Coagulation and hemorrhagic disorders
106 Cardiac dysrhythmias
99 Hypertension with complications and secondary hy-

pertension
158 Chronic kidney disease
114 Peripheral and visceral atherosclerosis
108 Congestive heart failure; nonhypertensive
59 Deficiency and other anemia
58 Other nutritional; endocrine; and metabolic disorders
117 Other circulatory disease
105 Conduction disorders
155 Other gastrointestinal disorders
663 Screening and history of mental health and substance

abuse codes
257 Other aftercare
259 Residual codes; unclassified
96 Heart valve disorders
253 Allergic reactions
211 Other connective tissue disease

diagnosis are not ordered by attribute column (there is no fixed attribute columns).

For this reason, we represented each visit with a set of diagnoses instead of a set of

fixed attributes. However, as you can note in Table 23, to simplify the reporting, we

assume the domain of each diagnosis is in {0, 1}, where 1 means that the patient is

diagnosed with that particular diagnosis at the current visit, and 0 means that the

patient is not diagnosed with that specific diagnosis at the current visit.

We first grouped our dataset by procedures that are represented here by the first

primary procedure attribute PRCCS1. We also grouped the visits by patient ID

V isitLink and ordered each patient’s visits by the DaysToEvent attribute. We then
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built pairs of visits for the meta-action applied, and extracted the action terms from

the pairs. Finally, we computed the likelihood and term confidence for each action

term. As you can see from Table 23, the likelihood and term confidence of the action

terms extracted are very high. The higher the likelihood of the action term, the more

important the diagnoses and the more likely the diagnoses involved are the main

reason of the procedure. In addition, the higher the term confidence, the more stable

the meta-action and procedure result.

6.2.2.2 Action Rules Extraction and Evaluation

We extracted action rules using the association action rules extraction method.

Commonly, we extract action rules from all the dataset; however, for the sake of

this chapter, we extracted action rules from a subset of the dataset that contains

patient visit records involving the meta-actions reported in Table 23. It is important

to note that the meta-action attribute, PRCCS1, is not involved in the action rules

extraction process. In addition, neither the patient ID, V isitLink, nor the ordering

attributes, DaysToEvent, are used in the action rules extraction process.

Following this setting, we extracted the following two rules with their respective

support and confidence, where patients stay alive; more precisely, the decision feature

DIED stays at 0:

r1 = (58, 1→ 0) ∧ (59, 1→ 0) ∧ (55, 1→ 0)⇒ (DIED, 0→ 0)

where sup = 334, and conf = 85%

r2 = (62, 1→ 0) ∧ (55, 1→ 0) ∧ (106, 1→ 0)⇒ (DIED, 0→ 0)

where sup = 101, and conf = 78%
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Now, we would like to apply meta-actions to trigger those rules. Therefore, we

need to pick up the action terms that cover the antecedent side of each rule and their

corresponding meta-actions. If we apply the set of meta-actions M{48} = {48} to

action rule r1, we will get the following global confidence and execution confidence:

GlobConf(r1) = 80% and ExConf(M{48}(r1)) = 68%; whereas, if we apply the meta-

actions M{44} = {44} we will get : GlobConf(r1) = 100% and ExConf(M{48}(r1))

= 85%. In other words, if the patient has the following diagnoses {55, 59, 58} =

{Fluid and electrolyte disorders, Deficiency and other anemia, Other nutritional; en-

docrine; and metabolic disorders} it is better to perform a Coronary artery bypass

graft (CABG), CCS code of 44, rather than Insertion; revision, replacement; removal

of cardiac pacemaker or cardioverter/ defibrillator, CCS code of 48. However, de-

pending on the cost of the meta-action and the satisfaction rate, a practitioner may

make a different decision.

Similarly, we can apply meta-actions M{44} = {44}, Coronary artery bypass graft

(CABG), to trigger r2 and resolve the diagnoses {62, 55, 106} = {Coagulation and

hemorrhagic disorders, Fluid and electrolyte disorders, Cardiac dysrhythmias} and

we will get: GlobConf(r1) = 94% and ExConf(M{48}(r1)) = 73.32%.

We lack the cost of meta-actions in our dataset; hence, we cannot compute the

SatRate. Nonetheless, this information can be obtained via consultation with a

practitioner. If we assume that the cost of any given meta-action is the same and that

λ is selected as a constant for each meta-action, then the SatRate will be equal to the

ExConf and practitioners can base their decision on the best execution confidence.
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Table 23: Influence matrix like table reporting support and confidence.

Meta-action Action terms with CCS codes Like TermConf %

(101, 1→ 0) 167 84

(55, 1→ 0) 165 91

(62, 1→ 0) 146 96

(106, 1→ 0) 135 88

43 (99, 1→ 0) 66 96

(55, 1→ 0) ∧ (62, 1→ 0) 46 90

(55, 1→ 0) ∧ (106, 1→ 0) 44 90

(158, 1→ 0)∧ (106, 1→ 0)∧ (99, 1→ 0) 14 87.5

(55, 1 → 0) ∧ (158, 1 → 0) ∧ (101, 1 →

0) ∧ (99, 1→ 0)

8 100

(101, 1→ 0) 181 85

(108, 1→ 0) 92 91

(62, 1→ 0) 97 98

(114, 1→ 0) 86 93

44 (58, 1→ 0) 193 91

(108, 1→ 0) ∧ (106, 1→ 0) 32 94

(55, 1→ 0) ∧ (106, 1→ 0) 42 91

(62, 1→ 0) ∧ (55, 1→ 0) ∧ (106, 1→ 0) 16 94

(55, 1 → 0) ∧ (108, 1 → 0) ∧ (58, 1 →

0) ∧ (59, 1→ 0)

8 100



101

Table 23: (Continued)

Meta-action Action terms with CCS codes Like TermConf %

(101, 1→ 0) 262 78

(117, 1→ 0) 97 86

(105, 1→ 0) 85 83

(155, 1→ 0) 81 88

45 (663, 1→ 0) 201 85

(55, 1→ 0) ∧ (59, 1→ 0) 33 89

(58, 1→ 0) ∧ (257, 1→ 0) 40 77

(259, 1→ 0)∧(663, 1→ 0)∧(101, 1→ 0) 26 76

(58, 1 → 0) ∧ (259, 1 → 0) ∧ (663, 1 →

0) ∧ (101, 1→ 0)

6 67

(101, 1→ 0) 347 81

(117, 1→ 0) 135 88

(105, 1→ 0) 135 82

(96, 1→ 0) 99 93

47 (155, 1→ 0) 97 94

(117, 1→ 0) ∧ (257, 1→ 0) 45 80

(259, 1→ 0) ∧ (253, 1→ 0) 41 90

(117, 1→ 0)∧(257, 1→ 0)∧(101, 1→ 0) 24 83

(117, 1 → 0) ∧ (105, 1 → 0) ∧ (257, 1 →

0) ∧ (101, 1→ 0)

9 75
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Table 23: (Continued)

Meta-action Action terms with CCS codes Like TermConf %

(257, 1→ 0) 335 87

(96, 1→ 0) 152 90

(211, 1→ 0) 115 86

(106, 1→ 0) 147 94

48 (155, 1→ 0) 137 91

(59, 1→ 0) ∧ (58, 1→ 0) 69 86

(55, 1→ 0) ∧ (58, 1→ 0) 69 87

(58, 1→ 0) ∧ (59, 1→ 0) ∧ (55, 1→ 0) 27 80

(55, 1 → 0) ∧ (58, 1 → 0) ∧ (158, 1 →

0) ∧ (99, 1→ 0)

11 100

Nowadays, action rules are used in several industries, and the healthcare industry

among others is a very sensitive area. Results from action rules extraction process

have to be thoroughly evaluated and analyzed to be used in such industries. Action

rules are commonly constructed from feature values patterns and not from transition

patterns. In this chapter, we used meta-actions to evaluate action rules and we intro-

duced new evaluation metrics. We used the 2010 Florida State Inpatient Databases

(SID), and extracted meta-actions and action rules from this dataset. We evaluated

meta-actions applied to action rules with the different metrics and compared the

results to traditional metrics.
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6.3 Chapter Conclusion

In This chapter, we demonstrated how meta-actions could be used in healthcare

systems. We introduced an action rules reduction mechanism. This mechanism allows

the full execution of action rules while minimizing the number of side effects. This

mechanism could be applied in the case where two patients react differently to a

treatment recommended by an action rule. In fact, some patients diagnoses might be

treated by the treatment (meta-action) applied because the meta-action used covers

all their preconditions; other patients will not see improvements in their diagnoses

because the action rule recommendation could not be fully executed. In addition, a

worst situation where the patients might develop severe negative side effects could

be avoided by the use of meta-actions to substitute action rules. We also introduced

action rules evaluation metrics based on meta-actions and performed experiments

that show the effectiveness of our metrics in comparison with the classical ones.



CHAPTER 7: CONCLUSION AND DISCUSSION

The analysis of treatments and side effects patterns in healthcare is a challenging

task, especially when the applications of such knowledge have direct impact on pa-

tients’ health. In this work, we identified and defined the meta-actions responsible

in executing the action rules. We further studied the challenges introduced with ap-

plying meta-actions in healthcare systems. We used the tinnitus handicap dataset

and the Healthcare Cost and Utilization Project (HCUP) Florida State Inpatient

Databases (SID 2010) to validate and evaluate our approaches.

We studied meta-actions and their effects that represent medical treatments. We

defined and considered two representations of meta-actions and mined their effects.

The first representation of meta-action effects was based on action terms and the

second was based on action sets. Furthermore, we defined evaluation metrics for both

representations and evaluated our mining methods. The results of the meta-actions

mining for both representation techniques and both provided datasets show that the

effects of medical treatments are stable with high confidence with regards to patients’

preconditions.

The analysis of mined negative side effects shows that their confidence with regards

to patients’ preconditions in term of diagnoses is very low, which means that side-

effects do not depend on patients’ diagnoses. They rather depend on the patient’s



105

state with regards to co-morbid conditions and stable features. Their prediction

also depends on the patients’ overall state based on the cluster analysis. When

treatment (meta-actions) and negative side effects are known, we proposed three

patients grouping schemes for personalized action rule extraction, and noted that the

meta-actions based grouping returned the best outcome in terms of confidence and

support.

We used the meta-actions effects to present alternative substitute action rules when

their original successful execution is improbable and they result in severe side effects.

We showed that the new reduced action rules have higher execution confidence when

coupled with meta-actions. In addition, we presented action rules evaluation based

on meta-actions and compared both concepts. We introduced new evaluation metrics

for action rules execution and compared them to traditional metrics. Our evaluation

metrics showed more accurate estimations for action rules. Moreover, we presented

an attempt to create a personalized treatment recommendation system for patients.

The main shortcomings and challenges that we encountered in this work are the un-

availability of detailed ontology for diagnoses and their order of severity. This makes

treatment recommendations flawed since doctors may decide to start by prescribing

treatments for urgent and severe problems when faced with a multi-diagnoses patho-

logical state. Furthermore, The datasets that we received are highly incomplete and

provide inconsistent structures.
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