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ABSTRACT 
 
 
CHANGSHU ZHANG. Statistical machine learning based modeling framework for 

design space exploration and run-time cross-stack energy optimization for many-core 
processors. (Under the direction of DR. ARUN RAVINDRAN) 

 
 

The complexity of many-core processors continues to grow as a larger number of 

heterogeneous cores are integrated on a single chip. Such systems-on-chip contains 

computing structures ranging from complex out-of-order cores, simple in-order cores, 

digital signal processors (DSPs), graphic processing units (GPUs), application specific 

processors, hardware accelerators, I/O subsystems, network-on-chip interconnects, and 

large caches arranged in complex hierarchies. While the industry focus is on putting 

higher number of cores on a single chip, the key challenge is to optimally architect these 

many-core processors such that performance, energy and area constraints are satisfied. 

The traditional approach to processor design through extensive cycle accurate simulations 

are ill-suited for designing many-core processors due to the large microarchitecture design 

space that must be explored. Additionally it is hard to optimize such complex processors 

and the applications that run on them statically at design time such that performance and 

energy constraints are met under dynamically changing operating conditions. 

The dissertation establishes statistical machine learning based modeling 

framework that enables the efficient design and operation of many-core processors that 

meets performance, energy and area constraints. We apply the proposed framework to 

rapidly design the microarchitecture of a many-core processor for multimedia, computer 

graphics rendering, finance, and data mining applications derived from the Parsec 

benchmark. We further demonstrate the application of the framework in the joint run-time 
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adaptation of both the application and microarchitecture such that energy availability 

constraints are met. 
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 INTRODUCTION CHAPTER 1:
 
 

The complexity of many-core processors continues to grow as a larger number of 

heterogeneous cores are integrated on a single chip. Such systems-on-chip contains 

computing structures ranging from complex out-of-order cores, simple in-order cores, 

digital signal processors (DSPs), graphic processing units (GPUs), application specific 

processors, hardware accelerators, I/O subsystems, network-on-chip interconnects, and 

large caches arranged in complex hierarchies. While the industry focus is on putting 

higher number of cores on a single chip, the key challenge is to optimally architect these 

many-core processors such that performance, energy and area constraints are satisfied. 

The traditional approach to processor design through extensive cycle accurate simulations 

are ill-suited for designing many-core processors due to the large microarchitecture design 

space that must be explored. Additionally it is hard to optimize such complex processors 

and the applications that run on them statically at design time such that performance and 

energy constraints are met under dynamically changing operating conditions. 

The goal of the dissertation is to establish statistical machine learning (SML) based 

modeling framework that enables the efficient design and operation of many-core 

processors that meets performance, energy and area constraints. The dissertation makes 

the following contributions in this regard -  

1. Determine the performance of different classes of SML algorithms in modeling the 

performance, power, and area of a many-core processor. 
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2. Establish a hierarchical modeling methodology that addresses the complexities of 

modeling many-core processors by combining individual models of the different micro-

architectural elements to create a many-core performance, power, and area model. 

3. Establish a SML based modeling and Pareto optimal exploration framework for run-

time cross-stack energy optimization. 

4. Demonstrate the performance vs. quality tradeoffs possibilities for the x264 video 

encoder through by tuning the motion estimation algorithm and the video frame 

resolution. 

5. Demonstrate the use of feature reduction algorithms in evaluating the impact of micro-

architectural parameters on performance, power, and area. 

6. Develop application-specific-performance versus power relationships for several 

applications derived from the Parsec benchmark.  

1.1 Motivation 

A many-core processor architect has many degrees of freedom in choosing the 

values of micro-architectural parameters that meets processing, power dissipation, and 

area constraints. Since each of these micro-architectural parameters can assume a range of 

possible values, the resulting design space consists of millions design points. Exploring 

this vast design space to find optimal power-performance configurations, with the 

traditional method of cycle-accurate simulation to estimate performance followed by 

register-transfer-level (RTL) synthesis to estimate power, is impractical because of the 

large simulation time (tens of hours) needed for each design point.  Additionally, 

contention between the cores for shared resources such as interconnection networks, 

caches etc., and results in super-linear increase in simulation time as the number of cores 
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is increased. Recently, statistical methods have been proposed both for uniprocessor and 

many-cores, that seek to develop computationally efficient substitutes for exhaustive cycle 

accurate simulation. These methods sample a fraction of the design space to generate 

training data that map architecture design parameters to performance metrics. However, 

dependences among the design parameters results in complex non-linear relationships 

between these parameters and the performance metrics making the modeling effort 

challenging.  

The complexity of many-core processor continues to grow as a larger number of 

heterogeneous cores are integrated on a single chip. Often it is hard to optimize such 

complex cores at design time so that performance requirements are met along with 

temperature, energy, noise, and reliability constraints. Dynamic performance optimization 

thus become a necessity - where the operational points comprising of all parts of the 

computing stack - the architecture, system software, and applications are adjusted at run-

time to meet performance requirements and operating constraints. As an example, for 

battery based mobile computing devices, the amount of energy available for computing is 

fixed between charges. As a result, the energy available for computing changes 

dynamically depending on the number of tasks running on the system, which may be hard 

to predict in advance. Note that due to complex interactions between the different parts of 

the stack, optimal performance requires that the operating points across the computing 

stack must be tuned simultaneously. Also, for applications with hard performance 

constraints such as real time requirements, separately optimizing the architecture, 

operating system, and application quality-of-service operating parameters may result in a 

scenario where no operating point can satisfy performance constraints. 
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Previous research has identified a number of architecture parameters whose 

operating values can be tuned during run-time - core parameters such as 

voltage/frequency, the number of integer and floating point units, integer and floating 

point register sizes, instruction and store queue sizes; cache and TLB parameters - 

capacity, line size, and associativity; interconnect parameters - number of channels, flit 

size, and channel width. Among the system software parameters that can be tuned include 

CPU allocation and budgets for real time scheduling algorithms. Application parameters 

that can be tuned depend on user preferences and a given application. For many soft real 

time applications such as video conferencing, the user may be willing to tradeoff video 

frame size and visual quality for battery life if throughput requirements dictated by the 

video standard are met.  Since each parameter of the computing stack can take on a 

number of operational values, the operational space can consist of tens of millions of 

points that must be evaluated at run-time to determine the optimal operating point. The 

cross-stack optimization approaches reported in literature thus far have considered a very 

limited space of operational points. 

1.2 Contributions 

1.2.1 Comparison of SML Models 

Motivated by the success of SML algorithms in modeling complex systems, in this 

dissertation we systematically investigate and compare the performance of different 

classes of SML algorithms in modeling the power and performance of a multi-core 

processor. Although previous research has used specific SML algorithms for modeling the 

performance of multi-core processors [1] [2], no systematic study comparing the relative 

merit of these algorithms has been reported in the literature. The SML algorithms we 
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consider are Multivariate Adaptive Regression Splines (MARS), Kernel Canonical 

Correlation Analysis (KCCA), Artificial Neural Networks (ANN), and Support Vector 

Machines for Regression (SVM-R). These algorithms represent different trade-offs 

between training time and modeling accuracy. Our results indicate that despite training on 

a very small set of samples (< 0.001%), a high prediction accuracy is possible (> 90%) 

with MARS for diverse applications derived from the Parsec benchmark [3]. We then 

utilize the predictive MARS model for micro-architectural design space exploration and 

use evolutionary algorithms to generate Pareto optimal power-performance fronts. 

1.2.2 Hierarchical Scalable Modeling Framework 

Despite the vast reduction in design time possible with the SML model driven 

micro-architectural exploration, its scalability as the number of cores increase is limited. 

The primary reason for this limited scalability is the super-linear increase in simulation 

time required to generate the training data set. In this dissertation, we therefore, propose a 

hierarchical SML modeling methodology that consistently combines the statistical models 

of cluster of individual micro-architectural elements to generate an overall performance, 

power, and area model for a many-core processor with potentially hundreds of processing 

cores. The entire micro-architectural design space of the many-core processors is divided 

into core-level parameters and interconnection network-level parameters. Through the 

simulation of the individual cores with core-level parameters, the performance, power, and 

injection rate models are constructed. Similarly, through the simulation of the 

interconnection network with network-level parameters, the interconnection network 

average latency model is constructed. The injection rate affects the interconnection 

network latency, while the interconnection network latency reacts on the injection rate. 



6 
We then find the convergence of these two models and use the corresponding 

interconnection network latency to obtain the performance and power consumption of the 

individual cores. 

We apply the hierarchical modeling framework to the Parsec benchmark. The 

target architecture is a 64-core many-core processor with the cores based on the Alpha 

21264 out-of-order processor. The cores have private L1 data and instruction cache, and 

four cores are clustered sharing a unified cache coherent L2 cache through a bus based 

interconnect. The interconnect is a 4x4 directory based mesh network with 16 memory 

controllers. Each cluster is an individual network node in the interconnect. We simulate 

the performance of the individual cores using the Gem5 architectural simulator, the 

performance of the interconnect using the GARNET network simulator and estimate the 

entire many-core processor power using the McPAT modeling framework targeting the 

22nm technology. Our results indicate that similarly to the cluster level performance, 

power and area modeling, despite training on a small set of samples (< 10%), a high 

prediction accuracy is achieved (> 90%) with MARS for the cluster injection rate, 

interconnect access latency, power and area modeling. We then iterate the cluster injection 

rate and interconnect access latency MARS models till these two models converge and 

consistent. For the benchmark selected in our work, the cluster injection rate model and 

interconnect access latency model converge very fast, normally within tens of iterations. 

The many-core model is thus a combination of the cluster performance, power, area 

models and interconnect power, area models. Evaluations of our many-core models 

constructed using the MARS algorithms, shows an R2 ranging from 0.82 – 0.89 for 
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selected Parsec benchmarks with the simulation time increasing linearly in the worst-case 

with the number of cores. 

1.2.3 Run-time Cross-stack Performance-energy Optimization 

As mentioned before, performance and power optimization at design time cannot 

meet energy availability constraints that are only apparent at run-time. Hence we apply the 

SML based modeling framework to dynamically optimize performance and power by 

jointly tuning both application and micro-architectural parameters at run-time. From a 

training set composed of a small fraction of operational points (< 1%), we construct a 

MARS model with both micro-architectural and application parameters as predictor 

variables. The model predicts the power and performance of the operating points outside 

the training set. We employ a feature reduction algorithm to identify the parameters that 

most significantly contributes to performance and power, thus reducing the operating 

space to be explored. Since we seek to optimize multiple objectives in an unbiased 

fashion, we use a Pareto front exploring evolutionary algorithm that uses the MARS 

model to determine operating points for optimal power and performance. The operating 

points constituting the Pareto front can be stored in look-up tables for rapidly determining 

the optimal operating point. 

We apply the proposed framework to an x264 video encoding application obtained 

from the Parsec benchmark. The target architecture is a quad core processor with the cores 

based on the Alpha 21264 out-of-order processor. The cores have private L1 data and 

instruction cache, and a unified cache coherent L2 cache shared through a bus based 

interconnect. We simulate the performance using the Gem5 architectural simulator and 

estimate power using the McPAT modeling framework targeting the 22nm technology 



8 
node. Note that the architecture is not specifically designed for video processing but rather 

chosen to illustrate our modeling and exploration framework. The micro-architectural 

predictor variables include a total of 10 core and cache parameters. The application 

predictor variables include the video resolution, and visual quality determined by the 

choice of the motion estimation algorithm. The model outputs the average frames per 

second (FPS) and the average power consumption. The MARS model has an R2 of 0.9657 

and 0.9467 and RMSE (root mean squared error) of 1.829 and 0.0124 respectively for FPS 

and power consumption. Comparison of the power consumption of Pareto optimal 

operating point at a lower visual quality to that of Pareto optimal point at a higher visual 

quality for an x264 video encoder executing on a prototype quad core processor indicates 

a power saving of 55%.  

1.3 Organization 

The remainder of the dissertation is organized as follows. Chapter 2 provides a 

comprehensive overview of SML algorithms considered in this work and a comparison of 

the performance of different SML algorithms in modeling the power and performance of a 

many-core processor. Chapter 3 describes the proposed scalable framework that can be 

used to generate SML performance, power, and area models of many-core processors with 

hundreds of heterogeneous processing cores. Chapter 4 discusses the extension of the 

proposed SML modeling framework in the run-time performance-energy optimization 

through a cross-stack approach. Chapter 5 concludes with a summary of the work 

presented in this dissertation and with the discussion of how future work could extend the 

results presented in this dissertation. All chapters are relatively self-contained with the 

necessary background and related work.  



 

 

 A COMPARISON OF STATISTICAL MACHINE LEARNING CHAPTER 2:
ALGORITHMS IN MULTI-CORE DESIGN SPACE MODELING 

 
 
2.1 Introduction 

A multi-core processor architect has many degrees of freedom in choosing the 

values of micro-architectural parameters that meets processing and power dissipation 

constraints.  Since each of these micro-architectural parameters can assume a range of 

possible values, the resulting design space consists of millions design points. Exploring 

this vast design space to find optimal power-performance configurations, with the 

traditional method of cycle-accurate simulation to estimate performance followed by 

register-transfer-level (RTL) synthesis to estimate power, is impractical because of the 

large simulation time (tens of hours) needed for each design point. In this chapter, we 

explore the statistical modeling of processors as an approach to make the exploration 

problem computationally tractable. In general, modeling of multi-core power and 

performance is not straightforward due to their non-linear dependence on processor 

parameters, and the interdependencies between the design parameters with each other.  

Recent years have witnessed the development of powerful statistical machine 

learning (SML) algorithms that treat the system as a black-box but are capable of 

extraction of relationships between input parameters and performance metrics with good 

accuracy. Such SML algorithms have been successfully used in system modeling in fields 

as diverse as bioinformatics [4], communications [5], information management [6], and 

finance [7]. 
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Motivated by the success of SML algorithms in modeling complex systems, in this 

chapter we systematically investigate and compare the performance of different classes of 

SML algorithms in modeling the power and performance of a multi-core processor. 

Although previous research has used specific SML algorithms for modeling the 

performance of multi-core processors [1] [2], no systematic study comparing the relative 

merit of these algorithms has been reported in the literature. The SML algorithms we 

consider are Multivariate Adaptive Regression Splines (MARS), Kernel Canonical 

Correlation Analysis (KCCA), Artificial Neural Networks (ANN), and Support Vector 

Machines for Regression (SVM-R). These algorithms represent different trade-offs 

between training time and modeling accuracy. Our results indicate that despite training on 

a very small set of samples (< 0.001%), a high prediction accuracy is possible (> 90%) 

with MARS for diverse applications derived from the Parsec benchmark [3]. We then 

utilize the predictive MARS model for micro-architectural design space exploration and 

use evolutionary algorithms to generate Pareto optimal power-performance fronts. 

The rest of the chapter is organized as follows – in Section 2.2 we introduce the 

SML modeling framework. We review the SML algorithms considered in our work in 

Section 2.3. We describe the evaluation methodology in Section 2.4. We then present the 

results comparing the performance of different SML algorithm in Section 2.5. In Section 

2.6, we describe the application of the SML model in design space exploration. We review 

related work in Section 2.7 and conclude the chapter in Section 2.8. 

2.2 Machine Learning Framework 

A statistical machine learning (SML) based approach to architecture modeling 

seeks to develop a SML based regression model that predicts architecture performance 
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metrics (target variables) as a function of architectural design parameters (predictor 

variables) such that the model best fits the observed data and any prior knowledge held by 

the learner [8]. 

 
 

 

Figure 2.1: SML modeling framework 
 

The general SML modeling framework is shown in Figure 2.1. We initially select 

architectural parameters (both core level and cache level) that can potentially affect the 

performance metrics of the architecture. Examples of such architectural parameters 

include number of cores, threads per core, cache sizes and associativity, buffer sizes, and 

so on. Examples of performance metrics include cycles-per-instruction (CPI), task 

throughput, and power dissipation. Note that each architectural design parameter can 

assume a range of possible values, the combinations of which can potentially result in a 

large design space. We then select a small subset of these combinations that adequately 

represents the design space. For this subset and a given application benchmark, we collect 

the corresponding architectural performance metrics using architecture simulators. We 

then train the SML model and evaluate the accuracy of the model through a suitable 

validation methodology. We iterate this process until a desired model accuracy is 

obtained. 
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2.3 Statistical Machine Learning Algorithms 

In SML regression modeling, given a training data set of predictor variables and 

the corresponding target variables, the 𝐿 target variables {𝒚}: {𝑦1, … ,𝑦𝐿} are related to the 

𝑃 predictor variables {𝒙}: {𝑥1, … 𝑥𝑃} through a model described by: 

 𝒚 = 𝑓(𝑿) + 𝝐 (2.1) 

Here 𝒚 is a 𝐿 × 1 column vector of target variables, 𝑿 is a 𝐿 × 𝑃 matrix of predictor 

variables such that each row has the same 1 × 𝑃 row vector 𝒙. The transformation 𝑓 

captures the relationship between 𝑿 and 𝒚, and 𝝐 is a 𝐿 × 1 error column vector which 

reflects error due to the effect of hidden predictor variables other than 𝒙 on 𝒚. In the 

following sections, we review the different SML algorithms considered in our work which 

we use to determine 𝑓. 

2.3.1 Multivariate Adaptive Regression Splines (MARS) 

2.3.1.1 Linear regression 

Linear regression is the most widely used model to construct the approximation 

function 𝑓 for each target variable using a linear relationship: 

 𝑦 = 𝑓(𝒙) + 𝜖 = 𝑏 + ∑ 𝜔𝑖𝑥𝑖𝑃
𝑖=1 + 𝜖 (2.2) 

Here 𝑦 is the target variable of interest, 𝑏 is an intercept term, and 𝜔𝑖 is the corresponding 

coefficient of predictor variable 𝑥𝑖. A common measure of accuracy (loss function) is 

least-square fitting by minimizing the Mean Squared Error (MSE) of the model: 

 𝑀𝑆𝐸 = 1
𝑁
∑ �𝑦𝑖 − 𝑓(𝒙𝑖)�

2𝑁
𝑖=1  (2.3) 

Here 𝑁 is the number of training samples. 
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2.3.1.2 Polynomial regression 

To approximate a non-linear relationship between target variable and predictor 

variables, a 𝑄𝑡ℎ order polynomial of predictor variables can be used yielding the following 

polynomial regression model: 

 𝑓(𝒙) = 𝑏 + ∑ 𝛽𝑚∏ 𝑥𝑖𝑞𝑖𝑚
𝑖=1

𝑃
𝑚=1 + ∑ 𝜔𝑛 ∏ 𝑥𝑗𝑞𝑗𝑛

𝑗=1
𝑃
𝑛=1  (2.4) 

Here ∑ 𝑞𝑖𝑚
𝑖=1 < 𝑄, ∑ 𝑞𝑗𝑛

𝑗=1 = 𝑄, 𝛽𝑚 and 𝜔𝑛 are coefficients. Similar to linear regression, 

the model is fitted by minimizing the MSE. 

2.3.1.3 Regression spline 

If a single polynomial fitting of the target variable and predictor variables is not 

accurate enough, a regression spline composed of two or more polynomial fittings is used. 

In univariate regression spline (𝑃 = 1), the range of the predictor variable x is divided 

into 𝐾 + 1 disjoint regions separated by 𝐾 points (knots). In each region, a 𝑄𝑡ℎ order 

polynomial regression is applied, and at each knot a continuous constraint is placed. Thus 

a total of (𝐾 + 1)(𝑄 + 1) −𝐾𝑄 coefficients have to be adjusted to best fit the training 

data by minimizing the MSE. Usually, this constrained minimization problem is solved by 

converting to an equivalent unconstrained optimization problem. The approximation 

function in each of the 𝐾 + 1 region is chosen from a set of 𝑄𝑡ℎ order basis functions 

{𝐵𝑘
𝑄(𝑥)}𝑘=0

𝐾+𝑄 and the univariate regression spline model is described by: 

 𝑓(𝑥) = ∑ 𝜔𝑘𝐵𝑘
𝑄(𝑥)𝐾+𝑄

𝑘=0  (2.5) 

One such basis is truncated power basis which consists of following functions: 

 {𝑥𝑗}𝑗=0
𝑄 , {±{𝑥 − 𝑡𝑘}+

𝑄}𝑘=1𝐾  (2.6) 

Here {𝑡𝑘}𝑘=1𝐾  are the knot locations. The truncated power function pair is defined by 
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 +(𝑥 − 𝑡𝑘)+
𝑄 = �

0           𝑥 ≤ 𝑡𝑘
(𝑥 − 𝑡𝑘)𝑄 otherwise (2.7) 

 −(𝑥 − 𝑡𝑘)+
𝑄 = �(𝑡𝑘 − 𝑥)𝑄 𝑥 ≤ 𝑡𝑘

0  otherwise
 (2.8) 

Other basis functions could be used as well, such as B-spline basis [9]. The model 

in Equation 2.5 can then be fitted by minimizing the MSE. However, due to the great 

flexibility of regression spline in specifying the number of knots 𝐾 and their locations 

{𝑡𝑘}𝑘=1𝐾 , the optimal specification for the knots is usually unknown. The number of knots 

is usually selected based on the distribution of the training data and the standard knot 

selection scheme includes either equal-spaced placing or at the 1/𝐾(∗ 100) percentiles of 

the range of 𝑥. 

Adaptive knot selection 

Smith [10] suggested an adaptive knot selection strategy for automatically 

selecting both the number and locations for the knots. She used the truncated power basis; 

Equation 2.5 can then be written as 

 𝑓(𝑥) = ∑ 𝛽𝑞𝑥𝑞
𝑄
𝑞=0 + ∑ 𝜔𝑘[±(𝑥 − 𝑡𝑘)+

𝑄]𝐾
𝑘=1  (2.9) 

Here {𝛽𝑞}𝑞=0
𝑄  and {𝜔𝑘}𝑘=1𝐾  are coefficients of {𝑥𝑞}𝑞=0

𝑄  and {±(𝑥 − 𝑡𝑘)+
𝑄}𝑘=1𝐾 . For 𝑁 

training data, Smith's strategy involves starting from a very large number of eligible knot 

locations, such as 𝐾 = 𝑁 − 2. Then the number of knots is dropped progressively, until a 

Sum of Squared Error (SSE) threshold is exceeded. 

2.3.1.4 Multivariate adaptive regression splines (MARS) 

In multivariate regression spline, placing 𝐾𝑗 knots for each predictor variable 

{𝑥𝑞}𝑗=1𝑃  produces ∏ (𝐾𝑗 + 1)𝑃
𝑗=1  regions. The basis function set over this set of regions is 
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the tensor product [11] of the corresponding univariate spline basis associated with the 

knot locations on each predictor variable: 

 𝑓(𝒙) = ∑ …∑ 𝜔𝑘1 , … ,𝜔𝑘𝑃 ∏ 𝐵𝑘𝑗
𝑄 �𝑥𝑗�𝑃

𝑗=1
𝐾𝑃+𝑄
𝑘𝑃=0

𝐾1+𝑄
𝑘1=0  (2.10) 

In Equation 2.10, there are ∏ (𝐾𝑗 + 𝑄 + 1)𝑃
𝑗=1  coefficients to be estimated. This is 

a reflection of “curse of dimensionality” [12] [13] as the number of coefficients has an 

exponential dependence on the number 𝑃 and order 𝑄 of the predictor variables. The 

MARS strategy employs the truncated power basis of Equation s 2.7 and 2.8, adaptive 

knot selection on each predictor variable as suggested by Smith, and the tensor product 

splines of Equation 2.10. However, this strategy is computationally challenging. Adaptive 

knot selection scheme in multivariate case, involves computationally expensive 𝑂(𝑁𝑃) 

MSE fits. Such a scheme is only practical for small number of training data and predictor 

variables.  

MARS algorithm 

The goal of the following MARS algorithm [14] is to provide a computationally 

feasible approach that approximates the basis function subset selection procedure. One 

representation of these basis functions is: 

 𝐵𝑚(𝒙) = ∏ [𝑠(𝑖,𝑚)(𝑥𝑗(𝑖,𝑚) − 𝑡(𝑖,𝑚))]+
𝑄𝐼𝑚

𝑖=1  (2.11) 

Here 𝐼𝑚 is the number of factors (interaction order) of the 𝑚𝑡ℎ basis function and (𝑖,𝑚) 

denotes the 𝑚𝑡ℎ basis function and the 𝑖𝑡ℎ interaction order. 𝑠(𝑖,𝑚) = ±1 indicates the 

positive (right) or negative (left) of the truncated power function pairs of the mth basis 

function. 𝑥𝑗(𝑖,𝑚) is one of the predictor variable {𝑥𝑗}𝑗=1𝑃  and 𝑡(𝑖,𝑚) is the knot location. 

The MARS algorithm employs a two-step procedure to build the model: the 

forward pass and backward pass. In the forward pass, the algorithm starts with one basis 



16 
function which is just an intercept term: 𝐵0(𝒙) = 1, and then repeatedly adds new basis 

functions in pairs (two at a time) to the model. The (𝑀 + 1)𝑡ℎ iteration adds following 

two new basis functions: 

 �
𝐵(2𝑀+1)(𝒙) = 𝐵𝑙(𝑀+1)(𝒙)[+(𝑥𝑗(𝑀+1) − 𝑡𝑀+1)]+

𝑄

𝐵(2𝑀+2)(𝒙) = 𝐵𝑙(𝑀+1)(𝒙)[−(𝑥𝑗(𝑀+1) − 𝑡𝑀+1)]+
𝑄 (2.12) 

Here 𝐵𝑙(𝑀+1)(𝒙) is chosen using Equation 2.11 from one of the {𝐵𝑚(𝒙)}𝑚=0
2𝑀  generated in 

the previous 𝑀 iterations. Note that if 𝑙(𝑀+1) = 0, then 𝐵0(𝒙) = 1 is chosen, and the two 

newly added basis functions have only one truncated power basis function. In this case, 

the interaction order of 𝐵(2𝑀+1)(𝒙) and 𝐵(2𝑀+2)(𝒙) is 1. If 𝑙(𝑀+1) > 0, then a non-

constant basis function 𝐵𝑙(𝒙)(1 ≤ 𝑙 ≤ 2𝑀) is chosen, and the two newly added basis 

functions have one higher interaction order than 𝐵𝑙(𝒙). The knot location in (𝑀 + 1)𝑡ℎ 

iteration on corresponding variable 𝑥𝑗(𝑀+1) is given by 𝑡𝑀+1. The values of 𝑙(𝑀+1), 𝑗(𝑀+1) 

and 𝑡𝑀+1 are obtained by maximizing the reduction in SSE (argmin) of the model built in 

the previous M iterations, and described by 

�𝑙(𝑀+1), 𝑗(𝑀+1), 𝑡𝑀+1� = argmin𝑙,𝑗,𝑡,(𝜔𝑚)02𝑀+2 ∑ �𝑦𝑖 − ∑ 𝜔𝑚𝐵𝑚(𝒙𝑖)2𝑀
𝑚=0 −𝑁

𝑖=1

𝜔2𝑀+1𝐵𝑙(𝒙𝑖)�+�𝑥𝑗 − 𝑡��
+
𝑄
− 𝜔2𝑀+1𝐵𝑙(𝒙𝑖)�−�𝑥𝑗 − 𝑡��

+
𝑄
�
2
 (2.13) 

Here ∑ 𝜔𝑚𝐵𝑚(𝒙𝑖)2𝑀
𝑚=0  is the model built in the previous 𝑀 iterations and the latter two 

terms are the two newly added basis functions in the (𝑀 + 1)𝑡ℎ iteration. In Equation 

2.13, all possible choices of 𝑙, 𝑗 and 𝑡 are evaluated until the change of SSE of the model 

is below a given threshold or until the maximum number 𝑀𝑚𝑎𝑥 of basis functions is 

reached. 𝑀𝑚𝑎𝑥 is typically chosen to be substantially larger than would be optimal, and 

results in an over-fitted model at the end of the forward pass. 
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In the backward pass, the MARS algorithm prunes the model built in the forward 

pass by removing the least effective basis functions one at a time until only the intercept 

term is left. The least effective basis function is determined based on a modification of the 

Generalized Cross Validation (GCV) criterion [15] as described by: 

 𝐺𝐶𝑉(𝑀) = 1
𝑁
∑ [𝑦𝑖 − 𝑓𝑀(𝒙𝑖)]2/(1 − 𝑒𝑛𝑝(𝑀)

𝑁
)2𝑁

𝑖=1  (2.14) 

 𝑒𝑛𝑝(𝑀) = 𝑀 + 𝑐 ∗ 𝑀−1
2

 (2.15) 

Here 𝑀 is the number of basis functions in the model 𝑓𝑀(𝒙) (including the intercept term), 

𝑒𝑛𝑝 is the effective number of parameters, 𝑐 is the GCV penalty per knot and (𝑀− 1) 2⁄  

is the number of knots. The final output model is the one with the lowest GCV value. The 

numerator of Equation 2.14 is the MSE on the training data and the denominator 

represents a penalty for increasing model complexity (number of knots). 

2.3.2 Artificial Neural Networks (ANN) 

ANN is a non-linear statistical data model inspired by biological nervous systems 

and neural networks. The representational power of ANN is rich enough to express 

complex interactions among variables -- any function can be approximated to arbitrary 

precision by a three-layer ANN [16]. 

Three types of parameters define an ANN: the interconnection pattern, the learning 

process, and the activation function [16]. Figure 2.2 shows a feed-forward ANN and a 

sigmoid activation function. The feed forward network contains three layers with 𝑃 units 

in the input layer, 𝐻 units in the hidden layer, and 𝐿 units in the output layer. The sigmoid 

activation function is applied to the units in the hidden layer and output layer. 𝜔ℎ𝑖𝑗 

represents the weight between input unit {𝑥𝑖}𝑖=1𝑃  and hidden unit {ℎ𝑗}𝑗=1𝐻 , and 𝜔𝑜𝑗𝑘 

represents the weight between hidden unit {ℎ𝑗}𝑗=1𝐻  and output unit {𝑦𝑘}𝑘=1𝐿 . To train the 
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network, we choose the stochastic gradient descent version of the BackPropagation (BP) 

algorithm [16]. The BP algorithm is the most commonly used ANN learning technique. It 

is composed of three parts: forward propagation, back propagation and weight update. In 

each iteration, the training input is first forwarded through the network to generate the 

output of each layer using the sigmoid function. Then, the errors are propagated backward 

through the network to calculate the error term of each unit. The weights in each layer are 

then updated using the gradient descent algorithm. This training process stops when the 

error difference between adjacent iterations is below a desired error threshold or a 

maximum number of iterations are reached. 

 

 

Figure 2.2: Example of a feed-forward ANN [16] 
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Figure 2.3: Example of a sigmoid activation function [16] 
 

Gradient descent is an optimization algorithm providing a basis for learning 

algorithms searching through a hypothesis space to find an optimal 𝑓. In standard gradient 

descent, this hypothesis space 𝐻 is normally composed of sum of squared errors (SSE) of 

all the training data with different weights. The error 𝐸 is described by: 

 𝐸(𝝎) = 1
2
∑ (𝑦𝑑 − 𝑓(𝒙𝑑))2𝑑∈𝐷  (2.16) 

Here 𝐷 is all the training data. For each training data 𝑑 in 𝐷, 𝑦𝑑 is the true target value, 

and 𝑓(𝒙𝑑) is the estimated output of the target. Given an ANN shown in Figure 2.3, the 

gradient of 𝐸 is defined as: 

 ∇𝐸(𝝎) = [ 𝜕𝐸
𝜕𝜔ℎ11

, 𝜕𝐸
𝜕𝜔ℎ12

, … , 𝜕𝐸
𝜕𝜔ℎ𝑃𝐻

, 𝜕𝐸
𝜕𝜔𝑜11

, 𝜕𝐸
𝜕𝜔𝑜12

, … , 𝜕𝐸
𝜕𝜔𝑜𝐻𝐿

] (2.17) 

Here ∇𝐸(𝝎) is a vector composed of partial derivatives of 𝐸 with respect to the 

components of vector 𝝎 and specifies the steepest change direction of 𝐸 in the error space. 

The partial derivatives are calculated as follows: 

∑ 
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 �

𝜕𝐸
𝜕𝜔ℎ𝑖𝑗

= 𝛿𝑗𝑥𝑖  𝑎𝑛𝑑 𝛿𝑗 = 𝑜𝑗(1 − 𝑜𝑗)∑ 𝜔𝑜𝑗𝑘𝛿𝑘𝐿
𝑘=1

𝜕𝐸
𝜕𝜔𝑜𝑗𝑘

= 𝛿𝑘𝑜𝑗  𝑎𝑛𝑑 𝛿𝑘 = 𝑜𝑘(1 − 𝑜𝑘)(𝑦𝑘 − 𝑜𝑘)
 (2.18) 

Here 𝑜𝑘 is the output of unit {𝑘}𝑘=1𝐿  in the output layer, and 𝛿𝑘 is the error term. 𝑜𝑗 is the 

output of unit {𝑗}𝑗=1𝐻  in the hidden layer, and 𝛿𝑗 is the error term. Given the direction of 

steepest change, the training rule of the weights for gradient descent is described by: 

 𝝎 ← 𝝎 + 𝜂∇𝐸(𝝎) (2.19) 

Here 𝜂 is a positive constant called learning rate. The learning rate affects the speed of 

ANN reaching the minimum solution. Using Equation 2.19, each weight is updated as 

follows: 

 �
𝜔ℎ𝑖𝑗 ← 𝜔ℎ𝑖𝑗 + 𝜂𝛿𝑗𝑥𝑖
𝜔𝑜𝑗𝑘 ← 𝜔𝑜𝑗𝑘 + 𝜂𝛿𝑘𝑜𝑗

 (2.20) 

In standard gradient descent, 𝐸 is defined for all the training data 𝐷 and the 

iteration through each training data in 𝐷 has a fixed order. The weights in the network are 

updated at the end of iteration of 𝐷. While in stochastic gradient descent, 𝐸 is defined for 

each training data 𝑑 and the order of iterating through all training data in 𝐷 is randomly 

shuffled. The weights are updated upon finishing training 𝑑. This results in a small weight 

update step comparing to the standard gradient descent. Stochastic gradient descent is 

more capable of avoiding the local minima during its search through the error space under 

the guidance of various {∇𝐸𝑑(𝝎)}𝑑∈𝐷 rather than only a single ∇𝐸𝐷(𝝎). 

The detailed BP algorithm in Figure 2.2 is as follows: we start the algorithm by 

initializing all network weights to small random numbers (e.g., between -0.05 and 0.05), 

learning rate to a positive small numbers (e.g., between 0.01 and 0.1), the maximum 

number of iteration and the error threshold. Then for each iteration of 𝐷, we first randomly 
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shuffle the training data in 𝐷. Then for each training data 𝑑: (𝒙,𝒚), we input the 𝒙 to the 

network and compute the output of every unit in the network using the sigmoid function. 

We then calculate the error term 𝛿𝑘 and 𝛿𝑗 using Equation 2.18. Given the error term of 

each unit, we update each weight using Equation 2.20. We then calculate the error of 

training data 𝑑 as follows: 

 𝐸𝑑 = ∑ 1
2

(𝑦𝑘𝑑 − 𝑜𝑘𝑑)2𝐿
𝑘=1  (2.21) 

We continue to randomly shuffle all the training data, and update the weights 

through iteration of each training data. This process stops if a maximum number of 

iterations are reached or the error difference between adjacent iterations is below a given 

threshold. 

2.3.3 Support Vector Machines (SVM) 

SVM is used to construct a hyperplane or set of hyperplanes in a high- or infinite-

dimensional space which can be used for classification (SVC) or regression (SVR). 

Consider a set of training data: {(𝒙1,𝑦1), (𝒙2,𝑦2), … , (𝒙𝑁 ,𝑦𝑁)}, where 𝒙𝑖 is a set of 

predictor variables {𝑥𝑗𝑖}𝑗=1
𝑃  and 𝑦𝑖 is the target variable in training data {𝑖}𝑖=1𝑁 . In SVC, the 

target variable 𝑦𝑖 is a class label and the hyperplane is a separation of different classes. 

The goal of SVC is to find a hyperplane that has the largest distance to the nearest training 

data point of any class. Support Vectors (SVs) are the nearest training data points of any 

class to the hyperplane, and margin is the perpendicular distance between the hyperplane 

and SVs. With a larger margin, the hyperplane has a higher probability to classify a new 

data point correctly. So the optimization problem of SVC is to maximize the margin 

subject to the constraints of correctly classifying all the training data. In SVR, the target 

variable 𝑦𝑖 is a real value. The goal of SVR is to find a hyperplane (approximating 
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function 𝑓) that has at most 𝜖 deviation from true value 𝑦𝑖 of the target variable for all the 

training data. For SVR, there exist two common approaches: 𝜖-SVR and 𝑛𝑢-SVR. In 𝜖-

SVR, 𝜖 is a pre-defined acceptable amount of deviation between 𝑦� and 𝑦 of the target 

variable. While in 𝑛𝑢-SVR, 𝜖 is determined as a part of the learning algorithm. It has been 

demonstrated in [17] [18] that although 𝜖-SVR is simpler, it has an equal or even better 

performance than 𝑛𝑢-SVR. So in our work, we consider 𝜖-SVR. In 𝜖-SVR, the margin is 

defined as the perpendicular distance between hyperplane 𝑓 and 𝑓 ± 𝜖. Any data point in 

this margin is considered as well fitted by 𝑓. So with a larger margin, the hyperplane (𝑓) 

has a higher probability to predict 𝑦 of a new data point within an acceptable 𝜖 deviation. 

So the optimization problem of 𝜖-SVR is to maximize the margin subject to the 

constraints of maximum 𝜖 deviation for all the training data. 

We begin our description of 𝜖-SVR by first applying to the case of linear 

approximating function 𝑓. The approximating function 𝑓 takes the form of: 

 𝑓(𝒙) = 〈𝝎,𝒙〉 + 𝑏 = ∑ 𝜔𝑗𝑥𝑗𝑃
𝑗=1 + 𝑏 (2.22) 

Here 𝜔𝑗 is the weight of predictor variable 𝑥𝑗, and 𝑏 is an intercept term. In this case, the 

margin is 𝜖
‖𝜔‖2

, and ‖𝝎‖2 = 〈𝝎,𝝎〉 = ∑ 𝜔𝑗𝜔𝑗𝑃
𝑗=1 . In the case of all the training data 

having at most 𝜖 deviation from 𝑓, the optimization problem could be written as: 

 min 1
2
‖𝝎‖2 (2.23) 

subject to �
𝑦𝑖 − 〈𝝎,𝒙𝑖〉 − 𝑏 ≤ 𝜖
〈𝝎,𝒙𝑖〉 + 𝑏 − 𝑦𝑖 ≤ 𝜖

𝑖 = 1, … ,𝑁
 

Usually, not all the 𝑦 of the training data can be well fitted using the approximation 

function 𝑓 within an acceptable ±𝜖 deviation. In this case, we need to add other terms to 
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the optimization problem in Equation 2.23 to allow for the training data with a deviation 

larger than 𝜖. Slack variables [19] are introduced to represent the error for each training 

data: 𝜉𝑖 as upper error bound and 𝜉𝑖∗ as lower error bound. Then the error 𝐸𝑖 of each 

training data {𝑖}𝑖=1𝑁  is defined using the slack variables: 

 𝐸𝑖 = �
𝜉𝑖      𝑦𝑖 − 𝑓(𝒙𝑖) > 𝜖

0        𝑦𝑖 − 𝑓(𝒙𝑖) ∈ [−𝜖, 𝜖]
𝜉𝑖∗     𝑦𝑖 − 𝑓(𝒙𝑖) < −𝜖

 (2.24) 

Equation 2.23 is the modified to minimize the errors ∑ 𝐸𝑖𝑁
𝑖=1  as [20]: 

 min  1
2
‖𝝎‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖∗)𝑁

𝑖=1  (2.25) 

subject to�
𝑦𝑖 − 〈𝝎,𝒙𝑖〉 − 𝑏 ≤ 𝜖 + 𝜉𝑖
〈𝝎,𝒙𝑖〉 + 𝑏 − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖∗

𝜉𝑖, 𝜉𝑖∗ ≥ 0, 𝑖 = 1, … ,𝑁
 

Here 𝐶 is pre-defined value adjusting the trade-off between the margin of 𝑓 and the 

tolerance of deviation larger than 𝜖. To solve the optimization problem given in Equation 

2.25 with corresponding constraints, the Lagrange method with Lagrange multipliers is 

used. The Lagrange function is described as follows: 

𝐿 ≔ 1
2
‖𝝎‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖∗)𝑁

𝑖=1 − ∑ 𝛼𝑖(𝜖 + 𝜉𝑖∗ − 𝑦𝑖 + 〈𝝎, 𝒙𝑖〉 + 𝑏)𝑁
𝑖=1 − ∑ 𝛼𝑖∗(𝜖 +𝑁

𝑖=1

𝜉𝑖∗ + 𝑦𝑖 − 〈𝝎,𝒙𝑖〉 − 𝑏) − ∑ (𝜂𝑖𝜉𝑖 + 𝜂𝑖∗𝜉𝑖∗)𝑁
𝑖=1   (2.26) 

subject to 𝜂𝑖, 𝜂𝑖∗,𝛼𝑖,𝛼𝑖∗ ≥ 0 

Here 𝐿 is Lagrangian, and 𝜂𝑖 , 𝜂𝑖∗,𝛼𝑖 ,𝛼𝑖∗ are Lagrange multipliers. For the optimality of 

Equation 2.26, the partial derivatives of 𝐿 with respect to the variables (𝜔, 𝑏, 𝜉𝑖, 𝜉𝑖∗) should 

be set to zero, which are given as follows: 
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⎩
⎪
⎨

⎪
⎧ 𝜕𝑏𝐿 = ∑ (𝛼𝑖 − 𝛼𝑖∗)𝑁

𝑖=1 = 0
𝜕𝝎𝐿 = 𝝎− ∑ (𝛼𝑖 − 𝛼𝑖∗)𝒙𝑖𝑁

𝑖=1 = 0
𝜕𝜉𝑖𝐿 = 𝐶 − 𝛼𝑖 − 𝜂𝑖 = 0
𝜕𝜉𝑖∗𝐿 = 𝐶 − 𝛼𝑖∗ − 𝜂𝑖∗ = 0

 (2.27) 

𝜔𝑗 is a linear combination of  𝑥𝑗 of all the training data. ω is given by  

 𝝎 = ∑ (𝛼𝑖 − 𝛼𝑖∗)𝒙𝑖𝑁
𝑖=1  (2.28) 

Then 𝑓 becomes: 

 𝑓(𝒙) = ∑ (𝛼𝑖 − 𝛼𝑖∗)〈𝒙𝑖,𝒙〉𝑁
𝑖=1 + 𝑏 = ∑ (𝛼𝑖 − 𝛼𝑖∗)∑ 𝑥𝑗𝑖𝑥𝑗

𝑃
𝑗=1

𝑁
𝑖=1 + 𝑏 (2.29) 

Substituting Equation 2.27 into Equation 2.26, the optimization problem in Equation 2.25 

is then transformed to its dual optimization problem: 

 max  −1
2
∑ (𝛼𝑖 − 𝛼𝑖∗)(𝛼𝑘 − 𝛼𝑘∗)〈𝒙𝑖,𝒙𝑘〉𝑁
𝑖,𝑘=1 − 𝜖 ∑ (𝛼𝑖 − 𝛼𝑖∗)𝑁

𝑖=1 + ∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖∗)𝑁
𝑖=1   

  (2.30) 

subject to� � (𝛼𝑖 − 𝛼𝑖∗)
𝑁

𝑖=1
= 0

𝛼𝑖,𝛼𝑖∗ ∈ [0,𝐶], 𝑖 = 1, … ,𝑁
 

Here 〈𝒙𝑖,𝒙𝑘〉 = ∑ 𝑥𝑗𝑖𝑥𝑗𝑘
𝑃
𝑗=1 . Then values of {𝛼𝑖}𝑖=1𝑁  or  {𝛼𝑖∗}𝑖=1𝑁  are obtained by 

maximizing the objective function subject to corresponding constraints in the dual 

optimization problem. To solve this dual optimization problem, a Sequential Minimal 

Optimization (SMO) method is normally used, which decomposes the overall problem 

into sub-problems for computational efficiency. At each iteration, SMO selects two 

Lagrange multiplier 𝛼 at a time while keeping other 𝛼 fixed. Then these two multipliers 

are optimized using the objective function in the dual problem. The objective function is 

then updated with the new optimal 𝛼. This process is repeated until the optimization of the 

objective function converges. 
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In computing 𝑏, Karush-Kuhn-Tucker(KKT) [21] optimality conditions are used. 

The KKT conditions of our problem state that at the optimal solution, the product 

between the Lagrange multipliers and constraints should be set to zero. In Equation 2.26 

this means: 

 �
𝛼𝑖(𝜖 + 𝜉𝑖∗ − 𝑦𝑖 + 〈𝝎, 𝒙𝑖〉 + 𝑏) = 0
𝛼𝑖∗(𝜖 + 𝜉𝑖∗ + 𝑦𝑖 − 〈𝝎, 𝒙𝑖〉 − 𝑏) = 0 (2.31) 

 �
𝜂𝑖𝜉𝑖 = (𝐶 − 𝛼𝑖)𝜉𝑖 = 0
𝜂𝑖∗𝜉𝑖∗ = (𝐶 − 𝛼𝑖∗)𝜉𝑖∗ = 0 (2.32) 

Equation 2.31 shows that 𝛼𝑖 and 𝛼𝑖∗ cannot both simultaneously be non-zero, and only 

training data 𝑖 with �𝑦𝑖 − 𝑓(𝒙𝑖)� ≥ 𝜖 may have a non-zero 𝛼𝑖 or 𝛼𝑖∗. Therefore, in 

Equation 2.28, 𝝎 is determined only by the training data with non-zero Lagrangian 

multiplier  𝛼𝑖 or 𝛼𝑖∗, and these training data are called Support Vectors (SVs) in SVR. 

Equation 2.32 shows that only training data (𝒙𝑖,𝑦𝑖) with corresponding 𝛼𝑖 = 𝐶 or 𝛼𝑖∗ = 𝐶 

may have a non-zero 𝜉𝑖 or 𝜉𝑖∗, which means that these training data lie outside the margin. 

So to determine 𝑏, we can only use the training data with exactly 𝜖 deviation from 𝑓, and 

these training data have  𝛼𝑖 ∈ (0,𝐶) or 𝛼𝑖∗ ∈ (0,𝐶). Hence, 𝑏 is determined as follows: 

 �
𝑏𝑖 = 𝑦𝑖 − 〈𝝎,𝒙𝑖〉 − 𝜖     for 𝛼𝑖 ∈ (0,𝐶)
𝑏𝑖 = 𝑦𝑖 − 〈𝝎,𝒙𝑖〉 + 𝜖     for 𝛼𝑖∗ ∈ (0,𝐶) (2.33) 

For numerical stability, the 𝑏 value is an average of all the 𝑏𝑖 values. 

The SVR above is only applicable to a linear relationship of (𝒙𝑖,𝑦𝑖) among the 

training data. However, SVR can be extended to model non-linear training data utilizing 

kernel trick. In machine learning, kernel trick [22] is a method to map the observations 

(training data) in data space X to an inner product space H of a higher dimension, where 

the observations have a linear relationship. Here the dimension of X is the number of 
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predictor variables 𝑃, and the dimension of H is the number of training data 𝑁. The kernel 

trick is denoted as: 

 𝑘(𝒙𝑖,𝒙𝑘) ≡ 〈Ф(𝒙𝑖),Ф(𝒙𝑘)〉 (2.34) 

Here Ф is a mapping function: X → H. The kernel trick helps in calculating the dot 

product in high dimension space without having to explicitly compute Ф . Different kernel 

functions could be used for different problems, such as Polynomial kernel, Gaussian 

kernel (also called Radial Basis Function kernel) or Sigmoid kernel [23]. For example, in 

Gaussian kernel, 𝑘(𝒙𝑖,𝒙𝑘) is calculated as follows: 

 𝑘(𝒙𝑖,𝒙𝑘) = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝒙𝑖,𝒙𝑘) = exp{−𝛾‖𝒙𝑖 − 𝒙𝑘‖2} (2.35) 

Here exp is the exponential function and 𝛾 is a pre-defined value which determines the 

Gaussian kernel width. ‖𝒙𝑖 − 𝒙𝑘‖2 is the distance between 𝒙𝑖 and 𝒙𝑘. This distance is 

normally captured using Euclidean distance: 

 ‖𝒙𝑖 − 𝒙𝑘‖2 = �∑ �𝑥𝑗𝑖 − 𝑥𝑗𝑘�
2𝑃

𝑗=1  (2.36) 

Thus for non-linear modeling, the SVR minimization equation in Equation 2.30 can be 

rewritten as follows: 

maximize−
1
2
� (𝛼𝑖 − 𝛼𝑖∗)(𝛼𝑘 − 𝛼𝑘∗)𝑘(𝒙𝑖,𝒙𝑘)
𝑁

𝑖,𝑘=1

− 𝜖�(𝛼𝑖 − 𝛼𝑖∗)
𝑁

𝑖=1

+ �𝑦𝑖(𝛼𝑖 − 𝛼𝑖∗)
𝑁

𝑖=1

 

 subject to �
∑ (𝛼𝑖 − 𝛼𝑖∗)𝑁
𝑖=1 = 0

𝛼𝑖,𝛼𝑖∗ ∈ [0,𝐶], 𝑖 = 1, … ,𝑁
 (2.37) 

The hyperplane 𝑓 is then given by: 

 𝑓(𝒙) = ∑ (𝛼𝑖 − 𝛼𝑖∗)𝑘(𝒙𝑖,𝒙𝑘)𝑁
𝑖=1 + 𝑏 (2.38) 
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2.3.4 Kernel Canonical Correlation Analysis (KCCA) 

Consider a set of 𝑁 training data: {(𝒙1,𝒚1), (𝒙2,𝒚2), … , (𝒙𝑁,𝒚𝑁)}, where 𝒙𝑖 is a 

set of predictor variables {𝑥𝑗𝑖}𝑗=1
𝑃  and 𝒚𝑖 is a set of target variables {𝑦𝑙𝑖}𝑙=1

𝐿 . Canonical 

Correlation Analysis (CCA) seeks to find a 𝑃 × 1 column vector 𝝎𝒙 and a 𝐿 × 1 column 

vector 𝝎𝒚, such that the correlation 𝜌 between the projection of {𝒙𝑖}𝑖=1𝑁  on 𝝎𝒙 and {𝒚𝑖}𝑖=1𝑁  

on 𝝎𝒚 are mutually maximized. 𝜌 is defined as follows: 

 𝜌�𝝎𝒙
𝑻𝒙,𝝎𝒚

𝑻𝒚� = cov(𝝎𝒙
𝑻𝒙,𝝎𝒚

𝑻𝒚)

�var�𝝎𝒙
𝑻𝒙� var(𝝎𝒚

𝑻𝒚)
= 𝝎𝒙

𝑻𝐶𝒙𝒚𝝎𝒚

�(𝝎𝒙
𝑻𝐶𝒙𝒙𝝎𝒙)(𝝎𝒚

𝑻𝐶𝒚𝒚𝝎𝒚)
 (2.39) 

Here 𝝎𝒙
𝑻 is the transpose of 𝝎𝒙 and 𝝎𝒚

𝑻 is the transpose of 𝝎𝒚. 𝐶𝒙𝒚 is the covariance 

cov(𝒙,𝒚). 𝐶𝒙𝒙 and 𝐶𝒚𝒚 are the covariance cov(𝒙,𝒙) and cov(𝒚,𝒚) respectively. The 

optimization problem of CCA is defined as follows: 

 max𝝎𝒙,𝝎𝒚      𝜌(𝝎𝒙
𝑻𝒙,𝝎𝒚

𝑻𝒚) (2.40) 

subject to �
var(𝝎𝒙

𝑻𝒙) = 1
var�𝝎𝒚

𝑻𝒚� = 1 

This optimization problem can be solved by Lagrange method utilizing the 

Lagrange multipliers [24]. The optimization problem in Equation 2.40 is then reduced to 

the following generalized eigenvalue problem: 

 �
𝟎 𝐶𝒙𝒚
𝐶𝒚𝒙 𝟎 � �𝝎𝒙

𝝎𝒚
� = 𝜌 �

𝐶𝒙𝒙 𝟎
𝟎 𝐶𝒚𝒚

� �𝝎𝒙
𝝎𝒚
� (2.41) 

This optimization problem has 𝑃 + 𝐿 eigenvalues and the corresponding eigenvector of 

each eigenvalue is a (𝑃 + 𝐿) × 1 column vector. 𝝎𝒙 and 𝝎𝒚 correspond to the top 𝑃 

elements and bottom 𝐿 elements of the eigenvector of the largest eigenvalue respectively. 

The projection of 𝒙 on 𝝎𝒙 and the projection of 𝒚 on 𝝎𝒚 are mutually maximally 

correlated. 
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CCA is only useful if there exists a linear relationship between predictor variables 

𝒙 and target variables 𝒚. However, CCA can be extended to Kernel CCA (KCCA), which 

models non-linear training data utilizing a kernel trick similar to that used in Section 2.3.3. 

The training data is mapped to a higher dimensional space where a linear relationship 

exists between the predictor variables and target variables. In Equation 2.34 a Gaussian 

kernel is used to generate a 𝑁 × 𝑁 predictor similarity matrix 𝑲𝒙 whose (𝑖,𝑘)𝑡ℎ entry 

measures the similarity between 𝒙𝑖 and 𝒙𝑘, and a 𝑁 × 𝑁 target similarity matrix 𝑲𝒚 

whose (𝑖, 𝑘)𝑡ℎ entry is the similarity between 𝒚𝑖 and 𝒚𝑘. This process is described as 

follows: 

 �
𝑲𝒙[𝑖, 𝑘] = 𝑘(𝒙𝑖,𝒙𝑘) = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝒙𝑖,𝒙𝑘) = exp{−𝛾‖𝒙𝑖 − 𝒙𝑘‖2}
𝑲𝒚[𝑖,𝑘] = 𝑘(𝒚𝑖,𝒚𝑘) = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝒚𝑖,𝒚𝑘) = exp{−𝛾‖𝒚𝑖 − 𝒚𝑘‖2} (2.42) 

Here exp is the exponential function and 𝛾 is a pre-defined value which determines the 

Gaussian kernel width. ‖𝒙𝑖 − 𝒙𝑘‖2 is the distance between 𝒙𝑖 and 𝒙𝑘, and ‖𝒚𝑖 − 𝒚𝑘‖2 is 

the distance between 𝒚𝑖 and 𝒚𝑘. These distances are normally computed using Euclidean 

distance: 

 

⎩
⎨

⎧‖𝒙𝑖 − 𝒙𝑘‖2 = �∑ �𝑥𝑗𝑖 − 𝑥𝑗𝑘�
2𝑃

𝑗=1

‖𝒚𝑖 − 𝒚𝑘‖2 = �∑ �𝑦𝑙𝑖 − 𝑦𝑙𝑘�
2𝐿

𝑙=1

 (2.43) 

For the two kernelized matrices 𝐾𝒙 and 𝐾𝒚, the optimization problem of CCA in Equation 

2.40 is extended to [25]: 

 max𝜶𝒙,𝜶𝒚      𝜌�𝜶𝒙𝑇𝑲𝒙,𝜶𝒚𝑇𝑲𝒚� = 𝜶𝒙𝑇𝑲𝒙𝑲𝒚𝜶𝒚

�var�𝜶𝒙𝑇𝑲𝒙�var�𝜶𝒚𝑇𝑲𝒚�
 (2.44) 

Here 𝜶𝒙 is a 𝑁 × 𝑁 matrix and 𝜶𝒙𝑇 is the transpose of 𝜶𝒙. 𝜶𝒚 is a 𝑁 × 𝑁 matrix and 𝜶𝒚𝑇 is 

the transpose of 𝜶𝒚. The optimization problem for KCCA is: 
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 �
𝟎 𝑲𝒙𝑲𝒚

𝑲𝒚𝑲𝒙 𝟎 � �𝜶𝒙𝜶𝒚� = 𝜌 �
𝑲𝒙𝑲𝒙 𝟎
𝟎 𝑲𝒚𝑲𝒚

� �𝜶𝒙𝜶𝒚� (2.45) 

This optimization problem has 2𝑁 eigenvalues and the corresponding eigenvector 

of each eigenvalue is a 2𝑁 × 1 column vector. 𝜶𝒙 and 𝜶𝒚 correspond to the top 𝑁 rows 

and bottom 𝑁 rows of the eigenvectors of the largest 𝑁 eigenvalues respectively. The 

projection of 𝑲𝒙 on 𝜶𝒙 and the projection of 𝑲𝒚 on 𝜶𝒚 are mutually maximally correlated. 

For a test data point, the associated values of the target variables are estimated by 

applying the kernel function and distance metric of Equation 2.42 and Equation 2.43 to 

generate a 1 × 𝑁 row vector 𝒗. This vector captures the similarities of the predictor 

variables between the test data point and all the training data {𝒙𝑖}𝑖=1𝑁 . The vector 𝒗 is then 

projected on 𝜶𝒙 and its 𝑘 nearest neighbours in 𝜶𝒙𝑇𝑲𝒙 are determined. The values of target 

variables are then averaged to generate the prediction of the target variables for the test 

data point. 

2.4 Evaluation Methodology 

We present an evaluation framework for quantitatively comparing the performance 

of statistical machine learning algorithms in modeling chip multiprocessor architectures. 

The machine learning model seeks to capture the dependence of one or more performance 

metrics on multiple architectural parameters of interest. The flow chart in Figure 2.4 

outlines the different components of our proposed framework.  
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Figure 2.4: Flowchart for multi-core power and performance SML model generation 
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desired details for different values of the predictor variable. To construct a dataset for 

modeling, we use data sampling techniques to choose a subset configuration of the 

feasible values of input parameters, and then simulate these to obtain the associated 

performance metrics. The sampled dataset is cleaned to remove outliers and missing 

values. We then identify the significance of each predictor variable and select a subset of 

most relevant architectural parameters to build the learning models. Subsequently, the 

performance of the model is evaluated for a test dataset. In the following section, the 

different components of the evaluation framework described above are presented in detail. 

2.4.1 Target Architecture and Design Space 

The SML algorithm evaluation framework of Figure 2.4 can be applied to any 

architecture of interest. However, to keep our discussions concrete, in our work we choose 

a multi-core architecture common in today’s server class processors. We seek to model a 

quad-core processor, with each core having a private L1 cache, and all cores sharing the 

L2 cache through a shared bus. The individual cores are out-of-order and based on the 

Alpha 21264 processor. Each out-of-order core is a single threaded four issue processor 

with split instruction and data caches. The L1 and L2 caches are non-blocking with miss 

status holding register (MSHR) and write buffers (WB) for read and write misses. Cache 

coherency is maintained among the 4 cores sharing the L2 cache. The cache replacement 

policy is LRU and the cache coherence protocol is bus-based MOESI snooping protocol. 

Our local memory system is a classic bus based model. The bus arbitration follows first-

come-first-serve logic, and uses round-robin scheduling for bus accesses. 

The architectural design parameters of interest are grouped as core and memory. 

Core parameters include voltage/frequency, the number of integer and floating point units, 
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integer and floating point register sizes, instruction and store queue sizes; the memory 

parameters include L1 and L2 cache size and associativity, and DTLB an ITLB sizes. The 

complete list of parameters chosen in our work is given in Table 2.1. The possible range of 

values assumed by the core, memory and network parameters are derived from for 

commercial processors and from the literature. We choose power and benchmark specific 

performance metrics such as task throughput as the output performance metrics. Note that 

our choice of the architectural parameters, their possible range of values, and the output 

performance metrics are only illustrative. Typically, designers would use application 

specific performance goals and knowledge of the workload to choose these metrics. 

 
 

Table 2.1: List of micro-architectural model predictors 
Parameters Value ranges 
Number of integer Alu-MultDiv 2-1, 4-1, 4-2 
Number of floating point Alu-MultDiv 1-1, 2-1, 4-2 
Number of local-global history bits 2**(11-12, 11-13, 12-13) 
Number of physical integer registers 64, 128, 196 
Number of physical floating point registers 64, 128, 196 
Number of store-load queue entries 32-48, 32-64, 48-64 
Number of instruction queue entries 16, 32 
Number of reorder buffer entries 128, 160 
Number of branch target buffer Entries 2048, 4096 
Return address stack size 16, 32 
L1 cache size (KB) 32, 64 
L1 instruction cache associativity 4, 8 
L1 data cache associativity 4, 8 
DTLB size 32, 64, 128 
ITLB size 32, 64, 128 
Core frequency (GHz) 0.8, 1.0, 1.33, 1.8, 2.0, 2.33, 2.66 
L2 cache size (MB) 1, 2, 4 
L2 cache associativity 8, 16 
Back side bus frequency Core frequency 
Front side bus frequency (MHz) 100, 133 
Bus Width (Byte) 8, 16, 24 
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2.4.2 Benchmarks 

We use multimedia, business, and data mining benchmarks obtained from the 

Parsec suite. The Princeton Application Repository for Shared-Memory Computers 

(PARSEC) [3] is a benchmark suite composed of multithreaded programs. The suite 

focuses on emerging workloads and was designed to be representative of next-generation 

shared-memory programs for chip-multiprocessors. A summary of the benchmarks used in 

our work is given in Table 2.2. The benchmarks are cross-compiled using cross-tool-NG 

1.5.2 for the Alpha architecture to run on Gem5.  

 
 

Table 2.2: Summary of the simulated benchmarks with descriptions 
Domain Benchmark Description 
Media 
processing x264 An H.264/AVC video encoding application 

Rendering Raytrace An animated real-time 3D scene rendering application 
that uses ray tracing method 

Financial 
Analysis 

Blackscholes Option pricing kernel that uses the Black-Scholes 
partial differential equation 

Swaptions Application which prices a portfolio of swaptions with 
the Heath-Jarro-Morton framework 

Data 
Mining 

Freqmine 
A frequent itemset mining application which uses an 
array-based version of the Frequent Pattern-growth 
method 

Streamcluster Online streaming input points clustering kernel 
 

2.4.3 Processor Simulation Tools 

2.4.3.1 Processor Performance Modeling 

We use the Gem5 simulator [26] for the performance modeling of our target 

system. Gem5 is an event-driven cycle-accurate simulator, which provides a highly 

configurable simulation framework, multiple ISAs, diverse CPU models, multiple cache 

coherence protocols and interconnects models. Gem5 provides a simple, functional, one-
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CPI CPU and a detailed model of an out-of-order SMT-capable CPU. It also supports both 

full-system and system-call emulation modes. The full-system simulation mode simulates 

a complete computer system including operating system kernel and I/O devices, while in 

system-call emulation mode, the common system calls are emulated by the host OS. Gem5 

provides a clear interface for check-pointing, fast-forwarding, debugging and statistics.  

We model our target system with the Alpha ISA (instruction set architecture) as Alpha 

ISA is the most well developed and stable ISA supported in Gem5. Our many-core 

processor operates in full-system mode, which models a complete Linux system with 

kernel version 2.6.27. We run the selected benchmarks in Gem5 with problem size of each 

benchmark shown in Table 2.3. We fast forward the simulation starting point to the pre-

defined start of region of interest (ROI), where the parallel execution phases of each 

benchmark commences. We simulate the whole ROI for x264 and Raytrace separately, 

while Blackscholes/swaprtions and Freqmine/streamcluster are run together on the 4 

cores. The performance metrics for each benchmark are shown in Table2.3. Instead of the 

commonly used IPC or CPI we use more application oriented performance metrics such as 

FPS (frame per second) and runtime in seconds. The use of application oriented 

 
Table 2.3: Benchmark problem size, performance metric, and simulation time for 

detailed simulation 

Benchmark Problem size Performance 
metric 

Simulation 
time (hours) 

x264 360x240 pixels, 8 frames FPS 3 

Raytrace 480x270 pixels, 3 frames, 1 million 
polygon FPS 7 

Blackscholes 
& Swaptions 

4,096 options & 16 swaptions, 5000 
simulations Runtime 4 

Freqmine & 
streamcluster 

10,000 transactions & 2,048 points 
per block, 1 block Runtime 6.5 
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performance metrics is especially important for multithreaded and real-time workloads. 

[27]. 

2.4.3.2 Processor Power Modeling 

We use McPAT 0.8 [28] for the power modeling of our target system. McPAT is 

an integrated power, area, and timing hierarchical modeling framework for multi-core and 

many-core processor configurations from 90nm to 22nm. McPAT models the power at the 

micro-architectural level, circuit level and technology level. 

At the micro-architectural level, McPAT includes models of major architectural 

components such as cores, interconnection networks, caches, memory controllers, and 

clocking. At the circuit level, the architectural building blocks are mapped into four basic 

circuit structures: hierarchical wires, arrays, complex logic, and clocking networks. At the 

technology level, the physical parameters of devices and wires, such as unit resistance, 

capacitance, and current density, is calculated based on the data from the ITRS roadmap. 

We model our cores and L2 caches using the 22nm technology node across all the 

benchmarks. The system configurations and performance statistics from Gem5 are input 

into McPAT through an XML interface to compute the static and dynamic power 

dissipation of the cores and L2 caches. The total power dissipation is the sum of runtime-

dynamic power dissipation and leakage power dissipation of the cores and L2 cache. 

2.4.4 Data Sampling 

Consider the design parameters (predictor variables) in the chip multiprocessor 

design as shown in Table 2.1 with a range of possible values. The combinations of the 

possible values of all the design parameters constitute the overall design space. A micro-

architectural cycle-accurate simulation is required to obtain the values of the performance 
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metrics and power (target variables) of each design point. Since each design point requires 

several hours of simulation time, it is extremely expensive and even infeasible to simulate 

all the design points especially for a design space with billions of points. In a modeling 

based approach a predictive model is generated from a training subset generated by 

sampling the overall design space. The quality of the selected design points is very critical, 

because all the inferences and predictions of the test design points are based on them. The 

commonly used sampling methods include random sampling, systematic sampling [29] 

and stratified sampling [30]. In random sampling the design points are randomly 

generated. In systematic sampling, the selection of the design points is based on a fixed 

distance metric between the design points. In stratified sampling the design points are 

divided into subgroups and the selection of design points from each subgroup is done by 

either random sampling or systematic sampling. However, none of these methods 

guarantee an even distributed sampling across the overall design space. 

Recently, Latin Hypercube Sampling (LHS) has been proposed by researchers [31] 

[32] as an alternative sampling method. In LHS, to obtain 𝑁 design points from a 𝑃-

dimensional design space, each dimension is divided by 𝑁 hyperplanes resulting in a total 

number of 𝑁𝑃 small hypercubes. At most one design point is selected from each 

hypercube. The design point is selected by either Maximum Minimum (MaxiMin) 

Distance LHS criteria or Minimum Correlation (Correlation) LHS criteria. In MaxiMin 

the minimum distance between the selected design points is maximized. The distance can 

be calculated using a distance metric, such as the Euclidean distance. In Correlation the 

correlation between the selected design points is minimized. The correlation can be 

calculated using the canonical correlation calculation as described in Equation 2.39. These 
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two criteria enable LHS to guarantee a relatively uniformly distributed design points to be 

sampled from the design space. In our work, we choose the MaxiMin Distance LHS 

criteria implemented by a Matlab function: lhsdesign [33]. The output of lhsdesign is a 

normalized 𝑁 × 𝑃 matrix. We denormalize the entries in this matrix to the possible values 

in the range of each predictor variable shown in Table 2.1. 

In our work, we divide the micro-architectural parameters into processing core 

level parameters and memory-interconnect level parameters. We sample points from the 

design space of each level respectively. We select 832 (~0.5% of total) points from the 

design space of core-level parameters by using MaxiMin with memory-interconnect 

parameters fixed. The fixed memory-interconnect parameters are shown in Table 2.5. We 

select all (72) the points from the design space of memory-interconnect parameters with 

core-level parameters fixed. The fixed core-level parameters are shown in Table 2.6. To 

capture the interdependences between the core and memory-interconnect parameters, we 

sample an additional 150 (0.00025%) points from the total design space using MaxiMin. 

The training dataset is then obtained through gem5/McPAT micro-architectural simulation 

of the selected design configurations. Our choice of the number of design points is guided 

by the practical requirement to keep the simulation time reasonable.  

Table 2.4: Fixed interconnect-memory level micro-architectural design parameters 
Parameters Value ranges 
Core frequency (GHz) 1.8 
L2 cache size (MB) 2 
L2 cache associativity 8 
Back side bus frequency Core frequency 
Front side bus  frequency (MHz) 133 
Bus Width (Byte) 8 
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2.4.5 Data Cleaning 

The raw samples may have missing values and outliers caused due to invalid 

combination of the values of the predictor variables or simulation artifacts. Data cleaning 

eliminates or fills in missing values and removes outliers from the raw samples resulting 

in a more accurate model. Missing values are commonly filled by using a predefined 

global constant, the target variable's mean value, or a most probable value obtained by 

observing the values of the target variables of other samples [34]. In our work, we fill in 

the missing value by rerunning the simulations or by eliminating the invalid combination 

of the input values. 

The outliers are commonly identified by either distance-based methods [35] or 

clustering-based methods [36]. In distance-based methods, the set of 𝑘 nearest 

neighbouring samples of each sample is obtained by using a distance metric. For this 

neighboring set, the outlier is defined as the sample that lies greater than a predefined 

Table 2.5: Fixed CMP core-level micro-architectural design parameters 
Parameters Value ranges 
Number of integer Alu-MultDiv 4-1 
Number of floating point Alu-MultDiv 2-1 
Number of local-global history bits 2**(11-13) 
Number of physical integer registers 128 
Number of physical floating point registers 64 
Number of store-load queue entries 32-64 
Number of instruction queue entries 16 
Number of reorder buffer entries 160 
Number of branch target buffer Entries 2048 
Return address stack size 32 
L1 cache size (KB) 32 
Instruction cache associativity 4 
Data cache associativity 8 
ITLB size 32 
DTLB size 64 
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distance. In clustering-based methods, the samples are partitioned into clusters, and the 

outlier is defined as the sample that does not fit well with any cluster. In our work, we 

assume that a similar combination of values of micro-architectural design parameters 

would have a similar combination of values of performance metrics. We then choose a 

clustering-based method to identify outliers, and use the K-Means [37] clustering 

algorithm. Consider 𝑁 training data {𝑿,𝒀}: {(𝒙1,𝒚1), (𝒙2,𝒚2), … , (𝒙𝑁 ,𝒚𝑁)}, where 𝒙𝑖 is a 

set of predictor variables {𝑥𝑗𝑖}𝑗=1
𝑃  and 𝒚𝑖 is a set of target variables {𝑦𝑙𝑖}𝑙=1

𝐿 . The goal of 

the K-Means algorithm is to partition the 𝑁 training data into 𝐾 clusters, such that the total 

within-cluster distance given by Equation 2.46 is minimized: 

 min∑ ∑ ‖𝒚𝑖 − 𝒖𝑘‖2𝒚𝑖∈𝑆𝑘
𝐾
𝑘=1  (2.46) 

Here 𝑆𝑘 is the set of training data in cluster 𝑘 and 𝒖𝑘 is the mean vector (centroid). The 

distance ‖𝒚𝑖 − 𝒖𝑘‖2 is calculated by using a distance metric such as the Euclidean 

distance. To determine the centroids {𝒖𝑘}𝑘=1𝐾 , K-Means algorithm first initializes 𝐾 

centroids which are randomly selected from the training data. Then for each iteration, 

{𝒚𝑖}𝑖=1𝑁  is assigned to the cluster 𝑘, such that the distance to the centroid 𝒖𝑘 is minimized. 

After each 𝒚𝑖 has been assigned to different clusters, the centroids of all the clusters are 

updated. The assignment process is repeated until all the centroids are stable. In our work, 

we choose the kmeans library in R [38] which is an implementation of the above K-Means 

algorithm. To determine the number of clusters 𝐾 for a set of training data, we evaluate 

the total within-cluster distances for a range of {𝐾}𝐾=240  using the K-Means algorithm. 

Then we choose 𝐾 such that 𝐾 + 1 does not significantly decrease the total within-cluster 

distances. 
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Given the number of clusters 𝐾 and the values of the target variables in all the 

training data 𝒀: {𝒚𝑖}𝑖=1𝑁 , the outliers are determined using K-Means algorithm iteratively. 

For each iteration, the centroid of each cluster is calculated by applying the K-Means to 𝒀. 

Then the maximum distance 𝑑𝑚𝑎𝑥 among all the distances between 𝒚𝑖 ∈ 𝒀 and its 

centroid is obtained. The  𝒚𝑖 ∈ 𝒀 that has a distance to its centroid larger than 𝑇 × 𝑑𝑚𝑎𝑥 is 

considered an outlier in this iteration, and removed from 𝒀. Here 𝑇 is a predefined 

distance threshold and 𝑇 < 1. This process continues until a predefined number of 

iterations (𝐼) is reached. In our work, we find that 𝑇 = 0.95 and 𝐼 = 30 are reasonable 

values based on the distribution of the samples in each cluster. By applying the above 

described outlier identification methods, we eliminate about 5% of the training data set.  

2.4.6 Feature Reduction and SML Algorithms Parameters Tuning 

Training a learner with all the possible predictor variables (features) does not 

necessarily produce the best learner, as the weakly relevant, irrelevant and redundant 

predictor variables can negatively influence the effectiveness and performance of the SML 

algorithms. Feature reduction is a procedure to identify the significance of each predictor 

variable, and select a subset of most relevant predictor variables to build the learning 

models for given target variables. Consider training data with 𝑃 predictor variables. To 

select the optimal subset of predictor variables, a total number of 𝑃! possible subsets need 

to be evaluated. Such an exhaustive search is only feasible for a small 𝑃. Heuristic 

methods that search through a reduced number of subsets are commonly used for variable 

selection. Examples of heuristic methods for variable selection are stepwise forward 

selection/backward elimination methods [39], genetic algorithms [40] and simulated 

annealing [41].  
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The stepwise forward selection/backward elimination methods are the most 

commonly used methods [42]. In stepwise forward selection, the procedure starts with an 

empty set of predictor variables as the current subset. At each iteration, the model with 

current subset of predictor variables is first evaluated using the model independent metric. 

Such a metric could be the 𝑡-statistic value for linear models or 𝑅2 values. Then each 

unselected predictor variable is added to the current subset separately and the model is re-

evaluated using the same metric. The unselected predictor variable which leads to the 

largest change of the metric is considered the most significant predictor variable in this 

iteration and added to current subset for next iteration. In stepwise backward elimination, 

the procedure starts with the full set of predictor variables as the current subset. At each 

iteration, the model with the current subset of predictor variables is first evaluated using 

the model independent metric as mentioned above. Then each predictor variable is 

eliminated from the current subset separately and the model is re-evaluated using the same 

metric. The predictor variable which leads to the smallest change of the metric is 

considered the least significant predictor variable in this iteration and eliminated from 

current subset for next iteration. For these two methods, the selection process or the 

elimination process stops when a threshold on the model accuracy has been reached, or all 

the predictor variables have been added to or eliminated from current subset. The optimal 

subset of predictor variables will be the one with the most accurate model. Therefore, for 

these two methods, if all the predictor variables are considered during the stepwise 

process, the total number of possible subsets need to be evaluated is 1
2
𝑃2. 

In our work, we choose the rfe function provided in the caret R package [43] 

which uses the stepwise backward elimination with 𝑘-fold cross validation. The 𝑘-fold 
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cross validation provides a better estimation of the performance of models. In 𝑘-fold cross 

validation, the training data is first partitioned into equal-sized 𝑘 folds. The model training 

process is then performed in successive 𝑘 rounds. In each round, a different fold is 

selected for model evaluation using the metric mentioned above and the other 𝑘 − 1 folds 

are used for model training. This results in 𝑘 lists of significance of every predictor 

variable in each iteration of the elimination process. The least significant predictor 

variable is selected based on an average of the significance in the 𝑘 lists. The 𝑘 round can 

be also performed in parallel to alleviate the computational burden. Another advantage of 

the implementation of variable selection in the caret package is that it can combine the 

parameter tuning of each machine learning algorithm along with the seeking of optimal 

subset of predictor variables. The parameters that can be tuned for each machine learning 

algorithm is shown in Table 2.6 with corresponding possible values. In the elimination 

process of this package, all the predictor variables are removed from the full set iteratively 

to evaluate the learning model accuracy with all the possible values of the tunable 

parameters. The metric is RMSE (root mean squared error) and 𝑅2 value of the selected 

target variable, which are described as follows: 

 𝑅𝑀𝑆𝐸 = �1
𝑁
∑ (𝑦𝑖 − 𝑓𝑖)2𝑁
𝑖=1  (2.47) 

 𝑅2 = ∑ (𝑦𝑖−�̂�𝑖)2𝑁
𝑖=1
∑ (𝑦𝑖−𝑦�)2𝑁
𝑖=1

 (2.48) 

Here 𝑁 is the number of training data, 𝑦𝑖 is the actual value of the selected target variable 

in training data 𝑖, 𝑓𝑖 is the estimated value of the selected target variable, and 𝑦� is the mean 

of actual values of the selected target variable in all the training data. 
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It should be noted that for each tunable parameter, the possible values listed in 

Table 2.6 are only a fraction of all the possible values for that parameter. We limit the 

number of possible values based on our experience so as to keep the model training time 

reasonable and decrease the time cost of the model training process.  

 
 

Table 2.6: Tunable SML algorithm parameters and the corresponding value range 
SML 
algorithm 

Tuning 
param Description Value ranges 

ANN 
size Number of units in the hidden layer 5, 7, 9, 11, 13, 15, 

17, 19 

decay Weight decay as a regularization to avoid 
the over-fitting of the function 

0.1, 0.2, 0.3, 0.4, 
0.5 

KCCA sigma Inverse kernel width for the Radial Basis 
kernel function 0.05, 0.1, 0.5 

MARS degree Maximum degree of interaction of the 
hinge functions 1, 2, 3 

SVM 
C Penalty coefficient in control of the fitting 

function (over-fitting & under fitting) 0.25, 0.5, 1 

sigma Inverse kernel width for the Radial Basis 
kernel function 0.01, 0.1, 0.5 

 

2.5 Results 

In this section we present results comparing the performance of different SML 

algorithms. We first evaluate the impact of the feature reduction procedure in selecting the 

significant micro-architectural parameters, thereby reducing the total design space. We 

then compare the accuracy of the different SML algorithms in modeling the micro-

architectural power and performance for different benchmarks. Our results indicate that 

MARS has the highest accuracy using the least number of architectural parameters as 

predictor variables.  
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2.5.1 Impact of Feature Reduction and Algorithm Parameters Tuning  

Table 2.7 shows the values of the different SML power and performance model 

parameters after the tuning step for each benchmark. Tables 2.8 to 2.15 present results 

Table 2.7: Summary of the tuned values of the SML model parameters 

Benchmark Metric ANN KCCA 
sigma 

MARS 
degree 

SVM 
size decay C sigma 

x264 FPS 19 0.1 0.1 3 1 0.1 
Power 19 0.1 0.1 3 0.25 0.01 

Raytrace FPS 17 0.2 0.05 3 0.25 0.05 
Power 19 0.3 0.1 3 0.25 0.05 

Blackscholes 
& Swaptions 

Runtime 13 0.2 0.1 2 0.5 0.01 
Power 15 0.2 0.05 3 1 0.05 

Freqmine & 
Streamcluster 

Runtime 9 0.1 0.05 3 1 0.05 
Power 13 0.1 0.05 2 0.5 0.01 

 

 

 
Table 2.8: Summary of total number of selected micro-architectural predictor 

variables in performance and power modeling. The associated percent decrease in the 
number of predictor variables is shown in parenthesis. 

Benchmark SML 
Algorithm 

Performance 
Modeling 

Power 
Modeling 

x264 

ANN 24 (12.50) 15 (42.31) 
KCCA 14 (46.15) 15 (42.31) 
MARS 6 (76.92) 10 (61.54) 
SVM 14 (46.15) 6 (76.92) 

Raytrace 

ANN 21 (19.23) 13 (50.00) 
KCCA 13 (50.00) 8 (69.23) 
MARS 13 (50.00) 8 (69.23) 
SVM 13 (50.00) 10 (61.54) 

Blackscholes & 
Swaptions 

ANN 18 (30.77) 13 (50.00) 
KCCA 14 (46.15) 12 (53.85) 
MARS 11 (57.69) 10 (61.54) 
SVM 14 (46.15) 10 (61.54) 

Freqmine & 
Streamcluster 

ANN 19 (26.92) 8 (69.23) 
KCCA 15 (42.31) 8 (69.23) 
MARS 14 (46.15) 8 (69.23) 
SVM 17 (34.62) 12 (53.85) 
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evaluating the impact of feature set reduction on the power and performance SML models 

for different SML benchmarks. Table 2.8 summarizes the number of micro-architectural 

model parameters used in each of the SML models. The associated percentage decrease in 

the feature space is indicated in parenthesis. We note that in each case MARS uses the 

least number of micro-architectural predictor variables while in general ANN uses the 

most. For example, in modeling the performance (FPS) of the x264 benchmark, ANN uses 

4 times the number of parameters that MARS uses. This results in a corresponding 

decrease in the design space of 99.99%. Table 2.9 shows the percentage increase in R2 

metric as a result of the feature reduction step by comparing the accuracy of the model 

trained with the selected significant features to the model trained with the full feature set. 

We note that in most SML algorithms reducing the number of features results in a 

significant increase in model accuracy. For performance (power) models KCCA shows the 

most improvement at about 27% (27%) whereas ANN shows the least improvement at 

about 5% (8%). Table 2.10 to Table 2.13 show which of the micro-architectural features is 

selected by the different SML algorithms in the power and performance models for the 

different benchmarks.  

Table 2.9: Feature reduction and algorithm parameter selection impact 

Benchmarks Metrics R2 increased by % 
ANN KCCA MARS SVM 

x264 FPS 3.74 26.57 17.48 14.92 
Power 2.43 27.34 10.14 24.2 

Raytrace FPS 3.53 34.39 15.24 10.9 
Power 7.12 18.92 13.35 14.74 

Blackscholes & 
Swaptions 

Runtime 9.2 14.46 16.27 14.67 
Power 10.74 36.01 13.3 8.75 

Freqmine & 
Streamcluster 

Runtime 6.13 34.8 12.33 23.06 
Power 13.63 27.71 20.61 7.74 
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The impact of each micro-architectural feature in power and performance 

modeling can be judged by the number of models that selected the design parameter as a 

predictor variable. From Table 2.14 we conclude that for performance models, the integer 

ALU, number of integer registers, L2 and L1 cache associativity, bus width and choice of 

core frequency are important for all benchmarks. Other parameters such as floating point 

ALU is less significant for x264 whereas the L1 cache size is important for the x264 

Table 2.10: Significant micro-architectural parameters selected in x264 benchmark 
modeling (PE: performance, PO: power). 1 means the feature is selected and 0 means 

the feature is not selected 
Micro-
architectural 
parameter 

ANN KCCA MARS SVM 
PE 
(24) 

PO 
(15) 

PE 
(14) 

PO 
(15) 

PE  
(6) 

PO 
(10) 

PE 
(14) 

PO  
(6) 

IntAlu 1 0 1 0 1 0 1 0 
IntMultDiv 0 0 1 0 0 0 1 0 
FpAlu 1 1 0 1 0 1 1 0 
FpMultDiv 1 1 0 1 0 0 0 0 
LocalHistBits 1 0 1 0 0 0 0 0 
GlobalHistBits 1 1 0 0 0 0 0 0 
PhysIntRegs 1 1 1 1 1 1 0 0 
PhysFpRegs 1 0 0 0 0 0 1 0 
SQEntries 1 1 0 1 0 0 0 0 
LQEntries 1 1 0 1 0 0 0 0 
IQEntries 1 1 1 1 1 0 1 0 
ROBEntries 1 0 0 0 0 0 0 0 
BTBEntries 1 0 0 0 0 0 1 0 
RASSize 1 0 0 0 0 0 0 1 
L1Size 1 1 1 1 1 1 0 0 
L1I$Assoc 1 1 1 1 0 0 1 1 
L1D$Assoc 1 1 1 1 0 1 1 0 
DTLBSize 1 1 0 1 0 0 0 0 
ITLBSize 1 0 1 0 0 0 1 0 
CoreFreq 1 0 1 1 1 1 1 1 
L2Size 1 1 0 1 0 1 0 1 
L2Assoc 1 1 1 0 0 1 1 1 
BSBFreq 1 0 1 1 0 1 1 1 
FSBFreq 1 0 1 1 0 1 1 0 
BusWidth 1 1 1 1 1 1 1 0 
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benchmark. Regarding power models, from Table 2.15 we conclude that the L1 and L2 

cache size is important for all benchmarks while the integer ALU is significant for x264 

whereas floating point ALU is not significant for the Freqmine/Streamcluster benchmark. 

From Table 2.14 and 2.15 we note the possibility that depending on the benchmark that is 

executing some of the micro-architectural can be powered down. 

 

Table 2.11: Significant micro-architectural parameters selected in Raytrace 
benchmark modeling (PE: performance, PO: power). 1 means the feature is selected 

and 0 means the feature is not selected 
Micro-
architectural 
parameter 

ANN KCCA MARS SVM 
PE 
(21) 

PO 
(13) 

PE 
(13) 

PO 
(8) 

PE 
(13) 

PO  
(8) 

PE 
(13) 

PO 
(10) 

IntAlu 1 1 1 0 1 0 1 0 
IntMultDiv 1 1 0 0 0 0 0 0 
FpAlu 1 1 1 1 1 1 1 1 
FpMultDiv 1 1 0 0 1 0 0 0 
LocalHistBits 0 0 0 0 0 0 0 0 
GlobalHistBits 0 1 1 0 0 0 0 0 
PhysIntRegs 1 1 0 0 1 0 0 1 
PhysFpRegs 1 0 0 0 1 0 1 1 
SQEntries 0 0 1 1 0 0 1 0 
LQEntries 1 0 0 0 0 0 1 0 
IQEntries 1 1 1 0 1 0 1 0 
ROBEntries 1 0 1 0 0 0 0 0 
BTBEntries 1 0 1 0 0 0 1 0 
RASSize 1 0 1 0 0 1 0 0 
L1Size 1 1 0 1 0 0 0 1 
L1I$Assoc 1 0 0 1 1 1 1 1 
L1D$Assoc 1 1 1 1 1 0 1 1 
DTLBSize 1 0 0 0 1 0 0 0 
ITLBSize 0 1 1 0 1 1 0 0 
CoreFreq 1 1 0 0 1 1 1 1 
L2Size 1 1 0 1 0 0 0 1 
L2Assoc 1 0 1 1 1 1 0 0 
BSBFreq 1 0 1 0 1 1 1 0 
FSBFreq 1 0 1 0 0 1 1 1 
BusWidth 1 1 0 1 1 0 1 1 
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Table 2.12: Significant micro-architectural parameters selected in 

Blackscholes/Swaptions benchmark modeling (PE: performance, PO: power). 1 means 
the feature is selected and 0 means the feature is not selected 

Micro-
architectural 
parameter 

ANN KCCA MARS SVM 
PE 
(18) 

PO 
(13) 

PE 
(14) 

PO 
(12) 

PE 
(11) 

PO 
(10) 

PE 
(14) 

PO 
(10) 

IntAlu 1 0 0 0 1 0 1 0 
IntMultDiv 1 0 0 0 0 0 0 0 
FpAlu 1 1 1 1 1 1 1 1 
FpMultDiv 1 1 0 1 1 1 1 1 
LocalHistBits 0 0 1 0 0 0 1 0 
GlobalHistBits 0 0 1 1 0 0 0 0 
PhysIntRegs 1 1 1 0 1 1 1 1 
PhysFpRegs 1 1 1 1 1 0 1 0 
SQEntries 1 0 0 0 0 0 0 0 
LQEntries 0 1 0 0 1 0 1 0 
IQEntries 1 1 0 1 0 0 1 0 
ROBEntries 0 0 1 0 0 0 0 0 
BTBEntries 0 0 1 0 0 0 0 0 
RASSize 0 0 1 1 0 0 1 0 
L1Size 0 1 0 1 0 1 0 1 
L1I$Assoc 1 0 1 1 0 0 0 0 
L1D$Assoc 1 0 0 1 0 1 1 1 
DTLBSize 1 0 1 0 0 0 0 0 
ITLBSize 1 0 1 0 0 0 0 0 
CoreFreq 1 1 1 1 1 1 1 1 
L2Size 0 1 0 1 0 1 0 1 
L2Assoc 1 0 1 1 1 0 1 0 
BSBFreq 1 1 0 0 1 1 1 1 
FSBFreq 1 1 0 0 1 1 0 1 
BusWidth 1 1 1 0 1 1 1 1 

 

Table 2.13: Significant micro-architectural parameters selected in 
Freqmine/Streamcluster benchmark modeling (PE: performance, PO: power). 1 means 

the feature is selected and 0 means the feature is not selected 
Micro-
architectural 
parameter 

ANN KCCA MARS SVM 
PE 
(19) 

PO  
(8) 

PE 
(15) 

PO  
(8) 

PE 
(14) 

PO  
(8) 

PE 
(17) 

PO 
(12) 

IntAlu 1 0 1 0 1 0 0 0 
IntMultDiv 0 0 0 0 0 0 0 0 
FpAlu 1 0 1 0 1 0 1 1 
FpMultDiv 0 0 0 0 0 0 1 0 
LocalHistBits 1 0 0 0 0 0 0 0 
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GlobalHistBits 1 0 1 0 0 0 0 0 
PhysIntRegs 1 0 1 0 1 1 1 1 
PhysFpRegs 0 0 1 0 0 0 0 0 
SQEntries 1 1 1 0 1 0 1 0 
LQEntries 1 1 1 0 0 0 0 0 
IQEntries 1 0 1 1 1 0 1 0 
ROBEntries 0 0 1 0 0 0 1 1 
BTBEntries 1 0 1 1 0 0 0 0 
RASSize 1 0 1 0 1 0 1 0 
L1Size 0 1 0 1 0 1 0 1 
L1I$Assoc 1 0 0 0 1 0 1 1 
L1D$Assoc 1 0 0 0 1 1 1 1 
DTLBSize 1 1 0 1 0 0 1 0 
ITLBSize 0 0 1 0 0 0 1 0 
CoreFreq 1 1 1 1 1 1 1 1 
L2Size 0 1 0 1 0 1 0 1 
L2Assoc 1 1 1 1 1 0 1 1 
BSBFreq 1 0 0 0 1 1 1 1 
FSBFreq 1 0 0 0 1 1 1 1 
BusWidth 1 1 1 1 1 1 1 1 

 
 
 
Table 2.14: Significance of each micro-architectural design parameter determined by the 

number of SML models that uses it for performance modeling 
Micro-
architectural 
parameter 

x264 Raytrace Blackscholes 
& Swaptions 

Freqmine & 
Streamclusters 

IntAlu 4 4 3 3 
IntMultDiv 2 1 1 0 
FpAlu 2 4 4 4 
FpMultDiv 1 2 3 1 
LocalHistBits 2 0 2 1 
GlobalHistBits 1 1 1 2 
PhysIntRegs 3 2 4 4 
PhysFpRegs 2 3 4 1 
SQEntries 1 2 1 4 
LQEntries 1 2 2 2 
IQEntries 4 4 2 4 
ROBEntries 1 2 1 2 
BTBEntries 2 3 1 2 
RASSize 1 2 2 4 
L1Size 3 1 0 0 

Table 2.13 (cont’d) 
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L1I$Assoc 3 3 2 3 
L1D$Assoc 3 4 2 3 
DTLBSize 1 2 2 2 
ITLBSize 3 2 2 2 
CoreFreq 4 3. 4 4 
L2Size 1 1 0 0 
L2Assoc 3 3 4 4 
BSBFreq 3 4 3 3 
FSBFreq 3 3 2 3 
BusWidth 4 3 4 4 

 
 
 

Table 2.15: Significance of each micro-architectural design parameter determined by the 
number of SML models that uses it for power modeling 

Micro-
architectural 
parameter 

x264 Raytrace Blackscholes 
& Swaptions 

Freqmine & 
Streamclusters 

IntAlu 4 1 0 0 
IntMultDiv 0 1 0 0 
FpAlu 3 4 4 1 
FpMultDiv 2 1 4 0 
LocalHistBits 0 0 0 0 
GlobalHistBits 1 1 1 0 
PhysIntRegs 3 2 3 2 
PhysFpRegs 0 1 2 0 
SQEntries 2 1 0 1 
LQEntries 2 0 1 1 
IQEntries 3 1 2 1 
ROBEntries 0 0 0 1 
BTBEntries 0 0 0 1 
RASSize 0 0 1 0 
L1Size 4 4 4 4 
L1I$Assoc 2 2 1 1 
L1D$Assoc 4 4 3 2 
DTLBSize 2 0 0 2 
ITLBSize 0 1 0 0 
CoreFreq 2 3 4 4 
L2Size 4 4 4 4 
L2Assoc 3 1 1 3 
BSBFreq 3 1 3 2 
FSBFreq 3 2 3 2 
BusWidth 3 4 3 4 

Table 2.14 (cont’d) 
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2.5.2 SML Models Accuracy Analysis 

To evaluate the accuracy of the SML models, we select another 50 design points 

from the same design space using the MaxiMin data sampling technique (See section 

2.4.4).   

Figure 2.5 show the prediction error distribution for the different SML 

performance and power models for all benchmarks. The RMSE and R2 values for the 

performance and power models are shown in Tables 2.16 and 2.17 respectively.  All 

performance (power) models show an R2 > 0.7 (0.75) with an R2 > 0.9 (0.9) for MARS.  It 

should be noted that for all SML models, the training data set comprises of only 

0.0000138% of the total design space.  

 

 

Figure 2.5: Prediction error distribution plot of performance and power models. The 
benchmarks are separated using the green solid line with from left to right: (1) x264, 

(2) Raytrace, (3) Blackscholes & Swaptions, (4) Freqmine & Streamcluster 
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Table 2.16: RMSE and R2 for processor performance modeling 

Benchmarks ANN KCCA MARS SVM 
RMSE R2 RMSE R2 RMSE R2 RMSE R2 

x264 1.0447 0.8651 1.8964 0.7798 0.2377 0.9525 0.2881 0.9337 
Raytrace 1.1223 0.8513 1.9543 0.7644 0.2735 0.9452 0.3031 0.9265 

Blackscholes 
& Swaptions 1.1576 0.8358 2.0846 0.7386 0.6435 0.8917 0.9813 0.8686 

Freqmine & 
Streamcluster 1.1391 0.8472 1.9974 0.7523 0.5257 0.9076 0.7464 0.8876 

 
 
 

Table 2.17: RMSE and R2 for processor power modeling 

Benchmarks ANN KCCA MARS SVM 
RMSE R2 RMSE R2 RMSE R2 RMSE R2 

x264 0.1594 0.8308 1.2235 0.7849 0.1307 0.9764 0.2435 0.9496 
Raytrace 1.1894 0.8201 1.2848 0.7744 0.1515 0.9867 0.2889 0.9323 
Blackscholes 
& Swaptions 1.2021 0.8001 1.6433 0.7518 0.5216 0.9006 0.7113 0.8912 

Freqmine & 
Streamcluster 1.2181 0.8084 1.5151 0.7646 0.3171 0.9245 0.4849 0.9119 

 
 
 

Table 2.18 compares the model feature training time for the different SML 

algorithms. All models are trained on an Intel Xeon workstation with a total of 8 cores. As 

seen in Table 2.18, MARS is significantly faster compared to the other SML algorithms. 

 
 

Table 2.18: Average single threaded model training cost for each SML algorithm in 
modeling performance and power 

SML 
algorithms 

Modeling cost (seconds) 
Performance Power 

ANN 640.26 431.42 
KCCA 3926.38 3870.93 
MARS 39.71 27.93 
SVM 132.54 104.10 
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2.6 Design Space Exploration 

We now utilize the SML power performance models to perform design space 

exploration of the target quad core architecture. Specifically, we seek to generate Pareto 

optimal power-performance fronts for the different benchmarks considered. In a multi-

objective optimization problem, Pareto optimal solution describes a situation where no 

further optimization of any of the objectives is possible without sacrificing the other 

objectives. 

We use the NGPM (NSGA-II library in Matlab) tool [44] to generate the Pareto 

optimal fronts. Non-dominated Sorting Genetic Algorithms-II (NSGA-II) algorithm is an 

evolutionary algorithm first described by [45]. More details on these algorithms are given 

in Chapter 4, Section 4.2.5. 

Figures 2.6 to 2.9 gives the Pareto fronts for the different benchmarks considered 

in this work. As explained in Section 2.4.2, for x264 and Raytrace benchmarks, we use 

frames per second (FPS) as the performance metric, while for Blackscholes/Swaptions and 

 

Figure 2.6: Pareto optimal power-performance front for x264 

0

1

2

3

4

5

6

20 25 30 35

Po
w

er
 (W

)

Frame per second

x264



54 
Freqmine/Streamcluster, we use the instructions per cycle (IPC) the performance metric. 

As expected for all benchmarks the power consumed increases with performance.  

 
 

 

Figure 2.7: Pareto optimal power-performance front for Raytrace 
 
 
 

 

Figure 2.8: Pareto optimal power-performance front for Blackscholes/Swaptions 
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2.7 Related Work 

Exploring the many-core processor design space through exhaustive cycle-accurate 

simulation is not practical due to the prohibitively long simulation time and its superliner 

increase as the numbers of cores are scaled. Several techniques have been proposed that 

avoids exhaustive simulations in effectively exploring the uniprocessor [46] – [49] and 

many-core [1] [2] [50] [51] design space. We first review recent research on modeling and 

exploring multi- and many-core architectures. 

Lee et al. [1] minimize many-core simulation times in estimating performance 

through composable regression models for baseline uniprocessor performance, cache 

contention, and delay penalty. Their uni-core simulation platform is an execution driven, 

cycle accurate IA-32 simulator modeling a superscalar, out-of-order architecture. Long 

instruction traces derived from a variety of application areas ranging from digital home to 

the server are used as benchmarks. The uniprocessor regression model predicts the 

 

Figure 2.9: Pareto optimal power-performance front for Freqmine/Streamcluster 
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baseline performance of each core while the contention regression model predicts 

interfering accesses to shared resources from other cores. Uniprocessor and contention 

model outputs are composed in a penalty regression model that considers the contention as 

a secondary penalizing effect. A trace simulation is stated to be sufficient for developing 

the contention and penalty models, thus greatly reducing the overall simulation time. A 

median CPI error of 6.6% is reported for quad-core processors. The major advantage of 

their work is the scalability of the methodology to hundreds of cores. The authors have 

only focused on developing regression models for predicting CPI and not for power 

estimation.   

Ipek et al. [2] use Artificial Neural Networks to predict performance of a multi-

core processor using a small sized training set drawn from the processor design space. 

Partial simulation techniques based on SimPoint where only certain application intervals 

or simulation points are modeled, are employed to reduce the simulation time. 

Benchmarking applications are derived from the SPEC OMP and parallel NAS 

benchmarks. An average predicted IPC error of 4-5% is reported when the neural network 

is trained using a 1% sample drawn from a multi-core design space of 8 cores with 250K 

points and up to 55× performance swings among different system configuration. Similar to 

Lee et al. the authors do not model processor power dissipation. More importantly, the 

authors do not consider chip level shared micro-architectural components such as shared 

L2 cache and interconnect network which may critically affect performance and power 

due to the contention in the shared resources.   

Kang and Kumar [50] treat the multi-core processor design space exploration 

problem as a classic search and optimization problem with a simulation-in-the-loop 
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approach and use of a rule based machine learning algorithm to prune the search space. 

The optimization algorithms include steepest ascent hill climbing and genetic algorithms. 

The machine learning algorithms include 1-tuple tagging based on the complexity of the 

cores (simple, moderate, and complex), and 5-tuple tagging based on architecture 

parameters (Simple, D-cache intensive, I-Cache intensive, Execution units intensive, and 

Fetch Width intensive). The objective functions for the optimizations are performance, 

power, and area. Simulations are done using a modified version of SMTSim. Power and 

area estimates are obtained for different hardware structures from existing literature. The 

benchmarks are drawn from SPEC2000, IBS, Olden, and Mediabench. The authors report 

that their search/machine learning approach achieves within 1% of the performance 

compared to an exhaustive simulation approach for a 4 core system while being 3800 

times faster. However, similar to Ipek et al. the authors do not consider chip level shared 

micro-architectural components. Also, their power estimation approach does not allow the 

study of the dependence of power dissipation on architectural parameters. 

Regarding exploration of network processor architectures, Wolf [52] present an 

analytical model performance model for predicting the performance, chip area, and power 

consumption for a prototype network processor parameterized using the Commbench 

network processing benchmark; Mysore et al., [53] propose a sensor network benchmark, 

WiSeNBench, and use an ARM simulator to identify some of the key characteristic 

behaviors; Lin et al. [54] use a combination of analytical models and simulations to 

explore core-centric network processor architectures; Salehi et al., [55] optimize of a 

superscalar MIPS network processor through exhaustive simulation. Modeling many-core 

architecture with an analytical approach requires many simplifying assumptions about the 
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architecture while simulations-only approach suffers from the drawbacks mentioned 

earlier. 

Dubach et al. [56] present an approach that co-designs an optimizing compiler and 

architecture using a machine learning approach. Their framework consists of the Xtrem 

simulator for the Intel XScale architecture, gcc for the compilier, MiBench for the 

benchmark, and Support Vector Machines (SVM) for modeling the design space. The best 

design achieves significant performance increases resulting in a 13% improvement in 

execution time, 23% savings in energy and an energy-delay product (ED) of 0.67. 

However, their work is limited to uni-core processor architectures. Although, our 

methodology can incorporate compiler optimizations, these optimizations alone may not 

achieve sufficient performance on many-core processors. 

In Dubach et al.’s another work [47], they present an architecture-centric approach. 

Their model is based on a simple linear combination of the design space of several 

individual programs from the training set. They could accurately predict the performance, 

energy or ED of a range of programs within a massive micro-architectural design space. 

Along with these progresses, they also suggest some characteristics of the design space, 

such as the register file has greatest impact on performance, the best configurations for 

cycles tend to have a wide pipeline and have a large reorder buffer. However, their work is 

still limited to uni-core processor architectures and our goal is different from theirs which 

is to tune the architecture joint benchmark. 

Datta [51] presents a design exploration framework which employs an instruction 

trace-driven cycle-accurate simulator to accurately measure power and performance of 

embedded many-core heterogeneous processors based on a network IP packet processing 
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embedded application. He then constructs a linear regression model to predict the power 

and CPI per thread of a given architecture configuration vector. He employs genetic 

algorithm to explore the design space to achieve the overall optimal configuration through 

a cost function of total power dissipation and real-time constraints. 

2.8 Conclusions 

In this dissertation, we investigate the suitability of a number of machine learning 

algorithm in micro-architectural modeling and concluded that the Multivariate Adaptive 

Regression Splines shows good performance both in terms of accuracy and model 

construction time. Although we have compared the performance of a number of machine 

learning algorithms, a study of other algorithms such as Kriging, Radial Basis Functions 

can be undertaken. In application areas in mechanical engineering [57] such algorithms 

have shown comparable performance to Multivariate Adaptive Regression Splines. We 

can also extend the application to a number of other benchmarks such as SPEC CPU2006 

and EEMBC embedded microprocessor benchmarks. We can also investigate the 

suitability our model driven approach in the incorporation of higher level architectural 

parameters such as the type of the instruction set and compiler options. 

 



 

 

 HIERARCHICAL MODELING FRAMEWORK FOR MANY-CORE CHAPTER 3:
PROCESSORS 

 
 
3.1 Introduction 

In this chapter, we present a hierarchical performance, power, and area modeling 

framework that can be used to rapidly explore the design space of many-core processors. 

Despite the vast reduction in design time possible with the statistical machine learning 

(SML) model driven micro-architectural exploration presented in Chapter 2, its scalability 

as the number of cores increase is limited. The primary reason for this limited scalability is 

the super-linear increase in simulation time required to generate the training data set. For 

example, for a 16 core shared memory many-core processor, performing a detailed 

simulation for a single training data point requires about 20 hours of simulation time on an 

8 processor Intel Xeon workstation. Prior efforts in modeling many-core processors use 

either the non-scalable detailed simulation approach or employ coarse grained simulations 

with limited accuracy. 

 To achieve our goal of building scalable many-core models with good accuracy, 

we employ a “divide and conquer” strategy in constructing a hierarchical performance, 

area, and power models for many-core processors. The many-core processor is considered 

as clusters-of-cores sharing a memory through a global interconnect. Each cluster can 

have one or more cores, with private L1 caches, sharing the L2 cache through a local 

interconnect. The clusters may be homogeneous with identical interaction set architectures 

(ISAs) and microarchitectures, or may be heterogeneous. The cores in the clusters could 
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be in-order processors, out-of-order processors, digital signal processors (DSPs), graphic 

processing units (GPUs), application specific processors (ASIPs) or non-programmable 

custom designed accelerators (ASICs). Each cluster is typically designed to run a single 

class of applications. 

 The entire micro-architectural design space of a many-core processor is divided 

into cluster-level parameters and interconnect-level parameters. Performance, power, and 

area models are constructed separately for the clusters and the global interconnect. The 

interactions between the clusters are captured through two parameters – the interconnect 

latency, and the average injection rate of packets into the network. For the cluster 

performance models, the interconnect latency is a predictor variable, while the average 

injection rate is a predicted output. For the interconnect performance models, the average 

injection rate is a predictor variable, while the interconnect latency is a predicted output. 

Note that the packet injection rate affects the interconnect access latency, while the 

interconnect access latency depends on the packet injection rate. An iterative approach 

involving the convergence of the values of these two parameters within an error threshold 

is used to ensure that the cluster and global interconnect models are consistent. The 

performance of the many-core processor is then the outputs of the individual cluster 

models. Alternatively, the overall many-core performance metric can be obtained through 

a weighted average of the outputs of the individual cluster performance models. Since the 

area and power are additive, the many-core area and power models are simply the sum of 

the cluster and global interconnect models.  

We apply our proposed hierarchical modeling framework to six benchmarks from 

PARSEC: x264, Raytrace, Blackscholes, Swaptions, Freqmine and Streamcluster. The 
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target architecture is a 64-core many-core processor with the cores based on the Alpha 

21264 out-of-order processor. The cores have private L1 data and instruction cache, and 4 

cores are clustered sharing a unified cache coherent L2 cache through a local bus based 

interconnect. The 16 cluster-of-cores share the main memory organized as memory banks 

through a global interconnect. The global interconnect is a 4x4 directory based 2D-mesh 

network with 16 memory controllers. Each cluster is an individual network node in the 

interconnect. We simulate the performance of the clusters using the Gem5 architectural 

simulator, the performance of the interconnect using the GARNET network simulator and 

estimate the power and area using the McPAT modeling framework targeting the 22nm 

technology node. 

We present a comparison of the relative performance of the different statistical 

machine learning algorithms in modeling both the core and the interconnect. We then 

evaluate the accuracy of the many-core model against detailed simulations. We also 

present a scalability analysis of the modeling time using our proposed hierarchical 

modeling methodology. Finally, we use the many-core model to generate Pareto optimal 

performance-power fronts. 

The rest of the chapter is organized as follows – in Section 3.2 we describe our 

hierarchical modeling framework in detail. We present the evaluation setup and the 

evaluation results in Section 3.3 and 3.4 respectively. In Section 3.5, we review related 

work on hierarchical modeling of many-core processors and in Section 3.6 we conclude 

the chapter identifying possible extensions of our work. 
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3.2 Hierarchical Performance, Power, and Area Modeling Framework 

In Chapter 2, we constructed a statistical performance, area, and power model for a 

bus-based many-core processor with a small number of cores and validated the statistical 

machine learning based modeling strategy in chip multi-processor design. In this chapter, 

we extend our work to a many-core architecture with a large number of cores by utilizing 

a hierarchical modeling strategy. Figure 3.1 shows the organization of our many-core 

processor. 

 The many-core processor has multiple compute clusters sharing the main memory 

through a global interconnect. A cluster consists of one or more cores, the shared L2 

cache, and a bus-based local interconnect. The clusters can be heterogeneous and each 

cluster is adapted to execute a specific class of applications. The hierarchical modeling 

framework utilizes 7 different component models constructed through simulation and 

SML modeling: individual cluster performance model, individual cluster power model, 

individual cluster area model, individual cluster injection rate model, global interconnect 

 

Figure 3.1: Our target 64-core processor with bus based local memory and mesh 
based global interconnect 



64 
latency model, global interconnect power model, and global interconnect area model. The 

predictor variables considered include core, cache, and local interconnect parameters as 

given in Table 3.1. Operating multiple clusters constituting a many-core processor can 

result in contention on the global interconnect thus affecting the latency from L2 cache to 

the main memory. We therefore include memory access latency as a predictor variable for 

modeling the performance of the cluster. The injection rate parameter models the average 

number of packets generated per cycle due to the highest level cache misses and write 

backs. The interconnect access latency determines the injection rate, and vice versa. 

Figure 3.2 shows the proposed hierarchical many-core processor performance, 

power, and area modeling framework. In this framework, we assume the 7 individual 

models described above are already obtained through simulation and modeling using 

techniques described in Chapter 2. We then synthesize the many-core model as follows - 

given the micro-architectural design parameters and benchmarks, we attempt to find the 

injection rate and the corresponding network latency. We first choose a random initial 

network latency and obtain the corresponding injection rate through the cluster injection 

rate model. The new injection rate is then input to the interconnect model to calculate the 

new network latency. This process continues until the difference between the new network 

latency and the current network latency is below a certain threshold. The performance of 

the many-core processor is obtained from the individual cluster models, while the power 

and area of the entire many-core processor is the sum of the individual cluster and 

interconnects power and area. All individual models are evaluated using the network 

latency and injection rate obtained above. 
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3.3 Evaluation  

3.3.1 Target Architecture and Design Space 

We seek to model a 64-core many-core architecture composed of cluster of quad-

core processors, with each core having a private L1 cache, 4 cores sharing an L2 cache, 

and all 64 cores sharing the main memory. The individual cores are out-of-order and are 

based on the Alpha 21264 processor. Each out-of-order core is a single threaded four issue 

 

Figure 3.2: Performance, power and area hierarchical modeling framework for many-
core processors 
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processor with split instruction and data caches. The L1 and L2 caches are non-blocking 

cache with miss status holding register (MSHR) and write buffers (WB) for read and write 

misses. Cache coherency is maintained among the 4 cores sharing the L2 cache. The cache 

replacement policy is LRU and the cache coherence protocol is bus-based MOESI 

snooping protocol. Our local memory system is a classic bus-based model and the bus 

arbitration follows first-come-first-serve logic, and uses round-robin scheduling for bus 

accesses. The global interconnect is a 4x4 directory based 2D-mesh network with 16 

memory controllers. Table 3.1 lists the cluster level model predictor variables and their 

possible value ranges. 

 
 

Table 3.1: Cluster-level micro-architectural design parameters 
Parameters Value ranges 
Number of integer Alu-MultDiv 2-1, 4-1, 4-2 
Number of floating point Alu-MultDiv 1-1, 2-1, 4-1 
Number of physical integer registers 64, 128, 196 
Number of physical floating point registers 64, 128, 196 
Number of store-load queue entries 32-48, 32-64, 48-64 
Number of instruction queue entries 16, 32 
Return address stack size 16, 32 
L1 cache size (KB) 32, 64 
L1 Instruction cache associativity 4, 8 
L1 Data cache associativity 4, 8 
DTLB size 32, 64, 128 
ITLB size 32, 64, 128 
Core frequency (GHz) 0.8, 1.0, 1.33, 1.8, 2.0, 2.33, 2.66 
L2 cache size (MB) 1, 2, 4 
L2 cache associativity 8, 16 
Back side bus frequency Core frequency 
Bus Width (Byte) 8, 16, 24 
Latency (Cycles) 20, 25, 30, 35, 40 

 

The router in the 2D-mesh interconnect is a four-stage pipeline virtual channel 

router. The four stages are: buffer write and router compute (BWRC), virtual channel 
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allocation (VA), switch allocation (SA) and switch traversal (ST). The network message is 

first broken into multiple packets, and each packet has header information that allows the 

receiver to reconstruct the original message. In a network communication scheme, each 

packet can be further broken into flits, the smallest unit of flow control. A packet consists 

of a head flit, followed by body flits, and ends with a tail flit. [58]. In BWRC, the 

incoming flits are buffered and their output ports are computed. In VA, the buffered flits 

are allocated in free virtual channels. In SA, the flit that has the right to go through the 

 

Figure 3.3: Four-stage pipelined virtual channel router 
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crossbar is determined. In ST, the flit that is chosen by the SA traverses the cross switch. 

Figure 3.3 depicts the pipeline stages. Table 3.2 lists the cluster level model predictor 

variables and their possible value ranges. 

3.3.2 Benchmarks and Data Sampling 

We use six benchmarks from Parsec: x264, Raytrace, Blackscholes, Swaptions, 

Freqmine and Streamcluster. The benchmarks are described in Table 2.2 and the input 

problem size of each benchmark is listed in Table 2.3. The media benchmarks x264, and 

the graphics benchmark Raytrace are run on individual clusters. The finance benchmarks 

Blackscholes and Swaptions are run on a single cluster with 2 cores per application. 

Similarly, the data mining benchmarks Freqmine and Streamcluster are also run a single 

cluster with 2 cores per application.  

In addition to the 1054 training data points collected in Chapter 2, we sample 

another 40 design points from the training data through random selection of micro-

architectural configurations with different memory access latencies. This new 1094 

samples training data set is used to model the cluster performance, power, and injection 

rate. To model the interconnect access latency, we do an LHS sampling of 300 training 

data points obtained using the GARNET interconnect simulator.  

Table 3.2: Interconnect parameters and parameter value range 
Parameters Value Ranges 
Number of network nodes (processors) 16, 64 
Injection rate (flit/node/cycle)  0.01 to 0.7 in increments of 0.025 
Flit size (Byte) 2, 4, 8 
Virtual channels per virtual networks 2, 4, 8, 12, 16 
Number of buffers per virtual channel 2, 3, 4, 5, 6, 7, 8 
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3.3.3 Simulation Tools 

3.3.3.1 Cluster-level performance modeling 

We use the Gem5 simulator [20] for the performance modeling of our target 

system. Gem5 is an event-driven cycle-accurate simulator, which provides a highly 

configurable simulation framework, multiple ISAs, diverse CPU models, multiple cache 

coherence protocols and interconnects models. It also supports both full-system and 

system-call emulation modes. The full-system simulation mode simulates a complete 

computer system including operating system kernel and I/O devices, while in system-call 

emulation mode, the common system calls are emulated by calling the host OS. Besides, it 

provides a clear interface for check-pointing, fast-forwarding, debugging and statistics. 

Our Alpha ISA based architecture described in Section 2.1 is simulated in full-

system mode, which models a complete Linux system with kernel version 2.6.27. To 

construct the cluster performance model, power model and area model, we run the 

benchmarks described in Section 3.3.2 on Gem5 by fast forwarding the simulation starting 

point to the pre-defined start of region of interest (ROI) where parallel execution 

commences. We collect statistics such as the number of integer/floating point instructions, 

the number of accesses and misses to each hardware unit and the total number of cycles 

when the benchmark is running in the ROI.  

3.3.3.2 Cluster-level power and area modeling 

We use McPAT 0.8 [28] for the power and area modeling of our target 

architecture. McPAT is an integrated power, area, and timing hierarchical modeling 

framework for multi-core and many-core processor configurations targeting technologies 
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ranging from 90nm to 22nm. McPAT supports both static and dynamic power modeling at 

the micro-architectural level, circuit and technology level. 

At the micro-architectural level, McPAT includes models of major architectural 

components such as cores, interconnects, caches, memory controllers, and clocking. At the 

circuit level, the architectural building blocks are mapped into four basic circuit structures: 

hierarchical wires, arrays, complex logic, and clocking networks. At the technology level, 

the physical parameters of devices and wires, such as unit resistance, capacitance, and 

current densities, is calculated based on the data from the ITRS roadmap. In our work, we 

target the 22nm technology node.  

3.3.3.3 Interconnect performance, power and area modeling 

We use GARNET and McPAT to model the performance, power, and area of the 

interconnect targeting the 22nm technology node. The interconnect is modeled with the 

four-stage pipeline routers described in Section 3.3.1. In every cycle, each node performs 

a Bernoulli trial with probabilities equal to the injection rate to generate new packets. The 

destination directory of the generated packet is chosen randomly from all the directories. 

The generated packets are randomly tagged as Load, Instruction Fetch (InstFetch) or Store 

packets. The Load and InstFetch packets are injected as 8-byte control packets and the 

Store packet is injected as a 72-byte data packet.  

Table 3.3 shows the average number of packets generated with the problem size 

listed in Table 2.3. The average number of packets is the sum of the L2 cache overall 

misses and L2 write-backs collected from the detailed cycle-accurate simulations of the 

cluster for each benchmark. 
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Table 3.3: Summary of the simulated benchmarks with average packets generated 

Benchmark Average packets 
x264 1.65 M 
Raytrace 0.84 M 
Blackscholes & 
Swaptions 1.96 M 

Freqmine & 
Streamcluster 4.52 M 

 
 
 
3.3.4 Statistical Machine Learning Algorithms 

We provide a brief of the machine learning algorithm used in building our 

hierarchal many-core model. A more detailed description is given in Chapter 2, section 

2.3.  

3.3.4.1 Artificial neural networks 

ANN is a non-linear statistical data model inspired by biological nervous systems 

and neural networks. The representational power of ANN is rich enough to express 

complex interactions among variables – any function can be approximated to arbitrary 

precision by a three-layer ANN [16]. 

Three types of parameters define an ANN: the interconnection pattern, the 

learning process, and the activation function [16]. Figure 3.4 shows a feed-forward ANN 

and a sigmoid activation function. The feed forward network contains three layers with 𝑃 

units in the input layer, 𝐻 units in the hidden layer, and 𝐿 units in the output layer. The 

sigmoid activation function is applied to the units in the hidden layer and output layer. 

𝜔ℎ𝑖𝑗 represents the weight between input unit {𝑥𝑖}𝑖=1𝑃  and hidden unit {ℎ𝑗}𝑗=1𝐻 , and 𝜔𝑜𝑗𝑘 

represents the weight between hidden unit {ℎ𝑗}𝑗=1𝐻  and output unit {𝑦𝑘}𝑘=1𝐿 . To train the 

network, we choose the stochastic gradient descent version of the BackPropagation (BP) 

algorithm [16]. The BP algorithm is the most commonly used ANN learning technique. It 
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is composed of three parts: forward propagation, back propagation and weight update. In 

each iteration, the training input is first forwarded through the network to generate the 

output of each layer using the sigmoid function. Then, the errors are propagated 

backward through the network to calculate the error term of each unit. The weights in 

each layer are then updated using the gradient descent algorithm. This training process 

stops when the error difference between adjacent iterations is below a desired error 

threshold or a maximum number of iterations are reached. 

3.3.4.2 Multivariate adaptive regression spline 

Linear regression is the most widely used model to construct the approximation 

function 𝑓 for each target variable using a linear relationship: 

 𝑦 = 𝑓(𝒙) + 𝜀 = 𝑏 + ∑ 𝜔𝑖𝑥𝑖𝑃
𝑖=1 + 𝜀 (3.1) 

 

Figure 3.4: Example of a feed-forward ANN [16] 
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Here 𝑦 is the target variable of interest, 𝑏 is an intercept term, 𝜀 is an error term, and 𝜔𝑖 is 

the corresponding coefficient of predictor variable 𝑥𝑖. A regression spline extends linear 

regression by using two or more polynomial fittings in each of the 𝐾 + 1 disjoint regions 

separated by 𝐾 points (knots). Multivariate adaptive regression spline builds on regression 

splines through the use of truncated power basis functions [14] and adaptive knot selection 

strategy [10] to construct the approximation function 𝑓 : 

 𝑓(𝒙) = ∑ 𝜔𝑚𝐵𝑚(𝒙)𝑀
𝑚=0  (3.2) 

Here 𝑀 is the number of basis functions included in the model. One representation of 

these basis functions is: 

 𝐵𝑚(𝒙) = ∏ �𝑠(𝑖,𝑚) �𝑥𝑗(𝑖,𝑚) − 𝑡(𝑖,𝑚)��
+

𝑄𝐼𝑚
𝑖=1  (3.3) 

Here 𝐼𝑚 is the number of factors (interaction order) of the 𝑚𝑡ℎ basis function and (𝑖,𝑚) 

denotes the 𝑚𝑡ℎ basis function and the 𝑖𝑡ℎ interaction order. 𝑠(𝑖,𝑚) = ±1 indicates the 

positive (right) or negative (left) of the truncated power function pairs of the 𝑚𝑡ℎ basis 

function. 𝑥𝑗(𝑖,𝑚) is one of the predictor variable {𝑥𝑗}𝑗=1𝑃  and 𝑡(𝑖,𝑚) is the knot location. 

The MARS algorithm employs a two-step procedure to build the model: the 

forward pass and backward pass. In the forward pass, the algorithm starts with one basis 

function which is just an intercept term, and then repeatedly adds new basis functions in 

pairs (two at a time) to the model. In the (𝑀 + 1)𝑡ℎ iteration, the basis function which 

maximizes the reduction in SSE (sum of squared error) of the model built in the previous 

M iterations is selected, and here SSE is described by 

 𝑆𝑆𝐸(𝑀 + 1) = ∑ �𝑦𝑖 − 𝑓𝑀(𝒙𝑖) − 𝐵(2𝑀+1)(𝒙𝑖) − 𝐵(2𝑀+2)(𝒙𝑖)�
2𝑁

𝑖=1  (3.4) 
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In Equation 3.3, all possible choices of the newly added basis function 

𝐵(2𝑀+1)(𝒙𝑖) and 𝐵(2𝑀+2)(𝒙𝑖) are evaluated until the change of SSE of the model is below 

a given threshold or until the maximum number of basis functions is reached. At the end 

of the forward pass, the number of basis function is typically chosen to be substantially 

larger than would be optimal, and results in an over-fitted model. In the backward pass, 

the MARS algorithm prunes the model built in the forward pass by removing the least 

effective basis functions one at a time until only the intercept term is left. The least 

effective basis function is determined based on a modification of the Generalized Cross 

Validation (GCV) criterion [15] as described by: 

 𝐺𝐶𝑉(𝑀) = 1
𝑁
∑ �𝑦𝑖−�̂�𝑀(𝒙𝑖)�

2

�1−𝑒𝑛𝑝(𝑀)
𝑁 �

2
𝑁
𝑖=1  (3.5) 

 𝑒𝑛𝑝(𝑀) = 𝑀 + 𝑐 ∗ 𝑀−1
2

 (3.6) 

Here 𝑀 is the number of basis functions in the model 𝑓𝑀(𝒙) (including the intercept term), 

𝑒𝑛𝑝 is the effective number of parameters given by Equation 3.6, c is the GCV penalty per 

knot and (𝑀 − 1) 2⁄  is the number of knots. The final output model is the one with the 

lowest GCV value. The numerator of Equation 3.5 is the MSE on the training data and the 

denominator represents a penalty for increasing model complexity (number of knots). 

In our work, we use the implementation in the caret R package [43]. 

3.3.4.3 Kernel canonical correlation analysis 

Canonical correlation analysis (CCA) is a SML algorithm to find a linear 

combination of two sets of variables 𝒙: {𝑥1. . 𝑥𝑃} and 𝒚: {𝑦1. .𝑦𝐿} that has maximum 

correlation with each other. Given two column vectors 𝑿 and 𝒀, it tries to find vectors 𝒂 

and 𝒃 to maximize the correlation between 𝒂𝑻𝑿 and 𝒃𝑻𝒀.  However, CCA is only useful 
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when the relationship of variables can be captured in linear form. For non-linear data sets, 

we use Kernel CCA (KCCA) which has the same objective as CCA but models non-linear 

variables through a kernel trick. The kernel trick tries to project the two datasets to a 

higher dimension and find the linear relationship between the projected two datasets. The 

first step is to collect 𝑁 training samples using a sampling strategy such as LHS or random 

sampling. We then use the Gaussian kernel function to form an 𝑁 × 𝑁 parameter 

similarity matrix 𝑲𝒙 whose (𝑖, 𝑗)𝑡ℎ entry measures the similarity between vectors (𝒙𝑖,𝒙𝑗) 

in 𝒙, and an 𝑁 × 𝑁 performance similarity matrix 𝑲𝒚 whose (𝑖, 𝑗)𝑡ℎ entry is the similarity 

between vectors (𝒚𝒊,𝒚𝒋) in 𝒚. In the Gaussian kernel function, the Euclidean distance is 

used.   

We input these two matrices into a generalized Eigen equation to project the 

similarity matrix 𝑲𝒙 to a basis vector space 𝜶 by  𝑲𝒙 × 𝜶  and the similarity matrix 𝑲𝒚 to 

a basis vector space 𝜷 by 𝑲𝒚 × 𝜷. The basis vector space 𝜶 and 𝜷 are got from the N 

largest Eigen values. The projections of 𝑲𝒙 on to basis vector space 𝜶 and the projections 

of 𝑲𝒚 on to basis vector space 𝜷 are mutually maximally correlated. 

 Once we get the projection of 𝑿 on 𝜶, the prediction model is ready. For a new 

input configuration vector whose output we seek to predict, we use the same kernel 

function to get the similarity vector 𝑽 between the new input configuration vector and all 

the vectors in the sample space. After this, we project 𝑽 to basis vector space 𝜶 by 𝑽 × 𝜶 

and use a distance metric to find its k nearest neighbors in this space. We then average its 

neighbor’s performance to obtain the predicted performance of the configuration we are 

interested.  
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3.3.4.4 Support vector machines 

SVM is used to construct a hyperplane or set of hyperplanes in a high- or infinite-

dimensional space which can be used for classification (SVC) or regression (SVR). 

Consider a set of training data: {(𝒙1,𝑦1), (𝒙2,𝑦2), … , (𝒙𝑁 ,𝑦𝑁)}, where 𝒙𝑖 is a set of 

predictor variables {𝑥𝑗𝑖}𝑗=1
𝑃  and 𝑦𝑖 is the target variable in training data {𝑖}𝑖=1𝑁 . In SVC, the 

target variable 𝑦𝑖 is a class label and the hyperplane is a separation of different classes. 

The goal of SVC is to find a hyperplane that has the largest distance to the nearest training 

data point of any class. Support Vectors (SVs) are the nearest training data points of any 

class to the hyperplane, and margin is the perpendicular distance between the hyperplane 

and SVs. With a larger margin, the hyperplane has a higher probability to classify a new 

data point correctly. So the optimization problem of SVC is to maximize the margin 

subject to the constraints of correctly classifying all the training data. In SVR, the target 

variable 𝑦𝑖 is a real value. The goal of SVR is to find a hyperplane (approximating 

function 𝑓) that has at most 𝜖 deviation from true value 𝑦𝑖 of the target variable for all the 

training data. For SVR, there exist two common approaches: 𝜖-SVR and 𝑛𝑢-SVR. In 𝜖-

SVR, 𝜖 is a pre-defined acceptable amount of deviation between 𝑦� and 𝑦 of the target 

variable. While in 𝑛𝑢-SVR, 𝜖 is determined as a part of the learning algorithm. It has been 

demonstrated in [17] [18] that although 𝜖-SVR is simpler, it has an equal or even better 

performance than 𝑛𝑢-SVR. So in our work, we consider 𝜖-SVR. In 𝜖-SVR, the margin is 

defined as the perpendicular distance between hyperplane 𝑓 and 𝑓 ± 𝜖. Any data point in 

this margin is considered as well fitted by 𝑓. So with a larger margin, the hyperplane (𝑓) 

has a higher probability to predict 𝑦 of a new data point within an acceptable 𝜖 deviation. 
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So the optimization problem of 𝜖-SVR is to maximize the margin subject to the 

constraints of maximum 𝜖 deviation for all the training data. 

3.4 Results 

In this section we first present results on the accuracy of the selected SML 

algorithm based models on modeling the injection rate of the cluster and the average 

interconnect access latency. We then present results on the accuracy of the many-core 

model generated through the hierarchical modeling framework by comparing the predicted 

performance, power and area to those obtained by through detailed simulation of the entire 

processor. In evaluating the hierarchical modeling framework, the best SML algorithm for 

cluster performance, power, injection rate modeling, and interconnect access latency 

modeling is used. We also analyze the scalability of our hierarchical modeling framework 

with the number of cores and compare to the previously proposed hierarchical many-core 

processor design frameworks.  

3.4.1 Injection Rate Model and Interconnect Model Accuracy 

In this experiment, 50 validation points are sampled to evaluate the cluster 

injection rate model and global interconnect model using the LHS data sampling 

technique and simulated with Gem5, Garnet, and McPAT. 

Figure 3.5 shows the prediction error distribution for the different SML injection 

rate and latency models for all benchmarks. The RMSE and R2 values for the injection 

rate and network latency models are shown in Tables 3.4 and 3.5 respectively. All 

injection rate (latency) models show an R2 > 0.79 (0.86) with an R2 > 0.92 (0.95) for 

MARS. Figure 3.6 shows the prediction error distribution for the interconnect power and 

area models. The RMSE and R2 values for the interconnect power and area models are 
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shown in Table 3.6. All interconnect power (area) models show an R2 > 0.83 (0.85) with 

an R2 > 0.92 (0.94) for MARS. It should be noted that for cluster and interconnect models, 

the training data set comprises of only 0.001% and 5% of the cluster and interconnect 

design space. 

 

 

Figure 3.5: Prediction error distribution plot of injection rate and interconnect access 
latency models. The benchmarks are separated using the green solid line with from 
left to right: x264, Raytrace, Blackscholes & Swaptions, Freqmine & Streamcluster 

 
 
 

Table 3.4: RMSE and R2 of individual cluster injection rate modeling 

Benchmarks ANN KCCA MARS SVM 
RMSE R2 RMSE R2 RMSE R2 RMSE R2 

x264 0.1296 0.9843 1.2113 0.8132 0.1332 0.9748 0.2012 0.9612 
Raytrace 0.1357 0.9712 1.1274 0.8324 0.1301 0.982 0.1599 0.9623 
Blackscholes 
& Swaptions 0.4864 0.9112 1.5126 0.8070 0.3173 0.9244 0.4961 0.9191 

Freqmine & 
Streamcluster 0.1539 0.9656 1.2092 0.7979 0.1325 0.9776 0.2074 0.9542 
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Table 3.5: RMSE and R2 of interconnect access latency modeling 

Benchmarks ANN KCCA MARS SVM 
RMSE R2 RMSE R2 RMSE R2 RMSE R2 

x264 0.1325 0.9751 0.5029 0.9132 0.1254 0.9876 0.1312 0.9789 
Raytrace 0.2887 0.9323 0.2817 0.9355 0.2313 0.9541 0.2832 0.9375 
Blackscholes 
& Swaptions 0.2384 0.9498 0.7064 0.8952 0.1218 0.9886 0.2396 0.9446 

Freqmine & 
Streamcluster 0.3206 0.9225 1.0233 0.8637 0.1297 0.9835 0.2384 0.9502 

 
 
 

 

Figure 3.6: Prediction error distribution plot of interconnect power and area models. 
 
 
 

Table 3.6: RMSE and R2 of interconnect power and area models 
Interconnect 
Metric 

ANN KCCA MARS SVM 
RMSE R2 RMSE R2 RMSE R2 RMSE R2 

Power 0.8165 0.8845 1.1253 0.8346 0.3277 0.9216 0.6978 0.9003 
Area 0.6713 0.9082 1.0566 0.8501 0.2424 0.9411 0.5046 0.9120 
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3.4.2 Many-core Processor Model  

As shown in Figure 3.2 the many-core processor model is synthesized from the 

cluster models and network latency models by iterating over the injection rate and network 

latency until 0.1% convergence threshold is reached. Figure 3.5 shows an example of the 

iteration procedure used to determine the network latency and injection rate. The network 

access latency is initialized to 20 cycles. As seen from Figure 3.7 the convergence occurs 

in 16 iterations. Table 3.7 shows the associated cluster and interconnects microarchitecture 

parameter values for different benchmark applications.  

 

Table 3.7: Fixed cluster-level and interconnect-level parameter values 

Parameters 
Selected value 

x264 Raytrace Black & 
Swap 

Freq & 
Stream 

Number of integer Alu-MultDiv 4-1 4-1 4-2 4-1 
Number of floating point Alu-MultDiv 2-1 2-1 4-1 2-1 
Number of physical integer registers 128 128 196 128 
Number of physical floating point 
registers 64 128 64 64 

Number of store-load queue entries 32-48 32-48 48-64 32-64 
Number of instruction queue entries 16, 32 32 16 32 
Return address stack size 16, 32 32 32 16 
L1 cache size (KB) 32, 64 32 64 64 
L1 Instruction cache associativity 4 8 8 4 
L1 Data cache associativity 8 8 4 8 
DTLB size 64 64 32 128 
ITLB size 32 32 64 32 
Core frequency (GHz) 1.0 2.0 1.8 1.33 
L2 cache size (MB) 1, 2, 4 2 2 4 
L2 cache associativity 8, 16 16 8 8 
Back side bus frequency 1.0 2.0 1.8 1.33 
Front side bus  frequency (MHz) 133 133 100 133 
Bus Width (Byte) 8 8 16 16 
Number of network nodes (processors) 16 
Flit size (Byte) 4 
Virtual channels per virtual networks 4 
Buffer size per virtual channel 4 
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3.4.2.1 Evaluating many-core model accuracy 

We compare the performance, power, and area results modeled using our 

hierarchical framework to those obtained using detailed simulation of the targeted many-

core architecture. To keep our simulation times reasonable, we limit the number of 

clusters to be 4, with 4 cores per cluster for a total of 16 cores. The detailed simulation 

takes 38 – 42 hours for each design point depending on the benchmark. From the results of 

Chapter 2 for the cluster models, and section 3.4.1.1 for the interconnect models, MARS 

models are seen to be the most accurate. MARS is therefore used for all the modeling 

tasks. 

In this experiment, each cluster executes a different benchmark. The statistics 

collection begins when all the clusters are running in its ROI session. Due to the different 

simulation time of the benchmarks and the different metrics in evaluating the performance 

of each benchmark, the x264 and Raytrace are set to finish in roughly the same simulation 

 

Figure 3.7: Convergence of injection and access latency 
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time by adjusting the corresponding problem size. Since x264 and Raytrace have long 

execution times, we rerun Freqmine & Streamcluster and Blackscholes & Swaptions to 

ensure that all 4 clusters are executing simultaneously. For validation, 16 design points 

(core + network micro-architectural parameters) are sampled using the LHS data sampling 

technique and simulated with Gem5 and McPAT.  

The RMSE and R2 values for the injection rate and network latency models are 

shown in Table 3.7. The performance models have an R2 > 0.82 while the power models 

have an R2 > 0.84. 

3.4.3 Scalability Analysis 

The SML based statistical modeling method accurately estimates the injection rate 

and the average interconnect access latency, and is validated through comparison to the 

detailed simulation of a 16-core processor. The efficiency (training cost) of our selected 

SML algorithms is shown in Table 3.8. As can be seen from the table, the training cost is 

very algorithm dependent. The minimum training cost can be nearly hundred times less 

than the maximum training cost. Please note that the model training cost also includes the 

algorithm parameter tuning time, which means that a smaller number of tuning parameters 

Table 3.8: RMSE and R2 for performance and power with four clusters 
simultaneously running 6 different benchmarks 
Benchmark Metric R2 RMSE 

x264 FPS 0.8229 1.1782 
Power 0.8414 1.1053 

Raytrace FPS 0.8633 1.0231 
Power 0.8896 0.7446 

Blackscholes 
& Swaptions 

CPI 0.8516 1.0984 
Power 0.8934 0.7095 

Freqmine & 
Streamcluster 

CPI 0.8674 1.0223 
Power 0.8795 1.0148 
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with few parameter value options could result in possibly less training time. Table 3.9 also 

shows that among the SML algorithms considered in our work, MARS is more than an 

order of magnitude times faster than other algorithms. 

To analyze the scalability of our hierarchical modeling framework, and compare to 

other hierarchical methods proposed in in the literature, we develop a simple analytical 

model for the total training time. In our analysis we use the following notations – 𝑁 is the 

number of training data points used to train the models, 𝑇𝐶 is the detailed cycle-accurate 

simulation time per processing core or cluster, 𝑇𝑀𝑒𝑠ℎ is the detailed cycle-accurate 

simulation time for the mesh interconnects, 𝑛 is the total number of processing cores or 

clusters in the system. We employ an expression in [1], that is 𝑇𝑛 = 𝑛𝑟 ∗ 𝑇𝐶, to represent 

the super-linear increment in the simulation time with the number of processing cores 𝑛. 

We observe a growth factor 𝑟 in the range 1.22 to 1.31 in the Gem5 simulation as the 

number of processing cores is varied from 4 to 16. Let 𝑇𝑀 be the model training time. In 

Lee’s method, 𝑁𝐸𝑥𝑡𝑟𝑎 is the number of training data points used to train the contention 

model and penalty model, 𝑇𝑀𝐸𝑥𝑡𝑟𝑎is the model training time for contention model and 

penalty model. Similarly, in our method, 𝑁𝑀𝑒𝑠ℎ is the number of training data points used 

to train interconnect model, 𝑇𝑀𝑀𝑒𝑠ℎis the model training time for interconnect model. We 

Table 3.9: Model training cost for each SML algorithm in modeling performance, 
power, injection rate and average network latency 
SML 
algorithms 

Modeling cost (seconds) 
Injection rate Access Latency 

ANN 212.18 41.07 
KCCA 12.83 80.61 
MARS 2.19 1.05 
SVM 61.68 67.71 
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compare our proposed hierarchical modeling framework to a naïve simulation based 

method and a hierarchical contention based approach proposed by Lee et al.  

Equation 3.7 models the training cost of the naïve simulation based method where 

the total training time cost is the simulation time plus the modeling time. Equation 3.8 

models the training cost of Lee’s contention based method. The lower bound is the best 

time cost which assumes that the clusters are homogeneous, and only one cluster model 

needs to be constructed. The upper bound is the worst time cost where the clusters are 

heterogeneous and the model of each cluster needs to be constructed separately. In Lee's 

method, the processing core modeling time and contention modeling time is similar. The 

time cost of our hierarchical modeling framework is described in Equation 3.9. Here we 

can neglect the interconnect modeling time since it is small compared to the cluster 

modeling time. Table 3.10 shows the speed up for our proposed hierarchical many-core 

modeling methodology and Lee’s contention based methodology as compared to the naïve 

simulation based method. The naïve simulation is 𝑂(𝑛𝑟) with the number of clusters while 

our proposed method is 𝑂(𝑛) at the worst case when the clusters are heterogeneous, and 

𝑂(1) when the clusters are homogeneous.  

 
 
 𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑁 ∗ 𝑇𝐶 ∗ 𝑛𝑟 + 𝑇𝑀 (3.7) 

 

⎩
⎪
⎨

⎪
⎧𝑇𝑡𝑜𝑡𝑎𝑙

𝑢𝑝𝑝𝑒𝑟 = 𝑁 ∗ 𝑇𝐶 ∗ 𝑛 + 𝑁𝑒𝑥𝑡𝑟𝑎 ∗ 𝑇𝐶 ∗ 𝑛𝑟 + 𝑛 ∗ 𝑇𝑀 + 𝑇𝑀𝑒𝑥𝑡𝑟𝑎

≈ 𝑁 ∗ 𝑇𝐶 ∗ 𝑛 + 𝑁𝑒𝑥𝑡𝑟𝑎 ∗ 𝑇𝐶 ∗ 𝑛𝑟 + (𝑛 + 2) ∗ 𝑇𝑀
𝑇𝑡𝑜𝑡𝑎𝑙𝑙𝑜𝑤𝑒𝑟 = 𝑁 ∗ 𝑇𝐶 + 𝑁𝑒𝑥𝑡𝑟𝑎 ∗ 𝑇𝐶 ∗ 𝑛𝑟 + 𝑇𝑀 + 𝑇𝑀𝑒𝑥𝑡𝑟𝑎

≈ 𝑁 ∗ 𝑇𝐶 + 𝑁𝑒𝑥𝑡𝑟𝑎 ∗ 𝑇𝐶 ∗ 𝑛𝑟 + 2 ∗ 𝑇𝑀

 (3.8) 

 �
𝑇𝑡𝑜𝑡𝑎𝑙
𝑢𝑝𝑝𝑒𝑟 = 𝑁 ∗ 𝑇𝐶 ∗ 𝑛 + 𝑛 ∗ 𝑇𝑀 + 𝑁𝑀𝑒𝑠ℎ ∗ 𝑇𝑀𝑒𝑠ℎ + 𝑇𝑀𝑀𝑒𝑠ℎ

≈ 𝑁 ∗ 𝑇𝐶 ∗ 𝑛 + 𝑛 ∗ 𝑇𝑀
𝑇𝑡𝑜𝑡𝑎𝑙𝑙𝑜𝑤𝑒𝑟 = 𝑁 ∗ 𝑇𝐶 + 𝑇𝑀

 (3.9) 
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Table 3.10: Speedup comparison of three different modeling methods, normalized to the 

naïve entire processor simulation with modeling 
Method Lower bound Upper bound 
Naïve 1 1 

Lee’s 
𝑁 ∗ 𝑛𝑟

𝑁 + 𝑁𝑒𝑥𝑡𝑟𝑎 ∗ 𝑛𝑟
 

𝑁 ∗ 𝑛𝑟

𝑁 ∗ 𝑛 + 𝑁𝑒𝑥𝑡𝑟𝑎 ∗ 𝑛𝑟
 

Ours 𝑛𝑟 𝑛𝑟−1 
 

3.5 Related Work 

In this section, we only briefly review the literature with emphasizes on 

hierarchical design framework.  

Lee et al. [1] minimize many-core simulation times in estimating performance 

through composable regression models for baseline uniprocessor performance, cache 

contention, and delay penalty. Their uni-core simulation platform is an execution driven, 

cycle accurate IA-32 simulator modeling a superscalar, out-of-order architecture. Long 

instruction traces derived from a variety of application areas ranging from digital home to 

the server are used as benchmarks. A uniprocessor spline regression model predicts the 

baseline performance of each core while a contention spline regression model predicts 

interfering accesses to shared resources from other cores. Uniprocessor and contention 

model outputs are composed in a penalty regression model that considers the contention as 

a secondary penalizing effect. A trace simulation is stated to be sufficient for developing 

the contention and penalty models, thus greatly reducing the overall simulation time. 

However, in their case, the contention model is still developed cycle-accurately. But the 

number of data samples collected for contention model is far less than the uniprocessor 

model. A median CPI error of 6.6% is reported for quad-core processors. A major 

disadvantage of their work is the lack of scalability of the methodology due the necessity 
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of having to perform detailed simulations of a many-core processor to develop the 

contention model. The authors have only focused on developing regression models for 

predicting CPI and not for power estimation. 

Datta [51] presents a design exploration framework which employs an instruction 

trace-driven cycle-accurate simulator to accurately measure power and performance of 

embedded heterogeneous many-core processors based on a network IP packet processing 

embedded application. He employs a hierarchical modeling and exploration framework. In 

the first step, the cores are simulated cycle-accurately with core-level parameters, and the 

power and performance of the cores are modeled using linear regression. The cores are 

then optimized using Genetic Algorithm to generate a set of best optimized core 

microarchitectures with minimal power dissipation. In the last step, simulated annealing is 

used to optimize the core and memory simultaneously. In this step, only the core to L2 

cache and L2 cache to memory packets are simulated with mem-level parameters using a 

coarse grained simulation. Unfortunately, such a coarse grained simulation is not 

sufficient to capture the dynamics of complex global interconnects of many-core 

processors. In our work, we use a detailed cycle accurate simulation to generate accurate 

global interconnect models. Also, in Datta’s exploration framework, only one optimal 

micro-architectural design point could be obtained, while in our framework, a Pareto 

optimal performance-power front is generated.  

Cassidy and Andreou [59] establish a system-level analytical model for parallel 

computational architectures which focuses on first-order system-level effects by extending 

the Amdahl’s law. They model the CPI and energy costs based on the benchmark 

parallelization percentage, the area of the processor core and L2 cache, and other fixed 
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area sizes. The many-core processor exploration is then regarded as minimizing the 

energy-delay product under the constraint of total die area. The inaccuracy of analytical 

modeling lies in the very coarse level abstraction of the processors, involving only system-

level parameters. On the other hand, the statistical machine learning models used in our 

work is very detailed with a large number of micro-architectural internal parameters.  

3.6 Conclusions 

Traditional technique of modeling the performance of processors through detailed 

simulations is not scalable to many-core processor incorporating tens to hundreds of 

processor cores due to the prohibitive simulation times. For design space exploration of 

such a many-core architecture thousands of such design points will have to be simulated to 

determine designs that meet performance, power, and area constraints. Use of statistical 

performance models serves as a computationally efficient substitute to determining 

processor performance. Unfortunately, even generating the training data set required for 

modeling the many-core processor requires detailed cycle accurate simulation of hundreds 

of micro-architectural configurations with a power law increase in the simulation time 

with the number of cores. 

In this chapter, we have presented a hierarchical modeling methodology to reduce 

the simulation time. The methodology combines statistical models of individual 

processing cores, memory hierarchy, and interconnect through a few shared parameters. 

The resulting many-core model is a cross-coupled combination of the individual models. 

Evaluations of our many-core models constructed using the MARS algorithms, shows an 

R2 ranging from 0.82 – 0.89 for selected Parsec benchmarks with the simulation time 

increasing linearly in the worst-case with the number of cores. 
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Our work can be extended in a number of ways. The injection rate of each cluster 

could be treated as a separate predictor variable for the global interconnect model. The 

contention on the network could be captured more accurately, by dividing the individual 

applications into compute and memory access phases, and separately developing injection 

rate models for these phases. The heterogeneity of the many-core processor could be 

extended by considering GPUs and DSPs as part of the clusters.  

 



 

 

 RUN-TIME CROSS-STACK ENERGY OPTIMIZATION CHAPTER 4:
 
 
4.1 Introduction 

In this chapter, we present a statistical machine learning (SML) based modeling 

and exploration framework that can be used to rapidly explore vast design spaces of tens 

of millions of operating points. A number of powerful SML algorithms have been reported 

in the literature that can capture complex nonlinearities among the tuning variables. From 

a training set composed of a small fraction of operational points (< 1%), we construct a 

SML model with both micro-architectural and application parameters as predictor 

variables. The model predicts the power and performance of the operating points outside 

the training set. We construct a multi-adaptive regression spline (MARS) based model that 

uses a number of architecture and application parameters as predictor variables to predict 

performance and power. We use a Latin Hypercube based sampling strategy to obtain the 

training set. We employ a feature reduction algorithm to identify the parameters that most 

significantly contributes to performance and power, thus reducing the operating space to 

be explored. Since we seek to optimize multiple objectives in an unbiased fashion, we use 

a Pareto front exploring evolutionary algorithm that uses the MARS model to determine 

operating points for optimal power and performance. The operating points constituting the 

Pareto front can be stored in look-up tables for rapidly determining the optimal operating 

point. 
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We apply the proposed framework to an x264 video encoding application obtained 

from the Parsec benchmark. The target architecture is a quad-core processor with the cores 

based on the Alpha 21264 out-of-order processor. The cores have private L1 data and 

instruction cache, and a unified cache coherent L2 cache shared through a bus based 

interconnect. We simulate the performance using the Gem5 architectural simulator and 

estimate power using the McPAT modeling framework targeting the 22nm technology 

node. Note that the architecture is not specifically designed for video processing but rather 

chosen to illustrate our modeling and exploration framework. The micro-architectural 

predictor variables include a total of 10 core and cache parameters. The application 

predictor variables include the video resolution, and visual quality determined by the 

choice of the motion estimation algorithm. The model outputs the average frames per 

second (FPS) and the average power consumption. The MARS model has an R2 of 0.9657 

and 0.9467 and RMSE (root mean squared error) of 1.829 and 0.0124 respectively for FPS 

and power consumption. Comparison of the power consumption of Pareto optimal 

operating point at a lower visual quality to that of Pareto optimal point at a higher visual 

quality for an x264 video encoder executing on a prototype quad-core processor indicates 

a power saving of 55%.  

The rest of the chapter is organized as follows - in Section 4.2 we describe our 

SML modeling and exploration framework in detail. We present the evaluation setup and 

the evaluation results in Section 4.3 and 4.4 respectively. In Section 4.5, we discuss the 

feasibility of run-time tuning of micro-architectural and application parameters. In Section 

4.6, we review related work on run-time cross-stack energy optimization and in Section 

4.7, we conclude the chapter identifying possible extensions of our work. 
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4.2 Statistical Machine Learning Modeling and Exploration Framework 

In this section we describe our statistical machine learning (SML) based regression 

modeling and exploration framework for jointly modeling the power and performance of 

the computing stack. We use as predictor variables the micro-architectural and application 

parameters that we seek to tune at run-time. The exploration algorithm utilizes the SML 

model to determine the Pareto optimal power-performance fronts. Our SML modeling 

framework is shown in Figure 4.1. In the following subsection we describe the target 

architecture, and the different components of the framework. 

 
 

 

Figure 4.1: Proposed statistical machine learning modeling and exploration framework 
 

4.2.1 Target Architecture and Design Space 

The SML algorithm evaluation framework of Figure 4.1 can be applied to any 

architecture of interest. However, to keep our discussions concrete, in our work we choose 

to model a quad core multi-core architecture, with each core having a private L1 cache and 

4 cores sharing an L2 cache. The individual cores are out-of-order and are based on the 

Alpha 21264 processor. Each out-of-order core is a single threaded four issue processor 

with split instruction and data caches. The L1 and L2 caches are non-blocking with miss 

status holding register (MSHR) and write buffers (WB) for read and write misses. Cache 

coherency is maintained among the 4 cores sharing the L2 cache. The cache replacement 
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policy is LRU and the cache coherence protocol is bus-based MOESI snooping protocol. 

Our local memory system is a classic bus-based model. The bus arbitration follows first-

come-first-serve logic, and uses round-robin scheduling for bus accesses. 

The micro-architectural parameters that we seek to tune are grouped as core and 

memory parameters. The complete list of parameters that we consider in our work is given 

in Table 4.1. The possible range of values assumed by the core, memory and network 

parameters are derived from for commercial processors and from the literature. Note that 

the total operating space considering the micro-architectural parameters alone is 2.5 

million points.  

 
 

Table 4.1: Micro-architectural parameters and parameter value range considered in our 
work 

Parameters Value ranges 
Number of integer Alu-MultDiv 2-1, 4-1, 4-2 
Number of floating point Alu-MultDiv 1-1, 2-1, 4-1 
Number of physical integer registers 64, 128, 196 
Number of physical floating point registers 64, 128, 196 
Number of store-load queue entries 32-48, 32-64, 48-64 
Number of instruction queue entries 16, 32 
Number of reorder buffer entries 128, 160 
Number of branch target buffer Entries 2048, 4096 
L1 cache size (KB) 32, 64 
L1 cache associativity 4, 8 
DTLB size 32, 64, 128 
ITLB size 32, 64, 128 
L2 cache size (MB) 1, 2, 4 
L2 cache associativity 8, 16 
Core frequency (GHz) 1, 1.5, 2.0 
Number of cores 2, 4 

 

We choose power consumption and benchmark specific performance metrics such 

as task throughput as the output performance metrics. Note that our choice of the 



93 
architectural parameters, their possible range of values, and the output performance 

metrics are only illustrative. The proposed framework can be used for any set of predictor 

variables and performance metrics. 

4.2.2 Data Sampling 

In order to create a machine learning model, a training subset is generated by 

sampling the overall design space. The quality of the selected design points is very critical, 

because all the inferences and predictions of the test design points are based on them. The 

commonly used sampling methods include random sampling, systematic sampling [29] 

and stratified sampling [30]. In random sampling the design points are randomly 

generated. In systematic sampling, the selection of the design points is based on a fixed 

distance metric between the design points. In stratified sampling the design points are 

divided into subgroups and the selection of design points from each subgroup is done by 

either random sampling or systematic sampling. However, none of these methods 

guarantee an even distributed sampling across the overall design space. 

Recently, Latin Hypercube Sampling (LHS) has been proposed by researchers [31] 

[32] as an alternative sampling method. In LHS, to obtain 𝑁 design points from a 𝑃-

dimensional design space, each dimension is divided by 𝑁 hyperplanes resulting in a total 

number of 𝑁𝑃 small hypercubes. At most one design point is selected from each 

hypercube. The design point is selected by either Maximum Minimum (MaxiMin) 

Distance LHS criteria or Reduce Correlation (Correlation) Distance LHS criteria. In 

MaxiMin, the minimum distance between the selected design points is maximized. The 

distance can be calculated using a distance metric, such as the Euclidean distance [60]. In 

Correlation, the correlation between the selected design points is minimized. These two 
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criteria enable LHS to guarantee a relatively uniformly distributed design points to be 

sampled from the design space. In our work, we choose the MaxiMin Distance LHS 

criteria implemented by a Matlab function: lhsdesign [33]. The output of lhsdesign is a 

normalized 𝑁 × 𝑃 matrix. We denormalize the entries in this matrix to the possible values 

in the range of each predictor variable. 

4.2.3 Feature Reduction 

Feature reduction is a procedure to identify the significance of each predictor 

variable, and select a subset of most relevant predictor variables to build the learning 

models for given target variables. To select the optimal subset of 𝑃 predictor variables, a 

total number of 𝑃! possible subsets need to be evaluated. Such an exhaustive search is 

only feasible for a small 𝑃. Heuristic methods that search through a reduced number of 

subsets are commonly used for variable selection. Examples of the heuristic methods for 

variable selection are stepwise forward selection/backward elimination methods [39], 

genetic algorithms [40] and simulated annealing [41].  In our work, we choose the rfe 

function provided in caret R package [43] which uses the stepwise backward elimination 

with k-fold cross validation. In stepwise backward elimination, the procedure starts with 

the full set of predictor variables as the current subset. In each iteration, the model with 

current subset of predictor variables is first evaluated using a model independent metric 

such as the t-statistic or R2 values. Then each predictor variable is eliminated from the 

current subset individually and the model is re-evaluated using the same metric. The 

predictor variable which leads to the smallest change of the metric is considered the least 

significant predictor variable in this iteration and eliminated from current subset for the 

next iteration. The elimination process stops when a threshold on the model accuracy has 
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been reached, or all the predictor variables have been eliminated from the current subset. 

The optimal subset of predictor variables will be the one with the most accurate model.   

In k-fold cross validation, the training data is first partitioned into equal-sized k 

folds. The model training process is then performed in successive k rounds. In each round, 

a different fold is selected for model evaluation using the metrics mentioned above and the 

other k-1 folds are used for model training. This results in k lists of significance of each 

predictor variable in each iteration of the elimination process. The least significant 

predictor variable is selected based on an average of the significance in the k lists. 

4.2.4 SML Modeling: Multivariate Adaptive Regression Splines 

Linear regression is the most widely used model to construct the approximation 

function 𝑓 for each target variable using a linear relationship: 

 𝑦 = 𝑓(𝒙) + 𝜖 = 𝑏 + ∑ 𝜔𝑖𝑥𝑖𝑃
𝑖=1 + 𝜖 (4.1) 

Here 𝑦 is the target variable of interest, 𝑏 is an intercept term, 𝜖 is an error term, and 𝜔𝑖 is 

the corresponding coefficient of predictor variable 𝑥𝑖. A regression spline extends linear 

regression by using two or more polynomial fittings in each of the 𝐾 + 1 disjoint regions 

separated by 𝐾 points (knots). Multivariate Adaptive Regression Splines builds on 

regression splines through the use of truncated power basis functions [14] and adaptive 

knot selection strategy [10] to construct the approximation function 𝑓 : 

 𝑓(𝒙) = ∑ 𝜔𝑚𝐵𝑚(𝒙)𝑀
𝑚=0  (4.2) 

Here 𝑀 is the number of basis functions included in the model. One representation of 

these basis functions is: 

 𝐵𝑚(𝒙) = ∏ �𝑠(𝑖,𝑚) �𝑥𝑗(𝑖,𝑚) − 𝑡(𝑖,𝑚)��
+

𝑄𝐼𝑚
𝑖=1  (4.3) 
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Here 𝐼𝑚 is the number of factors (interaction order) of the 𝑚𝑡ℎ basis function and (𝑖,𝑚) 

denotes the 𝑚𝑡ℎ basis function and the 𝑖𝑡ℎ interaction order. 𝑠(𝑖,𝑚) = ±1 indicates the 

positive (right) or negative (left) of the truncated power function pairs of the 𝑚𝑡ℎ basis 

function. 𝑥𝑗(𝑖,𝑚) is one of the predictor variable {𝑥𝑗}𝑗=1𝑃  and 𝑡(𝑖,𝑚) is the knot location. 

The MARS algorithm employs a two-step procedure to build the model: the 

forward pass and backward pass. In the forward pass, the algorithm starts with one basis 

function which is just an intercept term, and then repeatedly adds new basis functions in 

pairs (two at a time) to the model. In the (𝑀 + 1)𝑡ℎ iteration, the basis function which 

maximizes the reduction in SSE (sum of squared error) of the model built in the previous 

M iterations is selected, and here SSE is described by 

 𝑆𝑆𝐸(𝑀 + 1) = ∑ �𝑦𝑖 − 𝑓𝑀(𝒙𝑖) − 𝐵(2𝑀+1)(𝒙𝑖) − 𝐵(2𝑀+2)(𝒙𝑖)�
2𝑁

𝑖=1  (4.4) 

In Equation 4.4, all possible choices of the newly added basis function 𝐵(2𝑀+1)(𝒙𝑖) and 

𝐵(2𝑀+2)(𝒙𝑖) are evaluated until the change of SSE of the model is below a given threshold 

or until the maximum number of basis functions is reached. At the end of the forward 

pass, the number of basis function is typically chosen to be substantially larger than would 

be optimal, and results in an over-fitted model. In the backward pass, the MARS algorithm 

prunes the model built in the forward pass by removing the least effective basis functions 

one at a time until only the intercept term is left. The least effective basis function is 

determined based on a modification of the Generalized Cross Validation (GCV) criterion 

[15] as described by: 

 𝐺𝐶𝑉(𝑀) = 1
𝑁
∑ �𝑦𝑖−�̂�𝑀(𝒙𝑖)�

2

�1−𝑒𝑛𝑝(𝑀)
𝑁 �

2
𝑁
𝑖=1  (4.5) 

 𝑒𝑛𝑝(𝑀) = 𝑀 + 𝑐 ∗ 𝑀−1
2

 (4.6) 
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Here 𝑀 is the number of basis functions in the model 𝑓𝑀(𝒙) (including the intercept term), 

𝑒𝑛𝑝 is the effective number of parameters given by Equation 4.6, 𝑐 is the GCV penalty per 

knot and (𝑀 − 1) 2⁄  is the number of knots. The final output model is the one with the 

lowest GCV value. The numerator of Equation 4.5 is the MSE on the training data and the 

denominator represents a penalty for increasing model complexity (number of knots). 

In our work, we use the implementation in the caret R package [43]. 

4.2.5 Pareto Front Exploring Evolutionary Algorithm 

A multi-objective optimization problem aims to find a set of optimal solutions for 

multiple objectives simultaneously subject to certain constraints. In general, these multiple 

objectives may conflict with each other. The optimal solutions are known as Pareto 

optimal (non-dominated) solutions, which constitutes a Pareto front. Pareto optimal 

solution describes a situation where no further optimization of any of the objectives is 

possible without sacrificing the other objectives. 

Evolutionary algorithms (EAs) are popular approaches to solve the multi-objective 

optimization problems. EAs are metaheuristic computational methods, which improve 

candidate solutions to the optimization problem iteratively given specified solution quality 

measurements. Among EAs, genetic algorithm (GA) is one of the most popular types. GA 

is an iterative algorithm which improves the population (solutions) generation by 

generation through crossover and mutation operations. In our work, we use the Non-

dominated Sorting Genetic Algorithms-II (NSGA-II) algorithm [45] to determine the 

Pareto front. The algorithm is based on Pareto-ranking schemes, in which the population is 

ranked and the fitness value of each individual is assigned according to the domination 

relationship and density information (crowding distance) [61]. The dominance rule is 
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defined as follows: consider individuals 𝒙 and 𝒚 with corresponding 𝐿 multi-objectives 

{𝑓1(𝒙),𝑓2(𝒙), … ,𝑓𝐿(𝒙)} and {𝑓1(𝒚),𝑓2(𝒚), … ,𝑓𝐿(𝒚)}. If for any 𝑖 ∈ (1, … , 𝐿), there exists 

𝑓𝑖(𝒙) < 𝑓𝑖(𝒚), then 𝒙 is dominating 𝒚, 𝒙 is non-dominated and 𝒚 is dominated. In NSGA-

II, the crowding distance is the average distance of its two neighboring solutions. During 

the selection in NSGA-II, the boundary points and lower rank (non-dominated) solutions 

are selected, and if two solutions have the same rank, the less crowded solution will be 

selected. 

We use the NGPM (NSGA-II library in Matlab) tool [44] which is implemented 

using the NSGA-II population selection scheme as described above. NGPM supports 

integer-only variables required for the micro-architectural parameters and parallel 

computes of the objective evaluation function. 

4.3 Evaluation Methodology 

We evaluate the utility of our proposed modeling framework in cross-stack energy 

optimization through a video encoding benchmark. The performance metrics are power 

and frames encoded per second (FPS). The predictor variables include micro-architectural 

and the application performance tuning parameters. The training data set for constructing 

the MARS model are generated through detailed simulation of the execution of the 

benchmark on the target architecture. The simulation tools used and the x264 benchmark 

are described in this section. 

4.3.1 x264 Video Encoding Benchmark 

We select x264, an H.264/AVC (Advanced Video Coding) video encoder 

available in the Parsec [3] benchmark set as our target application to demonstrate our 

modeling framework. x264 has been widely used in applications ranging from video 



99 
conferencing to movie distribution, on personal computers, mobile phones and tablets. In 

PARSEC, x264 is parallelized using the pipeline model, in which each thread encodes an 

input video frame. The number of frames that can be processed simultaneously is equal to 

the number of encoder threads that can be executed in parallel. 

Among the various qualities of services (QoS) for video, we select the two most 

intuitive metrics: resolution and visual quality. The video resolution directly determines 

the encoding performance (FPS) and power consumption of a sequence of video frame 

sequences. With a larger resolution, for the same compute capability, the FPS is lower 

and/or the power consumed is higher. We select Motion Estimation (ME) method as the 

visual quality metric. In typical videos, adjacent video frames are similar and changes are 

due to the movement of the objects in the frames. Video encoder takes advantage of this 

characteristic by dividing the frame into a number of blocks with small number of pixels, 

such as 16x16 or 8x8, and only encodes the motion vector of each block from current 

frame to the reference frame during video compression. By using this technique, video 

encoding reduces the computations needed to encode all the original pixels in each frame 

while requiring fewer encoding bits. To find the motion vector of each block, conventional 

block matching algorithms for motion estimation such as diamond (DIA), and uneven 

multi-hexagon (UMH) searching are used. These searching strategies are all composed of 

multiple-step searching and mainly differ on the search pattern, which is the number of 

adjacent blocks considered for each step, and the step size of the adjacent blocks. To 

search for the block 𝐵𝑟 in reference frame 𝑅 corresponding to the block 𝐵𝑐 in current 

frame 𝐶, initially, the block of the same position of 𝐵𝑐 in 𝑅 is regarded as the center for 

searching. Then the differences between 𝐵𝑐 with the adjacent blocks are calculated. The 
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best matching adjacent block is the block with the least difference, and this becomes the 

center for the next step. The differences can be calculated using either Mean Absolute 

Difference (MAD) or Mean Square Error (MSE). For a 𝑁 × 𝑁 block, MSE and MAD are 

described as follows: 

 𝑀𝑆𝐸(∆𝑖,∆𝑗,∆𝑡) = 1
𝑁2
∑ ∑ [𝑔(𝑖 + ∆𝑖, 𝑗 + ∆𝑗, 𝑡 + ∆𝑡) − 𝑔(𝑖, 𝑗, 𝑡)]2𝑁

𝑗=0
𝑁
𝑖=0  (4.7) 

 𝑀𝐴𝐷(∆𝑖,∆𝑗,∆𝑡) = 1
𝑁2
∑ ∑ |𝑔(𝑖 + ∆𝑖, 𝑗 + ∆𝑗, 𝑡 + ∆𝑡) − 𝑔(𝑖, 𝑗, 𝑡)|𝑁

𝑗=0
𝑁
𝑖=0  (4.8) 

Here ∆𝑖 and ∆𝑗 are block displacements, (∆𝑖,∆𝑗,∆𝑡) determines motion vector of current 

block in the reference frame which has a ∆𝑡 difference in time from current frame. This 

process continues until the adjacent blocks are not any better than the center or when the 

maximum number of search steps is reached. The motion vector from the initial block to 

the final center is thus obtained. DIA is the simplest searching strategy providing the 

fastest speed for motion estimation. In DIA, the two up, two left, two down and two right 

blocks are checked in each step. UMH is the most common strategy of motion estimation 

and utilizes unsymmetrical-cross, large hexagon, uneven multi-hexagon-grid, and small 

hexagon in each step to obtain the best matching block. As a result, a power-performance 

trade off exists between the two motion estimation algorithms, with visual quality being 

better for the slower running UMH as compared to the DIA algorithm. 

In our work, the choice of DIA and UMH algorithms for motion estimation is 

considered as two possible operating points of the video encoding application. 

4.3.2 Simulation Tools 

4.3.2.1 Processor performance modeling 

We use the Gem5 simulator [26] for the performance modeling of our target 

system. Gem5 is an event-driven cycle-accurate simulator, which provides a highly 



101 
configurable simulation framework, multiple ISAs, diverse CPU models, multiple cache 

coherence protocols and interconnects models. It also supports both full-system and 

system-call emulation modes. The full-system simulation mode simulates a complete 

computer system including operating system kernel and I/O devices, while in system-call 

emulation mode, the common system calls are emulated by calling the host OS. Besides, it 

provides a clear interface for check-pointing, fast-forwarding, debugging and statistics. 

Our Alpha ISA based architecture described in Section 4.1.1 is simulated in full-

system mode, which models a complete Linux system with kernel version 2.6.27. We run 

the x264 benchmark on Gem5 by fast forwarding the simulation starting point to the pre-

defined start of region of interest (ROI), which is the parallel execution phase. We start 

collecting the statistics such as the number of integer/floating point instructions, the 

number of accesses and misses to each hardware unit and the total number of cycles when 

the benchmark is running in the ROI and finish when the benchmark leaves the ROI. We 

use the input videos provided in PARSEC and use FFMPEG [62] to change the video 

resolutions. 

4.3.2.2 Processor power modeling 

We use McPAT 0.8 [28] for the power modeling of our target architecture. 

McPAT is an integrated power, area, and timing hierarchical modeling framework for 

multi-core and many-core processor configurations targeting technologies ranging from 

90nm to 22nm. McPAT supports both static and dynamic power modeling at the micro-

architectural level, circuit and technology level. 

At the micro-architectural level, McPAT includes models of major architectural 

components such as cores, interconnection networks, caches, memory controllers, and 
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clocking. At the circuit level, the architectural building blocks are mapped into four basic 

circuit structures: hierarchical wires, arrays, complex logic, and clocking networks. At the 

technology level, the physical parameters of devices and wires, such as unit resistance, 

capacitance, and current densities, is calculated based on the data from the ITRS roadmap. 

4.4 Results 

In this section we present results on the accuracy of the MARS models, the Pareto 

optimal fronts, and the success of the cross-stack energy optimization goals. A training 

dataset of 360 points is obtained through Latin Hypercube Sampling (see Section 4.2.2) 

and cycle-accurate simulation of the region of interest of the x264 benchmark (see Section 

4.3.2) on an Intel Xeon machine. Each simulation point takes 3 to 7 hours depending on 

the video frame resolution. 

4.4.1 Evaluating the MARS Model Accuracy 

In this section, our goal is to show the impact of feature reduction in improving the 

model accuracy of MARS. First, we identify the most significant micro-architectural 

parameters using the cross-validation and backward feature reduction as described in 

section 4.2.3. We then compare the accuracy of the model trained with the selected 

significant features to the model trained with the full feature set. 

In the caret R package, the feature reduction procedure is combined with the 

MARS modeling. Here, both the micro-architectural and x264 application parameters are 

considered. Because the options for each application parameter are categorical values, we 

consider each option as a separate variable by assigning 0 or 1 if the option is not taken or 

taken. We also preprocess the raw training dataset by normalizing all the model input 
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variables (architectural design parameters and application parameter) to 0~1 using the 

maxi-min normalization as described below: 

 𝑛𝑜𝑟𝑚(𝑥) = (𝑥 − min (𝑥))/(max(𝑥) − min (𝑥)) (4.9) 

The models are generated in less than 100 seconds on an 8 core Intel Xeon 

workstation. 

Table 4.2 shows the significant micro-architectural operating parameters in FPS 

modeling and power modeling. Out of the 19 micro-architectural operating parameters of 

Table 4.1, 7 are selected for FPS modeling and 10 are selected for power modeling. To 

show the impact of feature reduction on the modeling accuracy, the performance of the 

MARS model with all features of Table 4.1 is compared against the MARS model with 

the reduced feature set. As can be seen in Table 4.3 the feature reduction improves the 

accuracy of the model and reduces the overall design space from 15 million to 0.05 

million operating points. 

To evaluate the performance of MARS models in predicting the performance of 

operating points outside the training set, we sampled 20 new test points through LHS 

Table 4.2: Significant predictor variables selected after feature reduction for FPS and 
Power modeling. 9 and 12 out of 21 predictor variables are chosen for FPS and Power 

modeling respectively 
Performance 
Metrics Predictor variables 

FPS 
(9/21) 

Resolution, Motion estimation algorithm, Number of cores, Number 
of integer ALU, Number of physical integer registers, Instruction 
queue size, Core frequency, L1 cache associativity, L2 cache size 

Power 
(12/21) 

Number of cores, L1 cache size, L2 cache size, Resolution, L1 cache 
associativity, Core frequency, Motion estimation algorithm, L2 cache 
associativity, Number of physical integer registers, Number of 
physical floating point registers, DTLB size, Store queue entries 
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sampling strategy with different architectural and application parameter values. Figure 4.2 

shows the boxplot of the error percentage distribution. The error is calculated using the 

values of the FPS and power consumption predicted by the MARS model and that 

obtained by directly simulating the test points. 

4.4.2 Pareto Front: FPS, Power 

Figures 4.3 and 4.4 respectively show the power-FPS Pareto front for different 

video frame resolutions using the DIA and UMH motion estimation method. As expected, 

a larger FPS is possible at lower video frame resolutions. Also for the same resolution and 

Table 4.3: R and RMSE comparison between the models with and without feature 
reduction. The total operating points reduces from 15 million to 0.05 million after 

feature reduction 

Performance 
Metrics 

FPS modeling Power modeling 
With feature 
reduction (9) 

Without feature 
reduction (21) 

With feature 
selection (12) 

Without feature 
selection (21) 

R2 0.9657 0.9084 0.9467 0.8954 
RMSE 1.829 2.566 0.0124 0.1358 
 

 

Figure 4.2: Boxplot of the prediction error distribution 
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FPS, the UMH motion estimation algorithm consumes more power than the DIA 

algorithm. 

 
 

 

Figure 4.3: Pareto front for different video frame resolutions with motion estimation 
algorithm DIA 

 
 
 

 

Figure 4.4: Pareto front for different video frame resolutions with motion estimation 
algorithm UMH 
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4.4.3 Cross-stack Adaptation Impact 

To evaluate our cross-stack adaptation framework for power and energy savings, 

for a user specified video frame resolution and FPS, we compare the power consumption 

of Pareto optimal operating point at a lower visual quality to that of Pareto optimal point at 

a higher visual quality. Here, we assume that the user requires a specified resolution and 

FPS, but is flexible with the visual quality. For our experiments, we fix the resolution at 

480x320 and FPS at 20. Table 4.4 lists the micro-architectural configuration and the 

corresponding power consumption for the Pareto optimal point for both higher and lower 

visual qualities. A 55% power-saving is achieved by jointly tuning the micro-architectural 

configurations and the visual quality. Table 4.4 also shows that when tuning from the 

Pareto optimal configuration with higher visual quality to the Pareto optimal configuration 

with lower visual quality, not all the parameters need to be changed. The visual quality is 

reduced by switching from the UMH to the DIA motion estimation algorithm. The core 

Table 4.4: Power consumption and micro-architectural parameter values for the Pareto 
optimal points at higher and lower visual quality for video frame resolution of 

480x320 and FPS of 20 
 UMH DIA 
Power (W) 5.12 2.32 
Number of integer ALU 4 4 
Core frequency (GHz) 1.5 1 
Number of physical integer registers 128 128 
Number of physical floating point registers 64 64 
Store queue entries 32 32 
Instruction queue entries 32 32 
L1 cache size (KB) 64 32 
L1 cache associativity 4 4 
DTLB size 128 128 
L2 cache size (MB) 1 1 
L2 cache associativity 8 8 
Number of cores 4 2 
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frequency, L1 cache size are decreased. The number of cores utilized drops from 4 to 2. 

The Pareto optimal points calculated can be stored in look-up tables. At run-time, for a 

new operating condition (such as power or FPS requirements), the determination of the 

operational operating point can thus be done rapidly. Table 4.5 shows the Pareto optimal 

operating points with highest and lowest FPS and corresponding power consumption for 

different video frame resolutions and motion estimation algorithms. Note that the total size 

of Pareto optimal set consists of 60 points. 

4.4.4  Discussion: Ease of Reconfiguration 

In this section we briefly review the existing literatures for the feasibility of run-

time reconfiguration of micro-architectural and application parameters. In general, the 

tuning of these micro-architectural parameters on the fly involves either hardware support 

by adding circuitries to shut down the unused part of each component or to put the unused 

part into sleep mode. The number of cores, functional units and physical registers can be 

controlled through clock-gating [63] – [68]. Clock-gating is a method to prevent the clock 

signal from reaching the selected components by adding an enable condition signal to the 

components. Clock-gating has a small overhead in terms of the added circuit and a 

Table 4.5: Pareto optimal operating points for highest and lowest FPS and 
corresponding power consumption for different video frame resolutions and motion 

estimation algorithms 
ME algorithms DIA UMH 

Performance Metrics FPS Power (W) FPS Power (W) 
High Low High Low High Low High Low 

Resolutions 
320x240 41 31 5.42 2.41 29 23 4.65 2.77 
480x320 27 20 5.26 2.32 20 12 5.12 2.38 
640x480 15 6 4.74 2.3 9 5 4.34 2.41 
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performance overhead of one to few clock cycles [69]. The core operating frequency can 

be changed through DVS (dynamic voltage scaling) by adjusting the core voltage at run-

time [70] [71]. The voltage transition is often achieved through inductor-based voltage 

regulator. Depending on the technologies used, the voltage transition times are in the order 

of tens of microseconds [72]. The store, load and instruction queues are all CAM-like 

(content address memory) structures which can be banked at design time. With these 

structure implementations, clock-gating technology can be applied to each bank to 

dynamically tune the queue size [73] [74]. The ROB, BTB and TLB are arrays of CAM 

which can be partitioned into banks as well and each bank can be disabled separately [75] 

– [78]. Shutting down these CAM and CAM-like structures helps mitigate leakage power. 

The bank implementation can also be applied to caches with the cache changed by 

shutting down the cache banks using clock-gating techniques. The cache associativity can 

be tuned by logically concatenating neighboring ways [79] – [82]. The cache way 

concatenation is implemented by adding small and simple cache way select registers. The 

associativity sets with corresponding partition are then enabled using a mask register. The 

cache way concatenation and partitioning only require an OS context-switch time and on 

order of 10~30 cycles [83]. For the application level qualities adaptation, choice of the 

motion estimation algorithm and the video frame resolutions can be set as global variables 

in the encoder. The encoder the checks these global variables before encoding each frame 

[84]. To lower the associated overhead, the check of the global variables need only be 

done when a triggering event, such as a change in the number of tasks, occurs. In case the 

application source code is not available, application parameter tuning can be done through 
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binary instrumentation tools (such as the Pin tools [85] for x86) to modify the compiled 

binaries. 

4.5 Related Work 

In this section we briefly review the literature on micro-architectural and/or 

software run-time energy adaptation with an emphasis on previous research where cross-

stack energy optimization was used. Regarding run-time adaptation of micro architectural 

parameters, tuning of frequency [86], cache parameters [79] [83], interconnect parameters 

[87] have been reported.  For application layer run-time energy adaptation [88] [89], the 

benchmarks were drawn from the multimedia. In [88], tuning parameters studied include 

the dithering mode of video player, number of hidden layers in a neural network based 

speech recognizer, sampling rate of audio devices (voice-over-IP). In [89], video bit, video 

distortion, and scene activity were considered.  

Work related to run-time cross-stack energy optimization is presented in [90] [84] 

[91]. In [90], for a video encoder, the number of cores, the encoder parallelization schemes 

generated using the MPSoC parallelization assist (MPA) tool, and the core frequency were 

considered as run-time parameters. At design time, NSGA-II was used to generate the 

Pareto-set, and each operating point was evaluated using TLMSim. At run-time, an online 

MMKP (Multidimensional Multiple-choice Knapsack Problem) heuristic strategy was 

used to select the Pareto optimal from the look-up tables for different tasks depending on 

FPS requirements. In [84], for video encoding and decoding, CPU frequency, 

encoder/decoder qualities were chosen as the run-time parameters. At design time, 

analytical models were derived for power, application cycles, and the allocated task 

processing time. The power model and application cycles model were respectively 
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obtained via measurements on a laptop by varying the CPU frequency settings and 

encoder/decoder video qualities. The allocated processing time for each task was 

calculated using the application cycles and core frequency. At run-time, a global and an 

internal adaptation scheme were employed. The global adaptation was triggered when a 

new task was generated or finished. The task utilization was calculated from the task 

processing time and the task release period was monitored at run-time. The core frequency 

and video quality were gradually increased or decreased until the maximum task 

utilization was reached or the CPU utilization was 100%. The internal adaptation was 

triggered when any task CPU utilization was below a certain threshold by adapting the 

CPU allocation and/or CPU frequency. In [91], for video applications, cache size, 

associativity, video qualities and DVS were considered as run-time parameters. At design 

time, Wattch and SimpleScalar were used to exhaustively simulate all the configurations 

(cache and DVS) for all the video qualities. For each video quality, the best configuration 

was chosen as that with the minimum energy consumption. Run-time adaptation was 

triggered when a new task was created or a current task was finished, and the operating 

point was selected from the look-up table. For a new task, the quality of the new task was 

gradually increased from the minimum video quality. At the end of current task, the 

lowest quality of the remaining tasks was gradually increased.  

Compared to these prior works on cross-stack optimization, our proposed 

modeling and exploration framework can handle a large number of operating parameters 

and associated operating space consisting of millions of points through the use of  

machine learning algorithms to efficiently generate Pareto optimal power-performance 

sets for run-time adaptation. 
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4.6 Conclusions 

In this chapter, we have presented a statistical machine learning based modeling 

and exploration framework that enables cross-stack optimization of energy at run-time. As 

the number of micro-architectural, system software, and application and parameters that 

need to be tuned at run-time grows, a scalable method is required to determine the optimal 

operating point under dynamically changing operating conditions. We constructed a 

highly accurate (R2 ~ 0.95) multi adaptive regression spline model from a training data set 

derived from < 1% of the total operating space. The model uses 10 micro-architectural and 

2 application parameters to predict performance and power. We then used the model to 

derive the power-performance Pareto optimal front which can then be stored in look-up 

tables for run-time use. In a use-case scenario for extending the battery life, the system 

operating points are adapted based on the energy availability for the task.  

Comparison of the power consumption of Pareto optimal operating point at a lower 

visual quality to that of Pareto optimal point at a higher visual quality for an x264 video 

encoder executing on a prototype quad core processor indicates a power saving of 55%. 

Here the video resolution and throughput were fixed while the visual quality and the 

micro-architectural parameters were simultaneously tuned. Of the 10 micro-architectural 

parameters considered only 3 operating parameters (L1 cache size, number of cores, and 

core frequency) had to be tuned. Similar Pareto optimal tradeoffs between power and FPS 

are possible for other video resolutions and visual qualities.  

Several extensions of the work are possible – our proposed framework can be 

applied for run-time optimization of other metrics such as temperature and system noise. 

The micro-architectural parameters that are candidates for tuning can be extended to 
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include interconnection network and non-processor related system parameters such as 

display settings. In this work we have only considered tuning of the micro-architectural 

and application level parameters. Future work could extend the computing stack 

parameters that are tuned to include operating system parameters such as core allocation 

and scheduling budgets. Also, the statistical machine learning models could be extended 

to incorporate system events as predictor variables so as to capture program execution 

dynamics. The models are then evaluated at run-time based on system events captured by 

hardware event counters. However, in this case, rather than pre-computed look up tables, 

the Pareto optimal front exploration would also have to be done at run-time. 

 



 

 

 CONCLUSIONS CHAPTER 5:
 
 

In this dissertation, we sought to address the challenge of designing complex 

many-core processors by establishing a machine learning based modeling frame work. 

The machine learning models are able to capture the dependence of the performance, 

power and area of the processor to both micro-architectural and application level 

parameters to a high degree of accuracy. Training such models requires relatively a small 

simulation time, since typically only a fraction of the design space (< 0.1%) has to be 

simulated.  

5.1 Summary of Results 

In this dissertation, we investigated the suitability of a number of machine learning 

algorithm in micro-architectural modeling and concluded that the Multivariate Adaptive 

Regression Splines shows good performance both in terms of accuracy and model 

construction time. Despite the vast reduction in design time possible with the statistical 

machine learning (SML) model driven micro-architectural exploration its scalability as the 

number of cores increase is limited. To achieve our goal of building scalable many-core 

models with good accuracy, we employed a “divide and conquer” strategy in constructing 

a hierarchical performance, area, and power models for many-core processors. The entire 

micro-architectural design space of a many-core processor was divided into cluster-level 

parameters and interconnect-level parameters. Performance, power, and area models were 

constructed separately for the clusters and the global interconnect. The interactions 
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between the clusters were captured through two parameters – the interconnect latency, and 

the average injection rate of packets into the network. In spite of the simplifications 

introduced by our hierarchical modeling framework, we obtained a good accuracy with 

this approach with a vastly reduced modeling time. Also, our approach showed a worst 

case linear scaling with the number of cores as opposed a super-linear power law type 

scaling observed with previously proposed approaches.  

We then applied the statistical machine learning based modeling and exploration 

framework to enables cross-stack optimization of energy at run-time. As the number of 

micro-architectural, system software, and application and parameters that need to be tuned 

at run-time grows, a scalable method is required to determine the optimal operating point 

under dynamically changing operating conditions. We constructed a highly accurate 

Multivariate Adaptive Regression Splines model from a training data set derived from < 

1% of the total operating space. The model uses 10 micro-architectural and 2 application 

parameters to predict performance and power. We then used the model to derive the 

power-performance Pareto optimal front which can then be stored in look-up tables for 

run-time use. In a use-case scenario for extending the battery life, the system operating 

points are adapted based on the energy availability for the task. 

5.2 Future Work 

Although we have compared the performance of a number of machine learning 

algorithms, a study of other algorithms such as Kriging, Radial Basis Functions can be 

undertaken. In application areas in mechanical engineering [57] such algorithms have 

shown comparable performance to Multivariate Adaptive Regression Splines. We can also 

extend the application to a number of other benchmarks such as SPEC 2006 and EMBC 
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embedded benchmarks. We can also investigate the suitability our model driven approach 

in the incorporation of higher level architectural parameters such as the type of the 

instruction set and compiler options.  

Our work on developing hierarchical model for many-core processors can be 

extended in a number of ways. The injection rate of each cluster could be treated as a 

separate predictor variable for the global interconnect model. The contention on the 

network could be captured more accurately, by dividing the individual applications into 

compute and memory access phases, and separately developing injection rate models for 

these phases. The heterogeneity of the many-core processor could be extended by 

considering GPUs and DSPs as part of the clusters.  

Several extensions of our work on run-time optimization are possible - our 

proposed framework can be applied for run-time optimization of other metrics such as 

temperature and system noise. The micro-architectural parameters that are candidates for 

tuning can be extended to include interconnection network and non-processor related 

system parameters such as display settings. In this work we have only considered tuning 

of the micro-architectural and application level parameters. Future work could extend the 

computing stack parameters that are tuned to include operating system parameters such as 

core allocation and scheduling budgets. Also, the statistical machine learning models 

could be extended to incorporate system events as predictor variables so as to capture 

program execution dynamics. The models are then evaluated at run-time based on system 

events captured by hardware event counters. However, in this case, rather than pre-

computed look up tables, the Pareto optimal front exploration would also have to be done 

at run-time. 
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