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ABSTRACT

YONGGANG WANG. Generalized quasi-likelihood ratio tests for varying
coefficient quantile regression models.

(Under the direction of DR. ZONGWU CAI)

Quantile regression models which can track the relationship of predictive vari-

ables and the response variable in specific quantiles are especially useful in applica-

tions when extreme quantiles instead of the center of the distribution are interesting.

Compared to classical conditional mean regressions, quantile regression models can

provide a more comprehensive structure of the conditional distribution of the re-

sponse variable. Also, they are more robust to skewed distributions and outliers.

Therefore, quantile regression models have been applied extensively in many ap-

plied areas. Due to its greater flexibility, a varying coefficient regression technique

has been extended to the quantile regression models recently. In this dissertation,

my aim is to propose a new test procedure, termed as generalized quasi-likelihood

(GQLR) test, to test whether all or partial coefficients are indeed constant or of

some specific functions for the varying coefficient quantile regression models. The

test statistics are constructed based on the comparison of the quasi-likelihood func-

tions under null and alternative hypotheses. The asymptotic distributions of the

proposed test statistics are also derived.

First, the functional coefficients in a varying coefficient quantile regression model

are estimated by applying local linear fitting technique with jackknife method. Then,

I construct the generalized quasi-likelihood ratio test statistics to test whether the

varying coefficients are of some specific functional forms, including two special cases:

testing whether the varying coefficients are known or unknown constants. The

asymptotic normality of the proposed test statistic is derived upon the Bahadur

representation of the estimators. I also discuss how to estimate the asymptotic

variance-covariance matrix and investigate the power of the proposed test procedures
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in Chapter 2.

Secondly, I consider the similar testing procedure to test if partial coefficients in

a varying coefficient quantile regression model are constant or of some specific form

with other coefficients completely unspecified in Chapter 3. The corresponding gen-

eralized quasi-likelihood ratio test statistic is constructed based on comparing the

quasi-likelihood functions under the null and alternative hypotheses. The asymp-

totic distributions of the proposed test statistics for both constancy and specific

functional form are derived respectively and the power of the proposed test proce-

dures is also investigated.

Finally, to exam the finite sample performance of all test statistics proposed

in Chapters 2 and 3, Monte Carlo simulation studies are conducted respectively at

the end of each chapter. I also apply the proposed test methodologies to test if

the existing models in the literature used to analyze the Boston house price data

are appropriate or not. The simulation results and the real example illustrate the

effectiveness and practical usefulness of the proposed test statistics. Chapter 4

concludes the dissertation. I also discuss some future research topics related to this

dissertation.
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CHAPTER 1: INTRODUCTION AND RELATED LITERATURE

It is well known that conditional mean regression models track how the condi-

tional expectation of the response variable depends on explanatory variables. These

models are simple to fit by using least square method or maximum likelihood esti-

mation and they are easy to interpret due to the simple model structure. However,

conditional mean regression models may not be able to detect the relationship be-

tween response variable and predictive variables at a specific quantile, say the 5th

or 95th quantile. For this regard, quantile regression models are in nature since they

characterize how the complete distribution of the response variable depends on the

predictive variables by regression at different predetermined quantiles.

Let Y be a real-valued random variable and its conditional probability distribu-

tion function of Y given X be F (y|x) = P (Y ≤ y|X = x). Then, for any τ ∈ (0, 1),

the τ -th conditional quantile qτ (x) is defined as

qτ (x) = inf{y ∈ R|F (y|x) ≥ τ}, (1.1)

which is also called the quantile regression function. Koenker and Bassett (1978)

first introduced the linear quantile regression for any 0 < τ < 1 and they used the

so-called “check” function as the loss function to estimate the conditional quantile

for any τ -th quantile:

qτ (x) = argmina∈RE{ρτ (Y − a)|X = x}, (1.2)

where ρτ (y) = y(τ − I{y<0}) is the check function and IA is the indicator function of
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any set A. It is obvious that median regression which is well-known as least absolute

deviation in the literature is a special case of quantile regression by setting τ = 0.5.

Clearly, instead of focusing on conditional mean, a quantile regression model

can investigate how the whole conditional distribution of Y depends on predictors

X by estimating the conditional quantile function at any predetermined position (a

specific quantile) of the conditional distribution of Y given X. Furthermore, it is

well known that a quantile regression estimate is robust against outliers and skewed

distributions. With these advantages, quantile regression models have developed

swiftly during the recent years and have been widely used in many research fields,

including finance, economics, medicine, biology and others. There is a vast literature

about quantile regression models. Here are some examples in finance and economics.

For example, Engle and Manganelli (2004) proposed the conditional autoregressive

value at risk (CAVaR) by using nonlinear quantile regression estimation methods,

Barnes and Hughes (2002) investigated the complete distributional impact of fac-

tors on returns of securities, Bassett and Chen (2001) applied the quantile regression

method to analyze the style of a fund manager over the entire conditional distri-

bution, and a comprehensive review of applications of quantile regression models

in different areas can be found in Koenker (2005) and the references therein. Also,

quantile regression can be applied to test heteroscedasticity and to construct the

prediction intervals given the historical data under the stationary time series set-

ting. For more details, the reader is referred to the papers by Koenker and Bassett

(1982a, 1982b), Granger, White and Kamstra (1989), Efron (1991), Koenker and

Zhao (1996), Taylor and Bunn(1999), Koenker and Xiao (2002) and the references

therein.

By modeling any predetermined quantiles, quantile regressions can be used to

measure the effect of covariates not only in the center of the conditional distribution

but also in some extreme quantiles, such as the 5th and 95th quantiles. Without as-
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suming that quantiles are related to covariate X in a specific form, one can estimate

the interesting quantile directly by using model (1.2). In contrast to the conditional

mean model, the effects of a covariate in a conditional quantile model can be quite

different for the upper and lower tails. One famous and interesting example in the

literature is that the Democrats claimed that “the rich got richer and the poor got

poorer” during the Republican administrations in the 1992 presidential selection

in the United States. How to verify whether this claim is valid or do people have

enough evidence to reject this claim? Conditional mean regression models can not

answer this question directly but quantile regression can. One can compute 90th or

higher quantile functions of the number of people in the high-salary category and

10th or lower quantile functions of people in the low-salary category respectively. An

increasing 90th or higher quantile functions and a decreasing 10th or lower quantile

functions will support the claim. The readers are referred to Figure 6.4 in Fan and

Gijbels (1996) for detail. Indeed, Rose (1992) analyzed the data for the 1979-1989

period and showed that the 10th quantile and the 90th quantile of the family income

indeed display two opposite trends over time. Similarly, in survival analysis, it is of

great interest to study the effect of a covariate on high risk individuals as well as

the effect on different risk levels (different quantiles). Another good example can be

found in Hendricks and Koenker (1992), in a study of consumer demand for elec-

tricity, heavy users responded much more drastically to weather and time variation

than average users.

One important application of quantile regression in finance is the implemen-

tation of the so-called value-at-risk (VaR). As one of the important modern risk

measuring techniques, VaR is indeed the lowest quantile of the potential losses that

can occur with a given portfolio during a specified time period and it measures the

worst expected loss under normal market conditions over a specific time interval for

a given confidence level. There is a huge literature in the area of VaR. The details
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can be found in J.P. Morgan (1995), Duffile and Pan (1997), Engle and Manganelli

(1999), Tsay (2000, 2002) and Khindanova and Rachev (2000) and so on.

1.1 Linear Quantile Regression

For the given sample {(Xi, Yi), i = 1, ..., n}, Koenker and Bassett (1978) sug-

gested that the linear conditional quantile function qτ (x) = Qy(τ |x) = x′β(τ) can

be estimated through

β̂(τ) = argminβ∈R

n∑
i=1

ρτ (yi −X ′
iβ(τ)) (1.3)

for any τ ∈ (0, 1) and ρτ (y) = y(τ−Iy<0) is the check function, which is a special case

of the loss function discussed in Huber (1964), which considered the minimization

problem to obtain the M-estimator for β by choosing some suitable loss function.

If setting τ = 1
2
, the right hand side of equation (1.3) becomes the sum of absolute

deviation errors and it is called median regression or LAD regression.

There is a huge literature devoted to this model for both cross-sectional and

time series data; see Duffie and Pan (1997), Koenker (1978, 1982a, 2000), Tsay

(2000), Koenker and Hallock (2001) and the references therein. Suppose that the

τ -th conditional quantile function of Y given X can be written as

Qy(τ |x) = xT β(τ). (1.4)

The following conditions are needed to ensure that β̂(τ) in (1.3) is consistent.

Condition A1: There exists d > 0 such that

lim inf
n→∞

inf||u||=1n
−1

∑
I(|xT

i u| < d) = 0
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Condition A2: There exists D > 0 such that

lim inf
n→∞

inf||u||=1n
−1

∑
(xT

i u)2 ≤ D

Assuming that the design matrix X satisfies the conditions in A1 and A2, El

Bantli and Hallin (1999) presented the necessary and sufficient condition for consis-

tency of estimator (i.e. β̂(τ) → β(τ)) and the conditional distribution functions Fni

of Yi, i = 1, 2, ..., satisfy

Condition B.
√

n(an(ε) − τ) → ∞ and
√

n(τ − bn(ε)) → ∞ with an(ε) =

n−1
∑

Fni(x
T
i β(τ)− ε) and bn(ε) = n−1

∑
Fni(x

T
i β(τ) + ε).

Having established the result of consistency of estimators, one may be interested

in the asymptotic distribution for the quantile regression estimators.

Condition C1. The distribution of X, F (x), has continuous and strictly positive

density, f(x), for all x such that 0 < F (x) < 1.

Condition C2. limn→∞ n−1
∑n

t=1 XtX
T
t = D is a positive definite matrix.

Under the above conditions, Koenker and Bassett (1982b) established the fol-

lowing theorem.

Theorem 1.1: Let (β̂(τ1)), ..., β̂(τm))) with 0 < τ1 < ... < τm < 1 denote a sequence

of regression quantiles. Under Conditions C1 and C2, as n →∞,

√
n(β̂(τ1)− β(τ1), ..., β̂(τm)− β(τm))

converges in law to an mp-variate Gaussian random vector with zero mean and

covariance matrix Ω(τ1, ..., τm, F ) ⊗ D−1, where ⊗ denotes the Kronecker product
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and Ω has the typical (i, j)th element as

ωij =
min(τi, τj)− τiτj

f(F−1(τi))f(F−1(τi))
.

Powell (1986) introduced the quantile regression to the Tobit model, which can

be written in the following form

Yt = max(0, xT
t β0 + εt), t = 1, ..., n,

and Koenker and Zhao (1996) used the quantile regression method to an autore-

gressive conditional heteroscedastic (ARCH) type model as

Yt = (γ0 + γ1|Yt−1|+ ... + γq|Yt−q|)εt,

where 0 < γ0 < ∞, γ1, ..., γq ≥ 0, and {εt} are i.i.d. random variables with distribu-

tion Fε(·) and density function fε(·).

1.2 Nonlinear Quantile Regression

Linear quantile regression models are easy to fit and interpret, but they may

not be flexible enough to capture the underlying complex dependence structure

of the quantile of the response variable and its covariates. At this stage, it is of

considerable interest to investigate conditional quantile models which are nonlinear

in parameters: Qy(τ |x) = g(x, β(τ)) with known form of g(·, ·). Nonlinear quantile

regression models are more general, including the linear quantile regression models

as a special cases. The nonlinear quantile regression estimator is defined as following:

β̂n(τ) = argminb∈B
∑

ρτ (yi − g(xi, b)),
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where B ⊂ Rp is compact set. As discussed in Koenker (2005), we need some

further conditions besides Condition C1 to obtain the asymptotic distribution of

the estimator.

Condition D1. There exist constants k0, k1, and n0 such that, for β1, β2 ∈ B and

n > n0,

k0||β1 − β2|| ≤ (n−1

n∑
i=1

(g(xi, β1)− g(xi, β2))
2)1/2 ≤ k1||β1 − β2||

Condition D2. There exist positive definite matrixes D0 and D1(τ) such that, with

ġi = ∂g(xi, β)/∂β|β=β0

i) lim
n→∞

n−1
∑

(̇g)iġ
T
i = D0

ii) lim
n→∞

n−1
∑

fi(ξi)(̇g)iġ
T
i = D1(τ)

iii) max
i=1,...,n

||ġi||/
√

n → 0

Under these conditions, one can derive the Bahadur representation of quantile

regression estimator as

√
n(β̂n(τ)− β0(τ)) = D−1

1

1√
n

n∑
i=1

ġiψτ (ui(τ)) + op(1),

where ui(τ) = yi − g(xi, β0(τ)). The Bahadur representation has been investigated

in an extensive way in the literature for the quantile regression estimator since it can

represent the complicated nonlinear estimator as a simple normalized sum of i.i.d

variables. Upon the Bahadur representation, the asymptotical normal distribution

of proposed estimators can be derived easily. Consequently, we have

√
n(β̂n(τ)− β0(τ)) → N(0, τ(1− τ)D−1

1 D0D
−1
1 ).
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See Koenker (2005) for details.

Due to fast developing computing technology in computer science, the comput-

ing speed of complex model structure becomes available to researchers. Nonpara-

metric and semiparametric quantile regression models which need great computing

power have attracted a great deal of research attentions due to their greater flexibil-

ity. The literature on nonparametric and semiparametric quantile models is large.

The readers are referred to the papers by, to name just a few, Chaudhuri (1991),

He and Shi (1996), He and Ng (1999), Cai (2002), Yu and Lu (2004), Cai and Xu

(2008), Cai, Gu and Li (2009) and the references therein.

As we all known that, in additional to difficult practical implementation, non-

parametric quantile regression with multivariate covariates also suffers from the

“curse of dimensionality”. Many dimension-reduction techniques have been adopted

for quantile regression to deal with this problem, such as additive model, single in-

dex model and varying coefficient quantile regression models. Honda (2004) and Cai

and Xu (2008) considered the varying coefficient model for time series data, Wu, Yu

and Yu (2010) investigated the single index model for quantile regression, and He,

Ng and Portnoy (1998), He and Ng (1999) and Horowitz and Lee (2005) discussed

the additive quantile regression model for the i.i.d data.

1.3 Varying Coefficient Quantile Regression Models

A varying coefficient regression model is a useful and natural extension of a

classical linear regression model. The modeling technique for such a model has been

extensively discussed in the seminal work of Cleveland, Grosse and Shyu (1991) and

Hastie and Tibshirani (1993). The varying coefficient models assume the following

conditional mean structure:

Y =

p∑
j=1

aj,m(U)Xj + ε, (1.5)
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where aj,m(·) denotes the varying coefficient function for the mean regression. As

argued by Hastie and Tibshirani (1993), this model can avoid the “curse of dimen-

sionality” and reduce the modeling bias significantly and it is also easily interpreted

by allowing the coefficients to depend on some smooth variables.

Indeed, Cai (2010) argued that a functional-coefficient model given in (1.5) has

several strengths, at least including following three advantages. First, it can be

actually a good approximation to a general fully nonparametric model. Secondly,

it has an ability to capture heteroscedasticity. Finally, it can be used as a tool to

study covariate adjusted regression for situations where both predictors and response

in a regression model are not directly observable, but are contaminated with a

multiplicative factor that is determined by the value of an unknown function of an

observable covariate (confounding variable).

One simple approach to estimate the coefficients is to use the local linear or

local polynomial estimation technique. To maintain the simplicity of the disserta-

tion, I will focus on the local linear technique in what follows as recommended by

Fan and Gijbels (1996). All are similar for local polynomial estimation methods

except complex notations. For each given point u0, by Taylor’s expansion we can

approximate the function locally

aj,m(Ui) ≈ aj,m + bj,m(Ui − u0)

for any Ui in a neighborhood of u0, a given grid point within the domain of Ui,

where bj,m is the first derivative of aj,m(u). Then, we can minimize the following

locally weighted least squares

n∑
i=1

(Yi −
p∑

j=1

xij(aj,m + bj,m(Ui − u0)))
2Kh(Ui − u0)
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to get the estimate of the functional coefficient aj,m(·). By moving u0 along with

the domain of Ui, the estimate âj(u0) of the entire curve aj,m(u0) is be obtained.

Cai and Xu (2008) adopted the varying coefficient modeling approach for quan-

tile regression

qτ (U,X) =

p∑

k=0

ak,τ (U)Xk,

where qτ (U,X) is the τth conditional quantile of Y given U and X, to analyze dy-

namic time series data with α-mixing conditions. Their model covers many familiar

quantile regression models, including the quantile autoregressive model proposed by

Koenker and Xiao (2004) and heteroscedastic linear models considered by Koenker

and Zhao (1996). Cai and Xu (2008) applied the above local linear technique to

estimate the coefficients of quantile regression model (see (2.6) later for details) and

derived the Bahadur representation for the estimators.

Denote Ω(u0) = E[XtX
′
t|Ut = u0] and Ω∗(u0) = E[XtX

′
tfy|u,x(qτ (u0, Xt))|Ut =

u0], where fy|u,x(y) is the conditional density of Y given U and X. Let fu(u) present

the marginal density of U . Cai and Xu (2008) imposed the following assumptions

for the asymptotic distribution of the estimators.

Assumption A:

(A1) A(u)τ = (a0,τ (u), · · · , ap,τ (u))′ is continuously twice differentiable in a neigh-

borhood of u0 for any given grid point u0.

(A2) fu(u) is continuous, and fu(u0) > 0.

(A3) fy|u,x(y) is bounded and satisfies the Lipschitz condition.

(A4) The Kernel function K(·) is symmetric and has a compact support, say[-1,1].

(A5) (Ut, Xt, Yt) is a strictly α-mixing stationary process with mixing coefficient

α(t) satisfying
∑∞

t≥1 tl × α(δ−2)/δ(t) < ∞ for some positive real number δ ≥ 2 and

l > (δ − 2)/δ.

(A6) E||Xt||2δ∗ < ∞ with δ∗ > δ.



11

(A7) Ω(u0) is positive definite and continuous in a neighborhood of u0.

(A8) Ω∗(u0) is positive definite and continuous in a neighborhood of u0.

(A9) The bandwidth h satisfy h → 0 and nh →∞.

(A10) f(u, v|x0, xs; s) ≤ M < ∞ fors ≥ 1, where f(u, v|x0, xs; s) is the conditional

density of (U0, Us) given (X0 = x0, Xs = xs).

(A11) n1/2−δ/4hδ/δ∗−1/2−δ/4 = O(1).

Under these assumptions, they derived the Bahadur representation (see (2.7)

later for details) as follows

√
nh(Âτ (Ut)− Aτ (Ut)) =

(Ω∗(Ut))
−1

√
nhfu(Ut)

∑

i6=t

ϕτ (Y
∗
i )XiK(

Ui − Ut

h
) + op(1), (1.6)

where Âτ (·) is the local linear estimate of Aτ (Ut) (see (2.6) later for details) and

ϕτ (u) = τ − I{u<0}. Then, they derived the following theorem about the asymptot-

ical normal distribution of estimators.

Theorem 1.2: Under Assumption A, we have the following asymptotic normality,

√
nh

[
Âτ (u0)− Aτ (u0)− h2

2
A′′

τ (u0)µ2 + op(h
2)

]
→ N(0, τ(1− τ)ν0Σ(u0)), (1.7)

where Σ(u0) = [Ω∗(u0)]
−1Ω(u0)[Ω

∗(u0)]
−1/fu(u0), µj =

∫
ujK(u)du and

vj =
∫

ujK2(u)du.

For this varying coefficient quantile regression model, some great interesting

inference questions arise naturally in practice. One may be interested in testing

whether all or partial coefficients are really varying, or of some specific functional

form, and if certain components of covariates X are statistically insignificant. This
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leads to the following test hypotheses:

H0 : Aτ (u) = A0,τ (u) ↔ Ha : Aτ (u) 6= A0,τ (u), (1.8)

or

H0 : A1,τ (u) = A10,τ (u) ↔ Ha : A1,τ (u) 6= A10,τ (u), (1.9)

where A1,τ (u) are some coefficients in Aτ (u) and A0,τ (u) and A10,τ (u) may be either

a constant vector or a functional vector. For varying coefficient mean regression

models (by changing τ to be m in the above hypotheses given in (1.8) and (1.9)),

Cai, Fan and Yao (2000) and Fan, Zhang and Zhang (2001) proposed the so-called

generalized likelihood ratio (GLR) test which was based on the likelihood ratio

under the null hypothesis and the alternative hypothesis. Cai, Fan and Yao (2000)

tested for such hypothesis by using bootstrap based method, while Fan, Zhang

and Zhang (2001) considered the test based on the asymptotic result. But for the

varying coefficient quantile regression models, to the best of my knowledge, there is

no paper in the literature to develop the similar test procedure. In this dissertation,

I develop some new test procedure, termed as generalized quasi-likelihood ration

(QGLR) test, to check whether coefficients or partial coefficients are of constant

or specific functional form. Before I describe the proposed test procedure for these

hypothesis given in (1.8) and (1.9), I will give a brief review about inference problem

for quantile regression models.

1.4 Inference for Quantile Regression Model

The classical theory of linear regression model assumes that the slope coeffi-

cients of distinct quantile regressions are identical. This assumption implies that

conditional quantile functions are all parallel to each other for different quantiles.

However, different slope estimates often vary greatly across quantiles in real applica-
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tions as discussed above. So, to test the hypothesis of equality of slope parameters

across quantiles is one of fundamental inference problems in quantile regression.

Consider the two-sample model

Yi = α1 + α2xi + ui,

where xi = 0 for n1 observations in the first sample and xi = 1 for n2 observations

in the seconde sample. Koenker and Bassett (1982a) proposed the Wald-type test

statistic

Tn = (α̂2(τ2)− α̂2(τ1))/σ̂(τ1, τ2)

to test the equality of the slop parameters across quantiles τ1 and τ2 with

σ2(τ1, τ2) = [
τ1(1− τ1)

f 2(ξ1)
− 2

τ1(1− τ2)

f(ξ1)f(ξ2)
+

τ2(1− τ2)

f 2(ξ2)
][

n

nn2 − n2
2

]

and ξi = F−1(τ1). For the more general linear hypothesis

H0 : Rζ = r,

where ζ = (β(τ1)
T , ..., β(τm)T )T . Koenker and Bassett (1982b) proposed the test

statistic

Tn = n(Rζ̂ − r)T [RV −1RT ]−1(Rζ̂ − r),

where Vn is the mp×mp matrix with ijth block

Vn(τi, τj) = [τi ∧ τj − τiτj]Hn(τi)
−1Jn(τi, τj)Hn(τj)

−1.

The test statistic is asymptotically χ2
q under H0, where q is the rank of the matrix

R.
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The Wald test can check whether it is plausible that certain linear restrictions

hold. However, the score approach can detect a direction to move in the space of

alternative hypotheses that leads to more plausible estimate. Consider the model

Qyi
(τ |xi, zi) = xT

i β(τ) + zT
i ς(τ)

with the associated null hypothesis,

H0 : ς(τ) = 0 ↔ Ha : ςn(τ) = ς0(τ)/
√

n

Then the score test statistic can be defined as

Tn = ST
n M−1

n Sn/A
2(ϕ),

where Sn = n−1/2(Z−Ẑ)T b̂n), Ẑ = X(XT ΨX)−1XT ΨZ, Ψ = diag(fi(QYi
(τ |xi, zi))),

Mn = (Z − Ẑ)(Z − Ẑ)T /n, and b̂n =
∫ 1

0
ân(s)dϕ(s). Koenker and Machado (1999)

showed that Tn has a limiting central χ2
q distribution under the null hypothesis with

some mild conditions on the score function ϕ, where q denotes the dimension of the

parameter ζ.

It is also natural to investigate analogs of the likelihood ratio test as well as the

Wald and score test for quantile regression models. Koenker and Bassett (1982b)

had proposed the test statistic

Ln = 8(Ṽ (
1

2
)− V̂ (

1

2
))/s(

1

2
)

to test the hypothesis H0 : Rβ = r for the median regression in the i.i.d-error linear

model, with V̂ (τ) = min{b∈Rp}
∑

ρτ (yi − x′ib) and Ṽ (τ) = min{b∈Rp|Rβ=r}
∑

ρτ (yi −
x′ib) under null or alternative hypothesis respectively. It was shown that Ln is
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asymptotically χ2
q, where q=rank(R). One can easily realize that this statistic is

related to a likelihood ratio. The same approach can be extended to other quantile

regression models. Define V̂ (τ) and Ṽ (τ) as above, and let σ̂(τ) = V̂ (τ)/n and

σ̃(τ) = Ṽ (τ)/n. Then, the for the τth quantile the test statistic is defined as

Ln(τ) =
2

λ2(τ)s(τ)
[σ̃(τ)− σ̂(τ)].

As in Koenker (2005), we can call it as quasi-likelihood-ratio test or ρ-test by fol-

lowing similar terminology in Ronchetti (1985).

Motivated by these testing methodologies, I propose the quasi-likelihood ratio

test statistic which is constructed based on the comparison of the quasi-likelihood

functions under null and alternative hypotheses to test for varying coefficient quan-

tile regression models about the form of coefficients or partial coefficients. In this

dissertation, I focus on two testing hypotheses

H0 : Aτ (u) = A0,τ (u) ↔ Ha : Aτ (u) 6= A0,τ (u),

where A0,τ (u) is a vector of constants or some specific functions and

H0 : A1,τ (u) = A10,τ (u) ↔ Ha : A1,τ (u) 6= A10,τ (u),

where A1,τ (u) is a vector of partial coefficients in the varying coefficient quantile

regression model with other coefficients completely unspecified and A10,τ is a vector

of constants or some specific functions.

1.5 Overview

The rest of this dissertation is organized as follows. In Chapter 2, I discuss the

estimation of coefficients of varying coefficient quantile regression models by using



16

jackknife method and local fitting technique and then derive the Bahadur represen-

tation of the proposed estimators. Furthermore, I propose some new test statistics,

termed as generalized quasi-likelihood ratio test, to testing if varying coefficients

for varying coefficient quantile regression model are constant or of some specific

functional form. The test statistics are constructed based on the comparison of the

quasi-likelihood under null and alternative hypotheses respectively. The asymptotic

distribution of the test statistics is derived. In order to evaluate the finite sample

performance of the proposed methods, Monte Carlo studies are conducted and a

real application of test procedure to Boston house price data is then reported to

highlight the proposed test procedures.

In Chapter 3, I consider a more general case. For varying coefficient quantile

regression models, one may be interested in testing whether some of varying coef-

ficients are of some functional form or constants with other coefficients completely

unknown. I construct similar generalized quasi-likelihood ratio test statistics to test

such hypotheses. I construct the quasi-likelihood function under the null hypothesis

by using the semiparametric estimators which are proposed in Cai and Xiao (2012).

Again, I derive the asymptotic theory for such test statistics. Also, I conduct Monte

Carlo simulation examples to show the finite sample performance of the proposed

methods, and finally an application to Boston house price data is discussed to show

the effectiveness of the testing methodology.

Chapter 4 concludes the dissertation and discuss some possible future research

directions. The detailed proofs of the main results in each chapter are relegated to

the last section of the corresponding chapter.



CHAPTER 2: GENERALIZED QUASI-LIKELIHOOD RATIO TEST OF THE
COEFFICIENTS FOR VARYING COEFFICIENTS QUANTILE REGRESSION

MODEL

This chapter mainly discusses the testing hypotheses about whether the coeffi-

cients of varying coefficient quantile regression models are of some specific functional

form or constants. The simulation studies and a real application of the proposed

test procedure are also reported at the end of this chapter.

2.1 Introduction and Motivation

For varying coefficient quantile regression models, after fitting the varying co-

efficient quantile regression models by using either local linear technique, sieve or

penalized likelihood methods, one great interesting inference problem arises natu-

rally is to check whether the varying coefficients are of some specific functional form.

This is equivalent to the following hypotheses:

H0 : Aτ (u) = A0,τ (u) versus Ha : Aτ (u) 6= A0,τ (u), (2.1)

where A0,τ (u) is a vector of known functionals. One special case of (2.1) is that A0(u)

is a vector of constants. Then, the test hypothesis becomes to checking whether the

varying coefficients are indeed varying. That is equivalent to

H0 : Aτ (u) = A0,τ versus Ha : Aτ (u) 6= A0,τ , (2.2)

where A0,τ is a vector of known or unknown constants. When A0,τ is a vector of

unknown constants, the hypothesis (2.2) may be more interesting since people may
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care about whether the varying coefficients are indeed constant without knowing

specific values. These hypothesis testing is equivalent to the model assessment

against the liner quantile regression model. The model assessment is very important

since a linear quantile model, which is simple to implement and easy to interpret,

is more preferred unless a varying coefficient model is necessary for the data or

underlying structure. Recently, Cai, Fan and Yao (2000) discussed how to construct

the test statistic for these hypotheses based on the generalized likelihood ratio test

for a varying coefficient mean regression model as in (1.5). He and Zhu (2003) and

Horowitz and Spokoiny (2002) considered general lack-of-fit tests for linear quantile

regression model. Both tests are consistent for any fixed alternative.

The likelihood ratio type test was proposed by Cai, Fan and Yao (2000) and

studied extensively by Fan, Zhang and Zhang (2001) for the hypothesis testing

problems formulated in (2.1) and (2.2) for the conditional mean regression models in

(1.5). Recall that the likelihood ratio statistic is constructed for the testing problems

in (2.1) and (2.2) for conditional mean regression model in (1.5), described briefly

as follows. Denote Âm(U) is the corresponding nonparametric estimator Am(U).

Then, the statistic is defined as follows.

λn = Ln(Ha)−Ln(H0) =
n

2
log

RSS0

RSSa

≈ n

2

RSS0 −RSSa

RSSa

, (2.3)

where Ln(Ha) is the log-likelihood under Ha with unknown regression function

replaced by a reasonable nonparametric regression estimator, RSSa =
∑n

k=1(Yk −
ÂT

m(Uk)Xk)
2 and RSS0 =

∑n
k=1(Yk − ÂT

0,m(Uk)Xk)
2, where Â0,m(Uk) is the true or

estimated value of coefficients under H0. Fan, Zhang and Zhang (2001) studied the

asymptotic properties of the proposed test statistic in (2.3) under several situations.

Motivated by Cai, Fan and Yao (2000) and Fan, Zhang and Zhang (2001), for

the varying coefficients quantile regression models, by taking the loss function as
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the check function instead of the sum of squared errors, I propose the similar test

statistic for the testing problems in (2.1) and (2.2) as follows

Tn = L (Ha)−L (H0)

=
n∑

t=1

ρτ

(
Yt −

p∑
j=0

âk,τ (Ut)Xk,t

)
−

n∑
t=1

ρτ

(
Yt −

p∑

k=0

âk0,τ (Ut)Xk,t

)
,(2.4)

where L (Ha) =
∑n

t=1 ρτ (Yt −
∑p

k=0 âk,τ (Ut)Xk,t), and âk,τ (·) is the nonparamet-

ric estimate of ak,τ (·) under the alternative hypothesis, and âk0,τ (·) is the true or

estimated value of ak0,τ (·) under H0.

Remark 2.1: Linear quantile regression estimation is adopted when ak0,τ is unknown

constant under H0.

The quasi-likelihood ratio test considered by Koenker (2005) for linear quantile

models can be re-expressed as the following test statistic

Ln = 8(Ṽ (
1

2
)− V̂ (

1

2
))/s(

1

2
)

where V̂ (τ) = min{bτ∈Rp}
∑

ρτ (yi − x′ibτ ) and Ṽ (τ) = min{bτ∈Rp|Rbτ=r}
∑

ρτ (yi −
x′ibτ ). As elaborated in Komunjer (2005), `(H) =

∑n
t=1 ρτ (yt −

∑p
k=0 ak,τ (Ut)Xk,t)

can be regarded as the negative logarithm of quasi-likelihood, described below.

Definition 2.1: (Komunjer (2005)) A family of probability measure on R admitting

a density ϕα
t indexed by a parameter η, ηt ∈ Mt,Mt ⊂ R, is called tick-exponential

of order α, α ∈ (0, 1), if and only if:

(i) for y ∈ R,

ϕα
t (y, η) = exp (−(1− α))[at(η)− bt(y)]1(y ≤ η)) + α[at(η)− ct(y)]1(y > η),

where at : Mt → R is continuous differentiable and bt : R → R and ct : R → R

are Ft-measurable; the function at, bt and ct are such that for η ∈ Mt;
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(ii) ϕα
t is a probability density, i.e.

∫
R

ϕα
t (y, η)dy = 1;

(iii) η is the α-quantile of ϕα
t , i.e.

∫ η

−∞ ϕα
t dy = α.

From the definition, ϕα
t assigns different slopes proportional to 1 − α and α,

linear-exponential “by parts” for a given value of probability α. Gourieroux, Monfort

and Renault (1987) obtained an alternative expression for ϕα
t , given by

ϕα
t (y, η) = exp{gt(y)− (1− α)[at(η)− dt(y)]1(y 6 η) + α[at(η)− dt(y)]1(y > η)}

by setting dt(y) = (1 − 2α)−1[(1 − α)bt(y) − αct(y)] and gt(y) = α(1 − α)(2α −
1)−1)[bt(y)− ct(y)]. As discussed in Komunjer (2005), by using the special function

for a(t), b(t) and c(t), i.e. at(η) = [ 1
α(1−α)

]η and bt(y) = ct(y) = [ 1
α(1−α)

]y, the

function lnϕα
t is proportional to tα(y, η) = (α − 1(y ≤ η))(y − η) which is the

“check” function. Therefore,

`(H) =
n∑

t=1

ρτ

(
yt −

p∑

k=0

ak,τ (Ut)Xk,t

)

can be regarded as the negative log of quasi-likelihood.

According to the above discussion, test statistic in (2.4) is indeed the generalized

quasi-likelihood ratio (GQLR) test statistic. I will use the term generalized quasi-

likelihood ratio test in what follows in the rest of this dissertation.

The rest of this chapter is organized as follows. At first I estimate the coefficients

of the quantile regression model by using local fitting technique. To perform the

testing hypotheses (2.1)and (2.2), I present the generalized likelihood ratio test

statistic and derive the asymptotic properties of such test statistics in the following

subsections. Furthermore, I investigate the power of the proposed test procedure. I

also conduct Monte Carlo simulation studies and analyze Boston House Price data
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to illustrate the effectiveness of the proposed methodologies.

2.2 Estimation of the Regression Coefficients

The varying coefficient quantile regression model takes the form

qτ (Ut, Xt) =

p∑

k=0

ak,τXtk = Aτ (Ut)
T Xt = A(Ut)

T Xt, (2.5)

where Ut ∈ Rd is called the smoothing variable and Xt = (Xt0, Xt1, ..., Xtp)
′ with

Xt0 = 1 are i.i.d observations, A(Ut) = Aτ (Ut) = (a0,τ (Ut), a2,τ (Ut), ..., ap,τ (Ut))
T are

smooth coefficient functions which might be some function of Xt0,...,Xtp or time or

some other exogenous variables. Without loss of generality, I consider only the case

in which Ut in (2.5) is one dimensional (d = 1). For multivariate Ut, the modeling

procedure and the related theory for the univariate case continue to hold but more

complicated notations are involved and for simplicity, we drop τ from {ak,τ (·)} in

what follows.

To estimate the coefficient functions A(·), I apply the local fitting technique

with the jackknife (leave one out) method as follows. Assume A(U) has a continuous

first derivative. For Ui in a neighborhood of Ut, one can apply Taylor expansion to

approximate A(Ui) as

A(Ui) ≈ β0 + (Ui − Ut)β1,

where β0 = A(Ut) and β1 = A′(Ut) is the first derivative of A(Ut). The jackknife

method is to use all observations excepts the tth observation in estimating A(Ut).

Then, the locally weighted loss function is given by

n∑

i6=t

ρτ (Yi −Xi(β0 + (Ui − Ut)β1))Kh(Ui − Ut), (2.6)

where K(·) is a kernel function, Kh(x) = 1/hK(1/h), and h = hn is a sequence of
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positive numbers tending to zero, which controls the amount of smoothing used in

estimations. We can get the local linear estimate of A(Ut), denoted by Â−t = β̂0, by

minimizing the above locally weighted loss function with respect to β0 and β1. Note

that for any given Ut, the estimate Â−t(U) is independent of the tth observation

{Yt, Xt}, and Â
′
(Ut) = β̂1, the local linear estimate of the first derivative A

′
(Ut). If

taking Ui as a grid point u0, we obtain the local linear estimate of A(u0). By moving

u0 along with the real line, one can estimate the entire curve A(·).
Local linear fitting can be easily implemented by modifying the existing pro-

grams for a linear quantile model slightly. For example, the local linear quantile

regression estimation with jackknife method can be implemented in the R package

quantreg for each data point Ut by setting covariates as Xi and Xi(Ui − Ut) and

the weight as Kh(Ui − Ut), where all data set except Xt are used. Other packages

(Matlab or SAS quantreg procedure) can be also modified slightly for our estimation

method. Obviously, these methods are also applicable to a general local polynomial

quantile regression estimation with some necessary modification.

Next, I derive the Bahadur representation of the estimator by using jack-

knife method and local linear fitting technique. Assume A0(Ut) is the true coef-

ficient. Define εt = ψτ (Yt − A(Ut)
T Xt), Ω∗(Ut) = E(XtX

T
t fy|u,x(qτ (Ut, Xt))|Ut),

θ =
√

nh(A(Ut)− A0(Ut)), R1(Ut) = 1
nfu(Ut)

(Ω∗(Ut))
−1

∑n
i6=t εiXiKh(Ui − Ut), and

R2(Ut) =
1

nfu(Ut)
(Ω∗(Ut))

−1

n∑

i6=t

(ψτ (Y
∗
i )− εi)XiKh(Ui − Ut),

where ψτ = τ − I{x<0}.

Theorem 2.1: (Bahadur Representation): Under Assumption A, the local linear
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estimator of A(Ut) has the following representation:

θ̂ =
(Ω∗(Ut))

−1

√
nhfu(Ut)

∑

i6=t

ϕτ (Y
∗
i )XiK(

Ui − Ut

h
) + op(1). (2.7)

Therefore,

Â−t(Ut)− A(Ut) = R1(Ut) + R2(Ut) + op(
1√
nh

), (2.8)

where Y ∗
i = Yi −X ′

i(A(Ut) + A(1)(Ut)(Ui − Ut)).

Proof: See Section 2.8.¤

Remark 2.2: The local linear estimator Â−t is consistent with the optimal nonpara-

metric convergence rate
√

nh.

2.3 Test Statistics and Asymptotic Distribution

2.3.1 Test of Functional Form of Varying Coefficients

Section is devoted to fitting a varying coefficient quantile regression model.

Now, it turns to one general and interesting testing problem to check whether the

varying coefficient are of some specific functional form. This is equivalent to the

testing hypothesis in (2.1). Then, the corresponding generalized quasi-likelihood

ratio (GQLR) test statistic is defined as follows

Tn = `(Ha)− `(H0)

=
n∑

t=1

ρτ

(
Yt −

p∑
j=0

âk,−t(Ut)Xk,t

)
−

n∑
t=1

ρτ

(
Yt −

p∑

k=0

a0,k(Ut)Xk,t

)
,

where `(Ha) =
∑n

t=1 ρτ (Yt−
∑p

k=0 âk,−t(Ut)Xk,t), and âk,−t(Ut) is the nonparametric

estimate of ak(Ut) by using local linear estimation technique with jackknife method
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under the alternative hypothesis, and `(H0) =
∑n

t=1 ρ(Yt −
∑p

k=0 ak,0(Ut)Xk,t) with

ak,0(Ut) is the true function under the null hypothesis.

To derive the asymptotic distribution of test statistic under H0, we need the

following assumptions in addition to Assumption A.

Assumption B:

(B1) The kernel function K(·) is a symmetric probability density function with

bounded support and is Lipschitz continuous.

(B2) E|ε|4 ≤ ∞.

Let

µn =
pτ(1− τ)

2h
E(

1

fy|u,x(qτ (Ut, Xt))
)

∫
K2(t)dt,

σ2
n =

2(τ(1− τ))2p

h
E(

1

f 2
y|u,x(qτ (Ut, Xt))

)

∫
((2K(t)−K ∗K(t))2dt,

T2 =
n∑

t=1

εtXt
h2

2
a(2)(Ut)µ2 + o(nh2),

T4 =
h2µ2

n

n∑
t=1

fy|u,x(qτ (Ut, Xt))a
(2)(Ut)

fu(Ut)Ω∗(Ut)

∑

j 6=t

εjXjKh(
Uj − Ut

h
) = O(h2),

T5 =
1

8

n∑
t=1

fy|u,x(qτ (Ut, Xt)XtX
T
t h4(a(2)(Ut)µ2)

2 + o(nh4),

and

dn = T2 − T4 − T5.

Then, we have the following theorem.

Theorem 2.2: Suppose Assumptions A and B hold, then under H0 as h → 0 and

nh →∞,

σ−1
n (Tn − dn − µn) → N(0, 1).
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Proof: See Section 2.8.¤

Remark 2.3: In general, the above testing approach can be extended to the com-

posite null hypothesis testing hypothesis:

H0 : Aτ (·) ∈ A0,τ versus Ha : Aτ (·) /∈ A0,τ ,

where A0,τ is a set of functions for the given τ . The quasi-likelihood L (Ha) can

be constructed by using local linear estimator and one can get the estimate by

either parametric or nonparametric method to build the quasi-likelihood L (H0).

Let A0,τ (·) denote the true value of the function Aτ (·). Then the generalized quasi-

likelihood ratio Tn(Aθ) can be decomposed as

Tn = `(Ha)− `(H0)

=
n∑

t=1

ρτ

(
Yt − Â−t(Ut)

T Xt

)
−

n∑
t=1

ρτ

(
Yt − ÂT

0 Xt

)

=
n∑

t=1

ρτ

(
Yt − Â−t(Ut)

T Xt

)
−

n∑
t=1

ρτ

(
Yt − A0(Ut)

T Xt

)

+
n∑

t=1

ρτ

(
Yt − A0(Ut)

T Xt

)
)−

n∑
t=1

ρτ

(
Yt − ÂT

0 Xt

)

= Tn(Aθ)− T ∗
n(Aθ),

where Tn(Aθ) is the generalized quasi-likelihood ration for the testing problem

H0 : A(u) = A0(u) versus Ha : A(u) 6= A0(u)

and T ∗
n(Aθ) is the generalized quasi-likelihood ratio for the testing problem

H0 : A(u) = A0(u) versus Ha : A(u) ∈ A0.
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Since we do not know the true value A0(u), the generalized quasi-likelihood ratio

for the composite null hypothesis can be decomposed into two generalized quasi-

likelihood ratios for two fabricated simple null hypothesis problems. Then, the

Bahadur representation and asymptotic distribution can be easily obtained.

2.3.2 Test of Constancy of Varying Coefficient

One special case of the hypothesis in (2.1) is to check whether the coefficient

functions are actually varying. This is equivalent to considering the hypothesis

testing problem in (2.2) with a known constant vector. By the discussion above, the

generalized quasi-likelihood ratio (GQLR) test statistic is defined as follows

Tn = `(Ha)− `(H0)

=
n∑

t=1

ρτ

(
Yt −

p∑
j=0

âk,−t(Ut)Xk,t

)
−

n∑
t=1

ρτ

(
Yt −

p∑

k=0

ak,0Xk,t

)
,

where `(Ha) =
∑n

t=1 ρτ (Yt−
∑p

k=0 âk,−t(Ut)Xk,t), and âk,−t(Ut) is the nonparametric

estimate of ak(Ut) by using local linear estimation with jackknife method under the

alternative hypothesis and `(H0) =
∑n

t=1 ρ(Yt −
∑p

k=0 ak,0Xk,t) with ak,0 is the true

value under the null hypothesis. With the same notation in Section 2.3.1, we have

the following asymptotic result.

Theorem 2.2: Suppose Assumptions A and B hold, then under H0, as h → 0 and

nh →∞, we have

σ−1
n (Tn − µn) → N(0, 1).

Proof: See Section 2.8.¤

2.3.3 Test of Constancy of Varying Coefficient with Unknown Value

In some applications, it may be more interesting in checking the constancy of

the varying coefficient with the true value A0 unknown. Therefore, we consider the
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test statistic for the hypothesis in (2.2) with a unknown constant vector. Under the

null hypothesis, one can estimate the coefficient â0,k for the linear quantile regression

and construct the quasi-likelihood as follows

`(H0) =
n∑

t=1

ρ(Yt −
p∑

k=0

â0,kXk,t).

Then, the generalized quasi-likelihood ratio (GQLR) test statistic for hypothesis

testing problem in (2.2) with unknown A0 is defined by

Tn = `(Ha)− `(H0)

=
n∑

t=1

ρτ

(
Yt −

p∑
j=0

âk,−t(Ut)Xk,t

)
−

n∑
t=1

ρτ

(
Yt −

p∑

k=0

â0,kXk,t

)

=
n∑

t=1

ρτ

(
Yt −

p∑
j=0

âk,−t(Ut)Xk,t

)
−

n∑
t=1

ρτ

(
Yt −

p∑

k=0

a0,kXk,t

)

+
n∑

t=1

ρτ

(
Yt −

p∑

k=0

a0,kXk,t

)
−

n∑
t=1

ρτ

(
Yt −

p∑

k=0

â0,kXk,t

)

≡ Tn1 + Tn2.

Remark 2.4: As shown in Koenker (2005), the limiting distribution of Tn2 is a χ2

distribution for a parametric quantile regression model.

With the same notation in Section 2.3.1, we have the following asymptotic

result.

Theorem 2.4: Suppose Assumptions A and B hold, then under H0, as h → 0 and

nh →∞, we have

σ−1
n (Tn − µn) → N(0, 1).

Proof: See Section 2.8.¤
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2.4 Estimation of Covariance Matrix and Bandwidth Selection

In Theorems 2.2 - 2.4, the variance of the limit distribution involves the con-

ditional density of Y , fy|u,x(qτ (Ut, Xt)). For the purpose of statistical inference, we

need to obtain a consistent estimate for fy|u,x(qτ (Ut, Xt)). As pointed out by Cai

and Xu (2008), there are two methods are available for the consistent estimate. The

first one is the difference quotients method of Koenker and Xiao (2004), such that

f̂y|u,x(qτ (u, x)) =
τj − τj−1

qτj
(u, x)− qτj−1

(u, x)

for some appropriately chosen sequence of {τj}. qτ (·) can be estimated by using

a variant of the empirical quantile function for the linear model q̂(τ |x) = xT α̂(τ)

proposed in Bassett and Koenker (1982). Then, the conditional density can be

estimated by

f̂y|u,x(qτ (u, x)) =
τj − τj−1

xT (α̂(t + hn)− α̂(t− hn))
.

The second one is the Nadaraya-Watson type double-kernel method proposed in

Fan, Yao, and Tong (1996) and they estimated the conditional density functions

and square roots and their partial derivatives directly by using locally polynomial

regression. Assume g(y|x) is the conditional density of Y given X. As h2 → 0,

E{Kh2(Y − y)|X = x} ≈ g(y|x), (2.9)

where K(·) is a nonnegative density function. It can be considered as regression of

Kh2(Y − y) on X. By using the locally quadratic fitting technique one can estimate

the coefficient by minimize

n∑
i=1

[Kh2(Yi − y)− β0 − βT
1 (Xi − x)− βT

2 vec(Xi − x)(Xi − x)T ]2Wh1(Xi − x),
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where W (·) is a nonnegative kernel function and h1 is the bandwidth. One can

estimate ĝ(y|x) = β̂0. Here

β̂ := (β̂0, β̂
T
1 , β̂T

2 )T = (X T W X )−1X T W Y ,

where X is the design matrix of the above least squares problem, W = diag(Wh1(X1−
x), ..., Wh1(Xn − x)), and Y = (Kh2(Y1 − y), ..., Kh2(Yn − y))T . For the univariate

x, we have

ĝ(y|x) = h−1
1

n∑
i=1

W n
0 (

Xi − x

h1

)Kh2(Yi − y),

where W n
0 (t) = τT

0 S−1
n (1, h1t, h

2
1t

2)T ×W (t) with τ0 the unit vector with 1st element

1, and

Sn =




sn,0 sn,1 sn,2

sn,1 sn,2 sn,3

sn,2 sn,3 sn,4




,

where sn,j =
∑n

i=1(Xi − x)jWh1(Xi − x). Fan, Yao, and Tong (1996) also proposed

to select the optional bandwidth h1 for estimating g′(y|x), which is given by

ĥ1(y) = c0 ∗ argminh

∫
RSC(x, y; h)dx, (2.10)

where RSC(x, y; h1) = σ2(x, y; h1)(1 + 3Vn(x; h1)), Vn(x, h1) is the first diagonal

element of matrix S−1
n TnS

−1
n , and c0 is a positive constant. As for the bandwidth

h2, they adopted

ĥ2 =

[
8
√

πν0

3 µ2
2

]1/5

syn
−1/5, (2.11)

where sy is the sample standard deviation of Y and µ2 and ν0 are defined in Theorem

1.2.

As indicated in Chen and Linton (2001), for the conditional density function
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f(y|x) = f(y,x)
f(x)

, one can estimate f(y|x) by

f̂h1h2h3(y|x) =
f̂h1h2(y, x)

f̂h3(x)
,

where

f̂h1h2(y, x) =
1

nh1h2

n∑
i=1

K(
y − Yi

h1

)K(
x−Xi

h2

),

f̂h3(x) =
1

nh3

n∑
i=1

K(
z − Zi

h3

),

K(·) is a bounded kernel function, and h1, h2 and h3 are positive bandwidth se-

quences, which decay to zero as n → ∞. By fixing h1 = h2, they derived the

following asymptotic result.

Theorem 2.5: (Theorem 3 in Chen and Linton (2001)) Under some assumptions and

let h1, h3 > 0 be such that

lim
n→∞

[n×min(h2
1, h3)×max(h4

1, h
4
3)] = 0

lim
n→∞

min(1,
h3

h2
1

) + limn→∞ min(1,
h2

1

h3

) > 0 exists. (2.12)

Then, √
n×min(h2

1, h3)(f̂h1h2h3(y|z)− f(y|z)) → N(0, V (y, z)),

where

V (y, z) =
f(y|z)

f(z)
ν0[min(1, lim

n

h3

h2
1

ν0) + min(1, lim
n

h2
1

h3

)f(y|z)].

Hence, with nh2
1 →∞, and nh6

1 → 0, for case h1 = h2 =
√

h3, we have

√
nh2

1(f̂h1h2h3(y|z)− f(y|z)) → N(0, V1(y, z) + V2(y, z))
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and for case h1 = h2 = h3,

√
nh2

1(f̂h1h2h3(y|z)− f(y|z)) → N(0, V2(y, z)),

where V1(y, µ) = µ2

√
2πσ(1− ρ2) exp{− (y−µ)2

σ2(1−ρ2)
}, and V2(y, µ) = ν2

0(2π)1/2σ.

From the above results, I will use the estimator for the conditional density as

follows:

f̂y|u,x(qτ (u, x)) =

∑n
t=1 Kh1(Ut − u,Xt − x)Lh1(Yt − qτ (u, x))∑n

t=1 Kh2(Ut − u,Xt − x)
,

where L(·) and K(·) are kernel functions and the bandwidths satisfy h1 =
√

h2 and

nh2
1 →∞, nh6

1 → 0.

Remark 2.5: One can prove that this estimator is the consistent estimator of

fy|u,x(qτ (u, x)) by using the theoretical result of Theorem 2.5.

Set

µ̂n =
pτ(1− τ)

2h
E(

1

f̂y|u,x(qτ (Ut, Xt))
)ν0,

σ̂2
n =

2(τ(1− τ))2p

h
E(

1

f̂ 2
y|u,x(qτ (Ut, Xt))

)

∫
((2K(t)−K ∗K(t))2dt,

and

d̂n = T2 − T̂4 − T̂5.

Then, we have the following theorem.

Theorem 2.6: Suppose Assumptions A and B hold, h1 =
√

h2, nh6
1 → 0, and

nh2
1 →∞. Then, under H0 in (2.2), we have

σ̂−1
n (Tn − d̂n − µ̂n) → N(0, 1).
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Proof: See Section 2.8.¤

Remark 2.6: We can get the similar asymptotic results as in Theorems 2.3 and 2.4

and show that the estimator for the test statistic is consistent. Therefore, we can use

simulation method to approximate the distribution of the proposed test statistic.

2.5 Power of Test

In this section, we consider the power of the quasi-likelihood ratio test based on

local linear fit. For simplicity, we only focus on the null hypothesis in (2.2) with a

known vector. The power of the test is considered under local alternatives as follows

Ha : A(u) = A0(u) +
1√
nh

∆(u),

where ∆(u) = (∆1(u), ∆2(u), ..., ∆p(u))T is a vector of functions, satisfying

E(||∆(u)||22) < ∞ and A0(u) is a known constant under H0. Define

σ∗n =
√

σ2
n + (τ(1− τ))E [∆T (U)XXT ∆(U)]

and d2n = 1
2h

E(fy|u,x(qτ |Xt, Ut)∆(Ut)
T XtX

T
t ∆(Ut)), which goes to infinity when

h → 0 if ∆(·) is nonzero. Then, we have the asymptotical distribution of test

statistic Tn.

Theorem 2.7: Suppose Assumptions A and B hold,and assume A0 is true constant

coefficient. By using the similar notation in Theorem 2.2, then under Ha, we have

σ∗n
−1(Tn − µn + d2n) → N(0, 1).

Proof: See Appendix.¤

Remark 2.7: From Theorem 2.7, it is easy to see that the test statistic diverges if

∆(·) departs from zero. This implies that the test is consistent.
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2.6 Empirical Examples

In this section, we conduct three Monte Carlo simulated examples to examine

the finite sample performance of the proposed test procedure. In our computation,

the Gaussian Kernel K(u) = 1√
2π

e
−u2

2 is used. Simulation procedures and results

are reported next.

2.6.1 Simulation Procedures

Instead of using the limiting distribution to compute the critical values of the

proposed test statistics, we suggest using the simulation approach, which might give

a better finite sample performance. The simulation procedure is briefly described

as follows:

1) Under H0, we estimate the unknown coefficients in model qτ (Ut, Xt) = AT
0,τXt

at the τth quantile using the parametric method and obtain the sum `(H0) =
∑n

t=1 ρτ (yt−ÂT
0,τXt), which becomes to `(H0) =

∑n
t=1 ρτ (yt−A0,τ (Ut)

T Xt) if A0,τ (u)

in known under H0.

2) Under Ha, we estimate the coefficients in model qτ (Ut, Xt) = Aτ (Ut)
T Xt

at the same quantile τ using the jackknife method and local fitting technique and

obtain the sum `(Ha) =
∑

ρτ (yt − Â−t,τ (Ut)
T Xt).

3) Calculate the test statistic Tn = `(Ha)− `(H0).

4) Repeat Steps (1) - (3) a large number of times, say 1000 times, to find the

empirical distribution of {Tn}. The critical value at significance level α is given by

the (1− α)th quantile.

Remark 2.8: From Theorems 2.2 - 2.4, the consistent estimators for µn and σ2
n

are provided, so that the critical value can be obtained from the above simulation

procedure.

Remark 2.9: In Procedure 1), the estimation is not necessary for hypothesis testing

problems in (2.1)with a known functional vector and (2.2) with a known vector since
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the true values are given in the null hypothesis.

2.6.2 Simulation Results

Example 2.1: In this simulated example, I consider the following data generating

process.

Yt = a1(Ut)Xt + et, 1 ≤ t ≤ n, (2.13)

where a1(u) = 2, Ut is generated from uniform (0, 3) independently, et ∼ N(0, 0.3)

and Xt ∼ N(0.5, 0.4). Then, the corresponding quantile regression is

qτ (Ut, Xt) = a0,τ (Ut) + a1,τ (Ut)Xt,

where a0,τ (Ut) =
√

0.3Φ−1(τ), a1,τ (u) = a1(u), and Φ−1(τ) is the τ -th quantile of

N(0, 1).

In this example, I consider a1(u) = 2 as the known coefficient under the null

hypothesis. I choose the sample sizes as n = 250, 500 and 800 and repeat the

simulation m = 1000 times. I report the simulation results for the testing nominal

sizes at 1%, 5% and 10% for different quantiles τ = 0.2, 0.4, 0.6 and 0.8 in Table

2.1, from which, we can see the empirical sizes of the proposed test statistic at

different significance levels and different quantiles are close the true nominal sizes.

This implies that the proposed test can deliver a correct test size.

To demonstrate the power of the proposed test, the power function is evaluated

under a sequence of the alternative models indexed by λ

Ha : a1,τ (u) = 2 +
λ√
nh

∆(u), 0 ≤ λ ≤ 3, (2.14)

where ∆(u) = 2 sin(
√

2πu) and λi = 0.2 i for 1 ≤ i ≤ 15. The simulation is repeated

1000 times for each sample size n = 250, n = 500 and n = 800 and for each quantile

τ = 0.2, 0.4, 0.6, and 0.8. Given the significance level 5%, the power function p(λ)
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Table 2.1: : Finite sample rejection rates for example 2.1

nominal size sample size τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8
n = 250 0.099 0.122 0.109 0.125

10% n = 500 0.093 0.080 0.115 0.119
n = 800 0.107 0.093 0.119 0.109
n = 250 0.054 0.068 0.058 0.050

5% n = 500 0.047 0.069 0.072 0.071
n = 800 0.060 0.052 0.061 0.053
n = 250 0.020 0.024 0.023 0.013

1% n = 500 0.021 0.018 0.025 0.014
n = 800 0.015 0.016 0.017 0.019

is estimated based on the relative frequency of Tn over the 1000 simulations. I plot

the power curves in Figure 2.1 for all settings. One can see from Figure 2.1 that the

power curves are almost same for three sample sizes. This observation is consistent

with our local alternative setting. Also, one can observe that indeed, the proposed

test statistic is powerful.

Example 2.2: In this simulated example, the data generating process and the settings

are exactly the same as those in Example 2.1. But under the null hypothesis, A0

is unknown and it needs an estimation. Different from Example 2.1, I adopt the

linear quantile regression to estimate this coefficient under the null hypothesis. The

simulated sizes for all settings are listed in Table 2.2 and we plot the power curves in

Table 2.2: : Finite sample rejection rates for example 2.2

nominal size sample size τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8
n = 250 0.107 0.121 0.103 0.111

10% n = 500 0.121 0.121 0.114 0.111
n = 800 0.084 0.115 0.113 0.104
n = 250 0.062 0.061 0.067 0.058

5% n = 500 0.060 0.061 0.061 0.064
n = 800 0.055 0.061 0.068 0.053
n = 250 0.019 0.017 0.021 0.019

1% n = 500 0.022 0.018 0.018 0.015
n = 800 0.014 0.014 0.024 0.018
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Figure 2.2. From both Table 2.2 and Figure 2.2, the same conclusions as in Example

2.1 can be made.

Example 2.3: The purpose of this example is to test whether the coefficient functions

have a specific known form. To this end, I consider the simplest model

Yt = a1(Ut)X1t + a2(Ut)X2t + et, 1 ≤ t ≤ n, (2.15)

where a1(u) = sin(
√

2πu), a2(u) = cos(
√

2πu), Ut is generated from uniform (0, 3)

independently, et ∼ N(0, 0.3), X1t ∼ N(0.5, 0.4) and X2t ∼ N(0.75, 0.4). Then, the

corresponding quantile regression is

qτ (Ut, Xt) = a0,τ (Ut) + a1,τ (Ut)X1t + a2,τ (Ut)X2t,

where a0,τ (u) =
√

0.3Φ−1(τ), a1,τ (u) = a1(u), a2,τ (u) = a2(u), and Φ−1(τ) is the τ -

th quantile of the N(0, 1). The remaining settings are the same as those in Example

2.1. The simulated sizes for all settings are listed in Table 2.3. Similar to Examples

2.1 and 2.2, the same observations can be made. Similarly, the power function is

Table 2.3: : Finite sample rejection rates for example 2.3

nominal size sample size τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8
n = 250 0.094 0.111 0.111 0.104

10% n = 500 0.116 0.109 0.098 0.108
n = 800 0.098 0.112 0.106 0.106
n = 250 0.042 0.063 0.061 0.053

5% n = 500 0.055 0.051 0.048 0.060
n = 800 0.052 0.055 0.061 0.061
n = 250 0.012 0.025 0.015 0.018

1% n = 500 0.017 0.016 0.015 0.017
n = 800 0.017 0.016 0.022 0.015
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evaluated under a sequence of the alternative models indexed by 0 ≤ λ ≤ 1,

Ha : a1,τ (u) = sin(
√

2π u) +
λ√
nh

∆(u) and a2(u) = cos(
√

2πu) +
λ√
nh

∆(u),

where ∆(u) = u4e−u/10 and λ = 0.05 i for 1 ≤ i ≤ 20. Given the significance level

5%, we compute the power curves as functions of λ and plot them in Figure 2.3,

from which we can conclude that the proposed test statistic indeed is powerful.

2.7 A Real Example

In previous section, I conducted Monte Carlo simulation to illustrate the effec-

tiveness and the validity of the proposed test statistics. In this section, I consider

the application of these methodologies to a real example.

Here I analyze a subset of the Boston house price data (http://lib.stat.cum.edu

/datasets/boston) of Harrison and Rubinfeld (1978) which is used to study the effect

of air pollution on real estate price in the greater Boston area in 1970s. The data set

consist of 506 observations on 14 variables. For the complete description of all there

variables, the reader is referred to the papers by Harrison and Rubinfeld (1978) and

Gilley and Pace (1996). As indicated in Cai and Xu (2008) which analyzed this data

set by using a varying coefficient quantile regression model, we focus on exploring

the possible (linear, nonparametric or semiparametric) relationships between the

dependent variable and some major factors which might affect the house price. Here

I adopt the same notation as in Cai and Xu (2008) in order to do a comparison.

Y : the dependent variable, the median value of owner-occupied homes in $1,000’s

(house price).

U : proportion of population of lower educational status.

X1: the average number of rooms per house in the area.

X2: the per capital crime rate by town.

X3: the full property tax rate per $10,000.
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X4: the pupil/teacher ratio by town school district.

Note that there are many papers investigating this data set in the literature, and

the reader is referred to the paper by Cai and Xu (2008) for details.

In this section, I will focus on two models. First, we consider the model from

Cai and Xu (2008) which is the following quantile smooth coefficient model

qτ (Ut, Xt) = a0,τ (Ut) + a1,τ (Ut)Xt1 + a2,τ (Ut)X
∗
t2, (2.16)

where X∗
t2 = log(Xt2). Our interest is to check whether the functional coefficients

in Aτ (u) = (a0,τ (u), a1,τ (u), a2,τ (u))T in model (2.16) are indeed varying with u.

That is to test the null hypothesis H0 : Aτ (u) = A0, where A0,τ is a vector of

unknown parameters. For this testing problem, I calculate the test statistic by

using the proposed test procedure. The corresponding p-value are reported in Table

2.4. Therefore, one can see that all the p-values are less than significant level 0.05

from Table 2.4, which implies that the varying coefficients are indeed varying.

Table 2.4: : The p-values for testing constancy in model (2.16)

τ 0.2 0.4 0.6 0.8

p-value 0.000 0.020 0.000 0.000

It is clear that model (3.9) does not include two variables X3 and X4. The reason

as claimed by Cai and Xu (2008) is that the functional coefficients for variables

X3 and X4 may be constant. Therefore, I use the proposed test procedure to test

whether the coefficients of X3 and X4 are constant or not. To this effect, we consider

the following model

qτ (Ut, Xt) = a∗0,τ (Ut) + a3,τ (Ut)Xt3 + a4,τ (Ut)X
∗
t4, (2.17)

and then consider the testing problem formulated as the null hypothesis H0 :
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A∗
τ (u) = A∗

0, where A∗
τ (u) = (a∗0,τ (u), a3,τ (u), a4,τ (u))T and A∗

0,τ is a vector of un-

known parameters. By using the test statistic by following the test procedure as

in Section 2.3.3, I calculate the quasi-likelihood using linear parametric quantile

regression under the null hypothesis and calculate the quasi-likelihood using local

linear fitting method. The corresponding p-values are reported in Table 2.5, from

which, one can see that all the p-values are greater than significant level 0.05. This

implies that the varying coefficients are indeed constant.

Table 2.5: : The p-values for testing constancy in model (2.17)

τ 0.2 0.4 0.6 0.8

p-value 0.680 0.910 0.220 0.340
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Figure 2.1: The plot of power curves for the testing hypothesis in Example 2.1 with
the nominal size 5% in Section 2.6. The dashed line is for n = 250, the solid line is
for n = 500 and the dashed-dotted line is for n = 800.
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Figure 2.2: The plot of power curves for the testing hypothesis in Example 2.2 with
the nominal size 5% in Section 2.6. The dashed line is for n = 250, the solid line is
for n = 500 and the dashed-dotted line is for n = 800.
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Figure 2.3: The plot of power curves for the testing hypothesis in Example 2.3 with
the nominal size 5% in Section 2.6. The dashed line is for n = 250, the solid line is
for n = 500 and the dashed-dotted line is for n = 800.
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2.8 Complements

In this section, we give the derivations of the main results presented in previous

sections of this chapter. Before moving to the detailed proofs, we need the following

lemma.

Lemma 1: (Lemma 3.3.2 in Zhang (2000))

(1) Assume a2, b2 are finite and [a2, b2] ⊆ [a1, b1]. Suppose g1(x) is Lipschitz contin-

uous in [a1, b1] and g2(y) is continuous in [a2, b2]; K(x) is a symmetric function with

a bounded support and
∫

yqKm1(y)dy < ∞ for some integer m1 ≥ 1, q ≥ 0. Then

as h → 0

∫ b1

a1

∫ b2

a2

g1(x)g2(y)(
x− y

h
)qKm1

h (x−y)dxdy =

∫ b2
a2

g1(x)g2(x)dx
∫

yqKm1(y)dy + O(h)

hm1−1
.

(2) Assume a1, b1 are finite and [a1, b1] ⊆ [a2, b2], [a1, b1] ⊆ [a3, b3]. Suppose g2(y) is

Lipschitz continuous in [a2, b2] and g3(z) is continuous in [a3, b3]; g1(x) is continuous

in [a1, b1];K(x) is a symmetric function with a bounded support and
∫

yqKm1(y)dy <

∞ for some integer m1 ≥ 1,m2 ≥ 1, q ≥ 0. Then as h → 0

∫ b1

a1

∫ b2

a2

∫ b3

a3

g1(x)g2(y)g3(u)(
x− z

h
)qKm1

h (x− z)Km2
h (z − y)dxdydz

=

∫ b1
a1

g1(x)g2(x)g3(x)dx
∫

zqKm1(z)dz
∫

Km2(y)dy + O(h)

hm1+m2−2
.

(3) Assume a1, b1 are finite and [a1, b1] ⊆ [a2, b2], [a1, b1] ⊆ [a3, b3]. Suppose g2(y) is

Lipschitz continuous in [a2, b2] and g3(u) is continuous in [a3, b3]; g1(x) is continuous

in [a1, b1];K(x) is a symmetric function with a bounded support and
∫

yqKm1(y)dy <

∞ for some integer mi ≥ 1, qi ≥ 0(i = 1, 2, 3). Then as h → 0

∫ b1

a1

∫ b2

a2

∫ b3

a3

g1(x)g2(y)g3(u)(
u− x

h
)q1Km1

h (u− x)(
y − x

h
)q2
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Km2
h (x− y)(

u− y

h
)q3Km3

h (y − u)dxdydu

=

∫ b1
a1

g1(x)g2(x)g3(x)dx
∫

uq1Km1(u)du
∫

yq2Km2(y)(u− y)q3Km3(u− y)dy + O(h)

hm1+m2+m3−2

=

∫ b1
a1

g1(x)g2(x)g3(x)dx
∫

uq1Km1(u)du
∫

(y + u)q2Km2(y + u)(−y)q3Km3(y)dy

hm1+m2+m3−2
.

(4) Assume a1, b1 are finite and [a1, b1] ⊆ [a2, b2], [a1, b1] ⊆ [a3, b3], [a1, b1] ⊆ [a4, b4].

Suppose g2(y) is Lipschitz continuous in [a2, b2] and g3(u) is continuous in [a3, b3];

g4(v) is continuous in [a4, b4];g1(x) is continuous in [a1, b1]; K(x) is a symmetric

function with a bounded support and
∫

yqKm1(y)dy < ∞ for some integer mi ≥
1, qi ≥ 0(i = 1, 2, 3, 4). Then as h → 0

∫ b1

a1

∫ b2

a2

∫ b3

a3

∫ b4

a4

g1(x)g2(y)g3(u)g4(v)(
u− x

h
)q1Km1

h (u− x)(
v − x

h
)q2Km2

h (v − x)

(
u− y

h
)q3Km3

h (u− y)(
v − y

h
)q4Km4

h (v − y)dxdydudv

=

∫ b1
a1

g1(x)g2(x)g3(x)g4(x)dx

hm1+m2+m3+m4−3
×

∫ 2B

2B
[
∫ B

B
uq1Km1(u)(u− y)q3Km3(y − u)]du[

∫ B

B
vq2Km2(v)(v − y)q4Km4(y − v)]dv]dy

hm1+m2+m3+m4−3

+
O(h)

hm1+m2+m3+m4−3
.

Definition 2: (Definition 1 in de Jong (1987)) W (n) is called clean if the conditional

expectations of Wij vanish:

E(Wij|Xi) = 0 a.s. for all i, j ≤ n.
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Lemma 2: (Theorem2.1 in de Jong (1987))

Let W (n) be clean with variance σ2(n). Assume

a) σ(n)−2max1≤i≤n

∑n
j=1 σ2

ij → 0, as n →∞.

b) σ(n)−4E(W (n)4) → 3 as n →∞.

then

σ(n)−1W (n) → N(0, 1), as n →∞.

Lemma 3: (Proposition 3.2 in de Jong (1987))

Let W (n) be clean and let GI , GII and GIV be of lower order than σ4(n), then,

σ(n)−1W (n) → N(0, 1), as n →∞.

where

GI =
∑

1≤i<j≤n

E(W 4
ij),

GII =
∑

1≤i<j≤n

{E(W 2
ijW

2
ik) + E(W 2

jiW
2
jk) + E(W 2

kiW
2
kj)},

GIV =
∑

1≤i<j≤n

{E(WijWikWljWlk) + E(WijWilWkjWkl) + E(WikWilWjkWjl)}.

Proof of theorem 2.1

We can prove it by following the similar steps in the proof of Theorem 1 in Cai

and Xu (2008) which derived the following Bahadur representation for any u0,

√
nh

(
β0 − a(u0)

β1 − a(1)(u0)

)
=

(Ω∗(u0))
−1

√
nhfu(u0)

n∑
t=1

ϕτ (Y
∗
i )XiK(

Ut − u0

h
) + op(

1√
nh

). (2.18)

By using the leave-one-out estimation method, we can get the similar Bahadur

representation for each design point Ut. All are similar except that Xt is not used
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to estimate A(Ut). So, we have

Â−t(Ut)− A(Ut) =
(Ω∗(Ut))

−1

nhfu(Ut)

n∑

i6=t

ϕτ (Y
∗
i )XiK(

Ui − Ut

h
) + op(

1√
nh

)

= R1(Ut) + R2(Ut) + op(
1√
nh

).

and it holds uniformly for all Ut. ¤

Proof of Theorem 2.2

The test statistic Tn under H0 can be rewritten as

Tn = `(Ha)− `(H0)

=
n∑

t=1

ρτ

(
Yt − Â−t(Ut)

T Xt

)
−

n∑
t=1

ρτ

(
Yt − A0(Ut)

T Xt

)
, (2.19)

by applying Knight identity ρτ (r−s)−ρτ (r) = s{I(r < 0)−τ}+∫ s

0
{I(r < u)−I(r <

0)}du. Then, we can rewrite equation (2.19) as

Tn =
n∑

t=1

((Â−t(Ut)− A0(Ut))
T Xt(I(Yt−A0(Ut)T Xt<0) − τ)

+
n∑

t=1

∫ ((Â−t(Ut)−A0(Ut))T Xt

0

(I(Yt−A0(Ut)T Xt<s) − I(Yt−A0(Ut)T Xt<0))ds

= B1 + B2.

First, we consider B2.

B2 =
n∑

t=1

∫ (Â−t(Ut)−A0(Ut))T Xt

0

I(Yt−A0(Ut)T Xt<s) − I(Yt−A0(Ut)T Xt<0)ds

= E(B2) + (B2 − EB2)

= C1 + C2.



47

For C2, we can apply the law of large number to get C2 = op(1). For C1, we

define εt = Yt − a(Ut)
T Xt. By using the fact that εt is independent of A0(Ut) and

Â−t(Ut), we can switch the order of integral and the expectation under condition

z = (u, x, y−t), where y−t is (Y1, Y2, ...Yt−1, Yt+1, ...Yn),

C1 =
n∑

t=1

E(

∫ (Â−t(Ut)−A0(Ut))T Xt

0

IYt−A0(Ut)T Xt<s) − I(Yt−A0(Ut)T Xt<0)ds)

=
n∑

t=1

E(

∫ (Â−t(Ut)−A0(Ut)T Xt)

0

Ez(IYt−A0(Ut))T Xt<s) − I(Yt−A0(Ut)T Xt<0)|Xt, Ut)ds)

=
n∑

t=1

E(

∫ (Â−t(Ut)−A0(Ut))T Xt

0

Ez(Iεt<s) − I(εt<0)|Xt, Ut)ds)

=
n∑

t=1

E(

∫ (Â−t(Ut)−A0(Ut))T Xt

0

Fy|u,x(s)− Fy|u,x(0)ds)

=
1

2

n∑
t=1

E(fy|u,x(qτ |Xt, Ut))(Â−t(Ut)− A0(Ut))
T XtX

T
t (Â−t(Ut)− A0(Ut)).

we get

Tn = −
n∑

t=1

(Â−t(Ut)− A(Ut))
T Xtεt +

1

2

n∑
t=1

fy|u,x(qτ |Xt, Ut)(Â−t(Ut)− A(Ut))
T

XtX
T
t (Â−t(Ut)− A(Ut)) + op(h

− 1
2 )

= −
n∑

t=1

((R1(Ut) + R2(Ut)
T Xtεt +

1

2

n∑
t=1

fy|u,x(qτ |Xt, Ut)(R1(Ut) + R2(Ut))
T

XtX
T
t (R1(Ut) + R2(Ut)) + op(h

− 1
2 )

= −
n∑

t=1

R1(Ut)
T Xtεt −

n∑
t=1

R2(Ut)
T Xtεt +

1

2

n∑
t=1

fy|u,x(qτ |Xt, Ut)R1(Ut)
T

XtX
T
t R1(Ut) +

n∑
t=1

fy|u,x(qτ |Xt, Ut)R1(Ut)
T XtX

T
t R2(Ut) +

1

2

n∑
t=1

fy|u,x(qτ |Xt, Ut)R
T
2 (Ut)XtX

T
t R2(Ut) + op(h

− 1
2 )

= −T1 − T2 + T3 + T4 + T5 + op(h
− 1

2 ).
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According to Cai and Xu (2008),we have the fact that:

R2(Ut) =
h2

2
a(2)(Ut)µ2 + op(h

2).

Where µ2 =
∫

t2K(t)dt.

Therefore

T2 =
n∑

t=1

εtXt
h2

2
a(2)(Ut)µ2 + o(nh2),

T4 =
h2µ2

n

n∑
t=1

fy|u,x(qτ (Ut, Xt))a
(2)(Ut)

fu(Ut)Ω∗(Ut)

∑

j 6=t

εjXjKh(
Uj − Ut

h
) = O(h2),

T5 =
1

8

n∑
t=1

fy|u,x(qτ (Ut, Xt)XtX
T
t h4(a(2)(Ut)µ2)

2 + o(nh4).

For T1,we get

T1 =
1

nh

n∑
t=1

(fu(Ut)Ω
∗(Ut))

−1

n∑

i6=t

εiX
T
i K(

Ui − Ut

h
)Xtεt

=
1

nh

∑

i6=t

εtεiX
T
i (fu(Ut)Ω

∗(Ut))
−1XtK(

Ui − Ut

h
)

=
1

n

∑

i6=t

εtεiX
T
i (fu(Ut)Ω

∗(Ut))
−1XtKh(Ui − Ut), (2.20)

where Kh(.) means K(./h)/h. Next we deal with T3.

T3 =
1

2

n∑
t=1

E(fy|u,x(qτ |Xt, Ut))
1

nhfu(Ut)
(Ω∗(Ut))

−1

n∑

i6=t

εiX
T
i K(

Ui − Ut

h
)XtX

T
t

1

nhfu(Ut)
(Ω∗(Ut))

−1

n∑

j 6=t

εjXjK(
Uj − Ut

h
)

=
1

2n2

∑
i=j

εiεjX
T
i {

n∑

t6=i

E(fy|u,x(qτ |Xt, Ut))(fu(Ut)Ω
∗(Ut))

−1XtX
T
t

(fu(Ut)Ω
∗(Ut))

−1Kh(Ui − Ut))Kh(Uj − Ut)Xj}
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+
1

2n2

∑

i6=j

εiεjX
T
i {

n∑

t6=i,j

E(fy|u,x(qτ |Xt, Ut))(fu(Ut)Ω
∗(Ut))

−1XtX
T
t

(fu(Ut)Ω
∗(Ut))

−1Kh(Ui − Ut))Kh((j−Ut)}Xj

= T31 + T32.

by Lemma 1, we have

T31 =
1

2
E(ε2

i X
T
i E(fy|u,x(qτ |Xt, Ut))(fu(Ut)Ω

∗(Ut))
−1XtX

T
t

(fu(Ut)Ω
∗(Ut))

−1XiK
2
h(Ui − Ut))

=
1

2
tr{E(ε2

i E(fy|u,x(qτ |Xt, Ut))(fu(Ut)Ω
∗(Ut))

−1XtX
T
t

(fu(Ut)Ω
∗(Ut))

−1XiX
T
i K2

h(Ui − Ut))}

=
1

2
τ(1− τ)tr{E[

Ω∗(Ui)
−1Ω∗(Ut))

f 2
u(Ut)fy|u,x(qτ |Xi, Ui)

K2
h(Ui − Ut)]}

=
τ(1− τ)p

2h
[E(

1

fy|u,x(qτ |Xt, Ut)
)

∫
K2(x)dx + O(h)].

Next, we deal with the term T32,

T32 =
1

2n

∑

i6=j

εiεjX
T
i

1

n
{

n∑

t6=i,j

E(fy|u,x(qτ (Ut, Xt))(fu(Ut)Ω
∗(Ut))

−1XtX
T
t

(fu(Ut)Ω
∗(Ut))

−1Kh(Ui − Ut)Kh(Uj − Ut)}Xj

=
1

2n

∑

i6=j

Z(i, j)εiεj,

Where

Z(i, j) =
1

n
XT

i {
n∑

t6=i,j

E(fy|u,x(qτ (Ut, Xt)))(fu(Ut)Ω
∗(Ut))

−1XtX
T
t (fu(Ut)Ω

∗(Ut))
−1

Kh(Ui − Ut)Kh(Uj − Ut)}Xj.

For i 6= j, define
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Q(i, j) =
∑

i6=j

∫

Ω

Kh(Ui − u)Kh(Uj − u)duXT
i (fu(Uj)Ω

∗(Uj))
−1Xj,

Let

Zn =
∑

i6=j

Z(i, j)εiεj,

Qn =
∑

i6=j

Q(i, j)εiεj,

Consider

E(Zn −Qn)2 = E(Z2
n) + E(Q2

n)− 2E(ZnQn),

For E(Z2
n), since Z(i, j) is symmetric in (i,j), by lemma 1, we get

E(Z2
n) = 2(τ(1− τ))2

∑

i6=j

E(Z(i, j))2

=
2(τ(1− τ))2

n2

∑

i6=j

E[
∑

t6=i6=j

(E(fy|u,x(qτ (Ut, Xt))))
2(XT

i (fu(Ut)Ω
∗(Ut))

−1Xt)
2

(XT
t (fu(Ut)Ω

∗(Ut))
−1Xj)

2K2
h(Ui − Ut)K

2
h(Ut − Uj)

+
∑

t,l 6=i6=j

Ez(fy|u,x(qτ (Ut, Xt)))E(fy|u,x(qτ (Ul, Xl)))X
T
i (fu(Ut)Ω

∗(Ut))
−1

(XtX
T
t (fu(Ut)Ω

∗(Ut))
−1XjX

T
i (fu(Ul)Ω

∗(Ul))
−1XlX

T
l (fu(Ul)Ω

∗(Ul))
−1Xj

Kh(Ui − Ut)Kh(Ut − Uj)Kh(Ui − Ul)Kh(Ul − Uj)]

=
2(τ(1− τ))2

n2
[n3J1 + n4J2](1 + O(n−1),

where

J1 = E{tr[E((fy|u,x(qτ (Ut, Xt))))
2XiX

T
i (fu(Ut)Ω

∗(Ut))
−1XtX

T
t (fu(Ut)Ω

∗(Ut))
−1

XjX
T
j (fu(Ut)Ω

∗(Ut))
−1XtX

T
t (fu(Ut)Ω

∗(Ut))
−1K2

h(Ui − Ut)K
2
h(Ut − Uj)

= tr{E[
Ω∗(Ui)Ω

∗(Uj)

f 4
u(Ut)fy|u,x(qτ (Ui, Xi)))fy|u,x(qτ (Uj, Xj)))Ω∗(Ut))Ω∗(Ut))
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K2
h(Ui − Ut)K

2
h(Ut − Uj)]}

=

∫

Ω

∫

Ω

∫

Ω

Ω∗(Ui)Ω
∗(Uj)

f 4
u(Ut)fy|u,x(qτ (Ui, Xi)))fy|u,x(qτ (Uj, Xj)))Ω∗(Ut))Ω∗(Ut))

K2
h(Ui − Ut)K

2
h(Ut − Uj)fu(Ut)fu(Ui)fu(Uj)dUtdUidUj

=
p

h2
[

∫

Ω

1

fu(Ut)f 2
y|u,x(qτ (Ut, Xt))

dUt

∫
K2(x)dx

∫
K2(y)dy + O(h)],

and

J2 = E{tr[E(fy|u,x(qτ (Ut, Xt)))Ez(fy|u,x(qτ (Ul, Xl)))X
T
i (fu(Ut)Ω

∗(Ut))
−1

XtX
T
t (fu(Ut)Ω

∗(Ut))
−1XjX

T
i (fu(Ul)Ω

∗(Ul))
−1XlX

T
l (fu(Ul)Ω

∗(Ul))
−1Xj]

Kh(Ui − Ut)Kh(Ut − Uj)Kh(Ui − Ul)Kh(Ul − Uj)}

= tr{E[
Ω∗(Ui)Ω

∗(Uj)

f 4
u(Ut)fy|u,x(qτ (Ui, Xi)))fy|u,x(qτ (Uj, Xj)))Ω∗(Ul))Ω∗(Ut))

Kh(Ui − Ut)Kh(Ut − Uj)Kh(Ui − Ul)Kh(Ul − Uj)}

=

∫

Ω

∫

Ω

∫

Ω

Ω∗(Ui)
−1Ω∗(Uj)

−1

f 4
u(Ut)fy|u,x(qτ (Ui, Xi)))fy|u,x(qτ (Uj, Xj)))Ω∗(Ut))−1Ω∗(Ut))−1

Kh(Ui − Ut)Kh(Ut − Uj)Kh(Ui − Ul)Kh(Ul − Uj)}

fu(Ut)fu(Ul)fu(Ui)fu(Uj)dUtdUidUjdUl

=
p

h
[

∫

Ω

1

f 2
y|u,x(qτ (Ut, Xt))

dUt

∫ ∫ ∫
K(x)K(y)K(z − x)K(z − y)dzdxdy

+ O(h)].

Next for E(Q2
n),

E(Q2
n) = (τ(1− τ))2

∑

i6=j

E(Q(i, j)2) + (τ(1− τ))2
∑

i6=j

E(Q(i, j)Q(j, i))

= n(n− 1)(τ(1− τ))2E{tr[XiX
T
i (fu(Uj)Ω

∗(Uj))
−1XjX

T
j

(fu(Uj)Ω
∗(Uj))

−1][

∫

Ω

Kh(Ui − u)Kh(Uj − u)du]2}+ n(n− 1)

(τ(1− τ))2E{tr[XiX
T
i (fu(Ui)Ω

∗(Ui))
−1XjX

T
j (fu(Uj)Ω

∗(Uj))
−1]
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[

∫

Ω

Kh(Ui − u)Kh(Uj − u)du]2}

= (τ(1− τ))2tr[E
Ω∗(Ui)

f 2
u(Uj)(fy|u,x(qτ (Ui, Xi)))Ω∗(Ui))fy|u,x(qτ (Uj, Xj)))Ω∗(Uj)

[

∫

Ω

Kh(Ui − u)Kh(Uj − u)du]2]n(n− 1)

+ n(n− 1)(τ(1− τ))2tr[E
1

f 2
u(Uj)(fy|u,x(qτ (Ui, Xi)))fy|u,x(qτ (Uj, Xj)))Ω∗(Uj)

[

∫

Ω

Kh(Ui − u)Kh(Uj − u)du]2]

=
2n2(τ(1− τ))2p

h
[E(

1

f 2
y|u,x(qτ (Uj, Xj))

) + O(h)],

E(ZnQn) = (τ(1− τ))2
∑

i6=j

E(Z(i, j)(Q(i, j) + Q(j, i)]

=
(τ(1− τ))2

n
E{tr[

∑

t6=i6=j

Ez(fy|u,x(qτ (Ut, Xt)))XtX
T
t (fu(Ut)Ω

∗(Ut))
−1

XjX
T
j ((fu(Uj)Ω

∗(Uj))
−1 + (fu(Ui)Ω

∗(Ui))
−1)XiX

T
i

(fu(Ut)Ω
∗(Ut))

−1]Kh(Ui − Ut)Kh(Ut − Uj)∫

Ω

Kh(Ui − u)Kh(Uj − u)}

=
(τ(1− τ))2

n

∑

i6=j

tr{E[
Ω∗(Ui)Ω

∗(Uj)

f 2
u(Ut)fy|u,x(qτ (Ui, Xi)))fy|u,x(qτ (Uj, Xj)))Ω∗(Ut))

((fu(Uj)Ω
∗(Uj))

−1

+ (fu(Ui)Ω
∗(Ui))

−1)Kh(Ui − Ut)Kh(Ut − Uj)

∫

Ω

Kh(Ui − u)Kh(Uj − u)}

=
2n2(τ(1− τ))2p2

h
[E(

1

f 2
y|u,x(qτ (Uj, Xj))

) + O(h)].
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So we have

E(Zn −Qn)2 = E(Z2
n) + E(Qn)2 − 2E(ZnQn) = O(n2) + O(nh−2).

Then as h → 0, nh →∞,we have

∑

i6=j

Z(i, j)εiεj =
∑

i6=j

∫

Ω

Kh(Ui − Ut)Kh(Uj − Ut)duXT
i (fu(Ut)Ω

∗(Ut))
−1Xjεiεj

+ O(n) + O(
√

nh−1),

T32 =
1

2n

∑

i6=j

εiεj

∫

Ω

Kh(Ui − Ut)Kh(Uj − Ut)duXT
i (fu(Ut)Ω

∗(Ut))
−1Xj + O(1)

+ O(
1√
nh

),

So,

T3 =
1

2h
pτ(1− τ)E(

1

fy|u,x(qτ (Ut, Xt))
)

∫
K2(t)dt + op(h

−1/2)

+
1

2n

∑
i<j

εiεjX
T
i (fu(Ut)Ω

∗(Ut))
−1Kh ∗Kh((Ui − Uj)/h)Xj + O(1)

+ O(
1√
nh

),

−T1 + T3 = − 1

n

∑

i6=t

εtεiX
T
i (fu(Ut)Ω

∗(Ut))
−1XtKh(

Ui − Ut

h
)

+
1

2h
pτ(1− τ)E(

1

fy|u,x(qτ (Ut, Xt))
)

∫
K2(t)dt + op(h

−1/2)

+
1

2n

∑
i<j

εiεjX
T
i (fu(Ut)Ω

∗(Ut))
−1Kh ∗Kh((Ui − Uj)/h)Xj

+ O(1) + O(
1√
nh

)

=
1

2h
pτ(1− τ)E(

1

fy|u,x(qτ (Ut, Xt))
)

∫
K2(t)dt−W (n)h−

1
2 /2
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+ O(1) + O(
1√
nh

),

where

W (n) =

√
h

n

∑

j 6=l

εiεl[2Kh(Uj − Ul)−Kh ∗K(Uj − Ul)]X
T
j (qτ )(fu(Ut)Ω

∗(Ut))
−1Xl.

let v = 2||2K −K ∗K||22 (τ(1−τ))2p
h

E( 1
f2

y|u,x
(qτ (Ut,Xt))

), I will show var(W (n)) → v, and

then I can apply lemma 3 to get W (n) → N(0, v).

To prove it, we defineWi,j =
√

h
n

w(i, j)εiεj, where w(i, j) is written in a sym-

metric form:

w(i, j) = w1(i, j) + w2(i, j)− w3(i, j)− w3(i, j),

where

w1(i, j) = 2Kh(Ui − Uj)X
T
i fu(Uj)Ω

∗(Uj))
−1Xj,

w2(i, j) = w1(j, i),

w3(i, j) =

∫

Ω

Kh(Ui − u)Kh(Uj − u)XT
i (fu(Uj)Ω

∗(Uj))
−1Xj,

w4(i, j) = w3(j, i).

then W (n) =
∑

i<j W (i, j) and var(W (n)) =
∑

i<j E(W (i, j)2).

To apply lemma 3, we need to verify the following conditions.

Condition 1) W (n) is clean

Condition 2) var(W (n)) → v.

Condition 3) GI is of smaller order than var(W (n)).

Condition 4) GII is of smaller order than var(W (n)).

Condition 5) GIV is of smaller order than var(W (n)).

where GI , GII and GIV are defined in the lemma 3.
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I will show the proof in detail as follows

Condition 1) by the definition of clean and W (n), the proof is obvious.

Condition 2) We note that

var(W (n)) =
∑
i<j

EW 2
ij,

By the straightforward calculation,

E(w2
1(i, j)ε

2
i ε

2
j) =

4(τ(1− τ))2p

h
E[

1

f 2
y|u,x(qτ (Uj, Xj))

]

∫

Ω

K2(y)dy

(1 + O(h)),

E(w2
2(i, j)ε

2
i ε

2
j) =

4(τ(1− τ))2p

h
E[

1

f 2
y|u,x(qτ (Uj, Xj))

]

∫

Ω

K2(y)dy

(1 + O(h)),

E(w2
3(i, j)ε

2
i ε

2
j) =

(τ(1− τ))2p

h
E[

1

f 2
y|u,x(qτ (Uj, Xj))

]

(

∫

Ω

∫

Ω

K(y − x)K(x)dxdy)2(1 + O(h)),

E(w2
4(i, j)ε

2
i ε

2
j) =

(τ(1− τ))2p

h
E[

1

f 2
y|u,x(qτ (Uj, Xj))

]

(

∫

Ω

∫

Ω

K(y − x)K(x)dxdy)2(1 + O(h)),

E(w1(i, j)w2(i, j)ε
2
i ε

2
j) =

4(τ(1− τ))2p

h
E[

1

f 2
y|u,x(qτ (Uj, Xj))

]

∫

Ω

K2(y)dy(1 + O(h)),

E(w1(i, j)w3(i, j)ε
2
i ε

2
j) =

2(τ(1− τ))2p

h
E[

1

f 2
y|u,x(qτ (Uj, Xj))

]

∫

Ω

K(y)dy

∫

Ω

K(u)K(x + u)dx(1 + O(h)),

E(w1(i, j)w4(i, j)ε
2
i ε

2
j) =

2(τ(1− τ))2p

h
E[

1

f 2
y|u,x(qτ (Uj, Xj))

]

∫

Ω

K(y)dy

∫

Ω

K(u)K(x + u)dx(1 + O(h)),
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E(w2(i, j)w3(i, j)ε
2
i ε

2
j) =

2(τ(1− τ))2p

h
E[

1

f 2
y|u,x(qτ (Uj, Xj))

]

∫

Ω

K(y)dy

∫

Ω

K(u)K(x + u)dx(1 + O(h)),

E(w2(i, j)w2(i, j)ε
2
i ε

2
j) =

2(τ(1− τ))2p

h
E[

1

f 2
y|u,x(qτ (Uj, Xj))

]

∫

Ω

K(y)dy

∫

Ω

K(u)K(x + u)dx(1 + O(h)),

E(w3(i, j)w4(i, j)ε
2
i ε

2
j) =

(τ(1− τ))2p

h
E[

1

f 2
y|u,x(qτ (Uj, Xj))

]

(

∫

Ω

∫

Ω

K(y − x)K(x)dxdy)2(1 + O(h)).

So,

E(w(i, j)2ε2
i ε

2
j) =

(2τ(1− τ))2p

h

∫
[2K(x)−K ∗K(x)]2dxE[

1

f 2
y|u,x(qτ (Uj, Xj))

].

Therefore, v = 2||2K −K ∗K||22 (τ(1−τ))2p2

h
E( 1

f2
y|u,x

(qτ (Ut,Xt))
).

Condition 3) Note that E(w1(i, j)εiεj)
4 = O(h−3) and E(w3(i, j)εiεj)

4 =

O(h−2), therefore E(w(i, j)εiεj)
4 = h2

n4 O(h−3). Hence we get GI = O(n−2h−1) =

o(1).

Condition 4) E(w(i, j)2w(j, k)2) = O(n−4h−1) which lead to GII = O(n3 1
n4h

) =

O( 1
nh

) = o(1).

Condition 5) By the definition of symmetric form of wii, j, it suffices to con-

sider this term E(WijWikWljWlk). Note that

E{w1(i, j)w1(i, k)w1(l, j)w1(l, k)} = O(h−1),

E{w1(i, j)w1(i, k)w1(l, j)w3(l, k)} = O(h−1),

E{w1(i, j)w1(i, k)w3(l, j)w3(l, k)} = O(h−1),

E{w1(i, j)w3(i, k)w3(l, j)w3(l, k)} = O(h−1),

E{w3(i, j)w3(i, k)w3(l, j)w3(l, k)} = O(h−1).
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Therefore, we get E(WijWikWljWlk) = O(h2

n4 )O(h−1) = O(n−4h). Then we get

GIV = O(h) = o(1).

Then, all conditions for Lemma 3 are satisfied. By applying Lemma 3 we can get

the asymptotic distribution which finishes the proof of Theorem 2.2.¤

Proof of Theorem 2.3

Under H0 : A(u) = A0, we have A
(1)
0 (Ut) = 0 since it is a constant vector.

So Y ∗
t = Yt − X ′

tA0(Ut), which implies that ϕ(Y ∗
t ) = εt. Therefore, we obtain

R2(Ut) = 0. Thus,

Â−t(Ut)− A0(Ut) =
(Ω∗(Ut))

−1

nhfu(Ut)

n∑

i6=t

ϕτ (Y
∗
i )XiK(

Ui − Ut

h
) + op(

1√
nh

)

= R1(Ut) + op(
1√
nh

).

Under H0, the test statistic Tn can be rewritten as

Tn = `(Ha)− `(H0)

=
n∑

t=1

ρτ

(
Yt − Â−t(Ut)

T Xt

)
−

n∑
t=1

ρτ

(
Yt − AT

0 (Ut)Xt

)
,

where A0 is the constant vector. Denote εt = τ − I(Yt−A0(Ut)T Xt<0), and recall

R2(Ut) = 0 under H0. By applying Knight identity and the similar derivation

in the proof of Theorem 2.2, then, we get

Tn = −
n∑

t=1

(Â−t(Ut)− A0(Ut))
T Xtεt

+
1

2

n∑
t=1

E(fy|u,x(qτ |Xt, Ut))(Â−t(Ut)− A0(Ut))
T XtX

T
t (Â−t(Ut)− A0(Ut))
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= −
n∑

t=1

((R1(Ut) + R2(Ut)
T Xtεt

+
1

2

n∑
t=1

E(fy|u,x(qτ |Xt, Ut))(R1(Ut) + R2(Ut))
T XtX

T
t (R1(Ut) + R2(Ut))

= −
n∑

t=1

R1(Ut)
T Xtεt +

1

2

n∑
t=1

Ez(fy|u,x(qτ |Xt, Ut))R1(Ut)
T XtX

T
t R1(Ut)

= −T1 + T2.

Next, following the similar derivation in the proof of Theorem 2.2, we can prove

W (n) → N(0, v) with v = 2||2K −K ∗K||22pE( 1
fy|u,x(qτ (Ut,Xt))fu(Ut)

).¤

Proof of Theorem 2.4

Under H0, we have A(1)(Ut) = 0, So Y ∗
t = Yt −X ′

tA(Ut), R2(Ut) = 0, and

Â−t(Ut)− A(Ut) =
(Ω∗(Ut))

−1

(
√

nh)2fu(Ut)

n∑

i6=t

ϕτ (Y
∗
i )XiK(

Ui − Ut

h
) + op(

1√
nh

)

= R1(Ut) + op(
1√
nh

).

Then, the test statistic Tn can be rewritten as

Tn = `(Ha)− `(H0)

=
n∑

t=1

ρτ

(
Yt − Â−t(Ut)

T Xt

)
−

n∑
t=1

ρτ

(
Yt − ÂT

0 Xt

)

=
n∑

t=1

ρτ

(
Yt − Â−t(Ut)

T Xt

)
−

n∑
t=1

ρτ

(
Yt − A0(Ut)

T Xt

)

+
n∑

t=1

ρτ

(
Yt − A0(Ut)

T Xt

)
)−

n∑
t=1

ρτ

(
Yt − ÂT

0 Xt

)

= B1 + B2,
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where

B1 =
n∑

t=1

ρτ

(
Yt − Â−t(Ut)

T Xt

)
−

n∑
t=1

ρτ

(
Yt − A0(Ut)

T Xt

)
,

B2 =
n∑

t=1

ρτ

(
Yt − A0(Ut)

T Xt

)−
n∑

t=1

ρτ

(
Yt − ÂT

0 Xt

)
.

For B2, according to Koenker (2005), we know the limiting distribution of B2 would

be a χ2 distribution under H0. Therefore, B2 = Op(1). Then, the asymptotic distri-

bution of the B1 can be derived by using the similar procedure as that for proving

Theorem 2.2.

Proof of Theorem 2.6

From theorem 2.5, we have known |f̂y|u,x(qτ (Ut, Xt))−fy|u,x(qτ (Ut, Xt))| = op(1),

so it is obvious that

|µ̂n − µn| = op(1),

|σ̂2
n − σ2

n| = op(1),

|d̂n − dn| = op(1).

Then we are done by following the proof of theorem 2.3. ¤

Proof of Theorem 2.7

Under the Ha,the true parameter A(u) = A0(U) + 1√
nh

∆(U). The test statistic Tn

can be rewritten as

Tn = `(Ha)− `(H0)

=
n∑

t=1

ρτ

(
Yt − Â−t(Ut)

T Xt

)
−

n∑
t=1

ρτ

(
Yt − ÂT Xt

)
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=
n∑

t=1

ρτ

(
Yt − Â−t(Ut)

T Xt

)
−

n∑
t=1

ρτ

(
Yt − A(Ut)

T Xt

)

+
n∑

t=1

ρτ

(
Yt − A(Ut)

T Xt

)
)−

n∑
t=1

ρτ

(
Yt − AT

0 Xt

)

= E1 + E2.

First, I consider E2, by using Knight identity

E2 =
n∑

t=1

ρτ

(
Yt − A(Ut)

T Xt

)
)−

n∑
t=1

ρτ

(
Yt − AT

0 Xt

)

= −(
n∑

t=1

ρτ

(
Yt − AT

0 Xt

)−
n∑

t=1

ρτ

(
Yt − A(Ut)

T Xt

)
)

= − 1√
nh

n∑
t=1

∆(Ut)Xtεt −
∫ − 1√

nh
∆(Ut)Xt

0

Iεt<s − Iεt<0ds

= −F1 − F2.

By following the similar derivation in theorem 2.2, we can get

F2 =
1

2nh

n∑
t=1

Ez(fy|u,x(qτ |Xt, Ut))∆(Ut)
T XtX

T
t ∆(Ut)

=
1

2h
E(fy|u,x(qτ |Xt, Ut)∆(Ut)

T XtX
T
t ∆(Ut))

≡ d2n.

For E1 we have the same result as theorem 2.2 except that

R2(Ut) =
h2

2
(

1√
nh

∆(2)(u))µ2 + op(h
2).

Therefore,

E1 = −
n∑

t=1

(Â−t(Ut)− A(Ut))
T Xtεt
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+
1

2

n∑
t=1

Ez(fy|u,x(qτ |Xt, Ut))(Â−t(Ut)− A(Ut))
T XtX

T
t (Â−t(Ut)− A(Ut))

= −
n∑

t=1

((R1(Ut) + R2(Ut)
T Xtεt

+
1

2

n∑
t=1

Ez(fy|u,x(qτ |Xt, Ut))(R1(Ut) + R2(Ut))
T XtX

T
t (R1(Ut) + R2(Ut))

= −
n∑

t=1

R1(Ut)
T Xtεt −

n∑
t=1

R2(Ut)
T Xtεt

+
1

2

n∑
t=1

Ez(fy|u,x(qτ |Xt, Ut))R1(Ut)
T XtX

T
t R1(Ut)

+
n∑

t=1

Ez(fy|u,x(qτ |Xt, Ut))R1(Ut)
T XtX

T
t R2(Ut)

+
1

2

n∑
t=1

fy|u,x(qτ |Xt, Ut)R
T
2 (Ut)XtX

T
t R2(Ut)

= −O1 −O2 + O3 + O4 + O5.

So, under Ha we have

O2 =
1√
nh

n∑
t=1

εtXt
h2

2
∆(2)(Ut)µ2 + o(nh2),

O4 =
1√
nh

h2µ2

n

n∑
t=1

fy|u,x(qτ (Ut, Xt))∆
(2)(Ut)

fu(Ut)Ω∗(Ut)

∑

j 6=t

εjXjKh(
Uj − Ut

h
),

O5 =
1

8nh

n∑
t=1

fy|u,x(qτ (Ut, Xt)XtX
T
t h4(∆(2)(Ut)µ2)

2 + o(nh4).

So, O2 + O4 + O5 is dominated by d2n, which is the O(1/h).

For O1 and O3 we have

−O1 + O3 = − 1

n

∑

i6=t

εtεiX
T
i (fu(Ut)Ω

∗(Ut))
−1XtKh(

Ui − Ut

h
)

+
1

2h
pτ(1− τ)E(

1

fy|u,x(qτ (Ut, Xt))
)

∫
K2(t)dt + op(h

−1/2)

+
1

nh

∑
i<j

εiεjX
T
i (fu(Ut)Ω

∗(Ut))
−1K ∗K((Ui − Uj)/h)Xj
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+ O(1) + O(
1√
nh

)

=
1

2h
pτ(1− τ)E(

1

fy|u,x(qτ (Ut, Xt))
)

∫
K2(t)dt−W (n)h−

1
2 /2

+ O(1) + O(
1√
nh

).

Tn = µn −O2 + O4 + O5 − (W (n)h−
1
2 /2 +

1√
nh

n∑
t=1

∆(Ut)Xtεt) + O(1) + O(
1√
nh

).

where W (n) is defined in the proof of theorem 2.2. The rest of proof is similar to

the proof of theorem 2.2. The details are omitted. ¤



CHAPTER 3: GENERALIZED QUASI-LIKELIHOOD TEST OF PARTIAL
COEFFICIENTS FOR VARYING COEFFICIENT QUANTILE REGRESSION

MODEL

The focus for this chapter is mainly on testing whether partial coefficients in

varying coefficient quantile regression models are constant or of some specific func-

tional forms with other coefficients completely unspecified.

3.1 Introduction

Chapter 2 is devoted to proposing and studying the generalized quasi-likelihood

ratio test statistic to check whether all coefficients in varying coefficient quantile

regression model are constant or of particular form. In this chapter, I will apply

the proposed test procedure to check whether partial coefficients in varying coef-

ficient quantile regression model are constant or of some specific functional form

with other coefficients remaining completely unspecified. In other words, under the

null hypothesis, the model becomes a partially varying coefficient quantile model.

These hypotheses are also of considerable interest due to various applications. By

performing these tests, an accurate form of the model for a real data analysis can

be obtained. For example, if we know partial coefficients are constant for a real

application, we just use a partially varying coefficient quantile regression model to

allow for appreciable flexibility on the structure of the fitted model since it admits

some coefficients to be constant and the others to be functional. A partially vary-

ing coefficient quantile regression model serves as an intermediate class between the

fully nonparametric models as in Honda (2004) and Cai and Xu (2008) and the fully

parametric models as in Koenker and Xiao (2006). Besides good properties such as
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robustness by nonparametric treatment on certain variables, it also can provide an

efficient estimation on the parametric effect of other variables.

Recall that a varying coefficient quantile regression model takes the following

form

qτ (Ut, Xt) =

p∑

k=0

ak,τXtk = A(Ut)
T Xt ≡ A1(Ut)

T X
(1)
t + A2(Ut)

T X
(2)
t , (3.1)

where Ut is the smoothing variable, A(·) = (A1(·)T , A2(·)T )T and Xt = (XT
t1, X

T
t2)

T

with A1(·) and X(1) being p1(< p) dimensional. In this case, our interest is to

test whether A1(·) is indeed a constant vector or of some specific functional form

with A2(·) remaining completely unspecified. This is equivalent to performing the

following testing hypothesis

H0 : A1(u) = A10 versus Ha : A1(u) 6= A10 (3.2)

with A10 is a known or unknown constant vector with A2(u) remaining completely

unspecified, and

H0 : A1(u) = A10(u) versus Ha : A1(u) 6= A10(u), (3.3)

where A10(u) is a vector of known functionals with A2(u) remaining completely

unspecified.

The rest of this chapter is organized as follows. I present the generalized likeli-

hood ratio test statistics to the above hypotheses in (3.2) and (3.3), respectively and

derive their asymptotic properties in the following subsections. Also, I investigate

the power of the proposed test statistics. Finally, I will conduct Monte Carlo simula-

tions to illustrate the finite sample performance and a real application is considered

to demonstrate the effectiveness of the proposed methods.
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3.2 Test Statistic and Its Asymptotic Distribution

3.2.1 Test of Functional Form of Partial Varying Coefficient

First, we consider the hypothesis given in (3.3). Following the same derivations

in Chapter 2, I can construct the quasi-likelihood function under both the null

and alternative hypotheses by estimating the unknown coefficients using local linear

technique with jackknife method. Note that it does not need to estimate A1(·)
under the null hypothesis since A10(·) is known. Let Y ∗

t = Yt − A10(Ut)X
(1)
t as the

partial residual in the estimation of A2(·) under the null hypothesis. The generalized

quasi-likelihood ratio (GQLR) test statistic can be defined as

Tn = `(Ha)− `(H0)

=
n∑

t=1

ρτ

(
Yt − Â1(Ut)X

(1)
t − Â2(Ut)X

(2)
t

)
−

n∑
t=1

ρτ

(
Y ∗

t − Â∗
2(Ut)X

(2)
t

)
,(3.4)

where Â1(·) and Â2(·) are the nonparametric estimators from model (3.1) by using

the estimation procedure outlined in Chapter 2; see (2.6) for details, and Â∗
2(·) is

the nonparametric estimator from the varying coefficient quantile model as

qτ (Y
∗|U,X(2)) = A∗

2(U)T X(2) by using the same estimation procedure as earlier;

again, see (2.6) for details.

Recall that Ω∗(Ut) = E(XtX
T
t fy|u,x(qτ (Ut, Xt))|Ut). Rewrite the matrix as fol-

lows

Ω∗(Ut) =




Ω11 Ω12

Ω21 Ω22


 , and Ω11,2 = Ω11 − Ω12Ω

−1
22 Ω21,

where Ω11, Ω12, Ω21, and Ω22 are p1 × p1, p1 × p2, p2 × p1, p2 × p2 matrices and

p2 = p− p1, respectively. Define

µn =
p1τ(1− τ)

2h
E(

1

fy|u,x(qτ (Ut, X(1) − Ω12Ω22X(2)))
)ν0,
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σ2
n =

2(τ(1− τ))2p

h
E(

1

f 2
y|u,x(qτ (Ut, X(1) − Ω12Ω22X(2)))

)

∫
((2K(t)−K ∗K(t))2dt,

T2 =
n∑

t=1

εt(X
(1)
t − Ω12Ω22X

(2)
t )

h2

2
A(2)(Ut)µ2 + o(nh2),

T4 =
h2µ2

n

n∑
t=1

fy|u,x(qτ (Ut, Xt))A
(2)(Ut)

fu(Ut)Ω11,2

∑

j 6=t

εj(X
(1)
j − Ω12Ω22X

(2)
j )Kh(

Uj − Ut

h
),

T5 =
1

8

n∑
t=1

fy|u,x(qτ (Ut, Xt)(X
(1)
t − Ω12Ω22X

(2)
t )(X

(1)
t − Ω12Ω22X

(2)
t )T h4

(A(2)(Ut)µ2)
2 + o(nh4),

and

d∗n = T2 − T4 − T5.

Then, we have the asymptotic normality for the proposed test statistic stated in the

following theorem.

Theorem 3.1: Suppose Assumptions A and B hold. Then, under H0 in (3.3), as

nh3/2 →∞ and h → 0, we have

σ−1
n (Tn − d∗n − µn) → N(0, 1).

Proof: See Appendix.¤

3.2.2 Test of Constancy of Partial Varying Coefficient

Now, we consider the hypothesis given in (3.2) with A10 being a vector of known

constants. Following the similar approaches in the previous subsection, we can con-

struct the quasi-likelihood function under null or alternative hypothesis by estimat-

ing the unknown functional coefficients using local linear technique with jackknife

method. Then, by the same token, the generalized quasi-likelihood ratio (GQLR)
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test statistic can be defined as

Tn = `(Ha)− `(H0)

=
n∑

t=1

ρτ

(
Yt − Â1(Ut)X

(1)
t − Â2(Ut)X

(2)
t

)
−

n∑
t=1

ρτ

(
Y ∗∗

t − Â∗∗
2 (Ut)X

(2)
t

)
,

where Â1(·) and Â2(·) are the same as in (3.4). Â∗∗
2 (·) is is the nonparametric esti-

mator from the varying coefficient quantile model as qτ (Y
∗∗|U,X(2)) = A∗∗

2 (U)T X(2)

by using the same estimation procedure as earlier, where Y ∗∗
t = Yt − A10X

(1)
t ; see

(2.6) for details. Define

T2 =
n∑

t=1

εt(X
(1)
t − Ω12Ω22X

(2)
t )

h2

2
A

(2)
2 (Ut)µ2 + o(nh2),

T4 =
h2µ2

n

n∑
t=1

fy|u,x(qτ (Ut, Xt))A
(2)
2 (Ut)

fu(Ut)Ω11,2

∑

j 6=t

εj(X
(1)
j − Ω12Ω22X

(2)
j )Kh(

Uj − Ut

h
),

T5 =
1

8

n∑
t=1

fy|u,x(qτ (Ut, Xt)(X
(1)
t − Ω12Ω22X

(2)
t )(X

(1)
t − Ω12Ω22X

(2)
t )T

h4(A
(2)
2 (Ut)µ2)

2 + o(nh4),

and

dn = T2 − T4 − T5.

Then, we have the following asymptotic result.

Theorem 3.2: Suppose Assumptions A and B hold and define µn and σ2
n as in

Theorem 3.1. Then, under H0 in (3.2), as nh3/2 →∞ and h → 0, we have

σ−1
n (Tn − dn − µn) → N(0, 1).

Proof: See Appendix.¤

Remark 3.1: Here µn and σn are the same as µn and σn in Chapter 2 with p

replaced by p1, X replaced by X(1)−Ω12Ω22X
(2), and and Ω∗(Ut) replaced by Ω11,2,
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respectively.

3.2.3 Test of Constancy of Partial Varying Coefficient with Unknown Value

Finally, we consider the hypothesis given in (3.2) with A10 being a vector of

unknown constants. To estimate the coefficient functions, under the alternative,

we can continue to use the local linear technique with jackknife method. Under

the null hypothesis, however, we need to use a new procedure to estimate constant

and functional coefficients. Indeed, under the null hypothesis, the model becomes

partially varying coefficient quantile regression model as follows

qτ (Ut, Xt) = βT
τ Xt1 + ατ (Ut)

T Xt2, (3.5)

which is similar to the model in Cai and Xiao (2012). To estimate the parameter

βτ and the function ατ (·) in the above model, they proposed a consistent semi-

parametric estimation procedure, described briefly as follows: First, βτ is regarded

as a function of Ut so that the model becomes a fully varying coefficient model

and all coefficient functions can be estimated by a nonparametric fitting scheme;

see (2.6) for details. Secondly, a root-n consistent estimator for βτ is obtained by

using the average method, denoted by β̂τ . Finally, a nonparametric approach is

applied to estimating ατ (·), denoted by α̂τ (·), based on the partial quantile residual

Y ∗
t = Yt − β̂T

τ Xt1, where β̂τ is a root-n consistent estimator of βτ . Under certain

mild assumptions, Cai and Xiao (2012) derived the following asymptotic results

√
n

[
β̂τ − βτ

]
→ N(0, Σβ)

for some Σβ, and

√
nh1

[
α̂τ (u0)− ατ (u0)− h2

1µ2α
′′
τ (u0)

2
+ op(h

2
1)

]
→ N(0, Σα)
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for some Σα. These results imply that the estimator for the parametric part is root-n

consistent and the nonparametric estimate for nonparametric part has the regular

nonparametric convergence rate.

Therefore, under the null hypothesis, the quasi-likelihood is given by

`(H0) =
n∑

t=1

ρτ

(
Yt − Ã1X

(1)
t − Ã2(Ut)X

(2)
t

)
,

where Ã1 = β̂τ and Ã2(·) = α̂τ (·) are the estimators discussed in (3.5). Then, the

generalized quasi-likelihood ratio (GQLR) test is defined as follows:

Tn = `(Ha)− `(H0)

=
n∑

t=1

ρτ

(
Yt − Â1(Ut)X

(1)
t − Â2(Ut)X

(2)
t

)
−

n∑
t=1

ρτ

(
Yt − Ã1X

(1)
t − Ã2(Ut)X

(2)
t

)

where Â1(·) and Â2(·) are the same as in (3.4). Thus, by using the same notation as

Theorems 3.1 and 3.2, we have the following asymptotic result for the test statistic.

Theorem 3.3: Suppose Assumptions A and B hold. Then, under H0, as nh3/2 →
∞ and h → 0, we have

σ−1
n (Tn − dn − µn) → N(0, 1).

Proof: See Appendix.¤

3.3 The power of Test statistic

In this section, we consider the power of the quasi-likelihood ratio test under

local alternative of the form

Ha : A1(u) = A10 +
1√
nh

∆(u),
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where ∆(u) = (∆1(u), ∆2(u), ..., ∆p(u))T is a vector of functions, satisfying

E(||∆(u)||22) < ∞ and A10 is a known constant vector. Define

d2n =
1

2h
E(fy|u,x(qτ |Xt, Ut)∆(Ut)

T X
(1)
t (X

(1)
t )T ∆(Ut))

and σ∗n =
√

σ2
n + (τ(1− τ))E∆T (U)X(1)(X(1))T ∆(U). Then, we have the asymp-

totical distribution of test statistic Tn.

Theorem 3.4: Assume the same conditions as in Theorems 3.1and 3.2 hold. Then,

under Ha, We have

σ∗n
−1(Tn − µn − dn + d2n) → N(0, 1).

Proof: See Appendix.¤

3.4 Simulation Studies

Example 3.1: In this simulated example, I consider the following data generating

process:

Yt = a1(Ut)X1t + a2(Ut)X2t + et, 1 ≤ t ≤ n, (3.6)

where a1(u) = 2, a2(u) = cos(
√

2πu), Ut is generated from uniform (0, 3) inde-

pendently, et ∼ N(0, 0.3), X1t ∼ N(0.5, 0.4) and X2t ∼ N(0.75, 0.4). Then, the

corresponding quantile regression is

qτ (Ut, Xt) = a0,τ (Ut) + a1,τ (Ut)Xt1 + a2,τ (Ut)Xt2,

where a0,τ (Ut) =
√

0.3Φ−1(τ), a1,τ (u) = a1(u), a2,τ (u) = a2(u), and Φ−1(τ) is the τ -

th quantile of N(0, 1). The purpose of this simulated example is to exam the finite

sample performance of the proposed test for testing if a1(u) is equal to a known

constant.
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I choose the sample sizes as n = 250, 500 and 800 and repeat the simulation

m = 1000 times. I apply the jackknife method and local linear fitting technique to

estimate the coefficient and select the bandwidth as discussed in Section 3. I report

the different testing nominal sizes at 1%, 5% and 10% for different quantiles τ = 0.2,

0.4, 0.6 and 0.8. The simulated test sizes for different settings are listed in Table

3.1. One can observe from Table 3.1 that the empirical test sizes are very close to

the true nominal sizes for all settings. This means that our proposed test can give

the correct test size.

Table 3.1: : Finite sample rejection rates for example 3.1

nominal size sample size τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8
n = 250 0.116 0.109 0.108 0.103

10% n = 500 0.104 0.109 0.105 0.098
n = 800 0.112 0.115 0.105 0.099
n = 250 0.068 0.057 0.053 0.050

5% n = 500 0.050 0.055 0.055 0.048
n = 800 0.058 0.061 0.049 0.053
n = 250 0.020 0.013 0.019 0.013

1% n = 500 0.009 0.017 0.017 0.014
n = 800 0.013 0.014 0.014 0.013

To demonstrate the power of the proposed test, the power function is evaluated

under a sequence of the alternative models indexed by λ as

Ha : a1,τ (u) = 2 + λ
1√
nh

∆(u), 0 ≤ λ ≤ 1, (3.7)

where ∆(u) = 2u4e−u/10 and λ = 0.05 i for 1 ≤ i ≤ 20. Given the significance level

5%, the power function p(λ) is estimated based on the relative frequency of Tn over

the critical value among 1000 simulations. We plot the power curves in Figure 3.1

for all settings, from which, we can find that the proposed test statistic is powerful.

Example 3.2: In this simulated example, all settings are the same as those in Ex-

ample 3.1 but the true functional form for a1(u) is considered as unknown when
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constructing the quasi-likelihood under the null hypothesis. The simulation results

for test sizes are reported in Table 3.2, from which one can observe that the per-

formance of the proposed test is reasonably well. Similarly, we compute the power

Table 3.2: : Finite sample rejection rates for example 3.2

nominal size sample size τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8
n = 250 0.105 0.092 0.108 0.099

10% n = 500 0.098 0.103 0.115 0.094
n = 800 0.099 0.100 0.106 0.089
n = 250 0.049 0.045 0.059 0.055

5% n = 500 0.046 0.056 0.057 0.049
n = 800 0.049 0.049 0.054 0.052
n = 250 0.017 0.009 0.014 0.010

1% n = 500 0.010 0.010 0.015 0.010
n = 800 0.010 0.016 0.016 0.013

curves which are displayed in Figure 3.2, from which we can find that the proposed

test statistic is powerful.

Example 3.3: In this simulated example, I consider the simplest model

Yt = a1(Ut)X1t + a2(Ut)X2t + et, 1 ≤ t ≤ n, (3.8)

where a1(u) = sin(
√

2πu), a2(u) = cos(
√

2πu), Ut is generated from uniform (0, 3)

independently, et ∼ N(0, 0.3), X1t ∼ N(0.5, 0.4) and X2t ∼ N(0.75, 0.4). Then, the

corresponding quantile regression is

qτ (Ut, Xt) = a0,τ (Ut) + a1,τ (Ut)X1t + a2,τ (Ut)X2t,

where a0,τ (u) =
√

0.3Φ−1(τ), a1,τ (u) = a1(u), a2,τ (u) = a2(u), and Φ−1(τ) is the

τ -th quantile of the N(0, 1). Other settings are the same as those in Example 3.1.

The simulated sizes are presented in Table 3.3. The power function is evaluated
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Table 3.3: : Finite sample rejection rates for example 3.3

nominal size sample size τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8
n = 250 0.123 0.105 0.098 0.124

10% n = 500 0.122 0.096 0.105 0.110
n = 800 0.109 0.101 0.114 0.106
n = 250 0.062 0.072 0.052 0.058

5% n = 500 0.058 0.050 0.053 0.064
n = 800 0.055 0.054 0.058 0.048
n = 250 0.020 0.032 0.018 0.013

1% n = 500 0.018 0.017 0.018 0.022
n = 800 0.017 0.013 0.024 0.013

under a sequence of the alternative models indexed by 0 ≤ λ ≤ 1,

Ha : a1,τ (u) = sin(
√

2π u) +
λ√
nh

∆(u),

where ∆(u) = u4e−u/10 and λ = 0.05 i for 1 ≤ i ≤ 20. Given the significance level

5%, we compute the power curves as functions of λ and the simulated power curves

are given in Figure 3.3. The conclusions similar to Examples 3.1 and 3.2 can be

made.

3.5 A Real Example

In this section, I continue to consider the application of the proposed method-

ologies to study the Boston house price data. According to the discussion in Section

2.6, the coefficients for X3 and X4 may be constant if they are included in the model.

Therefore, a semiparametric model is appropriate if the model includes these two

variables. Indeed, Xu (2005) considered the following model

qτ (Ut, Xt) = a0,τ (Ut) + a1,τ (Ut)Xt1 + a2,τ (Ut)X
∗
t2 + a4,τXt4. (3.9)
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To see if the above model in (3.9) is correctly specified, we consider the following

varying coefficient quantile model

qτ (Ut, Xt) = a0,τ (Ut) + a1,τ (Ut)Xt1 + a2,τ (Ut)X
∗
t2 + a4,τ (Ut)Xt4 (3.10)

and then test the null hypothesis H0 : a4,τ (u) = a4,τ,0, where a4,τ,0 is an unknown

parameter. That is to test model (3.10) against model (3.9). Thus, we can use

our test procedure proposed in Section 3.2.3 for this testing purpose. I calculate

the quasi-likelihood using semiparametric quantile regression method proposed in

Cai and Xiao (2012) under the null hypothesis and calculate the quasi-likelihood

using local linear fitting method with jackknife technique. The p-values for several

quantiles are reported in Table 3.4. Therefore, one can see from Table 3.4 that the

coefficient for Xt4 is a constant for all quantiles. This implies that model (3.9) is

appropriate to analyze the Boston house pricing data.

Table 3.4: : The p-values for testing model (3.10) versus model (3.9)

τ 0.2 0.4 0.6 0.8

p-value 0.880 0.313 0.610 0.532
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Figure 3.1: The plot of power curves against λ for the testing hypothesis in Example
3.1 with nominal test size 5%. The dashed line is for n = 400, the solid line is for
n = 600 and the dashed-dotted line is for n = 800.
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Figure 3.2: The plot of power curves against λ for the testing hypothesis in Example
3.2 with nominal test size 5%. The dashed line is for n = 400, the solid line is for
n = 600 and the dashed-dotted line is for n = 800.
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Figure 3.3: The plot of power curves against λ for the testing hypothesis in Example
3.3 with nominal test size 5%. The dashed line is for n = 400, the solid line is for
n = 600 and the dashed-dotted line is for n = 800.
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3.6 Complements

In this section, I will give the derivations of the main results presented in pre-

vious sections of this chapter. Before moving to the detailed proofs, I will state the

following useful lemma first.

Lemma 3.1: Analogously to the arguments for Â we have the following result.

Â−2t(Ut)− A2(Ut) =
(Ω22(Ut))

−1

(
√

nh)2fu(Ut)

n∑

i6=t

ϕτ (Y
∗
i )X

(2)
i K(

Ui − Ut

h
) + op(

1√
nh

)

=
(Ω22(Ut))

−1

(
√

nh)2fu(Ut)

n∑

i6=t

εiX
(2)
i K(

Ui − Ut

h
)

(Ω22(Ut))
−1

(
√

nh)2fu(Ut)

n∑

i6=t

(ϕτ (Y
∗
i )− εi)X

(2)
i K(

Ui − Ut

h
) + op(

1√
nh

)

≡ R∗
1 + R∗

2,

where Y ∗
i = Yi − A10X

(1)
i − A2X

(2)
i − A

′
2X

(2)
i (Uk − Ui).

Proof of Lemma 3.1

From the derivation of Theorem 2.1, we have

(
Â−t(u)− A(u)

)

=
1

(
√

nh)2fu(Ut)




Ω11 Ω12

Ω21 Ω22




−1

n∑

i6=t

ϕτ (Y
∗
i )




X
(1)
i

X
(2)
i




K(
Ui − Ut

h
) + op(

1√
nh

)

=
n∑

i6=t

1

(
√

nh)2fu(Ut)
ϕτ (Y

∗
i )




Ω11 Ω12

Ω21 Ω22




−1 


X
(1)
i

X
(2)
i


 K(

Ui − Ut

h
).
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We use Y ∗
i = Yi −A10X

(1)
i as new response variable, by following the similar proce-

dure to the derivation of Theorem 2.1, to obtain

Â−2t(u)− A2(u) =
n∑

i6=t

Ω−1
22 X

(2)
i × 1

(
√

nh)2fu(Ut)
ϕτ (Y

∗
i )K(

Ui − Ut

h
)

= R∗
1 + R∗

2.

That finishes the proof for lemma 3.1.

Lemma 3.2: (Theorem 1 in Cai and Xiao (2012)) Under some assumptions,

√
n[β̂τ − βτ −Bβ] → N(0, Σβ),

where the asymptotic bias term is Bβ = h2µ2(B
∗
1 − B∗

2/2), and the asymptotic

variance

Σβ = τ(1− τ)E[eT
1 (Ω∗(U1))

−1Ω(U1)(Ω
∗(U1))

−1e1]

+2
∞∑

s=1

cov((eT
1 Ω∗(U1))

−1)X1η1, (e
T
1 Ω∗(Us+1))

−1)Xs+1ηs+1).

Lemma 3.3: (Theorem 2 in Cai and Xiao (2012)) Under some assumptions, the local

linear estimator of α(u0) has the following asymptotic distribution:

√
nh1[α̂τ (u0)− ατ (u0)− h2

1µ2α
′′
(u0)

2
+ op(h

2
1)] → N(0, Σα),

where Σα = τ(1− τ)v0Σα(u0)/fu(u0).
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Proof of Theorem 3.1: Note that

Tn = `(Ha)− `(H0)

=
n∑

t=1

ρτ

(
Yt − Â1(u)X

(1)
k − Â2(u)X

(2)
k

)
−

n∑
t=1

ρτ

(
Yt − A10X

(1)
k − Â2(u)X

(2)
k

)

=
n∑

t=1

ρτ

(
Yt − Â1(u)X

(1)
k − Â2(u)X

(2)
k

)
−

n∑
t=1

ρτ

(
Yt − A10X

(1)
k − A20(u)X

(2)
k

)

+
n∑

t=1

ρτ

(
Yt − A10X

(1)
k − A20(u)X

(2)
k

)
−

n∑
t=1

ρτ

(
Yt − A10X

(1)
k − Â2(u)X

(2)
k

)
.

Follow the similar derivation to Theorem 2.2, one can get

Tn = `(Ha)− `(H0)

= −
n∑

t=1

(Â−t(Ut)− A(Ut))
T Xtεt

+
1

2

n∑
t=1

E(fy|u,x(qτ |Xt, Ut))(Â−t(Ut)− A(Ut))
T XtX

T
t (Â−t(Ut)− A(Ut))

+
n∑

t=1

(Â−2t(Ut)− A2(Ut))
T X

(2)
t εt − 1

2

n∑
t=1

E(fy|u,x(qτ |Xt, Ut))

(Â−2t(Ut)− A2(Ut))
T X

(2)
t (X

(2)
t )T (Â−2t(Ut)− A2(Ut))

=
n∑

t=1

[(Â−2t(Ut)− A2(Ut))
T X

(2)
t − (Â−t(Ut)− A(Ut))

T Xt]εt

+
1

2

n∑
t=1

E(fy|u,x(qτ |Xt, Ut))[(Â−t(Ut)− A(Ut))
T XtX

T
t (Â−t(Ut)− A(Ut))

− (Â−2t(Ut)− A2(Ut))
T X

(2)
t (X

(2)
t )T

(Â−2t(Ut)− A2(Ut))]

=
n∑

t=1

D1εt +
1

2

n∑
t=1

E(fy|u,x(qτ |Xt, Ut))D2,
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where D1 = (Â−2t(Ut)− A2(Ut))
T X

(2)
t − (Â−t(Ut)− A(Ut))

T Xt and

D2 = (Â−t(Ut)− A(Ut))
T XtX

T
t (Â−t(Ut)− A(Ut))

− (Â−2t(Ut)− A2(Ut))
T X

(2)
t (X

(2)
t )T (Â−2t(Ut)− A2(Ut)),

For D1, apply Theorem 2.1 and Lemma 3.1 to get

D1 = (Â−2t(Ut)− A2(Ut))
T X

(2)
t − (Â−t(Ut)− A(Ut))

T Xt

=
(Ω22(Ut))

−1

(
√

nh)2fu(Ut)

n∑

i6=t

ϕτ (Y
∗
i )X

(2)
i K(

Ui − Ut

h
)X

(2)
t

−




Ω11 Ω12

Ω21 Ω22




−1

1

nhfu(u0)

n∑
t=1

ϕτ (Y
∗
i )XiK(

Ut − u0

h
)Xt

=
1

(
√

nh)2fu(Ut)

n∑

i6=t

ϕτ (Y
∗
i )[X

(2)
i (Ω22(Ut))

−1X
(2)
t −Xi




Ω11 Ω12

Ω21 Ω22




−1

Xt]K(
Ui − Ut

h
)

=
1

(
√

nh)2fu(Ut)

n∑

i6=t

ϕτ (Y
∗
i )D11K(

Ui − Ut

h
).

Then,

D11 = X
(2)
i (Ω22(Ut))

−1X
(2)
t −Xi




Ω11 Ω12

Ω21 Ω22




−1

Xt

= X
(2)
i (Ω22(Ut))

−1X
(2)
t −

(
X

(1)
i X

(2)
i

)



Ω11 Ω12

Ω21 Ω22




−1 


X
(1)
t

X
(2)
t




= X
(2)
i (Ω22(Ut))

−1X
(2)
t −X

(1)
i (Ω11 − Ω12Ω

−1
22 Ω21)

−1X
(1)
t

+ X
(1)
i (Ω11 − Ω12Ω

−1
22 Ω21)

−1Ω12Ω
−1
22 X

(2)
t −X

(2)
i Ω−1

22 Ω21(Ω11 − Ω12Ω
−1
22

Ω21)
−1X

(1)
t −X

(2)
i (Ω22(Ut))

−1X
(2)
t −X

(2)
i Ω−1

22 Ω21(Ω11 − Ω12Ω
−1
22
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Ω21)
−1Ω12Ω

−1
22 X

(2)
t

= −(X
(1)
i −X

(2)
i Ω12Ω

−1
22 )(Ω11 − Ω12Ω

−1
22 Ω21)

−1(X
(1)
t −X

(2)
t Ω12Ω

−1
22 )

= −(X
(1)
i −X

(2)
i Ω12Ω

−1
22 )(Ω11,2)

−1(X
(1)
t −X

(2)
t Ω12Ω

−1
22 ).

Therefore,

D1 = − 1

(
√

nh)2fu(Ut)

n∑

i6=t

ϕτ (Y
∗
i )(X

(1)
i −X

(2)
i Ω12Ω

−1
22 )(Ω11,2)

−1

(X
(1)
t −X

(2)
t Ω12Ω

−1
22 )K(

Ui − Ut

h
)

= − 1

(
√

nh)2fu(Ut)

n∑

i6=t

εi(X
(1)
i −X

(2)
i Ω12Ω

−1
22 )(Ω11,2)

−1

(X
(1)
t −X

(2)
t Ω12Ω

−1
22 )K(

Ui − Ut

h
)

− 1

(
√

nh)2fu(Ut)

n∑

i6=t

(ϕτ (Y
∗
i )− εi)(X

(1)
i −X

(2)
i Ω12Ω

−1
22 )(Ω11,2)

−1

(X
(1)
t −X

(2)
t Ω12Ω

−1
22 )K(

Ui − Ut

h
).

Next, for D2

D2 = (Â−t(Ut)− A(Ut))
T XtX

T
t (Â−t(Ut)− A(Ut))

− (Â−2t(Ut)− A2(Ut))
T X

(2)
t (X

(2)
t )T (Â−2t(Ut)− A2(Ut))

=




Ω11 Ω12

Ω21 Ω22




−1

1

nhfu(u0)

n∑
t=1

ϕτ (Y
∗
i )XiK(

Ut − u0

h
)XtX

T
t




Ω11 Ω12

Ω21 Ω22




−1

1

nhfu(u0)

n∑
t=1

ϕτ (Y
∗
i )XiK(

Ut − u0

h
)

− (Ω22(Ut))
−1

(
√

nh)2fu(Ut)

n∑

i6=t

ϕτ (Y
∗
i )X

(2)
i K(

Ui − Ut

h
)X

(2)
t (X

(2)
t )T

(Ω22(Ut))
−1

(
√

nh)2fu(Ut)

n∑

i6=t

ϕτ (Y
∗
i )X

(2)
i K(

Ui − Ut

h
)
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= (
1

nhfu(u0)
)2

n∑
t=1

n∑
t=1

ϕτ (Y
∗
i )ϕτ (Y

∗
i )Xi




Ω11 Ω12

Ω21 Ω22




−1

XtX
T
t




Ω11 Ω12

Ω21 Ω22




−1

XiK(
Ut − u0

h
)K(

Ut − u0

h
)

− (
1

nhfu(u0)
)2

n∑

i6=t

n∑

i6=t

ϕτ (Y
∗
i )ϕτ (Y

∗
i )X

(2)
i (Ω22(Ut))

−1X
(2)
t (X

(2)
t )T (Ω22(Ut))

−1

X
(2)
i K(

Ui − Ut

h
)K(

Ui − Ut

h
)

= (
1

nhfu(u0)
)2

n∑
t=1

n∑
t=1

ϕτ (Y
∗
i )ϕτ (Y

∗
i )D21K(

Ut − u0

h
)K(

Ut − u0

h
)

− (
1

nhfu(u0)
)2

n∑

i6=t

n∑

i6=t

ϕτ (Y
∗
i )ϕτ (Y

∗
i )D22K(

Ui − Ut

h
)K(

Ui − Ut

h
),

where

D21 = Xi




Ω11 Ω12

Ω21 Ω22




−1

XtX
T
t




Ω11 Ω12

Ω21 Ω22




−1

Xi,

D22 = X
(2)
i (Ω22(Ut))

−1X
(2)
t (X

(2)
t )T (Ω22(Ut))

−1X
(2)
i .

For D21,

D21 = [X
(1)
i (Ω11 − Ω12Ω

−1
22 Ω21)

−1X
(1)
t −X

(1)
i (Ω11 − Ω12Ω

−1
22 Ω21)

−1Ω12Ω
−1
22 X

(2)
t

+ X
(2)
i Ω−1

22 Ω21(Ω11 − Ω12Ω
−1
22 Ω21)

−1X
(1)
t + X

(2)
i (Ω22(Ut))

−1X
(2)
t

+ X
(2)
i Ω−1

22 Ω21(Ω11 − Ω12Ω
−1
22 Ω21)

−1Ω12Ω
−1
22 X

(2)
t ]

× [X
(1)
t (Ω11 − Ω12Ω

−1
22 Ω21)

−1X
(1)
j −X

(1)
t (Ω11 − Ω12Ω

−1
22 Ω21)

−1Ω12Ω
−1
22 X

(2)
j

+ X
(2)
t Ω−1

22 Ω21(Ω11 − Ω12Ω
−1
22 Ω21)

−1X
(1)
j + X

(2)
t (Ω22(Ut))

−1X
(2)
j
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+ X
(2)
t Ω−1

22 Ω21(Ω11 − Ω12Ω
−1
22 Ω21)

−1Ω12Ω
−1
22 X

(2)
j ]

= (X
(1)
i −X

(2)
i Ω12Ω

−1
22 )(Ω11,2)

−1(X
(1)
t −X

(2)
t Ω12Ω

−1
22 )

× (X
(1)
t −X

(2)
t Ω12Ω

−1
22 )(Ω11,2)

−1(X
(1)
j −X

(2)
j Ω12Ω

−1
22 )

+ (X
(1)
i −X

(2)
i Ω12Ω

−1
22 )(Ω11,2)

−1(X
(1)
t −X

(2)
t Ω12Ω

−1
22 )

X
(2)
t (Ω22(Ut))

−1X
(2)
j + X

(2)
i (Ω22(Ut))

−1X
(2)
t (X

(1)
t −X

(2)
t Ω12Ω

−1
22 )(Ω11,2)

−1

(X
(1)
j −X

(2)
j Ω12Ω

−1
22 ) + X

(2)
i (Ω22(Ut))

−1X
(2)
t (X

(2)
t )T (Ω22(Ut))

−1X
(2)
i .

Thus, we get

D2 = (
1

nhfu(u0)
)2

n∑
t=1

n∑
t=1

ϕτ (Y
∗
i )ϕτ (Y

∗
i )[(X

(1)
i −X

(2)
i Ω12Ω

−1
22 )(Ω11,2)

−1

(X
(1)
t −X

(2)
t Ω12Ω

−1
22 )× (X

(1)
t −X

(2)
t Ω12Ω

−1
22 )(Ω11,2)

−1(X
(1)
j −X

(2)
j Ω12

Ω−1
22 ) + (X

(1)
i −X

(2)
i Ω12Ω

−1
22 )(Ω11,2)

−1(X
(1)
t −X

(2)
t Ω12Ω

−1
22 )

X
(2)
t (Ω22(Ut))

−1X
(2)
j + X

(2)
i (Ω22(Ut))

−1X
(2)
t (X

(1)
t −X

(2)
t

Ω12Ω
−1
22 )(Ω11,2)

−1(X
(1)
j −X

(2)
j Ω12Ω

−1
22 )]K(

Ut − u0

h
)K(

Ut − u0

h
)

= (
1

nhfu(u0)
)2

n∑
t=1

n∑
t=1

(ϕτ (Y
∗
i )− εi + εi)(ϕτ (Y

∗
i )− εj + εj)[(X

(1)
i −

X
(2)
i Ω12Ω

−1
22 )(Ω11,2)

−1(X
(1)
t −X

(2)
t

Ω12Ω
−1
22 )× (X

(1)
t −X

(2)
t Ω12Ω

−1
22 )(Ω11,2)

−1(X
(1)
j −X

(2)
j Ω12Ω

−1
22 )

+ (X
(1)
i −X

(2)
i Ω12Ω

−1
22 )(Ω11,2)

−1(X
(1)
t −X

(2)
t Ω12Ω

−1
22 )

X
(2)
t (Ω22(Ut))

−1X
(2)
j

+ X
(2)
i (Ω22(Ut))

−1X
(2)
t (X

(1)
t −X

(2)
t Ω12Ω

−1
22 )(Ω11,2)

−1(X
(1)
j −X

(2)
j Ω12Ω

−1
22 )]

K(
Ut − u0

h
)K(

Ut − u0

h
)

= (
1

nhfu(u0)
)2

n∑
t=1

n∑
t=1

εiεj[(X
(1)
i −X

(2)
i Ω12Ω

−1
22 )(Ω11,2)

−1

(X
(1)
t −X

(2)
t Ω12Ω

−1
22 )× (X

(1)
t −X

(2)
t Ω12Ω

−1
22 )(Ω11,2)

−1(X
(1)
j −X

(2)
j Ω12Ω

−1
22 )

K(
Ut − u0

h
)K(

Ut − u0

h
) + D23 + D24,
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where

D23 = 2(
2

nhfu(u0)
)2

n∑
t=1

n∑
t=1

εi(ϕτ (Y
∗
i )− εj)[(X

(1)
i −X

(2)
i Ω12Ω

−1
22 )

(Ω11,2)
−1(X

(1)
t −X

(2)
t Ω12Ω

−1
22 )× (X

(1)
t −X

(2)
t Ω12Ω

−1
22 )(Ω11,2)

−1

(X
(1)
j −X

(2)
j Ω12Ω

−1
22 ) + (X

(1)
i −X

(2)
i Ω12Ω

−1
22 )(Ω11,2)

−1

(X
(1)
t −X

(2)
t Ω12Ω

−1
22 )×X

(2)
t (Ω22(Ut))

−1X
(2)
j ,

and

D24 = (
1

nhfu(u0)
)2

n∑
t=1

n∑
t=1

(ϕτ (Y
∗
i )− εi)(ϕτ (Y

∗
i )− εj)[(X

(1)
i −X

(2)
i Ω12Ω

−1
22 )

(Ω11,2)
−1(X

(1)
t −X

(2)
t Ω12Ω

−1
22 )× (X

(1)
t −X

(2)
t Ω12Ω

−1
22 )(Ω11,2)

−1

(X
(1)
j −X

(2)
j Ω12Ω

−1
22 ) + (X

(1)
i −X

(2)
i Ω12Ω

−1
22 )(Ω11,2)

−1(X
(1)
t −X

(2)
t

Ω12Ω
−1
22 )×X

(2)
t (Ω22(Ut))

−1X
(2)
j .

Therefore,

Tn = `(Ha)− `(H0)

= −
n∑

t=1

1

(
√

nh)2fu(Ut)

n∑

i6=t

εi(X
(1)
i −X

(2)
i Ω12Ω

−1
22 )(Ω11,2)

−1

(X
(1)
t −X

(2)
t Ω12Ω

−1
22 )K(

Ui − Ut

h
)εt +

1

2

n∑
t=1

E(fy|u,x(qτ |Xt, Ut))

(
1

nhfu(u0)
)2

n∑
t=1

n∑
t=1

εiεj[(X
(1)
i −X

(2)
i Ω12Ω

−1
22 )(Ω11,2)

−1(X
(1)
t −X

(2)
t Ω12Ω

−1
22 )

(X
(1)
t −X

(2)
t Ω12Ω

−1
22 )(Ω11,2)

−1

(X
(1)
j −X

(2)
j Ω12Ω

−1
22 )]K(

Ut − u0

h
)K(

Ut − u0

h
)− T ∗

2 + T ∗
4 + T ∗

5 + T ∗
6 + T ∗

7

+ T ∗
8 + T ∗

9 ,
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where

T ∗
2 =

n∑
t=1

1

(
√

nh)2fu(Ut)

n∑

i6=t

(ϕτ (Y
∗
i )− εj)(X

(1)
i −X

(2)
i Ω12Ω

−1
22 )(Ω11,2)

−1

(X
(1)
t −X

(2)
t Ω12Ω

−1
22 )K(

Ui − Ut

h
)εt,

T ∗
4 =

n∑
t=1

E(fy|u,x(qτ |Xt, Ut))(
2

nhfu(u0)
)2

n∑
t=1

n∑
t=1

εi(ϕτ (Y
∗
i )− εj)

(X
(1)
i −X

(2)
i Ω12Ω

−1
22 )(Ω11,2)

−1(X
(1)
t −X

(2)
t Ω12Ω

−1
22 )

(X
(1)
t −X

(2)
t Ω12Ω

−1
22 )(Ω11,2)

−1(X
(1)
j −X

(2)
j Ω12Ω

−1
22 ),

T ∗
5 =

1

2

n∑
t=1

E(fy|u,x(qτ |Xt, Ut))(
1

nhfu(u0)
)2

n∑
t=1

n∑
t=1

(ϕτ (Y
∗
i )− εi)(ϕτ (Y

∗
i )− εj)

[(X
(1)
i −X

(2)
i Ω12Ω

−1
22 )(Ω11,2)

−1(X
(1)
t −X

(2)
t Ω12Ω

−1
22 )× (X

(1)
t −X

(2)
t Ω12Ω

−1
22 )

(Ω11,2)
−1(X

(1)
j −X

(2)
j Ω12Ω

−1
22 ),

T ∗
6 = (

1

nhfu(u0)
)2

n∑
t=1

n∑
t=1

εiεj(X
(1)
i −X

(2)
i Ω12Ω

−1
22 )(Ω11,2)

−1

(X
(1)
t −X

(2)
t Ω12Ω

−1
22 )×X

(2)
t (Ω22(Ut))

−1X
(2)
j K(

Ut − u0

h
)K(

Ut − u0

h
),

T ∗
7 = (

1

nhfu(u0)
)2

n∑
t=1

n∑
t=1

εiεj(X
(2)
i (Ω22(Ut))

−1X
(2)
t (X

(1)
t −X

(2)
t Ω12

Ω−1
22 )(Ω11,2)

−1(X
(1)
j −X

(2)
j Ω12Ω

−1
22 )K(

Ut − u0

h
)K(

Ut − u0

h
),

T ∗
8 =

n∑
t=1

E(fy|u,x(qτ |Xt, Ut))(
2

nhfu(u0)
)2

n∑
t=1

n∑
t=1

εi(ϕτ (Y
∗
i )− εj)(X

(1)
i −

X
(2)
i Ω12Ω

−1
22 )(Ω11,2)

−1(X
(1)
t −X

(2)
t Ω12Ω

−1
22 )×X

(2)
t (Ω22(Ut))

−1X
(2)
j ,

and

T ∗
9 =

1

2

n∑
t=1

E(fy|u,x(qτ |Xt, Ut))(
1

nhfu(u0)
)2

n∑
t=1

n∑
t=1

(ϕτ (Y
∗
i )− εi)(ϕτ (Y

∗
i )− εj)

(X
(1)
i −X

(2)
i Ω12Ω

−1
22 )(Ω11,2)

−1(X
(1)
t −X

(2)
t Ω12Ω

−1
22 )X

(2)
t (Ω22(Ut))

−1X
(2)
j .

One can show easily that as nh3/2 →∞,

E(T ∗
6 )2 = O(

1

n2h4
) = o(

1

h
) and E(T ∗

7 )2 = O(
1

n2h4
) = o(

1

h
),
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which imply that T ∗
6 = op(h

−1/2) and T ∗
7 = op(h

−1/2). Similarly, we can get

T ∗
8 = op(h

−1/2) and T ∗
9 = op(h

−1/2). Note that T ∗
2 , T ∗

4 and T ∗
5 are the same as

in Chapter 2 except replacing p by p1, replacing X and Ω∗(Ut) respectively by

X(1) − Ω12Ω22X
(2) and Ω11,2. Therefore, the remaining proof follows the same lines

as those in the proof of Theorem 2.2.

Proof for Theorem 3.2: The proof of Theorem 3.2 is omitted since it is the spe-

cial case of Theorem 3.1.

Proof for Theorem 3.3: The generalized quasi-likelihood ratio test statistic can be

rewritten as

Tn = `(Ha)− `(H0)

=
n∑

t=1

ρτ

(
Yt − Â1(u)X

(1)
k − Â2(u)X

(2)
k

)

−
n∑

t=1

ρτ

(
Yt − Ã1(u)X

(1)
k − Ã2(u)X

(2)
k

)

=
n∑

t=1

ρτ

(
Yt − Â1(u)X

(1)
k − Â2(u)X

(2)
k

)

−
n∑

t=1

ρτ

(
Yt − A10(u)X

(1)
k − A20(u)X

(2)
k

)

+
n∑

t=1

ρτ

(
Yt − A10(u)X

(1)
k − A20(u)X

(2)
k

)

−
n∑

t=1

ρτ

(
Yt − Ã1(u)X

(1)
k − Ã2(u)X

(2)
k

)

= E1 − E2,

where

E1 =
n∑

t=1

ρτ

(
Yt − Â1(u)X

(1)
k − Â2(u)X

(2)
k

)
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−
n∑

t=1

ρτ

(
Yt − A10(u)X

(1)
k − A20(u)X

(2)
k

)

and

E2 =
n∑

t=1

ρτ

(
Yt − Ã1(u)X

(1)
k − Ã2(u)X

(2)
k

)

−
n∑

t=1

ρτ

(
Yt − A10(u)X

(1)
k − A20(u)X

(2)
k

)
.

For E1, we can get the similar derivation as in Theorem 3.2 since Â(u) is the non-

parametric estimation using jackknife method and local linear fitting technique.

Next, we focus on E2.

E2 = −
n∑

t=1




Ã1 − A10

Ã2 − A20




T 


X
(1)
t

X
(2)
t


 εt

+
1

2

n∑
t=1

E(fy|u,x(qτ |Xt, Ut))




Ã1 − A10

Ã2 − A20




T 


X
(1)
t

X
(2)
t







X
(1)
t

X
(2)
t




T

×




Ã1 − A10

Ã2 − A20




= −
n∑

t=1

(Ã1 − A10)X
(1)
t εt −

n∑
t=1

(Ã2 − A20)X
(1)
t εt +

1

2

n∑
t=1

E(fy|u,x(qτ |Xt, Ut))

[(Ã1 − A10)
T X

(1)
t (X

(1)
t )T (Ã1 − A10) + (Ã1 − A10)

T X
(1)
t (X

(1)
t )T (Ã2 − A20)

(Ã2 − A20)
T X

(1)
t (X

(1)
t )T (Ã1 − A10) + (Ã2 − A20)

T X
(1)
t (X

(1)
t )T (Ã2 − A20)].

From Lemmas 3.2 and 3.3, we know that

(Ã1 − A10) = Op(1/
√

n) + Op(h
2) and (Ã2 − A20) = Op(1/

√
nh) + Op(h

2).



89

Thus,

E2 = −
n∑

t=1

(Ã2 − A20)X
(1)
t εt −Op(

√
h) +

1

2

n∑
t=1

E(fy|u,x(qτ |Xt, Ut))

[(Ã2 − A20)
T X

(1)
t (X

(1)
t )T (Ã1 − A10) + Op(

√
h) + Op(

√
h) + Op(h)].

Then, the rest of proof is similar to the proof of Theorem 3.2.

Proof for Theorem 3.4: Under the Ha, the true parameter A1(u) = A10(U) +

1√
nh

∆(U). The test statistic Tn can be rewritten as

Tn = `(Ha)− `(H0)

=
n∑

t=1

ρτ

(
Yt − Â1(u)X

(1)
k − Â2(u)X

(2)
k

)

−
n∑

t=1

ρτ

(
Yt − A10X

(1)
k − Â2(u)X

(2)
k

)

=
n∑

t=1

ρτ

(
Yt − Â1(u)X

(1)
k − Â2(u)X

(2)
k

)

−
n∑

t=1

ρτ

(
Yt − A1X

(1)
k − A20(u)X

(2)
k

)

+
n∑

t=1

ρτ

(
Yt − A1X

(1)
k − A20(u)X

(2)
k

)

−
n∑

t=1

ρτ

(
Yt − A10X

(1)
k − A20(u)X

(2)
k

)

+
n∑

t=1

ρτ

(
Yt − A10X

(1)
k − A20(u)X

(2)
k

)

−
n∑

t=1

ρτ

(
Yt − A10X

(1)
k − Â2(u)X

(2)
k

)

≡ O1 + O2 + O3.
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First, I consider O2. By using Knight identity, we have

O2 =
n∑

t=1

ρτ

(
Yt − A1X

(1)
k − A20(u)X

(2)
k

)

−
n∑

t=1

ρτ

(
Yt − A10X

(1)
k − A20(u)X

(2)
k

)

= −[
n∑

t=1

ρτ

(
Yt − A1X

(1)
k − A20(u)X

(2)
k

)

−
n∑

t=1

ρτ

(
Yt − A10X

(1)
k − A20(u)X

(2)
k

)
]

= − 1√
nh

n∑
t=1

∆(Ut)X
(1)
t εt −

∫ − 1√
nh

∆(Ut)X
(1)
t

0

Iεt<s − Iεt<0ds

= −F1 − F2.

By following the similar derivation in Theorem 2.2, we can get

F2 =
1

2nh

n∑
t=1

Ez(fy|u,x(qτ |Xt, Ut))∆(Ut)
T X

(1)
t (X

(1)
t )T ∆(Ut)

=
1

2h
E(fy|u,x(qτ |Xt, Ut)∆(Ut)

T X
(1)
t (X

(1)
t )T ∆(Ut))

≡ d2n.

For O1 + O3 we have the same result as theorem 3.2. Therefore,

Tn = − 1√
nh

n∑
t=1

∆(Ut)X
(1)
t εt − d2n

−
n∑

t=1

1

(
√

nh)2fu(Ut)

n∑

i6=t

εi(X
(1)
i −X

(2)
i Ω12Ω

−1
22 )(Ω11,2)

−1(X
(1)
t

−X
(2)
t Ω12Ω

−1
22 )K(

Ui − Ut

h
)εt +

1

2

n∑
t=1

E(fy|u,x(qτ |Xt, Ut))(
1

nhfu(u0)
)2

n∑
t=1

n∑
t=1

εiεj[(X
(1)
i −X

(2)
i Ω12Ω

−1
22 )(Ω11,2)

−1

(X
(1)
t −X

(2)
t Ω12Ω

−1
22 )(X

(1)
t −X

(2)
t Ω12Ω

−1
22 )(Ω11,2)

−1
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(X
(1)
j −X

(2)
j Ω12Ω

−1
22 )]K(

Ut − u0

h
)K(

Ut − u0

h
)− T ∗

2 + T ∗
4 + T ∗

5 + T ∗
6 + T ∗

7

+ T ∗
8 + T ∗

9 ,

where T ∗
2 , T ∗

4 , T ∗
5 , T ∗

6 , T ∗
7 , T ∗

8 and T ∗
9 are defined in the proof of Theorem 3.2 which

are dominated by d1n. So, The rest of proof is similar to the proof of Theorem 2.8

and Theorem 3.2. The details are omitted. ¤



CHAPTER 4: CONCLUSION

In this dissertation, I propose some new test procedures, termed as generalized

quasi-likelihood ratio test, to testing some hypotheses for varying coefficient quantile

regression models, such as testing whether coefficients or partial coefficients are

indeed varying or of some specific functional form.

First, I use local linear technique with jackknife method to estimate the non-

parametric coefficient functions and derive the Bahadur representation of the es-

timators. Then, I propose the new test statistics which are constructed based on

the comparison of the quasi-likelihood under null and alternative hypotheses to test

hypotheses about the form of coefficients for varying coefficient quantile regression

models. I also conduct some Monte Carlo simulation studies to illustrate the power

of the proposed test procedure and an application to a real data set is also reported.

Also, I apply this test procedure to test the hypothesis on partial coefficients for

varying coefficient quantile regression models. I adopt the similar test statistic to

test whether partial coefficients are constant or of some specific functional form with

other coefficients remaining completely unspecified. The asymptotic distributions

of the proposed test statistics are derived and some simulation results are presented

to show the effectiveness of the proposed test procedure.

There are still some interesting research topics related to this dissertation which

deserve further investigation. First, one may release the constriction of i.i.d assump-

tion. In my dissertation, I only derive the asymptotic result under the i.i.d setting.

It should hold for the non i.i.d data, such as stationary time series data or under

some mixing conditions. Secondly, the generalized quasi-likelihood ratio test statis-
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tic can be extended to the hypothesis problem for other models, such as additive

quantile model, predictive regression model and others. Furthermore, there is few

paper available in the literature about varying coefficient quantile regression models

under the nonstationary time series setting due to the difficulty of deriving Bahadur

representation for the nonstationary time series data. All of the aforementioned

issues can be considered as future research topics.
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