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ABSTRACT 
 
 

SUBHRA PAUL. Three-dimensional steady state and transient eddy current modeling 
(Under the direction of Dr. JONATHAN BIRD) 

 
 
Maglev transportation using electrodynamic wheels is a promising new technology 

aimed at providing a low cost, high-speed and environmental friendly mode of 

transportation. In this technology, Halbach permanent magnet rotors, termed 

electrodynamic wheels, are simultaneously rotated and translationally moved above a 

conductive non-magnetic guideway. The time-changing magnetic field created in the 

airgap between the rotors and guideway induces eddy currents in the guideway which in 

turn interact with the magnetic rotor field to produce suspension and propulsion or 

braking forces which are required for maglev transportation. This technology offers an 

integrated suspension and propulsion system. 

In this dissertation the eddy current distribution in the conductive guideway has been 

modeled in three-dimension. An approach for the computation of the static magnetic 

fields due to the Halbach rotor has been presented using novel magnetic charge sheet 

concept. Finite element models have been developed to study the steady state and 

transient eddy current field distribution. Three analytic models have been developed to 

compute the electromagnetic forces and torque acting on the rotor as well as joule loss in 

the guideway. The models include the heave, translational and rotational motion of the 

magnetic rotor for dynamic simulation. The developed analytic and finite element models 

are highly generic and thus can be applied to any magnetic source. The developed finite 

element models have been validated by comparing it with commercial finite element 

software and previously developed boundary coupled steady state finite element model. 
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Commercial finite element software and two experimental setups have been used to 

verify the developed analytic models. Computational efficiency of the presented models 

has been compared with the previously developed finite element model and commercial 

software. Good performance of the developed models has been achieved. 
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CHAPTER 1 : INTRODUCTION AND REVIEW 

 
 

1.1. Introduction 

With a projected population growth of 48 million in the US by 2030 [1, 2], there is an 

increasing need for a quick, economic, energy efficient and environmental friendly urban 

and intercity transportation system [3].  At this hour of civilization with growing world 

pollution and diminishing natural resources, such as oil, it would be wise to investigate 

alternative modes of transportation. The Automobile industry is investing heavily in 

electric and hybrid cars [4-8]. However, the price of the vehicles may discourage the 

majority of the population from using them. In addition, studies have revealed that 

building new roads or expanding existing ones to relieve traffic congestion may turn out 

to be futile exercise as building new roads simply spurs additional traffic [9-11]. Traffic 

often is said to behave more like a gas than a liquid - it expands to fill the available space 

[12]. Hence, expanding highways is unlikely to meet the growing demand of quick urban 

transportation. With flights not being suitable for daily mode of intercity transportation 

for cost and saturation of routing, the only remaining alternatives are high-speed trains.  

In the 21st century magnetic levitation (maglev) stand out as an outstanding 

technology for high-speed trains. Before discussing its advantages and drawbacks, it 

would be helpful to have a brief understanding of maglev technology. Section 1.2 

provides a brief literature review of the existing maglev technologies to identify the 

advantages and disvantages of such technologies which are summarized in section 1.3.   
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The Electrodynamic Wheel (EDW) concept is discussed in Section 1.4 and its 

performance is compared with other existing technologies in section 1.5. The recent work 

on the EDW technology and the motivation behind this research work is outlined in 

section 1.6 which is followed by the research goals and dissertation format in section 1.7 

and 1.8 respectively.  

1.2. Maglev- How It Works 

As the name suggests, the train is suspended above and propelling along the 

guideway using magnetic fields. An excellent literature review of different suspension 

and propulsion technologies of maglevs is already present in [13-16]. So here repetition 

will be avoided. Only the basic operating principle of a maglev train will be discussed in 

this section with a purpose of familiarizing the reader with the technology.  

1.2.1. Suspension or Levitation System 

The levitation system can be broadly categorized into two types depending on the 

mechanism used. In the first type, electromagnetic repulsion force between the vehicle 

and guideway is used to lift the vehicle and this is called Electrodynamic Suspension 

(EDS) [17-22] system. The second type utilizes electromagnetic attraction force between 

the vehicle and guideway for levitation and termed as Electromagnetic Suspension 

(EMS) [15-17, 19, 22-26] system. There are varieties of ways to achieve this force of 

attraction or repulsion between the stationary guideway and moving vehicle as discussed 

next. 

1.2.1.1. Electrodynamic Suspension System 

In the simplest design, permanent magnets (PM) of high coercive material, such as 

barium-ferrite, are placed along each side of the vehicle and guideway as shown in Figure 

1.1. The repulsion force between the set of magnets provide levitation and guidance force 
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[18, 24, 27]. One of the advantages of using ferrite PM is that there are no induced eddy 

currents. Thus the problems with drag force due to such currents do not arise and also 

high lift force can be achieved with this design [15]. However, the main demerit of this 

approach is its inherent instability which can be noted from Earnshaw’s theorem [15, 16, 

28]. Active control is required to create stability in this design. In addition, the cost of the 

permanent magnet guideway is too much for practical, long distance transport systems 

[19].  

 
Figure 1.1.  Magnetic suspension based on the repulsive force between magnets on a vehicle and 
guideway [19].   

In the second approach, proposed by Danby and Powell in 1966 [29, 30], 

superconductive (SC) coils are mounted on the vehicle which moves over a simple 

conductive sheet guideway as shown in Figure 1.2. As the vehicle moves, a time 

changing magnetic field, due to the SC coils, induces current in the guideway which 

repels the vehicle according to Lenz’s law. The drawback of this approach is the induced 

currents in the guideway produce power loss in the guideway and large drag force on the 

vehicle.  

Vehicle

Opposing 

PM pairs

Guideway
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Figure 1.2.  Magnetic suspension based on the repulsive force between superconductive coils on vehicle 
and simple conductive guideway [19].   

In order to reduce the power loss and drag force on the vehicle, Danby and Powell 

proposed to have simple conductor loops on the guideway instead of a conductive sheet 

[31] as shown in Figure 1.3.  

 
Figure 1.3.  Magnetic suspension based on the repulsive force between superconductive coils on vehicle 
and conductor loops on guideway [19].   

To reduce the power loss and drag force further, Danby and Powell proposed a null 

flux suspension guideway topology [32, 33]. There are many geometric forms of null flux 

loops. But they have the same feature. The null flux loops are wound on the guideway in 

such a way that when the vehicle is in an equilibrium position, the net magnetic flux 

through the loop is zero which makes the induced current zero [32, 34]. As a result, 

induced current in the null flux loop is much smaller than conductive sheet guideway or 

simple conductor loops on the guideway. This greatly reduces the power loss and drag 

force. One such null flux loop is the “Figure of 8 loop” as shown in Figure 1.4. The loops 

#1 and #2 are connected in opposite direction and coupled to form a complete circuit 
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[19]. When the SC coil is moved from its equilibrium position, the induced current in the 

loop pushes the SC coil towards the equilibrium. When mounted on the vertical side of 

the guideway, it provides vertical restoring force to the SC coil. When it is mounted on 

the horizontal surface of the guideway, as shown in Figure 1.4 (b), it provides lateral 

restoring force.  

(a) 
 

(b) 

Figure 1.4.  Magnetic suspension based on the repulsive force between superconductive coils on vehicle 
and “Figure of 8 loop” on the vertical side of the guideway [19].  (a) Vertical “Figure of 8 loop” for 
vertical stability and (b) horizontal “Figure of 8 loop” for lateral stability. 

The null flux loop is used for levitation as well as for providing vertical stability for 

the Japanese high speed maglev JR MLX 01 as shown in Figure 1.5.  

 
Figure 1.5.  Null flux suspension system using “Figure of 8 loop” on guideway used in JR MLX 01[35].   

1.2.1.2. Electromagnetic Suspension System 

An electromagnetic suspension system (EMS) was first proposed by Graeminger in 

1912 [36]. Electromagnetic suspension employs electromagnets on the underside of the 

vehicle and ferromagnetic material such as iron plates on the guideway as shown in 

Figure 1.6. The vehicle is suspended due to the attraction force between the 
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electromagnet and iron plates [15, 17-19]. In Figure 1.6, the arrows show the direction of 

the attraction force between iron plate and electromagnets. Unlike EDS, EMS suspension 

is inherently unstable because as the electromagnets move closer to the plate, the force of 

attraction increases which draws the electromagnets even closer to the plate. To achieve 

vertical stability gap sensors and a feedback control scheme is used [37-39]. The 

Transrapid of German [40, 41] and HSST of Japan [38] use an EMS suspension and 

guidance system. The levitation and guidance system of the Transrapid is shown in 

Figure 1.7 while Figure 1.8 shows the feedback control mechanism employed in the 

HSST – 100L for air gap regulation.  

 
Figure 1.6.  Electromagnetic suspension based on attraction between iron plate on guideway and 
electromagnets on vehicle.   

 
Figure 1.7.  EMS suspension and guidance system employed in Transrapid [40].   
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Figure 1.8.  Feedback control mechanism of HSST-100L to regulate the air gap [42]. 

1.2.2. Propulsion System 

The propulsion systems used in current maglev vehicles can be divided into two main 

categories depending on the type of linear motor used: (1) Linear synchronous motor and 

(2) linear induction motor. The operating principle of each one will be briefly described 

below. 

1.2.2.1. Linear Synchronous Motor propulsion 

Linear synchronous motor (LSM) propulsion was proposed by Danby and Powell for 

maglev applications [43, 44] and since then it has been studied by many researchers [41, 

45-49]. Its operating principle is the same as its rotary counterpart. This propulsion 

system uses sinusoidally distributed poly-phase windings on the guideway that carry 

alternating poly-phase current which can be supplied from the conventional power grid. 

When energized, the LSM windings create a travelling magnetic field which moves with 

the alternating current frequency or synchronous frequency. The travelling field acts on 

the permanent magnets, electromagnets or superconducting magnets onboard the vehicle 

to push it forward.  The vehicle moves at the same speed as the magnetic wave, that is at 

synchronous speed [50]. The speed is continuously regulated only by varying the 
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frequency of the alternating current. By reversing the direction of the travelling wave, 

non-contact braking is achieved and the braking energy can be fed back to the grid [40]. 

 
(a) 

 
(b) 

Figure 1.9. (a) Top view and (b) end view of propulsion mechanism using linear synchronous motor 
[19]. 

 The Transrapid (with an operational speed of 400 – 500 km/h) and JR MLX 01 (the 

world’s fastest train with maximum speed of 581 km/h) use the LSM propulsion system 

[40-42]. Figure 1.10 shows the propulsion system used in the Transrapid. Alternating 

poly-phase current fed into 3-phase motor winding attached to the guideway, shown in 

Figure 1.10 (a), creates a travelling magnetic field as shown in Figure 1.10 (b). 

 
(a) 

 
 

 

(b) 

Figure 1.10. Propulsion system of German Transrapid [40].  
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1.2.2.2. Linear Induction Motor propulsion 

A linear induction motor (LIM), as shown in Figure 1.11, has been used for maglev 

propulsion [38, 42, 51-53]. It works on the same principle as its rotary counterpart. The 

stator of the LIM has sinusoidally distributed windings which when supplied with 

alternating poly-phase current creates a travelling magnetic wave. The travelling wave 

moves with synchronous speed, vs. The rotor is a thin plate made of conductive material 

such as aluminum with back iron. The travelling magnetic wave induces eddy currents in 

the rotor. The induced eddy currents interact with the travelling field to produce thrust 

force and the rotor moves at a speed, vx, less than the synchronous speed, vs [54]. 

 
Figure 1.11. Operating principle of linear induction motor. 

The LIM is used for propulsion in the HSST [38, 42] (operational speed of 100 kmph) 

which is shown in Figure 1.12. In the HSST, the poly phase windings are mounted on the 

moving vehicle and an aluminum plate with back iron is mounted on the stationary 

guideway.  
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Figure 1.12. A vehicle module of HSST showing Linear induction motor and electromagnets [42]. The 
LIM is used for propulsion while the electromagnets are used for electromagnetic suspension discussed 
before. 

1.3. Advantages and Disadvantages of Maglev 

1.3.1. Advantages 

Understanding basic maglev technology helps one identify the following advantages 

over traditional modes of transportation such as automobiles, conventional trains and 

flights. 

• Maglev is very energy efficient. It does not burn oil but instead consumes 

electricity which can be produced using sustainable and renewable energy 

sources like wind and solar. At 300 miles per hour (m/h) in the open 

atmosphere, it has been calculated that a Maglev train consumes only 0.4 

megajoules per passenger mile, compared to 4 megajoules per passenger mile 

of oil fuel for a 20-miles-per-gallon auto that carries 1.8 people (the national 

average) at 60 miles per hour [35]. 

• This technology reduces the air pollution as it emits less CO2 than other 

transportation modes [35]. Figure 1.13 shows CO2 emission comparison 

among Transrapid, conventional high-speed train German ICE and other 

modes of transportation.    
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Figure 1.13. CO2 emissions for different modes of transportation [40]. 

Also maglev trains emit less noise due to the non-contact levitation and 

propulsion technology. Less noise makes maglev suitable for transportation in 

urban areas. At speeds up to 155m/h the Transrapid almost operates soundlessly 

in urban areas as shown in Figure 1.14.   

 
Figure 1.14. Noise level [dB] at a distance of 82 ft [40]. 

• It almost removes the dependency on oil. The typical oil consumption of 

maglev is shown in Figure 1.15 along with other modes of transportation. 
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Figure 1.15. Energy efficiency by transport mode in barrels of oil per 10,000 passenger miles 
[55]. 

• Maglev guideways and vehicles last longer than trucks and automobiles with 

minimal maintenance because of its non-contact type operation [35].  

1.3.2. Disadvantages 

In spite of possessing the said advantages, the implementation of maglev trains 

throughout the world is very limited. This may be due to the initial investment cost to set 

up the infrastructure. The JR MLX 01 and Transrapid have an approximate cost of $60 

million per mile [56]. Hence for maglev technology to be implemented throughout the 

world, its cost must be greatly reduced. As discussed in section 0, two separate systems 

for propulsion and suspension are invariably employed in current operating maglevs. It is 

intuitive that integrating the two separate systems into one and using a passive guideway 

should lead to a significant reduction in the construction cost. 



13 

1.4. Idea of EDW 

Research has been conducted to find an integrated propulsion and suspension system 

for maglev and a brief summary of that is provided in Table 1.1.  

Table 1.1: Different integrated suspension and propulsion technologies 

Technology Characteristics Example 

Linear induction 
synchronous  
motor (LISM) 

• Uses electromagnetic attraction between LSIM field 
coil on vehicle and iron rail on guideway for levitation 
[57]. 

• Linear induction motor for propulsion [58]. 

• Allows small air gap due to EDS type levitation [22, 
59].  

Magnibus 01 test 
vehicle of Romania 
[57, 60] 

Self-excited Linear 
synchronous motor 

• Levitation is due to attractive force between the wound 
part of the LSM on the vehicle and ferromagnetic rail 
on the guideway. 

• LSM is used for propulsion 

• Electromagnetic attraction force reduces at high speed 
and gradually becomes negative. Hence it is not 
suitable for high-speed application [13].  

• Allows small air gap due to EDS type levitation [22, 
59].   

ROMAG test 
vehicle of US [61] 

Electromagnetic 
river (ER) 

• Levitation is due the electromagnetic repulsion 
between the LIM primary winding current on the 
guideway (active) and secondary aluminum without 
back iron on vehicle (passive) [62]. 

• Propulsion is due to LIM [62, 63]. 

• Suffers from very low power factor [13]. 

Small scale set-up.  

Magnet rotation 

• Levitation is achieved due to electromagnetic repulsion 
between superconducting magnets [64] or rare earth 
permanent magnets [65-69] and passive conductive 
guideway. 

• Propulsion is due to the interaction between rotating 
magnets and conductive guideway. Braking force 
results depending on slip speed. 

• Eliminates low power factor issue of ER. 

• Superconductive magnets idea is costly. Rare earth 
magnets can be used. 

Small scale 
experimental set-up 

After studying the available options for an integrated propulsion and suspension 

maglev system, Bird [13, 70] investigated an Electrodynamic wheel (EDW) concept in 

which Halbach rotors would move and rotate above a conductive sheet guideway made of 

non-magnetic material such as aluminum as shown in Figure 1.16. A Halbach rotor is a 

permanent magnet rotor made of rare-earth alloy neodymium–iron–boron (NdFeB) and is 
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named after late physicist Klaus Halbach of Lawrence Berkeley National Laboratory. The 

magnet segments of a Halbach rotor are radially and azimuthally magnetized so as to 

focus the entire magnetic field outside the rotor while cancelling it inside as shown in 

Figure 1.17. As a result, it can produce strong magnetic field in the air gap and thus is a 

suitable choice for maglev applications. By adjusting the number of magnet segments, the 

magnetic field can be made sinusoidal in the air gap. 

 
Figure 1.16. Translationally moving and rotating EDW above a passive conductive guideway [13]. 

 
Figure 1.17. Magnetic flux density |B| pattern of a static 32 segment EDW created using JMAG [71] 

Electrodynamic suspension mechanism is used here to levitate the vehicle. As the 

rotor rotates, induced eddy current in the conductive sheet guideway interacts with the 

source field to repel the rotor according to Lenz’s law and thus the vehicle is suspended. 
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As discussed before, this suspension can be inherently stable. In [13] Bird termed the 

Halbach rotor as electrodynamic wheel (EDW) because of the levitation mechanism used.  

This technology works much like a linear induction motor to generate propulsion 

force. When the EDW rotates and moves along the guideway, the time changing 

sinusoidal magnetic field induces eddy current in the guideway which then interacts with 

the rotor field to produce propulsion or drag depending on slip speed. The difference 

between the circumferential velocity and translational velocity of the rotor is called slip 

speed (sl). Hence  

 
l m o xs r vω= −  (1.1) 

where ωm, vx and ro are the mechanical angular speed [rads-1], translational speed [ms-1]  

and outer radius of the rotor [m]. If the slip speed is positive, propulsion force results and 

pushes the vehicle ahead. But if it is negative, drag force is generated and slows the 

vehicle down. This is illustrated in Figure 1.18.  

 
Figure 1.18. Thrust or drag force vs. slip speed. 

1.5. Comparison of EDW with Existing Operating Maglevs 

EDW technology allows propulsion and suspension of the vehicle by using only an 

aluminum sheet guideway and Halbach magnetic rotor or EDW. A brief comparative 
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analysis between EDW and existing operating maglev technologies is provided in Table 

1.2 and Table 1.3. 

Table 1.2: Comparison between EDW and existing operating maglev technologies 

Name of Maglev Characteristics 

Transrapid 

• Uses electromagnets attached to the vehicle for suspension which is 
inherently unstable. Active control required for vertical stability. 

• Allows small air gap (~3/8th - 1/2 inch) [22, 56, 59] which makes guideway 
maintenance difficult and expensive. 

• Uses LSM for propulsion. This makes guideway construction costly and 
complex.  

• Guideway structure is elevated. 

• Guideway cost ~$60 million/ mile [56].  

JR MLX 01 

• Uses superconducting magnets for suspension. It needs extra cooling system 
on board. So expensive [22].  

• Can operate at large air gap as it operates on EDS [22, 56, 59, 72] (~6 - 10 
inch). Guideway maintenance easy. 

• Levitation is inherently stable. 

• Uses LSM for propulsion which makes guideway construction costly. 

• Guideway structure is elevated.  

• Guideway cost ~$60 million/ mile [56]. 

HSST 

• Uses electromagnets attached to vehicle for levitation which is inherently 
unstable. Needs active control for vertical stability. 

• Allows small air gap [22, 56]. So guideway maintenance costly. 

• Uses LIM for propulsion with 3-phase motor windings on the vehicle and 
aluminum plate with back iron on guideway. Vehicle design complex. 

• Guideway structure is elevated. 

Proposed EDW 

• Uses Halbach rotor for suspension as well as propulsion.  

• Levitation is stable but highly underdamped.  

• Allows large air gap [22, 72]. Hence guideway maintenance easy and 
inexpensive. 

• Guideway is made of aluminum which is cheap. 

• Guideway structure is flat, not elevated. Hence construction cost less than 
elevated structure. 
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Table 1.3: Different integrated suspension and propulsion technologies [13] 

Name of Maglev Source of loss 

Transrapid 

• Drag force losses. 

• I2R losses in EMS coils on vehicle. 

• I2R losses in EMS iron on guideway. 

• I2R losses in LSM coils on guideway. 

• I2R losses in LSM iron on guideway. 

JR MLX 01 

• Drag force losses. 

• I2R losses in LSM coils on guideway. 

• I2R losses in LSM iron on guideway. 

• I2R losses in EDS coils on guideway. 

• Magnetic cooling losses. 

HSST 

• Drag force losses. 

• I2R losses in EMS coils. 

• I2R losses in EMS guideway. 

• I2R losses in LIM 3-phase winding on vehicle. 

• I2R losses in LIM aluminum plate on guideway. 

• Hysteresis losses in iron on guideway. 

• Power factor correction losses. 

Proposed EDW 
• Large I2R losses in guideway. 

• I2R losses in wheel motor. 

• Mechanical losses in wheel. 

1.6. Recent Work on EDW Project 

Initially Bird proposed a split sheet guideway topology [13, 73-75] as it would 

provide lateral restoring force and thus lateral stability. However, studies revealed that, 

for the same rotor parameters, this guideway topology reduces the lift force by a large 

extent and thrust by lesser extent [13, 74]. As a result, the lift-to-weight ratio is also 

reduced compared to single sheet guideway as shown in Figure 1.19. Better performance 

can be achieved with split sheet guideway by increasing the rotor width which would 

increase the manufacturing cost of the EDWs. Also split sheet topology increases power 

loss in the guideway compared to single sheet topology [13, 74]. Hence the idea of split 

sheet topology was abandoned.  
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Figure 1.19. Lift-to-weight ratio vs. rotor width for split sheet and single sheet guideway topology [13, 
75]. EDW dimension is kept same for both guideway topologies. 

Bobba has worked on 3-D finite element modeling of a Halbach rotor moving above a 

single sheet conductive guideway using JMAG [71]. He developed an analytic model of 

the magnetic field created by a Halbach rotor using a Fourier Bessel function approach 

[76]. Bobba also studied the performance characteristics such as lift-to-weight ratio, 

thrust efficiency, magnetic rolling resistance for wheels in series using a 2-D steady state 

finite element model in Comsol developed by Bird [77, 78]. 

More recently Paudel developed a 2-D analytic steady state and transient model of the 

rotational and translational movement of a Halbach rotor above single sheet guideway 

[14, 79-82]. He analytically calculated the thrust and lift force acting on the rotor as well 

as power loss in the guideway analytically. For experimental verification, Paudel set up a 

pendulum model by hanging an EDW near a guideway wheel as shown in Figure 1.20 

[81, 82]. Due to the action of the lift force and gravity, the EDW would oscillate and 

eventually come to a steady state condition as shown in Figure 1.21 which shows a 

comparison between the experimental and 2-D analytic model [79]. The difference 

between the two models is clearly noted. It is due to the fact that the 2-D model fails to 
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take into account the finite width of the guideway and rotor. Hence there is a clear need 

for modeling the Halbach rotor motion in 3-D analytically to achieve a better 

performance. In addition, in [14] very small electromagnetic damping was reported for a 

maglev vehicle with four EDWs. Hence, the damping and stiffness coefficients need to 

be determined in 3-D analytically for better understanding of the contributing factors in 

order to improve the dynamic performance of such EDW technology.  

 
Figure 1.20. Experimental set-up showing EDW, brushless DC motors, batteries pack [14] 

 
Figure 1.21. Air gap profile obtained using 2-D analytic model and experimental setup [14] 

The recent work performed on the EDW technology as discussed in this section is 

summarized in Table 1.4. 
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Table 1.4: Summary of the recent work performed on the EDW technology 

Authors  Work completed 

Bird [13] � Proposed the concept of EDW. 
� 2-D and 3-D steady state model in FEA with source modeled using current 

sheet. 
� 2-D transient model in FEA with source modeled using current sheet. 
� Proposed split-sheet and single-sheet guideway topology. 

Bobba [71] � 3-D analytic permanent magnet rotor field computation using Bessel function. 
� 3-D transient FEA model using JMAG. 

Paudel [14] � 2-D analytic steady state model with heave velocity for eddy current force and 
power loss calculation. Source field was modeled using current sheet. 

� 2-D analytic transient model for the calculation of force and power loss. 
Source field was modeled using current sheet. 

� 2-D stiffness and damping analysis. 
� Investigation of dynamic behavior of 2-DOF EDW maglev vehicle with 2-D 

steady state and transient force equations. 

1.7. Research Goal  

The above discussion regarding recent work on EDW technology has identified the 

need for a new 3-D analytic model to take into account the finite width of the EDW and 

guideway. Also the analytic model should be able to compute the electromagnetic fields, 

forces, power loss and torque not only when the rotor is at the center but also when it is 

laterally offset above the guideway. The analytic model will provide greater insight and 

allow control techniques to be examined.  

Eddy current induction is used in a variety of applications such as eddy current testing 

[83-85], eddy current dampers [86-88] and brakes [89-91] in addition to the maglev 

technology. Thus, another goal of the dissertation is to make the developed models 

applicable for all the specified applications. With this aim, the finite element and analytic 

derivations are performed in such a way that they are valid for any type of magnetic 

source such as current coils, electromagnets or permanent magnets. Only for model 

validation purposes, a Halbach rotor has been used. The words “plate” instead of 
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“guideway” and “magnetic source” instead of “magnetic rotor” have been used to make 

the derivation generic.  

In order to achieve the stated goals, the following tasks need to be performed: 

• A computationally efficient method of computing the 3-D magnetic fields due to a 

magnetic source is required. The source modeling technique can then be used 

throughout the dissertation for source field computation. The existing analytic 

method of field calculation of a Halbach rotor using current sheet approach [75] is 

computationally expensive. Finite element models need to be developed in 

commercial FEA software for validation purposes. 

• For analytic model validation, computationally efficient 3-D transient and steady 

state models using finite element analysis are required to model the interaction 

between a moving magnetic source and conductive plate. The models should be 

able to include the heave as well as translational and rotational motion of the 

source unlike most of the commercial finite element softwares. 

• Although finite element models can simulate the eddy current distribution due to 

the motion of a magnetic source above a conductor, an analytic model is always 

advantageous due to its computational efficiency. New 3-D analytic model is 

required for this purpose.  

•  Electromagnetic damping and stiffness coefficients need to be calculated from 

the analytic model. 

Table 1.5 outlines the required tasks and the relevant chapters of this dissertation.  
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Table 1.5: Summary of the required tasks on the EDW technology 

 Model type Task(s) Chapter(s) 

Analytic • Magnetic source field modeling using magnetic charge sheet 

• This source modeling technique will be used throughout the research for 
source field modeling 

• Model will be developed in Matlab 

2 

FEA • Segmented PM rotor modeling using Comsol and JMAG.  

• These FEA rotor models will be used to validate the magnetic charge 
sheet based magnetic source field computation technique 

2 

FEA • 3-D transient and steady state models of eddy current distribution in a 
conductive plate. 

• Models will be developed in Comsol. 

• The FEA models will be used to provide insight into eddy current 
distribution in a conductive plate and develop 3-D analytic models. 

3 

FEA • Development of transient model of a Halbach rotor rotating above a 
conductive plate using Magsoft FEA software.  

• The source will have only rotational motion 

• The model will be used to validate the 3-D FEA transient and steady state 
models of Comsol. 

3 

Analytic • 3-D eddy current models for eddy current field computation 5,6,7 

Analytic • 3-D eddy current models for eddy current force, torque and joule loss 
computation 

5,6,7 

Analytic • 3-D Electromagnetic stiffness and damping coefficient calculation 5 

- • Experimental verification of the developed analytic models 8 

1.8. Organization of Dissertation 

This dissertation is organized in the following format.   

Chapter 1 outlines the need for new high-speed transportation system for urban area 

and why maglev high-speed trains should be considered. The chapter also introduces the 

reader to the EDW technology and the recent work performed on this technology till date. 

Chapter 1 also identifies the research goal of this dissertation.  

Chapter 2 discusses the magnetic source modeling in air using a fictitious magnetic 

charge sheet approach.  

Chapter 3 presents a finite element modeling technique for a magnetic source moving 

over a conductive plate in both transient and steady state conditions. 
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Chapter 4 reviews the existing 3-D analytic models to study the interaction between a 

moving magnetic source and a nearby conductive medium. The need for new analytic 

model is identified.  

Chapter 5 presents a computationally fast 3-D analytic model using a second order 

vector potential method for infinite plate width problems. The model assumes finite 

thickness of the plate and it models vertical, lateral and translational motion of the source. 

Chapter 6 presents a 3-D analytic model for finite width conductive plate using 

magnetic vector potential. The model assumes that the plate has a finite thickness. Both 

vertical and translational motion of the source is considered. 

Chapter 7 presents a 3-D analytic model for finite width conductive plate including 

edge-effect using the second order vector potential and truncated region eigenfunction 

expansion. The model assumes that the plate has a finite thickness. Only rotational 

motion of the source is considered. 

Chapter 8 qualitatively verifies the developed analytic models with experimental 

results. 

Chapter 9 presents summarizes the research work presented in this dissertation and 

outlines the future direction of research to be performed. 



 
 

CHAPTER 2 : MAGNETIC SOURCE FIELD MODELING USING MAGNETIC 

CHARGE 

 
 

2.1. Introduction 

In a number of applications the magnets operate in regions surrounded by air such as 

microactuators [92], diamagnetic levitation devices [93], non-contact type magnetic 

torque transmitters [94-97], magnetic latching [98, 99], 3-D force sensors [100] and 

torque and position sensors [101, 102]. Fully numerical based calculation methods such 

as the finite element analysis (FEA) method or boundary element method are often used 

to calculate the magnetic fields created by 3-D magnetic devices. However, such methods 

are often not fast enough for real-time analysis and control purposes.  Analytical 

approaches are of primary importance for the design of many devices [103]. In many of 

these applications due to the absence of any other material that can perturb or contribute 

to the magnetic field, the problem region typically consists of the magnet itself [104].  

Analytic 3-D field solutions for a number of magnet shapes have been derived. 

Bancel [105] derived the field equations for a parallelepipedic permanent magnet (PM). 

Later Furlani [104] provided a semianalytic field solution for radially polarized magnets 

based on amperian model which needs two numerical integrations. Rakotoarison [106] 

proposed another semianalytic solution to find the magnetic field created by radially 

magnetied segments based on Coulombian approach which reduced the number of 

numerical integrations by one. The proposed approach modeled each magnet segment 
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using surface and volume magnetic charge. More recently Ravaud presented a fully 

analytic model for ring permanent magnets by considering only surface charge using 

elliptic integrals of the first kind [103]. Bird derived an analytic model for a Halbach 

rotor by modeling the radial and azimuthal magnet segments using current sheet which 

required two numerical integrations [13, 75]. The analytic approaches are 

computationally expensive for a complicated magnet source such as a magnetic rotor 

with many segments since computing the net field involves summing up the field 

contribution from each magnet segment. Also the methods proposed are not general 

purpose.  

Recently the charge simulations method [107] was utilized to model the external 

magnetic field due to a set of magnets. Kwon et al. [108] used a spherical distribution of 

charges enclosing the magnets to calculate the far-field due to a permanent magnet rotor. 

More recently Selvaggi et al. used an analytic based charge simulation approach using 

toroidal harmonics employing a cylindrical charge distribution to provide a more accurate 

near-field and far-field solution [109]. The idea of the charge simulation approach is to 

replace the original magnets by a hypothetical surface of equivalent discrete fictitious 

magnetic charges called the ‘charge surface’ [109, 110] as shown in Figure 2.1(b). The 

‘charge surface’ reproduces the magnetic field as the original set of magnets in any 

region external to the ‘charge surface’. In [108-111] the first step of finding the charge 

distribution on the ‘charge surface’ is to find the magnetic scalar potential at another 

hypothetical surface, called the ‘potential surface’ and is shown in Figure 2.1(b), external 

and concentric to the charge surface using finite element modeling or integral equation 
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method. Using these potentials the charge distribution on the ‘charge surface’ is 

computed using Coulomb’s law [108, 112].  

 
(a) (b) 

Figure 2.1 (a) The original set of magnets are enclosed by a hypothetical cylindrical ‘charge surface’. All 
the potential and field values external to the charge cylinder can now be calculated using the charges on the 
cylinder; (b) the ‘charge surface’ is enclosed by a cylindrical ‘potential surface’ which is used to compute 
the charges on the ‘charge surface’ [109]. 

The use of the charge simulation approach to first find the potential surface and then 

charge surface is quite complex [110, 111].  

The purpose of this chapter is to demonstrate that a continuous magnetic charge 

distribution, rather than discrete charges, can also be used to accurately model the 

external field due to an arbitrary magnetic source. The proposed will thus replace the 

original complicated source field equations with faster and simpler equivalent magnetic 

charge sheet equations. As the concept of the magnetic charge does not exist in reality, 

this is only a fictitious model.  

In this chapter the source field at an external point will be calculated by using, first a 

cylindrical and then a planer charge sheet. The next section introduces the cylindrical 

charge sheet concept and determines the charge density from the normal component of 

the flux density. It validates the results by comparing with an FEA Halbach rotor model 
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and surface mounted PM rotor. In section 2.3, the planar charge sheet concept is 

introduced, fields are calculated and finally results are compared with the FEA. The 

calculation time of both approaches is compared using a Halbach and surface mounted 

PM rotor. A brief summary of this chapter is provided in section 2.4  

2.2. Cylindrical Magnetic Charge Sheet 

The idea of the charge sheet is first explained using a very simple 2-D diagram of a 

bar magnet as shown in Figure 2.2. In Figure 2.2(b) the original bar magnet of Figure 

2.2(a) has been replaced with a circular magnetic charge sheet completely enclosing the 

magnet. The charge density on the sheet is such that it produces the same field in the 

external air region as the original magnet. The charge density on the circular sheet will be 

derived in this chapter. 

 
(a) 

 
(b) 

Figure 2.2 (a) A rectangular bar magnet is air; (b) the magnet is replaced with an equivalent circular 
magnetic charge sheet. 

Extending the idea to the 3-D, if one has a PM rotor as in Figure 2.3(a) and need to 

know the source field in an external air region, then the PM rotor can be replaced with a 

charge sheet as shown in Figure 2.3(b), cylindrical in shape, completely enclosing the 

magnet so that it will produce exactly the same field in the external air region as the 

original PM rotor.  

AirMagnetic charge 

sheet
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(a) 

 
(b) 

 
(c) 

Figure 2.3 (a) Schematic of a 3-D permanent magnet rotor; (b) 3-D view of magnetic charge sheet 
model with a charge sheet placed on Γo; (c) cross-sectional view of the charge cylinder model. 

Referring to Figure 2.3(b) and Figure 2.3(c), the region enclosed by the sheet is ΩII and 

consists of air. The charge sheet is located at r = ro and has a width wo. The outer 

cylinder with width w∞ is a magnet-free air region and designated as ΩI. Also it is 

assumed that only the magnetic field outside the sheet i.e. in ΩI is of interest.  

2.2.1. Derivation of Charge Density 

In the presence of a magnetic charge the governing magnetostatic equations for this 

problem are [112, 113] 

 B m    (2.1) 

 H 0   (2.2) 

 B H0  (2.3) 
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where ρm is the fictitious magnetic charge volume density [Wbm-3]. As H is curl-free 

field, this can be written in terms of gradient of another scalar potential because the curl 

of gradient of a scalar is zero [112, 114] 

 H φ= −∇  (2.4) 

The scalar potential φ is called the magnetic scalar potential. Substituting (2.4) into (2.3) 

relates the magnetic flux density, B, with the magnetic scalar potential, φ , as [112, 114] 

 B 0µ φ= − ∇  (2.5) 

Substituting (2.5) into (2.1) gives the governing equation that completely describes the 

field [112, 114] 

 2

0

1
( , , )

m
r zφ θ ρ

µ
∇ = −  (2.6) 

By integrating both sides of (2.1) the integral form of Gauss’s Law is [115]  

 B s m

S V

d dVρ⋅ =∫ ∫� �  (2.7) 

where the closed surface S encloses a volume V with charge density ρm.  

 
Figure 2.4 Small cylinder placed between the magnetic charge sheet with surface ∆s and height ∆h. 

 

Consider placing a small cylindrical box on the charge sheet as shown in Figure 2.4. 

The field on the surface of the box can be determined by using (2.7). In the limit of 

0h∆ → , one finds from (2.7) 
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 I IIB s B Bˆ ˆ( )

S

d r r S⋅ = ⋅ − ⋅ ∆∫�  (2.8) 

or I IIB s B Bˆ ( )

S

d r S⋅ = ⋅ − ∆∫�  (2.9) 

where r̂ is the outward normal vector on Γo 

And from the right hand side of (2.7) in the limit of 0h∆ → , 

 B s m

S

d Sρ⋅ = ∆∫�  (2.10) 

where mρ  becomes the surface charge density. From (2.9) and (2.10) it is concluded that 

 I II
r r mB B ρ− = , on Γo (2.11) 

The tangential field components on the boundary are related by 

 I IIB B
0 0

1 1
ˆ ( ) 0

r

r
µ µ µ

× − = , on Γo   (2.12) 

All of the flux density in regions ΩI and ΩII is due to the charge mρ placed on Γo and the 

B
I and BII fields will emanate from the charge sheet, thus 

 II I( , , ) ( , , )r o o o r o o oB r z B r zθ θ= − , on Γo   (2.13) 

Substituting (2.13) into (2.11) gives 

 I2m rBρ = , on Γo   (2.14) 

or in general,  

 ( , ) 2 ( , , )s
m o o n o o oz B r zρ θ θ= , on Γo (2.15) 

where the superscript ‘s’ indicates flux density due to the original magnet source and 

subscript ‘n’ indicates normal component. Hence it is derived that the charge density is 
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twice the normal component of flux density created by the original magnet source on Γo. 

This normal component can be obtained using analytic or FEA methods as discussed 

later.  

Equation (2.15) can be used to find a charge distribution that will accurately describe 

the original source field external to the sheet. 

2.2.2. External Field Calculation 

The magnetostatic field external to the cylindrical charge sheet can be determined 

using either an integral or differential approach. The calculation time for both methods 

will be assessed. The differential approach using Bessel functions has been addressed by 

Bobba in the past [71]. Here only the integral or Coulombian approach will be presented. 

The integral solution to (2.6) for the charge cylinder is [106, 112] 

 

/22

0 0 /2

( , )1
( , , )
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o

o

w

m o o o
o o

w

z r
x y z dz d

R

π
ρ θ

φ θ
πµ

−

= ∫ ∫  (2.16) 

where 

 2 2 2( cos ) ( sin ) ( )o o o o oR x r y r z zθ θ= − + − + −  (2.17) 

is the scalar distance between any point of interest M(x, y, z) external to the sheet and 

A(ro, θo, zo) on the sheet as shown in Figure 2.3(b). Utilizing (2.15) the flux density 

external to the rotor is  

 B R

/22
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( , )1
( , , )
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o

o

w

m o o
o o o

w

z
x y z r dz d

R

π
ρ θ

θ
π

−

= ∫ ∫  (2.18) 

where 

 ( ) ( )R ˆ ˆ ˆcos sin ( )o o o o ox r x y r y z z zθ θ= − + − + −  (2.19) 
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If it is further assumed that the radial flux density of the source does not alter along the 

axial length of the rotor, which is true for many PM rotors, the charge density remains 

constant throughout the z-axis and hence can be represented using step functions as 

 ( , ) 2 ( , )[ ( / 2) ( / 2)]s
m o o n o o o o o oz B r u z w u z wρ θ θ= + − −  (2.20) 

where u(zo +wo/2) and u(zo – wo/2) are step functions that ensure that the charge is 

uniform across the charge sheet width. In this case the integration along zo can be 

performed analytically. Substituting (2.20) into  (2.18) and integrating it with respect to 

zo, the magnetic flux density components are determined to be 

2

2 2 2 2 2
0

( , ) ( cos ) 2 2
( , , )

2 4 (2 ) 4 (2 )

s
n o o o o o o o

x o

o o

B r r x r z w z w
B x y z d

r r z w r z w

π
θ θ

θ
π

 − + − = − 
 + + + − 

∫   

  (2.21) 
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B x y z d
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π
θ θ

θ
π

 − + − = − 
 + + + − 

∫  

  (2.22) 
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π
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π

 
 = − 
 + − + + 
∫  (2.23) 

where 

 ( )2 2 2 2 2 cos sino o o or x y r r x yθ θ= + + − +  (2.24) 

is the magnitude of the projection of R on the x-y plane. The integration with respect to θo 

in (2.21)-(2.23) is performed numerically. 
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2.2.3.  Validation Using Rotor Model 

The presented source field modeling approach was validated by creating an 

equivalent cylindrical charge sheet for a Halbach and a surface mounted PM rotor. 

2.2.3.1. Halbach PM rotor in air 

Halbach rotors, as shown in Figure 2.5, focus the magnetic flux only outside of the 

rotor while cancelling it inside. It produces almost a perfectly sinusoidal field in the 

external air region. The sinusoidal nature of the air gap field depends on the number of 

segments of the rotor. With an increase in segment number the unwanted harmonics can 

be removed and only the significant Fourier component remains at a frequency equal to 

the number of the pole pairs of the rotor.  

 

       
(a) 

 
        (b) 

 

Figure 2.5 (a) Segmented  4 pole pair Halbach rotor with radial and shunt magnets; (b) A 2 pole-pair 

Halbach rotor Br contour plot with magnetization direction shown 

In [116] Xia et al. showed that in 2-D the external field of a Halbach rotor can be 

accurately modeled by  

 B + ˆˆ( , ) ( )cos( ) ( )sin( )s hr hrr B r P r B r Pθ θ θ θ=  (2.25) 

where superscript ‘hr’ indicates Halbach rotor field and 
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P r r r
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µ µ

+ +

+

+ −
=

+ − − +
 (2.26) 
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and µ r, P, ro, ri and Brem are the relative permeability, pole-pairs, outer radius, inner 

radius and remnant flux density of the rotor respectively. 

From (2.25) the radial component flux density is rewritten as  

 
1 1 2

2 2 2 2 1

2 (1 )( ) cos( )
( , )

(1 )[(1 ) (1 ) ]

P P P
s rem r i o o
r P P P

r i r o

B P r r r P
B r

P r r r

µ θ
θ

µ µ

+ +

+

+ −
=

+ − − +
 (2.27) 

On the rotor surface, at (r, θ, z) = (ro, θo, 0), Bz=0 and therefore in this special location 

the 2-D and 3-D fields are the same. Also for Halbach magnetized rotor the 

magnetization does not change along the axial direction of the rotor. Hence the charge 

distribution remains constant throughout the width of the rotor, wo. These observations 

enable the charge density function on the charge sheet to be determined using only 2-D 

field information from (2.20) where  

 ( , ) ( , )s s
n o o r o o

B r B rθ θ=  (2.28) 

Hence substituting (2.27) into (2.21)-(2.23) the flux density components at any external 

point in space can be calculated. Utilizing the parameters given in Table 2.1 the 

Coulombian and Bessel solution accuracy was compared with the FEA model in Figure 

2.6. 

                        Table 2.1: 3-D Halbach Rotor Parameters 

Halbach rotor 

Description Value Unit 

Outer radius, ro 26  mm 
Inner radius, ri  9.62  mm 
Remnant flux density, Brem 1.42  T 
Width, wo  52  mm 
Pole-pairs, P 2  - 

Magnet permeability, µr 1.108  - 
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Distance along z-axis [m] 

(a) 

 
Distance along x-axis [m] 

(b) 
Figure 2.6 (a) Comparison of the Bx, By and Bz flux density between JMAG FEA and 3-D magnetic 
charge model along the z-axis at (x, y) = (10, -9.5)mm; (b) Comparison of the flux density 
components along the x-axis at (y, z)=(-9.5, 20)mm. 

The parameters of the 16 segment experimental Halbach rotor, as shown in Figure 

2.7, are listed in Table 2.2 and a field comparison with the integral and Bessel function 

solution method is shown in Figure 2.8. A very good agreement between the 

experimental and analytic models was obtained.  

Table 2.2: Experimental Halbach Rotor Parameters 

Halbach rotor 

Description Value Unit 

Outer radius, ro 26  mm 
Inner radius, ri  10  mm 
Remnant flux density, Brem 1.42  T 
Width, wo  52  mm 
Pole-pairs, P 2  - 

Magnet permeability, µr 1.108  - 
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Figure 2.7 Experimental 2 pole-pair Halbach rotor  with 16 segments 
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(a) 
Figure 2.8 (a) Comparison of the By rotor flux density between experimental set-up and analytic 
models. Measurement was taken at z= 0mm and 6.4mm away from the surface of the rotor 

2.2.3.2. Surface Mounted PM Rotor in Air 

The radial flux density, Br, for a surface mounted PM rotor is shown in Figure 2.9(a) 

as well as the corresponding harmonic components of Br on the rotor surface (r=ro).  
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Figure 2.9  (a) 2-D Br contour plot of the surface mounted PM rotor. (b) Corresponding Br harmonic 
components at r=ro. 

Unlike the Halbach rotor the radial field of surface PM rotor is harmonically rich. As 

the magnetization is not a function of the z-axis the charge sheet will be uniform across 
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the length of the rotor width. Therefore from 2-D FEA the source radial flux density on 

the rotor surface can be determined to be  

 
0

1
( , ) cos( )

N
s n
r o o z o

o n

B r F n
r

θ θ
=

= ∑  (2.29) 

where n
zF  is the magnitude of nth harmonic. As the magnetization of the rotor does not 

change along its axial direction, the charge density function for the surface PM rotor can 

be obtained by substituting (2.29) into (2.20). Hence substituting (2.29) into the 

Coulombian solution, (2.21)-(2.23), enables the field due to the surface PM rotor to be 

accurately reproduced. The accuracy is validated by the comparison shown in Figure 2.9. 

Table 2.3 gives the parameters used in this comparison.  Very close agreement of results 

was obtained.  

                 Table 2.3: Surface Mount PM Rotor Parameters 

Surface mount PM rotor 

Description Value Unit 

Outer radius, ro 34 mm 
Inner radius, ri  26 mm 
Remnant flux density, Brem 1.42  T 
Width, wo  52  mm 
Pole-pairs, P 4  

Magnet permeability, µr 1.055  

 

   
Distance along z-axis [m] 

Figure 2.10  Comparison of the Bx, By and Bz flux density between COMSOL FEA and 
cylindrical charge sheet model along the z-axis at (x, y) = (10, -9.5)mm.  
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2.3. Planar Charge Sheet 

Assume an application where the magnetic source is located near a conductive plate 

and the source field interaction with the plate is of primary concern e.g. in eddy current 

testing [117, 118] or magnetic levitated vehicle applications [75]. Figure 2.11(a) shows 

the side view of a current carrying coil above a conductive quarter space. Figure 2.11(b) 

replaces the coil with an equivalent rectangular charge sheet with surface density ρm(x,z) 

located in between the original coil and the conductor. The charge sheet is equivalent to 

the original coil in the sense that it will project the same amount of magnetic field onto 

the conductor as the original coil would do.  

 
(a) (b) 

Figure 2.11  (a) Side view of a cylindrical coil above a right angled conductive quarter space of width c; (b) 
the coil is replaced with an equivalent rectangular charge sheet of width ws 

2.3.1. Derivation of Charge Density 

From (2.14) it can be readily seen that the charge density is twice the normal 

component of the source flux density incident on the charge sheet. Hence  

 ( , ) 2 ( , , )s
m y y b
x z B x y zρ

=−
=  (2.30) 

A perspective view of the sheet with problem regions is shown in Figure 2.12. 

 
Figure 2.12  Rectangular planer charge sheet centered at y=-b 
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2.3.2. External Field Calculation 

Assume the charge sheet is sufficiently wide in the x and z-directions that the source 

field is zero on the boundary edges i.e.   

 ( , 0) ( , ) 0m m sx x wρ ρ= =  (2.31) 

 (0, ) ( , ) 0m m sz l zρ ρ= =  (2.32) 

where ws, ls are the width and length of the sheet respectively. 

In this case the surface charge density can be expressed as  

 ρ
1 1

( ) sin( )( , ) sin
n

N M

m mn m
n m

x zx z ξ ψρ
= =

= ∑ ∑ , on Γ12 (2.33) 

where using (2.30) the Fourier coefficients are  

 ρ

0 0

sin( ) ( )
8

( , , ) sin
s s

m

w l

s
mn y n

s s z x

x z dxdzB x b z
l w

ξ ψ

= =

= −∫ ∫  (2.34) 

with  

 n
s

n

w

π
ψ =  (2.35) 

 m
s

m

l

π
ξ =  (2.36) 

The fields above and below the charge sheet in Ω1, Ω2 are governed by                                                          

 2 0φ∇ =  (2.37) 

Using the separation of variable method and noting that the field must decay with 

distance from the charge sheet; one obtains  

 ( )
1

1 1

( ) sin( )( , , ) sin nm
m

N M
y b

mn n
n m

z xx y z C e χ
ψ ξφ − +

= =

= ∑ ∑ , in Ω1 (2.38) 
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 ( )
2

1 1

( ) sin( )( , , ) sin nm
m

N M
y b

mn n
n m

z xx y z D eχψ ξφ +

= =

= ∑ ∑ , in Ω2 (2.39) 

where  

 2 2
mmn nψ ξχ = +  (2.40) 

and Cnm, Dnm are unknowns.  Utilizing (2.5) and substituting (2.38) and (2.39) into the 

boundary conditions (2.11) and (2.12) the unknowns are determined to be 

 
ρ

02
mn

mn mn
mn

D C
µ χ

= = −  (2.41) 

As one is interested in the field below the charge sheet in Ω2, substituting (2.41) into 

(2.39) and using (2.5) yields 

 
ρ ( )

2,
1 1

( ) sin( )cos
2

mn

N M
y bm mn

x m n
mnn m

x zB eχ
ξ

ξ ψ
χ

+

= =

= ∑ ∑  (2.42) 

 
ρ ( )

2,
1 1

( ) sin( )sin
2

mn
n

N M
y bmn

y m
n m

x zB eχξ ψ
+

= =

= ∑ ∑  (2.43) 

 
ρ ( )

2,
1 1

( ) cos( )sin
2

mnn
n

N M
y bmn

z m
mnn m

x zB eχξ ψ
ψ

χ

+

= =

= ∑ ∑  (2.44) 

2.3.3. Validation Using Rotor Model 

To illustrate the validity of this concept the external field due to the 2 pole-pair 

Halbach rotor as shown in Figure 2.5(b) and defined in Table 2.1 is modeled in Cartesian 

coordinates using the planar charge sheet. The surface charge density is obtained using 

(2.30) after calculating the By field due to the Halbach rotor at y= -b from the rotor center 

using (2.22).  
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Figure 2.13 shows comparisons between the FEA and the planar charge sheet model. 

A good match was obtained. Finally the calculation time for different methods has been 

compared in Table 2.4. 

Distance along x-axis [m] 
(a) 

Distance along z-axis [m] 
(b) 

Figure 2.13  Field comparison between the FEA and rectangular shape charge sheet model. The planar 
charge sheet was placed at 5mm below the Halbach PM rotor. (a) along the x-axis at (y, z) = (-9.5mm, 
10mm), (b) along the z-axis at (x, y) = (10, -9.5)mm. 

                         Table 2.4: Calculation Time Comparison 

Calculation Approach Halbach PM Rotor Surface PM Rotor 

Finite element method  481s 348.12 s 

Coulombian (integral) method 43 10−× s 37.8 10−× s 

Bessel (differential) method 0.3244s 7.43 s 

Planar charge sheet method 31.391 10−× s 333.32 10−× s 

2.4. Summary 

A generalized 3-D magnetic charge sheet method has been presented that enables the 

external field due to a magnetic source to be accurately reproduced using an equivalent 

magnetic charge sheet.  Both cylindrical and planar magnetic charge sheets were used to 

demonstrate the applicability of the method.  If the magnetic source has a complicated 

structure then by representing the magnetic source with an equivalent magnetic charge 

sheet the calculation time needed to determine the external field can be greatly reduced.  

This approach could also be used to calculate far-fields. The generality of this 3-D model 

has been validated by comparing it against commercially available JMAG, Comsol FEA 

software and an experimental Halbach rotor. 
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CHAPTER 3 : THREE-DIMENSIONAL EDDY CURRENT MODELING USING 

FINITE ELEMENT ANALYSIS 

 
 

3.1. Introduction 

In this chapter three-dimensional transient and steady state finite element models are 

developed for a magnetic source simultaneously moving and or rotating above a 

stationary conductive plate. The model has been developed using the magnetic vector 

potential in the conductive region and magnetic scalar potential in the non-conductive 

regions. The source field is analytically modeled using magnetic charge sheet and 

coupled into the boundary conditions of the interface between the conductive and non-

conductive regions. The developed model is valid for any kind of magnetic source and it 

is verified by using a Halbach rotor as the source. Forces acting on the moving source are 

indirectly computed by applying Maxwell’s stress tensor on the conductive plate. Forces 

and power loss in the plate are compared against commercial finite element analysis 

software and an already existing steady state Comsol model [75]. In section 3.2 a brief 

review of the existing eddy current modeling techniques involving moving parts is 

presented. In section 3.3 the transient modeling technique has been outlined. The steady 

state finite element model is presented in section 3.4 and a summary of this chapter is 

given in section 3.5.  
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3.2. A Review of Numerical Analysis of Eddy Current Distribution of Moving 
Parts 

Research in numerical computation of eddy current problems involving dynamics of 

moving parts began more than three decades ago.  It was mainly motivated by the need 

for developing an analysis tool to model the dynamic behavior of various electrical 

devices [119, 120]. Finite element analysis (FEA) methods or boundary integral method 

[121, 122] have been used to obtain the space distribution of electromagnetic fields in 

electrical machines with static parts or in static condition. Unlike static machine parts, for 

machines with linear or rotational motion it is important to know its key characteristics 

such as torque or inductance variation at different positions of the rotor. Hence many 

positions of the rotor have to be modeled and solved in FEA. Initially developed 3-D 

transient FEA models required the re-meshing of the entire model for each rotor position 

which involves extensive pre-processing and was very time consuming [123]. 

In order to circumvent this issue a significant amount of research has been carried out 

in the area of moving grid method also called sliding mesh technique [85, 124-129]. This 

typically involves using independent finite element meshes for the moving and stationary 

parts that are free to rotate or translate with respect to each other. Thus it eliminates the 

need for re-meshing at each rotor position. Several techniques have been proposed to 

couple the independent meshes. Special air gap elements were proposed by Razek [125] 

while Ratnajeevan applied Delaunay criterion [126] for mesh optimization to make the 

mesh adaptive to prevent destruction of mesh while the rotor mesh rotates and stator 

mesh stays stationary. The problem of overlapping meshes has been discussed  by 

Tsukerman [129] and moving band techniques by Demenko [127].  
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A more general method to link independent meshes is using Lagrange multipliers. 

The method was applied to 2-D [128] and also to 3-D eddy current problems [130]. But 

the implementation of this method leads to an ill-conditioned finite element stiffness 

matrix making standard iterative solvers either slow or unable to converge to a solution 

[131].   

A more computationally efficient approach, if possible, would be to avoid sliding 

mesh techniques altogether. Also, in the dynamic simulation of a device with linear 

motion such as in magnetic levitated vehicle [74, 75, 77, 78] as shown in Figure 3.1, 

modeling the translational motion by physically moving the rotor part becomes 

impractical for high translational speed as it will require large stator plate length to reach 

steady state [74]. 

 
Figure 3.1 A segmented Halbach rotor with rotational and translational motion above conductive plate.  

Previously a 3-D steady state model of magnetic rotor both translationally moving 

and rotating above a conductive plate was presented by Bird [74] in which the rotor field 

was modeled using a novel fictitious magnetic charge boundary condition while the 

conductive and nonconductive regions were modeled using a convective A-φ  steady 

state finite element model. Although this approach could model both rotation and 

translational motion of the rotor, the modeling of the steady state rotation using a 

complex magnetic charge boundary necessitates a large nonconductive region to be 
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modeled particularly when the rotor diameter is large. Therefore, in order to reduce 

computational burden, another steady state model was presented in which the rotor field 

was modeled analytically using a novel complex current sheet approach where each shunt 

and radial magnet segment of the magnetic rotor was modeled using an equivalent 

current sheet and the analytical source field was coupled to the conductive plate by 

including it in the plate boundary conditions [75]. This model had the definite advantage 

of reducing the problem region down to only the conductive plate and nonconductive air 

region (without magnetic rotor) and also it enabled the rotor position to be changed with 

ease without moving the boundary mesh. However as this approach was modeling each 

radial and shunt magnet of the rotor by a current sheet, the steady state model was 

computationally expensive. 

In the proposed finite element model outlined in this chapter, the magnetic rotor has 

been modeled analytically using magnetic charge sheet (discussed in Chapter 2). The 

applicability of source modeling technique using charge sheet to any kind of magnetic 

source makes the proposed finite element model suitable for any source in motion as 

well. For further reduction of computation time the conductive and nonconductive 

regions have been modeled using a convective A-φ  method. The translational motion of 

the rotor is modeling by including equal and opposite velocity term in the plate governing 

equation. Forces acting on the moving source and power loss in the conductive plate will 

be evaluated and compared against standard FEA software. 

The assumptions of the proposed FEA models are listed below: 

• The conductive plate is linear, homogenous and simply connected 

• The plate is continuous with constant conductivity and non-magnetic.  
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• The magnetic source has translational, heave and lateral motion along with 

rotational motion. 

• The translational motion of the source is uniform. 

• The frequency is sufficiently low in order for the quasi-static approximation to be 

valid. Precisely, the wavelength in the free-space is assumed to be large compared 

to the dimension of the plate and magnetic source, which is always true for 

maglev applications 

3.3. Transient Modeling 

If the magnetic source’s motion is analytically modeled then the finite element 

problem regions will simplify down to conductive, Ωc, and nonconductive regions, Ωnc, 

as shown in Figure 3.2. The conductive and nonconductive region normal vectors on the 

conductive region boundary Γc have been defined as 
ĉn and 

n̂cn respectively.  

 

(a) 
 

(b) 

Figure 3.2. (a) The x-y and (b) z-y view of the problem region consisting of only conductive and non-
conductive regions. The effect of the magnetic source is taken into account by the boundary conditions on the 
boundary Γc. 

3.3.1. Conductive Region Formulation 

Electromagnetic problems can be categorized into two types: low frequency and high 

frequency problems. Eddy current modeling falls into the first type. The applicable quasi-

static Maxwell’s equations are (neglecting displacement current in Ampere’s law due to 

low frequency) [112] 

 
B

E
d

dt
∇× = −  (3.1) 
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 H J∇× =  (3.2) 

 B 0∇ ⋅ =  (3.3) 

The conductive region material is assumed to be linear, homogeneous, simply connected 

and nonmagnetic such as aluminum. In the presence of a moving conductive medium, the 

following constitutive relations relate the field vectors [115] 

 J Eσ=  (3.4) 

 B H0µ=  (2.3) 

where σ and µ0 represent the conductivity [Sm-1] of the plate and permeability [Hm-1] of 

free space. Substituting (3.4) and (2.3) into (3.1) gives 

 
B

E 0
0

σ
µ

∇× − =  (3.5) 

As the divergence of a curl is zero [132], the magnetic flux density can be expressed in 

terms of the magnetic vector potential as [112] 

 B A= ∇×  (3.6) 

Using (3.6), the x, y and z-components of the magnetic flux density can be obtained as  

 
yz

x

AA
B

y z

∂∂
= −
∂ ∂

 (3.7) 

 x z
y

A A
B

z x

∂ ∂
= −
∂ ∂

 (3.8) 

 
y x

z

A A
B

x y

∂ ∂
= −
∂ ∂

 (3.9) 

Substituting (3.6) into (3.1) gives 
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 E= A( )
d

dt
∇× − ∇×  (3.10) 

Solving (3.10), the electric field intensityE is found to be 

 
A

E=
d

dt
−  (3.11) 

If the source is moving, it is noted that   

 
A A A A A( , , , )d x y z t x y z

dt t x t y t z t

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

 (3.12) 

Here it is assumed that the source can have translational, vx, and heave motion, vy. Thus 

(3.12) becomes  

 
A A A A( , , , )

x y

d x y z t
v v

dt t x y

∂ ∂ ∂
= + +
∂ ∂ ∂

 (3.13) 

Equation (3.13) can also be written as  

 
A A

v A
( , , , )

( )
d x y z t

dt t

∂
= + ⋅ ∇
∂

 (3.14) 

where v is the velocity vector. Substituting (3.14) into (3.11) yields the electric field 

intensity  

 
A

E v A( )
t

∂
= − − ⋅ ∇

∂
 (3.15) 

Substituting (3.15) into (3.4) the current density can be obtained in terms of the magnetic 

vector potential  

 
A A A

J x yv v
t x y

σ
 ∂ ∂ ∂ = − + +    ∂ ∂ ∂

 (3.16) 
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Separating the scalar components, one finds  

 x x x
x x y

A A A
J v v

t x y
σ
 ∂ ∂ ∂  = − + +   ∂ ∂ ∂ 

 (3.17) 

 y y y

y x y

A A A
J v v

t x y
σ
 ∂ ∂ ∂  = − + +   ∂ ∂ ∂ 

 (3.18) 

 z z z
z x y

A A A
J v v

t x y
σ
 ∂ ∂ ∂  = − + +   ∂ ∂ ∂ 

 (3.19) 

Substituting (3.15) and (3.6) into (3.5), one obtains 

 ( ) ( )A
A v A

0

1

t
σ

µ

 ∂ ∇× ∇× = − − ⋅ ∇    ∂
 (3.20) 

Using the identity [114] 

 A= A A2( )∇×∇× ∇ ∇ ⋅ − ∇  (3.21) 

and the Coulomb gauge [114, 115] 

 A 0∇ ⋅ =  (3.22) 

(3.20) reduces to  

 ( )A
A v A2

0
t

µ σ
 ∂ ∇ = + ⋅ ∇    ∂

 (3.23) 

Or, 
A A A

A = 2
0 x yv v

t x y
µ σ
 ∂ ∂ ∂ ∇ + +    ∂ ∂ ∂

 (3.24) 

Equation (3.24) is the governing equation for the conductive plate in terms of the 

magnetic vector potential. 

In order to find a solution of (3.24) numerically, the Galerkin weighted residual method 

has been used [133]. The residual or error from (3.24) for the assumed magnetic vector 
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potential solutions Ax, Ay and Az is 

   2
0 , , ,i i i

i i x y

A A A
R A v v i x y z

t x y
µ σ
 ∂ ∂ ∂  = ∇ − + + =   ∂ ∂ ∂ 

 (3.25) 

In order to find the numerical solution for Ax, Ay and Az, the integral of the residual 

multiplied with a weighting function over the entire domain is set to zero i.e.,  

  0, , ,

c

i i cN Rd i x y z

Ω

Ω = =∫  (3.26) 

where, for example, Nx is the x-component of the shape function. Substituting (3.25) into 

(3.26) gives 

                        2
0 0, , ,

c

i i i
i i x y c

A A A
N A v v d i x y z

t x y
µ σ

Ω

  ∂ ∂ ∂  ∇ − + + Ω = =   ∂ ∂ ∂  
∫  (3.27) 

Using the Green’s first identity [134] 

 ( ) ( )2 ˆ

c c c

i i c i i c i i c cN Ad N A d N A n d

Ω Ω Γ

∇ Ω = − ∇ ⋅ ∇ Ω + ∇ ⋅ Γ∫ ∫ ∫  (3.28) 

Substituting (3.28) into (3.27), the governing equation for the conductive region is 

obtained in the following weak form [135]  

             
                                       

0

ˆ( ) 0, , ,

c c

c

i i i
i i c i x y c

i i c c

A A A
N Ad N v v d

t x y

N A n d i x y z

µ σ
Ω Ω

Γ

 ∂ ∂ ∂  − ∇ ⋅∇ Ω − + + Ω   ∂ ∂ ∂ 
+ ∇ ⋅ Γ = =

∫ ∫

∫
 (3.29) 

The first two terms of (3.29) are the subdomain equations for the plate region Ωc while 

the last term is the boundary condition on conductive plate boundary Γc. 



51 

3.3.2. Nonconductive Region Formulation 

The total magnetic flux density in the nonconductive region Ωnc is composed of a 

field due to the magnetic source (Bs) and reflected field (Br) in the air region due to the 

induced eddy currents in the conductive plate 

 B B Bs r
nc = + , in Ωnc (3.30) 

 Due to the absence of free current in Ωnc the reflected flux density can be expressed in 

terms of the magnetic scalar potential, φ , as  

 B 0
r µ φ= − ∇ , in Ωnc (2.5) 

Substituting (2.5) into (3.30), the total flux density in ΩI is given by 

 B B 0
s

nc µ φ= − ∇ , in Ωnc (3.31) 

After taking divergence on both sides of (3.31) and using (3.3), the governing equation 

for the air region is obtained as 

 2
0 0µ φ∇ = , in Ωnc (3.32) 

Therefore if the effect of the source magnetic field is accounted for by the boundary 

conditions on the air-conductor interfaces Γc, it is not necessary to explicitly model 

source’s field within the nonconductive region [136, 137]. Using the Galerkin weighted 

residual method [133] and Green’s first identity [134], the weak form of (3.32) will be  

 0 0 ˆ 0
nc c

f nc f nc cw d w n dµ φ µ φ
Ω Γ
∇ ⋅ ∇ Ω − ∇ ⋅ Γ =∫ ∫  (3.33) 

where fw is the weighting function. Here the first term is the subdomain equation for 

nonconductive region Ωnc and the second one is the boundary condition on the interface 
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between the nonconductive and conductive region i.e. Γc. 

3.3.3. Boundary Condition 

The continuity of the normal component of the magnetic flux density and tangential 

component of the magnetic field intensity is satisfied on Γc i.e.,  

 B Bˆ ( ) 0c c ncn ⋅ − = , on Γc (3.34) 

 H Hˆ ( ) 0c c ncn × − = , on Γc (3.35) 

Utilizing (3.6) and (3.31) and noting that the conductive medium is non-magnetic, (3.34) 

and (3.35) can be rewritten as [136, 138] 

 ( ) ( )B A0ˆ ˆs
c cn nµ φ⋅ − ∇ = ⋅ ∇× , on Γc (3.36) 

 ( )B A0ˆ ˆs
c cn nµ φ× − ∇ = ×∇× , on Γc (3.37) 

Also in order to ensure uniqueness of the solution 

 Aˆ 0cn ⋅ = , on Γc (3.38) 

must be enforced [137, 139, 140]. This also sets the normal component of the induced 

eddy current on Γc to zero i.e.  

 J=ˆ 0cn ⋅  (3.39) 

In order to couple conductive and nonconductive regions, the scalar boundary 

condition in (3.33) needs to be expressed in terms of the magnetic vector potential terms. 

Using (3.36) the boundary term in (3.33) can be written as [137] 

 B A0 ˆ ˆ( )
c c

s
f c c f c cw n d w n dµ φ

Γ Γ
∇ ⋅ Γ = − ∇× ⋅ Γ∫ ∫ , on Γc (3.40) 

Expanding (3.36) one finds  
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 0
ys z

x

AA
B

x y z

φ
µ

∂∂∂
= − +

∂ ∂ ∂
 (3.41) 

 0
s x z
y

A A
B

y z x

φ
µ

∂ ∂∂
= − +

∂ ∂ ∂
 (3.42) 

 0
ys x

z

A A
B

y x y

φ
µ

∂ ∂∂
= − +

∂ ∂ ∂
 (3.43) 

Substituting (3.41)-(3.43) into (3.40) gives the following boundary condition coupling the 

scalar potential,φ , with the source field and magnetic vector potential for region Ωnc 

               

                                  

ˆ ˆ

ˆ 0

c

ys sz x z
f x cx y cy

ys x
z cz c

AA A A
w B n B n

y z z x

A A
B n d

x y

Γ

   ∂∂ ∂ ∂   − + + − +    ∂ ∂ ∂ ∂  
  ∂ ∂  + − + Γ =  ∂ ∂  

∫
, on Γc (3.44) 

where, for example, ĉxn is the x-component normal vector to the conductive plate region. 

Similarly the vector potential boundary conditions in (3.29) must be replaced with the 

scalar potential terms. For instance, for i=x the boundary condition in (3.29) together with 

(3.38) gives 

 ˆ ˆ ˆ 0

c

x x x
x x cx cy cz c

A A A
N A n n n d

x y z
Γ

  ∂ ∂ ∂ + + + Γ =   ∂ ∂ ∂  
∫ , on Γc (3.45) 

Using (3.41)-(3.43) enables (3.45) to be expressed in terms of the magnetic scalar 

potential,φ , and source field as  

              

                                 

0

0

ˆ ˆ

ˆ 0

c

y y sz
x x cx z cy

sz
y cz c

A AA
N A n B n

y z z x

A
B n d

x y

φ
µ

φ
µ

Γ

   ∂ ∂∂ ∂     − − + + −      ∂ ∂ ∂ ∂   
  ∂ ∂  + − + Γ =   ∂ ∂  

∫
, on Γc (3.46) 

Similar relations are obtained for the y and z-components of the vector potential 
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0

0

ˆ ˆ

ˆ 0

c

ysx x
y z cx y cy

sz
x cz c

AA A
N B n A n

y z x y

A
B n d

y x

φ
µ

φ
µ

Γ

    ∂∂ ∂∂  − − + − −     ∂ ∂ ∂ ∂   
  ∂ ∂  + + − Γ =   ∂ ∂  

∫
, on Γc (3.47) 

            

                                      

0 0ˆ ˆ

ˆ 0

c

ys sx
z y cx x cy

y z
z cz c

AA
N B n B n

z y z x

A A
A n d

y z

φ φ
µ µ

Γ

    ∂∂ ∂ ∂  + − + − +     ∂ ∂ ∂ ∂   
  ∂ ∂  + − − Γ =  ∂ ∂  

∫
, on Γc (3.48) 

The Dirichlet boundary condition has been applied on all of the remaining non-

conductive boundaries  

 0φ = , on Γo (3.49) 

The inclusion of the translational source field effect into the plate requires that the 

conductive plate must be very long. The model with a finite plate length can result in the 

field not being zero at the ends of the plate. This can result in non-physical field 

reflections, leading to the solver failing to converge. To avoid this, the Neumann 

boundary condition has been applied in the direction of the field translation, on boundary 

Γ2 

   0, , ,iA i x y z
x

∂
= =

∂
, on Γ2 (3.50) 

Using the subdomain equations given by (3.29) and (3.33) within the conductive and 

nonconductive regions as well as the boundary conditions (3.44), (3.46)-(3.50) enables 

the convective finite element A-φ  model to be defined.  

The source field appears only in the boundary conditions (3.46)-(3.48) which can be 

easily evaluated using the magnetic charge sheet technique discussed in chapter 2 making 
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the proposed method applicable for any kind of magnetic source with linear and/or 

rotational motion. 

It must be noted that depending on the source location and relative size of the source 

and plate, the source field is added on the side and bottom surfaces of the plate. If the 

source is located at the center above the plate and the plate width is much larger than the 

source, the source field only needs to be added only on the top Γc. Otherwise one has to 

include it on all the interface boundaries. 

If the source is located at the center of the plate, induced eddy currents in the plate 

flow parallel to the top surface of the plate that is the currents flow in the x-z plane. 

Hence the y-component of the current, Jy, is negligible [141]. Due to the small thickness 

of the plate, this current component is very small even when the source is laterally shifted 

from the center of the plate along z-axis. As the induced current density Jy is related to 

the magnetic vector potential Ay by (3.16), the y-component vector potential is also very 

small compared to the x and z-components. This will be illustrated later in Figure 3.16 

and Figure 3.17.   

3.3.4. Initial Condition, Meshing and Solver Settings 

The initial condition for the unknown parameters in the conductive and 

nonconductive medium are set as zero i.e.  

  
0

( , , , ) 0, , ,
t

x y z t i x y zφ
=
= =  (3.51) 

  
0

( , , , ) 0, , ,
i t

A x y z t i x y z
=
= =  (3.52) 

In finite element analysis the accuracy of the solution depends highly on the size of 

the meshes. It is desired to have fine mesh in the conductive medium whereas the mesh in 

the non-conductive region can be comparatively larger. The different mesh size used in 
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different parts of the finite element model is outlined in Table 3.1 below. The mesh plot 

of the model is shown in Figure 3.3. 

Table 3.1: Mesh size for different regions of the finite element model 

Region Maximum mesh size [mm] 

Conductive plate 2 
Non-conductive air region 20 

 

 
Figure 3.3. Perspective view of mesh plot of different subdomains in the transient finite element model.  

Choosing the correct solver is another important factor while solving numerical 

problems. There are two main types of solvers in numerical computing: direct and 

indirect. The finite element analysis breaks down the entire problem region into meshes 

of selected sizes and shapes with unknown parameters assigned to each vertex of the 

geometrical shape of the mesh. For example, a triangular mesh (used in the current 

model) is shown in Figure 3.4 with three vertices a, b and c each associated with a set of 

unknown parameters φ i
, Ax

i, Ay
i
 and Az

i
  for i =1, 2, 3. These unknowns are known as 

degrees of freedoms (DOFs).  
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Figure 3.4. Triangular finite element mesh 

The finite element analysis program reformulates the original problem into the 

following linear equation 

 T     , [ ...]i i i i
x y zAx b x A A Aφ= =  (3.53) 

where the coefficient matrix A and the right hand side vector b are known quantities from 

the governing equations (3.29)-(3.33) and boundary conditions (3.40), (3.46)-(3.50) and 

initial condition setting and x is the unknown vector to solve. Superscript ‘T’ stands for 

transpose.  

In the direct methods, (3.53) is solved using direct factorization of the A matrix such 

as the Cholesky, Lower-Upper triangular (LU) decomposition or Singular Value 

Decomposition (SVD) techniques whereas in the indirect methods, (3.53) is solved using 

iterative methods like Generalized Minimal Residual (GMRES), Conjugate gradients or 

Geometric Multigrid [142]. Also, if matrix A is ill-conditioned or close to being ill-

conditioned, the iterative solver does not converge or converges very slowly. For better 

performance it is recommended to smooth the matrix using preconditioner before trying 

to factorize it [135].  

If the dimension of matrix A is m n× , a direct solver usually needs O(m3) floating 

point operations (FLOPs) whereas an iterative one takes only O(m2). Hence the memory 

requirement for the latter is much less [142]. The direct solvers are very efficient for 
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problems involving upto 100,000 DOFs depending on the available memory, but for 

larger DOFs iterative solvers are recommended [135]. For the present transient 

simulation with the mesh size outlined in Table 3.1 the generated DOFs is approximately 

330,000 and A is positive definite. So the chosen solver is time-dependent GMRES with 

Symmetric Successive Over-Relaxation (SSOR) preconditioner.  

3.3.5. Model Validation 

For validation purpose, a segmented Halbach rotor has been used as the source. The 

accuracy of this boundary coupled finite element 3-D transient model is highly dependent 

on the accuracy of the Halbach rotor field model. The 3-D transient model was validated 

by comparing it with JMAG and Magsoft flux 3-D transient models when there is no 

translational motion and also with a previously developed 3-D finite element steady state 

model [75] in which both translational and rotational motion are present. No translational 

motion was used by JMAG and Magsoft flux because the current version cannot 

simultaneously model 3-D translational and rotational motion. 

Despite (3.29) containing both convective and diffusive terms, no spurious oscillatory 

behavior has been observed in this formulation and therefore upwinding technique 

discussed in [13] was not used. 

3.3.5.1. Comparison with Commercial Transient 3-D Finite Element Model (Zero 
Translational Velocity) 

Using the parameters given in Table 3.2, the transient boundary coupled A-φ  model 

was compared with a JMAG 3-D transient model as shown in Figure 3.5. The Field 

comparison of a Halbach rotor along the surface of the conductive plate created by 

JMAG FEA and the analytic 3-D model, discussed in chapter 2, is shown in Figure 3.6. A 

close agreement was obtained.  
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Table 3.2 : Simulation parameters for zero translational velocity 

 Description Value Unit 

Rotor 

Outer radius, r0 26 mm 
Inner radius, ri 10 mm 
Width, wo 52 mm 
Remnant magnetic flux density, Brem

 1.42 T 

Relative permeability, µr 1.108 - 

Pole pairs, P 2 - 

Conductive plate 

Conductivity, σ 2.459×107  Sm-1 

Width, w 77 mm 
Length, l 200 mm 
Thickness, h  6.3 mm 
Air-gap between rotor and plate, g 5 mm 

 

 
 

Distance along x-axis [m] 
Figure 3.5. Example of the mesh used by 
the transient JMAG 3-D model in which 
Halbach rotor is rotated over a conductive 
plate 

Figure 3.6. Bx, By and Bz magnetic flux density comparison 
between a JMAG FEA model and the magnetic charge 
analytic model along the plate surface at (y, z) = (-10, 30)mm 
from center of the Halbach rotor. 

 

In the developed transient model the forces were evaluated using the Lorentz method 

[112, 143]. The thrust, lift and lateral forces are calculated, respectively, by  

 , ,( ) ,

c

x y c z z c y cF J B J B d

Ω

= − Ω∫  (3.54) 

 ( ), ,

c

y z c x x c z cF J B J B d

Ω

= − Ω∫  (3.55) 

 ( ), ,

c

z x c y y c x cF J B J B d

Ω

= − Ω∫  (3.56) 

The power loss in the plate is calculated using  
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 2 2 21
( ) ,

c

Loss x y z cP J J J d
σ
Ω

= + + Ω∫  (3.57) 

where, for example, Bc,x and Jx are the x-component of the magnetic flux density and 

eddy current density in the conductive medium. In (3.54)-(3.57) the integration is 

performed over the entire conductive plate domain Ωc. 

The presented finite element model was formulated using Comsol. Comparison of the 

thrust, lift and lateral forces calculated using the presented Comsol model as well as 

JMAG and Magsoft flux 3-D transient models is shown in Figure 3.7 when the rotor or 

source is laterally offset along the z-axis by 10 and 25 mm and rotating at a speed of 4000 

RPM. Figure 3.8 shows power loss comparison for the mentioned lateral offset values 

and rotational speed of 4000 and 8000 RPM. Excellent match of results among different 

models especially between JMAG and the developed model has been achieved. 

As can be seen from Figure 3.7 and Figure 3.8, Magsoft flux FEA and the presented 

Comsol model produce high overshoot in the lift force and power loss results as soon as 

the simulation starts. This is due to the fact that at the start of the simulation, the field in 

the conductive plate is initially set to zero (refer to (3.52)) and therefore the conductive 

plate suddenly experiences a flux change due to the source field. As a result, this 

produces a ‘non-physical’ lift force. It happened only in simulation. On the other hand, 

JMAG assumes that the initial field in the conductive region is defined as the source 

field. As a result, JMAG does not produce any sudden peak in the lift force.  
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Time[ms] 

(a) 
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(b) 
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(c) 

Figure 3.7. (a)Thrust, (b) Lift and (c) lateral force comparison for 4000 RPM and zero translational velocity 

among Comsol finite element model, JMAG and Magsoft flux 3-D finite element models for different 

lateral offsets of the rotor 
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Time[ms] 

(a) 

Time[ms] 

(b) 
Figure 3.8. Power loss comparison among Comsol finite element model and commercial JMAG and 
Magsoft flux 3-D finite element models for (a) lateral offset of 10mm and (b) lateral offset of 25mm. 
Translational velocity of the rotor is zero. 

It is generally preferred to start the rotational and translational motion of the rotor 

only after the field in the air and conductive region have become equal to each other or in 

other words, the lift force and power loss has decayed to zero from the initial spike. From 

Figure 3.7 and Figure 3.8, it is noticed that this decay takes approximately 30ms for 

Comsol and 10ms for Magsoft flux FEA. Hence rotation of the rotor was initiated in 

Comsol and Magsoft accordingly. As in JMAG FEA this initial spike was not present, the 

simulation results do not have this time lag.  

Force comparison among different finite element models also showed that the 

proposed model using Comsol is computationally more efficient than other two 

-30 -25 -20 -15 -10 -5 0 5 10
0

1000

2000

3000

4000

 

 
JMAG

Magsoft

Comsol

-30 -25 -20 -15 -10 -5 0 5 10
0

500

1000

1500

2000

2500

3000

3500

 

 
JMAG

Magsoft

Comsol

P
o

w
er

 l
o

ss
 [

W
] 

P
o

w
er

 l
o

ss
 [

W
] 



63 

counterparts. The average computation time for the transient simulation for 4000 and 

8000 RPM of the rotor for different FEA models is outlined in Table 3.3. A Dell 

workstation with an Intel Xeon-E5520 dual core processor with 22GB RAM was used. 

The Comsol and Magsoft computation time results are shown for the period after the 

decay of the initial peak. All the computation times are for 12ms of transient simulation 

as shown in Figure 3.7 and Figure 3.8. 

Table 3.3 : Computation time for different finite element transient models 
Model type Computation time 

Magnetic charge based transient model using Comsol v3.5a 54 min 
JMAG transient 5 hr 40 min 
Magsoft flux transient 5 hr 21 min 

The accuracy of the developed Comsol based FEA transient model has been calculated 

with respect to the JMAG and Magsoft transient models for thrust, lift, lateral force and 

joule loss at lateral offset of 25mm and shown in Table 3.4 

                          Table 3.4 : Accuracy of the developed Comsol based transient FEA model 
Force  Error with JMAG transient [%] Error with Magsoft transient [%] 

Thrust 1.22 6.54 
Lift     4.1    2.72 
Lateral 1 3 
Power loss 0.9 6.5 

3.3.5.2. Comparison with 3-D Finite Element Steady State Model (Non-zero 
Translational Velocity) 

The JMAG and Magsoft finite element software cannot simulate translation and 

rotation simultaneously, so they are not used to simulate non-zero translational velocity 

transients. Hence, a previously developed 3-D boundary coupled A-φ  steady state model 

using a novel current sheet approach [75] is used to compare the lift and thrust with the 

developed transient model. A comparison is made over a range of slip values for 15ms-1 
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translational velocity and when the rotor is at center of the plate. The slip speed is defined 

by (1.1) and rewritten here for convenience 

 l m o xs r vω= −  (1.1) 

where ωm is mechanical angular speed [rads-1] and ro is outer radius [m] of the rotor.  

The force and power loss comparison between the two models highly depends on the 

accuracy of the static rotor field modeling. The magnetic flux density created by the 

Halbach rotor has been compared on the surface of the plate between the two models, as 

shown in Figure 3.9  and Figure 3.10, using the parameters listed in Table 3.5. 

Table 3.5 : Simulation parameters for non-zero translational velocity 
 Description Value Unit 

Rotor Outer radius, r0 50 mm 
Inner radius, ri 34.2 mm 
Width, wo 50 mm 
Remnant magnetic flux density, Brem

 1.42 T 

Relative permeability, µr 1.055 - 

Pole pairs, P 4 - 

Conductive plate Conductivity, σ 2.459×107  Sm-1 

Width, w 77 mm 
Length, l 200 mm 
Thickness, h  6.3 mm 
Air-gap between rotor and plate, g 9.5 mm 

 

 
Distance along x-axis [m] 

Figure 3.9. Source magnetic flux density comparison between current sheet approach and magnetic 
charge method for (y, z)= (-9.5, 20)mm from the center of the rotor 
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Distance along z-axis [m] 

Figure 3.10. Source magnetic flux density comparison between current sheet approach and magnetic 
charge method for (x, y)= (10, -9.5)mm from the center of the rotor 

Using the parameters given in Table 3.5, the force comparison between the A-φ  

steady state model using current sheet [75] and developed transient model is shown in 

Figure 3.12. In the comparison, only the steady state values from the transient simulation 

have been compared with the steady state model results which is illustrated in Figure 

3.11. 

         
Time [ms] 

Figure 3.11. Thrust and lift force plot vs. time obtained using the developed 3-D finite element transient 

model for 15ms-1 translational velocity and 14ms-1 slip speed.  

It is seen that for negative slip speeds the x-directional force is the drag force (which 

creates braking on the rotor) and for positive slip speeds it becomes a thrust force (moves 

the source forward). Figure 3.13 shows the power loss comparison between the two 

models. An excellent match of results is obtained.  
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Slip speed [ms-1] 

Figure 3.12. Thrust and lift force comparison between 3-D boundary coupled A-φ transient model based 

on magnetic charge sheet and steady state model based on current sheet for 15ms-1 translational velocity. 

The magnetic rotor is located at the center of the conductive plate. 

      

 
Slip speed [ms-1] 

Figure 3.13. Power loss comparison between three-dimensional boundary coupled A-φ transient model 

based on magnetic charge sheet and steady state model based on current sheet for 15ms-1 translational 

velocity. The magnetic rotor is located at the center of the conductive plate. Both the models are written 

in Matlab and Comsol v3.5a 

3.4. Steady State Modeling 

3.4.1. Governing Equation Formulation 

The steady state model satisfies the same governing equations for the subdomains and 

boundaries as the transient counterpart with the only exception being the absence of time-

dependent terms from the subdomain equation. 
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If the rotor’s angular electrical frequency is ωe [rads-1], at steady state the vector 

potential in the conductive plate can be written as  

 ( ) ( )A A, , , , , ej tx y z t x y z e ω=  (3.58) 

Substituting (3.58) into (3.29), the governing equation for subdomain Ωc in steady state 

condition becomes  

          0 0, , ,
c c

n
n n c n x e n c

A
N A d N v j A d n x y z

x
µ σ ω

Ω Ω

 ∂  − ∇ ⋅∇ Ω − + Ω = =   ∂ ∫ ∫  (3.59) 

and the boundary conditions are given by (3.46)-(3.48). The subdomain equations and 

boundary conditions are given by (3.33). Additionally (3.49) is satisfied on Γo. Also for 

translational motion simulation the conductive region vector potential must satisfy (3.50) 

on Γ2. 

3.4.2. Meshing and Solver Settings 

The mesh size is kept the same as the transient simulation and given by Table 3.1. For the 

solver, stationary GMRES was chosen along with SSOR preconditioner. 

3.4.3. Model Validation 

The z-component magnetic vector potential field in the conductive plate and x-

component induced eddy current obtained from the developed steady state FEA model 

are shown in Figure 3.14 and Figure 3.15 respectively. 
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                          (a) 

 

[Wb/m]  

 

 

 
                         (b) 

Figure 3.14. The Az magnetic vector potential field due to the induced eddy current in the conductive plate 

region is shown for 20ms-1 translational velocity and 20ms-1 slip speed. The magnetic rotor is (a) located 

at the center of the conductive plate and (b) shifted from the center of the conductive plate by 20mm. The 

model is written in Matlab and Comsol v3.5a. 
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[Wb/m]  
 

                                  (a) 

[Wb/m]  

 
                            (b) 

Figure 3.15. The Jx induced eddy current in the conductive plate region is shown for 20ms-1 

translational velocity and 20ms-1 slip speed. The magnetic rotor is (a) located at the center of the 

conductive plate and (b) shifted from the center of the conductive plate by 20mm.  

Figure 3.16 and Figure 3.17 illustrate the Ay field in the plate. It is evident that it is 

very small and only significant near the edges of the plate. 

 

[Wb/m] 

 

 
 

Figure 3.16.  The FEA calculated Ay magnetic vector potential field in the conductive plate is shown when 
the rotor is at the center of the plate.  
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[Wb/m] 

 
 

 

Figure 3.17.  The FEA calculated Ay magnetic vector potential field in the conductive plate is shown 
when the rotor is shifted from the center by 20mm along the z-axis. 

Like the transient model, the developed steady state FEA model is formulated using 

Comsol. For validation purposes, a segmented Halbach rotor has been used as the source. 

The steady state model was validated by comparing it with the JMAG and Magsoft flux 

3-D transient model when there is no translational motion and also with a previously 

developed steady state model [75] in the presence of translational motion of the source. 

3.4.3.1. Comparison with Commercial Transient 3-D Finite Element Model (Zero 
Translational Velocity) 

Using the parameters given in Table 3.2, the presented steady state model was 

compared with the final steady state results from the JMAG and Magsoft flux transient 

FEA models. The force comparison is shown in Figure 3.18. Figure 3.19 shows the 

power loss comparison for a rotor lateral offset of 10 and 25mm. 
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Rotational speed of rotor [RPM] 

(a) 

 
Rotational speed of rotor [RPM] 

(b) 
Figure 3.18. Thrust, Lift and lateral force comparison for zero translational velocity among Comsol finite 
element model and commercial JMAG and Magsoft flux 3-D finite element models when (a) the lateral 
offset of the rotor is 25mm and (b) the lateral offset is 10mm. 

 
      Rotational speed of rotor [RPM] 

Figure 3.19. Power loss comparison for zero translational velocity among Comsol finite element model and 
commercial JMAG and Magsoft flux 3-D finite element models for different lateral offset values 
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The accuracy of the developed Comsol based FEA steady state model has been calculated 

with respect to the JMAG and Magsoft transient models for thrust, lift, lateral force and 

joule loss at lateral offset value of 10mm and shown in Table 3.6. 

                          Table 3.6 : Accuracy of the developed Comsol based steady state FEA model 
Force  Error with JMAG transient [%] Error with Magsoft transient [%] 

Thrust 2.36 9.65 
Lift    5.4    4.87 
Lateral 0.1 1 
Power loss 3.48 1.84 

3.4.3.2. Comparison with 3-D Finite Element Steady State Model (Non-Zero 
Translational Velocity) 

The force and power loss comparisons between the developed magnetic charge based 

steady state model and previously developed current sheet based steady state model [75] 

are shown in Figure 3.20 and Figure 3.21 respectively for 25mm lateral offset of the rotor 

and 15ms-1 translational velocity. The parameters used are listed in Table 3.5.   
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Slip speed of rotor [ms-1] 

(a) 

 
Slip speed of rotor [ms-1] 

(b) 
Figure 3.20. (a) Thrust/drag and lift force, (b) lateral force comparison for 15ms-1 translational velocity and 
25mm lateral offset between magnetic charge and current sheet models. 

 

 
Slip speed of rotor [ms-1] 

Figure 3.21. power loss comparison for 15 ms-1 translational velocity and 25mm lateral offset 
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Table 3.7 shows a comparison of the computation time taken by the current sheet and 

magnetic charge based steady state models to simulate one slip speed of Figure 3.20 and 

Figure 3.21. It is seen that charge sheet based approach is almost 4 times faster. This is 

due to the fact that source modeling technique using charge sheet is much faster than the 

current sheet approach.  

Table 3.7 : Computation time comparison between Magnetic charge and Current sheet based steady 
state finite element models 

Model type Calculation time 

Magnetic charge based steady state model 1 min 40 s 
Current sheet based steady state model [75] 8 min 

3.5. Summary 

This chapter has presented 3-D transient and steady state finite element models to 

simulate the forces acting on a magnetic source when it is rotating and/or translationally 

moving above a conductive plate. A brief summary of the developed FEA transient and 

steady state models is presented in Table 3.8. The presented model was validated by 

comparing it with standard finite element software (JMAG and Magsoft Flux) and 

already existing Comsol steady state model for zero and non-zero translational velocity 

respectively. Overall very good performance of the presented finite element models has 

been achieved. 
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Table 3.8 : Summary of the presented FEA transient and steady state models 
Model assumptions Model characteristics 

• Conductive plate is linear, simply 
connected and homogenous 
 

• Conductive plate has constant 
conductivity and is non-magnetic 
 

• The source has uniform motion 
 

• Frequency is low 

 
 

• Does not physically model the magnetic source; instead 
applies the source field in boundary conditions which 
leads to reduced simulation time 
 

• Can be applicable for any magnetic source 
 

• Computes the source field using magnetic charge sheet 
which helps reduce the simulation time 
 

• Models translational as well as rotational motion of the 
source 
 

• Model has been developed in Comsol v3.5a. 



 

CHAPTER 4 : A BRIEF SURVEY OF ANALYTIC EDDY CURRENT MODELING IN 

THREE DIMENSION 

 
 

4.1.  Introduction 

When a magnetic source moves in the vicinity of a conductive material, time varying 

magnetic fields induce eddy currents in the conductor which in turn interacts with the 

source magnetic field to create velocity dependent drag or thrust force and/or lift force. In 

magnetic levitated vehicles (maglev) the thrust and lift force are utilized while the drag 

force is an impairing factor [13, 74, 75]. But the later can be utilized in applications like 

eddy current damping [86-88, 144] and braking [89-91, 145-147]. Also eddy current 

interaction with conductive material is utilized in eddy current testing (ECT) to detect 

flaws or cracks in the conductive material [83, 84, 117, 118, 148-152]. In ECT a probe 

coil is moved over the conductor. In the presence of any crack in the conductor, the 

impedance of the eddy current path changes due to discontinuity in the conductivity. This 

change is measured by the probe coil.  

Finite element analysis (FEA) methods have been a hugely successful tool for 

analyzing eddy current distributions in conductive medium. An enormous amount of 

research has been conducted in this field in the past. The beauty of FEA is its ability to 

accurately model field distribution in simply connected [136, 153-158]  or multiply 

connected conductor [140, 159-164] of complicated geometry with constant or varying 

conductivity. However analytic modeling techniques are more appealing because of their 
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computational efficiency compared to FEA. There is a considerable amount of 

publications on the 3-D analytic modeling of eddy currents in linear conductive medium. 

Hence it is considered appropriate to devote a chapter to study the existing analytical 

modeling techniques in order to fully appreciate the need for further research 

contributions in this field.  

In the next section a brief survey will be presented and in section 4.3 the need for new 

methods will be discussed. 

4.2. Review of Existing 3-D Analytical Methods  

Depending on the geometry of the conductive medium the existing analytical 

methods can be categorized into two main groups: models for conductive half-space and 

conductive domain with finite dimensions. 

4.2.1. Conductive Half-Space 

The induced eddy current distribution in a conductive half-space due to a current 

carrying coil has been studied extensively [165-176]. The magnetic scalar potential 

cannot be used inside the conductor due to the presence of current and therefore the 

magnetic vector potential (MVP) has been mainly used to formulate the fields which is 

defined as  

 B A= ∇×  (3.6) 

The governing equations are  

 A2 0∇ = , in nonconductive region (3.60) 

 
A

A2
t

µσ
∂

∇ =
∂

, in conductive region (3.61) 

where µ , σ are the permeability and conductivity of the conductive medium. 
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Hammond [177] calculated the eddy current field in a conductive medium due to the 

presence of a circular current loop, as shown in Figure 4.1, using magnetic vector 

potential in the conductive and nonconductive current free regions.  

 
Figure 4.1. Circular current coil parallel to conductive half-space [177] 

 Dodd and Deeds in their classic work extended the ideas of Hammond by calculating 

the induced eddy current field in a two-conductor rod [166] and layers of conductive 

media [178] due to a circular coil of rectangular cross section. Like the work by 

Hammond, due to the axisymmetric nature of the coil, the cylindrical coordinate system 

was used and hence the obtained field solution was in terms of Bessel functions.  

Hannakam [165] calculated the force on two parallel wires carrying current in 

opposite directions near a very thin conductor. Later Reitz [167] extended the work done 

by Hannakam by calculating the forces on magnetic monopole, dipole and rectangular 

current coil when they move near a conductor using the magnetic vector potential in 

cartesian coordinate system. Hannakam [165] and Reitz [167] assumed the conductive 

plate thickness to be smaller than the skin depth for the dominant frequencies in the 

excitation field. With this assumption, the eddy current variation along the thickness of 

the plate was neglected. Beissner and Sablik generalized the work by Dodd and Deeds 

[166] to model the eddy current in a conductive half-space due to a nonsymmetric coil 

[168]. The eddy current distribution in a conductive plate of finite thickness was modeled 

due to moving rectangular current filament [169], circular current loop [179] and also 

( ', ', ')S x y z

( , , )M x y z
r
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elliptic current excitation [171] while Rao [170] used a perturbation technique to study 

the field induced due to a moving current filament above a conductor with finite 

thickness using a power series approach.  

In the models discussed above, the total magnetic vector potential in the 

nonconductive region, for example in region 1 of Figure 4.1, is composed of the potential 

due to induced eddy current in the conductor and due to the current coil. But deriving the 

latter can be complicated and time consuming procedure depending on the coil geometry 

as one needs to apply the Ampere’s current law on the coil to derive the magnetic vector 

potential [112, 168, 170, 177, 178] as given by  

 ' ' ' 1
( , , ) ( , , , )

4i i
A x y z J x y z dv

r

µ

π
= ∫  (3.62) 

where Ai and Ji are respectively the i-th component of the magnetic vector potential and 

source current in the coil respectively and  

 ' 2 ' 2 ' 2( ) ( ) ( )r x x y y z z= − + − + −  (3.63) 

is the distance between the current element (S) and point of observation (M) as shown in 

Figure 4.1. In (3.62) integration is performed over the entire distribution of source 

current. 

However, the derivation of the magnetic vector potential of the source field can be 

avoided for simple geometrical shape of the exciter. Panas [169, 171] applied the source 

current field only in the interface  boundary conditions for rectangular and elliptic current 

excitation.  

In addition to the magnetic vector potential, the second order vector potential (SOVP) 

has also been successfully used to solve problems in the cylindrical [180], spherical [181] 
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and cartesian [182] coordinate systems. Since A field is solenoidal (due to Coulomb 

gauge given by (3.22)), the SOVP, which is denoted as W, can be defined as [182, 183] 

 A W= ∇×  (3.64) 

where W can be decomposed into two scalar potentials, one transverse to the electric 

field and called as transverse electric (TE) potential and another transverse to the 

magnetic field and called as transverse magnetic (TM) potential as follows [141, 173, 

182-184] 

 W ˆ ˆ
a bnW n W= + ×∇  (3.65) 

where n̂  is the unit vector along any of the three directions of 3-D space, Wa is the TE 

potential and Wb is the TM potential. Hence, in the SOVP approach only two components 

need to be solved instead of three components in the magnetic vector potential approach. 

That reduces computational complexity and computation time. The choice of depends 

on the application. For example, in the study of eddy current fields in a planar conductive 

half-space [182], as shown in Figure 4.2,  is chosen to be a unit vector along the z-

direction. This choice was due to the fact that in a conductive half-space eddy current 

flows parallel to the plane at z=0 irrespective of the position and shape of the inducing 

coil [141, 171, 182, 185]. Hence this selection of eliminates the need for TM potential, 

Wb. The entire problem can then be formulated only in terms of a single scalar potential, 

Wa [182]. 

n̂

n̂

n̂
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Figure 4.2. Circular current coil of arbitrary shape above a conductive half-space [182] 

The magnetic flux density, B, has also been used to model the eddy current induced 

in a conductive medium due to different excitation types [150, 186, 187]. Sadhegai and 

Salemi [185, 188] generalized the field modeling technique using the magnetic field 

intensity  as they stated that the source field is required to be known only at the air-

conductor interface in the absence of the latter to find eddy current distribution inside the 

conductive medium. For example, in Figure 4.3 the source field is required to be known 

only at the z=0 plane in the absence of the plate. The source field is then included in the 

boundary conditions satisfying the continuity of the normal component of the magnetic 

flux density and tangential component of the magnetic field intensity. Sadhegai and 

Salemi considered straight current wire, solenoid exciter, elliptic loop exciter to validate 

their model [185, 188]. 

 
Figure 4.3. Circular current coil of arbitrary shape above a conductive medium of finite thickness [185] 
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4.2.2. Conductive Domain with Finite Dimensions 

The conductive half-space modeling techniques can be applicable when the conductor 

plate is large enough for the field to decay at its boundaries. Otherwise finite domain 

length has to be considered as the presence of domain boundary restricts eddy current 

path and modifies the field inside the conductive region. Field analysis in a finite width 

conductive medium is of immense interest for magnetic levitation [13, 74, 75, 189, 190]. 

Also in eddy current testing, the cracks can often occur near the edges of a conductive 

plate, therefore consideration of the edge effect of such a plate is essential for eddy 

current testing [118, 149]. In all these applications the models outlined in the last section 

will fail to model the eddy current distribution due to the assumption of infinite domain 

length. 

Urankar [191] presented a semi-analytic integral solution for the force acting on a 

conductive medium of arbitrary shape and finite width using the magnetic vector 

potential. However, in order to compute the force the integral equations need to be 

evaluated over the conductive domain as well as the exciter domain. This does not seem 

to be a computationally efficient approach.  

The eddy current distribution due to the edge effect of a finite width conductive plate 

or conductive plate with a hole has been considered using second order vector potential 

[117, 118, 149, 151, 192] and magnetic vector potential [148]. In these publications, the 

modal solutions to eddy current problems in conductive regions of the finite dimension 

was achieved by truncating the originally infinite problem domain using appropriate 

boundary condition on the truncation boundaries. This method is known as the truncated 

region eigenfunction expansion (TREE) [141]. The main challenge in this approach is the 
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numerical computation of the complex valued eigenvalues for the conductive region 

[192]. Although the recent publications using TREE approach considered the finite width 

of the plate with hole/ crack for impedance variation calculation, it has not considered 

finite thickness plate for force calculation [117, 148, 192]. 

Recently Pluk et al. [144] used a mirroring technique [193, 194] to consider the finite 

length and width of the conductive plate and provided a semi-analytic solution for the 

induced current density. Also the authors calculated the damping force using numerical 

integration.   

4.3. Need for New Method 

In this dissertation a computationally efficient analytic method is sought that is 

capable of calculating the induced field in a conductive plate of finite thickness and width 

due to the presence of an arbitrary magnetic source. The computation time should be as 

small as possible in order to offer the potential for real time computing. Hence the present 

challenge is to, first, find a general source field modeling technique which does not 

depend on the geometry of the source; second, take into account the finite thickness and 

width of the conductive plate and third, make the method computationally fast. 

Out of the discussed methods in this chapter, the one presented by Sadhegi and 

Salemi [185, 188] helps one generalize the source field, but this method does not take 

into account the finite width of the plate. Also the proposed method used the magnetic 

field intensity which requires one to solve for nine unknowns in the conductive region. 

On the other hand, Panas and Kriezis [169] provided a decoupled set of equations for the 

magnetic vector potential leading to an easier computation but did not consider the finite 
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domain length. A new method thus calls for the combination of the previous two. This 

idea will be investigated in chapter 6.  

Also the research completed by Theodoulidis and Kriezis [182] will be generalized 

for any magnetic source using SOVP in the conductive and nonconductive regions in 

chapter 5.  

In chapter 7 the TREE formulation using the second order vector potential will be 

applied to a conductive plate of finite thickness to include its edge effect. Computation 

time for different modeling approaches will be discussed.  

4.4. Conclusion 

A brief survey of the analytic modeling techniques was presented in this chapter. As 

the determination of the quasi-static electromagnetic field of a magnetic source, 

especially current coil, in the presence of an electrical conductor is well researched topic 

in the literature, the brief survey would avoid any duplication of the previous work and 

also would guide to the right direction in finding new method. Next few chapters will 

discuss on the new proposed methods. 



 

CHAPTER 5 : 3-D ANALYTIC EDDY CURRENT MODELING FOR A 
CONDUCTIVE PLATE OF INFINITE DIMENSION 

 
 

5.1. Introduction 

As mentioned in chapter 4, this chapter will discuss eddy current modeling in a large 

conductive plate due to any magnetic source moving above the plate at any arbitrary 

position. The second order vector potential (SOVP) will be used to formulate the 

conductive and nonconductive regions. This, in some sense, will provide a generalization 

of the work presented by Theodoulidis and Kriezis [182] who computed induced field 

distributions due to a current coil of arbitrary shape. In dynamic simulation the magnetic 

source may have vertical oscillatory motion under the influence of lift force and its own 

weight. Therefore in order to study dynamic behavior of such a magnetic source moving 

above a conductive plate, one should incorporate the vertical and lateral motion along 

with the principle velocity of the source. Not many authors have included vertical and 

lateral motion in studying dynamics. There are few exceptions like Rodgers considered 

the heave motion in 2-D analytic and finite element model to study dynamic performance 

of a linear induction machine in steady state condition [195]. Paudel et al. modeled the 

heave velocity in steady state model to study magnetic stiffness and damping 

characteristics of a magnetic levitated vehicle [81, 82]. In [150] Itaya et al. the authors 

studied the effect of forward and lateral motion of the magnetic source on the induced 

eddy current density in a conductive plate. 
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In this chapter, forces acting on the magnetic source will be computed using two different 

approaches: Maxwell’s stress tensor and magnetic charge. It will be shown that both 

methods produce the same result, as expected. Also the torque acting on the source and 

power loss in the conductive plate will be computed. The results will be compared 

against a previously developed finite element steady state model using magnetic charge, 

discussed in chapter 3, and also current sheet based steady state finite element model 

[75]. 

The rest of the chapter is arranged as follows: section 5.2 describes the governing 

equations for all the problem regions outlined above. Section 5.3 describes the boundary 

conditions which will be followed by the derivation of general solutions in section 5.4. 

Section 5.5 will talk about the source field modeling; solutions for the electromagnetic 

fields will be provided in section 5.6; electromagnetic forces will be computed using 

Maxwell’s stress tensor and magnetic charge approach in section 5.7 which will be 

followed by total power transfer, electromagnetic torque and power loss calculations in 

sections 5.8, 5.9 and 5.10 respectively; electromagnetic stiffness and damping constants 

will be calculated in section 5.11 and 5.12 respectively; model validation will be 

performed in section 5.13; stiffness and damping characteristics will be discussed in 5.14 

and a brief summary of this chapter will be provided in section 5.15. 

5.2. Governing Equation Formulation 

Consider an application of maglev transportation [13, 74, 75] where a magnetic rotor 

is moved above a conductive plate, as shown in Figure 5.1. The linear motion of the 

center of mass of the rotor due to its rotational motion is vc. 
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Figure 5.1. The x-y view of a 2 pole pair Halbach rotor moving and rotating over a conductive aluminum 
plate. The figure shows isoline plot of the radial component magnetic flux density in air region and 
isosurface plot of the current density in the conductive plate. The model was created in Magsoft flux 3-D.. 

The schematic of the problem region is shown in Figure 5.2 with the source located at 

height g above the conductive plate surface with l, w and h being the length, width and 

thickness of the conductive plate. Also the source velocities in x, y and z -directions as 

well as mechanical angular velocity ωm are shown in the figure. It must be noted here that 

although the schematic of Figure 5.2 displays a magnetic rotor as the source, the 

proposed analytic model is applicable to any kind of magnetic source.  

 
(a) 

 
(b) 

Figure 5.2. The (a) x-y and (b) z-y view of the problem region with magnetic source located at height g 
above the conductive plate surface.  

 The assumptions of this analytic model are listed below: 

• The plate has infinitely large width, w, and length, l. 

• The plate has finite thickness, h.  

• The plate is continuous with constant conductivity and non-magnetic.  

• The plate is linear and homogenous. 
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• The magnetic source has translational, heave and lateral motion along with 

rotational motion. 

• The frequency is sufficiently low in order for the quasi-static approximation to be 

valid. Precisely, the wavelength in the free-space is assumed to be large compared 

to the dimension of the plate and magnetic source, which is always true for 

maglev applications.  

The conductive medium is located at y=0 of the Cartesian coordinate system which 

creates three regions as shown in Figure 5.2:  

• Region I (ΩI) is the air or nonconductive region between the magnetic source and 

conductive plate located at 0 y g≤ ≤  

• Region II (ΩII) is the conductive region located at 0h y− ≤ ≤  

• Region III (ΩIII) is the air or nonconductive region below the conductive plate 

located at y h≤ − . 

5.2.1. Conductive Region (ΩII)  

In the presence of the eddy current in the conductive region, the magnetic vector 

potential is an obvious choice for modeling the region. However this analytic approach 

requires one to solve for three unknowns in the conductive region. Instead a formulation 

using the second order vector potential (SOVP) reduces the number of unknowns by one. 

Therefore, SOVP has been utilized in the proposed analytic model which is denoted as W 

and defined as [141, 182, 183] 

 A W= ∇×  (3.64) 

where A is the magnetic vector potential. As discussed in chapter 4, W can be split into 

TE and TM potentials with y preferred direction as follows [117, 141, 182-184, 196] 
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 W ˆ ˆa byW y W= + ×∇  (5.1) 

Here ŷ  is the unit vector along the y-direction while Wa and Wb are the TE and TM 

potential respectively. In this chapter a steady state solution for the scalar TE and TM 

potentials is assumed as given by [74, 79] 

 II   ( , , , ) ( , , ) , ,ej t
i iW x y z t W x y z e i a bω−= =  (5.2) 

where ωe is the electrical angular frequency of the source in rads-1. ωe can be due to 

excitation current frequency or the angular speed of the rotor. A clockwise rotation of the 

rotor, ωm, induces a linear motion, vc, at its center of mass in the positive x-direction as 

shown in Figure 5.1 and Figure 5.2. However, as in this dissertation the rotor is assumed 

fixed in space and plate in movable state, the positive clockwise rotational motion of the 

rotor can be simulated by inducing a linear motion in the plate in the negative x-direction. 

As a result, the exponential term of the TE potential given by (5.2) is taken as negative. 

In (5.2) superscript ‘II’ indicates region II. The governing equation of the conductive 

region in terms of the magnetic vector potential has already been derived in chapter 3 and 

rewritten below for convenience 

 
A A A A

A = 2
0 x y zv v v

t x y z
µ σ
 ∂ ∂ ∂ ∂ ∇ − − −    ∂ ∂ ∂ ∂

 (3.24) 

where σ is the conductivity (Sm-1) of the plate and vx, vy, vz are velocity of the rotor in the 

x, y and z directions respectively (ms-1). Substituting (3.64) into (3.24) gives  

 W W2
0( ) ( )x y zv v v

t x y z
µ σ
 ∂ ∂ ∂ ∂ ∇ ∇× = − − − ∇×   ∂ ∂ ∂ ∂

 (5.3) 

Substituting (5.1) into (5.3) gives 
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( )

( )                      

2

0

ˆ ˆ( )

ˆ ˆ( )

a b

x y z a b

yW y W

v v v yW y W
t x y z

µ σ

∇ ∇× + ×∇ =
 ∂ ∂ ∂ ∂  − − − ∇× + ×∇   ∂ ∂ ∂ ∂

 (5.4) 

Rearranging terms yields  

    

                     

2
0

2
0

ˆ

ˆ 0

a x y z a

b x y z b

y W v v v W
t x y z

y W v v v W
t x y z

µ σ

µ σ

    ∂ ∂ ∂ ∂   ∇× ∇ − − − − +           ∂ ∂ ∂ ∂
   ∂ ∂ ∂ ∂    ×∇ ∇ − − − − =          ∂ ∂ ∂ ∂ 

 (5.5) 

Equation (5.5) is satisfied if the TE and TM scalar potentials satisfy the following 3-D 

scalar Helmholtz equation 

      

II II II II II II II

                                                                             

2 2 2

02 2 2
,

,

i i i i i i i
x y z

W W W W W W W
v v v

t x y zx y z

i a b

µ σ
 ∂ ∂ ∂ ∂ ∂ ∂ ∂  + + = − − −   ∂ ∂ ∂ ∂∂ ∂ ∂  

=

 (5.6) 

Substituting (5.2) into (5.6) yields the governing equation for ΩII in steady state  

     

II II II II II II
II

                                                                                 

2 2 2

02 2 2
,

,

i i i i i i
e i x y z

W W W W W W
j W v v v

x y zx y z

i a b

µ σ ω
 ∂ ∂ ∂ ∂ ∂ ∂  + + = − + + +   ∂ ∂ ∂∂ ∂ ∂  

=

 (5.7) 

There is a freedom in choosing the unit vector of (5.1). Here it is chosen along the y-

direction, but could have been selected along the x or z-direction [141]. But the choice is 

not only a matter of preference but also a matter of convenience as shall be shown 

shortly.  

Utilizing (3.64) and (5.1) the components of the magnetic vector potential are related 

to Wa and Wb as follows 

 
II II

II
2

a b
x

W W
A

z x y

∂ ∂
= − −

∂ ∂ ∂
 (5.8) 
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II II

II
2 2

2 2

b b
y

W W
A

x z

∂ ∂
= +
∂ ∂

 (5.9) 

 
II II

II
2

a b
z

W W
A

x z y

∂ ∂
= −
∂ ∂ ∂

 (5.10) 

From (5.9) it is noticed that the Ay component is a function of Wb only. This is because 

the unit vector of (5.1) has been chosen along the y direction. As eddy current flows 

parallel to top conductive surface at y=0 for a large conductive plate [141, 182, 185, 188], 

the Ay component is zero. As a result, Wb has to be zero. The conductive medium can thus 

be represented only in terms of Wa. This is illustrated in Figure 5.3.  

 
Figure 5.3. Diagram of the induced eddy current and TE potential (Wa) in a conductive plate of infinitely 
large width and length, but finite thickness. 

Noting the relationship between the magnetic flux density and magnetic vector 

potential [115] 

 B A= ∇×  (3.6) 

yields 

 B W= ∇×∇×  (5.11) 

Substituting (5.1) into (5.11) and ignoring Wb, the relationship between the flux density 

and Wa potential within the conductive region is obtained as follows 

 
II

II
2

a
x

W
B

x y

∂
=
∂ ∂

 (5.12) 
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II II

II
2 2

2 2

a a
y

W W
B

x z

∂ ∂
= − −

∂ ∂
 (5.13) 

Substituting (5.6) into (5.13) II
yB  can also be written as 

 
II II II II

II II
2

02

a a a a
y e a x y z

W W W W
B j W v v v

x y zy
µ σ ω
 ∂ ∂ ∂ ∂  = + + + +   ∂ ∂ ∂∂  

 (5.14) 

and 

 
II

II
2

a
z

W
B

z y

∂
=
∂ ∂

 (5.15) 

5.2.2. Nonconductive Regions (ΩI and ΩIII)  

In the nonconductive or air regions, the conductivity term is zero and thus the 

magnetic flux density equations defined by (5.12), (5.14) and (5.15) are related to Wa by 

 I, IIIB   
2 2 2

2
ˆ ˆ ,̂

i i i
i a a aW W W

x y z i
x y z yy

∂ ∂ ∂
= + + =
∂ ∂ ∂ ∂∂

 (5.16) 

which can also be written as  

 I, IIIB   ,
i

i aW
i

y

 ∂  = ∇ =  ∂ 
 (5.17) 

The relationship between the magnetic flux density, B, and magnetic scalar potential,φ , 

is given by  [115] 

 B 0µ φ= − ∇  (2.5) 

Comparing (5.17) with (2.5) the following can be written relating the magnetic scalar 

potential, , with the TE potential, Wa, for air regions I and III 

 I, III   
0

1
,

i
i aW

i
y

φ
µ

∂
= − =

∂
 (5.18) 

φ
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In region I, the total TE potential is composed of the source field, I,s
aW  and reflected 

field, I,r
aW , due to the induced eddy currents in the region II as given by  

 I I, I,s r
a a aW W W= +  (5.19) 

where I,s
aW  and I,r

aW  are the potential due to the source and reflected field respectively. 

In region III, the total TE potential is the transmitted field due to the induced eddy 

currents in the conductive region. The source, reflected and transmitted TE potentials 

within regions I, II and III are illustrated in Figure 5.4. 

 
Figure 5.4. Diagram illustrating the source, reflected and transmitted TE potentials. 

As the conductivity is zero in the nonconductive regions, from (5.7) the TE potentials are 

seen to satisfy the following Laplace’s equations in regions I and III [117, 118, 141] 

 I2 , 0s
aW∇ =  (5.20) 

 I2 , 0r
aW∇ =  (5.21) 

 III2 0aW∇ =  (5.22) 

5.3. Boundary Conditions 

The continuity of the tangential components of the magnetic field intensity and 

normal component of the magnetic flux density must be satisfied across the interface y=0 

and y= -h. As the relative permeability of the conductive medium is unity, the boundary 

conditions are 

I,s
aW

I,r
aW

III
aW

II
aW II

aW
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 I I II, ,s r
x x xB B B+ = , at y = 0 (5.23) 

 I I II, ,s r
y y yB B B+ = , at y = 0 (5.24) 

 I I II, ,s r
z z zB B B+ = , at y = 0 (5.25) 

 II III,t
x xB B= , at y = -h (5.26) 

 II III,t
y yB B= , at y = -h (5.27) 

 II III,t
z zB B= , at y = -h (5.28) 

However, it is found that (5.23) - (5.28) hold true if the continuity of the TE potential and 

its normal derivative is satisfied across the interface or saying mathematically [181] 

 I, I, IIs r
a a aW W W+ = , at y = 0 (5.29) 

 
I, I, IIs r
a a aW W W

y y y

∂ ∂ ∂
+ =

∂ ∂ ∂
, at y = 0 (5.30) 

 II III
a aW W= , at y = -h (5.31) 

 
II III
a aW W

y y

∂ ∂
=

∂ ∂
, at y = -h (5.32) 

Thus instead of solving six boundary conditions (5.23) - (5.28), only four (5.29) - (5.32) 

are required at the air-conductor interfaces in the SOVP model.   

In addition, at the domain outer boundaries, as shown in Figure 5.2, at / 2x l= ± and

/ 2z w= ±  the Dirichlet boundary condition is satisfied i.e. all the scalar TE potentials 

are set to zero at these boundaries.  
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5.4. Derivation of General Solutions 

5.4.1. Conductive Region (ΩII)  

Using the separation of variables method [132], the TE potential in ΩII can be written 

as  

 II( , , ) ( ) ( ) ( )aW x y z X x Y y Z z=  (5.33) 

Substituting (5.33) into (5.6) and dividing both sides by ( ) ( ) ( )X x Y y Z z  (assuming they are 

non-zero functions of spatial variables) yields  

 
'' '' '' ' ' '

0 e x y z

X Y Z X Y Z
j v v v

X Y Z X Y Z
µ σ ω
  + + = − + + +   

 (5.34) 

where the superscript prime indicates differentiation. 

Let, ( ) mj xX x e ξ=  (5.35) 

and ( ) njk zZ z e=  (5.36) 

where the spatial frequencies are defined as  

   
2

,m

m
m

l

π
ξ = −∞ ≤ ≤ ∞  (5.37) 

   
2

,n

n
k n

w

π
= −∞ ≤ ≤ ∞  (5.38) 

Here it is assumed that l and w are large enough to decay the TE potential to zero at 

/ 2x l= ± and / 2z w= ± . Hence, complex Fourier series has been used to represent the 

x and z dependency in (5.35) and (5.36) instead of sine series. Substituting (5.35) and 

(5.36) into (5.34) gives for all m, n  
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'' '

2 2
0m n e x m z n y

Y Y
k j jv jv k v

Y Y
ξ µ σ ω ξ

  − + − = − + + +   
 (5.39)  

or, ( )( )
'' '

2 2
0 0 0y m n e x m z n

Y Y
v k j v v k

Y Y
µ σ ξ µ σ ω ξ+ − + − + + =  (5.40) 

or, 
'' '

2
0 0y mn

Y Y
v

Y Y
µ σ γ+ − =  (5.41) 

where  

 ( )2 2 2
0mn m n e x m z n

k j v v kγ ξ µ σ ω ξ= + − + +  (5.42) 

The roots of (5.41) are  

 2 2
0 00.5( ( ) 4 )mn y y mnv vα µ σ µ σ γ= − + +  (5.43) 

 2 2
0 00.5( ( ) 4 )mn y y mnv vβ µ σ µ σ γ= − − +  (5.44) 

Hence the general solution for Y(y) is  

 II II( ) mn mny y
mn mnY y C e D eα β= +  (5.45) 

Substituting (5.35), (5.36) and (5.45) into (5.33) the general solution for the Wa potential 

within the conductive region is obtained as  

           ( )II II II  ( , , ) , 0m n mn mn

M N
j x jk z y y

a mn mn
m M n N

W x y z e e C e D e h yξ α β

=− =−

= + − ≤ ≤∑ ∑  (5.46) 

The Fourier series is assumed to have M and N harmonics in the x and z directions 

respectively. The error introduced by this series truncation can be minimized by 

increasing the number of harmonics. II
mnC  and II

mnD  are unknowns and will be determined 
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by applying boundary conditions. It must be noted that only the real part of (5.46) must 

be considered when evaluating the physical field. 

5.4.2. Nonconductive Regions (ΩI and ΩIII)  

Applying the separation of variables method [132] to (5.21), the following general 

solution can be derived for the TE potential within air region I 

 I, I   ( , , ) , 0m n mn

M N
j x jk z yr

a mn
m M n N

W x y z e e C e y gξ κ−

=− =−

= ≤ ≤∑ ∑  (5.47) 

where  

 2 2
mn m nkκ ξ= +  (5.48) 

Only the negative exponential of y is used since the reflected field decays with distance 

away from the conductive plate. Only the real part of (5.47) is meaningful when 

calculating the physical field. The source field formulation will be discussed in section 

5.5. 

Similarly from (5.22) the following general solution can be obtained for the TE 

potential of region III 

 III III   ( )( , , ) ,m n mn

M N
j x jk z y h

a mn
m M n N

W x y z e e C e y hξ κ +

=− =−

= ≤ −∑ ∑  (5.49) 

In (5.49) the positive exponential of y ensures that the field decays with distance away 

from the conductive plate. It must be noted that only the real part of (5.49) has any 

physical significance.  
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5.5. Source Field Modeling 

In the proposed model, the TE potential within region I due to the magnetic source, 

I,s
a

W , is calculated from the knowledge of the source magnetic flux density using planar 

magnetic charge sheet [76] as outlined below.  

It is assumed that a planar charge sheet is placed at height y=g above the plate surface 

parallel to it as shown in Figure 5.5. Using (2.30) which is rewritten below for 

convenience  

 ( , ) 2 ( , , )s
m y y g
x z B x y zρ

=
=  (2.30) 

and (2.43) the y-component magnetic flux density of the source in region I can be 

obtained as follows 

 I ( ), ( , , ) m n mn

M N
j x jk z y gs y

y mn
m M n N

B x y z e e e Sξ κ −

=− =−

= ∑ ∑ , 0 y g≤ ≤  (5.50) 

The exponential term of y makes sure that the source field increases with distance 

towards the original magnetic source. 

 
(a) 

 
(b) 

Figure 5.5. (a) x-y view of the magnetic source. The source is located at (xc,yc,zc) = (0, ro+g, 0).; (b) the 
source is replaced by an equivalent planar magnetic charge sheet located at y = g above the conductive 
plate surface. 



99 

In order to determine the Fourier series coefficients, y
mnS , the source y-component flux 

density is first computed on the charge sheet surface at discrete sampling points along the 

x and z axes using (2.22). Shifting the coordinate of the center of the source from (0,0,0) 

to (0,yc,0), the source By field is calculated using  

 

2

2 2 2 2 2
0

( , ) ( sin ) 2 2

2 4 (2 ) 4 (2 )

s
s r o o o c o o o o
y o

o o

B r r g y r z w z w
B d

r r z w r z w

π
θ θ

θ
π

 − − + − = − 
 + + + − 

∫

  (5.51) 

where, ( )2 2 2 2( ) 2 cos ( )sinc o o o c or x g y r r x g yθ θ= + − + − + −  (5.52) 

Noting that  

 c oy r g= +  (5.53) 

substituting (5.53) into (5.52) gives  

 ( )2 2 22 2 cos sino o o o or x r r x rθ θ= + − −  (5.54) 

Two dimensional discrete Fourier transform (2-D DFT) is applied on the source By field 

computed using (5.51). The resulting discrete Fourier sequence is converted into a 

continuous exponential Fourier series as discussed in Appendix A to obtain the 

coefficients y
mnS . The original By source field and reconstructed field using (A.22) on the 

charge sheet surface are shown in Figure 5.6 and Figure 5.7.  
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(a) 

 
(b) 

Figure 5.6. (a) Original By source field and (b) reconstructed By field using (A.19) on the charge sheet kept 
at 5mm above the conductive plate.  

 
Distance along x-axis [m] 

Figure 5.7. Comparison of the original and reconstructed By source field along x-axis at z = 0.  

Equation (5.16) relates the TE potential with the y-component magnetic flux density 

due to the source as  

 
I

I
2 ,

,

2

s
sa

y

W
B

y

∂
=

∂
 (5.55) 
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or, I I, ,

y y

s s
a yW B dydy

−∞−∞

= ∫ ∫  (5.56) 

Thus integrating (5.50) twice with respect to y gives the source TE potential in region I  

 I   ( ), , 0m n mn

M N
j x jk z y gs w

a mn
m M n N

W e e S e y gξ κ −

=− =−

= ≤ <∑ ∑  (5.57) 

where   
2

1
, 0w y

mn mn

mn

S S y g
κ

= ≤ <  (5.58) 

Using (5.16) and (5.57) the x and z components of the source flux density in region I 

are determined to be 

 I   ( ), , 0m n mn

M N
j x jk z y gs w

x m mn mn
m M n N

B e e j S e y gξ κξ κ −

=− =−

= ≤ <∑ ∑  (5.59) 

 I   ( ), , 0m n mn

M N
j x jk z y gs w

z n mn mn
m M n N

B e e jk S e y gξ κκ −

=− =−

= ≤ <∑ ∑  (5.60) 

Substituting (5.58) into (5.59)-(5.60), I,s
xB  and I,s

zB  can be rewritten as 

 I   ( ), , 0m n mn

M N
j x jk z y gs y m

x mn
mnm M n N

j
B e e S e y gξ κ ξ

κ

−

=− =−

= ≤ <∑ ∑  (5.61) 

 I   ( ), , 0m n mn

M N
j x jk z y gs y n

z mn
mnm M n N

jk
B e e S e y gξ κ

κ

−

=− =−

= ≤ <∑ ∑  (5.62) 

Equations (5.61), (5.62) express the x and z flux density components due to the source in 

terms of the y-component and will be useful for force and power loss calculation. 
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5.6. Field Solution  

5.6.1. Solution for the TE Potential 

Substituting (5.47), (5.46) and (5.57) into (5.29) and cancelling out common terms 

gives for each m, n 

 I II IImngw
mn mn mn mnS e C C Dκ− + = + , at y = 0 (5.63) 

Substituting (5.47), (5.46) and (5.57) into (5.30) yields  

 ( )I II IImngw
mn mn mn mn mn mn mnS e C C Dκκ α β− − = + , at y = 0 (5.64) 

Similarly substituting TE potentials for regions II and III from (5.46) and (5.49) into 

(5.31) at y = -h gives  

 III II IImn mnh h
mn mn mnC C e D eα β− −= + , at y = -h (5.65) 

Finally substituting (5.46) and (5.49) into (5.32) gives  

 III II IImn mnh h
mn mn mn mn mn mnC C e D eα βκ α β− −= + , at y = -h (5.66) 

Eliminating I
mnC  from (5.63) and (5.64) one has  

 II II( ) ( ) 2 mngw
mn mn mn mn mn mn mn mnC D S e κα κ β κ κ −+ + + =  (5.67) 

and eliminating III
mnC  from (5.65) and (5.66) gives  

 II II( ) ( ) 0mn mnh h
mn mn mn mn mn mne C e Dα βα κ β κ− −− + − =  (5.68) 

Equations (5.67) and (5.68) can be in the following matrix form 

 
II

II

( ) ( ) 2

( ) ( ) 0

mn

mn mn

gw
mn mn mn mn mn mn mn

h h
mn mn mn mn mn

C S e

e e D

κ

α β

α κ β κ κ

α κ β κ

−

− −

    + +     =    − −         
 (5.69) 
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From (5.69) unknowns II
mnC  and II

mnD can be obtained using Cramer’s rule [132]. The 

solutions are  

 II 2 ( ) /mn mng hw
mn mn mn mn mn mnC S e e Qκ βκ β κ− −= −  (5.70) 

 II 2 ( ) /mn mng hw
mn mn mn mn mn mnD S e e Qκ ακ α κ− −= − −  (5.71) 

where 

        ( )( ) ( )( )mn mnh h
mn mn mn mn mn mn mn mn mnQ e eβ αα κ β κ β κ α κ− −= + − − + −  (5.72) 

is the determinant of the coefficient matrix in (5.69). Substituting (5.70) and (5.71) back 

into (5.46) gives the TE potential for conductive plate region in terms of the source TE 

field as 

 II  ( ), 0m n mn

M N
j x jk z gw w

a mn mn
m M n N

W e e S e T y h yξ κ−

=− =−

= − ≤ ≤∑ ∑  (5.73) 

where 

                 
( ) ( )( ) ( )

( ) 2
mn mn mn mny h y h

w mn mn mn mn
mn mn

mn

e e
T y

Q

α β β αβ κ α κ
κ

− − − − − =  
  

 (5.74) 

can be regarded as the transmission function relating the TE potential of the source to the 

transmitted potential in the conductive plate. It is worth noting that as the transmission 

function is source independent, this solution is valid for any magnetic source located at 

any location above the conductive region. 

Using (5.63) the reflected TE potential coefficients are  

 I II II mngw
mn mn mn mnC C D S e κ−= + − , at y = 0 (5.75) 

Substituting (5.70) and (5.71) into (5.75) yields  
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   I ( ) ( )
2

mn mn

mn mn

h h
g gw wmn mn mn mn

mn mn mn mn
mn

e e
C S e S e

Q

β α
κ κβ κ α κ

κ
− −

− −
 − − − = − 
  

 (5.76) 

Using the transmission function definition given by (5.74), (5.76) can be written as  

 I (0)mn mng gw w w
mn mn mn mnC S e T S eκ κ− −= −  (5.77) 

or, ( )I (0) 1mngw w
mn mn mnC S e Tκ−= −  (5.78) 

where (0)w
mnT  is the transmission function ( )w

mnT y  evaluated at y=0. Substituting (5.78) 

into (5.47) the reflected TE potential for region I can be obtained  

                ( )I,   (0) 1 , 0m n mn mn

M N
j x jk z y gr w w

a mn mn
m M n N

W e e e S e T y gξ κ κ− −

=− =−

= − ≤ ≤∑ ∑  (5.79) 

or, I,   ( ), 0m n mn

M N
j x jk z gr w w

a mn mn
m M n N

W e e S e R y y gξ κ−

=− =−

= ≤ ≤∑ ∑  (5.80) 

where ( ) (0) 1mnyw w
mn mnR y e Tκ−  = −    (5.81) 

can be thought of as reflection function that relates the incident TE potential of the source 

to the reflected potential in region I. At y=0, one finds 

 (0) (0) 1w w
mn mnR T= −  (5.82) 

This is the same relationship that applies to high-frequency plane waves. 

Substituting (5.72) and (5.74) into (5.82) yields  

( ) ( )
(0) 2 1

( )( ) ( )( )

mn mn

mn mn

h h
w mn mn mn mn
mn mn h h

mn mn mn mn mn mn mn mn

e e
R

e e

β α

β α

β κ α κ
κ

α κ β κ β κ α κ

− −

− −

− − −
= −

+ − − + −
 

  (5.83) 
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( )( )( )

(0)
( )( ) ( )( )

mn mn

mn mn

h h
w mn mn mn mn
mn h h

mn mn mn mn mn mn mn mn

e e
R

e e

α β

β α

β κ α κ

α κ β κ β κ α κ

− −

− −

− − −
=

+ − − + −
 (5.84) 

Now defining,  

 2 2
00.5 ( ) 4mn y mnvς µ σ γ= +  (5.85) 

(5.84) can be written as 

      
( )( )( )

(0)
( )( ) ( )( )

mn mn

mn mn

h h
w mn mn mn mn
mn h h

mn mn mn mn mn mn mn mn

e e
R

e e

ς ς

ς ς

α κ β κ

α κ β κ α κ β κ

−

−

− − −
=

+ − − − +
 (5.86) 

Using (5.43), (5.44) the following relations are derived 

 
                             

2

2 2
0

( )( ) ( )mn mn mn mn mn mn mn mn mn mn

mn mn mn yv

α κ β κ κ κ α β α β

κ γ κ µ σ

− − = − + +

= − +
 (5.87) 

Substituting (5.42) and (5.48) into (5.87) gives 

                 ( )0( )( ) ( )mn mn mn mn y mn e x m z nv j v v kα κ β κ µ σ κ ω ξ− − = + + +  (5.88) 

Then,  

                     
                             

2

2 2 2 2
0

( )( ) ( )

( ) 4

mn mn mn mn mn mn mn mn mn mn

mn mn mn y mnv

α κ β κ α β κ α β κ

γ κ κ µ σ γ

+ − = − − −

= − − − +
 (5.89) 

Substituting (5.42) and (5.48) into (5.89) gives  

      ( )2
0( )( ) 2 2mn mn mn mn mn mne x m z n mnj v v kα κ β κ κ µ σ ξ κ ςω+ − = − + + + −  (5.90) 

And then, 

 
                             

2

2 2 2 2
0

( )( ) ( )

( ) 4

mn mn mn mn mn mn mn mn mn mn

mn mn mn y mnv

α κ β κ α β κ α β κ

γ κ κ µ σ γ

− + = + − −

= − − + +
 (5.91) 
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Substituting (5.42) and (5.48) into (5.91) gives  

      ( )2
0( )( ) 2 2mn mn mn mn mn mne x m z n mnj v v kα κ β κ κ µ σ ξ κ ςω− + = − + + + +  (5.92) 

Substituting (5.88), (5.90) and (5.92) into (5.86) gives 

( )
( )
0

2
0

( ) ( )
(0)

2 ( ) 2 ( )

mn mn

mn mn mn mn

h h
y mn e x m z nw

mn h h h h
mn e x m z n mn mn

v j v v k e e
R

j v v k e e e e

ς ς

ς ς ς ς

µ σ κ ω ξ

κ µ σ ω κ ςξ

−

− −

− + + + −
=

 − − + + − − +  

  

  (5.93) 

   
( )
( )

0

2
0

( ) sinh( )
(0)

2 sinh( ) 2 cosh( )

y mn e x m z nw
mn

mn

mn

mn mn mne x m z n mn

v j v v k h
R

j v v k h h

µ σ κ ω ξ

κ µ σ ω ξ

ς

ς ςκ ς

+ + +
=
 − + + +  

     (5.94) 

Equation (5.94) can be written as (assuming sinh(ςmnh)≠0) 

                   
( )

coth

0

2
0

( )

2 ( ) 2
0

(
(

)
)

mn y e m x n z

mn e m x n z mn mn m

w

n

mn

v j w v k v

j w v
R

k v h

µ σ κ ξ

κ µ σ ξ κ ς ς

+ + +

− + + +
=  (5.95) 

5.6.2. Solution for the Magnetic Vector Potential 

Substituting (5.73) into (5.8) and (5.10) the x and z-components of the magnetic 

vector potential in the conductive plate are obtained as (noting that the TM potential is 

zero) 

              II  ( , , ) ( ), 0m n mn

M N
j x jk z gw w

x n mn mn
m M n N

A x y z j k e e S e T y h yξ κ−

=− =−

= − − ≤ ≤∑ ∑  (5.96) 

               II  ( , , ) ( ), 0m n mn

M N
j x jk z gw w

z m mn mn
m M n N

A x y z j e e S e T y h yξ κξ −

=− =−

= − ≤ ≤∑ ∑  (5.97)         

5.6.3. Solution for the Magnetic Flux Density 

5.6.3.1. Solution for the transmitted flux density 

Using (5.12), (5.13), (5.15), (5.58) and (5.73), the transmitted magnetic flux density 

components in the conductive plate region can be expressed in terms of the incident y-

component source flux density as follows 
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           II  
2

( )
( , , ) , 0m n mn

M N w
j x jk z gy m mn

x mn
m M n N mn

j dT y
B x y z e e S e h y

dy

ξ κ ξ

κ

−

=− =−

= − ≤ ≤∑ ∑  (5.98) 

                     II  ( , , ) ( ), 0m n mn

M N
j x jk z gy w

y mn mn
m M n N

B x y z e e S e T y h yξ κ−

=− =−

= − ≤ ≤∑ ∑  (5.99) 

           II  
2

( )
( , , ) , 0m n mn

M N w
j x jk z gy n mn

z mn
m M n N mn

jk dT y
B x y z e e S e h y

dy

ξ κ

κ

−

=− =−

= − ≤ ≤∑ ∑  (5.100) 

where from (5.74) the derivative of the transmission function with respect to y can be 

easily obtained as 

       
( ) ( )( ) ( ) ( )

2
mn mn mn mny h y hw

mn mn mn mn mn mn mn
mn

mn

dT y e e

dy Q

α β β αα β κ β α κ
κ

− − − − − =  
  

(5.101) 

5.6.3.2. Solution for the reflected flux density 

Similarly using (5.16), (5.58) and (5.80)-(5.81) the reflected flux density components 

of region I can be written in terms of the incident source y-component magnetic flux 

density as given below                   

        I  , ( , , ) ( ), 0m n mn

M N
j x jk z gr y wm

x mn mn
m M n N mn

j
B x y z e e S e R y y gξ κ ξ

κ

−

=− =−

= − ≤ ≤∑ ∑  (5.102) 

                   I,  ( , , ) ( ), 0m n mn

M N
j x jk z gr y w

y mn mn
m M n N

B x y z e e S e R y y gξ κ−

=− =−

= ≤ ≤∑ ∑  (5.103) 

             I  , ( , , ) ( ), 0m n mn

M N
j x jk z gr y wn

z mn mn
m M n N mn

jk
B x y z e e S e R y y gξ κ

κ

−

=− =−

= − ≤ ≤∑ ∑  (5.104) 

Using (5.50), (5.61) and (5.62) and defining the source flux density at y=0 as  

 I,
, ( , 0, ) m n mn

M N
j x jk z gs y m

x mn mn
m M n N mn

j
B x z e e S eξ κ ξ

κ

−

=− =−

= ∑ ∑  (5.105) 
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 I,
, ( ,0, ) m n mnj x jk z gs y
y mn mnB x z e e S eξ κ−=  (5.106) 

 I,
, ( , 0, ) m n mn

M N
j x jk z gs y n

z mn mn
m M n N mn

jk
B x z e e S eξ κ

κ

−

=− =−

= ∑ ∑  (5.107) 

The reflected flux density components (5.102)-(5.104) can also be written in terms of the 

respective source flux density components as follows 

 I I  , ,
,( , , ) ( ,0, ) ( ), 0

M N
r s w

x x mn mn
m M n N

B x y z B x z R y y g
=− =−

= − ≤ ≤∑ ∑  (5.108) 

 I, I  ,
,( , , ) ( ,0, ) ( ), 0

M N
r s w

y y mn mn
m M n N

B x y z B x z R y y g
=− =−

= ≤ ≤∑ ∑  (5.109) 

and I I  , ,
,( , , ) ( , 0, ) ( ), 0

M N
r s w

z z mn mn
m M n N

B x y z B x z R y y g
=− =−

= − ≤ ≤∑ ∑  (5.110) 

The reflected flux density given by (5.108)-(5.110) can also be written in a more compact 

form using (5.106) as 

        I IB  , ,
, ˆ ˆ ˆ( , 0, ) ( ) , 0

M N
r s w m n

y mn mn
m M n N mn mn

j jk
B x z R y x y z y g

ξ

κ κ=− =−

 
 = − + − ≤ ≤  

∑ ∑  (5.111) 

   I IB  , ,
, ˆ ˆ ˆ( ,0, ) ( ) cos sin , 0

M N
r s w

y mn mn
m M n N

B x z R y j x y j z y gϕ ϕ
=− =−

 = − + − ≤ ≤ ∑ ∑  (5.112) 

where 1tan ( / )
n m
kϕ ξ−=  (5.113) 

5.7. Calculation of Electromagnetic Force 

The electromagnetic forces acting on the magnetic source will be calculated using 

two approaches. The first approach uses Maxwell’s stress tensor [112, 115, 143] using 
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the reflected field of region I whereas the second approach is based on fictitious magnetic 

charge [197].  

5.7.1. Calculation using Maxwell’s Stress Tensor 

Maxwell’s stress tensor method [112, 115, 143] will be used to calculate the thrust, 

lift and lateral forces acting on the conductive plate using  

 II II

0

1
Re

2x x y

x z

F B B dxdz
µ

∗
    =      
∫ ∫  at y = 0 (5.114) 

 ( )II II II II II II

0

1
Re

4y y y x x z z

x z

F B B B B B B dxdz
µ

∗ ∗ ∗
    = − −     
∫ ∫  at y = 0 (5.115) 

 II II

0

1
Re

2z z y

x z

F B B dxdz
µ

∗
    =      
∫ ∫  at y = 0 (5.116) 

where the integration is performed over the entire top surface of the conductive plate at 

y=0 and ‘*’ denotes complex conjugate. The limits of integration with respect to x and z 

are –l/2 to l/2 and –w/2 to w/2. It must be noted that (5.114)-(5.116) produce the force 

acting on the plate. Hence in order to find the force acting on the magnetic source, a 

negative sign should be added in front of the force equations.  

Using (5.23) and (5.24) the thrust tensor given by (5.114) becomes  

 ( )( )I I I I, , , ,

0

1
Re

2
s r s r

x x x y y

x z

F B B B B dxdz
µ

∗
    = + +     
∫ ∫  at y = 0 (5.117) 

Adding the x-component of the reflected and source flux density of region I given by 

(5.61) and (5.102) at y=0 and using (5.81) gives 
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( )

I I, ,
2 (0)

m n mn

wM N
m mnj x jk z gs r y

x x mn
m M n N mn

j T
B B e e S eξ κ

ξ

κ

−

=− =−

−
+ = ∑ ∑ , at y = 0 (5.118) 

Evaluating (5.99) at y=0 gives the total y-component magnetic flux density on the top 

surface of the conductive plate as 

                     I I, , (0)m n mn

M N
j x jk z gs r y w

y y mn mn
m M n N

B B e e S e Tξ κ−

=− =−

+ = ∑ ∑ , at y = 0 (5.119) 

Substituting (5.118) and complex conjugate of (5.119) into (5.117) and performing the 

double integral, the thrust force is easily evaluated to be  

                   ( )2 2

0

Re (0) 2 (0)
2

mn

M N
gy w wm

x mn mn mn
m M n N mn

jlw
F S e T Tκ ξ

µ κ

− ∗

=− =−

   = −    
∑ ∑  (5.120) 

Since, 

 { }Re (0) (0) 0w w
mn mnjT T∗ =  (5.121) 

the thrust force becomes 

 
2 2

0

Re (0)mn

M N
gy wm

x mn mn
m M n N mn

jlw
F S e Tκ ξ

µ κ

− ∗

=− =−

   =     
∑ ∑  (5.122) 

On further simplification, the thrust force acting on the source can be written as  

 
2 2

0

Im (0)mn

M N
gy wm

x mn mn
m M n N mn

lw
F S e Tκ ξ

µ κ

−

=− =−

   = −     
∑ ∑  (5.123) 

Using the relation between the reflection and transmission coefficient given by (5.82), 

(5.123) can be written as  
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2 2

0

Im (0)mn

M N
gy wm

x mn mn
m M n N mn

lw
F S e Rκ ξ

µ κ

−

=− =−

   = −     
∑ ∑  (5.124) 

Equation (5.124) obtains the thrust force from the y-component of the source magnetic 

flux density. 

Similarly substituting (5.24) and (5.25) into (5.116) the lateral stress tensor can be 

written in terms of the reflected and source magnetic flux density as follows 

 ( )( )I I I I, , , ,

0

1
Re

2
s r s r

z z z y y

x z

F B B B B dxdz
µ

∗
    = + +     
∫ ∫ , at y=0 (5.125) 

Adding (5.62) and (5.104) at y=0 gives the total z-component magnetic flux density on 

the top surface of the conductive plate  

                 
( )

I I, ,
2 (0)

m n mn

wM N
n mnj x jk z gs r y

z z mn
m M n N mn

jk T
B B e e S eξ κ

κ

−

=− =−

−
+ = ∑ ∑ , at y=0 (5.126) 

Substituting  (5.126) and complex conjugate of (5.119) into (5.125) and integrating with 

respect to x and z yields 

                    ( )2 2

0

Re (0) 2 (0)
2

mn

M N
gy w wn

z mn mn mn
m M n N mn

jklw
F S e T Tκ

µ κ

− ∗

=− =−

   = −    
∑ ∑  (5.127) 

Using (5.121), the lateral force acting on the source becomes  

 
2 2

0

Re (0)mn

M N
gy wn

z mn mn
m M n N mn

jklw
F S e Tκ

µ κ

− ∗

=− =−

   = −     
∑ ∑  (5.128) 

Or, 
2 2

0

Im (0)mn

M N
gy wn

z mn mn
m M n N mn

klw
F S e Tκ

µ κ

−

=− =−

   = −     
∑ ∑  (5.129) 

Using (5.82), the lateral force can be written as  
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2 2

0

Im (0)mn

M N
gy wn

z mn mn
m M n N mn

klw
F S e Rκ

µ κ

−

=− =−

   = −     
∑ ∑  (5.130) 

Substituting (5.23)-(5.25) into the expression of the lift tensor given by (5.115) and 

splitting the integrand into three parts with each part due to a separate flux density 

component, (5.115) can be written as  

 1 2 3y y y y
F F F F= − −  (5.131) 

where 

 ( )( )I I I I, , , ,
1

0

1
Re

4
s r s r

y y y y y

x z

F B B B B dxdz
µ

∗
    = + +     
∫ ∫ , at y=0 (5.132) 

 ( )( )I I I I, , , ,
2

0

1
Re

4
s r s r

y x x x x

x z

F B B B B dxdz
µ

∗
    = + +     
∫ ∫ , at y=0 (5.133) 

 ( )( )I I I I, , , ,
3

0

1
Re

4
s r s r

y z z z z

x z

F B B B B dxdz
µ

∗
    = + +     
∫ ∫ , at y=0 (5.134) 

Substituting (5.119) and its complex conjugate into (5.132) and integrating yields 

 
2 22

1
0

Re (0)
4

mn

M N
gy w

y mn mn
m M n N

lw
F S e Tκ

µ

−

=− =−

   =     
∑ ∑  (5.135) 

On substitution of (5.118) and its complex conjugate into (5.133) and integrating one 

obtains 

              ( )( )
2

2 2
2 2

0

2 (0) 2 (0)
4

mn

M N
gy w wm

y mn mn mn
m M n N mn

lw
F S e T Tκξ

µ κ

∗−

=− =−

= − −∑ ∑  (5.136) 

Further rearranging gives 
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2 2 2
2 2

0
2

4 2 (0)
4

2 (0) (0)

mn

M N
gy wm

y mn mn
m M n N mn

w w
mn mn

lw
F S e T

T T

κξ

µ κ

− ∗

=− =−

= −


− + 

∑ ∑
 (5.137) 

Finally substituting (5.126) and its complex conjugate into (5.134) and integrating one 

finds  

                       

                                               

2 2 2
3 2

0
2

4 2 (0)
4

2 (0) (0)

mn

M N
gy wn

y mn mn
m M n N mn

w w
mn mn

klw
F S e T

T T

κ

µ κ

− ∗

=− =−

= −


− + 

∑ ∑
 (5.138) 

Substituting (5.135), (5.137) and (5.138) into (5.131) and using (5.48) gives the lift force 

acting on the magnetic source as 

 ( )2 2

0

Re (0) 1mn

M N
gy w

y mn mn
m M n N

lw
F S e Tκ

µ

−

=− =−

   = − −    
∑ ∑  (5.139) 

Using (5.82), the lift force can be written as  

 
2 2

0

Re (0)mn

M N
gy w

y mn mn
m M n N

lw
F S e Rκ

µ

−

=− =−

   = −     
∑ ∑  (5.140) 

In the next subsection electromagnetic force calculation using magnetic charge will be 

discussed. 

5.7.2. Calculation using Fictitious Magnetic Charge 

In electrostatics, the work done to bring a surface charge distribution, ρe, from infinity 

to an existing electric field of potential V is given by [115] 

 
e e

S

U VdSρ= ∫  (5.141) 
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Extending the concept to magnetostatics, assuming a fictitious magnetic charge 

distribution (due to the magnetic source) on the surface at y=0 in the presence of the 

reflected magnetic scalar potential, the work done or the total energy of the system is 

given by  

 I

/2 /2

,

/2 /2

1
Re

2

l w

s r
m m

l w

U dxdzρ φ∗

− −

    =      
∫ ∫ , at y=0 (5.142) 

The charge density is twice the normal component of the flux density [76]. Hence from 

(5.50) 

 
0

( , , ) 2 m n mn

M N
j x jk z gs y

m mny
m M n N

x y z e e S eξ κρ −

=
=− =−

= ∑ ∑  (5.143) 

Using (2.5) the reflected scalar potential can be obtained from the reflected y-component 

flux density given by (5.103) as 

                I  ,

0

( )1
( , , ) , 0m n mn

M N w
j x jk z gr y mn

mn
m M n N mn

R y
x y z e e S e y gξ κφ

µ κ

−

=− =−

= ≤ ≤∑ ∑  (5.144) 

The electromagnetic forces acting on the magnetic source are given by  

 
constant

F s
m

mU
ρ =

= ∇  (5.145) 

Substituting (5.142) into (5.145), the force components are obtained as  

 
I

/2 /2 ,

/2 /2

1
Re

2

l w
r

s
x m

l w

F dxdz
x

φ
ρ ∗

− −

  ∂  =   ∂   
∫ ∫ , at y=0 (5.146) 

 
I

/2 /2 ,

/2 /2

1
Re

2

l w
r

s
y m

l w

F dxdz
y

φ
ρ ∗

− −

  ∂  =   ∂   
∫ ∫ , at y=0 (5.147) 



115 

 
I

/2 /2 ,

/2 /2

1
Re

2

l w
r

s
z m

l w

F dxdz
z

φ
ρ ∗

− −

  ∂  =   ∂   
∫ ∫ , at y=0 (5.148) 

Utilizing (2.5), the forces can be written in a more compact form as [197] 

 IF B

/2 /2

,

0 /2 /2

1
Re

2

l w

s r
m

l w

dxdzρ
µ

∗

− −

    = −      
∫ ∫ , at y=0 (5.149) 

Substituting the charge density given by (5.143) and the reflected scalar field given by 

(5.144) into (5.146) and integrating with respect to x and z gives 

 
2 2

0

(0)
Re mn

M N w
gy m mn

x mn
m M n N mn

j Rlw
F S e κ ξ

µ κ

−

=− =−

   =     
∑ ∑  (5.150) 

or, 
2 2

0

Im (0)mn

M N
gy wm

x mn mn
m M n N mn

lw
F S e Rκ ξ

µ κ

−

=− =−

   = −     
∑ ∑  (5.151) 

which is same as (5.124). 

Similarly substituting (5.143) and (5.144) into (5.147) and (5.148) yields respectively 

the normal and lateral force as given by  

 
2 2

0

Re (0)mn

M N
gy w

y mn mn
m M n N

lw
F S e Rκ

µ

−

=− =−

   = −     
∑ ∑  (5.152) 

and 
2 2

0

Im (0)mn

M N
gy wn

z mn mn
m M n N mn

klw
F S e Rκ

µ κ

−

=− =−

   = −     
∑ ∑  (5.153) 

which are same as (5.140) and (5.130) respectively. 

Noting the similarity among the force expressions given by (5.151)-(5.153) and defining  

 
2 2

0

(0)mngy w
mn mn mn

lw
f S e Rκ

µ

−= −  (5.154) 
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then the electromagnetic forces can be written in a more compact form as 

 Re
M N

y mn
m M n N

F f
=− =−

   =     
∑ ∑  (5.155) 

 Im
M N

m
x mn

m M n N mn

F f
ξ

κ=− =−

   =     
∑ ∑  (5.156) 

 Im
M N

n
z mn

m M n N mn

k
F f

κ=− =−

   =     
∑ ∑  (5.157) 

Taking divergence on both sides of (5.149) and noting (3.3), it is observed that  

 F 0∇⋅ =  (5.158) 

5.8. Power Transfer Calculation 

Differentiating the energy given by (5.142) with respect to time, the total power 

transfer from the magnetic source to the conductive plate can be calculated as follows 

 
tans

m

m
transfer

cons t

U
P

t
ρ =

∂
=
∂

, at y=0 (5.159) 

It is noted from (5.159) that the power absorbed by the plate is designated as positive. 

Substituting (5.142) into (5.159) gives 

 
I

/2 /2 ,

/2 /2

1
Re

2

l w
r

s
transfer m

l w

P dxdz
t

φ
ρ ∗

− −

  ∂  =   ∂   
∫ ∫ , at y=0 (5.160) 

In steady state (5.160) can be written as  

 I

/2 /2

,

/2 /2

1
Re

2

l w

s r
transfer e m

l w

P j dxdzω ρ φ∗

− −

    = −      
∫ ∫ , at y=0 (5.161) 
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Substituting (5.143) and (5.144) into (5.161) and integrating gives  

  
2 2

0

(0)
Re mn

M N w
gye mn

transfer mn
m M n N mn

lw R
P j S e κω

µ κ

−

=− =−

   = −     
∑ ∑  (5.162) 

or,  
2 2

0

(0)
Im mn

M N w
gye mn

transfer mn
m M n N mn

lw R
P S e κω

µ κ

−

=− =−

   =     
∑ ∑  (5.163) 

5.9. Electromagnetic Torque Calculation 

The electromagnetic torque acting on the source is another useful parameter which 

can be derived using  

 
( / )

transfer transfer

em

m e

P P
T

Pω ω
= =  (5.164) 

where ωm is the mechanical angular speed [rads-1] and P is number of pole-pairs of the 

source. Substituting (5.163) into (5.164), the torque is calculated to be 

 
2 2

0

(0)
Im mn

M N w
gy mn

em mn
m M n N mn

RlwP
T S e κ

µ κ

−

=− =−

   =     
∑ ∑  (5.165) 

5.10. Power Loss Calculation 

One part of the transferred power to the conductive plate is lost as heat and the other 

part contributes to moving the source with velocity vx, vy and vz. Therefore the power loss 

can be obtained as 

 
loss transfer x x y y z z

P P F v F v F v= − − −  (5.166) 

Substituting thrust, lift and lateral force from (5.150), (5.152) and (5.153) respectively 

and power transfer from (5.162) into (5.166) and noting that  
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 { } { }Im (0) Re (0)w w
mn mnR jR− =  (5.167) 

the following is obtained 

2 2

0

(0)
Re ( )mn

M N w
gy mn

loss mn e m x n z mn y
m M n N mn

Rlw
P S e j j v jk v vκ ω ξ κ

µ κ

−

=− =−

   = − + + −    
∑ ∑  

  (5.168) 

There is a striking similarity between the analytic force, power transfer, torque and power 

loss expressions derived in this chapter with the ones obtained in the 2-D analytic based 

steady state analysis conducted by Paudel [14]. This should be expected as this current 

chapter discusses eddy current modeling for a large conductive plate which, in many 

respects, resembles the 2-D model developed by Paudel [14]. 

Figure 5.8 shows a flowchart of the developed SOVP based steady state analytic 

model to compute the eddy current forces, torque and power transfer. 

 
Figure 5.8. Flowchart of the presented analytic SOVP model to compute forces, torque and power transfer 
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5.11. Electromagnetic Stiffness Constant Calculation 

The stiffness constant is defined as the negative of the derivative of the force with 

respect to the displacement [198]. The stiffness matrix for a 3-D model can be obtained 

by taking derivatives of the thrust, lift and lateral forces acting on the source with respect 

to x, y and z-axis displacements respectively. 

 

x x x

xx xy xz
y y y

yx yy yz

zx zy zz
z z z

dF dF dF

dx dy dz
k k k

dF dF dF
k k k

dx dy dz
k k k

dF dF dF

dx dy dz

 
 
          = −          
 
  

 (5.169) 

Observing the force expressions given by (5.146)-(5.148), it can be noticed that  

 
yx

dFdF

dy dx
=  (5.170) 

 x zdF dF

dz dx
=  (5.171) 

 
y z

dF dF

dz dy
=  (5.172) 

Differentiating the thrust force given by (5.146) with respect to y and substituting 

(5.143) and (5.144) into it and integrating with respect to x and z at y=0 yields for kxy as  

 
2 2

0

Im (0)mn

M N
gy w

xy m mn mn
m M n N

lw
k S e Rκξ

µ

−

=− =−

    = −      
∑ ∑  (5.173) 

Similarly differentiating (5.146) with respect to z and substituting (5.143) and (5.144)  

into it and then integrating at y=0 yields for kxz as  
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2 2

0

(0)
Re mn

M N w
gy mn

xz m n mn
mnm M n N

Rlw
k k S e κξ

µ κ

−

=− =−

    =      
∑ ∑  (5.174) 

Differentiating (5.147) with respect to z and substituting (5.143) and (5.144) into it and 

then integrating at y=0 yields for kyz as  

 
2 2

0

Im (0)mn

M N
gy w

yz n mn mn
m M n N

lw
k k S e Rκ

µ

−

=− =−

    = −      
∑ ∑  (5.175) 

For the diagonal elements of the stiffness matrix the thrust, lift and lateral forces are 

differentiated with respect to x, y and z –displacements respectively and are given by 

 

 
2 22

0

(0)
Re mn

M N w
gy mn

xx m mn
mnm M n N

Rlw
k S e κξ

µ κ

−

=− =−

    =      
∑ ∑  (5.176) 

 
2 2

0

Re (0)mn

M N
gy w

yy mn mn mn
m M n N

lw
k S e Rκκ

µ

−

=− =−

    = −      
∑ ∑  (5.177) 

 
2 22

0

(0)
Re mn

M N w
gy mn

zz n mn
mnm M n N

Rlw
k k S e κ

µ κ

−

=− =−

    =      
∑ ∑  (5.178) 

From (5.176)-(5.178) it is noted that  

 0xx yy zzk k k+ + =  (5.179) 

This is another consequence of (5.158). 

5.12. Electromagnetic Damping Constant Calculation 

The damping constant is defined as the negative derivative of force with respect to the 

velocity [199]. Unlike the stiffness constants, the electromagnetic damping constants 

depend on the transmission function. The damping coefficients matrix for the 3-D model 
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can be determined by differentiating (5.155)-(5.157) with respect to the source velocities 

along the x, y and z- directions as given by 

             

Im Im Im

Re Re

x x x

x y z
xx xy xz

y y y
yx yy yz

x y z
zx zy zz

z z z

x y z

m mn m mn m mn

mn x mn y mn zm n m n m n

mn mn

xm n

dF dF dF

dv dv dv
D D D

dF dF dF
D D D

dv dv dv
D D D

dF dF dF

dv dv dv

f f f

v v v

f f

v v

ξ ξ ξ

κ κ κ

 
 
 
         = −            
 
  

∂ ∂ ∂
∂ ∂ ∂

∂ ∂
= −

∂ ∂

∑∑ ∑∑ ∑∑

∑∑ Re

Im Im Im

mn

y zm n m n

n mn n mn n mn

mn x mn y mn zm n m n m n

f

v

k f k f k f

v v vκ κ κ

 
 
 
 
 
 ∂ 
 ∂ 
 
 ∂ ∂ ∂ 
 ∂ ∂ ∂  

∑∑ ∑∑

∑∑ ∑∑ ∑∑

  

  (5.180) 

Observing the expression of fmn given by (5.154), it is noticed that only the reflection 

coefficient, (0)w
mnR , depends on the velocity. Its derivative with respect to vx, vy and vz 

can be calculated analytically. Substituting (5.154), the damping matrix, Dem, can be 

written as  

        

D

                    .

2 2

0

Re

(0) (0) (0)

(0) (0) (0)

(0) (0) (0)

mngy
em mn

m n
w w w

m mn m mn m mn

mn x mn y mn z

w w w
mn mn mn

x y z

w w w
n mn n mn n mn

mn x mn y mn z

lw
S e

j R j R j R

v v v

R R R

v v v

jk R jk R jk R

v v v

κ

µ

ξ ξ ξ

κ κ κ

κ κ κ

−  = 

 ∂ ∂ ∂− − − ∂ ∂ ∂

 ∂ ∂ ∂


∂ ∂ ∂

∂ ∂ ∂
− − −

∂ ∂ ∂

∑∑








 
 
 
 
 
 

 (5.181) 



122 

The followings are defined 

 ( )mn mn y e m x n zv j w v k vτ κ ξ= + + +  (5.182) 

                     coth2
02 ( ) 2 ( )mn mn e m x n z mn mn mnj w v k v hd κ µ σ ξ κ ς ς− + + +=  (5.183) 

Differentiating (0)w
mn

R  given by (5.95) with respect to vx yields  

       
( )

coth

0

2
0

( )

2 ( )

(0)

2 ( )

mn y e m x n z

x x mn e m x n z mn mn mn

w
mn

v j w v k v

j

R

v v w v k v h

µ σ κ ξ

κ µ σ ξ κ ς ς

 ∂ ∂  =
+ +

 ∂ ∂  − + + 

+

+ 
 (5.184) 

Using (5.183), (5.184) can be written as  

 1 2 3 4

2

(0)w x x x x
mn

x mn

R I I I I

v d

∂ − − −
=

∂
 (5.185) 

where,  

 ( )01 ( )
mn y e m

x
mn x n z

x

v j w vI kd
v

vµ σ κ ξ+
∂  = +∂

+   (5.186) 

 01 m
x

mn
I j dµ σξ=  (5.187) 

Then, 02 0 ( )
mn e m x n z

x

x j w v k v
v

I µ στ µ σ ξ
∂  = + +∂
−   (5.188) 

or,       2
2

2
0

x
m mn

I jµ σ ξ τ= −  (5.189) 

Then, coth3 02 ( )x mn
mn mn mn

x

I
v

h
ς

µ στ κ ς
∂

=
∂

 (5.190) 

Differentiating (5.85) with respect to vx yields  

                 

( )2
0

0

2 2
0( ) 4 ( )

m

m n e x m z n

mn

x
y

j

v k j v v kv

µ σξ

ξ µ σ ω ξ

ς

µ σ

∂

∂ + − + +
= −

+
 (5.191) 
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Using (5.85), above can be written as  

 0

2
mn

x mn

mj

v

µς σξ

ς
=

∂
∂

−  (5.192) 

Substituting (5.192) into (5.190) yields  

 coth2 2
03 ( ) /

mn mn
x

mnm mn
hI jµ σ τ κ ςξ ς= −  (5.193) 

Finally, 
coth

04

( )
2 mn

mn mn mn

x

xI
h

v

ς
µ στ κ ς

∂
=

∂
 (5.194) 

Applying chain rule of differentiation,  

 cosech2 2 2
04 ( )

mn mn mn
x

m
hI hj ξµ σ τ κ ς=  (5.195) 

 Substituting (5.187), (5.189), (5.193) and (5.195) into (5.185) gives 

 

coth

cosech      

0 0

2
0 0

2

( )

(0)

/

( )

mn

w
mn

x mn

m mn mn mn mn

mn mn mn mn

j d

R

v d

h

h h

µ σξ µ στ κ ς ς

µ στ µ στ κ ς

 +




+ −∂
=

∂
 (5.196) 

Similarly, derivative of the reflection function with respect to vz can be obtained as  

 

coth

cosech      

0 0

2
0 0

2

( )

(0)

/

( )

mn

w
mn

z mn

n mn mn mn mn

mn mn mn mn

j d

R

v d

k h

h h

µ σ µ στ κ ς ς

µ στ µ στ κ ς

 +




+ −∂
=

∂
 (5.197) 

The derivative of the reflection function with respect to vy can be obtained using 

      
( )

coth

0

2
0

( )

2 ( )

(0)

2 ( )

mn y e m x n z

y y mn e m x n z mn mn mn

w
mn

v j w v k v

j

R

v v w v k v h

µ σ κ ξ

κ µ σ ξ κ ς ς

 ∂ ∂  =
+ +

 ∂ ∂  − + + 

+

+ 
 (5.198) 

Using (5.183), above can be written as  
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 1 2 3

2

(0)w y y y
mn

my n

R I I I

v d

∂ − −
=

∂
 (5.199) 

where, ( )01 ( )
mn y e m

y
mn x n z

y

v j w vI kd
v

vµ σ κ ξ+
∂  = +∂

+   (5.200) 

 01 m
y

nn m
I dµ σκ=  (5.201) 

Then, coth2 02 ( )y mn
mn mn mn

y

I
v

h
ς

µ στ κ ς
∂

=
∂

 (5.202) 

Differentiating (5.85) with respect to vy and using (5.42) produces 

           

( )( )
0

2 2 2
0 0

1

2 ( ) 4 m n

ym

e x m z

n

y n
yv k v k

v

v j vξ µ σ ω

ς

µ ξ

µ σ

σ

∂

∂ + − + +
=

+
 (5.203) 

Using (5.85), above can be written as 

 
0

4

ymn

y mnv

vµ σς

ς

∂
=

∂
 (5.204) 

Substituting (5.204) into (5.202) 

 coth2 2
02 0.5 ( ) /y m mn m n

y
n n mv hI µ σ τ κ ς ς=  (5.205) 

Finally,  

 
coth

03

( )
2 mn

mn mn mn

y

yI
v

hς
µ στ κ ς

∂
=

∂
 (5.206) 

or, cosech2 2 2
03 0.5 ( )mn m

y
n y mnI v h hµ σ τ κ ς= −  (5.207) 

Substituting (5.201), (5.205) and (5.207) into (5.199) gives  
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( )coth cosech

2

2
0 00.5 ((0 / )) ) (mn y m

w
mnmn

m

n mn mn n

n

m

y

v h h hdR

v d

µ σκ µ σ τ ς ς ς −∂   −
=

∂
 (5.208) 

Substituting (5.196), (5.197) and (5.208) into (5.181) the electromagnetic damping 

coefficients can be computed.  

In order to calculate torque damping, the electromagnetic torque acting on the source 

given by (5.165) is differentiated with respect to mechanical rotational speed, ωm, of the 

source to yield 

               ( )em em e em
torque e m

m e m e

T T T
D P P

ω
ω ω

ω ω ω ω

∂ ∂ ∂ ∂
= − = − = − =

∂ ∂ ∂ ∂
∵  (5.209) 

Substituting (5.165) into (5.209) gives  

 
22 2

0

(0)
Im

mn
M N wg

y mn
torque mn

m M n N mn e

RlwP e
D S

κ

µ κ ω

−

=− =−

  ∂ = −   ∂  
∑ ∑  (5.210) 

Differentiating (0)w
mn

R  given by (5.95) with respect to ωe yields  

       
( )

coth

0

2
0

((0) )

2 ( ) 2 ( )

mn y e m x n z

e e mn e m x n z mn

w
m

mn mn

n
v j w v k v

w w j v

R

w v k h

µ σ κ ξ

κ µ σ ξ κ ς ς

+ + +

−

 ∂ ∂  =  ∂ ∂   + + +
 (5.211) 

or, using (5.183),  

 1 2 3 4

2

(0)w T T T T
mn

e mn

R I I I I

dω

∂ − − −
=

∂
 (5.212) 

where, 

 ( )01 ( )
mn y e m

T
mn x n z

e

v j w vI kd v
w
µ σ κ ξ+

∂  = +∂
+   (5.213) 

or, 01
T

mn
djI µ σ=  (5.214) 
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Then,          02 0 ( )
mn e m x n z

e

T j w v k v
w

I µ στ µ σ ξ
∂  = + +∂
−   (5.215) 

or, 2 2
02

T
mn

I jµ σ τ= −  (5.216) 

Then, 

 coth3 02 ( )T mn
mn mn mn

e

h
w

I
ς

µ στ κ ς
∂

=
∂

 (5.217) 

Differentiating (5.85) with respect to ωe yields  

           

( )
0

22 2
00( ) 4 ( )m n e

mn

e
y x m z n

j

k j v v kw v

ς µ σ

µ σ ξ µ σ ω ξ

∂

∂ + − + +
= −

+
 (5.218) 

Again using (5.85), above equation can be rewritten as   
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Substituting (5.219) into (5.217) gives  
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Applying chain rule of differentiation,  

 cosech2 2 2
04 ( )

mn mn
T

mn
j hI hµ σ κ τ ς=  (5.222) 

Substituting (5.214), (5.216), (5.220) and (5.222) into (5.212) yields  
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Substituting (5.223) into (5.210) the electromagnetic torque damping is obtained 
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5.13. Model Validation 

For validation purpose a segmented Halbach rotor moving over a conductive plate, as 

shown in Figure 5.1, has been considered. The accuracy of this analytic model highly 

depends on the source field modeling of the Halbach rotor. But as already discussed in 

chapter 2 the source field can be accurately, for engineering purposes, modeled using 

planar magnetic charge sheet. Hence in this chapter the Halbach rotor field will not be 

validated.  

In this section, the magnetic fields in the conductive region will be compared with a 

previously developed steady state FEA model where the Halbach rotor was modeled 

using a novel current sheet approach [75]. In addition to this FEA model, the FEA model 

based on a magnetic charge source modeling approach, as discussed in chapter 3, will be 
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used for force and power loss comparison. Results for different plate width will be 

compared and it will be shown that as the plate width reduces the analytic model fails to 

calculate the correct result.  

5.13.1. Field Validation 

The simulation parameters used for the field validation are given in Table 5.1. Figure 

5.9 shows the subdomain plots of the induced magnetic flux density in the conductive 

plate obtained from the FEA model [75]. The field comparisons are performed at 15 ms-1 

translational velocity and 25ms-1 slip speed. The slip speed is defined as  

 
l m o xs r vω= −  (1.1) 

Figure 5.10 illustrates a comparison between the analytically computed (using (5.96) and 

(5.97))  and FEA calculated x and z components of the magnetic vector potential. The 

induced magnetic flux density components are compared in Figure 5.11. A relatively 

close match has been obtained. 

Table 5.1 : Parameters for simulation without heave velocity and large plate width 

 Description Value Unit 

Magnetic Rotor 

Outer radius, ro 50 mm 
Inner radius, ri 34.2 mm 
Width, wo 50 mm 
Remnant magnetic flux density, Brem

 1.42 T 

Relative permeability, µr 1.055 - 

Pole pairs, P 4 - 

Conductive plate 

Conductivity, σ 2.459×107  Sm-1 

Width, w 150 mm 
Length, l 200 mm 
Thickness, h  6.3 mm 
Air-gap between rotor and plate, g 9.5 mm 
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(a)  

 
(b)  

 
(c)  

Figure 5.9. Plots of (a) Bx, (b) By and (c) Bz magnetic flux density components induced in the conductive 
plate due to a Halbach rotor moving at 15ms-1 translational velocity and 25 ms-1 slip speed above the plate.  
The plots are obtained from FEA steady state model with current sheet based Halbach rotor field modeling 
approach. The model was written using Comsol v3.5a and Matlab. The rotor is located at the center of the 
plate 
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Distance along x-axis[m] 

 (a) 

 
Distance along z-axis[m] 

(b) 
Figure 5.10. Comparison of the x and z components of the magnetic vector potential on the top surface of 
the conductive plate between the analytic and current sheet based Comsol finite element model (a) across x-
axis for z = -10mm; (b) across z-axis for x = 20mm. The rotor is located at the center of the plate 
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 (a) 

 
Distance along z-axis[m] 

 (b) 
Figure 5.11. Comparison of the x, y and z components of the magnetic flux density on the top surface of the 
conductive plate between the analytic and current sheet based Comsol finite element model (a) across x-
axis for z = 20mm; (b) across z-axis for x = 10mm. The rotor is located at the center of the plate 

5.13.2. Force and Power Loss Validation 

Using the parameters given in Table 5.1, the force and power loss comparison as a 

function of slip speed for the analytic and FEA models are illustrated in Figure 5.12. 

 

 

-0.1 -0.05 0 0.05 0.1
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

 

 

By
Bx

Bz FEA

Analytic

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
-0.2

-0.1

0

0.1

0.2

0.3

0.4

 

 

FEA

Analytic

By

Bx

Bz

M
ag

n
et

ic
 f

lu
x

 d
en

si
ty

 
[T

] 
M

ag
n

et
ic

 f
lu

x
 d

en
si

ty
 

[T
] 



132 

 
Slip speed [ms-1] 

(a) 

 
Slip speed [ms-1] 

(b) 
Figure 5.12. (a) Force and (b) power loss comparison among analytic and FEA models based on current 
sheet and magnetic charge source modeling techniques for (vx, vy) = (15, 0) ms-1. The rotor is located at the 
center of the plate 

The average computation time involved in calculating the force and power loss results 

for a single slip speed value by the FEA and analytic models are listed in Table 5.2. As 

expected, the analytic model reduces the computation time by approximately an order of 

1000.  

Table 5.2. : Computation time for analytic and finite element steady state models 

Model type Computation time Unit 

Magnetic charge based steady state model using Comsol v3.5a 160 s 
Current sheet based steady state model using Comsol v3.5a 440 s 
Analytic SOVP model 0.038 s 

The Comsol finite element model using current sheet approach does not include the 

heave velocity in the formulation [75]. Thus for comparisons in the presence of the heave 

velocity of the rotor, the FEA model with magnetic charge based source modeling 
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approach (discussed in chapter 3) has been used. Table 5.3 lists the parameters used for 

the comparison and Figure 5.13 shows the force and power loss comparison between the 

analytic and FEA model. Again a very good match was obtained.  

Table 5.3. : Parameters for simulation with heave velocity and large plate width 

 Description Value Unit 

Magnetic Rotor 

Outer radius, ro 26 mm 
Inner radius, ri 9.62 mm 
Width, wo 52 mm 
Remnant magnetic flux density, Brem

 1.42 T 

Relative permeability, µr 1.108 - 

Pole pairs, P 2 - 

Conductive plate 

Conductivity, σ 2.459×107  Sm-1 

Width, w 150 mm 
Length, l 200 mm 
Thickness, h  6.3 mm 
Air-gap between rotor and plate, g 9.5 mm 
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Figure 5.13. (a) Force and (b) power loss comparison between analytic and FEA model based on magnetic 
charge source modeling techniques for (vx, vy) = (20, 2) ms-1. The rotor is located at the center of the plate. 
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In the following comparisons, the plate width has been reduced to 77mm to study the 

performance of the analytic model when a reduced conductive plate width is used. A 

width of 77mm is chosen as this is the width of the experimental guideway wheel that is 

being used (shown in Figure 1.20). Figure 5.14 shows excellent results from the analytic 

model even for the reduced plate width when the rotor is located at the center of the plate 

(laterally). Also, in the presence of the heave velocity the analytic model performs 

extremely well for reduced plate width as is evident from Figure 5.15. Table 5.4 

compares the average accuracy of the developed SOVP based steady state analytic model 

with respect to the Comsol based steady state FEA models for 77 mm guideway width, 

15ms-1 translational velocity and zero heave velocity. 

 
 (a) 

 
Slip speed [ms-1] 

(b) 
Figure 5.14. (a) Force and (b) power loss comparison among analytic and FEA models based on current 
sheet and magnetic charge source modeling techniques for (vx, vy) = (15, 0) ms-1. The rotor is located at the 
center of the plate. 
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                       Table 5.4 : Accuracy of the developed SOVP based analytic steady state model 
Parameter Error with FEA magnetic 

charge [%] 
Error with FEA current sheet 

[%] 

Thrust force 2.92 1.35 
Lift force    0.42    0.48 
Power loss 0.22 2.08 

 

 
Slip speed [ms-1] 

(a) 

 
Slip speed [ms-1] 

(b) 
Figure 5.15. (a) Force and (b) power loss comparison between analytic and FEA model based on magnetic 
charge source modeling techniques for (vx, vy) = (15, 2) ms-1. The rotor is located at the center of the plate. 
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margin for a lateral offset of 25mm. The main shortcoming of the presented analytic 

model is in the calculation of the lateral force which is compared in Figure 5.16 (c).  

 
 (a) 

 
 (b) 

 
Slip speed [ms-1] 

(c) 
Figure 5.16. (a) Thrust/ drag and lift force; (b) power loss and (c) lateral force comparison among the 
analytic and FEA models based on current sheet and magnetic charge source modeling techniques for (vx, 
vy) = (15, 0) ms-1. The rotor is laterally offset from the center of the plate by 25mm. 
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Figure 5.17. The lateral force, Fz, is insignificant at vz=0 and without lateral offset of the 

rotor, thus Fz is not shown in Figure 5.17. 
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Figure 5.17. Electrodynamic Fx and Fy as a function of translational velocity for (ωe, vy, vz) = (0 rads-1, 
0ms-1, 0ms-1). As ωe=0 rads-1 the Fx force is a drag force. 

The stiffness coefficients as functions of translational velocity, vx, are shown in 

Figure 5.18. The lateral force, Fz, is insignificant at vz=0 and without lateral offset of the 

rotor, thus Fz is not shown in Figure 5.18. The stiffness coefficients kyy is positive for 

increase in translational velocity. It implies that when the rotor comes close to the 

conductive plate, it will be pushed back because of a positive stiffness which is a 

necessary condition for stability. The stability exists in the direction of positive stiffness 

if the reaction force acts to oppose perturbation in displacements [200]. Also Figure 

5.18(a) proves the validity of (5.158). The negative stiffness kxy results as the drag force 

decreases with height. The off-diagonal stiffness terms with respect to the z-direction i.e. 

kxz (or kzx) and kyz (or kzy) are negligibly small for large plate width assumption and zero 

lateral offset of the rotor and hence not shown. 
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Figure 5.18. The electrodynamic stiffness coefficients as a function of translational velocity for (ωe, vy, 
vz)= (0 rads-1,0ms-1, 0ms-1). 

Figure 5.19 shows linear variation in the lift and drag forces for small change in the 

heave velocity, vy. As the lateral force, Fz, is insignificant at the chosen operating 

condition, it is not shown in Figure 5.19. Figure 5.20 and Figure 5.21 show the horizontal 

and vertical damping constants calculated using (5.181), (5.196)-(5.208). The damping 

coefficient Dxx is positive at vx=0m/s and becomes zero when the drag force reaches its 

peak value (as shown in Figure 5.17) and becomes negative with further increase in the 

translational velocity, vx resulting in decreasing drag force. From the perspective of 

energy, positive damping means energy is taken away from the system whereas negative 

damping implies adding energy to the system [201]. The damping coefficient Dyx as 

shown in Figure 5.20 can be understood from the slope of the lift force vs. vx curve 
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shown in Figure 5.17. Since the lift force increases with increase in vx (see Figure 5.17), 

energy is being added to the system, hence, the damping coefficient Dyx is negative.  
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Figure 5.19 Lift, Fy and drag force, Fx  vs. heave velocity, vy, for ωe =0rads-1 and (vx, vz) = (10, 0) ms-1 
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Figure 5.20 The electrodynamic damping terms, Dxx and Dyx. 
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Figure 5.21 The electrodynamic damping terms, Dxy and Dyy. 
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Figure 5.22 The electrodynamic damping term Dzz. 

Both drag and lift force decrease with increase in heave velocity (see Figure 5.19), 

thus the energy is being taken away from the system. Therefore, the damping coefficients 

Dxy and Dyy are both positive. The vertical damping coefficient, Dyy decreases and 

becomes almost zero with increase in translational velocity. However, the damping 

coefficient Dxy is initially zero and increases to its maximum value and decreases with 

further increase in translational speed. These damping characteristics shown in Figure 

5.21 agree with the calculations performed by Yoshida [202], Urankar [203] and Ooi 

[204] in which no negative vertical damping was calculated. Figure 5.22 shows that Dzz 

damping term is significant only at low translational velocity and at high-speed it 

practically becomes negligible. The remaining off-diagonal damping terms are negligibly 

small for large plate width assumption and zero lateral offset of the rotor and hence not 

shown. 

For the case when ωe≠0, a slip will be present as defined by (1.1). Depending on the 

slip value the Fx can be either a thrust or a drag force as shown in Figure 5.23. The Fx and 

Fy as function of slip and translational speed are shown in Figure 5.24 while Figure 5.25 

shows the stiffness contour plots.  From Figure 5.25 it is observed that kxx and kzz are 

almost always negative and thus leads to instability whereas kyy is always positive and the 
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coupling term kxy is positive for positive slip values and changes sign with negative slip 

speeds. Hence, judging from the stiffness constants it can be stated that the Halbach rotor 

moving above a conductive plate is stable along the y-direction but unstable along the 

forward x lateral z-directions.  
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Figure 5.23 Fx and Fy force as function of slip when (vx, vy, vz) =(20, 0, 0) ms-1 
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Figure 5.24 (a) Thrust force and (b) lift force function of slip and translational velocity at (vy ,vz)=(0,0) ms-1. 
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Figure 5.25 The stiffness coefficients (a) kxx, (b) kyy, (c) kzz and (d) kxy (or kyx) as a function of slip and 
translational velocity at (vy ,vz)=(0,0) ms-1. 
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The damping constants are shown in Figure 5.26 and Figure 5.27. Unlike in Figure 

5.20, the horizontal damping coefficient, Dxx, becomes positive when both the 

translational and rotational speed are included. The magnitude of Dxx however decreases 

with increase in slip value as shown in Figure 5.26(a). It can be noted that the vertical 

damping, Dyy, is always positive but decreases with slip value. Lateral damping Dzz 

decreases with increasing slip speed and translational velocity.  The off-diagonal 

damping term Dyx is positive for positive slip values whereas the other off-diagonal 

damping term Dxy is negative in that slip region and therefore this term is likely to create 

instabilities at positive slip condition. The decrease of the magnetic damping values at 

positive slip values suggests that the inherent magnetic damping is insufficient and 

therefore active control of an electrodynamic maglev system is essential. 
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Figure 5.26 Damping coefficient (a) Dxx (b) Dyy and (c) Dzz as a function of slip and translational 
velocity at g=5mm and (vy ,vz)=(0,0)ms-1. 
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Figure 5.27 Damping coefficient (a) Dxy  and (b) Dyx  as a function of slip and translational velocity at 
g=5mm and (vy ,vz)=(0,0)ms-1. 

5.15. Summary 

An analytic steady state modeling approach to study the eddy current distributions, 

force and power loss in a conductive plate of infinite dimension has been presented. The 

key points of the developed model are outlined in Table 5.5. The model is based on the 

SOVP and thus only one scalar potential namely the TE potential is required to formulate 

the entire problem region and thus it is computationally very fast. Computation time has 

been compared with FEA models. Also an electromagnetic force and power loss 

comparison has been made to suggest that the model can be very useful for plate width of 

at least one and half times that of the source.  

However, the proposed analytic approach fails to model the eddy current distribution 

when the source is laterally offset towards the edge of the plate. Therefore there is clearly 
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a need for finding a new model to account for the edge effect of the finite width 

conductive plate. This will be discussed in the next chapter.  

Table 5.5 : Summary of the presented 3-D analytic steady state model using SOVP 

Model assumptions Model characteristics 

• Conductive plate is linear, simply 
connected and homogenous 
 

• Conductive plate has constant 
conductivity and is non-magnetic 
 

• Frequency is low 
 

• Conductive plate is infinitely long and 
wide, but has finite thickness 

 
 

• Models the conductive and nonconductive domains using 
TE potential of the SOVP.  
 

• Can be applicable for any magnetic source 
 

• Computes the source field using magnetic charge sheet 
 

• Models translational, heave, lateral as well as rotational 
motion of the source 
 

• Computationally very fast 
 

• Accurate when the plate dimension is large compared to 
the source dimension. In other words, it is accurate when 
the induced eddy currents do not see the edge of the 
plate. 
 

• Model has been developed in Matlab 

 

 

 

 

 

 

 



 

CHAPTER 6 : 3-D ANALYTIC EDDY CURRENT MODELING FOR FINITE 
WIDTH CONDUCTIVE PLATE 

 
 

6.1. Introduction 

As pointed out in the previous chapter, the assumption of an infinitely large width for 

the conductive plate fails to model the eddy current distribution when the source is 

moved towards the edge of the plate. This chapter will present two 3-D analytic eddy 

current modeling techniques using magnetic vector potential (MVP) for a conductive 

plate of finite width and thickness. In the first analytic model only two-components of the 

magnetic vector potential will be used with the assumption of small plate thickness 

whereas the second model does not assume small thickness and uses all three components 

of the magnetic vector potential. The length of the plate will be assumed to be large. The 

models will include the translational and heave motion of the magnetic source. This 

chapter will compare the fields induced in the plate and forces acting on the source for 

different lateral positions of the source with finite element models.  

Consider a maglev application [13, 74, 75] where the magnetic source, which is a 

special type of magnetic rotor called a Halbach, as shown in Figure 6.1, is moved and 

rotated over a plate made of conductive and non-magnetic material, such as aluminum. 

Figure 6.2 shows the x-y and z-y view of the problem regions. The conductive plate, 

region ΩII, has a length l, width, w, and height, h and the magnetic rotor is located at a 

distance g above the conductive plate. Also the source velocities in the x and y-directions 
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as well as rotational speed ωm are shown in the figure. It must be noted here that although 

Figure 6.1 and Figure 6.2 display a magnetic rotor as the source, the field and force 

equations derived in the proposed model are applicable to any kind of magnetic source.  

   
Figure 6.1.  3-D schematic of a magnetic rotor rotating and translationally moving over a conductive, 
non-magnetic plate.  

 
(a) 

 
(b) 

Figure 6.2. (a) x-y view and (b) z-y view of the problem regions. The rotor is at the center of the 
conductive region located at (xc,yc,zc) = (0,ro+g,c+w/2).  

The conductive medium is located at y=0 of the Cartesian coordinate system which 

creates five regions as shown in Figure 6.2:  

• Region I (ΩI) is the air or nonconductive region between the magnetic source and 

conductive plate located at   0 , 0 2y g z c w≤ ≤ ≤ ≤ +  

• Region II (ΩII) is the conductive region located at  0,h y c z c w− ≤ ≤ ≤ ≤ +  

• Region III (ΩIII) is the air or nonconductive region below the conductive plate 

located at  , 0 2y h z c w≤ − ≤ ≤ + . 

• Region IV (ΩIV) is the air or nonconductive region to the side of the conductive 

plate located at  0, 0h y z c− ≤ ≤ ≤ ≤  
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• Region V (ΩV) is the air or nonconductive region to the side of the conductive 

plate located at  0, 2h y c w z c w− ≤ ≤ + ≤ ≤ +  

The assumptions of the analytic models presented in this chapter are:  

• The plate length, l, is infinite but width, w, is finite 

• The plate has finite thickness, h.  

• For 2-component vector potential model it is assumed that the plate thickness, h, 

is small. Thus fields in regions ΩIV and ΩV are not modeled. However, in 3-

component vector potential model this assumption is alleviated and fields in ΩIV 

and ΩV are modeled. 

• The plate is continuous with constant conductivity and non-magnetic.  

• The magnetic source has translational and heave motion along with rotational 

motion. 

• The frequency is sufficiently low in order for the quasi-static approximation to be 

valid.  

This chapter presents a two-component analytic MVP model in section 6.3-section 

6.9 and an improved three-component model in section 6.10. The chapter is organized as 

follows: section 6.2 will describe the governing equations for all the problem regions 

outlined above and section 6.3 will discuss the boundary conditions; section 6.4 will 

derive the general solution for different problem regions; section 6.5 will talk about the 

source field modeling; electromagnetic fields will be calculated in section 6.6; 

electromagnetic forces will be derived in section 6.7 which will be followed by power 

loss and electromagnetic torque calculation in section 6.8; model validation will be 

performed in section 6.9; the limitations of the developed two-component MVP model 
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will be discussed and a three-component analytic MVP model will be presented in 

section 6.10 and finally a summary of the chapter will be provided in section 6.11.  

6.2. Governing Equation Formulation 

In the proposed model the conductive and nonconductive regions will be modeled 

using the magnetic vector potential. The finite width of the conductive plate will be taken 

into account by choosing appropriate Fourier series expansion for the vector potentials 

and source fields. The governing equation modeling in terms of the magnetic vector 

potential is given by (3.23) in chapter 3 and here it is reproduced for convenience  

 ( )A
A v A2

0
t

µ σ
 ∂ ∇ = + ⋅ ∇   ∂ 

 (3.23) 

where µ0 is the permeability [Hm-1] of the free-space, σ is conductivity [Sm-1] of the 

conductive plate and v is the velocity [ms-1] of the source. In the steady state the vector 

potential can be assumed to have the following solution  

 A A( , , , ) ( , , ) ej tx y z t x y z e ω−=  (3.58) 

where ωe is the electrical angular frequency [rads-1] of the source. It can be due to 

excitation current frequency or angular speed of the rotor. 

6.2.1. Conductive Region (ΩII)  

As the induced eddy current flows parallel to the plate when the source is at the center 

of the plate, the y-component of the induced eddy current is negligible [141, 182, 185]. 

Also as the thickness is assumed to be small, the y-component of the eddy current and 

also the magnetic vector potential is assumed to be negligible even when the source 

moves towards the edge of the plate (refer to Figure 3.16 and Figure 3.17). With this 
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assumption, the magnetic vector potential can be written in terms of only the x and z-

components as follows   

 II II IIA ˆ ˆ( , , ) ( , , ) ( , , )
x z

x y z A x y z x A x y z z= +  (6.1) 

where x̂  and ẑ  are the normal vectors along the x and z directions respectively and 

superscript ‘II’ indicates region II. Assuming the source has velocities along the x and y-

directions, (3.23) can be decomposed into the following scalar equations 

 
II II

II II   2
0 , ,i i

i e i x y

A A
A j A v v i x z

x y
µ σ ω
 ∂ ∂  ∇ = − + + =  ∂ ∂ 

 (6.2) 

6.2.2. Nonconductive Regions I and III (ΩI and ΩIII)  

In the nonconductive region I the total vector potential is composed of the source 

field and reflected field due to induced eddy currents in the plate. Also if the lateral 

dimension of the plate is almost equal to that of the source or if source is laterally shifted 

towards the edge, the total vector potential in region III is composed of the source field 

and transmitted field due to induced eddy current in the plate. Hence  

 I I I,A A A,s r= +  (6.3) 

 III III IIIA A A, ,s t= +  (6.4) 

In (6.3) and (6.4) superscripts ‘s’, ‘r’ and ‘t’ indicate the source, reflected and transmitted 

fields respectively. Equation (6.4) does not have the source term if the source is located at 

the center of the plate and its lateral dimension is much smaller than that of the plate.  

However, unlike [166, 167, 169-171] the computation of the source fields in terms of 

the vector potential IA ,s  and IIIA ,s  in the nonconductive regions can be avoided by noting 

that only knowledge of the source field on the conductive plate surface is required in 
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order to calculate the eddy current field within the conductive region [185, 188]. Hence 

the governing equation within the nonconductive regions I and III only needs to be 

formulated in terms of the reflected and transmitted magnetic vector potential 

respectively which follow the following Laplace’s equation 

 I,A =2 0r∇  (6.5) 

 III,A =2 0t∇  (6.6) 

6.2.3. Nonconductive Regions IV and V (ΩIV and ΩV)  

It is assumed that the vector potential, Az, does not exist within nonconductive side 

regions ΩIV and ΩV [141]. Also due to the small thickness of the conductive plate it is 

reasonable to assume that the Ax vector potential is zero in these regions. This thereby 

eliminates the need to formulate the vector potential in the side regions ΩIV and ΩV. 

6.3. Boundary Conditions 

The boundary conditions will be written assuming the lateral dimension of the source 

is comparable to that of the plate or the source is located near the edge of the plate. Based 

on these assumptions, the source field will be included in the boundary conditions for the 

top and bottom conductive region boundaries at y = 0 and y = -h respectively.  In order to 

obtain the field and force solutions when the aforementioned assumptions do not hold 

true, the source term on the bottom conductive surface can simply be neglected.   

From the continuity of the tangential magnetic field and the normal component of the 

magnetic flux density at y=0 and y = -h and noting the fact that the conductive material is 

non-magnetic, the following must hold true at the interfaces at y=0 and y=-h 

 II I I, ,s r
x x xB B B= + , at y = 0 (6.7) 
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 II I I, ,s r
y y yB B B= + , at y = 0 (6.8) 

 II I I, ,s r
z z zB B B= + , at y = 0 (6.9) 

and  

 II III III, ,s t
x x xB B B= + , at y = -h (6.10) 

 II III III, ,s t
y y yB B B= + , at y = -h (6.11) 

 II III III, ,s t
z z zB B B= + , at y = -h (6.12) 

Using (3.7), (3.9) and ignoring the y-component magnetic vector potential, (5.23) and 

(5.25) become  

 
III ,r

sz z
x

A A
B

y y

∂ ∂
= +

∂ ∂
 , at y = 0 (6.13) 

 
II I,r

sx x
z

A A
B

y y

∂ ∂
= −

∂ ∂
 , at y = 0 (6.14) 

where, for example, s
xB is the x-component of the source magnetic flux density. 

Substituting (3.8) into (5.24), the continuity of the normal component flux density at y = 

0 becomes 

 
II I II I, ,r r

sx x z z
y

A A A A
B

z z x x

   ∂ ∂ ∂ ∂    − − − =     ∂ ∂ ∂ ∂   
, at y = 0 (6.15) 

It is seen that the normal boundary condition (6.15) couples the Ax and Az field terms 

together which can significantly complicate the solution. However, the Ax and Az field 

terms can be decoupled by noting that the Coulomb gauge [112] 

 IIA 0∇ ⋅ =  (6.16) 
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applies on the boundary [112, 140, 169]. Therefore the Coulomb gauge boundary 

condition at y=0 is 

 
II I II I, ,

0
r r

x x z zA A A A

x x z z

   ∂ ∂ ∂ ∂    − + − =     ∂ ∂ ∂ ∂   
, at y = 0 (6.17) 

By taking the partial derivative of (6.15) with respect to x and subtracting it from the 

partial derivative of (6.17) with respect to z, one obtains 

 II I II I
2 2

, ,

2 2

s
yr r

z z z z

B
A A A A

xz x

∂∂ ∂   − + − = −       ∂∂ ∂
, at y = 0 (6.18) 

Following the same procedure, for Ax yields at y=0 

 II I II I
2 2

, ,

2 2

s
yr r

x x x x

B
A A A A

zz x

∂∂ ∂   − + − =       ∂∂ ∂
, at y = 0 (6.19) 

The coupled boundary condition (6.15) can now be replaced with the two decoupled 

boundary conditions (6.18) and (6.19) thereby enabling equations for Ax and Az to be 

solved separately [169]. Analogous decoupled equations at y = -h can be obtained such 

that: 

 
IIIII ,t

sz z
x

A A
B

y y

∂ ∂
= +

∂ ∂
, at y = -h (6.20) 

 
II III,t

sx x
z

A A
B

y y

∂ ∂
= −

∂ ∂
, at y = -h (6.21) 

 II III II III
2 2

, ,

2 2

s
yt t

z z z z

B
A A A A

xz x

∂∂ ∂   − + − = −       ∂∂ ∂
, at y = -h (6.22) 

 II II
2 2

III, III,

2 2

s
yt t

x x x x

B
A A A A

zz x

∂∂ ∂   − + − =       ∂∂ ∂
, at y = -h (6.23) 
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In order to ensure the uniqueness of the solution  

 II
II Aˆ 0n ⋅ =  (6.24) 

must also be enforced on the conductive region boundaries [139, 140] where IIn̂ is the 

unit normal vector on the conductive boundary as shown in Figure 6.2(a). Equation (6.24) 

implies the following boundary conditions 

 0xA = , on x = 0, l (6.25) 

        0zA = , on z = c, c + w (6.26) 

The outer nonconductive boundaries are assumed to be sufficiently large that the 

following holds true 

 A AI, III, 0r t= = , on Γo (6.27) 

6.4. Derivation of General Solutions 

6.4.1. Conductive Region (ΩII)  

Using the separation of variables method [132], the x and z-components of the 

magnetic vector potential in ΩII can be written as  

 II  ( , , ) ( ) ( ) ( ), ,i i i iA x y z X x Y y Z z i x z= =  (6.28) 

For the conductive region, substituting (6.28) into (6.2) and dividing both sides by 

( ) ( ) ( )i i iX x Y y Z z  (assuming they are non-zero functions of spatial variables) yields  

   
'' '' '' ' '

0 , ,i i i i i
e x y

i i i i i

X Y Z X Y
j v v i x z

X Y Z X Y
µ σ ω
  + + = − + + =   

 (6.29) 

where the superscript prime indicates differentiation. 
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Let 

   ( ) , ,mj x
iX x e i x zξ= =  (6.30) 

with the spatial frequency with respect to x defined as  

   
2

,m

m
m

l

π
ξ = −∞ ≤ ≤ ∞  (6.31) 

As the conductive medium is assumed to have a large length, the field is not forced to 

zero at x = 0 and l boundaries. Substituting (6.30) into (6.29) gives for all m 

   
'' '' '

2
0 , ,i i i

m e x m y
i i

Y Z Y
j jv v i x z

Y Z Y
ξ µ σ ω ξ

  − + + = − + + =   
 (6.32) 

Rearranging (6.32) 

 ( )   
'' '' '

2
0 0 , ,i i i

m e x m y
i i

Z Y Y
j v v i x z

Z Y Y
ξ µ σ ω ξ µ σ= − + − − =  (6.33) 

In (6.33) derivatives of two independent functions are equal to each other. Hence both 

sides must be equal to a constant. Say each side of (6.33) is equal to –kn
2. Hence from 

(6.33) 

 ( )   
'' '

2 2
0 0 , ,i i

m e x m y n
i

Y Y
j v v k i x z

Y Y
ξ µ σ ω ξ µ σ− + − − = − =  (6.34) 

and   
''

2, ,i
n

i

Z
k i x z

Z
= − =  (6.35) 

The general solution of (6.35) is  

 ( ) ( )   ( ) sin cos , ,i i
i n n n nZ z A k z B k z i x z= + =  (6.36) 
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However, in order to satisfy (6.26) the Az field should have only sine term whereas the Ax 

field should have only cosine terms of (6.36) as written below  

 ( )  ( ) sin ( ) , 1z
z n nZ z A k z c n= − ≤ ≤ ∞ , for Az (6.37) 

 ( )  ( ) cos ( ) , 0x
x n nZ z A k z c n= − ≤ ≤ ∞ , for Ax (6.38) 

and the spatial frequency, kn, can be defined as  

 n

n
k

w

π
=  (6.39) 

From (6.34) 

 ( )   
'' '

2 2
0 0 , ,i i

y m n e x m
i

Y Y
v k j v i x z

Y Y
µ σ ξ µ σ ω ξ+ − − + + = =  (6.40) 

Or,  
'' '

2
0 0, ,i i

y mn
i i

Y Y
v i x z

Y Y
µ σ γ+ − = =  (6.41) 

where 

 ( )2 2 2
0mn m n e x mk j vγ ξ µ σ ω ξ= + − +  (6.42) 

The roots of (6.41) are  

 2 2
0 00.5( ( ) 4 )mn y y mnv vα µ σ µ σ γ= − + +  (6.43) 

 2 2
0 00.5( ( ) 4 )mn y y mnv vβ µ σ µ σ γ= − − +  (6.44) 

Hence the general solution for Yi(y) is  

 II, II,  ( ) , ,mn mny yi i
i mn mnY y C e D e i x zα β= + =  (6.45) 
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Substituting (6.30), (6.38) and (6.45) into (6.28) for i = x  the general solution for the Ax 

vector potential in the conductive region is obtained as  

 ( )( )II II II+, ,

0

cos ( )m mn mn

M N
j x y yx x

x n mn mn
m M n

A e k z c C e D eξ α β

=− =

= −∑ ∑  (6.46) 

Similarly substituting (6.30), (6.37) and (6.45) into (6.28) for i = z  the general solution 

for the Az vector potential in the conductive region is obtained as  

 ( )( )II II, II+ ,

1

sin ( )m mn mn

M N
j x y yz z

z n mn mn
m M n

A e k z c C e D eξ α β

=− =

= −∑ ∑  (6.47) 

The Fourier series of (6.46) and (6.47) has M and N harmonics in the x and z-directions 

respectively. The error introduced by this series truncation can be eliminated by simply 

choosing a sufficient number of harmonics.  

6.4.2. Nonconductive Regions I and III (ΩI and ΩIII)  

Applying the separation of variables method to (6.5) and noting that the field must decay 

for increasing distance away from the conductive plate the x and z-components of the 

vector potentials in ΩI are 

 ( )I I,,

0

cos ( )m mn

M N
j x yr x

x n mn
m M n

A e k z c C eξ κ−

=− =

= −∑ ∑  (6.48) 

 ( )I I, ,

1

sin ( )m mn

M N
j x yr z

z n mn
m M n

A e k z c C eξ κ−

=− =

= −∑ ∑  (6.49) 

where 

 2 2
mn m nkκ ξ= +  (6.50) 
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In (6.48) and (6.49), the Fourier frequencies with respect to z i.e. kn makes sure that term-

by-term matching with conductive region is possible while applying boundary conditions 

(6.13), (6.14), (6.18) and (6.19).  

The vector potential in region ΩIII must decay with increasing negative y direction 

and therefore the solution to (6.6) for the x and z-components of the potential are  

 ( )III III ( ), ,

0

cos ( )m mn

M N
j x y ht x

x n mn
m M n

A e k z c C eξ κ +

=− =

= −∑ ∑  (6.51) 

 ( )III, III ( ),

1

sin ( )m mn

M N
j x y ht z

z n mn
m M n

A e k z c C eξ κ +

=− =

= −∑ ∑  (6.52) 

Again in (6.51) and (6.52), the Fourier frequencies with respect to z i.e. kn makes sure 

that term-by-term matching with conductive region is possible while applying boundary 

conditions (6.20) - (6.23). 

6.5. Source Field Formulation 

As seen in section 6.3, the source field appears in the boundary conditions at y = 0 

and y = -h in the form of magnetic flux density. After taking note of the Ax and Az 

expressions given by (6.46), (6.47) and the boundary conditions given in section 6.3, it 

can be observed that in order to enable one to match the source field with the induced 

field term-by-term, the source flux density must have the same eigenvalues, nk , along the 

z-axis and ξm along the x-axis as the vector potential in the conductive region. Hence the 

source flux densities should be represented in the following form on the top surface of the 

conductive plate  

 ( )I, ,

1

( , 0, ) sin ( )m

M N
j xs x top

x n mn
m M n

B x z e k z c Sξ

=− =

= −∑ ∑ , at y = 0 (6.53) 
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 ( )I, ,

1

( , 0, ) sin ( )m

M N
j xs y top

y n mn
m M n

B x z e k z c Sξ

=− =

= −∑ ∑ , at y = 0 (6.54) 

 ( )I, ,

0

( , 0, ) cos ( )m

M N
j xs z top

z n mn
m M n

B x z e k z c Sξ

=− =

= −∑ ∑ , at y = 0 (6.55) 

Here, the superscript ‘I,s’ indicates the source field in region I and ‘x,top’ indicates the x-

component source field on the top conductive plate surface. 

Similarly, on the bottom surface at y = -h  

 ( )III, ,

1

( , , ) sin ( )m

M N
j xs x bot

x n mn
m M n

B x h z e k z c Sξ

=− =

− = −∑ ∑ , at y = -h (6.56) 

 ( )III, ,

1

( , , ) sin ( )m

M N
j xs y bot

y n mn
m M n

B x h z e k z c Sξ

=− =

− = −∑ ∑ , at y = -h (6.57) 

 ( )III, ,

0

( , , ) cos ( )m

M N
j xs z bot

z n mn
m M n

B x h z e k z c Sξ

=− =

− = −∑ ∑ , at y = -h (6.58) 

Here, the superscript ‘III,s’ indicates the source field in region III and ‘x,bot’ indicates 

the x-component source field on the bottom conductive plate surface. 

Modeling of magnetic source field using cylindrical charge sheet, as shown in Figure 

6.3, has been discussed in chapter 2 and also in [76]. The charge sheet has a radius of ro 

and width wo and it completely encloses the magnetic source. A(ro,θo,zo) is any point on 

the charge sheet and M (x,y,z) is any external point. Magnetic flux density derivation at 

any external point due to the cylindrical charge sheet has been provided in chapter 2.  
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Figure 6.3.  Cylindrical magnetic charge sheet with origin located at (xc,yc,zc). 

The coordinate system shown in Figure 6.3 is located at the center of the rotor. 

However, since the conductive plate coordinate origin location is different, as shown in 

Figure 6.2, the source field coordinate origins must be offset by (xc,yc,zc) = 

(0,ro+g,c+w/2). Taking this into account and noting that on the cylindrical surface the 

radial component is the normal component of the flux density, the x, y and z-flux density 

components given by (2.21)-(2.23) become 

2

2 2 2 2 2
0

( , ) ( cos ) 2 2

2 4 (2 ) 4 (2 )

s
s r o o o o o o o
x o

o o

B r r x r z w z w
B d

r r z w r z w

π
θ θ

θ
π

 − + − = − 
 + + + − 

∫  

  (6.59) 

2

2 2 2 2 2
0

( , ) ( sin ) 2 2

2 4 (2 ) 4 (2 )

s
s r o o o c o o o o
y o

o o

B r r y y r z w z w
B d

r r z w r z w

π
θ θ

θ
π

 − − + − = − 
 + + + − 

∫  

  (6.60) 

      

2

2 2 2 2
0

( , ) 1 1

4 (2 ) 4 (2 )

s
s r o o o
z o

o o

B r r
B d

r z w r z w

π
θ

θ
π

 
 = − 
 + − + + 
∫  (6.61) 

where 

 ( )2 2 2 2( ) 2 cos ( )sin
c o o o c o

r x y y r r x y yθ θ= + − + − + −  (6.62) 
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The integration with respect to θo is accomplished numerically. In (6.59)-(6.61) 

superscript ‘s’ indicates original source field and ( , )s
r o o

B r θ  is the variation of the radial 

flux density due to the source on the charge sheet surface along the θo and zo directions 

which can be obtained either analytically or from finite element analysis (FEA) as 

described in chapter 2.  

The double Fourier series coefficients of (6.53) - (6.55) are obtained by substituting 

(6.59)-(6.61) evaluated at y = 0 into  

 ( )
/2

, ,

/2

2
sin ( ) ( , 0, )m

c w l

j xx top s o
mn n x

c l

S e k z c B x z dxdz
lw

ξ

+
−

−

= −∫ ∫  (6.63) 

 ( )
/2

, ,

/2

2
sin ( ) ( ,0, )m

c w l

j xy top s o
mn n y

c l

S e k z c B x z dxdz
lw

ξ

+
−

−

= −∫ ∫  (6.64) 

 ( )  

/2

, ,0

/2

(2 )
cos ( ) ( , 0, )m

c w l

j xz top s on
mn n z

c l

S e k z c B x z dxdz
lw

ξδ
+

−

−

−
= −∫ ∫  (6.65) 

where 

 
 

 0

0, 0

1, 0n

n

n
δ

 ≠=  =
 (6.66) 

Figure 6.4 and Figure 6.5 illustrate the idea in which the source field is truncated in order 

to satisfy the conductive region interface vector potential boundary conditions on a term-

by-term basis.  



163 

(a) 
 

(a)  

 
(b)   (b) 

    (c)  

                            
                                             (c)  

Figure 6.4.   (a) The 
s
x

B source flux density distribution 

over the length of l and width of 2c+w as obtained from 

(6.59) (b) 
s
x

B  field reconstructed using (6.53) over the 

length l and width of w of conductive plate. (c) 

Comparison between original and truncated 
s
x

B  at 

x=90mm. 

Figure 6.5.   (a) The 
s
z

B source flux density distribution 

over the length of l and width of 2c+w as obtained from 

(6.61) (b) 
s
z

B  field reconstructed using (6.55) over the 

length l and width w of conductive plate. (c) Comparison 

between original and truncated 
s
z

B  at x=90mm. 

The Fourier coefficients, ,x bot
mn

S , ,y bot
mn

S  , ,z bot
mn

S  are obtained by evaluating (6.63) - (6.65) 

at y= -h. 

6.6. Field Solution  

The unknowns in the general solutions  (6.46) - (6.52) can be obtained by using the 

boundary conditions (6.13), (6.14), (6.18) and (6.19) at y = 0 and (6.20) - (6.23) at y = -h. 
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First the magnetic vector potential components will be derived and then solutions for the 

flux density components will be obtained.  

6.6.1. Solution for the Magnetic Vector Potential 

6.6.1.1. Solution for the x-component Magnetic Vector Potential 

Substituting the x-component vector potential equations (6.46), (6.48) at y=0 and the 

z-component magnetic flux density due to the source on the top surface (6.55) into the 

boundary condition (6.14) and eliminating common terms yields for all m, n 

 II II I+, , , ,x x x z top
mn mn mn mn mn mn mn
C D C Sα β κ= − −  (6.67) 

Similarly substituting the x-component vector potential equations (6.46), (6.48) at y = 

0 and y-component magnetic flux density due to the source on the top surface (6.54) into 

the boundary condition (6.19) and using (6.50) yields for all m, n 

 II II I+, , , ,

2

x x x y topn
mn mn mn mn

mn

k
C D C S

κ
= −  (6.68) 

Substituting (6.46), (6.51) and the z and y-components of the source flux densities on 

the bottom plate surface from (6.58) and (6.57) respectively into the boundary conditions 

(6.21) and (6.23) yields for all m, n 

 II II III, , , ,mn mnh hx x x z bot
mn mn mn mn mn mn mn
C e D e C Sα βα β κ− −+ = −  (6.69) 

and II II III+, , , ,

2
mn mnh hx x x y botn

mn mn mn mn

mn

k
C e D e C Sα β

κ

− − = −  (6.70) 

respectively. Eliminating I,x
mn

C  from (6.67) and (6.68) gives  

 II II, , , ,( ) ( )x x z top y topn
mn mn mn mn mn mn mn mn

mn

k
C D S Sα κ β κ

κ

  + + + = − +   
 (6.71) 
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Similarly eliminating III,x
mn

C  from(6.69) and (6.70) gives 

         II II, , , ,( ) ( )mn mnh hx x z bot y botn
mn mn mn mn mn mn mn mn

mn

k
C e D e S Sα βα κ β κ

κ

− −
  − + − = − −   

 (6.72) 

Solving (6.71) and (6.72) for II,x
mn

C  and II,x
mn

D  yields 

( ) ( )
II

, , , ,

,

mnhz bot y bot z top y topn n
mn mn mn mn mn mn mn mn

x mn mn
mn

mn

k k
S S S S e

C
Q

ββ κ β κ
κ κ

−      − + − + −        
=    

  (6.73) 

( ) ( )
II

, , , ,

,

mnhz top y top z bot y botn n
mn mn mn mn mn mn mn mn

x mn mn
mn

mn

k k
S S e S S

D
Q

αα κ α κ
κ κ

−      + − − − +        
=    

  (6.74) 

where 

         ( )( ) ( )( )mn mnh h
mn mn mn mn mn mn mn mn mn

Q e eβ αα κ β κ β κ α κ− −= + − − + −  (6.75) 

Substituting (6.73) and (6.74) into (6.46) yields 

                    II , ,

0

cos( ( )) ( ) ( )m x x

M N
j x A top A bottop bot

x n mn mn mn mn
m M n

A e k z c S T y S T yξ

=− =

 = − +  ∑ ∑  (6.76) 

where the source terms on the top and bottom of the conductive plate are respectively 

 , , ,( / )xA top z top y top
mn mn n mn mn

S S k Sκ= +  (6.77) 

 , , ,( / )xA bot z bot y bot
mn mn n mn mn

S S k Sκ= −  (6.78) 

and the transmission functions for the top and bottom surfaces of the conductive plate are 

respectively 
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 ( ) ( )1
( ) ( ) ( )mn mn mn mny h y htop

mn mn mn mn mn

mn

T y e e
Q

β α α βα κ β κ− − = − − −    (6.79) 

 
1

( ) ( ) ( )mn mny ybot
mn mn mn mn mn

mn

T y e e
Q

α ββ κ α κ = + − +    (6.80) 

The transmission functions given by (6.79), (6.80) can also be written as  

 
( ) ( )

2 2 2 2

[ ( )] [ ( )]
( )

[ ( ) ] [ ( ) ]

nm nm

nm nm

y h y h
top ynm nm nm nm
mn h h

nm nm nm nm

e e
T y e

e e

γ γ
λ

γ γ

λ γ κ λ γ κ

λ γ κ λ γ κ

− + +

−

+ − − − +
=

− + − − −
(6.81) 

 ( )

2 2 2 2

[ ( )] [ ( )]
( )

[ ( ) ] [ ( ) ]

nm nm

nm nm

y y
bot y hnm nm nm nm
mn h h

nm nm nm nm

e e
T y e

e e

γ γ
λ

γ γ

λ γ κ λ γ κ

λ γ κ λ γ κ

−
+

−

− − − + +
=

− + − − −
(6.82) 

where 

 00.5 yvλ µ σ=  (6.83) 

It is worth noting that as the transmission functions are source independent; this solution 

is valid for any magnetic source located at any location above the conductive region. 

Using (6.68), the reflected x-component vector potential coefficients for region I are 

 I II II+, , , ,

2

x x x y topn
mn mn mn mn

mn

k
C C D S

κ
= +  (6.84) 

Substituting (6.73) and (6.74) into (6.84) gives  

 I, , , , , ,

2
(0) (0)x z top y top top z bot y bot bot y topn n n

mn mn mn mn mn mn mn mn
mn mn mn

k k k
C S S T S S T S

κ κ κ

      = + + − +        
 (6.85) 

where (0)top
mnT  and (0)bot

mnT are the top and bottom surface transmission functions 

evaluated at y=0 respectively. Rearranging (6.85) yields  
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( )I

      

, , ,

2

, ,

(0) (0) 1

(0)

x z top top top y topn
mn mn mn mn mn mn

mn

z bot y bot botn
mn mn mn

mn

k
C S T T S

k
S S T

κ
κ

κ

= + +

  + −   

 (6.86) 

Substituting (6.86) into (6.48) gives the reflected x-component magnetic vector potential 

in region I 

( ) ( )I

                                                   

, , ,

2
0

, ,

cos ( ) (0) (0) 1

(0)

m mn

M N
j x yr z top top top y topn

x n mn mn mn mn mn
m M n mn

z bot y bot botn
mn mn mn

mn

k
A e k z c e S T T S

k
S S T

ξ κ κ
κ

κ

−

=− =


= − + +

   + −    

∑ ∑
  

  (6.87) 

Transmitted vector potential coefficients in region III can be obtained from (6.70) 

 III II II+, , , ,

2
mn mnh hx x x y botn

mn mn mn mn

mn

k
C C e D e Sα β

κ

− −= +  (6.88) 

Substituting (6.73) and (6.74) into (6.88) one finds  

( ) ( )

( ) ( )

III

     

     

( ), , ,

( ), ,

,

2

1

1

mn mn

mn mn mn mn

hx z top y topn
mn mn mn mn mn mn mn

mn mn

h h hz bot y botn
mn mn mn mn mn mn

mn mn

y botn
mn

mn

k
C S S e

Q

k
S S e e e

Q

k
S

α β

α β α β

α κ β κ
κ

β κ α κ
κ

κ

− +

− + − −

   = + − − −     
    + − + − +      

+

 

  (6.89) 

Using the transmission functions for the top and bottom surfaces (6.79) and (6.80), (6.89) 

can be written as  
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III

         

, , , , ,

,

2

( ) ( )x z top y top top z bot y bot botn n
mn mn mn mn mn mn mn

mn mn

y botn
mn

mn

k k
C S S T h S S T h

k
S

κ κ

κ

      = + − + − −        

+
 (6.90) 

After rearranging terms (6.90) gives 

 ( )III, , , , ,

2
( ) ( ) ( ) 1x z top y top top z bot bot bot y botn n

mn mn mn mn mn mn mn mn mn
mn mn

k k
C S S T h S T h T h Sκ

κ κ

  = + − + − − − −   

  (6.91) 

Substituting (6.91) into (6.51) gives the transmitted x-component magnetic vector 

potential in region III 

( )

( )

III

                                     

( ), , ,

0

, ,

2

cos ( ) ( )

( ) ( ) 1

m mn

M N
j x y ht z top y top topn

x n mn mn mn
mnm M n

z bot bot bot y botn
mn mn mn mn mn

mn

k
A e k z c e S S T h

k
S T h T h S

ξ κ

κ

κ
κ

+

=− =

  = − + −   

+ − − − − 


∑ ∑
 (6.92) 

If the magnetic source is located away from the edges of the plate or lateral dimension of 

the plate is much larger than that of the source, the source and transmission functions for 

the bottom surface must be neglected in (6.76), (6.87) and (6.92). 

6.6.1.2. Solution for the z-component Magnetic Vector Potential 

Substituting the  z-component vector potential equations (6.47), (6.49) at y = 0 and x 

and y-component magnetic flux density due to the source on the top surface (6.53) and 

(6.54) respectively into the boundary conditions (6.13) and (6.18) yields for all m, n 

 II II I+, , , ,z z z x top
mn mn mn mn mn mn mnC D C Sα β κ= − +  (6.93) 

and II II I+, , , ,

2

z z z y topm
mn mn mn mn

mn

j
C D C S

ξ

κ
= +  (6.94) 
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respectively. 

Substituting (6.47), (6.52) and the x and y-components of the source flux densities on 

the bottom plate surface from  (6.56) and (6.57) respectively into the boundary conditions 

(6.20) and (6.22) yields for all m, n 

 II II III, , , ,mn mnh hz z z x bot
mn mn mn mn mn mn mnC e D e C Sα βα β κ− −+ = +  (6.95) 

and II II III+, , , ,

2
mn mnh hz z z y botm

mn mn mn mn

mn

j
C e D e C Sα β ξ

κ

− − = +  (6.96) 

respectively. Eliminating I,z
mnC  from (6.93) and (6.94) gives  

 II II, , , ,( ) ( )z z x top y topm
mn mn mn mn mn mn mn mn

mn

j
C D S S

ξ
α κ β κ

κ

  + + + = +   
 (6.97) 

Similarly eliminating III,z
mn

C  from (6.95) and (6.96) gives 

    II II, , , ,( ) ( )mn mnh hz z x bot y botm
mn mn mn mn mn mn mn mn

mn

j
C e D e S Sα β ξ

α κ β κ
κ

− −
  − + − = −   

 (6.98) 

Solving (6.97) and (6.98) for II,z
mn

C  and II,z
mn

D  yields 

( ) ( )
II

, , , ,

,

mnhx top y top x bot y botm m
mn mn mn mn mn mn mn mn

z mn mn
mn

mn

j j
S S e S S

C
Q

βξ ξ
β κ β κ

κ κ

−      + − − − +        
=    

  (6.99) 

( ) ( )
II

, , , ,

,

mnhx bot y bot x top y topm m
mn mn mn mn mn mn mn mn

z mn mn
mn

mn

j j
S S S S e

D
Q

αξ ξ
α κ α κ

κ κ

−      − + − + −        
=    

  (6.100) 

where Qmn is defined by (6.75). Substituting (6.99) and (6.100) into (6.47) yields 



170 

          II , ,

1

sin( ( )) ( ) ( )m z z

M N
j x A top A bottop bot

z n mn mn mn mn
m M n

A e k z c S T y S T yξ

=− =

 = − − +  ∑ ∑  (6.101) 

where the source terms on the top and bottom of the conductive plate are respectively 

 , , ,( / )zA top x top y top
mn mn m mn mn

S S j Sξ κ= +  (6.102) 

 , , ,( / )zA bot x bot y bot
mn mn m mn mn

S S j Sξ κ= −  (6.103) 

and the transmission functions for the top and bottom of the conductive plate are defined 

by (6.79) and (6.80) respectively. Like the Ax field equation, this solution is valid for any 

magnetic source located at any location above the conductive region. 

Reflected Az field coefficients are found from (6.94) 

 I II II+, , , ,

2

z z z y topm
mn mn mn mn

mn

j
C C D S

ξ

κ
= −  (6.104) 

Substituting (6.99) and (6.100) into (6.104) gives  

          

I

       

, , , , ,

,

2

(0) (0)z x top y top top x bot y bot botm m
mn mn mn mn mn mn mn

mn mn

y topm
mn

mn

j j
C S S T S S T

j
S

ξ ξ

κ κ

ξ

κ

      = − + − −        

−
 (6.105) 

Rearranging terms  

 

( )I

       

       

, , ,

2

, ,

(0) (0) 1

(0)

z x top top top y topm
mn mn mn mn mn mn

mn

x bot y bot botm
mn mn mn

mn

j
C S T T S

j
S S T

ξ
κ

κ

ξ

κ

= − − +

  − −   
 (6.106) 

Substituting (6.106) into (6.49) gives the reflected z-component vector potential in region 

I as follows 
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( ) ( )I

                                                   

       

, , ,

2
1

, ,

sin ( ) (0) (0) 1

(0)

m mn

M N
j x yr x top top top y topm

z n mn mn mn mn mn
m M n mn

x bot y bot botm
mn mn mn

mn

j
A e k z c e S T T S

j
S S T

ξ κ ξ
κ

κ

ξ

κ

−

=− =


= − − + +


   + −    

∑ ∑

 

  (6.107) 

The transmitted field coefficients can be obtained from (6.96) as  

 III II II+, , , ,

2
mn mnh hz z z y botm

mn mn mn mn

mn

j
C C e D e Sα β ξ

κ

− −= −  (6.108) 

Substituting (6.99) and (6.100) into (6.108) gives  

         

III

       

, , , , ,

,

2

( ) ( )z x top y top top x bot y bot botm m
mn mn mn mn mn mn mn

mn mn

y botm
mn

mn

j j
C S S T h S S T h

j
S

ξ ξ

κ κ

ξ

κ

      = − + − − − −        

−
 (6.109) 

After rearranging  

 

( )

III
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2
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ξ
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ξ
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  = − + − − −   

+ − −
 (6.110) 

Substituting (6.110) into (6.52) gives the transmitted z-component magnetic vector 

potential in region III as follows 
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( ), , ,

1

, ,

2

sin ( ) ( )
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j
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ξ
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  = − − + −   

+ − − − − 

∑ ∑
 (6.111) 
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If the magnetic source is located away from the edges of the plate or lateral dimension of 

the plate is much larger than that of the source, the source and transmission functions for 

the bottom surface must be neglected in (6.101), (6.107) and (6.111). 

6.6.2. Solution for the Magnetic Flux Density 

Using the following relationships (3.7)-(3.9) derived in chapter 3, the magnetic flux 

density components can be obtained in terms of the magnetic vector potential.  

6.6.2.1. Solution for the transmitted flux density in Region II 

Substituting (6.76), (6.101) into (3.7)-(3.9) and noting that the Ay component is zero 

in the presented analytic model, the flux density components in region II are obtained as  

               II , ,

1

sin( ( ))m z z

M N top bot
j x A top A botmn mn

x n mn mn
m M n

T T
B e k z c S S

y y

ξ

=− =

 ∂ ∂ = − − + ∂ ∂  
∑ ∑  (6.112) 
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, ,

0
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m M n
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B e k z c k S j S T

k S j S T
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ξ
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+ − 

∑ ∑
 (6.113) 

                II , ,

0

cos( ( ))m x x

M N top bot
j x A top A botmn mn

z n mn mn
m M n

T T
B e k z c S S

y y

ξ

=− =

 ∂ ∂ = − − + ∂ ∂  
∑ ∑  (6.114) 

where 

         ( ) ( )1
( ) ( )mn mn mn mn

top
y h y hmn

mn mn mn mn mn mn
mn

T
e e

y Q

β α α ββ α κ α β κ− −∂  = − − −  ∂
 (6.115) 

and 
1

( ) ( )mn mn

top
y ymn

mn mn mn mn mn mn
mn

T
e e

y Q

α βα β κ β α κ
∂  = + − +  ∂

 (6.116) 

6.6.2.2. Solution for the reflected flux density in Region I 

The reflected x-component magnetic flux density in region I can be obtained by 

substituting (6.87) and (6.107) into (3.7) which gives 
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x n mn mn mn mn
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∑ ∑
  

  (6.117) 

In order to find the reflected y-component flux density, (6.87) and (6.107) are substituted 

into (3.8) to yield 
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 (6.118) 

Using (6.50), (6.118) becomes  
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  (6.119) 

Similarly substituting (6.87) into (3.9), the z-component flux density is obtained as  
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  (6.120) 
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6.6.2.3. Solution for the transmitted flux density in Region III 

In order to derive the x-component transmitted magnetic flux density in region III, 

(6.111) is substituted into (3.7) to yield    
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x n mn mn mn mn
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  (6.121) 

The y-component flux density in region III is obtained by substituting (6.92) and (6.111) 

into (3.8) 
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  (6.122) 

Using (6.50), (6.122) becomes 
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  (6.123) 

Substituting (6.92) into (3.9) gives the z-component transmitted flux density 
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  (6.124) 

6.7. Calculation of Electromagnetic Force 

The electromagnetic forces acting on the magnetic source will be calculated using 

Maxwell’s stress tensor [112, 115, 143] and Lorentz method [143].   

6.7.1. Calculation using Maxwell’s Stress Tensor 

The thrust, lift and lateral forces are given by [143] 

 II II II II

0

1
Re

2
top bot

x x y x yF B B dxdz B B dxdz
µ

∗ ∗

Γ Γ

    = −     
∫ ∫  (6.125) 
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∫
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 (6.126) 

 II II II II
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1
Re

2
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z z y z yF B B dxdz B B dxdz
µ

∗ ∗

Γ Γ

    = −     
∫ ∫  (6.127) 

where Γtop and Γbot are the conductive plate surfaces at y = 0 and y = -h respectively as 

shown in Figure 6.2. Integration over Γbot is not necessary as the source is located at the 

center of the plate or its lateral dimension is much smaller than that of the plate. 

Maxwell’s stress tensor will be calculated using the reflected fields in regions I and 

transmitted fields in region III. 

Substituting (6.53) and (6.117) into (6.7) gives at y = 0 
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 (6.128) 

Adding (6.54) with (6.119) and substituting into (6.8) gives at y = 0 
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  (6.129) 

Similarly substituting (6.55) and (6.120) into (6.9) gives at y = 0 
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 (6.130) 

Equations (6.128) - (6.130) will be used for force calculation using tensor method on the 

top plate surface.  

For the bottom conductive plate surface, substituting (6.56) and (6.121) into (6.10) at 

y = -h gives  
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 (6.131) 

Substituting (6.57) and (6.123) into (6.11) gives at y = -h 
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  (6.132) 

And finally substituting (6.58) and (6.124) into (6.12) gives at y = -h 
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∑ ∑
 (6.133) 

Equations (6.131) - (6.133) will be used for tensor force calculations on the bottom plate 

surface. 

The thrust force is calculated using (6.125). Substituting (6.128) and conjugate of 

(6.129) into the first term of (6.125) and (6.131), conjugate of (6.132) into the second 

term of (6.125) gives the thrust force.  

Similarly substituting (6.128) - (6.130) and their conjugate into the first term of 

(6.126), (6.131) - (6.133) and their conjugate into the second term of (6.126), the lift 

force can be calculated analytically.  

Finally, for the lateral force computation (6.130), conjugate of (6.129) are substituted 

into the first term of (6.127) for integration over Γtop and (6.133), conjugate of (6.132) are 

substituted into the second term of (6.127) for integration over Γbot. The latter is 

subtracted from the former to give the net lateral force. 

6.7.2. Simplified Stress Tensor Calculation 

Considerable simplification in the force calculation can be achieved when the induced 

eddy current field region in the conductive medium is narrow compared to the width of 

the plate. This happens when the magnetic source is not laterally offset and/or the width 

of the source is small compared to that of the plate.  

Noting that  
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 B 0s∇ ⋅ =  (3.3) 

the following relations hold true 

 , , /x top y top
mn m mn mnS j Sξ κ=  (6.134) 

 , , /z top y top
mn n mn mnS k S κ=  (6.135) 

The associated source terms in (6.76) and (6.101) for the top surface of the conductive 

plate using (6.134)-(6.135) are  

 , 2 ,( / )xA top y top
mn n mn mnS k Sκ= −  (6.136) 

 , 2 ,( / )zA top y top
mn m mn mnS j Sξ κ=  (6.137) 

and the transmission function of the conductive plate is modified into 
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The reflected fields in ΩI as given by (6.87) and (6.107) are modified into  
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j
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=− =

= −∑ ∑  (6.140) 

where Rmn(0) is the reflection coefficient and is related to the transmission coefficient by 

 (0) 1 (0)mn mnR T+ =  (6.141) 

Substituting (6.138) into (6.141) and rearranging gives 
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For the case when vy =0, (6.142) simplifies down to 
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where           
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+
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This form of the reflection coefficient has previously been derived by a number of other 

authors [205-211]. The reflected flux density components evaluated at y=0, as given by 

(6.117) and (6.119) are simplified into  
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However, as the fields in ΩI are governed by the magnetostatic equations, the forces 

can also be computed using the fictitious surface magnetic charge approach [212, 213]. In 

this case the force within the air region due to a source magnetic charge can be computed 

using  

 F B*

0

1
Re

2
r

m
S

dSρ
µ

 = −   ∫� , at y=0 (6.147) 

where ‘*’ superscript indicates complex conjugation. The magnetic charge sheet density 

ρm(x,z) is equal to twice the normal component of the source magnetic flux density [76].   
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 ,( , ) 2 ( , 0, )s
m y mnx z B x zρ = , at y=0 (6.148) 

Substituting (6.146) into (6.148) 
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Substituting (6.149) and (6.145) into (6.147) yields thrust force as 
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Noting thatRe[ (0)] Im[ (0)]mn mnjR R= − , (6.150) can be also written as 
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Similarly substituting (6.149) and (6.146) into (6.147) yields lift force as 
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6.7.3. Calculation using Lorentz method 

In the Lorentz method, the forces are given by [143] 

 ( )
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II II
IIF J B
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Ω

= × Ω∫  (6.153) 

In (6.153) the integration is performed over the entire region II. From (6.153) the thrust, 

lift and lateral forces are  

 II II

/2 0

*

/2

1
Re

2

l c w

x z y

x l y h z c

F J B dzdydx

+

=− =− =

 
 = −  
  
∫ ∫ ∫  (6.154) 
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F J B dzdydx

+

=− =− =

 
 =  
  
∫ ∫ ∫ . (6.156) 

The relationships between the induced eddy current density, J, and the magnetic vector 

potential, A, are given by (3.17)-(3.19) in chapter 3. The relationships for the x and z-

components are rewritten here for convenience 

 x x x
x x y

A A A
J v v

t x y
σ
 ∂ ∂ ∂  = − + +   ∂ ∂ ∂ 

 (3.17) 

 z z z
z x y

A A A
J v v

t x y
σ
 ∂ ∂ ∂  = − + +   ∂ ∂ ∂ 

 (3.19) 

Substituting the transmitted flux density of region II given by (6.112)-(6.114) and 

induced eddy current density given by (3.17), (3.19) into (6.154)-(6.156), the 

electromagnetic forces can be obtained. 

6.8. Power Loss, Total Power Transfer and Torque Calculation 

The power loss in the conductive plate in the form of heat is calculated using Ohm’s 

law  

 ( )
II

II II II II
II

1
Re

2loss x x z z
P J J J J d

σ

∗ ∗

Ω

 
 = + Ω 
  
∫  (6.157) 

Substituting (3.17), (3.19) and their conjugate into (6.157) and integrating over the 

conductive plate domain, the power loss can be analytically computed. In order to find 

the total power transfer from the magnetic source, following relation can be used  
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transfer loss x x y y

P P F v F v= + +  (6.158) 

In (6.158) power required to move the magnetic source with constant velocity vx and vy 

has been added to the power loss to obtain total input power required or total power 

transfer. Thrust and lift force are substituted from (6.125) and (6.126) (using stress tensor 

method) or (6.154) - (6.155) (using Lorentz method) and power loss from (6.157) into 

(6.158) to obtain the total power transfer.  

Electromagnetic torque acting on the source can be obtained by simply using  

 
( / )

transfer transfer

em

m e

P P
T

Pω ω
= =  (6.159) 

where ωm is the mechanical angular speed [rads-1] and P is number of pole pairs of the 

source. 

Figure 6.6 shows a flowchart of the developed 2-component MVP based steady state 

analytic model to compute the eddy current forces, torque and power loss. 
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Figure 6.6. Flowchart of the presented analytic 2-component MVP model 

6.9. Model Validation 

In section 6.9.1 eddy current fields will be validated whereas in section 6.9.2 eddy 

current forces and joule loss will be compared with FEA models.  

6.9.1. Field Validation 

In this chapter the presented analytic model is validated with commercially available 

finite element analysis (FEA) software and also with a previously developed 3-D steady 

state FEA model [75]. For validation purposes a Halbach magnetized 2 pole pair rotor 

has been used as the source. The conductive plate and Halbach rotor geometric 

information is shown in  

Table 6.1. It was assumed that the rotor was located 5 mm above the conductive plate. 

For computational purposes the number of harmonics along the x and z-axes are chosen 

to be 32 i.e. M = N = 32. A comparison of the magnetic vector potential and flux density 
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with FEA for zero translational velocity and zero lateral offset of the rotor is shown in 

Figure 6.7 and Figure 6.8. Good match of fields was obtained. 

 
Table 6.1 : Halbach rotor and conductive plate parameters  

 Description Value Unit 

Magnetic Rotor 

Outer radius, ro 26 mm 
Inner radius, ri 9.62 mm 
Width, wo 52 mm 
Remnant magnetic flux density, Brem

 1.42 T 

Relative permeability, µr 1.108 - 

Pole pairs, P 2 - 
Rotational speed 5000 RPM 

       Translational velocity, vx  0 ms-1 
       Heave velocity, vy 0 ms-1 

Conductive plate 

Conductivity, σ 2.459×107 Sm-1 

Width, w 77 mm 
Length, l 200 mm 
Thickness, h  6.3 mm 
Air-gap between rotor and plate, g 5 mm 
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Figure 6.7. The Ax and Az magnetic vector potential comparison with Comsol FEA model (a) along (y, z) = 
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(0, 20)mm coordinate axis (b) along (x, y) = (0, 0)mm coordinate axis. The rotor is located at the center of 
the plate.  

 

 

 
Distance along x-axis[m] 

(a) 

 
Distance along z-axis[m] 

(b) 
Figure 6.8. The Bx, By and Bz magnetic flux density comparison with Comsol FEA model (a) along (y, z) 
= (0, 20)mm coordinate axis (b) along (x, y) = (0, 0)mm coordinate axis. The rotor is located at the center 
of the plate. 

Surface plot of the induced vector potentials in the conductive plate obtained from 

current sheet based steady state FEA model [75] is shown in Figure 6.9 while Figure 6.10 

shows surface plot obtained from the developed analytic model. Similarly, Figure 6.11 

and Figure 6.12 show the surface plot of the induced magnetic flux density in the 

conductive plate from the FEA and presented analytic model respectively.  
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(a) 

 
                           [Wb/m] 

 
(b) 

Figure 6.9. Plot of the (a) Az and (b) Ax magnetic vector potential in the conductive plate computed using 
current sheet based FEA model. The rotor is located at the center of the plate.  

 
(a) 

 
(b) 

Figure 6.10. Surface plot of the analytically computed (a) Az and (b) Ax magnetic vector potential on the 
conductive plate top surface. The rotor is located at the center of the plate.  
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(a) 

 
[Wb/m] 

 
(b) 
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(c) 

Figure 6.11. Plot of the induced (a) Bx, (b) By and (c) Bz magnetic flux density in the conductive plate 
computed using current sheet based FEA model. The rotor is located at the center of the plate.  
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(a) 

 
(b)  

 
(c) 

Figure 6.12. Surface plot of the analytically computed induced (a) Bx, (b) By and (c) Bz magnetic flux 
density on the conductive plate top surface. The rotor is located at the center of the plate. 

Magnetic vector potential and flux density comparison when the rotor is moved 

towards the conductive plate edge by 20mm are shown in Figure 6.13 and Figure 6.14 

respectively. Figure 6.15 and Figure 6.16 show the surface plots of the induced magnetic 
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vector potentials obtained from the FEA [75] and analytic model respectively. Again a  

close match of fields was obtained. 

 
Distance along x-axis[m] 

(a) 

 
Distance along z-axis[m] 

(b) 
Figure 6.13. The Ax and Az magnetic vector potential comparison with current sheet based Comsol FEA 
model (a) along (y, z) = (0, 30)mm coordinate axis (b) along (x, y) = (0, 0)mm coordinate axis. The rotor is 
shifted from the center of the plate by 20mm. 
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(a) 
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(b) 
Figure 6.14. The Bx, By and Bz magnetic flux density comparison with Comsol FEA model (a) along (y, z) = 
(0, 20)mm coordinate axis (b) along (x, y) = (0, 0)mm coordinate axis. The rotor is shifted from the center 
of the plate by 20mm. 
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(a) 

 
                           [Wb/m] 

 
(b) 

Figure 6.15. Plot of the (a) Az and (b) Ax magnetic vector potential in the conductive plate computed using 
FEA. The rotor is shifted from the center of the plate by 20mm  

 
(a) 

 
(b) 

Figure 6.16. Surface plot of the analytically calculated (a) Az and (b) Ax magnetic vector potential on the 
conductive plate surface. The rotor is shifted from the center of the plate by 20mm. 
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6.9.2. Force and Power Loss Validation 

Using the parameters listed in  

Table 6.1, a 3-D transient FEA model was created in JMAG and Magsoft Flux 3-D in 

order to further validate the analytic model.  Due to the limitations of JMAG and Magsoft 

the Halbach rotor was rotated over the conductive plate without additional translational 

motion. The size of the air region and mesh size in the conductive region have been 

chosen carefully to minimize numerical errors. In addition the FEA model presented in 

[75] has been used for force and power loss comparison when there is non-zero 

translational velocity. Thrust and lift force comparison for the zero and non-zero 

translational speeds are shown in Figure 6.17 and Figure 6.18 respectively while Figure 

6.19 shows the power loss comparison. The figures show that the analytical model 

achieves a close match with the FEA models. 

 

 

 

 

 

 

 

 

 

 

 



193 

 

 

 

 
RPM 

(a) 

 
    RPM 

(b) 
Figure 6.17 Thrust and lift force comparison between the 3-D analytic model and FEA for zero 
translational velocity when the rotor is (a) at the center and (b) shifted from the center of the conductive 
plate by 15mm. 
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Slip speed [ms-1] 

(a) 

 
Slip speed [ms-1] 

(b) 

Figure 6.18 Thrust and lift force comparison between 3-D analytic model and FEA model for vx=20ms-1 
translational velocity and vy=5ms-1 heave velocity when the rotor is (a) at the center and (b) shifted from 
the center of the conductive plate by 20mm.  
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Slip speed [ms-1] 

(a) 

 
Slip speed [ms-1] 

(a) 
Figure 6.19 Power loss comparison between analytic and FEA models for (a) vx=0ms-1 translational 
velocity and (b) vx=20ms-1 translational velocity and vy=5ms-1 heave velocity.  

Figure 6.20 shows the perspective and x-z view of the rotor with a pitch angle. Figure 

6.21 shows the thrust, lateral and lift force comparison of the developed 2-component 

analytic model with a Magsoft Flux FEA model for different pitch angle values.  

 
(a) 

 

(b) 
Figure 6.20. The (a) perspective and (b) x-z view of the Halbach rotor in the presence of pitch angle 
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 (a) 

     
(b) 

Figure 6.21 (a) Thrust and lateral force comparison, (b) lift force comparison between Magsoft Flux FEA 
and analytic model for zero translational velocity when the rotor is at the center of the plate. Rotational 
speed of the rotor is 7000 RPM. Comparison is performed for varying pitch angle of the rotor. 

Figure 6.22 shows the perspective and y-z view of the rotor with a roll angle whereas 

Table 6.2 shows the thrust, lateral and lift force comparison with Magsoft Flux FEA 

model for a roll angle value of 15 degree. 

 
(a) 

 

(b) 

Figure 6.22 The (a) perspective and (b) y-z view of the Halbach rotor with 15 degree roll angle 
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Table 6.2. : Force comparison between analytic and Magsoft Flux FEA models 
Model Thrust force (N)  Lift force (N) Lateral force (N) 

Magsoft Flux 26.19 51.79 1.808 
2-component analytic model 28.02 51.71 1.202 

The average computation time involved in calculating the force and power loss results for 

a single rotational speed value by the FEA and analytic model are listed in Table 6.3. As 

expected, the analytic model reduces the computation time by a large extent. 

Table 6.3 : Computation time for 2-component analytic and FEA models 
Model type Computation time 

JMAG transient 5 hr 40 min 
Magsoft flux transient 5 hr 21 min 
Current sheet based steady state model using Comsol v3.5a    8 min 
Analytic 2-component vector potential model 0.544 s 

6.10. Limitation of the Proposed Model and Improved 3-Component Vector 
Potential Model 

The limitation of the presented analytic model is its inability to calculate the correct 

lateral force as shown in Figure 6.23 which shows the lateral force comparison for lateral 

offset of the rotor by 10 and 20mm.  
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Rotational speed [RPM]  

(a) 

 
Rotational speed [RPM]  

(b) 
Figure 6.23. Lateral force comparison among Comsol, analytic and JMAG FEA models for (a) 10mm 
lateral offset and (b) 20mm lateral offset. The comparison was made at (vx, vy, vz)=(0,0,0) ms-1. 

In addition to incorrect lateral force, the thrust and lift force accuracy of the presented 

analytic model degrades with the increased plate thickness. This is due to the fact that the 

interaction of the magnetic source with the edge surface, Γe, of the plate has been ignored 

so far due to the assumption of a small plate thickness, h, and thus the vector potential 

fields in ΩV have not been modeled. However, with increased plate thickness, h, and in 

the presence of lateral source field offset, d, it becomes essential to consider the effect of 

the source field in ΩV on the induced eddy current distribution in the conductive plate 

region ΩII. 
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 (a) 
 

(b) 
Figure 6.24. (a) 3-D schematic of a single rotor on conductive aluminum plate; (b) z-y view of the 
problem regions. The rotor is laterally offset from the center of the plate. 

This is demonstrated in Figure 6.25 and Figure 6.26 which show the induced Ax and 

Az vector potential within a 15mm thick finite with conductive plate when a Halbach 

rotor source field is applied and not applied to the edges of the plate. The figures are 

obtained using a previously presented finite element analysis (FEA) steady-state model 

[75].. By comparing the magnitude of the induced Ax field in Figure 6.25 and Figure 6.26, 

the importance of the source-plate interaction through Γe can be noticed. On the other 

hand, the figures show that the source flux linkage through Γe does not increase the Az 

component in ΩII significantly.  Hence this component has been omitted while studying 

the edge effect. In the previous analysis it was shown that the Ay component was not 

required to determine the correct thrust/drag, Fx and lift, Fy, force for a small plate 

thickness. Thus the Ay is only significant when the source flux linkage through Γe is 

considered. 

(a) 
 

(Wb/m) 
(b)  

(Wb/m) 
Figure 6.25. (a) The Ax  and (b) Az magnetic vector potential in a conductive plate of thickness 15mm when a 
magnetic rotor is laterally shifted by 25mm and the source field is applied on Γtop, Γbot but not  on Γe 
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(a) 
(Wb/m) 

 

(b)  
(Wb/m) 

Figure 6.26 (a) The Ax and (b) Az magnetic vector potential in a conductive plate of thickness 15mm when a 
magnetic rotor is laterally shifted by 25mm and the  source field is applied on Γe as well as Γtop and Γbot 

Based on this analysis and using the superposition principle the total magnetic vector 

potential in the conductive plate, ΩII, can be written as the summation of the fields 

induced due to the source-plate interaction through Γtop, Γbot and edge boundary, Γe, such 

that 

   II II, t II,e
x x x

A A A= +  (6.160) 

 II II,e
y yA A=  (6.161) 

 II II, t
z z

A A=  (6.162)  

where the superscript ‘t’ and ‘e’ denote top and edge field contributions. The goal of this 

section is to determine the induced II,e
xA and II,e

yA field due to the source-plate interaction 

through edge Γe. Due to the inclusion of the Ay component, the current analytic model can 

be called 3-component model. The derived field will then be added to the field 

contribution from the top and bottom of the conductor that was obtained in section 6.6 to 

determine the total thrust/drag and lift force. The approach will be compared with an 

FEA model [75]. 



201 

6.10.1. Governing Equations and Boundary Conditions 

The x and y-component of the vector potential in ΩII satisfies the following governing 

equation  [214] 

                 
II,e II,e

II,e II,e   2
0 , ,i i

i e i x y

A A
A j A v v i x y

x y
µ σ ω
 ∂ ∂  ∇ = + + =  ∂ ∂ 

, in ΩII  (6.163) 

where vx and vy are the source velocity in the x and y-directions, σ is the plate 

conductivity (S/m). Also in order to satisfy current flow continuity 

 II,e
II Aˆ 0n ⋅ =  (6.164) 

must be satisfied on the boundaries of ΩII [214] where IIn̂  is a unit vector normal to the 

conductive plate.  Utilizing the real and complex Fourier analysis technique the general 

solution of (6.163) is 

 

  II,e II,

0

( , , ) cos( )m mn

M N
j x zx e

x mn n
m M n

A x y z C e u y eξ τ

=− =

= ∑ ∑ , in ΩII (6.165) 

  II,e II,

1

( , , ) sin( )m mn

M N
j x zy e

y mn n
m M n

A x y z C e u y eξ τ

=− =

= ∑ ∑ , in ΩII (6.166) 

where     2 /m m lξ π=  (6.167) 

   /nu n hπ=  (6.168) 

  II 2 V 2
0 00.5 (0.5 ) ( ) ( )mn y y mn o e m xv v j vτ µ σ µ σ τ µ σ ω ξ= + + + +  (6.169) 

  V 2 2
mn n muτ ξ= +  (6.170) 
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ωe= electrical frequency (rads-1). It is assumed that the plate-width, w, is large enough to 

ignore any reflection from the plate surface at z=-w. Hence, region ΩIV is not required in 

this formulation. The vector potentials in ΩV satisfies the following Laplace equation 

  V= ,   2 0 ,iA i x y∇ = , in ΩV (6.171) 

which yields the following general solutions  

   V V

0

( , , ) cos( )m mn

M N
j x zx

x mn n
m M n

A x y z D e u y eξ τ−

=− =

= ∑ ∑ ,in ΩV (6.172)       

                                   V V

1

( , , ) sin( )m mn

M N
j x zy

y mn n
m M n

A x y z D e u y eξ τ−

=− =

= ∑ ∑ , in ΩV  (6.173) 

From the continuity of the tangential components of the magnetic field intensity and normal 

components of the flux density at z=0 and the continuity of the Coulomb gauge 

  A 0∇ ⋅ =  (3.22) 

the following boundary conditions are derived  

 
II,e V

( , , )
y y s

x

A A
B x y z

z z

∂ ∂
− = − +
∂ ∂

, at z=0  (6.174) 

        
II,e V

( , , )sx x
y

A A
B x y z

z z

∂ ∂
= +

∂ ∂
, at z=0 (6.175) 

                
II,e II,e V V2 2 2 2

2 2 2 2

( , , )s
y y y y z

A A A A B x y z

xx y x y

∂ ∂ ∂ ∂ ∂
+ = + +

∂∂ ∂ ∂ ∂
, at z=0 (6.176)      

                
II,e II,e V V2 2 2 2

2 2 2 2

( , , )s
x x x x zA A A A B x y z

yx y x y

∂ ∂ ∂ ∂ ∂
+ = + −

∂∂ ∂ ∂ ∂
, at z=0 (6.177) 
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6.10.2. Source Field Modeling 

Following the treatment presented in section 6.5 the source field on the edge surface, 

Γe, can be represented as the following Fourier series  

 ,

1

( , , 0) sin( ) m

M N
j xs x s

x mn n
m M n

B x y S u y e ξ

=− =

= ∑ ∑ , at z=0 (6.178) 

 ,

0

( , , 0) cos( ) m

M N
j xs y s

y mn n
m M n

B x y S u y e ξ

=− =

= ∑ ∑ , at z=0 (6.179) 

 ,

1

( , , 0) sin( ) m

M N
j xs z s

z mn n
m M n

B x y S u y e ξ

=− =

= ∑ ∑ , at z=0 (6.180) 

The coefficients in (6.178)-(6.180) are determined by using the standard procedure of 

computing the Fourier series coefficients [132, 214]. 

6.10.3. Field Solution 

The induced magnetic fields due to the presence of the edge source field can be 

determined by substituting (6.165),(6.166),(6.172),(6.173) and (6.178)-(6.180) into (6.174)

-(6.177).  Then utilizing (3.7)-(3.9) the field solution is 

               
II

V

II,e

V II

, ,

1

( / )
( , , ) sin( )

1 /
m mn

x s z sM N
mn m mn mnj x z

x n
m M n mn mn

S j S
B x y z e u y eξ τ

ξ τ

τ τ=− =

 +  =
 +  

∑ ∑  (6.181) 

               
II

V

II,e

V II

, ,

0

( / )
( , , ) cos( )

1 /
m mn

y s z sM N
mn n mn mnj x z

y n
m M n mn mn

S u S
B x y z e u y eξ τ

τ

τ τ=− =

 +  =
 +  

∑ ∑  (6.182) 

              
II

V

II,e

II V II
=

, , ,

1

( , , ) sin( )
(1 / )

m mn

y s x s z sM N
n mn m mn mn mnj x z

z n
m M n mn mn mn

u S j S S
B x y z e u y eξ τ

ξ τ

τ τ τ=− =

 − +  
 +  

∑ ∑  (6.183) 
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6.10.4. Model Validation 

The presented analytic model has been validated with a previously developed 3-D 

steady state FEA model [75]. The simulation parameters are shown in  

Table 6.1. The forces were calculated using Maxwell’s stress tensor [115] where the 

net flux density in ΩII has been considered which is obtained by adding (6.181)-(6.183) 

with the contribution from the source field applied on Γtop and Γbot as derived in section 

6.6.2. Figure 6.27-Figure 6.29 show the force comparison when using the FEA model 

[75] as well as a previously presented 2-component model of section 6.7 and the 

modified 3-component vector potential model. The percentage error in the force 

calculation using the 3-component and 2-component vector potential model has been 

displayed. The inclusion of the edge effect components has reduced the analytic force 

calculation error. 

 

                          
Figure 6.27. (a) Force comparison at vx=0m/s and (d, h)= (25, 15)mm; (b) percentage error in force 
calculation 
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Figure 6.28 (a) Force comparison at vx=0m/s and (d, h)= (35, 15)mm; (b) percentage error in force 
calculation 

 

                           
Figure 6.29. (a) Force comparison at vx= 15m/s and (d, h)= (25, 25)mm; (b) percentage error in force 
calculation 

The flux density comparison for 15mm thick plate and 35mm lateral offset of the 

rotor along the z-axis is provided in Figure 6.30 and Figure 6.31. From the plots it is 

observed that towards the edge (i.e. z=0mm) the error in analytically calculated By and Bz 

field increases which results in inaccurate lateral force calculation. Hence the presented 
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3-component model has improved the thrust and lift force computation for increased plate 

thickness, however, it is still an approximate model.   

 
Figure 6.30. Flux density comparison at x=0mm on the top plate surface 

 
Figure 6.31 Flux density comparison at x=-20mm on the top plate surface 

The average computation time involved in calculating the force and power loss results 

for a single rotational speed value by the FEA and 3-component MVP based analytic 

model are listed in Table 6.4. By comparing with Table 6.3 it is observed that the 3-

component MVP model is slower than its 2-component counterpart due to the added 

boundary conditions at the edges of the conductive plate and extra component of the 

magnetic vector potential. 

Table 6.4 : Computation time for 3-component analytic and FEA models 
Model type Computation time 

JMAG transient 5 hr 40 min 
Magsoft flux transient 5 hr 21 min 
Current sheet based steady state model using Comsol v3.5a    8 min 
Analytic 3-component vector potential model 6 s 
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6.11. Summary 

Analytic 3-D steady state modeling approach to study eddy current distribution in a 

conductive plate of finite width and thickness has been presented. The 2-component 

model is formulated in terms of decoupled set of equations using the magnetic vector 

potential in the nonconductive and conductive regions. It is computationally efficient. 

Computation time has been compared with FEA models. Also electromagnetic forces and 

power loss comparison has been made to suggest that the model can be very useful to 

calculate thrust, lift force and power loss in the plate when the dimension of the plate is 

comparable to that the source or when the source is laterally offset towards the edge of 

the plate. However the drawback of this model is its inability to calculate correct lateral 

force and is applicable to only plate of small thickness. An improved 3-component vector 

potential model has also been presented for a plate of arbitrary thickness. However, the 3-

component model is also an approximate model as it lacks the accuracy in the magnetic 

fields near the plate edge. The key points of the proposed two and three component MVP 

models are summarized in Table 6.5 and Table 6.6 respectively. 

The presented approximate analytic models using magnetic vector potential are of 

great interest due to quick computation of the induced fields and/or thrust and lift force 

due to finite width and thickness conductive plate. However the accurate treatment of the 

eddy current analysis in a conductive plate of finite width is a tedious process as will be 

described in the next chapter. 
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Table 6.5 : Summary of the presented 3-D analytic steady state model using 2-component MVP 
Model assumptions Model characteristics 

• Conductive plate is linear, simply 
connected, homogenous and non-
magnetic  
 

• Conductive plate is infinitely long, but 
has finite width 
 

• Plate has finite but small thickness 
 

• Ay component of the MVP is ignored 
 

• Frequency is low 
 

 
 

• Models the conductive and nonconductive domains using 
2-components of the MVP. 
 

• Decoupled boundary conditions lead to simple model 
derivation 
 

• Can be applicable for any magnetic source 
 

• Computes the source field using magnetic charge sheet 
 

• Models translational, heave as well as rotational motion 
of the source 
 

• Computationally faster than FEA but inferior to the 
analytic SOVP model 
 

• Not accurate for plate with large but finite thickness  
 

• Fails to produce correct lateral force in the presence of  
lateral offset of the source. 
 

• Model has been developed in Matlab 

 
Table 6.6 : Summary of the presented 3-D analytic steady state model using 3-component MVP 

Model assumptions Model characteristics 

• Conductive plate is linear, simply 
connected, homogenous and non-
magnetic  
 

• Conductive plate is infinitely long, but 
has finite width 
 

• Plate has finite and arbitrary  thickness 
 

• Frequency is low 
 

 
 

• Models the conductive and nonconductive domains using 
the MVP. All three components are used in the plate 
domain.  
 

• Can be applicable for any magnetic source 
 

• Computes the source field using magnetic charge sheet 
 

• Models translational, heave as well as rotational motion 
of the source 
 

• Computationally faster than FEA but inferior to the 2-
component MVP model. 
 

• Accuracy is better than the 2-component MVP model for 
plate with large thickness. 
 

• Fails to produce correct lateral force in the presence of  
lateral offset of the source. 
 

• Model has been developed in Matlab 

 



 

CHAPTER 7 : 3-D ANALYTIC EDDY CURRENT MODELING FOR FINITE 

PLATE WIDTH INCLUDING EDGE-EFFECT 

 
 

7.1. Introduction 

As pointed out in the previous chapter, the source field interaction through the edge 

of a conductive plate should be taken into account in order to analytically derive the 

correct lateral force (Fz). To account for the edge effect, in the previous chapter the side-

air regions have been modeled using the magnetic vector potentials. This resulted in an 

improved thrust and lift force which is applicable to a plate of any thickness. In other 

words, modeling the magnetic vector potentials in the edge regions removed the 

assumption of the small but finite plate thickness. However, from the flux density 

comparisons provided in chapter chapter 6, it is observed that in the presence of lateral 

offset of the magnetic source, the By and Bz flux components of the analytic model do not 

match quite well with the FEA counterparts. This results mainly in an inaccurate lateral 

force. 

 
Figure 7.1. x-y view of the problem domain  

 
Figure 7.2. y-z view of the problem domain  
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The x-y and y-z view of the problem domain are shown in Figure 7.1 and Figure 7.2 

respectively. In order to achieve coupling between the fields in the plate, ΩII, and side 

region, ΩV, in a mathematically elegant way the fields in these regions can be modeled as 

Fourier series with eigenvalues determined by applying appropriate boundary conditions 

at the interface boundary, Γe. As the problem domain (originally infinite) is being 

truncated in the x and z-directions by applying suitable boundary conditions, this 

approach is referred to in the literature as truncated region eigenfunction expansion 

(TREE) [117, 118, 149, 151, 192]. 

Previously the TREE approach has been used to study the eddy current distribution in 

a conductive medium with flaw or crack for nondestructive testing applications [117, 

118, 141, 148, 149, 151, 192, 215]. However, to date such models have been developed 

for a plate of infinite thickness with a borehole with finite or infinite depth in order to 

study the impedance variation near the bore hole. The contribution of this chapter is to 

apply the TREE approach to a conductive plate of finite thickness and to analytically 

derive the eddy current fields and forces. 

The assumptions of the analytic model presented in this chapter are:  

• The plate length, l, is infinite but width, w, and thickness, h, are finite 

• The plate is continuous, non-magnetic, linear and homogenous.  

• The magnetic source has only rotational motion. 

• Frequency is low. 

The rest of the chapter is arranged as follows: section 7.2 will describe the governing 

equations for all the problem regions and section 7.3 will discuss the boundary 
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conditions; section 7.4 will derive the analytic eddy current forces; model validation will 

be performed in section 7.5 and a summary of the chapter will be provided in section 7.6.  

7.2. Governing Equation Formulation 

The magnetostatic field of the magnetic rotor is required only in the boundary 

condition of boundary Γt in order to determine the transmitted and reflected fields. 

Hence, the following simplified problem domain can be derived from Figure 7.1 and 

Figure 7.2 by omitting the magnetic rotor. 

 

Figure 7.3. x-y view of the problem domain with 
different problem regions 

 
Figure 7.4. y-z view of the problem domain with 
different problem regions 

In this chapter the induced and reflected fields in the conductive region ΩII and 

nonconductive region ΩV are modeled using the second order vector potential (SOVP) 

while the fields in the nonconductive regions ΩI and ΩIII are modeled using the magnetic 

scalar potential. Due to such choice of potentials the number of unknowns in the problem 

domain has been kept to a minimum. For simplicity it has been assumed that the 

magnetic source does not have any motion along the x, y and z directions.  

As stated before, in the presented formulation the solution domain has been truncated 

along the x and z-directions while it is unconstrained along the y-axis. Thus the solution 

domain extends from 0 to l in the x-direction and from 0 to Lz in the z-direction. There is 

a wide choice of possible combinations of boundary conditions at the four truncation 

boundaries. The possible boundary conditions include perfect magnetic conductor 

(PMC), Bt=0 (subscript t stands for tangential component) and perfect electric conductor 

(PEC), Bn=0 (subscript n stands for normal component). For the problem domain 
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geometry considered here the conductive plate edge at z=w is located sufficiently far 

from the truncation boundaries and hence the choice of the boundary conditions on the 

truncation boundary have a negligible effect on the numerical values of the field in the 

solution domain. In this chapter, a PMC condition has been applied at x=0 and PEC 

condition has been applied at x=l i.e. 

   0, ,iB i y z= = , at x=0 (7.1) 

 0xB = , at x=l (7.2) 

Along the z-direction, a PMC condition is satisfied at z=0 and z=Lz i.e. 

   0, ,iB i x y= = , at z=0, Lz (7.3) 

This choice of boundary conditions yields Fourier series with respect to both x and z axes 

without zero frequency terms. The absence of zero frequency terms greatly simplifies the 

solution procedure. 

7.2.1. Conductive Region (ΩII)  

The SOVP has been utilized in ΩII region which is denoted as W and defined as [141, 

182, 183] 

 A W= ∇×  (3.64) 

 B W= ∇×∇×  (5.11) 

As discussed in chapter 4, W can be split into TE, Wa,  and TM, Wb, scalar potentials 

with z-preferred direction as follows [117, 118, 192] 

 W ˆ ˆ
a bzW z W= + ×∇  (7.4) 
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Here ẑ is the unit vector along the z-direction. From (5.7) it is noticed that the TE and 

TM potentials satisfy the following in the absence of translational velocity terms 

 
II II II

II  
2 2 2

2

2 2 2
, ,i i i

i

W W W
W i a b

x y z
ε

∂ ∂ ∂
+ + = =

∂ ∂ ∂
 (7.5) 

where 2
0 ejε µ σ ω= −  (7.6) 

Unlike chapter 5, in (7.4) the unit vector is chosen along the z-axis for the following 

reason. 

Substituting (7.4) into (3.64) and using (7.5) yields 

 
II

II a
x

W
A

y

∂
=
∂

 (7.7) 

 
II

II a
y

W
A

x

∂
= −

∂
 (7.8) 

 II II2
z bA Wε=  (7.9) 

The normal component of the eddy current or the magnetic vector potential should be 

zero at z=0 and z=w i.e.  

 0zA = , at z=0, w (7.10) 

From (7.9) it is noticed that with the z-preferred direction of the SOVP, the Az component 

is function of the Wb potential only. Hence the boundary condition (7.10) can be easily 

satisfied by choosing suitable Fourier series representation of only the Wb potential.  

For the magnetic flux density, substituting (7.4) into (5.11) gives  

 
II II

II
2

2a b
x

W W
B

z x y
ε

∂ ∂
= +
∂ ∂ ∂

 (7.11) 
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II II

II
2

2a b
y

W W
B

z y x
ε

∂ ∂
= −
∂ ∂ ∂

 (7.12) 

 
II

II II
2

2

2

a
z a

W
B W

z
ε

∂
= −
∂

 (7.13) 

Using the separation of variables method [132]  

 II    ( , , ) ( ) ( ) ( ), ,i i i iW x y z X x Y y Z z i a b= =  (7.14) 

and using the boundary conditions (7.1) and (7.2) yields for the x-dependency of the TE 

and TM potentials as follows 

 ( ) sin( )a mX x xξ=  (7.15) 

 ( ) cos( )b mX x xξ=  (7.16) 

where  
(2 1)

, 1
2m

m
m

l

π
ξ

−
= ≤ ≤ ∞  (7.17) 

Substituting (7.15) or (7.16) into(7.5),  

 
II II

II II  
2 2

2 2

2 2
, ,i i

i m i

W W
W W i a b

y z
ε ξ

∂ ∂
+ = + =

∂ ∂
 (7.18) 

Dividing both sides by Xi(x)Yi(y)Zi(z) 

 
'' ''

2 2i i
m

i i

Y Z

Y Z
ε ξ+ = +  (7.19) 

Noting the boundary condition (7.3) and (7.10), the following z-dependency can be 

obtained for the Wa and Wb potentials 

 ( ) cos( )a nZ z q z=  (7.20) 

 ( ) sin( )b nZ z r z=  (7.21) 
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where  / , 1nr n w nπ= ≤ ≤ ∞  (7.22) 

The eigenvalues qn are determined from the continuity condition of the magnetic flux 

density and field intensity at z=w interface, Γe, and will be discussed in section 7.3.1. The 

choice of rn as given by (7.22) makes sure that the boundary condition (7.10) is satisfied. 

Substituting (7.20) into (7.19) gives 

 
''

2 2 2a
m n

a

Y
q

Y
ξ ε= + +  (7.23) 

Hence for the TE potential 

 ( ) mn mny ya a
a mn mnY y C e D eα α−= +  (7.24) 

where 2 2 2
mn m nqα ξ ε= + +  (7.25) 

Similarly for the TM potential 

 ( ) mn mny yb b
b mn mnY y C e D eβ β−= +  (7.26) 

where 2 2 2
mn m nrβ ξ ε= + +  (7.27) 

Using (7.15), (7.20) and (7.24), the general solutions for the conductive region are 

 ( )II

1 1

( , , ) sin( )cos( )
z

mn mn

NM
y ya a

a m n mn mn
m n

W x y z x q z C e D eα αξ −

= =

= +∑∑  (7.28) 

 ( )II

1 1

( , , ) cos( )sin( )
r

mn mn

NM
y yb b

b m n mn mn
m n

W x y z x r z C e D eβ βξ −

= =

= +∑∑  (7.29) 

It is noted that the Fourier series of (7.28) and (7.29) have finite number of harmonics. 

The error introduced by this series truncation can be eliminated by choosing sufficient 

number of harmonics. More discussion on the selection of the number of harmonics is 
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presented in section 7.3.1. It must also be noted that (7.28) and (7.29) have different 

number of harmonics along the z-axis. The logic behind this selection will be discussed in 

section 7.3.1.   

Substituting (7.28)-(7.29) into (7.11)-(7.13) the following general solutions are 

obtained for the flux density components  

 
( )

( )

II

1 1

2

1 1

cos( )sin( )

cos( ) sin( )

z

mn mn

r

mn mn

NM
y ya a

x m n m n mn mn
m n
NM

y yb b
m n mn mn mn

m n

B x q z q C e D e

x r z C e D e

α α

β β

ξ ξ

ε ξ β

−

= =

−

= =

= − +

+ −

∑∑

∑∑
 (7.30) 
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z
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 (7.31) 

         ( )II 2

1 1

sin( )cos( )
z

mn mn

NM
y ya a

z m n n mn mn
m n

B x q z p C e D eα αξ −

= =

= − +∑∑   (7.32) 

7.2.2. Nonconductive Region (ΩV) 

The TM potential does not contribute to the magnetic field in nonconductive region 

ΩV [118, 192]. Thus it is not modeled in ΩV. The following general solution for the TE 

potential can be obtained which satisfies (7.1), (7.2) and (7.3) 

             ( )( )V V V

1 1

( , , ) sin( )cos ( )
z

mn mn

NM
y y

a m n z mn mn
m n

W x y z x p L z C e D eγ γξ −

= =

= − +∑∑  (7.33) 

where 2 2
mn m npϖ ξ= +  (7.34) 

and eigenvalues pn need to be determined from the boundary condition at z=w as 

described in section 7.3.1. 
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However, to match the conductive region ΩII with the nonconductive region ΩV on a 

term-by-term basis, their y-dependency can be chosen to be the same i.e 

 
mn mnϖ α=  (7.35) 

and also the TE potential coefficients of ΩV can be expressed linearly in terms of the 

coefficients of ΩII 

 V a
mn mn mnC a C=  (7.36) 

 V a
mn mn mnD a D=  (7.37) 

where amn is linear factor and will be determined in section 7.3.1. Using (7.35)-(7.37), 

(7.33) becomes  

                  ( ) ( )V

1 1

( , , ) sin( )cos ( )
z

mn mn

NM
y ya a

a m n z mn mn mn
m n

W x y z x p L z a C e D eα αξ −

= =

= − +∑∑ (7.38) 

Equation (7.35) implies that  

 2 2 2
n np q ε= +  (7.39) 

Equation (7.39) relates the eigenvalues of ΩII and ΩV. 

Since conductivity is zero in ΩV, the following is obtained from (7.11)-(7.13) 
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Substituting (7.38) into (7.40)-(7.42) the following general solutions are obtained for the 

flux density components in ΩV 

                ( ) ( )V

1 1

cos( )sin ( )
z

mn mn

NM
y ya a

x m n z m n mn mn mn
m n

B x p L z p a C e D eα αξ ξ −

= =

= − +∑∑  (7.43) 

               ( ) ( )V

1 1

sin( )sin ( )
z

mn mn

NM
y ya a

y m n z n mn mn mn mn
m n

B x p L z p a C e D eα αξ α −

= =

= − −∑∑  (7.44) 

               ( ) ( )V 2

1 1

sin( )cos ( )
z

mn mn

NM
y ya a

z m n z n mn mn mn
m n

B x p L z p a C e D eα αξ −

= =

= − − +∑∑  (7.45) 

7.2.3. Nonconductive Regions ΩI and ΩIII  

The fields in ΩI are modeled using the magnetic scalar potential. In the absence of 

free current the magnetic scalar potential satisfies the following Laplace equation in ΩI 

 2
0 0µ φ∇ =  (3.32) 

From the discussion presented in section 5.5 and using the relation between the TE 

potential, Wa, and magnetic scalar potential, �, given by (5.18) the source field in ΩI can 

be written as 

    
1 1

( , , ) sin( )sin( ) ,
z

mn

NM
ys

m n mn
m n

x y z x k z e S y gκ φφ ξ
= =

= <∑∑  (7.46) 

where /n zk n Lπ=  (7.47) 

 2 2
mn n mkκ ξ= +  (7.48) 

The choice of eigenvalues along the x and z-axis satisfies boundary conditions (7.1)-(7.3). 

Here it has been assumed that the charge sheet has been kept at y=0. Equation (7.46) is 

valid for region below the magnetic source i.e. for y< g. The y-dependency makes sure 
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that the source field increases towards the magnetic source while it decreases away from 

the source.  

The reflected field can be written as 

 I I

1 1

( , , ) sin( )sin( )
z

mn

NM
y

m n mn
m n

x y z x k z e Aκφ ξ −

= =

= ∑∑  (7.49) 

The y-dependency of (7.49) is chosen to decay the reflected field with distance away 

from the conductive surface at y=0.  

The transmitted field in this region satisfies governing equation (3.32) and boundary 

conditions (7.1)-(7.3) and is given by  

 III III( )

1 1

( , , ) sin( )sin( )
z

mn

NM
y h

m n mn
m n

x y z x k z e Aκφ ξ +

= =

= ∑∑  (7.50) 

The y-dependency is chosen to decay the field with distance away from the conductive 

medium. 

The flux density is obtained from the scalar potential using  

 B 0µ φ= − ∇  (2.5) 

Substituting (7.46) into (2.5) the source flux density components are  

  0
1 1

( , , ) cos( )sin( ) ,
z

mn

NM
ys

x m n m mn
m n

B x y z x k z e S y gκ φµ ξ ξ
= =

= − <∑∑  (7.51) 

    0
1 1

( , , ) sin( )sin( ) ,
z

mn

NM
ys

y m n mn mn
m n

B x y z x k z e S y gκ φµ ξ κ
= =

= − <∑∑  (7.52) 

    0
1 1

( , , ) sin( )cos( ) ,
z

mn

NM
ys

z m n n mn
m n

B x y z x k z e k S y gκ φµ ξ
= =

= − <∑∑  (7.53) 
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Similarly substituting (7.49) into (2.5) gives the reflected flux density components  

 I I
0

1 1

( , , ) cos( )sin( )
z

mn

NM
y

x m n m mn
m n

B x y z x k z e Aκµ ξ ξ−

= =

= − ∑∑  (7.54) 

 I I
0

1 1

( , , ) sin( )sin( )
z

mn

NM
y

y m n mn mn
m n

B x y z x k z e Aκµ ξ κ−

= =

= ∑∑  (7.55) 

 . I I
0

1 1

( , , ) sin( )cos( )
z

mn

NM
y

z m n n mn
m n

B x y z x k z e k Aκµ ξ −

= =

= − ∑∑ . (7.56) 

Finally on substitution of (7.50) into (2.5) the transmitted flux density components are 

obtained 

 III III( )
0

1 1

( , , ) cos( ) sin( )
z

mn

NM
y h

x m n m mn
m n

B x y z x k z e Aκµ ξ ξ+

= =

= − ∑∑  (7.57) 

 III III( )
0

1 1

( , , ) sin( )sin( )
z

mn

NM
y h

y m n mn mn
m n

B x y z x k z e Aκµ ξ κ+

= =

= − ∑∑  (7.58) 

 III III( )
0

1 1

( , , ) sin( )cos( )
z

mn

NM
y h

z m n n mn
m n

B x y z x k z e k Aκµ ξ +

= =

= − ∑∑  (7.59) 

7.3. Boundary Condition and Field Solution 

7.3.1. Determination of Unknown Eigenvalues 

In order to determine the unknown eigenvalues pn and qn, the continuity condition of 

the magnetic flux density and field intensity is applied at z=w interface, Γe. From the 

continuity of the normal component flux density, Bz yields   

 ( )cos( ) cos ( )n n z mnq w p L w a= −  (7.60) 
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From the continuity of the tangential component (Bx and By) of the flux density (noting 

unity relative permeability throughout in the problem domain) 

 ( )sin( ) sin ( )n n n z n mnq w q p L w p a− = −  (7.61) 

Dividing (7.61) by (7.60) 

 ( )tan( ) tan ( ) 0n n n z nq w q p L w p+ − =  (7.62) 

using (7.39), (7.62) can be written as  

 ( ) ( )2 2 2 2tan tan ( ) 0n n n n zp w p p p L wε ε− − + − =  (7.63) 

Equation (7.63) is solved numerically to find pn. Equations (7.39) and (7.60) are then 

used to determine qn and amn respectively.  

The complex eigenvalues pn need to be calculated precisely. In this root finding 

algorithm, two sets of calculations are performed. In the first set, the width of the plate, 

w, is decreased from w=Lz to its value in small decrementing steps and in the second set, 

the width w is increased from w=0 to its value in small incrementing steps. The 

incrementing and decrementing processes yield two sets of eigenvalues. Finally, the two 

sets are merged to form the final set of eigenvalues pn [148, 192]. The decrementing and 

incrementing processes are described in brief below. 

In the decrementing calculation, initially w is set equal to Lz. From (7.63) it is noticed 

that for w=Lz the eigenvalues pn are given by  

 0 2 2
n np k ε= +  for w=Lz (7.64) 

The superscript ‘0’ indicates first step of root calculation. Then w is decreased by small 

steps ∆w till its value becomes equal to the width of the plate. In each step, the Newton-

Raphson iteration scheme [216] is used to compute the eigenvalues for that particular w 
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until the difference in the eigenvalues between two successive steps becomes smaller 

than a specified tolerance. The iterative change in the eigenvalue is written as [148, 216] 

 1 ( )

( ) /
i i n
n n

n n i

f p
p p

f p p

+ = −
∂ ∂

 (7.65) 

where 

 ( )( ) tan( ) tan ( )n n n n n zf p q wq p p L w= + −  (7.66) 

                                 
( ) ( )

( ) ( )                           

2

2

( )
tan ( ) ( )sec ( )

tan / sec

n
n z n z n z

n

n n n n n

f p
p L w p L w p L w

p

p q w q p w q w

∂
= − + − −

∂
+ +

 (7.67) 

Here i is the number of iterations. In the incrementing process, initially w is set equal to 

0. For this value of w, from (7.63) it is observed that the eigenvalues are  

 0
n np k=  (7.68) 

Then w is increased by small steps ∆w till its value becomes equal to the width of the 

plate. In each step, the Newton-Raphson iteration scheme [216] is used to compute the 

eigenvalues for that particular w until the difference in the eigenvalues between two 

successive steps becomes smaller than a specified tolerance. With this method, the 

eigenvalues can be computed very accurately. 

Figure 7.5 shows the eigenvalues obtained using parameters listed in Table 7.1 

applying the decrementing and incrementing processes. The two sets produce the same 

eigenvalues for large index n. The calculations have been performed in MATLAB.  
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Figure 7.5. Complex roots pn calculated using incrementing and decrementing process for Lz=200mm and 
plate width=77mm 

                   Table 7.1: Parameters used for root calculation 

Description Value Unit 

Width, w 77 mm 
Domain width, Lz

 200 mm 
Conductivity, σ 2.459×107  Sm-1 

Rotational speed of rotor, ωm 9000 RPM 

Another numerical aspect of this formulation is the choice of Nz and Nr. The choice of 

Nz depends on the value of Lz. Generally the larger the problem domain, the greater the 

number of terms necessary [148]. For the simulations presented in this chapter Nz has 

been chosen to be 64 for Lz=200mm. It is observed that choosing Nr ~Nz may make the 

system of equations ill-conditioned. Hence choosing the ratio of Nr/Nz ~ w/Lz keep the 

condition number sufficiently low [149].  

7.3.2. Determination of Unknown Coefficients 

In order to determine the unknown Fourier series coefficients of the fields, boundary 

condition is applied at y=0 and -h.  

From the continuity of Bx at y=0 for each m  

( )

( )

( )

( ) ( )

I
          

 

1

2
0

1 1

1

sin( )

sin( ) sin( ) , 0

sin ( ) ,

z

z r

z

N
a a

n m n mn mn
n

N N
b b

n m mn mn n mn mn mn
n n

N
a a

n z m n mn mn mn z
n

q z q C D

k z S A r z C D z w

p L z p a C D w z L

φ

ξ

µ ξ ε β

ξ

=

= =

=

 − +− + =  + − < < − + < <

∑

∑ ∑

∑
  (7.69) 
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Multiplying both sides by sin(kiz) and integrating from z=0 to Lz gives  

                     ( )IS A M C D M b C D(1) 2 (2)
00.5 ( ) ( )a a b b

z m m m m m m m m mL φµ ξ ξ ε− + = + + −  (7.70) 

where 

M  (1)

0

sin( )sin( ) sin( )sin[ ( )] , [ ]
zLw

in n i n n mn i n z z z

w

q k z q z dz p a k z p L z dz N N= − + − ×∫ ∫  (7.71) 

 M   (2)

0

sin( )sin( ) , [ ]

w

in i n z rk z r z dz N N= ×∫  (7.72) 

 diagb   [ ], [ ]m mn r rN Nβ= ×  (7.73) 

And Sm
φ , IAm , Cam , Dam  are vector quantities of dimension [ 1]zN ×  whereas Cbm , Dbm  are 

vector of dimension [ 1]rN × . From the continuity of By at y=0, one derives for each m 

( )

( )

( )

( ) ( )

I       

                                               

1

2

0 1
1

1

sin( )

sin( ) , 0
sin( )

sin ( ) ,

z

r

z

z

N
a a

n n mn mn mn
n

N
N b b

n m mn mn
n mn mn mn n

n N
a a

n z n mn mn mn mn
n

z

q z q C D

r z C D z w
k z S A

p L z p a C D

w z L

φ

α

ε ξ
µ κ

α

=

=
=

=

− −+ + < <− − = 

− −

< <

∑

∑∑

∑


(7.74) 

Multiplying both sides by sin(kiz) and integrating from z=0 to Lz gives 

                      ( )Ik S A M a C D M C D(1) 2 (2)
00.5 ( ) ( )a a b b

z m m m m m m m m mL φµ ε ξ− − = − + +  (7.75) 

 diagk   [ ], [ ]m mn z zN Nκ= ×  (7.76) 

 diaga   [ ], [ ]m mn z zN Nα= ×  (7.77) 

From the continuity of Bz at y=0, one derives for each m 
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( )

( ) ( )
I

  

                                      

2

1

0 2
1

1

cos( ) , 0

cos( ) ( )
cos ( ) ,

z

z

z

N
a a

n n mn mn
N n

N
n n mn mn a a

n n z n mn mn mn
n

z

q z p C D z w

k z k S A
p L z p a C D

w z L

φµ
=

=
=

− + < <− + = − − + < <

∑
∑ ∑

 (7.78) 

Multiplying both sides by cos(kiz) and integrating from z=0 to Lz,  

                                         ( )IK S A M C D(3)
00.5 ( )a a

z m m m mL φµ− + = +  (7.79) 

where diagK   [ ], [ ]n z zk N N= ×  (7.80) 

                       M(3) 2 2

0

cos( )cos( ) cos( )cos[ ( )]
zLw

in n i n n mn i n z

w

p k z q z dz p a k z p L z dz= − − −∫ ∫  (7.81) 

Next, boundary conditions are applied at y=-h. Applying the continuity of the Bx at y=-h 

yields

( )

( )

( ) ( )

III     

  

                                      

1

2

0 1
1

1

sin( )

sin( ) , 0
sin( )

sin ( ) ,

z

mn mn

r

z mn mn

z

mn mn

N
h ha a

n m n mn mn
n

N
N h hb b

n mn mn mn
n m mn n

n N
h ha a

n z m n mn mn mn
n

q z q C e D e

r z C e D e z w
k z A

p L z p a C e D e

α α

β β

α α

ξ

ε β
µ ξ

ξ

−

=

−

=
=

−

=

− +

+ − < <
− =

− +

∑

∑∑

∑
                       zw z L

 < <

 

           (7.82) 

Multiplying both sides by sin(kiz) and integrating from z=0 to Lz gives   

              III a a b bA M C e D e M b C e D e(1) 2 (2)
00.5 ( ) ( )m m m mh h h ha a b b

z m m m m m m m mLµ ξ ξ ε− −− = + + −    

(7.83) 

where diagae   [ ], [ ]m mnh h
z ze N Nα− −= ×  (7.84) 

 diagbe   [ ], [ ]m mnh h
r re N Nα− −= ×  (7.85) 
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From the continuity of By at y=-h the following is obtained  

 

( )

( )

( ) ( )

III    

                                    

1

2

0 1
1

1

sin( )

sin( ) , 0
sin( )

sin ( ) ,

z

mn mn

r

z mn mn

z

mn mn

N
h ha a

n n mn mn mn
n

N
N h hb b

n m mn mn
n mn mn n

n N
h ha a

n z n mn mn mn mn
n

q z q C e D e

r z C e D e z w
k z A

p L z p a C e D e

α α

β β

α α

α

ε ξ
µ κ

α

− −

=

− −

=
=

− −

=

− −

+ + < <
− =

− −

∑

∑∑

∑
                        zw z L

 < <

  

  (7.86) 

Multiplying both sides by sin(kiz) and integrating from z=0 to Lz gives                 

III a a b bk A M a C e D e M C e D e(1) 2 (2)
00.5 ( ) ( )m m m mh h h ha a b b

z m m m m m m m mLµ ε ξ− −− = − + +  (7.87) 

From the continuity of Bz field at y=-h 

( )

( ) ( )
III

     

                                                            

2

1

0 2
1

1

cos( ) , 0

cos( )
cos ( ) ,

z

mn mn

z

z

mn mn

N
h ha a

n n mn mn
N n

N
n n mn h ha a

n n z n mn mn mn
n

z

q z p C e D e z w

k z k A
p L z p a C e D e

w z L

α α

α α
µ

−

=

−
=

=

 − + < <− = − − +
< <

∑
∑ ∑



 (7.88) 

Multiplying both sides by cos(kiz) and integrating from z=0 to Lz,  

 III a aKA M C e D e(3)
00.5 ( )m mh ha a

z m m mLµ −− = +  (7.89) 

From (7.79) 

 IA S K M C D1 (3)

0

2
( )a a

m m m m
zL

φ

µ

−= − − +  (7.90) 

Substituting (7.90) into (7.70) yields  

        K M C D M C D M b C D1 (3) (1) 2 (2)2
0.5 ( ) ( ) ( )a a a a b b

m z m m m m m m m m
z

L
L

ξ ξ ε−
  + = + + −   

 (7.91) 

or, K M M C D M b C D1 (3) (1) 2 (2)( ) ( ) 0a a b b
m m m m m mξ ε− − + − − =    (7.92) 
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Defining  

 A K M M1 (3) (1)
1 mξ

− = −    (7.93) 

 B M b2 (2)
1 mε= −  (7.94) 

(7.92) can be written as 

 A C D B C D1 1( ) ( ) 0a a b b
m m m m+ + − =  (7.95) 

Again substituting (7.90) into (7.75) yields  

             
k S K M C D M a C D

                                                       M C D

1 (3) (1)
0

2 (2)

2
0.5 2 ( ) ( )

( )

a a a a
z m m m m m m m

z
b b

m m m

L
L

φµ

ε ξ

−
  − − + = −   

+ +

 (7.96) 

or,           
k S k K M M a C k K M M a ]D

                                                 M C D

1 (3) (1) 1 (3) (1)
0

2 (2)

[ ] [

( )

a a
z m m m m m m m m

b b
m m m

L φµ

ε ξ

− −− = + + −

+ +
 (7.97) 

Defining  A k K M M a1 (3) (1)
2 [ ]c m m

−= +  (7.98) 

 A k K M M a1 (3) (1)
2 [ ]d m m

−= −  (7.99) 

 B M2 (2)
2 mε ξ=  (7.100) 

equation (7.97) can be written as  

 k S A C A D B C D0 2 2 2( )a a b b
z m m c m d m m mL φµ− = + + +  (7.101) 

Similarly substituting (7.89) into (7.83) yields 

               
a a a a

b b

K M e C e D M e C e D

                                       M b e C e D

1 (3) (1)

2 (2)

( ) ( )

( )

m m m m

m m

h h h ha a a a
m m m m m m

h hb b
m m m

ξ ξ

ε

− −−

−

+ = +

+ −
 (7.102) 

    a a b bK M M e C e D M b e C e D1 (3) (1) 2 (2)[ ]( ) ( ) 0m m m mh h h ha a b b
m m m m m mξ ε− −− − + − − =  (7.103) 

Utilizing (7.93)-(7.94), (7.103) can be written as 
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 a a b bA e C e D B e C e D1 1( ) ( ) 0m m m mh h h ha a b b
m m m m

− −+ + − =  (7.104) 

Again substituting (7.89) into (7.87) gives  

                 
a a a a

b b

k K M e C e D M a e C e D

                                      M e C e D

1 (3) (1)

2 (2)

( ) ( )

( )

m m m m

m m

h h h ha a a a
m m m m m m

h hb b
m m mε ξ

− −−

−

+ = −

+ +
 (7.105) 

            
a a

b b

k K M M a e C k K M M a e D

                                  M e C e D

1 (3) (1) 1 (3) (1)

2 (2)

[ ] [ ]

( ) 0

m m

m m

h ha a
m m m m m m

h hb b
m m mε ξ

−− −

−

− + +

− + =
 (7.106) 

Using (7.98)-(7.100), above equation can be written as 

 a a b bA e C A e D B e C e D2 2 2( ) 0m m m mh h h ha a b b
d m c m m m
− −+ − + =  (7.107) 

Equations (7.95), (7.101), (7.104) and (7.107) can be written in the following matrix 

form: 

 Ax = b  (7.108) 

where                           a a b b

a a b b

A A B B

A A B B
A =

A e A e B e B e

A e A e B e B e

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

m m m m

m m m m

c d

h h h h

h h h h
d c

− −

− −

 − 
 
 
 − 
 
 − − 

 (7.109) 

 

C

D
x

C

D

a
m

a
m

b
m

b
m

 
 
 
 

=  
 
 
 
  

 (7.110) 

and 
k S

b 0

0

0

0

z m mL φµ

 
 
 − =  
 
 
  

 (7.111) 

Matrix A is of dimension [4 2( )]z z rN N N× +  whereas vectors x  and b  have dimension 

of [2( ) 1]z rN N+ ×  and [4 1]zN × . Matrix A is asymmetric, but it has full column rank. 
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Thus its left pseudo-inverse is fairly accurate representation of its true inverse and x  can 

be obtained by solving  

 x = A b+  (7.112) 

where A+ is the pseudo-inverse of A. It is computed in MATLAB. 

7.4. Force Calculation 

Maxwell stress tensor using the magnetic flux induced in the conductive medium is 

used to calculate the forces. The derivation of the thrust (Fx), lift (Fy) and lateral (Fz) 

force will be discussed next. 

7.4.1. Thrust Force Calculation  

Thrust force is calculated using  

                 

II II II II

II II     

0
0 0 0 0 0

0

0 0

1

2

1

2

l w l w

x x y x yy y h

l

x z z w
h

F B B dzdx B B dzdx

B B dydx

µ

µ

∗ ∗
= =−

∗
=

−

 
 = − 
 
 
 
 +  
 
 

∫ ∫ ∫ ∫

∫ ∫
 (7.113) 

The first two integrals calculate force from Γt and Γb whereas the third one computes 

force from Γe. Each of them will be computed separately below.  

Substituting (7.30) and (7.31) evaluated at y=0 into the first integrand of (7.113) 

yields 

 II II

0
0 0 0

1

2

l w

top
x x y y

F B B dzdx
µ

∗
=

= ∫ ∫  (7.114) 

or, 
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( )

( )

( )

                  

                 

0 1 10 0

2

1 1

1

1
cos( )sin( )

2

cos( )sin( )

sin( )sin( )

z

r

z

l w NM
top a a
x m n m n mn mn

m n

NM
b b

m n mn mn mn
m n

N
a a

m n n mn mn mn
m n

F x q z q C D

x r z C D

x q z q C D

ξ ξ
µ

ε ξ β

ξ α

= =

= =

∗ ∗ ∗ ∗ ∗

=

= − +
+ − 

− −

∑ ∑∫ ∫

∑ ∑

∑

( )                  

1

2

1 1

sin( )sin( )
r

M

NM
b b

m n m mn mn
m n

x r z C D dzdxε ξ ξ

=

∗ ∗ ∗

= =


+ + 

∑

∑ ∑

 (7.115) 

or, 

( )

( )

( ) ( )

                     .

0 1 10 0

1 1

2

1 1

1
cos( )sin( )

2

sin( )sin( )

cos( )sin( ) sin( )sin( )

z

z

r

top
x

l w NM
a a

m n m n mn mn
m n

NM
a a

i l l il il il
i l

N
a a b b

m n m n mn mn i l i il il
i l

F

x q z q C D

x q z q C D

x q z q C D x r z C D

ξ ξ
µ

ξ α

ε ξ ξ ξ ξ

= =

∗ ∗ ∗ ∗ ∗

= =

∗ ∗ ∗

= =

=


 +


−

− + +

∑∑∫ ∫

∑∑

∑

( ) ( )

( ) ( )

1 1

2

1 1 1 1

2 2

1 1 1 1

cos( )sin( ) sin( )sin( )

cos( )sin( ) sin( )sin( )

z

r z

r r

NM M

m n
N NM M

b b a a
m n mn mn mn i l l il il il

m n i l
N NM M

b b b b
m n mn mn mn i l i il il

m n m n

x r z C D x q z q C D

x r z C D x r z C D dzdx

ε ξ β ξ α

ε ε ξ β ξ ξ

= =

∗ ∗ ∗ ∗ ∗

= = = =

∗ ∗ ∗

= = = =

− − −


+ − + 


∑∑ ∑

∑∑ ∑∑

∑∑ ∑∑

  (7.116) 

or, 

               

( ) ( )

( ) ( )

( ) ( )

1

0 1 1 1 1

2 2

1 1 1 1

2 3

1 1 1 1

1

2

z z

z r

r z

N NM M
top x z a a a a
x mi nl m n mn mn l il il il

m n i l

N NM M
x z a a b b
mi nl m n mn mn i il il

m n i l
N NM

x z b b a a
mi nl mn mn mn l il il il

m n i l

F I I q C D q C D

I I q C D C D

I I C D q C D

ξ α
µ

ε ξ ξ

ε β α

∗ ∗ ∗ ∗

= = = =

∗ ∗ ∗

= = = =

∗ ∗ ∗ ∗

= = = =


= + −


− + +

− − −

∑∑∑∑

∑∑∑∑

∑∑∑

( ) ( )2 2 4

1 1 1 1

r r

M

N NM M
x z b b b b
mi nl mn mn mn i il il

m n m n

I I C D C Dε ε β ξ∗ ∗ ∗

= = = =


+ − + 


∑

∑∑∑∑

 (7.117) 

where 
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,      

                 

0

0

cos( )sin( )

0.5 sin ( ) sin ( )

1 cos ( ) 1 cos ( )
0.5

( ) ( )

1 cos ( )
0.5 ,

( )

l

x
mi m i

x
l

i m i m

x

i m i m
i m

i m i m

i m

i m

I x x dx

x x dx

l l

l

ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ
ξ ξ

ξ ξ ξ ξ

ξ ξ

ξ ξ

=

=

=

   = + + −   

     − + − −    + ≠ + −  =    − +  
 +  

∫

∫

                i mξ ξ

 =

 (7.118) 

 

1

0

0

sin( ) sin( )

0.5 cos ( ) cos ( )

sin ( ) sin ( )
0.5

( ) ( )

w

z
nl n l

z
w

n l n l

z

n l n l

n l n l

I q z q z dz

q q z q q z dz

q q w q q w

q q q q

∗

=

∗ ∗

=
∗ ∗

∗ ∗

=

   = − − +      

     − +        = − 
 − + 

∫

∫  (7.119) 

 

2

0

0

sin( )sin( )

0.5 cos ( ) cos ( )

sin ( ) sin ( )
0.5

( ) ( )

w

z
nl n l

z
w

n l n l

z

n l n l

n l n l

I q z r z dz

q r z q r z dz

q r w q r w

q r q r

=

=

=

   = − − +   

     − +    = − − +  

∫

∫  (7.120) 

 

3

0

0

sin( )sin( )

0.5 cos ( ) cos ( )

sin ( ) sin ( )
0.5

( ) ( )

w

z
nl n l

z
w

n l n l

z

n l n l

n l n l

I r z q z dz

r q z r q z dz

r q w r q w

r q r q

∗

=

∗ ∗

=
∗ ∗

∗ ∗

=

   = − − +      

     − +        = − 
 − + 

∫

∫  (7.121) 
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4

0

0

sin( )sin( )

0.5 cos ( ) cos ( )

0,

/ 2,

w

z
nl n l

z
w

n l n l

z

n l

n l

I r z r z dz

r r z r r z dz

r r

w r r

=

=

=

   = − − +   

 ≠=  =

∫

∫  (7.122) 

Next, the force from the bottom surface Γb is computed 

 II II

0 0 0

1

2

l w

bot
x x y y h

F B B dzdx
µ

∗
=−

= ∫ ∫  (7.123) 

Equation (7.123) can be easily computed from (7.117) by simply replacing a
mnC , a

mnD  , 

b
mnC  and b

mnD with mnha
mnC e α− , mnha

mnD eα , mnhb
mnC e β−  and mnhb

mnD eβ  respectively. The 

following computes the thrust force from Γe 

 II II

0

0 0

1

2

l

side
x x z z w

h

F B B dydx
µ

∗
=

−

= ∫ ∫  (7.124) 

Substituting (7.30) and (7.32) into (7.124) 

               

( )

( )                     

0

0 1 10

2

1 1

1
cos( )sin( )

2

sin( )cos( )

z

mn mn

z

il il

l NM
y yside a a

x m n m n mn mn
m nh

NM
y ya a

i l l il il
i l

F x q w q C e D e

x q w P C e D e dydx

α α

α α

ξ ξ
µ

ξ

−

= =−

∗−∗ ∗

= =


= +



+ 


∑∑∫ ∫

∑∑
 (7.125) 

or, 

    
{

}            

0

( )2

0 1 1 1 1

( ) ( ) ( )

1
sin( ) cos( )

2

z z

mn il

mn il mn il mn il

N NM M
yside x a a

x mi n m n l l mn il
m n i l h

y y ya a a a a a
mn il mn il mn il

F I q w q q w P C C e

C D e D C e D D e dy

α α

α α α α α α

ξ
µ

∗

∗ ∗ ∗

+∗ ∗ ∗

= = = = −
− − − − +∗ ∗ ∗

=

+ + +

∑ ∑∑∑ ∫
 (7.126) 
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or, 

      

( )
2

0 1 1 1 1

( ) ( ) ( )

1 1
sin( ) cos( )

2 ( )

1 1 1

( ) ( )

z z mn il

mn il mn il mn il

N NM M h
side x a a
x mi n m n l l mn il

m n i l mn il

h h h
a a a a a a
mn il mn il mn il

mn il mn il

e
F I q w q q w P C C

e e e
C D D C D D

α α

α α α α α α

ξ
µ α α

α α α α

∗

∗ ∗ ∗

− +
∗ ∗ ∗

∗
= = = =

− − − +
∗ ∗ ∗

∗ ∗

 −= 
+

− − −
+ − −

− −

∑∑∑∑

( )mn ilα α ∗





+ 

 

  (7.127) 

Substituting (7.117), (7.123) and (7.127) into (7.113) the net thrust force acting on the 

conductive plate can be determined. 

7.4.2. Lift Force Calculation  

Lift force is calculated using  

 

( )

( )

II II II II II II

II II II II II II

II II

     

     

0
0 0 0

0 0 0
0

0 0

1

4

1

4

1

2

l w

y y y x x z z y

l w

y y x x z z y h

l

y z z w
h

F B B B B B B dzdx

B B B B B B dzdx

B B dydx

µ

µ

µ

∗ ∗ ∗
=

∗ ∗ ∗
=−

∗
=

−

= − −

− − −

 
 +  
 
 

∫ ∫

∫ ∫

∫ ∫

 (7.128) 

In order to calculate lift force from Γt the following integration is performed 

 ( )II II II II II II

0
0 0 0

1

4

l w

top
y y y x x z z y

F B B B B B B dzdx
µ

∗ ∗ ∗
=

= − −∫ ∫  (7.129) 

Substituting (7.31) into the first term of (7.129) 
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( ) ( )

( ) ( )

( )

II II

0 0

1 1 10

2

1 1 1

2

sin( ) sin( )
2

sin( ) sin( )
2

sin( ) sin( )
2

z z

z r

l w

y y

x z
w N NM

a a a a
n n mn mn mn l l ml ml ml

m n lz
N NM

a a b b
n n mn mn mn l m ml ml

m n l

b b
n m mn mn l

B B dxdz

l
q z q C D q z q C D

l
q z q C D r z C D

l
r z C D q z q

α α

ε α ξ

ε ξ

∗

= =

∗∗ ∗ ∗

= = ==

∗∗

= = =

∗


= − −


− − +

− +

∫ ∫

∑ ∑∑∫

∑ ∑∑

( )

( )( )
1 1 1

2 2 2

1 14

r z

r

N NM
a a

l ml ml ml
m n l

NM
b b b b

m mn mn mn mn
m n

C D dz

lw
C D C D

α

ε ε ξ

∗∗ ∗

= = =

∗∗

= =


− 


+ + +

∑∑∑

∑∑

  (7.130) 

or, 

                           

( ) ( )

( ) ( )

( ) ( )

II II

0 0

1 1 1

2 2

1 1 1

2 3

1 1 1

2 2 2

2

2

2

4

z z

z r

r z

l w

y y

x z
N NM

z a a a a
nl n mn mn mn l ml ml ml

m n l
N NM

z a a b b
nl n mn mn mn m ml ml

m n l
N NM

z b b a a
nl m mn mn l ml ml ml

m n l

m

B B dxdz

l
I q C D q C D

l
I q C D C D

l
I C D q C D

lw
C

α α

ε α ξ

ε ξ α

ε ε ξ

∗

= =

∗∗ ∗

= = =

∗∗

= = =

∗∗ ∗

= = =

∗

= − −

− − +

− + −

+

∫ ∫

∑ ∑∑

∑∑∑

∑∑∑

( )( )
1 1

rNM
b b b b
mn mn mn mn

m n

D C D
∗

= =

+ +∑∑

 (7.131) 

Substituting (7.30) into the second term of (7.129) yields  

         

( ) ( )

( ) ( )

( )

II II

0 0

1 1 10

2

1 1 1

2

sin( ) sin( )
2

sin( ) sin( )
2

sin( ) sin( )
2

z z

z r

l w

x x

x z
w N NM

a a a a
n m n mn mn l m l ml ml

m n lz
N NM

a a b b
n m n mn mn l ml ml ml

m n l

b b
n mn mn mn l l

B B dxdz

l
q z q C D q z q C D

l
q z q C D r z C D

l
r z C D q z q

ξ ξ

ε ξ β

ε β

∗

= =

∗∗ ∗

= = ==

∗∗ ∗

= = =

∗


= + +


− + −

− −

∫ ∫

∑ ∑∑∫

∑ ∑∑

( )

( )( )
1 1 1

22 2

1 14

r z

r

N NM
a a

m ml ml
m n l

NM
b b b b

mn mn mn mn mn
m n

C D dz

lw
C D C D

ξ

ε ε β

∗∗

= = =

∗∗

= =


+ 


+ − −

∑∑∑

∑∑

 (7.132) 
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or, 

 

( ) ( )

( ) ( )

( ) ( )

II II

0 0

1 1 1

2 2

1 1 1

2 3

1 1 1

22 2

2

2

2

4

z z

z r

r z

l w

x x

x z
N NM

z a a a a
nl m n mn mn m l ml ml

m n l
N NM

z a a b b
nl m n mn mn ml ml ml

m n l
N NM

z b b a a
nl mn mn mn l m ml ml

m n l

mn mn

B B dxdz

l
I q C D q C D

l
I q C D C D

l
I C D q C D

lw
C

ξ ξ

ε ξ β

ε β ξ

ε ε β

∗

= =

∗∗

= = =

∗∗ ∗

= = =

∗∗

= = =

∗

= + +

− + −

− − +

+

∫ ∫

∑ ∑∑

∑∑∑

∑∑∑

( )( )
1 1

rNM
b b b b

mn mn mn
m n

D C D
∗

= =

− −∑∑

 (7.133) 

Finally substituting (7.32) into the third term of (7.129) yields 

              ( ) ( )

( ) ( )

II II

0 0

2 2

1 1 10

5 2 2

1 1 1

cos( ) cos( )
2

2

z z

z z

l w

z z

x z
w N NM

a a a a
n n mn mn l l ml ml

m n lz
N NM

z a a a a
nl n mn mn l ml ml

m n l

B B dxdz

l
q z P C D q z P C D dz

l
I P C D P C D

∗

= =

∗∗ ∗

= = ==

∗∗

= = =

= + +

= + +

∫ ∫

∑ ∑∑∫

∑ ∑∑

 (7.134) 

where 

 

5

0

0

cos( )cos( )

0.5 cos ( ) cos ( )

sin ( ) sin ( )
0.5

( ) ( )

w

z
nl n l

z
w

n l n l

z

n l n l

n l n l

I q z q z dz

q q z q q z dz

q q w q q w

q q q q

∗

=

∗ ∗

=
∗ ∗

∗ ∗

=

   = − + +      

     − +        = + 
 − + 

∫

∫  (7.135) 

Lift force can be computed from the bottom surface Γb by replacing a
mnC , a

mnD  , b
mnC  and 

b
mnD with mnha

mnC e α− , mnha
mnD eα , mnhb

mnC e β−  and mnhb
mnD eβ  respectively. 

Substituting (7.31) and (7.32) into the third integral of (7.128) gives 
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( )

( )                              . 

0

0 1 1 1

2

sin( )
4

cos( )

z z

mn mn

ml ml

N NM
y yside a a

y n n mn mn mn
m n lh

y ya a
l l ml ml

l
F q w q C e D e

q w P C e D e dy

α α

α α

α
µ

∗ ∗

−

= = =−
−∗ ∗ ∗ ∗


= −


+ 

∑∑∑∫
 (7.136) 

or, 

             

0

( )2

0 1 1 1

( ) ( ) ( )

sin( ) cos( )
4

z z

mn ml

mn ml mn ml mn ml

N NM
yside a a

y n n mn l l mn ml
m n l h

y y ya a a a a a
mn ml mn ml mn ml

l
F q w q q w P C C e

C D e D C e D D e dy

α α

α α α α α α

α
µ

∗

∗ ∗ ∗

+∗ ∗ ∗

= = = −
− − − − +∗ ∗ ∗

= 
+ − − 

∑ ∑∑ ∫
(7.137) 

or, 

           +

( )
2

0 1 1 1

( ) ( ) ( )

1
sin( ) cos( )

4 ( )

1 1 1

( ) ( ) (

z z mn ml

mn ml mn ml mn ml

N NM h
side a a
y n n mn l l mn ml

m n l mn ml

h h h
a a a a a a
mn ml mn ml mn ml

mn ml mn ml m

l e
F q w q q w P C C

e e e
C D D C D D

α α

α α α α α α

α
µ α α

α α α α α

∗

∗ ∗ ∗

− +
∗ ∗ ∗

∗
= = =

− − − +
∗ ∗ ∗

∗ ∗

 −= 
+

− − −
+ +

− −

∑∑∑

)n mlα
∗





+ 

 

  (7.138) 

7.4.3. Lateral Force Calculation  

Lateral force is calculated using  

 

II II II II

II II II II II II     

0
0 0 0 0 0

0

0 0

1

2

1
( )

4

l w l w

z z y z yy y h

l

z z x x y y z w
h

F B B dzdx B B dzdx

B B B B B B dydx

µ

µ

∗ ∗
= =−

∗ ∗ ∗
=

−

 
 = − 
 
 
 
 + − − 
 
 

∫ ∫ ∫ ∫

∫ ∫
 (7.139) 

Substituting (7.32) and (7.31) into the integral for the top plate surface Γt gives 

 II II

0
0 0 0

1

2

l w

top
z z y y

F B B dzdx
µ

∗
=

= ∫ ∫  (7.140) 

or, 
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( ) ( )

( ) ( )            

2

0 1 1 10

2 2

1 1 1

cos( ) sin( )
4

cos( ) sin( )

z z

z r

w N NM
top a a a a
z n n mn mn l l ml ml ml

m n l

N NM
a a b b

n n mn mn l m ml ml
m n l

l
F q z p C D q z q C D

q z p C D r z C D dz

α
µ

ε ξ

∗∗ ∗ ∗

= = =

∗∗

= = =


= + −



− + + 


∑∑∑∫

∑ ∑∑
 (7.141) 

or, 

                   

( ) ( )

( )( )            

6 2

0 1 1 1
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where 
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Similarly lateral force from the bottom surface Γb can be easily computed.  
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Substituting (7.32) into the first integrand of (7.145) yields         
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Substituting (7.31) into the second integrand of (7.145) yields  
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 or,        
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Substituting (7.30) into the third integrand of (7.145) yields  
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Figure 7.6 shows a flowchart of the developed SOVP based steady state analytic 

model to compute the eddy current forces. 
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Figure 7.6. Flowchart of the presented TREE method using SOVP 

7.5. Model Validation 

7.5.1. Field Validation 

Like previous chapters, for validation purposes a Halbach rotor has been used. The 

geometric and material properties of the rotor and conductive plate are listed in Table 7.2. 

The induced magnetic flux density in the conductive region has been compared against a 

previously developed 3-D FEA steady state model [13, 75] for 25mm lateral offset of the 

rotor. Figure 7.7 shows the flux density comparison on the top surface of the conductive 

plate across z-axis. An excellent field match has been obtained.  

                  Table 7.2: Simulation Parameters 

 Description Value Unit 

Magnetic Rotor 

Outer radius, ro 26 mm 
Inner radius, ri 9.62 mm 
Width, wo 52 mm 
Remnant magnetic flux density, Brem

 1.42 T 

Relative permeability, µr 1.108 - 

Pole pairs, P 2 - 

Conductive plate 

Conductivity, σ 2.459×107  Sm-1 

Width, w 77 mm 
Length, l 200 mm 
Thickness, h  6.3 mm 
Air-gap between rotor and plate, g 9.5 mm 
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(a) 

 
(b) 

Figure 7.7. Induced magnetic flux density comparison on the top surface of the conductive plate at (a) 
x=20mm and (b) x= 0mm for 25mm lateral offset of the rotor at zero translational velocity and 8000 RPM 
rotational velocity. 

7.5.2. Force Validation 

Electromagnetic forces are compared with FEA steady state model developed using 

COMSOL [13, 75] and JMAG for different lateral offset and rotational speed values and 

shown in Figure 7.9-Figure 7.10. A very good match of the forces has been achieved.  
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(a) 

 
(b) 

 
(c) 

Figure 7.8. Comparisons of (a) Fx, (b) Fy and (c) Fz for 25mm lateral offset of the rotor at zero translational 
velocity. 
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(a) 

 
(b) 

 
(c) 

Figure 7.9. Comparisons of (a) Fx, (b) Fy and (c) Fz for 15mm lateral offset of the rotor at zero translational 
velocity. 
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(a) 

 
(b) 

 
(c) 

Figure 7.10. Comparisons of (a) Fx, (b) Fy and (c) Fz for 10mm lateral offset of the rotor at zero 
translational velocity. 

The average computation time involved in calculating the force results for a single 

rotational speed value by the FEA and analytic model are listed in Table 7.3. 

Table 7.3. : Computation time for analytic and finite element steady state models 
Model type Computation time 

JMAG transient 5 hr 40 min 
Current sheet based steady state model using Comsol v3.5a    8 min 
Proposed analytic model using SOVP and TREE 32 s 
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The computation time of the proposed analytic model is larger than the models 

presented in previous chapters. This is mainly due to the need for the numerical 

computation of complex valued eigenvalues. Hence, if the eigenvalues can be calculated 

beforehand and stored in a look-up table, the analytic model can be made faster. The 

average accuracy of the developed analytic model with respect to the JMAG transient and 

current sheet based Comsol steady state models [13, 75] have been compared at 15mm 

lateral offset of the source as shown in Table 7.4. 

                Table 7.4 : Accuracy of the developed analytic steady state model using SOVP and TREE 
Force  Error with JMAG 

transient [%] 
Error with Comsol 
steady state [%] 

Thrust 4.32 7.95 
Lift    3.04    5.8 
Lateral 3.3 6.23 

7.6. Summary 

Analytic 3-D steady state model of eddy current distribution has been developed 

using novel truncated region eigenfunction expansion approach to consider edge effect of 

a conductive medium when a magnetic source is located near the edge of the conductive 

medium. The analytical results agree really well with finite element results. The 

presented analytic model is more accurate than the models presented in previous chapter. 

But, the accuracy comes at the cost of computational burden due to the numerical 

calculation of eigenvalues. The key points of the developed model are summarized in 

Table 7.5. 
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Table 7.5 : Summary of the presented 3-D analytic steady state model using SOVP and TREE 

Model assumptions Model characteristics 

• Conductive plate is linear, simply 
connected, homogenous and non-
magnetic  
 

• Conductive plate is infinitely long, but 
has finite width and thickness 
 

• Frequency is low 
 

 
 

• Models the conductive and nonconductive domains using 
the SOVP. The conductive plate is modeled using both 
TE and TM potentials. 
 

• Can be applicable for any magnetic source 
 

• Computes the source field using magnetic charge sheet 
 

• Models only rotational motion of the source. 
 

• Computationally faster than FEA but inferior to other 
developed analytic models in this dissertation. 
 

• Most accurate of all the presented analytic models. Can 
accurately model the edge-effect of the plate. 
 

• Model is developed in Matlab. 



 

CHAPTER 8 : EXPERIMENTAL RESULTS AND VERIFICATION 

 
 

8.1. Introduction 

In this chapter the 3-D analytic models using the second order vector potential and 

magnetic vector potential developed in Chapter 5 and Chapter 6 will be qualitatively 

verified against two experimental setups. The analytical force, electromagnetic torque 

and power transfer equations derived in Chapter 6 will be compared with the 

experimental results from 1 DOF pendulum setup and sub-scale maglev setup with four 

EDWs.   

8.2. Comparison with a Pendulum Setup 

8.2.1. Description of the Experimental Setup 

In this experimental setup an EDW is vertically hung on one side of the circular 

aluminum guideway as a pendulum as shown in Figure 8.1. The EDW and guideway are 

free to rotate on their respective axes, thus enabling both the rotational and translational 

motion effects to be simulated experimentally.  

A 16 segment 4 pole-pair Halbach rotor, as shown in Figure 8.2(a), assembled by 

Bird [13] has been used as the EDW in the experimental setup. The experimental setup, 

as shown in Figure 8.1 and Figure 8.2(b), was constructed by Paudel and Bomela. The 

parameters of the EDW and guideway are listed in Table 8.1. 
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Figure 8.1. The experimental setup of a single EDW pendulum setup. 

 
 

 
(a)  

(b) 
Figure 8.2. (a) Experimental four pole-pair EDW using 16 segmented NdFeB Magnets; (b) The 
experimental setup showing the guideway, EDW, BLDC motors and battery packs. 
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Table 8.1 : EDW and Guideway parameters for the Pendulum setup [14] 

 Description Value Unit 

EDW 

Outer radius, ro 50± 0.58 mm 

Inner radius, ri 34.2 mm 
Width, wo 50 mm 
Remnant magnetic flux density, Brem

 1.42 T 

Relative permeability, µr 1.055 - 

Pole pairs, P 4 - 

Sleeve thickness 2.6± 0.1 mm 

Guideway 

Conductivity (Al), σ 2.459×107 Sm-1 

Width, w 77 mm 

Outer radius 600± 0.58 mm 

Thickness, h  6.3 mm 

Sheets separation 101 mm 

In this setup the EDW is rotated by two Axi-5300/24 brushless DC (BLDC) motors 

with the parameters given in Table 8.2. A pair of battery packs (Turnigy 4.5Ah 6 cell 

19.8 V) onboard the pendulum setup supplies the power to the motors, as shown in 

Figure 8.2(b). The speed of the BLDC motor is controlled by varying the pulse width to 

the Electronic Speed Controller (ESC). The guideway is rotated by a separately excited 

DC motor with the parameters given in  

Table 8.3. The RPM of the separately excited DC motor and EDW or BLDC motor 

has been measured using a rotary encoder sensor and Hall Effect sensor respectively. The 

outputs from these sensors are fed to Matlab/ Simulink Real Time Window (RTW) 

through a National Instrument (NI) PCIe-2659 board. A laser displacement sensor was 

used to measure the oscillation of the pendulum. The sensor output was fed to Matlab 

RTW via the same NI board.  

Table 8.2 : Axi-5330/24 Brushless DC motor parameters [14] 

 Description Value Unit 

Measured parameters 
using RLC meter 

Per-phase inductance 30.17 µH 

Per-phase resistance 0.0181 Ohm 

Parameters supplied 
by manufacturer 

RPM/V 197 - 
Max. efficiency 97% - 
Max. efficiency current 15-38 A 
Current capacity  65/30 A/s 
No-load current 1.5 A 
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Table 8.3 : ABB separately excited DC motor parameters [14] 

 Description Value Unit 

Armature 
winding 

Va 440 V 
Ia 69 A 
Ra (manufacturer supplied) 0.71 Ohm 
La (manufacturer supplied) 10.5 mH 
Ra (measured) 1.0 Ohm 
La (measured) 5.884 mH 

Field winding 

Vf 340 V 
If 2.44 A 
Rf (manufacturer supplied) 139.34 Ohm 
Rf (measured) 111.5 Ohm 
Lf (measured) 10.8 H 

Torque rating 132 Nm 

Power rating 26.1 kW 

RPM rating 1895 RPM 

8.2.2. Dynamics of the Forced Oscillation 

When the EDW rotates near the rotating guideway, the induced eddy currents in the 

guideway create the lift and thrust force on the EDW. The lift force acts along the 

horizontal direction and tries to repel the magnetic rotor away from the guideway surface 

whereas the thrust force attempts to vertically push the rotor along the surface of the 

guideway. Due to the action of the lift and gravity, the EDW eventually comes to rest 

after oscillation whereas the thrust force increases the effective weight of the vehicle. The 

equation of motion of the EDW pendulum is given by [14] 

                
2

2

( ) ( ) ( )
' ' ( ) ( , , , )EDW

y x y m

d y t dy t dy t
m c m G Ky t F v v w g

dt dtdt
ς

 
 + + + =
  

 (8.1) 

where 

 
( , , , )

'
EDW
x x y mF v v w g

m m
G

= +  (8.2) 

and 

m = mass of the vehicle [kg] 

c = viscous damping coefficient [Ns2m-1] 
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K  = stiffness coefficient [Nm-1] 

ς = sliding friction coefficient [Ns2m-1] 

G = acceleration due to gravity [ms-2] 

g = air gap between the guideway and EDW pendulum [mm] 

EDW
xF = thrust force acting on rotating EDW [N] 

EDW
yF  = lift force acting on the rotating EDW [N] 

The second term in (8.2) takes into account the effect of the thrust force acting on the 

EDW by adding an extra mass term generated due to the thrust force. The measured 

damping and stiffness coefficients are given in Table 8.4. 

Table 8.4 : Damping and stiffness coefficients from free oscillations [14] 

Description Value Unit 

Viscous damping, c 0.361 Ns2m-1 

Sliding friction, ς 1.9599×10-4 Ns2m-1 

Stiffness coefficient, K 76.8008 Nm-1 

Table 8.5 : Pendulum setup parameters [14] 

Description Value Unit 

Mass of setup without batteries 7.04 Kg 

Mass of two Turnigy batteries 1.810 Kg 
Length of the pendulum 1.307 m 

The lift and thrust force are a function of the translational, vx, heave, vy, and 

rotational, ωm, velocity as well as airgap, g. As mentioned in section 8.2.1, the airgap, 

translational and rotational velocity of the EDW have been continuously measured using 

the laser displacement, rotary encoder and Hall Effect sensors respectively. The heave 

velocity has been obtained by differentiating the measured airgap with respect to time. 

Using the steady state thrust and lift force equations (6.151) and (6.152) derived in 

chapter 6 and the parameters given in Table 8.4 and Table 8.5, the dynamic equation 

given by (8.1) has been solved in Matlab using Ode45 function [14]. The ode45 solver is 
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continuously supplied with the measured translational and rotational velocity of the 

EDW, however, only the initial values (at t=0) of the measured airgap and heave velocity 

are supplied to ode45. The solver then solves (8.1) using the 3-D analytical force 

equations and computes the airgap and heave velocity for the next time step. In this way, 

the airgap and heave velocity profile is obtained from ode45. The process is illustrated in 

Figure 8.3. The initial conditions used for the test are listed in Table 8.6. The computed 

air gap profile is compared with the measured data and is shown in Figure 8.5. A very 

close match is obtained.  

 
Figure 8.3.Flowchart of solving (8.1) using ode45 and 3-D analytic model. The measured and computed 
airgap are highlighted with red circle. 

Table 8.6 : Initial conditions for test [14] 

Parameters Value Unit 

Pendulum equilibrium position, g 21.5 mm 
Initial airgap, g 22.10 mm 
Initial translational velocity, vx 1.55 ms-1 
Initial angular velocity, ωm

 10.62 rads-1 
Initial heave velocity, vy 0 ms-1 
Initial slip speed, sl -1.019 ms-1 
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      (a) 

 
    (b) 

 
     (c) 

Figure 8.4. The measured (a) ωm of the EDW, (b) vx of the guideway and (c) vy of the EDW [14]. 

 
Figure 8.5. A comparison of the airgap profile between the analytic 3-D model and experimental setup.  

8.3. Comparison with Multi-DOF EDW Maglev  

An experimental setup as shown in Figure 8.6, Figure 8.7 and Figure 8.8 has been 

constructed by Paudel and Bomela in order to study the dynamics when a maglev vehicle 

utilizing four EDWs is operated above the circular guideway. The EDW vehicle has been 

kept translationally stationary while the circular guideway rotates producing the 
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translational velocity effect on the EDWs. In order to investigate the vertical damping 

characteristic of the EDW maglev the experimental setup has been designed to prevent 

motion along the x and z directions as well as angular yaw.  Four laser sensors are located 

at each corner of the vehicle, as shown in Figure 8.6, and provide high fidelity airgap 

changes.  The vehicle is able to move in the y direction (heave) as well as rotate around 

the x and z axis (pitch, roll) as illustrated in Figure 8.9. 

8.3.1. Torque and Power Transfer Comparison  

By experimentally sensing the current, Ia, drawn by the brushless dc (BLDC) motor 

controllers, the torque, T, of the motor can be measured using  

 ( )t aT K D I=  (8.3) 

where the torque constant, Kt is a function of duty cycle, D [217]. By measuring the 

rotational speed of the EDW, the output power of the BLDC motor can be measured 

using  

 ( )o t mP K D ω=  (8.4) 

where ωm is the measured rotational speed of the EDW [rads-1]. 

 
 
 
 
 
   
 
 

 
 

Figure 8.6. Electrodynamic vehicle setup with four laser displacement sensor. 
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Figure 8.7. The underside of the sub-scale EDW vehicle. 

 

 
Figure 8.8. Electrodynamic vehicle setup with four laser displacement sensor. 

 
Figure 8.9. Maglev vehicle coordinate definition. 

The parameters of the EDWs and guideway wheel used for this setup are listed in 

Table 8.7. Using the measured airgap, g, translational velocity, vx, heave velocity, vy, and 
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rotational speed of the EDWs, ωm, the power output from the BLDC motors and 

electromagnetic torque acting on the EDWs are analytically computed using (5.163) and 

(5.165) respectively and compared with the experimental results. Figure 8.10 and Figure 

8.11 show the measured rotational velocity and airgap of the EDWs whereas Figure 8.12 

shows the translational motion of the guideway and heave motion of the front right EDW. 

The torque comparison for all the rotors is shown in Figure 8.13 while Figure 8.14 shows 

the total output power comparison. A close match has been obtained for all the rotors.  

Table 8.7 : Multi-DOF maglev setup parameters  
 Description Value Unit 

EDW 

Outer radius, ro 26 mm 
Inner radius, ri 10 mm 
Width, wo 52 mm 
Remnant magnetic flux density, Brem

 1.42 T 

Relative permeability, µr 1.108 - 

Pole pairs, P 2 - 

Guideway 

Conductivity (Al), σ 2.459×107 Sm-1 

Width, w 77 mm 
Outer radius 600± 0.58 mm 

Thickness, h  6.3 mm 
Sheets separation 101 mm 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8.10. Measured RPM data for (a) front left, (b) front right, (c) rear left and (d) rear right EDW. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8.11. Measured airgap data for (a) front left, (b) front right, (c) rear left and (d) rear right EDW. 
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(a) 

 
(b) 

Figure 8.12. Experimentally measured (a) translational velocity and (b) heave velocity of the front right 
EDW. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8.13. A comparison of the electromagnetic torque between the developed 3-D analytic model and 
experimentally measured results for (a) front left, (b) front right, (c) rear left and (d) rear right EDW. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8.14. A comparison of the output power from BLDC motor between the developed 3-D analytic 
model and experimentally measured results for (a) front left, (b) front right, (c) rear left and (d) rear right 
EDW. 
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8.3.2. Lift Force Verification  

The experimental setup with lift force sensors is shown in Figure 8.15. The force 

sensor produces an output voltage proportional to its deflection due to the applied weight. 

The output voltage is amplied using instrumentation amplifier for ease in measurement.  

 
Figure 8.15. Electrodynamic vehicle setup with four laser displacement sensor. 

In the setup one side of the sensor is attached to the vehicle and the other side is 

attached to a plastic block as shown in Figure 8.15. Thus the airgap between the vehicle 

and guideway remains constant over the duration of the simulation. Using the measured 

airgap, g, translational velocity, vx, heave velocity, vy, and rotational speed of the EDWs, 

ωm, the lift force acting on the EDWs is analytically computed using (5.155) and 

compared against experimental results. The parameters of the EDWs and guideway wheel 

used for this setup are listed in Table 8.7. Figure 8.16, Figure 8.17 and Figure 8.18 show 

the measured airgap, rotational velocity of the EDWs and translational velocity of the 

guideway. The lift force comparison for the rotors is shown in Figure 8.19. There is one 

unwanted spike picked up by the Hall effect sensor at around 6s of the simulation of the 

rear left rotor as seen in Figure 8.17(a). This spike in the measured ωm has directly 

resulted in a similar spike in the lift force result of the same rotor in Figure 8.19(a). 
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Overall good match has been obtained. The force comparison for the front left EDW 

could not be performed due to incorrect data from the corresponding airgap sensor.  

 
(a)  

 
(b)  

 
(c)  

Figure 8.16. Measured airgap profile of (a) rear left, (b) rear right, (c) front right EDW. 
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(a) 

 
(b) 

 
(c) 

Figure 8.17. Measured rotational speed (RPM) profile of (a) rear left, (b) rear right, (c) front right EDW. 

 
Figure 8.18. Translational speed, vx, profile of the guideway 
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(a) 

 
(b) 

 
(c) 

Figure 8.19. Lift force, Fy, comparison for (a) rear left, (b) rear right, (c) front right EDW between the 
second order vector potential based analytic model and experimental setup. 

8.4. Summary 

The developed 3-D analytic models have been compared with two experimental 

setups. Good performance of the analytic model has been achieved as the analytically 

predicted results closely followed the measured values in both setups. 
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CHAPTER 9 : CONCLUSION AND FUTURE WORKS  

 
 

9.1. Introduction 

The focus of this dissertation was to develop 3-D analytic and finite element models 

of the eddy current distribution in a conductive medium. The conclusion of the research 

work is presented in section 9.2. The contributions of this research are outlined in section 

9.3. Section 9.4 describes the suggestions and recommendations for the future direction 

of this research.  

9.2. Conclusion 

A thorough analytic and finite element treatment of the eddy current distribution in a 

conductive medium has been presented in this dissertation which can be useful in a 

number of applications such as magnetic levitated vehicle, eddy current testing and eddy 

current brakes. The developed models are generic and thus can be applicable to any kind 

of magnetic source.  

The static magnetic field of the magnetic source, which is a Halbach rotor in this 

research, has been modeled using fictitious magnetic charge sheet.  The magnetic charge 

based source modeling technique helps reduce the field computation time and results in 

faster finite element and analytic based models. The finite element models developed in 

this dissertation are shown to be faster compared to the previously presented finite 

element models using current sheet based source modeling technique. A detailed analytic 
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treatment of the eddy current distribution, eddy current forces, torque and joule loss in a 

conductive medium has been presented in this dissertation. Different analytic 

formulations have been used to derive models of varying level of computational cost. The 

presented analytic models have been compared with two experimental setups and 

satisfactory performance has been achieved. The key points of the developed Comsol 

based steady state and transient FEA models have been summarized in Table 9.1. A 

comparison of the presented analytic steady state models is presented in Table 9.2. 

Table 9.1: Summarization of the developed steady state and transient FEA models   
Model assumptions Major advantage Computation time 

• Conductive plate is linear, 
simply connected and 
homogenous 
 

• Conductive plate has constant 
conductivity and is non-
magnetic 
 

• The source has uniform motion 
 

• Frequency is low 

• As the models do not physically 
model the magnetic source, the 
problem domain consists only of 
the conductive plate in air region. 
This leads to reduced simulation 
time. 

• The use of magnetic charge based 
source field computation also 
reduces the simulation time. 
  

• For the transient 
model: 54 min. 
 

• For the steady state 
model: 1 min 40s. 

Table 9.2: Comparison of the proposed analytic steady state models   
Model 
type 

Model 
dimension 

Calculation 
time [s] 

Drawback(s) Advantage(s) 

SOVP 
(only TE 
potential)  

Infinitely long 
and wide; finite 
thickness 

0.038 Cannot produce correct 
lateral force. Not accurate 
in the presence of lateral 
offset. 

Computationally fastest of all 
the proposed models 

Two 
component 
MVP 

Infinitely long; 
finite width; 
finite but small 
thickness 

0.544 Error in lateral force in 
the presence of lateral 
offset; cannot model plate 
of arbitrary thickness 

Computationally fast but 
inferior to the SOVP model 
with only TE potential. 

Three 
component 
MVP 

Infinitely long; 
finite width; 
finite arbitrary 
thickness 

6 Error in lateral force in 
the presence of lateral 
offset 

Can model plate of arbitrary 
thickness; computationally 
fast but inferior to 2-
component and SOVP model 
with TE potential 

SOVP with 
TE and TM 
potentials 

Infinitely long; 
finite width; 
finite arbitrary 
thickness 

32 Computation performance 
is inferior to the SOVP 
with only TE potential, 2 
and 3-component MVP 
models.  

Most accurate of the 
presented analytic models 
with and without lateral offset 
of the source; 
computationally faster than 
FEA models 
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9.3. Research Contributions  

The major technical achievements and contributions of this research are: 

1. A computationally efficient approach for the computation of the 3-D magnetic 

field due to arbitrary magnetic source has been presented using novel magnetic 

charge sheet concept and integral solution approach. 

2. Computationally efficient boundary coupled A-φ  finite element models have 

been developed to study the interaction between a moving magnetic source and 

conductive non-magnetic medium in transient and steady state conditions.  

3. A fast 3-D analytic model based on only the TE potential of the second order 

vector potential has been developed to model the eddy current distribution in a 

conductive medium due to the motion of an arbitrary magnetic source. The 

conductive medium is assumed to have infinitely large length, width and small 

but finite thickness. The linear motion of the source in x, y and z-directions as 

well as its rotational motion has been considered for dynamic modeling. Also, 

the electromagnetic stiffness and damping coefficients have been derived 

analytically. 

4. Two 3-D analytic models based on the magnetic vector potential have been 

proposed to model the field distributions in a conductive medium of infinite 

length, finite width and thickness. The only limitation of this model is its failure 

to model the lateral force when the source is laterally offset above the 

conductive plate, thus this is an approximate model. The model considers the 

linear motion of the source in the x and y-directions as well as its rotational 

motion. 
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5.  An accurate treatment of the eddy current fields and forces including the egde 

effect of the conductive plate has been presented using the second order vector 

potential and truncated region eigenfunction expansion approach. Only 

rotational motion of the magnetic source has been considered in the model. 

However, its expansion to include the translational velocity is straightforward 

and has not been performed due to its computational burden. 

6. The eddy current lift force, torque and power transfer calculated using the 

analytic models have been compared with two experimental setups. Satisfactory 

performance has been achieved.  

The minor technical contributions of this research are 

1. Segmented Halbach PM and surface mount PM rotors have been modeled using 

Comsol FEA software in 2-D and 3-D. These models are used to validate the 

magnetic charge based source modeling technique. 

2. Finite element models have been developed in Magsoft flux software to model the 

eddy current field distribution in a conductive medium due to rotational motion of 

a segmented Halbach PM rotor.  

3. Code has been written to convert the output of two-dimensional DFT into a 

double Fourier series which is used in source field modeling throughout the 

dissertation. 

9.4. Future Research Works  

The following directions of future research work have been identified: 

1. The electromagnetic stiffness and damping coefficients have been derived 

analytically in this dissertation. However, the experimental verification of the 
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analysis has not been provided. Hence, experiments should be conducted to 

measure the damping and stiffness terms and verify the presented analytic results.  

2. Work in underway for an EDW maglev vehicle on a flat aluminum guideway as 

shown in Figure 9.1. The mechanical dynamics of the vehicle needs to be 

considered in order to achieve the desired travel performance of the vehicle. 

 
Figure 9.1. Experimental maglev vehicle with four Halbach rotors and flat 
aluminum guideway 
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APPENDIX A : DERIVATION OF CONTINUOUS FOURIER SERIES FROM 
DISCRETE FOURIER TRANSFORM (DFT) 

 
 
At first conversion of a single dimensional discrete Fourier sequence into continuous 

Fourier series will be discussed and then double sided Fourier series will be considered. 

An arbitrary function f(x) of x for [0, ]x l∈ is shown in Figure A. 1. To recreate the 

function using continuous Fourier series, f(x) is sampled at N sampling points as shown in 

Figure A. 1 with the sampling interval of 

 /x l N∆ =  (A.5) 

Hence the sampling frequency is  

 
1

s

N
f

x l
= =
∆

 (A.6) 

According to Nyquist’s sampling theorem, the sampling frequency (fs) must be at least 

twice the maximum frequency of the sampled waveform. 

 
        x 

Figure A. 1. A continuous function f(x) defined over l and its sampled form f(xi) is shown. Discrete Fourier 
transform is applied on the sampled function over l.  

After taking discrete Fourier transform (DFT) of the sampled waveform f(xi), the 

resulting sequence comprises of the harmonics of f(x) as given below 
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are the Fourier frequency components of f(x) 

where 
2

n

n

l

π
ξ =  (A.8) 

are the Fourier frequencies with respect to x  

and 
ix i x= ∆  (A.9) 

The magnitude and phase spectrum generated by DFT is shown below 
 

 
Harmonics 

Figure A. 2. Magnitude spectrum of f(x) after taking DFT using Matlab. 

 
Harmonics 

Figure A. 3. Phase spectrum of f(x) after taking DFT using Matlab. 

The magnitude and phase spectra given by Figure A. 2 and Figure A. 3 can be 

represented in terms of Fn in a more compact form as shown in Figure A. 4. 
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Figure A. 4. Discrete Fourier frequency components of f(x) after DFT. 

However, from the definition of DFT (A.7) and (A.8), it can be noticed that  
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i  (A.10) 

Using (A.10), the spectrum of Figure A. 4 can be modified to the one shown in Figure A. 

5. It can be noticed that FN/2 is a redundant component. However, it is noticed in Figure 

A. 5 that the harmonic components are not centered on the zero frequency component. 

Hence ‘fftshift’ command in Matlab is necessary to shift the frequency spectrum to its 

right as illustrated in Figure A. 6. Figure A. 7 and Figure A. 8 show the magnitude and 

phase spectrum of f(x) after using ‘fftshift’. The spectrum is now symmetric with respect 

to the zero frequency or dc component. It must be noted here that if f(x) is a complex 

valued function, either side of zero harmonic of Figure A. 6 may not be complex 

conjugate of the other side i.e. F-(N/2-1) may not be complex conjugate of F(N/2-1). 

 
Figure A. 5. Frequency spectrum of f(x) after taking DFT using Matlab. 
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Figure A. 6. Frequency spectrum of f(x) after taking DFT and using ‘fftshift’ command in Matlab. The 
spectrum is centered on the zero frequency component. 
 

 
Harmonics 

Figure A. 7. Magnitude spectrum of f(x) after taking DFT and using ‘fftshift’ command in Matlab. 

 
Harmonics 

Figure A. 8. Phase spectrum of f(x) after taking DFT and using ‘fftshift’ command in Matlab. 

By observing the spectrum shown in Figure A. 6, the continuous function f(x) can be 

written as 
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Or, in a more compact form using complex Fourier series notation, 
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Equation (A.12) reconstructs f(x) in continuous space over x-axis. Figure A. 9 shows the 

reconstructed function using (A.12) along with the original function f(x). The Matlab 

code is provided in Table A. 1. 

 
Figure A. 9. Original and reconstructed f(x).  

Table A. 1. Matlab code for reconstructing waveform using complex Fourier series and DFT 

%% Calculate DFT sequence of any given function f(x) 
 
L=2*pi; 
period_X=L;                                                                                    % period of function f(x) 
N=2^5;                                                                                             % Number of samples  
x=linspace(0,period_X-period_X/N,N);                                         % define sampling points 
 
%%  tabulate f(x) at x points 
fx=1.2+3.4.*sin(2.*x)+6.4.*cos(3.*x+0.75)+7.2.*cos(x-0.2)+10.*cos(5.*x+0.35)+10.*sin(6.*x); 
  
func_fft=fftshift(fft(fx)/N);                                                              % creates Fourier sequence 
 
% Calculate coefficients of Complex Fourier Series 
p=(1:N-1)'; 
wx=2*pi*(p-N/2)/L;                                                                        % spatial frequency w.r.t. x  
 
F0= func_fft(N/2+1);                                                                      % coefficient of dc term 
for count1=1:N/2-1     
    F_pos(count1)= func_fft(N/2+1+count1);                                  % coefficient of positive harmonics 
    F_neg(count1)= func_fft(N/2+1-count1);                                   % coefficient of negative harmonics                
end 
 
x2=linspace(0,L,70);                                                                       % define new set of x 
 
% computes f(x) 
Orig_fx= 1.2+3.4.*sin (2.*x2)+6.4.*cos(3.*x2+0.75)+7.2.*cos(x2-0.2)+10.*cos(5.*x2+0.35) 
                +10.*sin(6.*x2); 
figure; plot(x2, Orig_fx);grid on;                                                   % plots f(x) over x2 
 
% Reconstruction of f(x) 
 
Recon_fx=F0;                          
for p=1:N/2-1 
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       Recon_fx=Recon_fx+ F_pos(p).*exp(1i*wx(N/2+p)*x2)+ 
                                            F_neg(p).*exp(1i*wx(N/2-p)*x2); 
end 
hold on; plot(x2,Recon_fx);grid on;                                              % plots reconstructed f(x) over x2 

The obtained complex Fourier series of (A.12) can be readily converted into a real 

series of the form 

 
( /2 1)

0

( ) cos( ) sin( )
N

n n n n
n

f x a x b xξ ξ

−

=

 = + ∑  (A.13) 

By noting that  

 cos( ) sin( )nj x
n n

e x j xξ ξ ξ= +  (A.14) 

and cos( ) sin( )nj x
n n

e x j xξ ξ ξ− = −  (A.15) 

it is easily found that  

 0 0a F=  (A.16) 

 
n n n
a F F−= +  (A.17) 

 ( )
n n n
b j F F−= −  (A.18) 

Reconstruction of a two-dimensional function using 2-D DFT follows the same 

procedure as single dimension. In 2-D, the frequency spectrum is not a line vector as was 

shown in Figure A. 6, but instead a matrix which, after using ‘fftshift’ looks like as shown 

in Figure A. 10. It is assumed that a 2-D function f(x,z) is discrete Fourier transformed 

over the x and z directions with M and N samples respectively. The period of the function 

along x and z-axes are l and w respectively.  
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Figure A. 10. Discrete frequency spectrum of f(x,z) after taking 2-D DFT and ‘fftshift’ using Matlab. 

From Figure A. 10, f(x,z) can be obtained from its frequency spectrum using the 

following double complex Fourier series 
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where 
2

n

n
k

w

π
=  (A.20) 

and ξm is defined by (A.8). 

Using (A.14) and (A.15), (A.19) can be written in terms of sine and cosine series as 
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Equation (A.21) can also be written as  
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where the coefficients are given by  

 0,0 0,0c F=  (A.23) 

 ,0 ,0
x
m m mc F F−= +  (A.24) 

 ,0 ,0( )x
m m md j F F−= −  (A.25) 
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	SubhraPaul_PhD_ThesisDissertation_v12_1
	f11
	f12
	f13
	SubhraPaul_PhD_ThesisDissertation_v12_REF_2ndPart
	SubhraPaul_PhD_ThesisDissertation_v12_APPENDIX



