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ABSTRACT

AYMAN HAJJA. Object-driven and temporal action rules mining. (Under the
direction of DR. ZBIGNIEW W. RAŚ)

In this thesis, I present my complete research work in the field of action rules, more

precisely object-driven and temporal action rules. The drive behind the introduction

of object-driven and temporally based action rules is to bring forth an adapted ap-

proach to extract action rules from a subclass of systems that have a specific nature,

in which instances are observed from assumingly different distributions (defined by

an object attribute), and in which each instance is coupled with a time-stamp. In

previous publications, we proposed an object-independency assumption that suggests

extracting patterns from subsystems defined by unique objects, and then aggregat-

ing similar patterns amongst all objects. The motivation behind this approach is

based on the fact that same-object observations share similar features that are not

shared with other objects, and these features are possibly not explicitly included in

our dataset. Therefore, by individualizing objects prior to calculating action rules,

variance is reduced, and over-fitting is potentially avoided. In addition to the object-

independency assumption, temporal information is exploited by taking into account

only the state transitions that occurred in the valid direction.j

The common nature of object-driven and temporal action rules made us believe

that this work is general enough to solve a diverse fields of areas where it is highly

needed. In our case study, we show how our approach was applied to an information

system of hypernasality patients; our results were further investigated by physicians
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collaborators to confirm them.
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CHAPTER 1: DATA MINING AND EXPERT SYSTEMS

1.1 Motivation: From Concepts to Applications

Data mining, which is also referred to as Knowledge Discovery in Databases (KDD),

can be succinctly defined as the process of extracting nontrivial, useful, and valid

structural patterns of knowledge. By structural patterns of knowledge, we refer to

valuable information extracted from historical data, which will normally be used as

a guide (or blueprint) by domain experts to aid in the process of decision making.

Data mining however, is an exceptionally broad subject; and though in the past, the

problem definition was partly different, and the vision and future applications were

barely apparent, some argue that the roots of data mining goes to as back as 1910.

The term “scientific management”, coined in 1910 by Frederick Winslow Taylor, refers

to a system of measurements and analysis in which data is collected for the purpose

of redesigning work environments to optimize efficiency; in a certain degree, this is

what data mining is about.

Today however, after more than an entire century, the world in which we live has

significantly transformed. The emergence of technology advancements that have been

in development for the past few decades have made a profound impact on the way

our digital data warehouses came to existence. In hospitals for example, policymak-

ers are heavily promoting the adoption of electronic medical records; for the cost of
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storing, collating, copying, and maintaing is dramatically larger in paper-based med-

ical records [25]. The convenience of smartphones and other portable devices, along

with the enhanced availability of internet services such as social networks, have made

sharing information so effortless, which as a result flooded the World Wide Web with

available public data. By all measurements, one cannot disclaim the existence of

countless other examples of technologies that made storing digitized information as

effortless and as convenient as possible. However, perhaps what could be considered a

yet more important recent transformation, is the fact that organizations, especially in

the field of Information Technology, only recently started to realize the power and im-

portance of data. Google for example, stores all search queries that happen at a rate

higher than three billion queries every day, and as a result, it was able to predict the

the spread of the 2009 H1N1 winter flu in the United States, not only nationally, but

down to specific regions and even states; such challenges have enormous advantages,

and the information for this particular case was of vital importance, as this flu was

so feared that some warned of an outbreak on the scale of the 1981 Spanish flu that

infected half a billion people and killed millions. While big companies such as Google,

IBM, and Microsoft are designating dedicated research units to be operated by data

mining experts, other smaller companies are posting their data mining problems as

prized challenges for public prediction competitions; Kaggle, founded in 2010, is a

crowd-sourcing platforms that hosts data mining competitions for other companies,

with prizes ranging from $3 million (Heritage Health Challenge) to $150 (R Package

Recommendation Engine); the topics of data mining challenges are diverse, including

challenges from fields such as astronomy, computer vision, transportation, healthcare,
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and many others.

As a consequence of this digital revolution, and the sudden realization of the im-

portance and great potentials of predicting, the amount of digital data has been

increasing exponentially; in 2007, about as much as 93% of our data existed in digital

format, while it is estimated for digital data to exceed 98% out of all data in 2013

[24]. This revolution of digital data is demanding a yet vaster body of work in the

field of data mining, which remains to be one of the most important and essential

fields in computer science and statistics. Scientific researchers around the globe are

racing to take the most advantage of the vastly available data to extract useful and

hidden patterns that will help make decisions, or better yet, find solutions to existing

problems.

Our lives are overwhelmed with an ever-increasing amounts of data; the applica-

tions of data mining are countless, spanning a wide range of different domain areas.

Next we discuss some of the common applications of data mining.

Web Content Mining is the subarea of data mining that is concerned in extracting

knowledge from data existing in the World Wide Web. The technology witnessed in

our society, today as we speak, is allowing us to digitally shift not only our structured

explicit knowledge found in registered publications such as books and journal papers,

but also our unstructured implicit thoughts, which include, but are not limited to,

opinions of products such as music, movies, and books; opinions of places such as

hotels, restaurants, and service shops; and opinions of events and states, whether

economical, social, or political.

Previously, we introduced one example of Google predicting the spread of the H1N1
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flu in 2008, by mining query data through the use of search engines in the web.

Needless to say, the fact is, there exist a hundredfold other examples of using web

mining to solve real-world problems.

Publicly shared data through social media on the web such as Twitter has been

used for tracking illness over times (syndromic surveillance), measuring behavioral

risk factors, localizing illness by geographical region, and analyzing symptoms and

medication usage [29].

In a recent study, Bermingham and Smeaton investigate Twitter posts (also known

as tweets) by sentiments, to measure political public opinion to predict election results

[30]. In another study, Eisenstein et al. used tweets to study lexical variations

across geographical regions to recover coherent topics and their regional variations,

while identifying geographic areas of linguistic consistencies [31]. Other examples

of the use of web mining span areas of entertainment, education, and quality of life

(QOL). Arguably speaking, based on the recent spur of its numerous applications, web

mining could be considered the most appealing area of applications amongst all others.

However, web mining still suffers from its disorganized nature, which is ironically, in

some certain sense, the reason why it gained popularity between researchers; with

unstructured quality and disorganized nature, new challenges emerge, hence new

research opportunities! Next, we introduce two other equally common, but profoundly

more organized, applications of data mining.

Market Basket Analysis is another application of data mining that had its own wor-

thy history in the literature. Its clear problem definition, basic formulation, and direct

applicability (and gain), made it one of the earliest data mining applications to be
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studied by researchers. Just like most other areas in the research literature, the utility

and advantages of a particular application is the driving force for the complementary

work of research, and although the usefulness may only seem minor at first, as the

research contributions elevate to higher degrees of sophistication, more functionalities

become apparent; the application of market basket analysis is no exception.

The most elementary utility of market basket analysis is to find correlations of

products purchases; records of items purchased together are hence used to find pat-

terns of products bought in groups, as for each transaction undertaken by a client,

the list of items purchased through that transaction are digitally recorded; the need

to extract correlation patterns such as the following hypothetical one: 80% of peo-

ple who buy bread also buy butter, have major implications of the decision making

process, for example, one could redesign the structure of the store inventory, by posi-

tioning the two items, namely bread and butter, far from each other, assuming that

customers will be more inclined to purchase other items while walking from one end

to the other. More advanced utilities of market basket analysis exist nonetheless, one

rather more involved data mining study would involve the time in which products

were purchased; this of course, does not need to be confined to the examination of

time with respect to the normal day, but also may include the study purchase time

with respect to days of the week, or the period of the year in which particular items

were bought; this utility will help decision makers anticipate timely customer needs,

hence make decision with regard to store inventory management.

Lastly, yet another more advanced function would be to investigate, through exer-

cising existing techniques of data mining, patterns of customers’ purchases over time.
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In most relatively medium to large retail stores, discounts on products are provided

through what is known in the retail store terminology as ‘loyalty card’, which could be

alternatively described as a fancy way for retail stores to keep track of what particular

customers buy over time; this will allow store management to make not only general

decisions about the overall purchases, but also highly valuable ‘personalized’ decisions

on whom (and at what time) to offer coupons and deals to maximize customer loyalty.

Healthcare is another enormously essential application of data mining; its main

importance lies at the heart of its utility. In addition to the extensive popularity and

great support it has gained in recent years, diagnosis applications of data mining are

with no doubt the closest type of applications under which the work presented in this

thesis could be classified. Applications of data mining in the field of healthcare are

many however, few examples would be the use of data mining to help detect insurers

fraud and abuse, improve customer relationship management, and identify effective

treatments and best practices. In this thesis, we present a complete case study, in

which we detect proper treatments for hyper-nasal speech disorder.

Methodologies in data mining are plenty; however, the details of the particular

problem to be solved, and the nature in which our dataset exist in, pose prime re-

strictions on our selection criteria, those restrictions meanwhile, serve as a filtering

phase in which data mining experts use to get clues on the best knowledge discovery

approach to be chosen. The level of interpretability, which could be defined as the

degree of insight learned from the resulting mined patterns, as will be shown in future

section, is of significant importance in the field of healthcare applications; hence, we

limit our discussion in this thesis to the subcategory of data mining known as rule-
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based knowledge discovery. In section 1.3, we provide a thorough exploration of the

concept of rule-based knowledge discovery, and it should be apparent only then, how

vital to our study is to have patterns of high degree of interpretability.

1.2 Knowledge Representation

Knowledge can be represented in many ways. In this section, and for computational

reasons, we discuss and examine the tabular representation form of knowledge, which

we will continue to use for the rest of the thesis. Tabular representation of knowledge

can be viewed as a special kind of “formal language”, used to represent equivalence

relations (or partitions) in symbolic form suitable for computer processing [17]. In-

formation systems and attribute-value systems are two terms that will also be used

interchangeably with the tabular knowledge representation.

The knowledge representation can be intuitively perceived as a data table, in which

columns are labelled by attributes, and in which rows are labeled by values (or states)

of their instances. Each row will represent an independent observation about the

corresponding instance. Next, we formally define our information system.

By information system [14], we mean a sequence S = (X,A, V ), where:

1. X is a nonempty, finite set of instances,

2. A is a nonempty, finite set of attributes;

a : X → Va is a function for any a ∈ A, where Va is called the domain of a,

3. V =
⋃
{Va : a ∈ A}.

Despite the fact that elements of X are sometimes referred to as objects, in this
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Table 1: Information system S1

e f g h
x0 e1 f1 g1 h1
x1 e2 f1 g1 h1
x2 e2 f2 g2 h2
x3 e1 f2 g1 h1
x4 e2 f1 g1 h2
x5 e1 f2 g1 h2
x6 e2 f1 g1 h1

note we will not use the two terms interchangeably, objects will possibly consist of,

as will be discussed in future sections, multiple instances. The distinction between

instances and objects is necessary for the understanding of the work presented in this

thesis.

For example, Table 1 shows an information system S1 with a set of instances

X = {x0, x1, x2, x3, x4, x5, x6}, set of attributes A = {e, f, g, h}, and a set of their

values V = {e1, e2, f1, f2, g1, g2, h1, h2}. Each row in Table 1 shows one complete

observation about its corresponding instance; the first row for example, shows values

for instance x0; its state for attribute e is e1, which would also be denoted by the

expression (e, e1); attribute f has state f1, or (f, f1); attribute g has state g1, or

(g, g1); and the state of attribute h is h1, or (h, h1).

Note that it is not necessarily for our data system to exist in a tabular format

when first presented; as will be seen in the following section, it is often the case that

we would need to transform our data system into the tabular format, after in which

we apply knowledge discovery techniques. Needless to mention, it is also important

to keep in mind that when we deal with a typical information system, we make

the assumption that the instances are i.i.d.; independent and identically distributed,
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unless mentioned otherwise; this means that the order of rows does not have any

significance, it also means that each complete observation (or row) is identical in

significance as any other row, and that the only difference(s) between observations is

in their attribute states.

1.3 Rule-based Knowledge Discovery and Association Rules

In this section, we examine the concept of association rules, originally proposed in

[28]. Association rule discovery is a highly researched sub-area in the field of data

mining. In addition to its vital importance, the notion of association rules is closely

related to action rules, hence related to the work presented in this thesis.

Association rule discovery uncovers hidden relations between attributes in infor-

mation systems; the structure of relations is described by a set of if/then statements,

where the if side is referred to as the antecedent, and the then side is referred to as

the consequent.

One of the earliest applications for association rules is market basket analysis (or

shopping analysis) for customers’ purchases; for the (initial) purpose of analyzing

and predicting customer behavior, and for the (eventual) purpose of making profit-

generating decisions accordingly. To illustrate association rules in practice, we present

a hypothetical example of market analysis. Table 2 shows a sample transaction of a

hypothetical market basket.

As mentioned in previous section, the first step would be to represent our infor-

mation system in a tabular format. For this particular case, the most appropriate

approach would be to transform our market basket table into a truth table. Table 3
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Table 2: Market basket table

ItemID Items
1 {Bread, Milk}
2 {Bread, Jam, Butter, Eggs}
3 {Milk, Jam, Butter, Cola}
4 {Bread, Milk, Jam, Butter}
5 {Bread, Milk, Jam, Cola}

is the result of this transformation.

Table 3: Truth table extracted from Table 2

ItemID Bread Milk Jam Butter Eggs Cola
1 1 1 0 0 0 0
2 1 0 1 1 1 0
3 0 1 1 1 0 1
4 1 1 1 1 0 0
5 1 1 1 0 0 1

The basic function of market basket analysis is to find associations (or correlations)

between products bought by customers. For example, only by looking at Table 2 (or

Table 3), we would be able to observe that Bread and Milk are two items that seem

to be bought together; clearly, from such a small dataset, this observation would

not mean much, but only for the sake of explanation, these small datasets will be

considered. So, by observing the two items, namely Bread and Milk, we could extract

a rough rule that states the following: customers who buy Milk are also inclined to

buy Bread (or {Milk} → {Bread}) or vice-versa; however, next, we will show that

although these two rough inverse rules might seem identical in likelihood at first, in

reality they’re not, and one is in fact stronger (or more likely to occur) than the other.

To that end, we introduce the concepts of support and confidence for association rules.

First, let us introduce the concept of an an itemset. An itemset could be defined
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as a particular configuration (or sub-configuration) of an observation. For example,

referring to our market basket example, a candidate 2-element itemset would be

{Bread, Butter}. Itemsets have two properties that need to be defined, the first one

is the support, and the second one is the confidence. The support of an itemset is

the number of observations that satisfy that (sub)-configuration. So, using the same

2-element itemset {Bread, Butter}, we can observe that the support is equal to 2,

since there are only two instances that satisfy that sub-configuration, namely the

second and fourth. Two points are worth mentioning here, the first one is that when

itemsets are only stating a sub-configuration, the other attributes unmentioned could

have any value. For example, the sub-configuration {Bread, Butter} does not mean

that observations need to only contain Bread and Butter, which would on the hand

be expressed as {Bread, ∼ Milk, ∼Jam, Butter, ∼Eggs, ∼Cola}; this confusion is

only apparent in logical/truth tables. The second point that is worth mentioning is

the way regular tables represent itemsets, since attributes normally have more than

two states, mentioning the actual value of their states is necessary; for example, if

we refer to Table 1 shown on page 8, an itemset need to be of the following format:

{([attribute label 1], [state 1],), ([attribute label 2], [state 2], ...)}, so a valid example

of a 3-element itemset in Table 1 would be the following: {(e, e2), (g, g1), (h, h2)}.

Using the definition of the information system presented in section 1.2 (page 7), we

can mathematically define the support σ(P ) of an itemset P as the following:

σ(P ) = | {xi | P ⊆ xi, xi ∈ X} |

Which is essentially the cardinality of the subset in X that satisfies that config-
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uration specified by P ; hence, it can be easily verified that the support of {Bread,

Jam} and {Bread, Cola} are 3 and 1, respectively. It can also be as easily verified

that the support of {(e, e2), (g, g1), (h, h2)} and {(f, f1), (g, g2)} in Table 1 are 1

and 0 respectively. The methodology to extract itemsets with high support values is

vital in the extraction of association rules; however, we will not provide any details

on how to achieve that here, as we believe it is outside the scope of this thesis, and

that it would only be helpful to present the reader with a general understanding of

the concept of support. Next, we introduce the notion of the confidence; however, we

introduce the concept of association rules prior to that; as the confidence is a term

attached to an association rule and not an itemset.

Association rules are implication expressions that are denoted by a rule-based struc-

ture (or if/then). The format of association rules is as follows: X → Y , where both

X and Y are itemsets; the expression hence means that if X is satisfied, the Y is also

satisfied; for example, the simple association rule {Bread} → {Milk} would mean

that if a customer buys {Bread} then he will buy {Milk}; note that the attributes of

the antecedent (left side of right arrow) and the consequent (right side of right arrow)

need to be mutually exclusive. Each association rule has both the support and the

confidence. The support for an association rule is the support of the disjoint of the

antecedent side and the consequent side, divided by the number of observations in

our dataset:

Support(X → Y ) =
σ(X ∪ Y )

N
,
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where N is the number of observations in our information system. The support of

a particular association rule is a good indicator of how often it is seen in our infor-

mation system, in other words, how common is that association rule.

The confidence of an association rule on the other hand, is an indicator of how accu-

rate that association rule is; and it is denoted by the support of the disjoint of the

antecedent side and the consequent side, divided by the support of only the antecedent

side:

Confidence(X → Y ) =
σ(X ∪ Y )

σ(X)
,

For example, let us use Table 3 to calculate the support and confidence for the two

inverse association rules {Milk} → {Bread} and {Bread} → {Milk}. Starting with

the first association rule; {Milk} → {Bread}:

Support({Milk} → {Bread}) =
σ({Milk,Bread})

5
=

3

5
= .6,

Confidence({Milk} → {Bread}) =
σ({Milk,Bread}

σ({Milk})
=

3

3
= 1.

Now let us examine the second association rule; {Bread} → {Milk}:

Support({Bread} → {Milk}) =
σ({Bread,Milk})

5
=

3

5
= .6,

Confidence({Bread} → {Milk}) =
σ({Bread,Milk})

σ({Break})
=

3

4
= .75.

Note that although the two association rules have identical support, their confidence
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is different. Next chapter we will build on the readers’ understanding of support and

confidence provided here, and will therefore expand our definitions for the two terms,

to cover the literature of action rules.



CHAPTER 2: ACTION RULES

2.1 Motivation: From Concepts to Applications

As we have discussed in Chapter 1, the general goal of any data mining system

is roughly the same, that is, to extract useful patterns that describe nontrivial, use-

ful, and valid knowledge; usually in the form of relations between system attributes.

In Section 1.3, we introduced the arrangements of patterns that are commonly ex-

tracted through rule-based methods and association rules; hence, providing a good

understanding of the types of queries they address, and the nature of questions they

answer. In this section however, we will introduce an entirely different class of data

mining techniques, a category that is considered, by many researchers, more appli-

cable and more useful in today’s vast amount of data available; in this section we

introduce action rules.

To better understand the strengths of action rules, it would help to bring forward

the previously presented concept of association rules, to provide few key comparisons

and therefore clarify the exclusive advantages of action rules. As discussed earlier,

the outcome of association rule learning is to discover interesting relations amongst

attributes in large sets of data. For example, a candidate outcome of association rules

learning would be the following rule: {High Fever, Severe Fatigue} → {Flu}, which

states that if a patient is experiencing high fever and severe body fatigue, then he or
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she is more likely to have caught the flu. Though this might seem at first to be the

sole and ultimate goal of any data mining system, it would soon appear, with little

additional inspection, that the passive nature of an association rule is rather lacking,

especially in a world where we’re most in need for suggestions and recommendations,

rather than mere analysis. It is often the case that system users are also, if not

more, interesting in ways of transitioning (or shifting) an attribute condition from an

undesired state to a desired state; by referring to our patient example, system users

would be potentially interested in patterns that would shift the patient’s condition

from having the flu, to not having the flu. In other words, the idea of action rules is not

only to provide hidden patterns in the data, but also to suggest viable changes that,

if applied according to the action rule, will result in a desired change in our decision

attribute from a less desirable state to a more desirable one. Hence, the motivation

of action rules is to bring forth a new category of techniques and tools to provide

system users with concise actionable patterns that have high overall interestingness

level.

Since its introduction in 2000, action rules have been successfully applied in many

domain areas including business [1], medical diagnosis and treatment [5], [6], [7] and

music automatic indexing and retrieval [12], [13].

2.2 Definition and Interpretation

The notion of action rules was first proposed by Z. W. Raś and A. Wieczorkowska

in [1]. Action rules describe possible transition of objects from one state to another

with respect to a specific attribute, called the decision attribute. The goal of action
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rules is to provide system users with actionable tasks that can be directly applied

to objects listed in information systems to reach a desired goal. Table 4 shows an

example of an information system S2.

Table 4: Information system S2

e f g d
x0 e1 f1 g1 d1
x1 e1 f1 g1 d1
x2 e2 f2 g2 d2
x3 e1 f2 g1 d1
x4 e2 f1 g1 d2
x5 e1 f2 g1 d2
x6 e2 f2 g1 d1

In this section, we will use the definition of information system introduced in Section

1.3. However, we will be expanding few definitions starting with the definition of

a decision system (or decision table). By a decision system (table), we mean an

information system that makes a clear explicit distinction between attributes in A,

and will therefore label each attribute as either a decision attibute, or a non-decision

attribute, called condition attribute. The decision attribute(s), which normally but

not necessarily is a single attribute, is the attribute that we are interested in the most.

For system users, the eventual goal would be to change the decision attribute from a

less desirable to a more desirable state. For example, a company would be interested

in moving clients’ states of loyalty from lower to higher.

All non-decision, or condition, attributes are further partitioned into two mutu-

ally exclusive sets; the first one is the stable attributes set, and the second one is

the flexible attributes set. By stable attributes set we mean the set that contains

attributes that we have no control over; their values cannot be changed by the users
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of our system. An example of a stable attribute is the place where the person was

born. On the other hand, values of flexible attributes can be influenced and changed;

an example of a flexible attribute is the patient’s prescribed medications. In this

paper, ASt, AFl, and {d} will represent the set of stable attributes, the set of flexible

attributes, and the decision attribute, respectively. Hence, the set of attributes A can

be redefined as A = ASt ∪ AFl ∪ {d}.

An atomic action set is an expression that defines a change of state for a single

distinct attribute. For example, (a, a1 → a2) is an atomic action set which defines a

change of state for the attribute a from a1 to a2, where a1, a2 ∈ Va. Clearly in this

case, the attribute a is a flexible attribute, since it changes its state from a1 to a2. In

the case when there is no change, we omit the right arrow sign, so for example, (b, b1)

means that the value of attribute b is b1 and remains b1, where b1 ∈ Vb.

The action set is defined as follows:

1. If t is an atomic action set, then t is an action set.

2. If t1, t2 are action sets and ∧ is a 2-argument functor called composition, then

t1 ∧ t2 is a candidate action set.

3. If t is a candidate action set and for any two atomic action sets (a, a1 →

a2), (b, b1 → b2) contained in t we have a 6= b, then t is an action set.

4. No other sets are called action sets.

The domain Dom(t) of an action set t is the set of attributes of all atomic action

sets contained in t. For example, t = (a, a1 → a2)∧(b, b1) is an action set that consists
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of two atomic action sets, namely (a, a1 → a2) and (b, b1). Therefore, the domain of

t is {a, b}.

Action rules are expressions that take the following form: r = [t1 ⇒ t2], where

t1, t2 are action sets. The interpretation of the action rule r is that by applying the

action set t1, we would get, as a result, the changes of states in action set t2. We also

assume that Dom(t1) ∪Dom(t2) ⊆ A, and Dom(t1) ∩Dom(t2) = φ.

For example, r = [[(a, a1 → a2) ∧ (b, b2)] ⇒ (d, d1 → d2)] means that by changing

the state of the attribute a from a1 to a2, and by keeping the state of the attribute b

as b2, we would observe a change in the attribute d from the state d1 to d2, where d

is commonly referred to as the decision attribute.

Standard interpretation Ns of action sets in S is defined as follows:

1. If (a, a1 → a2) is an atomic action set, then

Ns((a, a1 → a2)) = [{x ∈ X : a(x) = a1}, {x ∈ X : a(x) = a2}].

2. If t1 = (a, a1 → a2) ∧ t and Ns(t) = [Y1, Y2], then

Ns(t1) = [Y1 ∩ {x ∈ X : a(x) = a1}, Y2 ∩ {x ∈ X : a(x) = a2}].

Let us define [Y1, Y2]∩ [Z1, Z2] as [Y1∩Z1, Y2∩Z2] and assume that Ns(t1) = [Y1, Y2]

and Ns(t2) = [Z1, Z2]. Then, Ns(t1 ∧ t2) = Ns(t1) ∩Ns(t2).

If t is an action set and Ns(t) = [Y1, Y2], then the support of t in S is defined as

supp(t) = min{card(Y1), card(Y2)}.

Let r = [t1 ⇒ t2] be an action rule, supp(t1) > 0, Ns(t1) = [Y1, Y2], and Ns(t2) =
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[Z1, Z2]. Support supp(r) and confidence conf(r) of r are defined as:

supp(r) = min{card(Y1 ∩ Z1), card(Y2 ∩ Z2)},

conf(r) =

[
card(Y1 ∩ Z1)

card(Y1)

]
∗
[
card(Y2 ∩ Z2)

card(Y2)

]
.

For example, referring to Table 4, let us assume that our decision attribute is d,

and let us also assume that we are interested in shifting our decision state from d1

to d2; a candidate action rule would be the following: r1 = (e, e1 → e2) ∧ (f, f1 →

f2) ⇒ (d, d1 → d2), which means that by shifting the state of attribute e from e1 to

e2, and the state of attribute f from f1 to f2, we should observe a desired shift in our

decision attribute d from d1 to d2. Using our previous definitions, we calculate the

support and confidence of this action rule r1; we start by calculating the standard

interpretation for both the condition and decision side of r1; Y1, Y2, Z1, and Z2:

Ns((e, e1 → e2) ∧ (f, f1 → f2)) = [Y1, Y2] = [{x0, x1}, {x2, x6}],

Ns(d, d1 → d2) = [Z1, Z2] = [{x0, x1, x3, x6}, {x2, x4, x5}],

supp(r1) = min{card({x0, x1}), card({x2})} = 1,

conf(r1) =

[
card({x0, x1})
card({x0, x1})

]
∗
[

card({x2})
card({x2, x6})

]
= 1 ∗ 1

2
= .5.

2.3 Extraction of Action Rules

There has been considerable research on the varied methodologies for extracting

action rules from information systems [8], [9], [10], [11]. In general however, we can

categorize all methodologies into two groups; the first one being when classification

rules are required for the construction of action rules [20], [1], [21], [22], and the
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second, more recent approach, being when action rules are directly extracted from an

information system [23]. To extract action rules, we used the algorithm described in

[23]. The idea of the algorithm is to start by constructing all possible action sets that

have occurred more than a pre-defined number, called the minimum support. Then,

in accordance to our desired change in the decision attribute, action rules are formed.

Let ta be an action set, where Ns(ta) = [Y1, Y2] and a ∈ A. We say that ta is a

frequent action set [23] if card(Y1) ≥ λ1 and card(Y2) ≥ λ1, where λ1 is the minimum

support. Another way of interpreting the frequent action sets would be that all

frequent action sets have support greater than or equal to the minimum support λ1.

By specifying λ1, we make sure that the extracted action rules have support greater

than or equal to the minimum support λ1. The algorithm presented below is similar

to [28]. To extract action rules, we start by generating atomic action sets that have

support greater than or equal to the minimum support value λ1 pre-defined by the

user; we will refer to this set as 1-element frequent action set. The term frequent

will be used to indicate that an action set has support greater than or equal to the

minimum support, and the term k-element will be used to indicate the number of

elements (or atomic action terms) in an action set. Both frequent atomic action

sets and 1-element frequent action set refer to exactly the same set, since from the

definition of atomic action sets, they consist of only one element. After generating

all frequent atomic action sets, we undertake the following two-step process initially

for k = 1:

1. Merge step: Merge pairs (t1, t2) of k-element action sets into all (k+1)-element
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candidate action sets.

2. Delete step: Delete all (k + 1)-element candidate action sets that are either

not action sets, or contain a non-frequent k-element action set, or that have

support less than the minimum support λ1.

We keep iterating the above two steps until we cannot generate new frequent action

sets anymore. At this point, we have generated all (k + 1)-element frequent action

sets, which will allow us to generate action rules that are guaranteed to have support

greater than or equal to the minimum support λ1. Last step is to further filter the

desired action rules based on their confidence, where we only consider action rules

with confidence greater than or equal to a pre-defined minimum confidence λ2. For

example, from the frequent action set t1 = (a, a1 → a2)∧(d, d1 → d2), we can generate

the following two action rules:

1. r1 = [(a, a1 → a2)⇒ (d, d1 → d2)].

2. r2 = [(d, d1 → d2)⇒ (a, a1 → a2)].

where both r1 and r2 have support greater than or equal to the minimum support

λ1. However, we will only be interested in specific changes of the decision attribute,

e.g. in changing the decision attribute d from state d1 to d2. Therefore, we will only

consider r1.

Action rule extraction example: using the previously described approach, we will

extract action rules from information system S3 = ({x1, x2, x3, x4, x5, x6, x7, x8}, {b, c}∪

{a}∪{d}, V ), V = Vb∪Vc∪Va∪Vd, shown below. The set {b, c} lists stable attributes,
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a is a flexible attribute, and d is a decision attribute. Also, we assume that we are

interested in the transition of decision attribute from state L to H, referring to low

profit, and high profit, respectively; we assume λ1 (support) = 3.

Table 5: Information system S3

a b c d
x1 0 S 0 L
x2 0 R 1 L
x3 0 S 1 L
x4 0 R 1 L
x5 2 P 2 H
x6 2 P 2 H
x7 2 S 2 H
x8 2 S 2 H

We then start generating 1-element frequent action sets :

(a, 0); support 4 (frequent) (a, 0→ 2); support 4 (frequent)

(a, 2); support 4 (frequent) (a, 2→ 0); support 4 (frequent)

(b, S); support 4 (frequent) (b, R); support 2 (not frequent)

(b, P ); support 2 (not frequent) (c, 0); support 1 (not frequent)

(c, 1); support 3 (not frequent) (c, 2); support 4 (frequent)

(d, L); support 4 (frequent) (d, L→ H); support 4 (frequent)

(d,H); support 4 (frequent) (d,H → L); support 4 (frequent)

Next, we generate (k+1)-element candidate action sets (where k = 1):

(a, 0) ∧ (b, S); support 2 (not frequent)

(a, 0) ∧ (c, 2); support 0 (not frequent)

(a, 0) ∧ (d, L); support 4 (frequent)

(a, 0) ∧ (d,H); support 0 (not frequent)
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(a, 0) ∧ (d, L→ H); support 0 (not frequent)

(a, 0) ∧ (d,H → L); support 0 (not frequent)

(a, 0→ 2) ∧ (b, S); support 2 (not frequent)

(a, 0→ 2) ∧ (c, 2); support 0 (not frequent)

(a, 0→ 2) ∧ (d, L); support 0 (not frequent)

(a, 0→ 2) ∧ (d,H); support 0 (not frequent)

(a, 0→ 2) ∧ (d, L→ H); support 4 (frequent)

(a, 0→ 2) ∧ (d,H → L); support 0 (not frequent)

(a, 2) ∧ (b, S); support 2 (not frequent)

(a, 2) ∧ (c, 2); support 4 (frequent)

(a, 2) ∧ (d, L); support 0 (not frequent)

(a, 2) ∧ (d,H); support 4 (frequent)

(a, 2) ∧ (d, L→ H); support 0 (not frequent)

(a, 2) ∧ (d,H → L); support 0 (not frequent)

(b, S) ∧ (c, 2); support 2 (not frequent)

(b, S) ∧ (d, L); support 2 (not frequent)

(b, S) ∧ (d,H); support 2 (not frequent)

(b, S) ∧ (d, L→ H); support 2 (not frequent)

(b, S) ∧ (d,H → L); support 2 (not frequent)

(c, 2) ∧ (d, L); support 0 (not frequent)

(c, 2) ∧ (d,H); support 4 (frequent)

(c, 2) ∧ (d, L→ H); support 0 (not frequent)

(c, 2) ∧ (d,H → L); support 0 (not frequent)
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We continue to generate the next (k+1)-element candidate action action set (where

k = 2):

(a, 2) ∧ (c, 2) ∧ (d,H); support 4 (frequent)

No more frequent action sets can be further generated. The only frequent action

set that we are interested in is (a, 0→ 2)∧ (d, L→ H); support 4 (frequent), since we

desire decision state transition from L (Low profit) to H (High profit). To construct

action rules, we move the decision attribute atomic action set to the right side, which

in this case will give us the following action rule: (a, 0 → 2) ⇒ (d, L → H). Lastly,

we check the confidence of this action rule to make sure it is greater than or equal to

the minimum confidence λ2.



CHAPTER 3: OUR DATASET: HYPERNASALITY TREATMENT

3.1 Overview of Hypernasal Speech Disorder

Distortions of the velopharyngeal closure, resulting in speech hypernasality or hy-

ponasality, may cause speech disorders in children [26]. The patient’s nasopharynx

disorders have been examined in the Children’s Memorial Health Institute in Warsaw

for many years. The gathered data also include general information on the patient’s

condition if it can be of importance, e.g. cerebral palsy, neurology, or myopathy.

This way a rich collection of complex data describing hypernasality was gathered, in

close cooperation with one of our collaborators, Prof. Ryszard Gubrynowicz, who is a

speech scientist and expert in this area; the data were collected when he was working

in the Children’s Memorial Health Institute.

Hypernasality can be examined by means of Czermak’s mirror test of nasal air

escape, see Figure 1. The child is asked to repeat several times a syllable composed

of a plosive consonant and an open vowel, e.g. /pa/-/pa/-/pa/, and the sizes of

the fogging circles appearing on the mirror are rated on 4–point scale, from 0 (no

hypernasality) to 3 (most severe hypernasality). Therefore, Czermak′s mirror test

was used as a decision attribute in the nasality data set. All attributes, representing

various medical conditions in the examined children, are listed in Table 3.2. More

explanations about these attributes are given below.
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Figure 1: Czermak’s mirror fogging test, rating the degree of the patient’s nasal air
escape on a 4-point scale: none = 0; small = 1, medium = 2, large = 3 [26].

3.2 Description of Original Attributes

Our dataset is composed of 225 patients; each patient was examined several times

where each examination was performed on a separate visit, ranging from 2 to 11 visits

for each patient. Personal data were recorded (first name and last name, sex), and

for each examination the age of the child was marked. Personal data were removed

before further processing, and replaced with ID data, representing the patient’s ID

combined with the sequential number of this patient’s visit.

During each visit, the articulation of selected vowels and consonants was recorded,

and the recording date was marked (recording date attribute). The data stored in

columns marked as diagnosis and diagnosis2 describe patient’s condition related

to nasality; only one diagnosis is stored in each of these columns, so diagnosis2

represents additional diagnosis, if there is more than one. The following diagnoses

are described in these columns: R - cleft, RP - cleft palate, OR - after cleft palate

surgery, WKP - congenital short velum, NO - hypernasality, NZ - hyponasality, BR

- no diagnosis, PRP - submucous cleft palate, AT - after tonsillectomy, DKP - quite

short palate, RJ - cleft uvula, III - hypertrophy of adenoids and possibly palatine

tonsils, MP - hypertrophy of palatine tonsils, MPDz - cerebral palsy, AD - after
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adenotomy, ADT - after adenotonsillectomy, UK - larynx after injury/trauma, NS

- hypoacusis, ORM - retarded speech development, NEU - neurology, ONR - after

neurological surgery. If NO (hypernasality) is diagnosed and marked in the column

diagnosis, it represents the most severe case of hypernasality. The numbers 0–3 in

diagnosis2 refer to sleep apnoea, i.e. temporary cessation of respiration during sleep.

0 means no apnoea, 3 - very often. Sleep apnoea is also represented as a separate

attribute, but the values assessed for the same patient may differ significantly, so they

were kept in both columns. Generally, physicians may differ in their opinions, this

is why we must be prepared to deal with some inconsistencies in the data. More of

diagnostic details are given in the column comments, but these comments are not

taken into account in the current version of our action rule software.

Other physical conditions recorded in the database include the degree of hyper-

trophy of adenoids and possibly palatine tonsils, and the degree of motility of the

soft palate, represented as tonsils and motility attributes. The assessment of the

patient’s recorded speech is represented in the following attributes: yeaoui (vowels

/I, e, a, o, u, i/ - a sequence of short vowel sounds spoken in isolation), i− long (long

vowel /i/ - vowel of sustained phonation), and bdg (high pressure consonants /b, d,

g/); SAMPA coding of phonetic alphabet is used [27]. These attributes describe the

measure of nasalization (coefficient of nasalization), calculated from the analysis of

mouth and nose signals (separately recorded), as the ratio of the nose signal level to

the sum of the level of the nose and mouth signals for the phonemes indicated in each

attribute. difference level F1 − F2 describes the vocal tract’s first 2 resonances as

the difference level of the 1st and the 2nd formant, measured for /i/-long.
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Table 6: Attributes in the hypernasality dataset. Expansions of acronyms are given
in the text.

Attribute Description

ID Patient’s ID, with the sequential number of his/her visit

age Age [years, months]

sex Sex {M, F}

recording date Recording Date [yyyy.mm.dd]

diagnosis Diagnosis {AD, ADT, AT, BR, III, myopathy, MPDz,

NEU, NO, ONR, OR, ORM, RJ, RP, UK, WKP}

comments Comments, details of the diagnosis

diagnosis2 Diagnosis {0, 1, 2, 3, DKP, RJ, WKP}

sleep apnoea Sleep apnoea {0, 1, 2, 3}

tonsils Hypertrophy of adenoids and possibly palatine tonsils

{0, 1, 2, 3}

Czermak′s mirror test

- decision attribute Mirror-fogging test {0, 1, 2, 3}

yeaoui Measure of nasalization for vowels /I, e, a, o, u, i/

[0, 100]

i− long Measure of nasalization for vowel /i/-long [0, 100]

bdg Measure of nasalization for high pressure consonants

/b, d, g/ [0, 100]

motility Motility of the soft palate [0, 12]

difference level F1− F2 The difference level of 1st & 2nd formant measured

for /i/-long [-14, 26]
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The best diagnosis we are interested in is when the parameters’ values are in nor-

mal ranges. Our decision attribute is Czermak’s mirror test, so its values are most

important in our research. The most desired value of our decision attribute is when

it is equal to 0. The diagnosis is worse when Czermak’s test value equals 2, next

worse case is when Czermak’s test value equals 3, and this is the most severe case.

The lower the Czermak’s test value, the better the diagnosis is. Therefore, we are

interested in action rules indicating how to decrease the Czermak’s test value. The

goal of our system is to find action rules which purpose is to provide hints referring

to doctor’s interventions. They show how values of certain attributes need to be

changed (through various medical procedures, according to the physician’s order), so

the patient’s condition will get improved.

3.3 Description of the Derived Attributes

In this work, we derived a new set of attributes in accordance to [3]. In addition

to our attributes shown in Table 2, for each of the following four attributes: yeaoui,

i - long, bdg, and motility, two new attributes were derived, resulting in eight new

attributes. The two derived attributes are the difference, and the rate of change for

every two consecutive instances, which we calculated as follows:

1. The difference of values for yeaoui, i - long, bdg and motility for every two

consecutive visits is calculated, thus constituting the following new attributes:

yeaoui1, i1 − long, bdg1 and motility1. For example, the value of bdg1 equals to

the value of bdg for the (k + 1)th visit minus the value for the kth visit.
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2. The rate of change a2 for every two consecutive visits is defined as:

a2 = arctan

(
a1

age difference in months

)

where a1 is the difference of values of the attribute a for the two visits.

After calculating the derived attributes, we used the Rough Set Exploration System

[15] to discretize our real-valued attributes wrt. our decision attribute. Next, our

temporal object-driven action rule discovery system, presented in Section 2.3, was

applied to the discretized data.

Our decision attribute Czermak’s mirror test was not discretized. Moreover, when

a physician could not decide between two neighboring Czermak’s test values, an

intermediate value was assigned. Therefore, the decision values are {0, .5, 1, 1.5, 2,

2.5, 3}.

Snapshot of our dataset after cleaning (and discretization) is given below:

Figure 2: Snapshop of hypernasality dataset.



CHAPTER 4: OBJECT-DRIVEN AND TEMPORAL ACTION RULES

4.1 Motivation: From Concepts to Applications

In this section, we start by describing the characteristics of information systems

that satisfy the object-driven and temporal nature; we begin by defining each, while

providing examples of where the kinds of information systems that satisfy that nature

exist, and why it should be examined differently; lastly we discuss the motivation for

the kinds of solutions we provide while dealing with those types of datasets, and how

to approach them accordingly.

In Section 1.2, we introduced the tabular representation of information systems,

in which each row is denoting a complete observation; temporal information systems

shall be represented similarly. However, each observation (or row) in our temporal

information systems must be coupled with a time state (stamp), with the additional

condition that time has a substantial meaning in that particular case. For example, an

information system about the stock market or foreign exchange prices is doubtlessly

a temporal information system; also a system of electronic medical records containing

multiple observations about various visits of patients with time information is clearly

a temporal system.

To understand how action rules should be extracted differently in temporal systems,

we first provide a brief, but perhaps distinct, overview of the systematic approach
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of the classical action rules. The notion of support introduced in Chapter 2 has

a distinguished semantic meaning in the literature of action rules; the support of

an action rules denotes the number of occurrences that have possibly occurred in

our information system; assuming that our instances are independent and identically

distributed. To clarify this concept, we present a graph:

Figure 3: In the classical action rules approach, there is no restriction on the transition
direction that could occur within our information system.

In Figure 3, we show a simplified information system composed of the following two

attributes; a, a flexible attribute; and d, the decision attribute. The action rule we are

interested in is the following: (a1 → a2) ⇒ (d1 → d2). The arrows appearing in the

graph represent possible transitions that could occur at some point of time. Based on

our assumption of the independent and identically distributed information system,

the instances in this simplified information system are free of any constraints, hence it

is perfectly logical for any instance to transition to any other instance. For example,

it would be valid to assume that the transition from the first row (a1, d1) to the

fifth row (a2, d2) has actually occurred, also it would be equally valid to assume the
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opposite, which denotes that the transition from the fifth row (a2, d2) to the first row

(a1, d1) has occurred as well. In a temporal system however, the time state imposes

additional constraints that permits us from making the same earlier assumptions.

Again, we illustrate with a graph:

Figure 4: In the temporally-driven action rules approach on the other hand, there
is a restriction on the transition direction that could occur within our information
system.

As depicted in Figure 4, the direction of instances’ transition is compelled with

the temporal states attached with them; assuming the observations are ordered in a

chronological order. Referring to the example from Figure 4, it would be invalid to

assume that the fifth instance (a2, d2) transformed to the first instance (a1, d1), as

for the first instance occurred before the fifth instance; again, for we are assuming

our observations are chronologically ordered from earlier time to a later time. To

that end, we propose subsequently in this chapter the appropriate changes applied

to action rules extraction to adapt to the temporal constraint. By now, our readers

should have formed a sufficient grasp of the notion of temporal based information
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systems, and the need for the proper modifications to be addressed; as this is one

main component of this thesis. Next, we examine the other main component, that is

the object-driven nature.

Despite the intrinsic structure that calls for integration between both main compo-

nents, namely the temporal and the object-driven, we are examining each individually.

This will help to get a better understanding, also, cases that have one nature and not

the other are equally common, hence equally important.

Information systems with object-driven nature are different than the classical in-

formation system, for that they have an attribute which we call the object attribute.

Prior to illustrating object-driven information systems with an example, we provide

two main conditions that must be satisfied in any object attribute: 1) for each dis-

tinct state of an object attribute, there must be multiple observations, 2) the possible

values for an object attribute should be arbitrarily assigned; loosely speaking, and 3)

all observations of a particular object attribute state should share the same distri-

bution in a certain sense. To clarify these three characteristics of our object-driven

information systems, we provide an example from the health field. Say we collect

observations about patients in a hospital; for each patient, various observations were

collected (in different points of time, though we will discard the timestamps for now

to focus on the notion of object-driven); such information system could be depicted

in Table 7.

As have probably been guessed, the Patient ID attribute is an ideal object attribute.

Let us examine the three previously mentioned conditions that must be satisfied in

any object attribute; as seen in Table 7, the first condition, which states that for
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Table 7: Information system S4

Patient ID Headache Fatigue Sneezing Diagnosis
1 Rare Rare Yes Cold
1 Rare Rare Yes Cold
1 Yes Yes Sometimes Flu
2 Yes Yes Sometimes Flu
2 Yes Yes Sometimes Flu
2 Rare Rare Yes Cold
2 Rare Rare Yes Cold
3 Yes Yes Sometimes Flu
3 Rare Rare Yes Cold
3 Yes Yes Sometimes Flu

each object attribute state there must be multiple observations, is clearly satisfied;

(Patient ID, 1) has three observations, (Patient ID, 2) has four observations, and

(Patient ID, 3) has three observations; the second condition of the object attribute

is the arbitrariness condition, which states that the values of our object attribute

should not have any particular meaning, again, it is clearly shown in Table 7 that

this condition has been satisfied as well, the numbers from one to three do not have

any particular meaning with respect to their corresponding observations; the third

constraint states that all observations from the same object attribute need to be

from the same distribution, which is also satisfied in our example, in something as

personalized as patients, often it is wise to treat each patient (or each subset of

patients) independently, as opposed to treating the whole set at once. In following

sections, we show how by appropriately using our object attribute, we are able to

build multiple subsystems for action rules extraction; object-driven assumption is the

second main component of this work.

Lastly, it is worth mentioning that in general however, the two natures, namely the
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temporal and the object-driven, are often found coupled together. In future sections,

we provide a case study in which we combine the two assumptions to provide a

complete system.

4.2 Object-Driven Assumption

The drive behind the introduction of object-driven action rules in [3] was to bring

forth an adapted approach to extract action rules from systems of temporal and

object-driven nature. In [3], we proposed an object-independency assumption that

suggests extracting patterns from subsystems defined by unique objects, and then ag-

gregating similar patterns amongst all objects. The motivation behind this approach

is based on the fact that same-object observations share similar features that are not

shared with other objects, and these features are possibly not explicitly included in

our dataset. Therefore, by individualizing objects prior to calculating action rules,

variance is reduced, and over-fitting is potentially avoided. In addition to the object-

independency assumption, temporal information is exploited by taking into account

only the state transitions that occurred in the valid direction. In this section, we

limit our discussion to the object-independency assumption, and in later sections we

discuss the temporal assumption.

Let O be the set of object ID’s which instances belong to X. We define object-

driven action rules to be rules that are extracted from a subsystem Sp = (Xp, A, V )

of S, where Xp contains all instances in X of the object p, p ∈ O.

Here we provide an example to demonstrate the advantages of object-driven action

rules extraction, using the information system S5 shown in Table 8. As a company,
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Table 8: Information system S5. Each one of the two employees was observed four
different times.

ObjectID Observation Loyalty Income Children
x0 1 1 High High More than 3
x1 1 2 High High More than 3
x2 1 3 Low Medium More than 3
x3 1 4 Low Medium More than 3
x4 2 1 High Medium Less than or equal to 3
x5 2 2 High Medium Less than or equal to 3
x6 2 3 Low Low Less than or equal to 3
x7 2 4 Low Low Less than or equal to 3

we are interested in extracting action rules that change the state of attribute Loyalty

from Low to High. We have two objects with 4 instances each.

Using the classical action rules extraction method, two action rules will be extracted

from the system:

1. r1 = [[(Income, Low → Medium) ∧ (Children,≤ 3)] ⇒ (Loyalty, Low →

High)]; conf (r1) = 100%.

2. r2 = [[(Income,Medium → High) ∧ (Children,> 3)] ⇒ (Loyalty, Low →

High)]; conf (r2) = 100%.

Now let us assume that the attribute Children is missing in S5. The following

action rules will be extracted instead:

1. ℘1 = [(Income, Low →Medium)⇒ (Loyalty, Low → High)];

conf (℘1) = 50%.

2. ℘2 = [(Income, Low → High)⇒ (Loyalty, Low → High)];

conf (℘2) = 100%.
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3. ℘3 = (Income,Medium)⇒ (Loyalty, Low → High);

conf (℘3) = 25%.

4. ℘4 = [(Income,Medium→ High)⇒ (Loyalty, Low → High)];

conf (℘4) = 50%.

We can observe that the rules ℘1, ℘4 are weaker than r1, r2 and also the condition

and decision part in both rules ℘2 and ℘3 are referring to different objects, so we

should not consider them valid. By using object-driven action rules extraction, we

would not get ℘2 and ℘3.

Coming back to the action sets, we define the pth standard interpretation Ns(p),

where p is the object’s unique ID, of action sets in S = (X,A, V ) as follows:

1. If (a, a1 → a2) is an atomic action set, then

Ns(p)((a, a1 → a2)) = [{x ∈ Xp : a(x) = a1}, {x ∈ Xp : a(x) = a2}] ,

where Xp is the set of all instances of the pth object.

2. If t1 = (a, a1 → a2) ∧ t and Ns(p)(t) = [Y1, Y2], then

Ns(p)(t1) = [Y1 ∩ {x ∈ Xp : a(x) = a1}, Y2 ∩ {x ∈ Xp : a(x) = a2}] ,

where Xp is the set of all instances of the pth object.

4.3 Temporal Assumption

In this section, we explore the notion of temporal datasets, and how to apply action

rules extraction to them. As shown in the previous chapter, our dataset (hypernasal
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speech disorder) for our case study is of temporal type and it contains information

about patients’ visits to the Children’s Memorial Health Institute in Warsaw, Poland.

The number of visits for each patient is ranging from 2 to 11. Patients are seen as

objects represented in our dataset by minimum two and maximum eleven instances.

In a typical scenario of action rules extraction, we have no additional information

about instances in a dataset besides values of their attributes. However, in the case

of our medical dataset, we also assume that:

1. For each instance, we have a unique patient ID, which is utilized to extract

object-driven action rules,

2. We also know that the visits are ordered for each patient, so for example, the

(y)th visit for a specific patient, where y > 1, has occurred immediately after

the (y − 1)th visit; this information will allow us to add an ordered pairing

restriction which we will call the temporal constraint.

The strategy of action rules construction, presented in Section 2.3 will be slightly

modified to take into account the temporal nature of our dataset. This way, we

believe, more refined action rules will be built leading to their higher accuracy and

better generalization property.

4.3.1 Classical Object-Driven Approach

Here, we make the assumption that the only valid change of attribute value, is

the change that happens between two instances of the same object. Accordingly, the

standard interpretation NTC
s that complies with the temporal constraint of an action

set in S = (X,A, V ) is redefined as follows:
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1. If (a, a1 → a2) is an atomic action set, then

NTC
s ((a, a1 → a2)) = [{x1 ∈ X : a(x1) = a1}, {x2 ∈ X : a(x2) = a2}] = [X1, X2],

where for each x1 ∈ X1 there exist x2 ∈ X2 such that instance x2 occurred after

x1, and there are no other objects in X2.

2. If t1 = (a, a1 → a2) ∧ t and NTC
s (t) = [Y1, Y2], then

NTC
s (t1) = [Y1 ∩ {x1 ∈ X : a(x1) = a1}, Y2 ∩ {x2 ∈ X : a(x2) = a2}] = [X1, X2],

where for each x1 ∈ X1 there exist x2 ∈ X2 such that instance x2 occurred after

x1, and there are no other objects in X2.

The definition of support of an action set and the definitions of support and confi-

dence of an action rule are all the same as in the previous subsection.

Following both the definition of the Temporal Constraint standard interpretation

NTC
s and the pth standard interpretation Ns(p), it becomes apparent that the definition

of the pth standard interpretation that complies with the Temporal Constraint, NTC
s(p),

where p is the object’s unique ID (in the following sections, p will be called an object),

of action sets in S = (X,A, V ) can be defined as follows:

1. If (a, a1 → a2) is an atomic action set, then

NTC
s(p)((a, a1 → a2)) = [{x1 ∈ Is(p) : a(x1) = a1}, {x2 ∈ Is(p) : a(x2) = a2}] = [X1

p , X
2
p ],

where ∀x1 ∃x2 such that x2 is after x1, and Is(p) is the set of all instances for

the pth object. Additionally, we assume that there are no other instances in X2
p .
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2. If t1 = (a, a1 → a2) ∧ t and NTC
s(p)(t) = [Y1, Y2], then

NTC
s(p)(t1) = [Y1∩{x1 ∈ Is(p) : a(x1) = aa}, Y2∩{x2 ∈ Is(p) : a(x2) = a2}] = [X1

p , X
2
p ],

where ∀x1 ∃x2 such that x2 is after x1, and Is(p) is the set of all instances for

the pth object. Additionally, we assume that there are no other instances in X2
p .

If t is an action set and NTC
s(p)(t) = {Y1, Y2}, then the support of t in S is defined

as: suppTCp (t) = min{card(Y1), card(Y2)}.

Let r = [t1 ⇒ t2] be an action rule, where NTC
s(p)(t1) = [Y1, Y2], N

TC
s(p)(t2) = [Z1, Z2].

The pth support suppTCp (r) and the pth confidence conf TCp (r) of r are defined as follows:

suppTCp (r) = min{card(Y1 ∩ Z1), card(Y2 ∩ Z2)},

conf TCp (r) =

[
card(Y1 ∩ Z1)

card(Y1)

]
·
[
card(Y2 ∩ Z2)

card(Y2)

]
.

Now, assume that by O we mean the set of all objects’ unique IDs. After all

objects-driven action rules are extracted and their pth support and pth confidence are

computed for each p ∈ O, we then calculate their total support suppTCO (r) (called

support) and total confidence conf TCO (r) (called confidence) following the definitions

below:

suppTCO (r) =
∑
p∈0

suppTCp (r),



43

conf TCO (r) =
∑
p∈0

(
suppTCp (r) · conf TCp (r)

suppTCO (r)

)
.

Example to demonstrate the classical object-driven approach: Here, we provide

an example to demonstrate how we calculate the support and the confidence for the

whole system S6 shown in Table 9 using the proposed classical object-driven approach.

Table 9: Information system S6

Patient ID a b c d
x0 1 a1 b1 c1 d1
x1 1 a2 b1 c1 d1
x2 1 a2 b2 c2 d2
x3 1 a1 b2 c1 d1
x4 1 a2 b1 c1 d2
x5 2 a1 b2 c1 d2
x6 2 a2 b1 c1 d1
x7 3 a1 b2 c1 d1
x8 3 a2 b2 c1 d1
x9 3 a1 b1 c1 d1
x10 3 a2 b1 c1 d1

We assume that for each patient in Table 9, the instances are ordered in chrono-

logical order. For example, for the first patient (Patient ID, 1 ), we know that:

• x4 has occurred after x0, x1, x2, x3

• x3 has occurred after x1, x1, x2, and before x4

• x2 has occurred after x0, x1, and before x3, x4

• x1 has occurred after x0, and before x2, x3, x4

• x0 has occurred before x1, x2, x3, x4
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Referring to our information system S6 shown in Table 9, we calculate the support

supTCO (r) and the confidence confTCO (r) for the following rule:

r = [(a, a1 → a2) ∧ (c, c1)]⇒ (d, d1 → d2)]

We first calculate the pth standard interpretation for each patient p for both the

condition and decision parts in action rule r.

NTC
s(1)((a, a1 → a2) ∧ (c, c1)) = [{x0, x3}, {x1, x4}]

NTC
s(1)(d, d1 → d2) = [{x0, x1, x3}, {x2, x4}]

NTC
s(2)((a, a1 → a2) ∧ (c, c1)) = [{x5}, {x6}]

NTC
s(2)(d, d1 → d2) = [φ, φ]

NTC
s(3)((a, a1 → a2) ∧ (c, c1)) = [{x7, x9}, {x8, x10}]

NTC
s(3)(d, d1 → d2) = [{x7, x9}, {x8, x10}]

Using the temporal constraint and the object-driven assumption explained above,

the support and confidence for each patient are calculated as follows:

supTC1 (r) = min{card({x0, x3} ∩ {x0, x1, x3}), card({x1, x4} ∩ {x2, x4})} = 1,

confTC1 (r) =

[
card({x0, x3} ∩ {x0, x1, x3})

card({x0, x3})

]
∗
[
card({x1, x4} ∩ {x2, x4})

card({x1, x4})

]
= 1∗ 1

2
= .5

supTC2 (r) = min{card({x5} ∩ φ), card({x6} ∩ φ)} = 0,

confTC2 (r) =

[
card({x5} ∩ φ)

card({x5})

]
∗
[
card({x6} ∩ φ)

card({x6)

]
= 0
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supTC3 (r) = min{card({x7, x9} ∩ {x7, x9}), card({x8, x10} ∩ {x8, x10})} = 2,

confTC3 (r) =

[
card({x7, x9} ∩ {x7, x9})

card({x7, x9})

]
∗
[
card({x8, x10} ∩ {x8, x10})

card({x8, x10})

]
= 1

Now we calculate the overall support and overall confidence for the entire system:

supTCO (r) = 3, confTCO (r) =

(
1 ∗ .5

3

)
∗
(

0 ∗ 0

3

)
∗
(

2 ∗ 1

3

)
= .83

It is important to keep in mind that regardless of the methodology used to extract

action rules, the way the support and confidence are calculated for object-driven

action rules will stay the same. In the following case study, we use the approach

proposed in [23]; explained through an example in previous section. However, in

future studies, additional methodologies could be used to extract object-driven action

rules, as long as they comply with both the temporal constraint, and the object-driven

assumption.

4.3.2 Results of Applying Classical Object-Driven

Approach to Hypernasality

In this section, we show a sample of the results after running our classical object-

driven approach. Here are few results and their explanations:

Rule 1. r1 = [(palatine tonsils , 0) ∧ (i – long,≥ 9.5) ∧ (i2 – long,≥ 5.5→

< 5.5)]⇒ (Czermak’s mirror test , 2→ 1.5); supp(r1) = 2, conf (r1) = 66.7%.

Rule 1 means that if our patient has no hypertrophied palatine tonsils (value 0),

and i – long (nasalization for /i/-long) is more than 9.5, then decreasing the rate of

change of i – long (i2 – long) from more than or equal to 5.5, to less than 5.5, would
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improve patient’s Czermak’s mirror test from 2 to 1.5.

Rule 2. r2 = [(palatine tonsils , 1) ∧ (i – long,≥ 9.5) ∧ (i2 – long,≥ 5.5→

< 5.5)]⇒ (Czermak’s mirror test , 2→ 1.5); supp(r2) = 2, conf (r2) = 66.7%.

Rule 2 means that if our patient has a bit hypertrophied palatine tonsils (value 1),

and i – long is more than 9.5, then decreasing the rate of change of i – long (i2 – long)

from more than or equal to 5.5, to less than 5.5, would improve patients Czermak’s

mirror test from 2 to 1.5.

Rule 3. r3 = (i – long,≥ 9.5 → [2.5, 7.5)) ⇒ (Czermak’s mirror test , 1 → .5);

supp(r3) = 2, conf (r3) = 66.7%.

Rule 3 means that if we decrease the value of i – long from greater than 9.5 to [2.5,

7.5), we would improve the patient’s Czermak’s mirror test from 1 to .5. Decreasing

of i – long, i.e. the decrease of nasalization for /i/-long can be achieved, to some

extend, through speech therapy, or (eventually) surgically through a nasopharynx

surgery, moving posterior pharyngeal wall forward, towards soft palate. However,

none of the examined patients underwent this surgery.

These rules suggest decreasing palatine tonsils, and decreasing the nasalization

coefficient for /i/-long. This confirms the importance of these attributes, which was

expected, but not so obvious in the case of i – long. However, decreasing palatine

tonsils causes only slight change of the Czermak’s test, and this is also a confirmation

for physicians that surgery on palatine tonsils might not be particularly beneficiary

for patients. Palatine tonsils tend to regrow after surgery, and their influence on

nasality is not so high, because of their location. At the same time, hypernasality can
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be treated, to some extent, through speech therapy aiming at decreasing nasalization

for /i/-long.

Another interesting observation in our resulted action rules is that we may desire

different transitions for the same attribute, depending on the current value of the

Czermak’s mirror test. For example, if our patient’s Czermak’s mirror test is 2, we

would want for i – long to stay greater than 9.5 while changing i2 – long. However,

if our patient’s Czermak’s mirror test is 1, we would want to decrease the value of i

– long from greater than 9.5 to [2.5 7.5).

Rule 4. r4 = [(palatine tonsils , < 2) ∧ (i2 – long,< 5.5) ∧ (motility , [4.5, 5.5)) ∧

(i – long, [1.5, 2.5) → < 1.5)] ⇒ (Czermak’s mirror test , 0.5 → 0); supp(r4) = 3,

conf (r4) = 60%.

Rule 5. r5 = [(palatine tonsils , < 2) ∧ (bdg1, < 6.5) ∧ (motility , [4.5, 5.5)) ∧

(i – long, [1.5, 2.5) → < 1.5)] ⇒ (Czermak’s mirror test , 0.5 → 0); supp(r5) =

3, conf (r5) = 60%.

The above rules mean that very slight hypernasality might be completely removed

by decreasing the nasalization coefficient for /i/-long, provided the indicated accom-

panying conditions are fulfilled.

Rule 6. r6 = [(sleep apnoea, < 2→ > 2) ∧ (bdg , > 8.5→ [6.5, 8.5)]⇒

(Czermak’s mirror test , 1.5→ 0); supp(r6) = 2, conf (r6) = 100%.

This rule is very interesting because it shows that the increase of sleep apnoea

(along with decreasing the nasality of /bdg/) cures light-medium hypernasality.

Rule 7. r7 = [(palatine tonsils , < 2) ∧ (motility , < 3.5 → [4.5, 5.5)) ∧ (difference
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level F1− F2, [5.5, 6.5) → < 4.5)] ⇒ (Czermak’s mirror test , 1.5 → 0); supp(r7) =

2, conf (r7) = 100%.

Rules 6 and 7 are especially interesting because their confidence is 100%, and they

both induce a significant shift in Czermak’s test, from 1.5 to 0, i.e. curing light-

medium hypernasality completely, through procedures increasing the motility of the

soft palate, and decreasing the difference for the first two formants of the vocal tract

for /i/-long.

4.3.3 Pair-Based Object-Driven Approach

As defined previously, temporal object-driven datasets consist of numerous unique

objects, where each object is comprised of multiple instances that have assigned

corresponding timestamps. Previously in [3]; as explained in section 4.3.1, the object

p based standard interpretation of an action set t = (a, a1 → a2) was defined as the

pair of two sets [Y1, Y2] where Y1 is the set of instances of the object p that satisfy the

left side, or condition side, of the action set, and Y2 is the set of instances of the object

p that satisfy the right side, or decision side, of the action set, with the addition that

for every instance in Y1, there exist a matching instance in Y2 that occurred after it.

This definition resembles the definition of standard interpretation for classical action

rules while restricting valid transitions to only one direction. In this section however,

we present an approach in which the nature of the object-driven temporal dataset

allows us to redefine the standard interpretation into a more intuitive pair-based

structure which we believe is more appropriate for object-driven temporal systems.

Let us first assume that Is(p) denotes the set of all instances of the object p in an
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information system S. Also, the relation ∠ ⊆ Is(p) is defined as:

(x1, x2) ∈ ∠ iff x2 has occurred after x1.

The pair-based standard interpretation NTC
s(p) in S = (X,A, V ) for an object p is

redefined as:

1. If (a, a1 → a2) is an atomic action set, then

NTC
s(p)((a, a1 → a2)) = {(x1, x2) ∈ ∠ : a(x1) = a1, a(x2) = a2}

where ∠ ⊂ Is(p) .

2. If t1 = (a, a1 → a2)∧ and NTC
s(p)(t) = Y1, then

NTC
s(p)(t1) = Y1 ∩ {(x1, x2) ∈ ∠ : a(x1) = a1, a(x2) = a2}

where ∠ ⊂ Is(p) .

In other words, our standard interpretation will consist of all valid transitions from

the left side of an action set to the right side, represented as pairs. The motivation

behind this new interpretation is due to the fact that the instances within one object

are not observed independently, which will allow us to relax the minimum assumption

previously used. Our object-independency assumption states that the whole system

consists of multiple independent subsystems, each one marked by a unique object.

Although it confines the system to extract action rules only from instances of the

same object, it provides more flexibility to be applied within unique objects.

If t is an action set and NTC
s(p)(t) = Y1, then the support of t in S is defined as:

suppTCp = card(Y1).

Let r = [t1 ⇒ t2] be an action rule, where NTC
s(p)(t1) = Y1, N

TC
s(p)(t2) = Y2. The pth
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support suppTCp (r) and the pth confidence confTCp (r) of r are defined as follows:

suppTCp (r) = card(Y1 ∩ Y2),

confTCp (r) =

[
card(Y1 ∩ Y2)
card(Yd)

]
.

To define Yd, let us first assume that ζ(Y ) denotes the set of first elements of the set

of pairs Y . For instance, if Y = {(x1, x3), (x3, x4), (x1, x2)}, then ζ(Y ) = {x1, x3}. We

define Yd = {(x1, x2) ∈ Y1 : x1 ∈ ζ(Y2)}. The interpretation of this definition means

that to calculate the confidence of the action rule r = (a, a1 → a2) ⇒ (d, d1 → d2),

the pairs that we are considering are the ones that have first elements that satisfy

a = a1 and d = d1. Since the transition from a1 to a2 could possibly trigger other

states of decision attribute d, we are only interested in the states of our action rule.

After all object-driven action rules are extracted and their pth support and pth con-

fidence are computed for all p ∈ O, we then calculate their total support suppTCO (r)

(called support) and total confidence confTCO (r) (called confidence) following the def-

inition below:

suppTCO (r) =
∑
p∈O

suppTCp (r) ,

confTCO (r) =
∑
p∈O

(
suppTCp (r) ∗ confTCp (r)

suppTCO (r)

)
.

If the denominator in the formula for calculating confidence is equal to zero, then

the confidence is equal to zero by definition.

Example to demonstrate pair-based object driven support and confidence: here, we

provide an example to demonstrate how we calculate the support and the confidence

for the whole system S7 shown in Table 10. We assume that for all 3 objects in X



51

their instances xi, where 1 ≤ i ≤ 10, have chronological order.

Table 10: Information system S7

objectID a b c d
x0 1 a1 b1 c1 d1
x1 1 a2 b1 c1 d1
x2 1 a2 b2 c2 d2
x3 1 a1 b2 c1 d1
x4 1 a2 b1 c1 d2
x5 2 a1 b2 c1 d2
x6 2 a2 b1 c1 d1
x7 3 a1 b2 c1 d1
x8 3 a2 b2 c1 d2
x9 3 a1 b1 c1 d1
x10 3 a2 b1 c1 d2

Referring to our information system S shown in Table 1, we calculate the support

suppTCO (r) and the confidence confTCO (r) for the following rule:

r = [(a1 → a2) ∧ (c, c1)⇒ (d, d1 → d2)].

We first calculate the pth standard interpretation for each object p (e.g. for a patient)

for both the condition and the decision parts in the action rule r:

NTC
s(1)((a, a1 → a2) ∧ (c, c1)) = {(x0, x1), (x0, x2), (x0, x4), (x3, x4)} ∩

{(x0, x1), (x0, x3), (x0, x4), (x1, x3), (x1, x4), (x3, x4)}

= {(x0, x1), (x0, x4), (x3, x4)} ,

NTC
s(1)(d, d1 → d2) = {(x0, x2), (x0, x4), (x1, x2), (x1, x4), (x3, x4)} ,

NTC
s(2)((a, a1 → a2) ∧ (c, c1)) = {(x5, x6)} ,

NTC
s(2)(d, d1 → d2) = φ ,
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NTC
s(3)((a, a1,→ a2) ∧ (c, c1)) = {(x7, x8), (x7, x10), (x9, x10)} ∩

{(x7, x8), (x7, x9), (x7, x10), (x8, x9), (x8, x10), (x9, x10)}

= {(x7, x8), (x7, x10), (x9, x10)} ,

NTC
s(3)(d, d1 → d2) = {(x7, x8), (x7, x10), (x9, x10)} .

Using the temporal constraint and the object-driven assumptions, the pair-based

support and confidence for each object is calculated as follows:

supTC1 (r) = card({(x0, x4), (x3, x4)}) = 2 ,

confTC1 (r) =

[
card({(x0, x4), (x3, x4)})

card({(x0, x1), (x0, x4), (x3, x4)})

]
=

2

3
,

supTC2 (r) = card(φ) = 0 ,

confTC2 (r) = 0 ,

supTC3 (r) = card({(x7, x8), (x7, x10), (x9, x10)}) = 3 ,

confTC3 (r) =

[
card({(x7, x8), (x7, x10), (x9, x10)})
card({(x7, x8), (x7, x10), (x9, x10)})

]
=

3

3
= 1 .

Now we calculate the overall support and confidence for the whole system:

supTCO (r) = 5, confTCO (r) =

(
2 ∗ 2

3

5

)
+

(
3 ∗ 1

5

)
=

4.33

5
= .87 .

4.3.4 Results of Applying Pair-Based Object-Driven

Approach to Hypernasality

In this section, we show a sample of results after running our pair-based approach

to extract object-driven action rules from temporal systems. We show that by using

the pair-based approach, not only we were able to extract a larger set of action rules,



53

but also we were able to extract action rules that provide more dramatic decrease

of patient severity than the rules extracted in [3]. For an action rule to be eligibly

used on a patient, the pre-conditions of the action rule and the patient’s current

condition have to match, meaning that only a subset of our patients will benefit

from each particular action rule. Having said that, using our pair-based approach to

extract action rules we will generate a significant amount of action rules that can be

appropriately used for various sets of patients.

Rule 1. r1 = (difference level F1-F2 ,≥ 9.5→ [6.5, 9.5))

⇒ (Czermak’s mirror test , 3→ 2); supp(r1) = 2, conf (r1) = 100% .

This rule means that by decreasing the difference between the first two formants

of the vocal tract for /i/ - long, we would notice a decent shift of the Czermak’s

mirror test, decreasing from 3 to 2. In [3], we extracted a similar action rule that also

indicated the importance of difference level F1-F2 attribute. However, this action

rule is exclusive to the work described in this chapter.

Rule 2. r2 = (i2 − long,≥ 5.5 →< 5.5) ⇒ (Czermak’s mirror test , 3 → 2);

supp(r2) = 3, conf (r2) = 66.7% .

This rule means that decreasing the value of i − long in a short period of time,

since i2 − long is defined as the rate of change, will result in a similar decrease of

the Czermak’s mirror test from 3 to 2. Again, this rule affirms the importance of the

attribute i− long.

Rule 3. r3 = (i2 − long,≥ 5.5→< 5.5) ∧ (bdg,≥ 8.5)

⇒ (Czermak’s mirror test , 2.5→ 2); supp(r3) = 2, conf (r3) = 100% .
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This rule is similar to Rule 1. It confirms the effect of decreasing the rate of change

of the nasalization measured for /i/ - long, but also adds an additional condition

concerning the nasality of /bdg/, that is, this rule only applies to patients suffering

from high nasality for /bdg/ (≥ 8.5).

Rule 4. r4 = (tonsils , < 2) ∧ (i2 − long,≥ 5.5 →< 5.5) ∧ (motility, [4.5, 5.5)) ⇒

(Czermak’s mirror test , 2→ 1.5); supp(r4) = 2, conf (r4) = 100% .

This rule states that when a patient is experiencing a little hypertrophied adenoids

and possibly palatine tonsils (tonsils < 2), we can slightly improve his condition from

Czermak’s mirror test 2 to 1.5 by decreasing the rate of change in /i/ - long, and if

the motility of the soft palate does not change.

Rule 5. r5 = (bdg,≥ 8.5→ [6.5, 8.5))⇒ (Czermak’s mirror test , 1→ .5); supp(r5) =

3, conf (r5) = 66.7% .

This rule states that by only decreasing the nasality of /bdg/, we would be able to

shift the patients’ Czermak’s mirror test state from 1 to .5.

Rule 6. r6 = (i − long,≥ 9.5 → [2.5, 7.5)) ⇒ (Czermak’s mirror test , 1 → .5);

supp(r6) = 2, conf (r6) = 100% .

Although the support of this action rule is not high, the rule is rather interesting.

It states that by decreasing only one attribute; /i/ - long, there is a 100% chance that

the Czermak’s mirror test will shift from 1 to .5.

Rule 7. r7 = (motility, < 3.5→ [4.5, 5.5)) ∧ (diagnosis, OR)

⇒ (Czermak’s mirror test , 1→ 0); supp(r7) = 3, conf (r7) = 100% .

This rule states that if a patient has gone through a cleft palate surgery (OR), then
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increasing the motility of the soft palate would significantly improve the patient’s

condition, to the level where the patient is entirely cured, which will result in shifting

the Czermak’s mirror test value from 1 to 0.

Rule 8. r8 = (i2 − long,≥ 5.5 →< 5.5) ⇒ (Czermak’s mirror test , .5 → 0);

supp(r8) = 7, conf (r8) = 71% .

This rule has a relatively high support. It states that decreasing the rate of change

of i− long from greater than or equal to 5.5, to less than 5.5, will result in curing a

light hypernasality.

Rule 9. r9 = (i2 − long,≥ 5.5→< 5.5) ∧ (sleep apnoea, < 2)

⇒ (Czermak’s mirror test , .5→ 0); supp(r9) = 6, conf (r9) = 83% .

This rule is a similar, but more specific than rule 8. By expanding the condition

side of action rules, we are able to generate action rules with higher confidence. Rule

8 states that by only decreasing the rate of change of i− long, we would have a 71%

chance of shifting the Czermak’s mirror test from .5 to 0. However, rule 9 states that

by decreasing the rate of change of i − long and maintaining a low value of sleep

apnoea, we would have an 83% chance of shifting Czermak’s mirror test from .5 to 0.

Rule 10. r10 = (tonsils,≥ 2→< 2)⇒ (Czermak’s mirror test , .5→ 0); supp(r9) =

5, conf (r9) = 100% .

This rule states, with absolute certainty (confidence 100%), that by decreasing the

hypertrophied adenoids and possibly palatine tonsils that the patient is experiencing,

the Czermak’s mirror test will shift from .5 to 0. Although the improvement does not

appear to be significant, the high support and high confidence make this rule highly
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valuable.

In our hypernasality dataset, most of the patients were experiencing slight to no

hypernasality speech (Czermak’s mirror test .5 or 0). As a consequence, the last three

action rules had a much higher support compared to the others.



CHAPTER 5: ADDITIONAL DATASET: STATE INPATIENT DATASET

5.1 Overview of State Inpatient Dataset

The Healthcare Cost and Utilization Project (HCUP) State Inpatient Databases

(SID) consist of records collected from data organizations (essentially, hospitals) from

across 47 participating States. In this work, we explore records collected (spanning

multiple years) from institutions in Florida. Although we explore data collected from

only one state, the number of records (and attributes) is still considerably large. Most

records are collected from acute care institutions, which generally means that patients

receive active but short-term treatment for a severe injury; Table 11 shows few of the

most common diagnoses observed in patients.

Table 11: Most common diagnoses in the state inpatient dataset

Diagnosis Description
Hypertension Abnormally high blood pressure.
Hyperlipidemia Abnormally high concentration of fats in the blood.
Diabetes Diabetes mellitus without mention of complication.
Coronary atherosclerosis Coronary atherosclerosis of native coronary artery.
Esophageal reflux Condition in which the stomach contents leak

backwards from the stomach into the esophagus.
Anemia Condition marked by a deficiency of red blood cells

or of hemoglobin in the blood.
Congestive heart failure Condition occurs when your heart muscle does not

pump blood as well as it should.
Atrial fibrillation Irregular and often rapid heart rate that commonly

causes poor blood flow to the body.
Hypothyroidism Abnormally low activity of the thyroid gland,

resulting in retardation of growth.
Urinary tract infection Infection in any part of your urinary system.
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The State Inpatient Dataset is both temporally-based and object-driven, which

means that there were multiple visits recorded for each patient (at least the majority

of them); and for each visit, a timestamp was registered. In each visit, the patient was

given from 1 to 31 different diagnoses; some patients have as little as one diagnosis,

while others have as many as thirty-one diagnoses. Note here that this does not

mean that in this dataset we only have 31 different diagnoses; in fact, this dataset

contains a tremendous number of different diagnoses (roughly 10 thousand unique

diagnoses); by 31, we only mean that for one particular visit, the patient was given

at most 31 different diagnoses. Clearly, this dataset is drastically more general than

our Hypernasality dataset, in the sense that patients are diagnosed with many (and

often different) diagnoses, which will require us to build a rather more elaborate rule

extraction system, as will be shown in the next section. Table 12 shows all attributes

that are considered. The number of unique patients in the dataset is almost 1.5

million; for each patient, there were 2 to 39 visits recorded; although we do not have

access to the exact date of each visit, the difference (in days) between any two visits

(for a unique patient) is recorded.

Table 12: Attributes that we used in the state inpatient dataset

Attribute Description
Patient ID Each patient has a unique ID
Age (year) Age of the patient, time of visit
Admission Type {Emergency, Urgent, Elective, Newborn}
Diagnosis From 1 to 31 diagnosis for each visit
Sex {Male, Female}
Race {White, Black, Hispanic, Asian, Native American, Other}
Procedure From 1 to 30 procedures for each visit
Days to Event This value indicates the difference in days between visits
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Both the diagnoses of the patient and the procedure(s) operated on the patient,

are extremely essential for our action rule extraction system; similar to the diagnosis

attribute, there were often multiple procedures operated on the patient in each visit,

ranging from 1 to 30 different procedures, while the number of different procedures

recorded in this dataset is roughly 3 thousand.

In the next section, we will explain how to extract atomic action sets from such

complex dataset; surely, we would still exploit our temporal-based (and object-driven)

approach, but the main challenge will be on how to transition from one diagnoses to

an entirely different one, since as we mentioned earlier, our dataset deals with all var-

ious kinds of diseases (and diagnoses). Table 13 shows the most common procedures

operated on patients.

Table 13: Most common procedures in the state inpatient dataset

Procedure Description
Packed cell transfusion Transfusion of packed cells (or blood).
Venous catheterization Long, thin, flexible tube used to give medicines, fluids,

nutrients, or blood products over a long period of time.
Coronary arteriography Coronary arteriography using two catheters
Cont inv mec ven < 96 hrs Continuous invasive mechanical ventilation for less than

96 consecutive hours.
Insert endotracheal tube the placement of a flexible plastic tube into the trachea

to maintain an open airway or to serve as a conduit
through which to administer certain drugs.

Hemodialysis Kidney dialysis.
Left heart cardiac cath Left heart cardiac catheterization.
Repair ob laceration Repair of other current obstetric laceration.

The key here is to extract atomic action sets from each diagnosis to each other

diagnosis; similarly, atomic action rules are extracted from each procedure to each
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other procedure, for each two visits. More details are provided in the next section.

5.2 Real-Time Action Rules Extraction Approach

There are three main characteristics that distinguishes the State Inpatient Dataset

from other more traditional datasets (such as the Hypernasality treatment):

1. Some columns are inconsistent ; by that, we mean that (for some attributes)

the same column may refer to states that are entirely different (and unrelated

to each other), this applies to both the diagnosis attributes and the procedure

attributes; since each record (or visit) can contain a maximum of 31 diagnoses,

this means that there are 31 attributes designated to diagnoses; having said

that, the diagnoses are not semantically ordered. For example, if we observe

the states (values) of one particular diagnosis attribute (or column), we may

observe the diagnoses is Hypertension in the first visit, and in the same col-

umn the diagnosis is cogestive heart failure in the second visit. This therefore

means that transitions from states within the same column for the diagnoses

should not be performed, instead we take into consideration all possible tran-

sitions from each diagnosis in the first visit, to each other diagnosis in the

second visit. For example, if we observe the following diagnoses for the first

visit: {diag1, diag2, diag3}, and we observe the following diagnoses for the sec-

ond visit {diag4, diag5}, then the atomic action sets that are generated are

the following: {(diag1 → diag4), (diag1 → diag5), (diag2 → diag4), (diag2 →

diag5), (diag3 → diag4), (diag3 → diag5)}, which is essentially the set of all

possible pairs; we use the same methodology to generate atomic action sets for
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the procedure attributes.

2. Extreme number of attribute states : As mentioned earlier, the number of valid

diagnoses and the number of valid procedures is extreme; in this dataset, we have

more than 10 thousand unique diagnoses, and more than 3 thousand procedures,

which means that the number of unique atomic action sets will be roughly 100

million (for only the diagnosis attributes), and almost 1 million (for only the

procedure attributes). Note here that in the association action rule extraction

methodology, we build frequent action sets from frequent atomic action sets;

which means that this number will grow quickly (and drastically). To solve this

problem, we propose an active (or real-time) action rule generation approach;

this novel approach is called real-time (or active) because it will allow action

rules to get generated only when needed (in our case, when a new patient comes

to the hospital). In other words, instead of constructing all (complete) action

rules before we start applying (or testing) our models to new instances, we only

construct atomic action sets, and when testing is required (new patient comes

to the hospital), we use the set of already constructed atomic action sets to

build complete action rules. By using this approach, we will only need to keep

track of atomic action sets, which would save us tremendous resources (both

speed and memory) in cases such as this one; when we are dealing with large

datasets.

3. Unknown desired/undesired states: Since the set of all possible diagnoses is

terribly large (and diverse), it would be impossible to sort them in an order
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that implies their desire levels. For example, it would not make any logical

sense to ask (doctors) the question of whether diabetes is more (or less) desired

than Hyperlipidemia, since the two are basically distinct diagnoses; hence (for

the most part) unrelated. To solve this problem, we propose two approaches,

the first one is to generate essentially all action rules that transforms diagnoses

with respect to procedures; so when a new patient gets admitted to the hospital,

we observe his/her current diagnoses (and possibly the last procedure operated

on him/her), then we extract a set of candidate procedures that were essentially

operated on similar patients in the past, and from each procedure we generate

complete action rules that show the transitions in diagnoses, by observing the

set of anticipated diagnoses (for each procedure), the doctor then proceeds with

the most appropriate procedure. The second approach is to further filter action

rules by allowing the doctor to specify the procedure that he/she would like to

perform on the patient, and then the set of diagnoses transitions are presented

to the doctor. Note here that the system allows users (essentially doctors) to

specify more than one operation to be performed on the patient.

Next, we show a complete example of how to build our real-time action rule extrac-

tion system. Shown in Table 17 is a simplified object-driven (and temporally based)

information system; we assume that for each patient, the instances are presented in

chronological order.

Using the pair-based approach, we extract the following diagnosis atomic action

sets:
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Table 14: Information system S8

Patient ID diagnosis1 diagnosis2 diagnosis3 procedure1 procedure2
x0 1 d1 d3 d2 p1 p0
x1 1 d5 d6 d0 p3 p4
x2 2 d5 − − p2 −
x3 2 d1 d2 − p1 p3
x4 2 d1 d3 d4 p1 −
x5 3 d8 d7 − p4 p3
x6 3 d2 − − p3 p0
x7 4 d8 − − p1 −
x8 4 d2 d3 − p2 p5
x9 4 d4 − − p1 −
x10 4 d4 d3 − p2 p5

• From (Patient ID, 1): {(d1 → d5, support : 1), (d1 → d6, support : 1), (d1 →

d0, support : 1), (d3 → d5, support : 1), (d3 → d6, support : 1), (d3 → d0, support :

1), (d2 → d5, support : 1), (d2 → d6, support : 1), (d2 → d0, support : 1)}

• From (Patient ID, 2): {(d5 → d1, support : 2), (d5 → d2, support : 1), (d1 →

d1, support : 1), (d1 → d3, support : 1), (d1 → d4, support : 1), (d2 → d1, support :

1), (d2 → d3, support : 1), (d2 → d4, support : 1)}

• From (Patient ID, 3): {(d8 → d2, support : 2), (d7 → d2, support : 1)}

• From (Patient ID, 4): {(d8 → d2, support : 2), (d8 → d3, support : 2), (d8 →

d4, support : 2), (d2 → d4, support : 2), (d2 → d3, support : 1), (d3 → d4, support :

2), (d3 → d3, support : 1), (d4 → d4, support : 1), (d4 → d3, support : 1)}

Note that when we transform from one diagnosis to the same, we still consider the

atomic action set e.g. (Patient ID, 2): (d1 → d1, support : 1); also note here that

for each atomic action set, we keep track of the instances that satisfy the left hand

side, and the instances that satisfy the right hand side; this would be the only way
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to build action rules from atomic action sets. This should become more clear as we

continue with our example. To keep track of all the atomic action sets (and their

support), one efficient way would be to construct a matrix of diagnoses codes; this

will allow O(1) for accessing atomic action sets. Table 15 shows such matrix for our

diagnosis attributes (for this example); note that this is not a symmetric matrix, since

the atomic action set (dx → dy) does not indicate (dy → dx).

Table 15: Matrix of atomic action sets for the diagnosis attribute

d0 d1 d2 d3 d4 d5 d6 d7 d8
d0 0 0 0 0 0 0 0 0 0
d1 1 1 0 1 1 1 1 0 0
d2 1 1 0 2 3 1 1 0 0
d3 1 0 0 1 2 1 1 0 0
d4 0 0 0 1 1 0 0 0 0
d5 0 2 1 1 1 0 0 0 0
d6 0 0 0 0 0 0 0 0 0
d7 0 0 1 0 0 0 0 0 0
d8 0 0 2 2 2 0 0 0 0

Similarly, we do the same for our procedures; using the pair-based approach, we

extract the following procedure atomic action sets:

• From (Patient ID, 1): {(p1 → p3, support : 1), (p1 → p4, support : 1), (p0 →

p3, support : 1), (p0 → p4, support : 1)}

• From (Patient ID, 2): {(p2 → p1, support : 2), (p2 → p3, support : 1), (p1 →

p1, support : 1), (p3 → p1, support : 1)}

• From (Patient ID, 3): {(p4 → p3, support : 1), (p4 → p0, support : 1), (p3 →

p3, support : 1), (p3 → p0, support : 1)}
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• From (Patient ID, 4): {(p1 → p2, support : 2), (p1 → p5, support : 2), (p1 →

p1, support : 1), (p2 → p1, support : 1), (p2 → p2, support : 1), (p2 → p5, support :

1), (p5 → p1, support : 1), (p5 → p2, support : 1), (p5 → p5, support : 1)}

Table 16 shows such matrix for our diagnosis attributes:

Table 16: Matrix of atomic action sets for the procedure attribute

p0 p1 p2 p3 p4 p5
p0 0 0 0 1 0 0
p1 0 2 2 1 1 2
p2 0 3 1 1 0 1
p3 1 1 0 1 0 0
p4 1 0 0 1 0 0
p5 0 1 1 0 0 1

When a new patient (or visit) enters the system, we use the atomic action rules

extracted (from the diagnosis attributes and procedure attributes) to extract complete

action rules. Let us assume that a patient comes in for the second visit, and we observe

his/her states (or diagnoses) and from that information, we would like to decide on

which procedure(s) to perform to improve his/her condition; using our system, the

doctor will be able to anticipate the outcome for any specified operation that he/she

can think of, to make sure it matches his/her desired outcome. For example, if the

following is the information about the new patient:

Table 17: New patient data

Patient ID diagnosis1 diagnosis2 diagnosis3 procedure1 procedure2
x0 5 d0 d3 d2 p1 p0
x1 5 d5 d6 d4 ? ?

The doctor may want to check what the condition of the patient would be after

applying p2 for example. We start by checking whether there exist (in our learned
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system) atomic action sets that transform from last operation to p2; the current

patient’s last operations were p0 and p1, by examining Table 16, we can observe that

(p0 → p2) does not exist; however, (p1 → p2) does, so we further examine the instances

in which the atomic action set (p1 → p2) was satisfied; which would be for the left

hand side: {x7, x9}, and for the right hand side: {x8, x10}; next, we check the atomic

action sets for each of the diagnoses to try and find transitions that occurred within

the same instances. Let us check one diagnosis at a time, first we start with d5 - this

is the value for diagnosis1 for the current patient (Patient ID, 5) - by looking at the

row d5 in Table 15:

• (d5 → d1); left hand side: {x2}, right hand side: {x3, x4};

{x2} ∩ {x7, x9} = φ and {x3, x4} ∩ {x8, x10} = φ

• (d5 → d2); left hand side: {x2}, right hand side: {x3};

{x2} ∩ {x7, x9} = φ and {x3} ∩ {x8, x10} = φ

• (d5 → d3); left hand side: {x2}, right hand side: {x4};

{x2} ∩ {x7, x9} = φ and {x4} ∩ {x8, x10} = φ

• (d5 → d4); left hand side: {x2}, right hand side: {x4};

{x2} ∩ {x7, x9} = φ and {x4} ∩ {x8, x10} = φ

Note that none of the transitions from d5 resulted in a nonempty set when inter-

sected with the sets that transition the specified procedure. We now check the second

diagnosis value d6; by looking at d6 row in Table 15, we can observe that d6 does not
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transition to any other state, so we discard it. Next we look at the third diagnosis

value d4; by looking at d4 row in Table 15, we observe the following transitions:

• (d4 → d3); left hand side: {x9}, right hand side: {x10};

{x9} ∩ {x7, x9} = {x9} and {x10} ∩ {x8, x10} = {x10} 3

• (d4 → d4); left hand side: {x9}, right hand side: {x10};

{x9} ∩ {x7, x9} = {x9} and {x10} ∩ {x8, x10} = {x10} 3

Since the two transitions: (d4 → d3) and (d4 → d4) are both valid, and since there

are no more diagnosis transitions that are valid, we can construct the two following

action rules:

(p1 → p2)⇒ (d4 → d3)

(p1 → p2)⇒ (d4 → d4)

The above two rules mean that by performing the procedure p2 on the new patient,

we are likely to observe a new condition (or diagnosis): d3, and the condition (or

diagnosis): d4 is likely to stay. Next, we further calculate the confidence and support

for that action rule. Note here that this approach will not affect the way we calculate

the confidence and support, it will only extract action rules (in real-time) that are

relevant, without extracting all action rules; and this is the main contribution here.



CHAPTER 6: OBJECT-DRIVEN ACTION REDUCTS

The concluding objective of both action reducts and action rules is the same; that

is, to provide actionable tasks that specify necessary changes (actions) that will yield

to desired transitions in an information system. In spite of their similarities, action

reducts and classical action rules substantially differ in their properties, and in some

situations, they tackle entirely different challenges. The extraction methodology for

each approach is fundamentally distinct from the other, and therefore will result in

virtually distinct actionable patterns. In this section, we provide a complete descrip-

tion of action reducts, how they differ from action rules, and how they are extracted

from information systems. After that we introduce Object-driven Action Reducts ; a

new object-driven approach for extracting action reducts from information systems.

We apply both the generalized action reducts, and the specialized object-driven ac-

tion reducts to our hypernasality dataset and present some of the resulting action

reducts extracted.

6.1 Reducts

The idea of exploring relations between attributes is the heart and soul of data

mining and pattern extraction. In a certain sense, data mining could be regarded as

a collection of algorithms for extracting relations between attributes, with distinct

properties allocated to them.
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Reducts answer one vital question about the relations of attributes; that is, can we

reduce the total number of attributes used, by disregarding some, without losing any

valued information; e.g. potential actionable patterns. Our goal from action rules

extraction is to extract the most knowledge that can be extracted, in the form of

actionable patterns, from any information system. In many situations, action rules

extraction methodologies result in redundant action rules. Hence, the concept of rep-

resentative action rules was proposed in [23] (explained in Section 2.3) to refer to

the subset containing all essential action rules that can be later extended if needed.

Extracting action rules from a compact and concise, but complete, system will gen-

erally result in overall rules with less redundant attributes; rules which are better to

understand, better to extract, and better to apply. In other words, reducts seek to

find a subset of the original set of attributes that we can use and still preserve all

information needed to extract the same representative action rules.

Reducts have been used extensively in the field of rough set theory as a technique

for information system reduction in general [17, 18], and as a tool to be used in

extracting action reducts in particular [16]. In this section we provide a detailed

explanation of two different variations of reducts, the first, formerly introduced one,

is a reduct of the whole set [17, 18, 19], and the second, more recent variation, is the

one proposed in [16] which defines α and β reducts.

To establish common background, we start by providing preliminary definitions. A

classification, loosely speaking, is an operation that partitions the set of elements in

the universe U into subsets that share similar characteristics. Every element will be
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Table 18: Information system S9

a b c d

x1 a1 b2 c2 d1
x2 a2 b2 c1 d2
x3 a2 b1 c1 d2

classified into one and only one subset (or class). Meaning that a classification will

partition our information system into a set of all subsets C = {X1, X2, . . . , Xn} such

that Xi ⊆ U,Xi 6= φ,Xi ∩Xj = φ for i 6= j, i, j = 1, . . . n and
⋃
Xi = U [17].

According to the classification, also referred to as the equivalence relation, elements

in any subset Xi are indiscernible (or indistinguishable) from each other. To denote

a classification applied to a set, we use the notation U/P , where U is the universe

and P is an equivalence relation.

For example, referring to information system S9 in Table 11,

U/P = {{x1}, {x2, x3}},where P = {c},

which means that by using attribute c, our information system is partitioned into the

two following subsets: {x1} and {x2, x3}.

The following are few more examples, using S9 as our information system:

U/P = {{x1}, {x2, x3}},where P = {a},

U/P = {{x1, x2}, {x3}},where P = {b},

U/P = {{x1}, {x2}, {x3}},where P = {a, b}.

Note that in the last example, the equivalence relation defined by P is the in-
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tersection of the two single-attribute equivalence relations. In other words, for an

observation x1 to be in the same equivalence class as x2, it has to match both at-

tributes a and b; which is clearly not the case.

A reduct P ⊆ A in an information system S = (A, V ) must satisfy the two following

conditions:

1. U/P = U/A

2. P is a minimal set of attributes with property 1.

The first property guarantees that no loss of valued information has occurred; it

means that using the set of attributes defined by the reduct P should not be any

less discernible than using the set of all attributes A. Clearly it cannot be more

discernible, as P ⊆ A, where A is the set of all attributes. For example, referring to

information system S1, we can remark that by using the set of attributes {a, b, c} as

our equivalence relation, we would be able to discern every instance from every other

instance; U/{a, b, c} = {{x1}, {x2}, {x3}}. However, it can also be remarked that {a,

b, c} is not a minimal set, which means that the set {a, b, c} cannot be considered

a reduct. By doing further more analysis, it can be observed that the reducts in S1

are the following: {a, b}, {b, c}, and {b, d}. Note that it is not uncommon to have

multiple reducts. In this work, we will not explore the different ways for extracting

reducts from an information system.

Next, we shift our discussion to the more recent variation of reducts proposed by

Im et al. in [16]. The core difference between the newly introduced approach in [16],

and the former classical reducts approach is essentially in the discernibility domain.
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Table 19: Xα for information system S5

ObjectID Income Number of Children Loyalty

x3 1 High More than 3 High
x4 1 High More than 3 High

x7 2 Medium Less than or equal to 3 High
x8 2 Medium Less than or equal to 3 High

In the classical reducts, we aim to preserve the same discernibility capacity for every

instance against every other instance. On the other hand, in the newly introduced

reducts, we aim to preserve the same discernibility capacity for the set of desired

instances against the set of undesired instances. As we will see in following sections,

this will be of essential importance, and great use, when extracting action reducts.

We start by partitioning our information system into two separate tables. The first

one, which is called Xα, will contain all desired instances; desired instances will be

determined by one (or more) predefined desired state(s) of the decision attribute. The

second table, which is called Xβ, will contain undesired instances; similarly, undesired

instances will be determined by one (or more) predefined undesired state(s) for our

same decision attribute.

For example, by partitioning the information system S5 shown in Table 8 (add page)

into the desired set Xα = {xi ∈ X : Loyalty(xi) ∈ {High}}, and the undesired set

Xβ = {xj ∈ X : Loyalty(xj) ∈ {Low}}, we would get as a result the two subsystems

shown in Table 19 and Table 20, respectively.

The goal of action reducts explained in [16] is to find a minimal set of attributes

states that exists exclusively in our desired table Xα. For example, referring to

information system S5, we can observe from Table 19 and Table 20 that the state
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Table 20: Xβ for information system S5

ObjectID Income Number of Children Loyalty

x1 1 Medium More than 3 Low
x2 1 Medium More than 3 Low

x5 2 Low Less than or equal to 3 Low
x6 2 Low Less than or equal to 3 Low

Income(High) exists exclusively in Xα, also the two states combined Income(Medium)

and NumberOfChildren(Less than or equal to 3) also exist (exclusively) in Xα; as a

result, both the single-attribute state, and the double-state attributes are reducts.

Note that although the two states Income(High) and NumberOfChildren(More than

3) are exclusive to Xα, they cannot be considered a reduct since they are not minimal.

It is also noteworthy to remark that this variation of reducts will result in attribute

states results, instead of the first reduct variation, which would result in attributes

reducts.

In the next two sections, we provide two different approaches in which action

reducts can be extracted. The first one, being the general approach, is the one on

which we make the assumption that all instances come from the same distribution,

and therefore action reducts are extracted from the overall system at once. It is

important to understand that when extracting action reducts (or action rules) from a

set of instances, all instances need to come from the same distribution. In theory, if our

information system contains every possible attribute for all instances, instances from

different distributions would be distinguishable by their attribute values. However, it

is practically impossibly to observe the complete characteristic of every instance.

Although generalization is necessary for real-world applications, we believe that
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limiting the degree of generalization has major benefits in some situations. It is

often the case that our information system instances come from intrinsically many

unique distributions; having said that, instances that belong to one cluster of some

distribution do not necessarily need to share similar characteristics, however similar

behavior, which makes this process rather non-trivial.

6.2 (Generalized) Action Reducts

In generalized action reducts, we assume that all instances are observed from the

same distribution; hence, action rules are extracted from the entire information system

at once. We start by building the discernible attribute values for Xα against Xβ [16],

as shown in Table 21.

Table 21: Discernible attribute values for Xα against Xβ

x3 x4 x7 x8

x1 High Income High Income N of C ≤ 3 N of C ≤ 3
x2 High Income High Income N of C ≤ 3 N of C ≤ 3
x5 High Income +

N of C ≥ 3
High Income +
N of C ≥ 3

Medium
Income

Medium
Income

x6 High Income +
N of C ≥ 3

High Income +
N of C ≥ 3

Medium
Income

Medium
Income

Each column shows the necessary attribute states that need to be satisfied, in order

for the undesired instance to become desired in a way that matches that corresponding

column. We assume here that N of C means “numbers of children”. For example,

the first column states one way to shift clients’ loyalty from low to high; by changing

the characteristics of elements in Xβ to match those of x3 ∈ Xα. The conjunction of

the states in the first column indicates the required change:
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(High Income) ∧ (High Income ∨ N of C ≥ 3).

Note that the required change is described in the form of conjunctions. To extract

α-reducts, we need to convert the conjunction normal form (CNF) to a disjunction

normal form (DNF); by finding prime implicants. Referring to the same example

above (using first column), the result of converting the CNF to DNF would yield the

following: (High Income) ∨ (High Income ∧ N of C ≥ 3). Since α-reducts need to

be minimal, we dismiss the second term of our previous disjunction. Here, we show

a list of all α-reducts acquired from Table 21:

• α-reducts(x1) = {(High Income)}

• α-reducts(x2) = {(High Income)}

• α-reducts(x3) = {(Medium Income ∧ N of C ≤ 3)}

• α-reducts(x4) = {(Medium Income ∧ N of C ≤ 3)}

Each resulting α-reduct, also known as action reduct, can be interpreted as an

actionable rule. For example, the α-reduct (Medium Income ∧ N of C ≤ 3) can

be interpreted as follows: by shifting the income of employees who have number of

children less than or equal to three from any state to medium, we would improve their

loyalty from low to high. Note that this form of actionable tasks does not specify

the source state (state that we should shift from). Classical action rules on the other

hand specifies both the source state, and the destination state.

To define action reducts more precisely, three characteristics were introduced in

[16]; frequency, hit ratio, and weight. The frequency of an α-reduct is the number
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of times it appears in Xα. The hit ratio on the other hand, reflects the percentage

of instances in Xβ that can be shifted to an α-reduct; note that although we do not

specify the source of the actionable task, the fact that some attributes are stable will

limit our source domain. Finally, the weight is the normalized value of the frequency

multiplied by the hit ratio; by normalizing, we set the sum of weights for all action

reducts to be one.

For example, the α-reduct (Medium Income ∧ N of C ≤ 3) has frequency 2; since

it appears two times in Xα, has hit ratio 2; since two instances in Xβ can be shifted

to it, and has weight of 4/8. Table 22 shows the characteristics of the two action

reducts.

Table 22: α-reduct for information system S5

α-reduct Frequency Hit Ratio Weight

(High Income) 2 1 4/8 (50%)
(Medium Income ∧ ≤ 3) 2 .5 4/8 (50%)

6.3 Results of Applying Generalized Action Reducts to

Hypernasality

Action Reduct 1. r1 = (yeaou,< 2.5) ∧ (i − long,< 1.5); Cut configuration: de-

sired:{0, .5, 1, 1.5}; undesired:{2, 2.5, 3}; frequency: 133; hit ratio: 1; weight: .029

This action reduct states that by decreasing the levels of nasalization for vowels

/I, e, a, o, u, i/ to less than 2.5, and by decreasing /i/-long to less than 1.5, we are

expected to move patients who had one of the following undesired states: {2, 2.5, 3}

to one of the following desired states {0, .5, 1, 1.5}. Note that although the weight



77

appears to be low, this is not due to any weakness of the action reduct, but instead

due to the many (341) action reducts generated; in fact, this is the strongest action

reduct amongs all 341. Recall that the weights of all action reducts are normalized

so that all weights sum up to 1.

Action Reduct 2. r2 = (diagnosis, III) ∧ (yeaou,< 2.5); Cut configuration: de-

sired:{0, .5, 1}; undesired:{1.5, 2, 2.5, 3}; frequency: 191; hit ratio: 1; weight: .035

Although the number of total action reducts generated by this cut configuration

is higher than the previous action reduct cut by 30, the weight of this action reduct

is still higher than of r1. This action reduct states that for patients who are having

hypertrophy of adenoids (and possibly palatine tonsils), by decreasing their levels of

nasalization for vowels /I, e, a, o, u, i/ to less than 2.5, they are expected to improve

from one of the following Czermak’s mirror tests’ undesired states: {1.5, 2, 2.5, 3} to

one of the following desired states {0, .5, 1}.

Action Reduct 3. r3 = (diagnosis, III) ∧ (i − long,< 1.5); Cut configuration:

desired:{0, .5}; undesired:{1, 1.5, 2, 2.5, 3}; frequency: 118; hit ratio: 1; weight: .023

This action reduct states that for patients who are having hypertrophy of adenoids

(and possibly palatine tonsils), by decreasing their levels of /i/-long, they would be

expected to improve from one of the following Czermak’s mirror tests’ undesired

states: {1, 1.5, 2, 2.5, 3} to one of the following desired states {0, .5}.

6.4 Specialized Action Reducts

In this section, we will discuss a less general approach in which action reducts can

be extracted. We believe that this specialized action reduct extraction methodology
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will be a fit candidate in situations where information systems have intrinsic nature

of multi-distribution.

The main difference between the specialized approach and the previously explained

general approach is in the way we build the discernible matrix. As seen before, when

we build our discernible matrix for the general approach, we are concerned with the

discernible attribute values for the entire Xα agains the entire Xβ. However, when

constructing the discernible matrix for the specialized case, we are concerned with

the discernible attribute values for subsystems of Xα and Xβ; the subsystems are

defined by an object attribute. In Table 23, we show the discernible matrix using the

specialized (object-driven) case; N/A indicates an intersection of two instances with

different UserID values, therefore discernibility for the two instances should not be

calculated.

Table 23: Specialized discernible attribute values for Xα against Xβ

x3 x4 x7 x8

x1 High Income High Income N/A N/A
x2 High Income High Income N/A N/A
x5 N/A N/A Medium Income Medium Income
x6 N/A N/A Medium Income Medium Income

The way we calculate the frequency, hit ratio, and weight for each subsystem is

similar to the general approach. However, we aggregate the values for same α-reducts

from multiple subsystems. In our example, the two different subsystems do not share

any α-reducts, therefore no aggregation will take place. In addition, we introduce a

fourth property for the specialized version of α-reducts; namely, the accuracy. The

accuracy of an α-reduct extracted from a subsystem will indicate whether there exist



79

Table 24: Specialized α-reduct for information system S5

α-reduct Frequency Hit Ratio Weight Accuracy

(High Income) 2 1 4/8 (50%) 2/2 (100%)
(Medium Income) 2 .5 4/8 (50%) 2/4 (50%)

any contradictions with other subsystems or not. We define the accuracy of an α-

reduct as the sum of its occurrences in both Xα and Xβ for all subsystems, divided

by its frequency. Table 24 shows the characteristics of the specialized α-reducts.

Note that the second α-reduct also exists in Xβ for the second subsystem (userID:

2), which ultimately affects the accuracy rather unfavorably. In a certain sense, the

specialized action reducts and the generalized action reducts provide system users

with different outcome. The outcome of the generalized action reducts extraction

method is absolute, in a sense that 100% of all α-reducts that are extracted are

exclusively observed in Xα (in association with the desired state) and not even once

in Xβ. The outcome of the specialized action reducts on the other hand is not

absolute for the entire system; the accuracy of each action reduct is an indicator of

its absoluteness.

Example of specialized action reducts: here, we provide a complete example to

demonstrate how to extract specialized action reducts from a sample information

system. Table 25 shows Information System S10, which consists of elements observed

from three different users; denoted by the object attribute UserID. From Table 25,

we build the two matrices Xα and Xβ shown in Table 26 and Table 27 respectively;

where our decision attribute is d, and our desired state is d2. Next, the object-driven

specialized discernibly matrix shown in Table 28 is constructed. Note that it would
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Table 25: Information system S10

UserID a b c d

x1 1 a1 b1 c1 d1
x2 1 a1 b1 c2 d1
x3 1 a2 b2 c2 d2
x4 1 a1 b2 c1 d1
x5 1 a1 b1 c1 d2

x6 2 a1 b1 c1 d2
x7 2 a1 b1 c2 d1

x8 3 a2 b2 c2 d1
x9 3 a2 b2 c2 d1
x10 3 a1 b2 c2 d2
x11 3 a1 b2 c2 d2

Table 26: Xα for information system S10

UserID a b c d

x3 1 a2 b2 c2 d2
x5 1 a1 b1 c1 d2

x6 2 a1 b1 c1 d2

x10 3 a1 b2 c2 d2
x11 3 a1 b2 c2 d2

invalid to extract discernibility value(s) between two instances from different objects;

hence, we denote such case with the value N/A.

The first column in Table 12 indicates three distinct units of information; firstly,

it indicates that the desired instance x3 is different from the undesired instance x1

by the three states a2, b2, and c2; secondly, it indicates that x3 is different from x2

by the two states a2 and b2; and thirdly, it indicates that x3 is different from x4 by

the two states a2 and c2. This means that for the instance x3 to be distinct from

all other undesired states, it should satisfy at least one state when compared to each

other undesired state. The process is known as finding prime implicants; and it is
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Table 27: Xβ for information system S10

UserID a b c d

x1 1 a1 b1 c1 d1
x2 1 a1 b1 c2 d1
x4 1 a1 b2 c1 d1

x7 2 a1 b1 c2 d1

x8 3 a2 b2 c2 d1
x9 3 a2 b2 c2 d1

Table 28: Discernable attribute values for information system S10

x3 x5 x6 x10 x11

x1 a2 + b2 + c2 φ N/A N/A N/A
x2 a2 + b2 c1 N/A N/A N/A
x4 a2 + c2 b1 N/A N/A N/A
x7 N/A N/A c1 N/A N/A
x8 N/A N/A N/A a1 a1
x9 N/A N/A N/A a1 a1

done by converting the conjunction normal form (CNF) to disjunction normal form

(DNF). The conjunction normal form (CNF) for the first column is the following:

((a, a2) ∨ (b, b2) ∨ (c, c2)) ∧ ((a, a2) ∨ (b, b2)) ∧ ((a, a2) ∨ (c, c2))

Which, when converted to the disjunction normal form (DNF), would become:

((a, a2)∧(b, b2)∧(c, c2))∨((a, a2)∧(b, b2))∨((a, a2)∧(c, c2))∨((b, b2)∧(c, c2))∨(a, a2)

However, since we are only interested in reducts, we discard any set that contains

an existing subset; and since (a, a2) exists in three other components, and yet it is an

element by itself, we will be left with only two sets:

(((((((((((((
((a, a2) ∧ (b, b2) ∧ (c, c2))∨(((((((((

((a, a2) ∧ (b, b2))∨(((((((((
((a, a2) ∧ (c, c2))∨((b, b2)∧(c, c2))∨(a, a2)
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Following the same procedure, we would end up with the following specialized

action reducts:

• α-reducts(x3) = {((b, b2) ∧ (c, c2)), (a, a2)}

• α-reducts(x5) = {(b, b1), (c, c1)}

• α-reducts(x6) = {(c, c1)}

• α-reducts(x10) = {(a, a1)}

• α-reducts(x11) = {(a, a1)}

Note that two of the resulting reducts appear to be contradicting each other, namely

(a, a1) and (a, a2), this is however not so uncommon in object-driven action reducts;

since we are extracting action reducts from subsystems independently, conflict be-

tween subsystems is at times inevitable to occur. This conflict however, will not

cause any confusion to which action reduct is to be chosen; the latterly defined char-

acteristic of accuracy will help us disambiguate this, and any similar, case; by showing

which action reduct has more strength; hence, the one to be chosen. Next, we will

demonstrate how to calculate the characteristics of object-driven specialized action

reducts for both (a, a1) and (a, a2).

The frequency of (a, a1) is 4, since it appeared once to (userID, 1), once to (userID,

2), and twice to (userID, 3); the frequency of (a, a2) on the other hand is 1, since

it appeared only once to (userID, 1). The hit ratio is a rather interesting measure

in this case; the reason goes back to our object-driven approach mentioned earlier,

which states that we need to treat each subsystem as an entirely independent system;
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this will mean that the hit ratio needs to be calculated independently from each

subsystem. Accordingly, the hit ratio of (a, a1) will be equal to 0/3 (userID, 1) + 0/1

(userID, 2) + 2/2 (userID, 3), which evaluates to 1; this value is further normalized

according to the weight of each object; the hit ratio for (a, a2) on the other hand will

be equal to 3/3 (userID, 1) + 1/1 (userID, 2) + 0/2 (userID, 3), which evaluates to 2.

Similarly, the weight needs to be calculated for each subsystem independently; (a, a1)

will have weight 1 ∗ 2 (userID: 3), which evaluates to 2; consequently, (a, a2) will

have weight 1 ∗ 1 (userID: 1), which would evaluate to 1; and again, all weights need

to be normalized. Finally, we calculate the accuracy value for both action reducts;

the accuracy for (a, a1) is 4/8; and the accuracy for (a, a2) is 1/3. Recall that the

accuracy of an action reduct is the sum of its occurrences in both Xα and Xβ for all

subsystems, divided by its frequency. Next, we show the list of characteristics for all

specialized action reducts:

Table 29: Specialized α-reduct for information system S10

α-reduct Frequency Hit Ratio Weight Accuracy

{(b, b2) ∧ (c, c2)} 3 1 .23 .6
{(a, a2)} 1 1 .23 .33
{(b, b1)} 2 .25 .08 .4
{(a, a1)} 4 .5 .46 .5

6.5 Results of Applying Specialized Action Reducts to

Hypernasality

Action Reduct 1. r1 = (motility, [4.5, 5.5]); Cut configuration: desired:{0, .5, 1,

1.5}; undesired:{2, 2.5, 3}; frequency: 4; hit ratio: 1; weight: .118; accuracy: .94
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Note that the weight of this action reduct is much higher than any of the gener-

alized action reducts, this is due the low number of action reducts generated in the

object-driven specialized approach. This action reduct states that by transitioning

the motility of the soft palate for patients to [4.5, 5.5], we are expected to observe a

condition change of patients who had one of the following undesired states: {2, 2.5,

3} to one of the following desired states {0, .5, 1, 1.5}

Action Reduct 2. r2 = (i − long, [2.5, 7.5)) ∧ (difference level F1-F2 , < 4.5); Cut

configuration: desired:{0, .5, 1}; undesired:{1.5, 2, 2.5, 3}; frequency: 1; hit ratio: 1;

weight: .028; accuracy: .87

This rule states that by transitioning the state of patients’ levels of /i/-long to

[2.5, 7.5], and by decreasing the difference between the first two formants of the vocal

tract for /i/-long, we would expect to improve patients’ condition from one of the fol-

lowing undesired states: {1.5, 2, 2.5, 3} to one of the following desired states {0, .5, 1}.

Action Reduct 3. r3 = (bdg, [6.5, 8.6)); Cut configuration: desired:{0}; unde-

sired:{.5, 1, 1.5, 2, 2.5, 3}; frequency: 9; hit ratio: 1; weight: .042; accuracy: .90

This action reduct is rather simple and straight forward, but its high frequency

(compared to other object-driven specialized action reducts) makes it an interesting

and valuable pattern. It states that by shifting the patients’ nasality of /bdg/ to [6.5,

8.6), we would expect for their Czermak’s mirror test to transition from one of the

following undesired states: {.5, 1, 1.5, 2, 2.5, 3} to {0}; which would be the absolute
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best condition the patient may transition to.



CHAPTER 7: HIERARCHICAL OBJECT-DRIVE ACTION RULES

7.1 Motivation: From Concepts to Applications

So far, we have discussed in details the concept of object-driven and temporal

action rules. In summary, we approached the problem of action rule extraction by

treating our entire information system as a collection of multiple subsystems that, as-

sumingly, come from the same distribution. This approach is highly encouraged when

dealing with temporal information systems, and when mixing different distributions

of observations might lead to unrepresentative action rules; though by treating our

information system as one, we might get more action rules, the actual accuracy and

intrinsic confidence might not indeed reflect the actual state of reality. For that rea-

son, we decided to re-examine our information system, take a step back, and apply

action rule extraction to the level of objects; while all details were explained in previ-

ous sections. Our results have been successfully examined (and tested) by physicians

in the field, so we are confident to say that the object-driven and temporal based

approach presented in this thesis was a successful attempt for action rule extraction.

Having said that, it is important to note that although we are extracting more

accurate action rules, some argue that this approach; as it is right now, is imposing

few limitations. Needless to say, the process of specializing applied to our entire

information system, hence restructuring it into multiple independent sub-systems, is
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preventing us from extracting rules from different patients when combined together;

by doing so, it may seem that we are being overly cautious. To that end, we propose

a hybrid approach in which we combine the more accurate but less vast approach

of object-driven and temporal action rules, with the less accurate but more vast

approach of the classical action rule approach.

In Chapter 4, we explained the motivation of object-driven and temporal action

rule extraction, and that we only extract (or learn) action rules from events that in

fact actually happened in our information system, this is the essence and motive that

led us to limit the direction of action rule extraction to comply with the temporal

aspect.

In this Chapter, we introduce a systematic approach to calculate a hierarchical

similarity metric between objects in information systems. This will allow us to group

objects that have high similarities; consequently, making it feasible to further ex-

tract action rules from objects in clusters rather than in isolation, which would in

turn result in veritably stronger and more diverse collection of action rules. One of

the fundamental motives for object-driven action rules however, is to avoid cross-

object learning [3], [4]; by cross-object learning, we mean extracting action rules from

instances that come from different distributions. For that reason, our clustering ap-

proach introduced in this work must comply with that principle as well; in other

words, objects that are similar to each other (according to our similarity metric that

will be introduced in this Chapter) are fundamentally objects that come from similar

distributions. Having said that, it is worth stating here that action rules essentially

describe some behaviors in term of others; which makes object behavior an intrinsi-
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cally good choice to be used to measure similarities between objects; more details

about the clustering phase is discussed in following sections. Our choice of hierarchi-

cal clustering is strictly motivated by the flexibility it provides to system users; as

will be shown in later sections, the level of hierarchy chosen by system users deter-

mines the degree of specialization (or generalization) prior to action rule extraction;

for example, in certain domains such as healthcare, it is always necessary to be en-

tirely confident of the outcome of actions undertaken to patients, which would mean

that action rule generalization needs to be done attentively; although by generalizing

rules, we tend to cover a wider group of instances (typically patients in this case),

the fact that some instances will not behave according to the action rule will make

generalization an improper action. Note that this is not the case in other domains; for

example, in marketing, we may be interested in sending letters to potential clients to

buy a particular product; by generalizing our action rules, we are more likely to tar-

get a larger audience, however, the percentage of this larger audience may decrease,

though it would still be more profitable to do so.

7.2 Clustering by Object Behaviour

In Chapter 5, we discussed the advantages of limiting action rule extraction to

the level of objects. The motivation was to extract more accurate action rules that

better reflect real world cases, and to provide a more accurate actual representation

of the observed information system. However, we also mentioned that specialization

could cause over-fitting problems, and for that reason, it is the case that in some

situations, generalization may be preferred; mainly when our number of observations
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within unique objects is limited. In this section, we provide a hybrid approach that

combines both the specialized object-driven approach, and the general classical ac-

tion rules approach. The hierarchy that we build will provide system users with

tremendous convenience; allowing decision makers to take decision on how much gen-

eralization/specialization to be applied, by simply examining the dendrogram and

specifying the proper level of specialization.

While there are many advantages for having a pure specialized object-driven ap-

proach to extract action rules, it is clear that by having more objects in our system,

the number of extracted action rules, and their corresponding supports will auto-

matically be negatively affected. Following the non-temporal pair-based action rule

extraction (Subsection 5.3.3); for an object that consists of n number of instances,

the maximum support (number of supporting pairs that could exist) is (n/2)2, and

that is only the case when half of our instances satisfy the preconditions of the action

rule, and the other half satisfy the postcondition of the action rule; it would become

apparent then, that by dividing our information system to multiple subsystems, the

total support for our action rules will eventually decrease. For example, if we extract

action rules from a system of 100 instances, the maximum support for a particular

action rule would be 502, which is 2500; however, if we divide our 100-instance system

into ten 10-element subsystems, the maximum support for a particular action rule

would be 10 ∗ 52, which is 250, only one tenth the possible action rules that could be

extracted by not using the object-driven approach; more accurately, the maximum

support for a potential action rule is inversely proportional to the number of objects
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(or clusters) in our information system.

Table 30 shows the number of action rules, and the total support for our hyper-

nasality disorder dataset described in Chapter 3. The first column in Table 30 denotes

the decision attribute of the action rules extracted from our system; the second col-

umn shows the total number of action rules extracted that trigger the corresponding

decision shift from the first column, note that in the second column, we are treating

each subsystem, identified by the object attribute, as an independent system. The

third column on the other hand shows the number of action rules extracted, again,

with respect to the corresponding decision shift from the first column, but after clus-

tering objects (or patients), forming 40 clusters; before clustering patients together,

we are essentially extracting action rules from each of the 225 objects (or patients)

independently; however, when we cluster objects together, we are combining objects

(or patients), hence resulting in less subsystems, but with more instances in each sub-

system (or cluster). Necessary details about our information system will be provided

in following sections; however, we can still observe that when more objects (in this

case patients) are combined, forming less independent subsystems, the more unique

action rules get extracted. Combining patients (or objects) to form bigger groups of

patients occurs through a clustering procedure where a similarity metric is proposed,

as will be seen next. Also, the fourth column shows values for the total support for

all action rules instead of the actual number of action rules; similarly, we can observe

a pattern of changes, in which the more objects we combine, the higher support for

action rules we get.

To address the limitations that may occur when extracting action rules from pure



91

Table 30: Total number of action rules with respect to number of clusters

Number of Action Rules Total Support
decision shift object-driven 40 clusters object-driven 40 clusters
(2.5→ 2) 1608 35937 4456 354332
(2.5→ 1) 700 31467 1580 304808
(2→ 1.5) 112 12972 224 81072
(2→ 1) 480 25728 960 223753
(2→ 0) 14 91133 28 931985
(1.5→ 1) 388 10054 776 66874
(1→ 0.5) 96 59927 200 497465
(1→ 0) 954 85769 1996 755361

object-driven approach, we present a new hierarchical approach in which we cluster

objects that react similarly to particular treatments using the minimum (or single-

linkage) clustering criterion; this approach, which we will refer to as the hybrid hi-

erarchical approach, can be regarded as the product of combining both the classical

action rule extraction approach and the object-driven approach. The goal thus be-

come to examine objects and find groups of objects that we would expect to react

similarly when a set of actions were to be performed; in other words, react similarly to

particular action rules. Our assumption that we base this work upon is that objects

that share high similarities with respect to actions, tend to share same reactions with

other unexamined actions. For example, if two patients react similarly to ten shared

treatments, then one would be relatively confident that they share similar responses,

hence are more likely to respond similarly to other actions as well; in this section,

we provide a detailed explanation of the hybrid hierarchical action rule extraction

approach. The idea proposed here is to use our existing action rule extraction system

to learn similarities in behavior found in objects (or patients). As mentioned earlier,

the goal and outcome of action rule extraction is to bring forth actionable patterns
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that describe reactions that will occur as a result of other performed actions; in other

words, by performing some actions, others (in which we do not have direct control

over) will be triggered as a result. Typically, we would be only interested in specific

shifts; for example, in our hypernasality treatment case study, we were interested in

transitions that shift the state of patient from more severe to less severe. It would

be an act of bias however, if we cluster patients by only measuring similarities with

respect to one direction of shift in our decision attribute. For that reason, to measure

similarities, hence clusters, using an unbiased behavioral approach, it would be only

fair to measure similarities in behavior in all directions. Next we provide steps to

accomplish that.

Note that when objects are combined together forming clusters, it would be pur-

poseless to consider the temporal aspect in further computations. The reason for that

goes back to the assumption that objects are independent entities; the fact that one

instance from one object occurred before another instance from another object has no

significant meaning whatsoever; for example, by knowing that one patient was given

a particular drug before another patient went into surgery will not help us to make a

better prediction of the surgery outcome, which is clearly not the case when dealing

with one entity (or patient).

1. The first step would be to identify all possible transitions in our decision at-

tribute. For example, if our decision attribute was d, where its possible val-

ues/states are listed in the following set: {d1, d2, d3}, then the following

set of atomic actions shows all possible transitions: {(d, d1 → d2), (d, d1 →



93

d3), (d, d2 → d1), (d, d2 → d3), (d, d3 → d1), (d, d3 → d2)}

2. The second step would be to extract all action rules with respect to the transi-

tions extracted in the first step; from every subsystem. We keep track of what

subsystems support an action rule and what subsystems do not. In addition

to that, we keep track of support and confidence for every action rule in every

subsystem.

3. The third step would be to build a similarity matrix between every pair of

objects, in which we measure the distance between the confidence and the rel-

ative support for every action rule in every subsystem. Since we are measuring

similarities between objects that contain different number of observations; it is

essential to use the relative support instead of the absolute support, defined as

the support divided by the number of observation. The similarity between two

objects o1 and o2 is defined as follows:

Similarity(o1, o2) =
∑
r∈R

2− |conf(o1)− conf(o2)|+
∣∣∣∣supp(o1)E(o1)

− supp(o2)

E(o2)

∣∣∣∣
Where R contains the set of all action rules shared by both o1 and o2, and

where E(o1) and E(o2) denote the number of observations in object o1 and o2

respectively. The division by the number of observation will result in the relative

support. For each two objects, all action rules similarities are computed then

further aggregated; if the confidence and relative support are equal for one

particular action rule, then the similarity will be 2 (for only that action rule),

which is essentially the maximum similarity value. Note that in this formulation,
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we assume that the confidence and support have equal weights when calculating

objects similarities; though we believe this is a fair assumption in our similarity

formulation, adding a rate to set different weights is easily accomplished, and

will not change the course of future computations.

4. Finally, we build a hierarchy of clusters using the minimum (or single-linkage)

clustering criterion based on the similarity matrix built in step 3, hence pro-

ducing a dendrogram.

Example to demonstrate the hybrid hierarchical object-driven approach: Here, we

provide an almost complete example by following the previous four steps to extract

action rules using the hybrid hierarchical object-driven approach.

Table 31: Information system S11

objectID a b d
x0 1 a1 b1 d1
x1 1 a2 b1 d1
x2 1 a2 b2 d2
x3 1 a1 b2 d1
x4 2 a2 b1 d2
x5 2 a1 b2 d2
x6 2 a2 b1 d1
x7 3 a1 b2 d1
x8 3 a2 b2 d2
x9 3 a1 b1 d1
x10 3 a2 b1 d2
x11 4 a2 b1 d1
x12 4 a2 b1 d1
x13 4 a2 b2 d2
x14 4 a1 b2 d1
x15 5 a1 b2 d1
x16 5 a2 b2 d2
x17 5 a1 b1 d1
x18 5 a2 b1 d2
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The first step would be to identify all possible transitions in our decision attribute.

In this example, and since we only have two states for our decision attribute d, the

two decision transitions are (d, d1 → d2) and (d, d2 → d1).

Next, we extract all action rules with respect to all decision transitions from every

subsystem; by applying the non-temporal pair-based approach. For the sake of sim-

plicity, let us assume that attribute b is a stable attribute. The output of this second

step would be:

The following action rules are extracted from Object ID 1 :

(a, a1 → a2)⇒ (d, d1 → d2); support 2; confidence 50%

(a, a2 → a1)⇒ (d, d2 → d1); support 2; confidence 100%

(a, a1 → a2) ∧ (b, b2)⇒ (d, d1 → d2); support 1; confidence 100%

(a, a2 → a1) ∧ (b, b2)⇒ (d, d2 → d1); support 1; confidence 100%

The following action rules are extracted from Object ID 2 :

(a, a1 → a2)⇒ (d, d2 → d1); support 1; confidence 100%

(a, a2 → a1)⇒ (d, d1 → d2); support 1; confidence 100%

The following action rules are extracted from Object ID 3 :

(a, a1 → a2)⇒ (d, d1 → d2); support 4; confidence 100%

(a, a2 → a1)⇒ (d, d2 → d1); support 4; confidence 100%

(a, a1 → a2) ∧ (b, b1)⇒ (d, d1 → d2); support 1; confidence 100%

(a, a1 → a2) ∧ (b, b2)⇒ (d, d1 → d2); support 1; confidence 100%
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(a, a2 → a1) ∧ (b, b1)⇒ (d, d2 → d1); support 1; confidence 100%

(a, a2 → a1) ∧ (b, b2)⇒ (d, d2 → d1); support 1; confidence 100%

The following action rules are extracted from Object ID 4 :

(a, a1 → a2)⇒ (d, d1 → d2); support 1; confidence 100%

(a, a2 → a1)⇒ (d, d2 → d1); support 1; confidence 100%

(a, a1 → a2) ∧ (b, b2)⇒ (d, d1 → d2); support 1; confidence 100%

(a, a2 → a1) ∧ (b, b2)⇒ (d, d2 → d1); support 1; confidence 100%

The following action rules are extracted from Object ID 5 :

(a, a1 → a2)⇒ (d, d1 → d2); support 4; confidence 100%

(a, a2 → a1)⇒ (d, d2 → d1); support 4; confidence 100%

(a, a1 → a2) ∧ (b, b1)⇒ (d, d1 → d2); support 1; confidence 100%

(a, a1 → a2) ∧ (b, b2)⇒ (d, d1 → d2); support 1; confidence 100%

(a, a2 → a1) ∧ (b, b1)⇒ (d, d2 → d1); support 1; confidence 100%

(a, a2 → a1) ∧ (b, b2)⇒ (d, d2 → d1); support 1; confidence 100%

After we generate all possible action rules from every subsystem, we calculate the

similarity matrix, using the metric defined above. Next, we calculate the degrees of

similarity between every pair of objects:

Similarity(o1, o2) = 0

Similarity(o1, o3) = (2− |.5− 1| −
∣∣2
4
− 4

4

∣∣) + (2− |1− 1| −
∣∣2
4
− 4

4

∣∣) + (2− |1− 1| −



97∣∣1
4
− 1

4

∣∣) + (2− |1− 1| −
∣∣1
4
− 1

4

∣∣) = 1 + 1.5 + 2 + 2 = 6.5

Similarity(o1, o4) = (2− |.5− 1| −
∣∣2
4
− 1

4

∣∣) + (2− |1− 1| −
∣∣2
4
− 1

4

∣∣) + (2− |1− 1| −∣∣1
4
− 1

4

∣∣) + (2− |1− 1| −
∣∣1
4
− 1

4

∣∣) = 1.25 + 1.75 + 2 + 2 = 7

Similarity(o1, o5) = (2−|.5− 1|−
∣∣2
4
− 4

4

∣∣) + (2−|1− 1|−
∣∣2
4
− 4

4

∣∣) + (2−|1− 1|−∣∣1
4
− 1

4

∣∣) + (2− |1− 1| −
∣∣1
4
− 1

4

∣∣) = 1 + 1.5 + 2 + 2 = 6.5

Similarity(o2, o3) = 0 ; Similarity(o2, o4) = 0 ; Similarity(o2, o5) = 0

Similarity(o3, o4) = (2− |1− 1| −
∣∣4
4
− 1

4

∣∣) + (2− |1− 1| −
∣∣4
4
− 1

4

∣∣) + (2− |1− 1| −∣∣1
4
− 1

4

∣∣) + (2− |1− 1| −
∣∣1
4
− 1

4

∣∣) = 1.25 + 1.25 + 2 + 2 = 6.5

Similarity(o3, o5) = (2− |1− 1| −
∣∣4
4
− 4

4

∣∣) + (2− |1− 1| −
∣∣4
4
− 4

4

∣∣) + (2− |1− 1| −∣∣1
4
− 1

4

∣∣) + (2− |1− 1| −
∣∣1
4
− 1

4

∣∣) + (2− |1− 1| −
∣∣1
4
− 1

4

∣∣) + (2− |1− 1| −
∣∣1
4
− 1

4

∣∣) =

2 + 2 + 2 + 2 + 2 + 2 = 12

Similarity(o4, o5) = (2− |1− 1| −
∣∣1
4
− 4

4

∣∣) + (2− |1− 1| −
∣∣1
4
− 4

4

∣∣) + (2− |1− 1| −∣∣1
4
− 1

4

∣∣) + (2− |1− 1| −
∣∣1
4
− 1

4

∣∣) = 1.25 + 1.25 + 2 + 2 = 6.5

Here, we show the corresponding similarity matrix:

Table 32: Similarity matrix for the hybrid hierarchical object-driven example

Object ID 1 Object ID 2 Object ID 3 Object ID 4 Object ID 5
Object ID 1 ∞ 0 6.5 7 6.5
Object ID 2 0 ∞ 0 0 0
Object ID 3 6.5 0 ∞ 6.5 12
Object ID 4 7 0 6.5 ∞ 6.5
Object ID 5 6.5 0 12 6.5 ∞

As shown in Fig. 5, only by visual examination of the dendrogram, system users

are able to grasp a decent idea of the hierarchical structure of any information system.

It is clear that the two most similar objects are Object 3 and Object 5, hence they
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would form the first cluster; Object 1 and Object 4 are then clustered together; next,

the two clusters are joined together to form one combined cluster; and finally Object

2 joints the cluster.

Figure 5: Corresoponding dendrogram for Table 32; using the hybrid hierarchical
object-drive action rule approach.

By applying the proposed hybrid approach based on hierarchical clustering prior

to rule extraction, we provide a substantial advantage to system users. Essentially,

domain experts are given the convenience of choosing the level of generalization (or

specialization) most appropriate to their application. As seen in Fig. 5, the degree

of generalization can be specified by the level on which we decide to set the vertical

threshold of the hierarchy; after predetermining the level of generalization, our objects

are clustered accordingly, and finally action rule extraction is applied. At the lowest

level, objects are not clustered together, and hence treated the way a typical object-

driven rule-extracting approach. On the other hand however, at the highest level,

all objects are clustered together, forming one big cluster, which will be identical to

applying the classical action rule extraction approach.

7.3 Results of Applying Hierarchical Action Rules to Hypernasality

In this subsection, we provide sample results of action rules extracted by applying

the hybrid hierarchical object-driven approach, while using three different levels of
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generalization. As we have seen in Table 30, the more patients (or objects) we tend to

cluster together, the more potential action rules are to be extracted, with relatively

higher support (Figure 6 shows a more detailed chart of how the number of action

rules increases as we decrease the number of clusters); however, by combining (or

clustering) patients (or objects) into super-groups, generalization effect will be more

apparent; until it reaches a point where generalization may cause negative effects;

for that reason, using multiple levels of generalization is usually advised. Next, we

provide action rules extracted from the hybrid hierarchical object-driven approach

proposed in this paper using various levels of generalization, ranging from 10 clusters

to 40.

Rule 1. r1 = (palatine tonsils ,≤ 2) ∧ (difference level F1-F2 ,≤ 4.5 → [6.5, 9.5])

⇒ (Czermak’s mirror test , 1→ 0.5); supp(r1) = 18, conf (r1) = 100% .

This rule has a relatively high support; it states that for patients who are experi-

encing low levels of hypertrophied, by increasing the difference between the first two

formants of the vocal tract for /i/ - long, we expect for the patient’s condition to

improve from 1 to .5.

Rule 2. r2 = (palatine tonsils ,≤ 2) ∧ (motility,≥ 5.5) ∧ (yeaou,≥ 7.5→ [3.5, 4.5])

⇒ (Czermak’s mirror test , 2→ 0); supp(r2) = 12, conf (r2) = 66.6% .

This rule states that for patients who are experiencing low levels of hypertrophied,

and that have high motility level for their soft palate, by decreasing the levels of

nasalization for vowels /I, e, a, o, u, i/, we expect the patient’s condition to improve

substantially from 2 to 1.
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Rule 3. r3 = (palatine tonsils ,≤ 2)∧(motility,≥ 5.5→≤ 3.5)∧(bdg ,≥ 8.5→≤ 6.5)

⇒ (Czermak’s mirror test , 2→ 0); supp(r3) = 18, conf (r3) = 75% .

Similar to rule 1, this rule has a relatively high support; it states that for patients

who are experiencing low levels of hypertrophied, by both changing the motility level

from greater than 5.5 to less than 3.5, and by decreasing the nasalization of /b, d,

g/, we expect the patient’s condition to improve substantially from 2 to 1.

Rule 4. r4 = (palatine tonsils ,≤ 2) ∧ (diagnosis, III) ∧ (yeaou,≥ 7.5 → [3.5, 4.5])

⇒ (Czermak’s mirror test , 1→ 0); supp(r4) = 3, conf (r4) = 100% .

The above rule states that for patients who are experiencing low levels of hyper-

trophied, and that have been diagnosed with hypertrophy of adenoids and possibly

palatine tonsils, by decreasing the level of nasalization for vowels /I, e, a, o, u, i/,

we expect the patient’s condition to improve from 1 to 0, which would completely

remove any hypernasality.

Rule 5. r5 = (sleep apnoea,≤ 2) ∧ (bdg,≤ 6.5 →≥ 8.5) ∧ (motility ,≤ 3.5 →

[3.5, 4.5]) ⇒ (Czermak’s mirror test , 1→ 0); supp(r5) = 2, conf (r5) = 100% .

The above rule states that for patients who are experiencing low levels of sleep

apnoea, by both increasing the level of nasalization for /b, d, g/, and by increasing

the level of motility for the soft palate, we are expected to observe an improvement

in the patient’s condition from 1 to 0.

Rule 6. r6 = (difference level F1-F2,≤ 4.5) ∧ (motility , [4.5, 5.5] → [3.5, 4.5]) ⇒

(Czermak’s mirror test , 1→ 0); supp(r6) = 6, conf (r6) = 100% .

This rule states that for patients who have difference between the first two formants
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of the vocal tract for /i/ - long less than 4.5, by decreasing the motility level of the

soft palate, we would expect the patient’s condition to slightly improve from 1.5 to 1.

Rule 7. r7 = (diagnosis, AD) ∧ (motility , [4.5, 5.5]→ [3.5, 4.5] ⇒

(Czermak’s mirror test , 1→ 0); supp(r7) = 6, conf (r7) = 100% .

This rule states that for patients who have had their adenoids removed by adeno-

tomy surgery, we can improve their condition from 1 to .5 by decreasing the motility

level of the soft palate.

Figure 6: This figure shows how the number of action rules increases as the number
of clusters decreases for some desired transitions in the Czermak’s mirror test.



CHAPTER 8: CONCLUSION

In the first two chapters, we presented all necessary background and motivations

for the actual novel body of work for object-driven action rules; starting with general

concepts of data mining, such as knowledge representation, rule-based knowledge

discovery and association rules, presented in Chapter 1; then moving to a yet more

related, but vital topic of knowledge discovery, known as action rules; which is the

base that our work of object-driven action rules has been building on top of.

In Chapter 3, we provided a detailed description of our hypernasality treatment

information system, which also served as our case study for this body of work. Per-

haps it is now a good time to acknowledge the help and support by thanking Dr.

Danuta Chojnacka-Wa̧do lowska and Dr. Cecylia Konopka from Children’s Memorial

Health Institute in Warsaw for their help with data collection and providing medical

diagnoses.

Following Chapter 3, we provided our own and novel work of the subarea of object-

driven and temporal action rules; presented in Chapter 4. We thought that it would be

best to divide the body of work into two main component, namely the object-driven

constraint and the temporal assumption. In each, we tried to provide a complete

work, starting with the motivation of the assumption, following with the modifications

and new definitions that we introduced. Furthermore, we divided the description of

the temporal assumption into two areas, one which we called the classical object-
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driven approach, and the other in which we called the pair-based approach. Following

the detailed explanation of each component of our work, we presented the results

of mined action rules generated when applying our work. As mentioned in their

corresponding sections, all results matched the experience and preexisting practices

of physicians; having said that, some patterns were highly interesting as they provided

hidden insights, as our collaborators commented.

In Chapter 5, we introduced a second (much larger) dataset in which we extracted

temporal-based and object-driven action rules in real-time. This approach is ex-

tremely useful in cases where our dataset is huge; hence, it would not be efficient

to extract action rules beforehand for all possible cases (since there are too many),

instead we wait for a new instance (patient) to come into the system, and extract

specialized action rules for that particular case.

In Chapter 6, we applied our object-driven approach to an entirely different class

of action rules, called action reducts; which is yet another evidence that the object-

driven (and temporal-based) approach is flexible enough to be adapted by other data

mining system. Finally in Chapter 7, we introduced a hybrid approach in which

we combine the more accurate but less vast approach of object-driven and temporal

action rules, with the less accurate but more vast approach of the classical action rule

approach; and show results accordingly.
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