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ABSTRACT

KAI PAN. Constraint-based generation of database states for testing database
applications. (Under the direction of DR. XINTAO WU)

Testing is essential for quality assurance of database applications. To test the

quality of database applications, it usually requires test inputs consisting of both

program input values and corresponding database states. However, producing these

tests could be very tedious and labor-intensive in a non-automated way. It is thus

imperative to conduct automatic test generation helping reduce human efforts.

The research focuses on automatic test generation of both program input values

and corresponding database states for testing database applications. We develop our

approaches based on the Dynamic Symbolic Execution (DSE) technique to achieve

various testing requirements. We formalize a problem for program-input-generation

given an existing database state to achieve high program code coverage and propose an

approach that conducts program-input-generation through auxiliary query construc-

tion based on the intermediate information accumulated during DSE’s exploration.

We develop a technique to generate database states to achieve advanced code cov-

erage criteria such as Boundary Value Coverage and Logical Coverage. We develop

an approach that constructs synthesized database interactions to guide the DSE’s

exploration to collect constraints for both program inputs and associated database

states. In this way, we bridge various constraints within a database application:

query-construction constraints, query constraints, database schema constraints, and



iv

query-result-manipulation constraints. We develop an approach that generates tests

for mutation testing on database applications. We use a state-of-the-art white-box

testing tool called Pex for .NET from Microsoft Research as the DSE engine. Empiri-

cal evaluation results show that our approaches are able to generate effective program

input values and sufficient database states to achieve various testing requirements.
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CHAPTER 1: INTRODUCTION

Database applications are ubiquitous nowadays and have influenced many aspects

of human life. It is critical to assure high quality of database applications before

they are deployed. As testing database applications can be classified into various

categories: functional testing, performance testing (load and stress, scalability), se-

curity testing, environment and compatibility testing, and usability testing, a fun-

damental task is to conduct test generation. Specially, for the purpose of testing

database applications, the test generation consists of both program input values and

associated database states. However, manually producing these tests could be very

time-consuming and labor-intensive. In this research, we focus on developing auto-

mated test-generation approaches under various problem contexts, aiming to satisfy

multiple testing requirements.

To reduce laborious human effort, researchers have developed techniques and tools

to automate the software testing activities. Recently, the Dynamic Symbolic Execu-

tion (DSE) technique was proposed and tools for different programming languages

were developed (e.g., C [49], Java [38], and C# [1]). DSE has also been applied on

testing database applications [38, 53]. However, for testing database applications,

under different problem contexts, there are drawbacks and limitations within existing
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approaches. In addition, as code coverage is considered to be a good indicator to

expose potential faults in program code, test generation approaches aiming to satisfy

multiple testing requirements are still missing.

1.1 Background

Automated test data generation techniques could be divided into two main cate-

gories: static and dynamic. For the dynamic class, recently, dynamic symbolic exe-

cution (DSE) (or concolic testing, as a portmanteau of concrete and symbolic) was

proposed [24, 49]. In the traditional symbolic execution [35, 16], a program is exe-

cuted symbolically with symbolic inputs rather than concrete inputs. DSE extends

the traditional symbolic execution by running a program with concrete inputs while

collecting both concrete and symbolic information at runtime, making the analysis

more precise [24].

DSE first starts with default or arbitrary inputs and executes the program con-

cretely. Along the execution, DSE simultaneously performs symbolic execution to

collect symbolic constraints on the inputs obtained from predicates in conditions.

DSE flips a branch condition and conjuncts the negated branch condition with con-

straints from the prefix of the path before the branch condition. DSE then feeds

the conjuncted conditions to a constraint solver to generate new inputs to explore

not-yet-covered paths. The whole process terminates when all the feasible program

paths have been explored or the number of explored paths has reached the predefined

upper bound.
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DSE has also been used in testing database applications [38, 53]. Emmi et al. [38]

developed an approach for automatic test generation based on DSE. Their approach

uses a constraint solver to solve collected symbolic constraints to generate both pro-

gram input values and corresponding database records. The approach involves run-

ning the program simultaneously on concrete program inputs as well as on symbolic

inputs and a symbolic database. In the first run, the approach uses random concrete

program input values, collects path constraints over the symbolic program inputs

along the execution path, and generates database records such that the program

execution with the concrete SQL queries can cover the current path. To explore a

new path, it flips a branch condition and generates new program input values and

corresponding database records.

To address the issue that the associated databases are not in place during test

generation, Taneja el al. [53] proposed the MODA framework that establishes a mock

database to mimic the real database. Within the MODA framework, operations on the

real database are performed over the mock database. The approach is implemented

upon Pex [55] and extends Pex with two capabilities: first, the transformed code

helps Pex handle database interactions; second, the approach inserts the generated

records into the mock database to help prepare the initial database state.

1.2 Challenges and Solutions

Existing database application testing approaches usually employ reaching a high

program code coverage as a main objective. However, it is also imperative to enforce
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advanced structural coverage criteria such as Logical Coverage (LC) and Boundary

Value Coverage (BVC) for effective testing. In particular, BVC requires to execute

programs using values from both the input range and boundary conditions and re-

quires multiple test inputs at boundaries [36]. The reason is that errors tend to occur

at extreme or boundary points. LC criteria involve instantiating clauses in a logical

expression with concrete truth values. Researchers have focused on active clause cov-

erage criteria to construct a test such that the value of a logical expression is directly

dependent on the value of the clause that we want to test. Among these active clause

coverage criteria, the Correlated Active Clause Coverage (CACC) [3] is equivalent

to masking Modified Condition/Decision Coverage (MC/DC), of which the MC/DC

has been chosen by US Federal Aviation Administration [14] as a recommended test-

generation criterion among logical criteria.

In this research, we develop an approach on how to generate sufficient database

states to satisfy advanced coverage criteria including BVC and CACC criteria. We

investigate the close relationship between program inputs and executed queries. We

also make sure the generated database states can lead the later program executions

satisfy those advanced coverage criteria after query result set is returned.

Existing approaches often focus on generating database states from scratch. In

practice, there may exist a copy of live databases that can be used for database ap-

plication testing. Using an existing database state is desirable since it tends to be

representative of real-world objects’ characteristics, helping detect faults that could
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cause failures in real-world settings. On the other hand, to cover a specific program

code portion (e.g., block), appropriate program inputs also need to be generated for

the given existing database state. However, it often happens that a given database

with an existing database state (even with millions of records) returns no records (or

returned records do not satisfy branch conditions in the subsequently executed pro-

gram code) when the database receives and executes a query with arbitrarily chosen

program input values. Hence, there is a significant challenge in our problem con-

text: there exists a gap between program-input constraints derived from the program

and those derived from the given existing database state; satisfying both types of

constraints is needed to cover a specific program code portion. During DSE, these

two types of constraints cannot be naturally collected, integrated, or solved for test

generation.

In this research, we formalize a problem for program-input-generation given an

existing database state to achieve high program code coverage and propose an ap-

proach that conducts program-input-generation through auxiliary query construction

based on the intermediate information accumulated during DSE’s exploration. We

deal with the problem of extending DSE to handle database applications. We propose

an algorithm that, given a path condition that cannot be covered(because it depends

on a particular result of an SQL query executed on the path), constructs auxiliary

queries to find database entries that are partially consistent with the program state,

and then uses a constraint solver to construct new input values that are consistent
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with the path conditions and the existing database state. We expect the proposed

approach results in an improved program code coverage.

Another problem context is that, sometimes, the real database is not physically

available. The MODA framework [53] uses a mock database, replacing the real

database, that the tests can be executed with. As aforementioned, existing approaches

[38, 53] often use constraints from concrete queries observed at runtime to conduct

test generation. The generated records are then inserted back to the database(either

real database or mock database). However, it often happens that the concrete queries

may contain program inputs directly or after a chain of computations. Constraints

obtained from the concrete queries derived from DSE’s exploration may conflict with

other constraints (e.g. query-result-manipulation constraints and database schema

constraints). There exists a gap between the associated database state and the query

result set, which may lead to conflicts and failure of high program code coverage.

In this research, we develop an approach called SynDB that treats symbolically

both the associated database state and the embedded query by constructing synthe-

sized database state and synthesized database interactions. We transform the original

code under test into another form that the synthesized database interactions can oper-

ate on. After the code transformation, the synthesized database interactions integrate

the query constraints into normal program code. The synthesized database interac-

tions guide the DSE’s exploration to collect constraints for both program inputs and

associated database states. In this way, we correlate various kinds of constraints
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within a database application.

Meanwhile, we extend our research to another testing aspect called mutation test-

ing that is to assess and improve the quality of test inputs. Mutation testing is a

fault-based software testing technique that is intensively studied for evaluating the

adequacy of tests [19]. The original program under test is mutated into a set of

new programs, called mutants, caused by syntactic changes following a set of rules.

The mutants are (strongly) killed if running the mutants against given tests produces

different results than the results of the original program. Killing more mutants re-

flects better adequacy and higher reliability of the tests under assessment. However,

automatically producing tests that can kill mutants could be very time-consuming

and even intractable [20], because a short program may contain a large number of

mutants.

In this research, we develop an approach called MutaGen for killing mutants in

database applications based on our previous SynDB framework [46]. To generate mu-

tants that occur in the program code, we apply an existing code-mutation tool [70] on

the code transformed with the SynDB framework. To generate SQL-query mutants,

we apply an existing SQL-query-mutation tool [57] to generate SQL-query mutants

at query-issuing points. We then derive query-mutant-killing constraints considering

both the original query and its mutants. We finally incorporate the derived constraints

into the transformed code. Specifically, solving these query-mutant-killing constraints

helps produce a database state on which running the original query and its mutants
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can cause different query results, thus killing the corresponding SQL-query mutants.

1.3 Tools and Subject Applications

Various DSE tools for different languages have been developed (e.g., C [49], Java

[38], and C# [1]). Throughout this research, we use a state-of-the-art white-box

testing tool called Pex [1] for .NET from Microsoft Research as the DSE engine. Pex

uses DSE to explore feasible execution paths of the program under test. Pex also

allows testers to predefine thresholds regarding various settings (e.g., running time,

number of runs), so that the DSE procedure could be terminated if the predefined

thresholds are exceeded at runtime.

Pex contains a built-in constraint solver called Z3 1. Z3 is a high-performance

theorem prover being developed at Microsoft Research. The constraint solver Z3

supports linear real and integer arithmetic, fixed-size bit-vectors, extensional arrays,

uninterpreted functions, and quantifiers. The powerful functionalities of Z3 support

generating effective tests for Pex.

We mainly conduct the empirical evaluations on three open source database appli-

cations: iTRUST2, RiskIt3, and UnixUsage4. These applications contain comprehensive

programs and have been previously widely used as evaluated applications (iTRUST [15],

RiskIt and UnixUsage [27, 52]).

iTRUST is a class project created at North Carolina State University for teaching

1http://research.microsoft.com/en-us/um/redmond/projects/z3/
2http://agile.csc.ncsu.edu/iTrust
3https://riskitinsurance.svn.sourceforge.net
4http://sourceforge.net/projects/se549unixusage
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software engineering. It consists of functionalities that cater to patients and the

medical staff. The accompanied database contains 30 tables and more than 130

attributes. RiskIt is an insurance quote application that makes estimation based on

users’ personal information, such as zipcode and income. It has an existing database

containing 13 tables, 57 attributes, and more than 1.2 million records. UnixUsage is an

application to obtain statistics about how users interact with the Unix systems using

different commands. Programs in UnixUsage have about 2.8K non-commented lines

of code and have a database containing 8 tables, 31 attributes, and more than 0.25

million records. The three applications were originally written in Java. To test them

with the Pex DSE engine, we convert the original Java source code into C# code

using a tool called Java2CSharpTranslator5. Java2CSharpTranslator is an Eclipse

plug-in based on the fact that Java and C# have a lot of syntax/concept in common.

The detailed evaluation subjects and results can be found on our project website6.

1.4 Outline

The remainder of this dissertation is organized as follows: Chapter 2 surveys ex-

isting work related to our research. Chapter 3 presents a database state generation

technique for advanced coverage criteria. Other than code coverage as a main goal, we

aim to achieve advanced structural coverage criteria for generating database states.

As these advanced structural coverage criteria focus on covering branch conditions

with multiple values, we investigate how the constraints from the branch conditions

5http://sourceforge.net/projects/j2cstranslator/
6http://www.sis.uncc.edu/ xwu/DBGen
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will have impact on generating associated database states. Chapter 4 presents an

approach to generate effective program input values given an existing database state.

While it is sometimes beneficial to use an existing database state to conduct testing

activities, we solve the problem about how to generate corresponding appropriate

program input values. We develop an approach that uses the intermediate informa-

tion collected from DSE’s exploration to construct auxiliary queries. After running

the constructed auxiliary queries on the given database state, we attain effective pro-

gram input values. Chapter 5 presents a DSE-based test-generation technique via

synthesized database interactions. We observe that existing test database generation

approaches often use constraints from concrete queries in the program code to con-

duct the generation task. However, such generation strategy may face a problem that

there are conflicts between constraints from concrete queries and other constrains (e.g.

query-result-manipulation constraints and database schema constrains). In this chap-

ter, we present an approach that constructs synthesized database states and database

interactions. We transform the constraints from both queries and database schema

into normal program code. We bridge various constraints within a database applica-

tion: query-construction constraints, query constraints, database schema constraints,

and query-result-manipulation constraints. In this way, we guide DSE’s exploration to

track the constraints needed for generating both program input values and associated

database states. Chapter 6 investigates test generation for mutation testing. Muta-

tion testing aims to improve the quality of test inputs. We present an approach that
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conducts test generation consisting of both program input values and database states

so that these tests are able to reach a high mutation testing score. The approach is

based on our SynDB framework [46]. We generate mutants for both program code

and SQL queries. Query-mutant-killing constraints are derived and incorporated into

the transformed code generated by SynDB. The transformed code is able to guide

DSE to collect constraints and generate tests for killing both program-code mutants

and SQL-query mutants. Chapter 7 concludes the dissertation.



CHAPTER 2: RELATED WORK

Database application testing has attracted much attention recently. This chap-

ter reviews background information. We also discuss how our research relates with

existing work about database application testing.

2.1 Testing Database Applications with DSE

Emmi et al. [38] developed an approach for automatic test generation for a database

application. Their approach is based on DSE and uses symbolic constraints in con-

junction with a constraint solver to generate both program inputs‘ and database

states. We develop an approach that leverages DSE to generate database states to

achieve advanced structural coverage criteria. On the other hand, this approach in-

serts records into the database during the DSE process, thus it necessarily requires the

database to be in place. In our research, we focus on program-input generation given

an existing database state, avoiding the high overhead of generating new database

states during test generation. We also develop an approach that uses synthesized

database states and interactions even if the physical database is not available. Li

and Csallner [37] considered a similar scenario, i.e., how to exploit existing databases

to maximize the coverage under DSE. However, their approach constructs a new

query by analyzing the current query, the result tuples, the covered and not-covered
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paths, and the satisfied and unsatisfied branch conditions. It can neither capture the

close relationship between program inputs and results of SQL queries, nor generate

program inputs to maximize code coverage.

Taneja et al. [53] developed the MODA framework that is applicable when the

database is not available. The approach uses the mock database that the tests can

be executed with. Also, tests generated by MODA can lower the false warnings than

previous mocking techniques. Our proposed approach focuses on the problem, which

is often neglected by existing approaches, that the embedded queries could contain

program parameters. There may not be enough constraints before the embedded

queries. Thus, when considering the constraints from the concrete queries, we may

face the conflicts with either schema constraints or the late executed program path

conditions. Meanwhile, our approach does not require the database to be in place,

which can improve the executing efficiency. Some approaches [69, 56] conduct test

generation through modeling the environment and writing stub functions. Using stub

functions can isolate the unit under test from the environment. However, for database

applications, a significant problem of using stub functions is that program-execution

constraints and environment constraints are also isolated. Our approach uses a fully

symbolic database and passes it through synthesized database interactions. Hence

all constraints within a database application are not isolated from each other. Our

approach can guarantee the generated tests are always valid.
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2.2 Testing Database Applications with Other Techniques

The AGENDA project [11, 12, 22] addressed how to generate test inputs to sat-

isfy basic database integrity constraints and does not consider parametric queries or

constraints on query results during input generation. One problem with AGENDA

is that it cannot guarantee that executing the test query on the generated database

states can produce the desired query results. Bati et al. developed an approach [4]

that uses random inputs to be the tests for testing database applications. However,

the control-flow and data-flow information within an application could be ignored,

leading that a great number of redundant tests will be generated, of which only a

small number of tests are valid and effective to cover feasible program paths.

Willmor and Embury [63] developed an approach that builds a database state for

each test case intensionally, in which the user provides a query that specifies the

pre- and post-conditions for the test case. The approach is able to reduce human

effort while predefining effective constraints for generating database states are still

challenging. Binnig et al. [10, 5] extended symbolic execution and used symbolic

query processing to generate some query-aware databases. However, the test database

states generated by their QAGen prototype system [10] mainly aim to be used in

database management systems (DBMS) testing. QAGen can generate a test database

that guarantees the size of the intermediate join results to test the accuracy of the

cardinality estimation components or a test database that guarantees the input and

the output sizes for an aggregation operator in order to evaluate the performance of
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the aggregation algorithm. However, QAGen considers only cardinality constraints on

query results, which are not sufficient to support analyzing various kinds of constraints

within a database application. Binnig et al. [9, 6] proposed the approach of Reverse

Query Processing (RQP) that considers cases where the query-execution result is

given. It can generate database states prior to the execution of a single query by

considering the query itself as well as the results after the execution. Although RQP

can be applied in application programs, it still lacks the ability to deal with complex

program logic where the constraints derived from concrete queries are infeasible.

Khalek et al. [51] conducted black-box testing of database management systems

(DBMS). They developed an ADUSA prototype to generate database states and

expected results of executing given queries on generated database states, given a

database schema and an SQL query as input. Unlike using constraint solver, ADUSA

uses the Alloy Analyzer that uses SAT to generate data. Veanes et al. [61] proposed

a test-generation approach for given SQL queries. The approach isolates each indi-

vidual query to generate tests, but does not consider the interactions among queries.

Moreover, the approach requires explicit criteria from developers to specify what tests

should be generated.

2.3 Other Testing Criteria

Various coverage criteria [3, 36] have been proposed to generate test inputs for

traditional (non-database) applications. BVC and LC are criteria that complement

the widely used branch coverage. Most recently, Pandita et al. [48] developed a
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general approach that instruments transformed branch conditions to source code and

guides DSE to reach high BVC and LC for traditional applications. However, those

criteria have not been directly supported in testing database applications.

Other than achieving high program code coverage that benefits in exposing program

faults, testing database applications also has other target requirements. Focusing on

an isolated SQL statement, Tuya et al. [60] proposed a coverage criterion, SQLFpc

(short for SQL Full Predicate Coverage), based on the Modified Condition/Decision

Coverage. Their approach mutates a given SQL query statement into a set of queries

that satisfy MC/DC with the aim of detecting faults in the SQL query statement.

Riva et al. [18] developed a tool to generate data to enforce SQLFpc for a SQL

statement. Our research work leaves the embedded SQL statement unchanged. In-

stead, we generate database states with the aim of detecting faults in source code.

Cabal and Tuya [8] considered the SQL statement coverage as the major target and

proposed an approach that can improve the test data. Kapfhammer and Soffa [33]

defined a set of testing criteria for database applications by incorporating the depen-

dency of database information. Gould et al. [26] proposed an approach that conducts

static type-checking for SQL queries generated by a Java program. Such verification

of dynamically generated SQL strings could be incorporated into database applica-

tions for fault localization. Halford and Orso [30] presented a set of testing criteria

named command form coverage. It is claimed that all command forms should be

covered when issued to the associated database. Tang et al. [54] defined the test
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data adequacy criteria for database applications. However, these criteria could not

be applied straightforwardly for generating tests without effectively analyzing various

constraints within database applications.

2.4 Other Testing Aspects

There are also studies on other testing aspects regarding functional testing on

database applications, such as mutation testing and performance testing.

Some approaches focus on the purpose of performance testing [7, 66, 64, 65]. Wu

et al. developed the PPGen prototype system [66, 64, 67, 65] that can generate mock

databases by reproducing the statistical distribution of realistic database states, so

that the privacy issues could be addressed when the real database is not available.

However, PPGen assumes constraints are explicit and focuses on SQL workload’s

performance testing. Our proposed approach has captured the relationship between

the database state and the manipulation of the query result set. Thus, we can es-

timate the performance of a database application by specifying various distribution

properties. Zhang et al. [71] addressed the problem that load testing often ignores

considering particular input values of test inputs. The proposed approach applies a

mixed symbolic execution to generate test suites that can cause different response

times and memory consumptions.

Some other techniques focus on mutation testing for database applications. Tuya

et al. [57, 59] proposed a set of mutation operators for SQL queries and a tool called

SQLMutation that implements these mutation operators to generate SQL-query mu-
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tants. To assess the adequacy of tests for Java database applications, Zhou et al. [72]

developed a tool called JDAMA based on the mutation operators for SQL queries [59].

Zhou and Frankl [73] proposed the inferential checking technique for determining

whether SQL mutants of updating statements are killed, without actually executing

the mutants. The approach mainly considers the INSERT, DELETE, and UPDATE

statements, complementing previous techniques that usually only focused on SELECT

statements. Shahriar et al. [50] investigated the mutation of SQL updating state-

ments under the problem context of mutation testing for evaluating vulnerability to

SQL injection attacks. However, the approach does not consider how to generate

tests that can cause the invoke of vulnerabilities.

There is also a large body of research work focusing on other testing scenarios

for database application testing, e.g., generating tests for parallel testing [28, 31],

database schema validation [23], SQL query generation [58, 41], and regression testing

[62, 29]. These studies are all complementary to this research.



CHAPTER 3: GENERATE DB STATE FOR COVERAGE CRITERIA

In database applications, close relationships exist among program inputs, host vari-

ables, branch conditions, embedded SQL queries, and database states. For example,

program inputs and host variables often appear in the embedded SQL queries and

branch conditions in source code after executing SQL queries are often logical ex-

pressions that involve comparisons with retrieved values from database states. It is

imperative to enforce advanced structural coverage criteria such as Logical Coverage

(LC) and Boundary Value Coverage (BVC) for effective testing. In particular, BVC

requires to execute programs using values from both the input range and boundary

conditions and requires multiple test inputs at boundaries [36]. The reason is that

errors tend to occur at extreme or boundary points. LC criteria involve instanti-

ating clauses in a logical expression with concrete truth values. Researchers have

focused on active clause coverage criteria to construct a test such that the value of

a logical expression is directly dependent on the value of the clause that we want

to test. Among these active clause coverage criteria, the Correlated Active Clause

Coverage (CACC) [3] is equivalent to masking Modified Condition/Decision Coverage

(MC/DC), of which the MC/DC has been chosen by US Federal Aviation Adminis-

tration [14] as a recommended test-generation criterion among logical criteria.
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01: public int calcStat(int type, int inputAge) {
02: int years = 0, count = 0;

03: if (type == 0)

04: years = 15;

05: else

06: years = 30;

07: string query = "SELECT C.SSN,C.jobStatus,

C.marriage,M.balance FROM customer C,mortgage M

WHERE M.year=’" + years + "’ AND C.SSN = M.SSN";

08: if (inputAge > 25){
09: fAge = inputAge + 10;

10: query = query + " AND C.age=’" + fAge +"’";}
11: SqlConnection sc = new SqlConnection();

12: sc.ConnectionString = "..";

13: sc.Open();

14: SqlCommand cmd = new SqlCommand(query, sc);

15: SqlDataReader results = cmd.ExecuteReader();

16: while (results.Read()){
17: int bal = int.Parse(results["balance"]);

18: bool employed = bool.Parse(results["jobStatus"]);

19: bool married = bool.Parse(results["marriage"]);

20: if (bal >= 250000||employed && married){
21: count++;}
22: else {...}}
23: return count;}

Figure 1: An example code snippet from a database application under test

3.1 Illustrative Example

The example in Figure 1 shows a portion of C# source code from a database

application that counts the number of mortgage customers according to their pro-

files. The corresponding database contains two tables: customer and mortgage. Their

schema-level descriptions and constraints are given in Table 1. The calcStat method

described in the example code receives two parameters: type that determines the

years of mortgages, inputAge that determines the age from customer profiles. The

database query is then constructed dynamically (Lines 07). If the input age is greater

than 25, a variable fAge is computed with fAge=inputAge+10 and the query string is

updated (Lines 08-10). We use the expression fAge=inputAge+10 to illustrate that

host variables appearing in the executed queries may be derived from program in-
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puts or other host variables via complex chains of computations. Then the database

connection is set up (Lines 11-13) and the constructed query is executed (Line 14).

The tuples from the returned result set are iterated (Lines 16-22). For each tuple, if

the value of the balance field is greater than or equal to 250000, or if the customer is

both employed and married, a counter variable count is increased by one (Line 21).

Otherwise, the program does other computations. The method finally returns the

calculation result.

Table 1: Database schema

customer table mortgage table
Attribute Type Constraint Attribute Type Constraint

SSN Int Primary Key SSN Int Primary Key
name String Foreign Key
age Int age > 0 year Int

income Int
jobStatus bool balance Int balance > 1000
marriage bool

3.2 Problem Formalization and Proposed Solution

To test the program calcStat in the preceding example or the entire database ap-

plication, we need to generate sufficient database states as well as desirable values

for program inputs. The input parameters often determine the embedded SQL state-

ment in Line 14 and the database states determine whether the branches in Lines 16,

20, and 22 can be entered. Our approach uses Dynamic Symbolic Execution(DSE)

[24, 49] to track how the inputs to the program under test are transformed before

appearing in the executed queries and how the constraints on query results affect the
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later program execution. We use Pex [1], a state-of-the-art DSE tool for .NET to

illustrate our idea.

During its execution, Pex maintains the symbolic expressions for all variables. DSE

involves running the program simultaneously on default or random inputs and some

initial database state as well as on symbolic inputs and a symbolic database. The sym-

bolic execution generates path constraints over the symbolic program inputs along the

execution path and then generates database constraints over the symbolic database

by symbolically tracking the concrete SQL queries executed along the execution path.

When the execution along one path terminates, Pex has collected all the preceding

path constraints to form the path condition. Pex also provides a set of APIs that

help access the intermediate information of its DSE process7. For example, with type

= 0, inputAge = 30 as input values, for the path P where branch conditions in Lines

03, 08, 16, and 20 are true.

To satisfy the branch condition in Line 20, we need to generate a sufficient database

state such that the execution of the embedded query returns sufficient records to

satisfy the branch condition in Line 20. Approaches [38] have been proposed to

generate both program inputs and suitable database states to cover a feasible path,

including the executions depending on the executed query’s returned result set.

Our work focuses on how to generate sufficient database states to satisfy ad-

vanced coverage criteria including BVC and CACC criteria. For example, the variable

inputAge is indirectly involved in the embedded SQL through variable fage and is

7http://research.microsoft.com/en-us/projects/pex/
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also involved in the branch condition of Line 8, inputAge > 25. The boundary val-

ues from where the range starts and ends are imperative for testing critical domains.

The branch condition (bal >= 250000 || employed && married) == true involves a

predicate with three clauses, and variables bal, employed, and married retrieve values

from the attribute values in the returned query result set. We need to generate suffi-

cient data records in the database such that the branch condition can be evaluated as

true and false, respectively. Furthermore, to achieve CACC criteria, we need to gen-

erate data records such that the value of this logical expression is directly dependent

on the value of a particular clause that we want to test.

3.3 Approach

3.3.1 Overview of Our Approach

We present our approach to generating database states such that the executed query

can return sufficient records to satisfy coverage criteria. Algorithm 1 shows details

about our approach. The algorithm is invoked when the DSE process encounters one

branch condition that either contains host variables data-dependent on the attributes

of the query’s returned result set (directly or after chains of computations) or is

related with accessing the query-returned result set. We treat the access to the

query-returned result set as a query execution point.

Pex provides a package of APIs that help users fetch intermediate results inside

its DSE process8. We mainly use the methods from the class PexSymbolicValue

8http://research.microsoft.com/en-us/projects/pex/
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(shortened as PexS thereafter). We insert a call to API method PexS.ToString()

at each execution point to get the target query string. We call the API method

PexS.GetRelevantInputNames<Type>() to detect the data dependency between this

execution point and program input parameters. To retrieve the path condition at the

execution point, we call the method PexS.GetPathConditionString().

Throughout this section, we use path P (where branch conditions in Lines 03,

08, 16, and 20 are true) and program inputs (type = 0, inputAge = 30) to illus-

trate our algorithm. When the DSE process encounters one branch condition, we

call the Pex API method PexS.GetPathConditionString() to get the path condition

along this path. In our example, we get PC = pc1 ∧ pc2 ∧ pc3 ∧ pc4, where pc1 =

(type == 0), pc2 = (inputAge > 25), pc3 = (results.Read() == true), and pc4 =

((bal >= 250000 || employed && married) == true). Some branch conditions are

related with the database state via the dynamically constructed embedded query

or the query’s returned result set. In our algorithm, we call the Pex API method

PexS.ToString(...) to get the concrete executed query string Q and the symbolic

query string Qsym. We decompose Qsym using the SQL parser9 and get its clauses.

We assume the embedded SQL query takes the canonical DPNF form 10:

SELECT C1, C2, ..., Ch

FROM from-list

WHERE (A11 AND ... AND A1n) OR ... OR (Am1 AND ... AND Amn)

9http://zql.sourceforge.net/
10In general, there are two types of canonical queries: DPNF with the WHERE clause consisting

of a disjunction of conjunctions, and CPNF with the WHERE clause consisting of a conjunction of
disjunctions.
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In the SELECT clause, there is a list of h strings where each may correspond

to a column name or with arithmetic or string expressions over column names and

constants following the SQL syntax. In the FROM clause, there is a from-list that

consists of a list of tables. In the WHERE clause, there is a disjunction of conjunc-

tions. Each condition (e.g., A11) is of the form expression op expression, where op is

a comparison operator (=, <>, >, >=, <, <=) or a membership operator (IN, NOT

IN) and expression is a column name, a constant or an (arithmetic or string) expres-

sion. In practice, the queries could be very complex such as sub-queries can appear in

the WHERE clause. There are extensive studies [34] on how to map complex queries

such as nested queries to their canonical forms.

In our example, we have the concrete query Q

SELECT C.SSN, C.jobStatus, C.marriage, M.balance

FROM customer C, mortgage M

WHERE M.year=15 AND C.SSN=M.SSN And C.age=40

and its corresponding symbolic string Qsym

SELECT C.SSN, C.jobStatus, C.marriage, M.balance

FROM customer C, mortgage M

WHERE M.year=:years AND C.SSN=M.SSN AND C.age=:fAge

We observe that conditions in the WHERE clause often contain host variables from

the program under test and some of those host variables may appear directly in branch

conditions or are dependent on host variables in branch conditions. For example, the

condition C.age=:fAge in the WHERE clause of Qsym contains host variable fAge.

The fAge’s symbolic expression is calculated as fage=inputAge+10 and host variable
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inputAge involves in the branch condition pc2 = (inputAge > 25). Hence enforcing

BVC on this branch condition incurs constraints on the generated data. Lines 5-20

in Algorithm 1 give details about how to derive the constraints CQ by examining

the conditions in the WHERE clause and the branch conditions before the query’s

execution. We discuss details in Section 3.3.3.

We also observe that the attribute strings (C1,...,Ch) in the SELECT clause may

indirectly involve in branch conditions after the query execution. For example, the

branch condition pc4 = ((bal >= 250000 || employed && married) == true) con-

tains three host variables (bal, employed, and married) that retrieve values from

three database attributes (M.balance, C.jobStatus, C.marriage) in the returned re-

sult set. To enforce CACC and BVC on the branch condition pc4, we incur new

constraints on the generated data. Lines 21-29 in Algorithm 1 give details about

how to derive the constraints CR by examining the attribute strings in the SELECT

clause and the branch conditions after the query’s execution. Finally, we combine the

derived constraints (CQ and CR) with the database constraints (CS) specified at the

schema level and call a constraint solver to generate database states.

3.3.2 Instantiating a Predicate to Satisfy BVC and CACC

A predicate is an expression that evaluates to a boolean value. A predicate may

consist of a list of clauses that are joined with logical operators (e.g., NOT, AND, OR).

Each clause contains a boolean variable, a non-boolean variable that is compared with

a constant or another variable via relational operators, or even a call to a function that
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returns a boolean value. The predicate bal>=250000||employed&&married in branch

condition pc4 contains three clauses: a relational expression bal>=250000, a boolean

variable employed, and another boolean variable married.

Test coverage is evaluated in terms of test criteria, as specified by test requirements.

Test requirements are specific elements that must be satisfied or covered for software

artifacts. Predicate coverage requires that for each p there are instantiations that

evaluate p to be true and instantiations that evaluate p to be false. Clause coverage

ensures that for each clause c ∈ p there are instantiations that evaluate c to be true

and instantiations that evaluate c to be false. Predicate coverage is equivalent to the

branch coverage criterion for testing source code while clause coverage is equivalent

to the condition coverage. However, neither predicate coverage nor clause coverage

subsumes the other. To test both individual clauses and predicates, combinatorial

coverage (also called Multiple Condition Coverage) is used to evaluate clauses to each

possible combination of truth values. We can see, for a predicate p with n independent

clauses, there are 2n possible combinations; thus, combinatorial coverage is often

infeasible in practice.

Active clause criteria such as CACC have been widely adopted to construct a test

such that the value of the predicate is directly dependent on the value of the clause

that we want to test. CACC is defined in previous work [3]: For each p and each

major clause ci ∈ p, choose minor clauses cj, j 6= i so that ci determines p. There

are two requirements for each ci: ci evaluates to true and ci evaluates to false. The
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values chosen for the minor clauses cj must cause p to be true for one value of the

major clause ci and false for the other, that is, it is required that p(ci = true) 6= p(ci

= false).

BVC requires multiple test inputs at boundaries [36] because errors tend to occur

at extreme or boundary points. For different data types, various boundary values

are considered. We use the integer data type for illustration. Suppose that the

conditional statement takes the form [AopB] where A is a variable’s expression, B is

a constant, and op is a comparison operator (==, ! =, >, >=, <, <=). Depending on

the comparison operator, we seek to choose values for A coming from the minimum

boundary, immediately above minimum, between minimum and maximum (nominal),

immediately below maximum, or the maximum boundary. We list the choices in Table

2. For other data types, we omit details.

Table 2: BVC enforcement for integer

Condition BVC requirements
A == B A == B
A != B A == B + 1, A == maximum

A == B − 1, A == minimum
A > B A == B + 1, A > B + 1, A == maximum

A >= B A == B , A > B, A == maximum
A < B A == B − 1, A < B − 1, A == minimum

A <= B A == B , A < B, A == minimum

Algorithm 2 shows how to generate instantiations satisfying both CACC and BVC

for a given predicate. The algorithm accepts a predicate and a boolean evaluation

as input and generates a list of instantiations as output. Lines 2-6 in Algorithm 2
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Table 3: Truth table for predicate (bal>=250000 || employed && married)=true to
satisfy CACC. We choose one instantiation from No.1-3 for bal>=250000 and an in-
stantiation No.4 or No. 5 for employed and married

major clause No. bal>=250000 employed married
1 T T F

bal>=250000 2 T F T
3 T F F

employed 4 F T T
married 5 F T T

enforce CACC by iterating each clause to be the major one and generating assign-

ments for all other minor clauses. Recall that a major clause should determine the

predicate for a given instantiation of other clauses. Consider the predicate pc4 =

bal>=250000||employed && married with the target evaluation result as true. When

we choose bal>=250000 as the major clause, Line 3 generates

(true||employed && married) 6= (false||employed && married) ∧ (p=true). By

calling a constraint solver, we can generate instantiations shown in rows 1-3 in Table

3. Similarly we can get instantiations shown in rows 4-5 when choosing employed

(married) as the major clauses. Note that the assignments in rows 4-5 are the

same. To enforce CACC for this predicate, we only need one instantiation from

rows 1-3 and another instantiation from either row 4 or 5. For example, by choos-

ing rows 1 and 4, we have {(bal>=250000)=true, employed=true, married=false},

{(bal>=250000)=false, employed=true, married=true}.

After further enforcing BVC on the clause bal>=250000 (Lines 7-14 of Algorithm

2), we have the following six instantiations:
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bal=250000, employed=true, married=false,

bal>250000, employed=true, married=false,

bal=maximum, employed=true, married=false,

bal=250000-1, employed=true, married=true,

bal<250000-1, employed=true, married=true,

bal=minimum, employed=true, married=true.

3.3.3 Deriving Constraints of Database States

Algorithm 1 is invoked when DSE encounters a branch condition. In the illus-

trative example, the last branch condition pc4 invokes our algorithm. Using various

APIs provided by Pex, we retrieve all branch conditions along the execution of the

current path, the query execution point T , the concrete executed query Q and its cor-

responding symbolic query Qsym, and symbolic expressions of host variables appeared

in branch conditions and Qsym.

Conditional expressions in the WHERE clause contain constraints of the generated

database state. Formally, we call a SQL parser to decompose Qsym and set CQ =

{(A11 AND ... AND A1n) OR ... OR (Am1 AND ... AND Amn)} from the Qsym. We

create an empty variable set VQ. For each Aij ∈ CQ, we check whether Aij contains

host variables. For each contained host variable, if it is related with any branch

condition before the query execution point T , we add it to VQ and replace it with its

symbolic string expressed by variables in the related branch conditions. If not, we

replace the variable with its corresponding concrete value contained in the concrete
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query Q. In our example, we get the constraints CQ = {M.year=:years AND C.SSN=

M.SSN AND C.age=:fAge}. For M.year=:years, we replace years with the value 15. For

C.age=:fAge, we replace fAge with inputAge + 10. We leave C.SSN= M.SSN unchanged

since it does not contain any host variable. The variable set VQ = {fAge} and CQ =

{M.year=15 AND C.SSN= M.SSN AND C.age=:inputAge + 10}.

Next, for each branch condition pc along this path, we check whether pc contains

host variables related with the set VQ. If yes, we enforce it with both CACC and BVC

by calling Algorithm 2. Algorithm 2 returns instantiations Ipc that make pc =true.

The returned instantiations incur further constraints on the generated database state.

We refine CQ as CQ = CQ × Ipc.

In our example, the branch condition pc2 (inputAge> 25) is related with host vari-

able fAge. Algorithm 2 returns new instantiations as {inputAge=25+1,

inputAge>25+1, inputAge=maximum}. The constraint set CQ is updated with three

constraints:

M.year=15 AND C.SSN= M.SSN AND C.age=:inputAge+10 AND inputAge=25+1,

M.year=15 AND C.SSN= M.SSN AND C.age=:inputAge+10 AND inputAge>25+1,

M.year=15 AND C.SSN= M.SSN AND C.age=:inputAge+10

AND inputAge=maximum.

Note that branch conditions after the SQL’s execution point T may contain host

variables that are dependent on database attributes in the SELECT clause. Enforcing

CACC and BVC on those branch conditions further incur constraints on the gener-
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ated database state. We first identify host variables VR that are directly dependent on

attributes of the returned query result set. For example, we get that the variable bal

is directly dependent on the attribute M.balance in Line 17 in our illustrative example.

Then, for each branch condition that contains host variables in or dependent on VR, we

treat pc as a predicate and call Algorithm 2 to enforce both CACC and BVC require-

ments. In our example, pc4 = ((bal >= 250000 || employed && married) == true)

and VR = {bal, married, employed}. The returned six instantiations are shown in

the last paragraph of Section 3.3.2. Note that the returned instantiations contain host

variables related with variables VR. We need to replace them with their corresponding

database attributes. In our example, host variables bal, employed, married are re-

placed with database attributes M.balance, M.marriage, M.jobStatus, respectively.

Finally, the set C = CQ×CR contains constraints on the generated database state

to enforce CACC and BVC on the source code under test. We also collect basic

constraints CS at the database schema level (e.g., not-NULL, uniqueness, referential

integrity constraints, domain constraints, and semantic constraints). For example, at-

tribute balance in table mortgage must be greater than 0. We then send C together

with the schema level constraints CS to a constraint solver to conduct the data in-

stantiation on the symbolic database. In our prototype system, we use the constraint

solver Z3 11, which is integrated into Pex. Z3 is a high-performance theorem prover

being developed at Microsoft Research. The constraint solver Z3 supports linear

real and integer arithmetic, fixed-size bit-vectors, extensional arrays, uninterpreted

11http://research.microsoft.com/en-us/um/redmond/projects/z3/
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functions, and quantifiers.

3.4 Evaluation

Our approach is to provide an assistance to the DSE-based test-generation tools

(e.g., Pex [1, 55] for .NET) to improve code coverage with respect to CACC and BVC

in database application testing.

We conduct evaluations on two open source database applications RiskIt and

UnixUsage. The introductions to these two applications are previously presented in

Chapter 1.

To set up the evaluation, we choose methods that have boundary values and/or

logical expressions in branch conditions from the applications. Since there are no

tools to measure CACC and BVC directly, we apply a tool [48] that transforms the

problem of achieving CACC and BVC to the problem of achieving block coverage by

introducing new blocks through code instrumentation. We use PexGoal.Reached() to

identify whether each introduced block is covered.

For example, the statement if (inputAge > 25) {...} in Line 08 in our illustrative

example becomes

08a: if (inputAge == 25+1)

{PexGoal.Reached()...}

08b: else if (inputAge > 25+1)

{PexGoal.Reached()...}

08: if (inputAge > 25){...}



34

after the code instrumentation.

Tables 4 shows the results of our evaluation. We use n to denote the number

of PexGoal.Reached() statements introduced in each method. The coverage of all n

introduced blocks indicates the full achievement of CACC and BVC. Given a database

state, the current Pex cannot generate sufficient program inputs to achieve higher

code coverage especially when program inputs are directly or indirectly involved in

embedded SQL statements. In our experiment, we also apply our previous approach

[44] to assist Pex generate sufficient input values for program parameters.

We first run Pex (in addition to our program input generation tool [44]) without

applying Algorithm 1 to generate new records. We use n1 to denote the number of

covered PexGoal.Reached() statements in this experiment. We then apply Algorithm

1 to generate new database records and run Pex in addition to our program input

generation tool [44]. We use n2 to denote the number of covered PexGoal.Reached()

statements during this step. The value of (n2 - n1)/n captures the increase gained by

Pex assisted by our new approach in achieving CACC and BVC. We see from Tables

4 that the n2 values are equal to n for all methods, indicating that our new approach

assists Pex to reach the full CACC and BVC coverage (a 21.21% increase on average

for RiskIt and a 46.43% increase for UnixUsage). The detailed evaluation subjects

and results can be found on our project website12.

12http://www.sis.uncc.edu/∼xwu/DBGen
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Algorithm 1 Database State Generation in Achieving CACC and BVC

Input: database schema S, schema level constraint CS

path condition PC = pc1 ∧ pc2 ∧ ... ∧ pcs

Output: database state D

1: Find query execution point T , get concrete query Q and its symbolic expression Qsym;
2: Decompose Q and Qsym with a SQL parser;
3: Create a constraint set CQ = {(A11 AND ... AND A1n) OR ... OR (Am1 AND ... AND

Amn)} from Qsym’s WHERE clause;
4: Create a variable set VQ = ®;
5: for each Aij ∈ CQ do
6: if Aij contains any host variable v then
7: if v is related with branch conditions before T then
8: Add v to VQ;
9: Replace v with its symbolic expression expressed by variables in the related

branch conditions;
10: else
11: Replace v with its corresponding concrete value in the concrete query Q;
12: end if
13: end if
14: end for
15: for each branch condition pc ∈ PC before T do
16: if pc contains variables related with VQ then
17: Ipc = EnforceCriteria(pc, true); [Algorithm 2]
18: CQ = CQ × Ipc;
19: end if
20: end for
21: Create a variable set VR that contains variables directly dependent on attributes

C1, C2, ..., Ch;
22: Create a constraint set CR = {1=1};
23: for each branch condition pc ∈ PC after T do
24: if pc contains variables in or dependent on VR then
25: Ipc = EnforceCriteria(pc, true); [Algorithm 2]
26: Replace the variables expressed by VR in Ipc with their corresponding database

attributes;
27: CR = CR × Ipc;
28: end if
29: end for
30: Create a constraint set C = CQ×CR;
31: Call a constraint solver to instantiate C and CS , get database state D;
32: return Database state D;
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Algorithm 2 EnforceCriteria: CACC and BVC enforcement

Input: Predicate p = {c1 op c2 ... op cm}, target evaluation E for p
Output: Instantiations I for p

1: Instantiation set I = ®;
2: for each clause ci ∈ p do
3: Ci =(p(ci = true) 6= p(ci = false)) ∧ p = E;
4: Send Ci to a constraint solver and get instantiations Ii;
5: I = I ∪ Ii;
6: end for
7: for each instantiation in I do
8: for each clause c do
9: if BVC should be satisfied then

10: Enforce BVC;
11: Add new instantiations in I;
12: end if
13: end for
14: end for
15: return I;
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3.5 Conclusions

In this research, we present a general approach to generating test database states

that can achieve program Boundary Value Coverage(BVC) and Logical Coverage such

as Correlated Active Clause Coverage(CACC). We implemented our approach in Pex,

a DSE tool for .NET. Our evaluation demonstrates the feasibility of our approach. By

generating database states to meet the test requirements such as BVC and CACC,

we expect that testers can detect more faults that occur in boundaries or involve

complex logical expressions. Part of this research was published in DBTest 2011 [43].

In future work, we plan to investigate how to optimize the constraint collection and

data instantiation. In practice, the number of generated database states for complex

programs can grow exponentially as the number of logical conditions and boundary

values grow. We plan to study complex SQL queries (e.g., GROUPBY queries with

aggregations) and extend our technique to deal with a bag of multiple queries in

database applications.



CHAPTER 4: GENERATE INPUTS USING EXISTING DB STATES

Testing is essential for quality assurance of database applications. Achieving high

code coverage of the database application is important in testing. In practice, there

may exist a copy of live databases that can be used for database application testing.

Using an existing database state is desirable since it tends to be representative of

real-world objects’ characteristics, helping detect faults that could cause failures in

real-world settings. However, to cover a specific program code portion (e.g., block),

appropriate program inputs also need to be generated for the given existing database

state. To address this issue, we develop a novel approach that generates program

inputs for achieving high code coverage of a database application, given an existing

database state. Our approach uses symbolic execution to track how program inputs

are transformed before appearing in the executed SQL queries and how the constraints

on query results affect the application’s execution. One significant challenge in our

problem context is the gap between program-input constraints derived from the pro-

gram and from the given existing database state; satisfying both types of constraints

is needed to cover a specific program code portion. Our approach includes novel query

formulation to bridge this gap. We incorporate the data instantiation component in

our framework to deal with the case that no effective program input values can be
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01:public int calcStat(int type,int zip) {
02: int years = 0, count = 0, totalBalance = 0;

03: int fzip = zip + 1;

04: if (type == 0)

05: years = 15;

06: else

07: years = 30;

08: SqlConnection sc = new SqlConnection();

09: sc.ConnectionString = "..";

10: sc.Open();

11: string query = "SELECT C.SSN, C.income,"

+" M.balance FROM customer C, mortgage M"

+" WHERE M.year=’" + years +"’ AND"

+" C.zipcode=’"+ fzip + "’ AND C.SSN = M.SSN";

12: SqlCommand cmd = new SqlCommand(query, sc);

13: SqlDataReader results = cmd.ExecuteReader();

14: while (results.Read()){
15: int income = int.Parse(results["income"]);

16: int balance = int.Parse(results["balance"]);

17: int diff = income - 1.5 * balance;

18: if (diff > 100000){
19: count++;

20: totalBalance = totalBalance + balance;}}
21: return totalBalance;}

Figure 2: An example code snippet from a database application under test

attained. We determine how to generate new records and populate them in the new

database state such that the code along the path can be covered. We also extend our

program-input-generation approach to test database applications including multiple

queries. Our approach is loosely integrated into Pex, a state-of-the-art white-box

testing tool for .NET from Microsoft Research. Empirical evaluations on two real

database applications show that our approach assists Pex to generate program inputs

that achieve higher code coverage than the program inputs generated by Pex without

our approach’s assistance.
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4.1 Illustrative Example

The example code snippet shown in Figure 2 includes a portion of C# source

code from a database application that calculates some statistic related to mortgages.

The corresponding database contains two tables: customer and mortgage. Their

schema-level descriptions and constraints are given in Table 5. The calcStat method

described in the example code snippet receives two program inputs: type that deter-

mines the years of mortgages and zip that indicates the zip codes of customers. A

variable fzip is calculated from zip and in our example fzip is given as “zip+1”.

Then the database connection is set up (Lines 08-10). The database query is con-

structed (Line 11) and executed (Lines 12 and 13). The tuples from the returned

result set are iterated (Lines 14-20). For each tuple, a variable diff is calculated

from the values of the income field and the balance field. If diff is greater than

100000, a counter variable count is increased (Line 19) and totalBalance is updated

(Line 20). The method finally returns the calculation result.

Both program inputs (i.e., input parameters) and database states are crucial in

testing this database application because (1) the program inputs determine the em-

bedded SQL statement in Line 11; (2) the database states determine whether the true

branch in Line 14 and/or the true branch in Line 18 can be covered, being crucial to

functional testing, because covering a branch is necessary to expose a potential fault

within that branch; (3) the database states also determine how many times the loop

body in Lines 14-20 is executed, being crucial to performance testing.
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Table 5: Database schema

customer table mortgage table
Attribute Type Constraint Attribute Type Constraint

SSN Int Primary Key SSN Int Primary Key
zipcode String [1, 99999] Foreign Key
name Int year Int
gender String

age Int (0, 100) balance Int (1000, Max)
income Int

4.2 Problem Formalization and Proposed Solution

In practice, there may exist a copy of live databases that can be used for database

application testing. Using an existing database state is desirable since it tends to be

representative of real-world objects’ characteristics, helping detect faults that could

cause failures in real-world settings. However, it often happens that a given database

with an existing database state (even with millions of records) returns no records

(or returned records do not satisfy branch conditions in the subsequently executed

program code) when the database receives and executes a query with arbitrarily

chosen program input values. For example, method calcStat takes both type and

zip as inputs. To cover a path where conditions at Lines 14 and 18 are both true, we

need to assign appropriate values to variables years and fzip so that the execution

of the SQL statement in Line 12 with the query string in Line 11 will return non-

empty records, while at the same time attributes income and balance of the returned

records also satisfy the condition in Line 18. Since the domain for program input zip

is large, it is very likely that, if a tester enters an arbitrary zip value, execution of
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the query on the existing database will return no records, or those returned records

do not satisfy the condition in Line 18. Hence, it is crucial to generate program input

values such that test inputs with these values can help cover various code portions

when executed on the existing database.

To address this issue, we propose a novel approach that generates program inputs

for achieving high code coverage of a database application, given an existing database

state. In our approach, we first examine close relationships among program inputs,

program variables, branch conditions, embedded SQL queries, and database states.

For example, program variables used in the executed queries may be derived from

program inputs via complex chains of computations (we use fzip=zip+1 in our il-

lustrative example) and path conditions involve comparisons with record values in

the query’s result set (we use if (diff>100000)) in our illustrative example). We

then automatically generate appropriate program inputs via executing a formulated

auxiliary query on the given database state.

In particular, our approach uses dynamic symbolic execution (DSE)[49] to track

how program inputs to the database application under test are transformed before

appearing in the executed queries and how the constraints on query results affect the

later program execution. We use DSE to collect various intermediate information.

Our approach addresses one significant challenge in our problem context: there

exists a gap between program-input constraints derived from the program and those

derived from the given existing database state; satisfying both types of constraints
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is needed to cover a specific program code portion. During DSE, these two types of

constraints cannot be naturally collected, integrated, or solved for test generation.

To address this challenge, our approach includes novel query formulation to bridge

this gap. In particular, based on the intermediate information collected during DSE,

our approach automatically constructs new auxiliary queries from the SQL queries

embedded in code under test. The constructed auxiliary queries use those database

attributes related with program inputs as the target selection and incorporate those

path constraints related with query result sets into selection condition. After the new

auxiliary queries are executed against the given database, we attain effective program

input values for achieving code coverage.

As aforementioned, the DSE technique has also been used in testing database appli-

cations [38, 53]. Emmi et al. [38] developed an approach for automatic test generation

based on DSE. Their approach uses a constraint solver to solve collected symbolic con-

straints to generate both program input values and corresponding database records.

The approach involves running the program simultaneously on concrete program in-

puts as well as on symbolic inputs and a symbolic database. In the first run, the

approach uses random concrete program input values, collects path constraints over

the symbolic program inputs along the execution path, and generates database records

such that the program execution with the concrete SQL queries can cover the current

path. To explore a new path, it flips a branch condition and generates new program

input values and corresponding database records. However, their approach cannot
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generate effective program inputs based on the content of an existing database state.

The reason is that some program inputs (e.g., zip in our illustrative example) appear

only in the embedded SQL queries and there is no path constraint over them.

Our approach differs from Emmi et al.’s approach [38] in that we leverage DSE

as a supporting technique to generate effective program input values by executing

constructed auxiliary queries against the existing database state. As a result, high

code coverage of the application can be achieved without generating new database

states. When DSE is applied on a database application, DSE often fails to cover spe-

cific branches due to an insufficient returned result set because returned record values

from the database often involve in deciding later branches to take. We use Pex [1],

a DSE tool for .NET, to illustrate how our approach assists DSE to determine pro-

gram input values such that the executed query can return sufficient records to cover

various code portions. During the program execution, DSE maintains the symbolic

expressions for all variables. When the execution along one path terminates, DSE

tools such as Pex have collected all the preceding path constraints to form the path

condition. Pex also provides a set of APIs that help access intermediate information

of its DSE process. For illustration purposes, we assume that we have an existing

database state shown in Table 6 for our preceding example shown in Figure 2.

To run the program for the first time against the existing database state, Pex uses

default values for program inputs type and zip. In this example, because type and

zip are both integers. Pex simply chooses “type=0, zip=0” as default values. The
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Table 6: A Given Database State

customer table mortgage table
SSN zipcode name gender age income SSN year balance
001 27695 Alice female 35 50000 001 15 20000
002 28223 Bob male 40 150000 002 15 30000

condition in Line 04 is then satisfied and the query statement with the content in

Line 11 is dynamically constructed. In Line 12 where the query is executed, we can

dynamically get the concrete query string as

Q1: SELECT C.SSN, C.income, M.balance

FROM customer C, mortgage M

WHERE M.year=15 AND C.zipcode=1 AND C.SSN=M.SSN

Through static analysis, we can also get Q1’s corresponding abstract form as

Q1abs: SELECT C.SSN, C.income, M.balance

FROM customer C, mortgage M

WHERE M.year=: years AND C.zipcode=: fzip AND C.SSN=M.SSN

The execution of Q1 on Table 6 yields zero record. Thus, the while loop body in

Lines 14-20 is not entered and the exploration of the current path is finished. We use

the Pex API method PexSymbolicValue.GetPathConditionString() after Line 14 to

get the path condition along this path:

P1:(type == 0) && (results.Read() != true)

To explore a new path, Pex flips a part of the current path condition from “type ==

0” to “type != 0” and generates new program inputs as “type=1, zip=0”. The con-
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dition in Line 04 is then not satisfied and the SQL statement in Line 11 is dynamically

determined as

Q2: SELECT C.SSN, C.income, M.balance

FROM customer C, mortgage M

WHERE M.year=30 AND C.zipcode=1 AND C.SSN=M.SSN

Note that here we have the same abstract form for Q2 as for Q1. However, the

execution of Q2 still returns zero record, and hence the execution cannot enter the

while loop body either. The path condition for this path is

P2:(type == 1) && (results.Read() != true)

We can see that at this point no matter how Pex flips the current collected path

condition, it fails to explore any new paths. Since Pex has no knowledge about

the zipcode distribution in the database state, using the arbitrarily chosen program

input values often incurs zero returned record when the query is executed against the

existing database state. As a result, none of paths involving the while loop body

could be explored.

In testing database applications, previous test-generation approaches (e.g., Emmi

et al. [38]) then invoke constraint solvers to generate new records and instantiate a

new test database state, rather than using the given existing database state, required

in our focused problem.

In contrast, by looking into the existing database state as shown in Table 6, we can

see that if we use an input like “type=0, zip=27694”, the execution of the query in

Line 11 will yield one record {C.SSN = 001, C.income = 50000, M.balance = 20000},
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which further makes Line 14 condition true and Line 18 condition false. Therefore,

using the existing database state, we are still able to explore this new path:

P3:(type == 0) && (results.Read() == true) &&(diff <= 100000)

Furthermore, if we use “type=0, zip=28222”, the execution of the query in Line 11

will yield another record {C.SSN = 002, C.income = 150000, M.balance = 30000},

which will make both Line 14 condition and Line 18 condition true. Therefore, we

can explore this new path:

P4:(type == 0) && (results.Read() == true) &&(diff > 100000)

4.3 Approach

Our approach assists Pex to determine appropriate program inputs so that high

code coverage can be achieved in database application testing. As illustrated in our

example, not-covered branches or paths are usually caused by the empty returned

result set (e.g., for path P1) or insufficient returned records that cannot satisfy later

executed conditions (e.g., for path P3).

The major idea of our approach is to construct an auxiliary query based on the

intermediate information (i.e., the executed query’s concrete string and its abstract

form, symbolic expressions of program variables, and path conditions) collected by

DSE. There are two major challenges here. First, program input values are often

combined into the executed query after a chain of computations. In our illustrative

example, we simply set fzip = zip+1 in Line 3 to represent this scenario. We can see

that fzip is contained in the WHERE clause of the executed query and zip is one pro-
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gram input. Second, record values in the returned query result set are often directly

or indirectly (via a chain of computations) involved in the path condition. In our

illustrative example, the program variable diff in the branch condition diff>100000

(Line 18) is calculated from the retrieved values of attributes income and balance. To

satisfy the condition (e.g., diff>100000 in Line 18), we need to make sure that the

program input values determined by our auxiliary query are appropriate so that the

query’s return records are sufficient for satisfying later executed branch conditions.

4.3.1 Auxiliary Query Construction

Algorithm 3 illustrates how to construct an auxiliary query. The algorithm accepts

as inputs a simple SQL query in its both concrete and abstract forms, program input

values, and the current path condition.

Formally, suppose that a program takes a set of parameters I = {I1, I2, ..., Ik} as

program inputs. During path exploration, DSE flips a branch condition pcs (e.g., one

executed after the query execution) from the false branch to the true branch to cover

a target path. Such flipping derives a new constraint or path condition for the target

path as PC = pc1 ∧ pc2 ∧ ... ∧ pcs. DSE feeds this constraint to the constraint

solver to generate a new test input, whose later execution, however, does not cover

the true branch of pcs as planned, likely due to database interactions along the path.

In the path exploration, DSE also keeps records of all program variables and their

concrete and symbolic expressions in the program along this path when DSE reaches

pcs. From the records, we determine program variables V = {V1, V2, ..., Vt} that
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are data-dependent on program inputs I. DSE also collects the concrete string of an

executed query along the current path. In our approach, we assume the SQL query

takes the form:

SELECT C1, C2, ..., Ch

FROM from-list

WHERE A1 AND A2 ... AND An

In the SELECT clause, there is a list of h strings where each may correspond

to a column name or with arithmetic or string expressions over column names and

constants following the SQL syntax. In the FROM clause, there is a from-list that

consists of a list of tables. We assume that the WHERE clause contains n predicates,

A = {A1, A2, ..., An}, connected by n− 1 “AND”s. Each predicate Ai is of the form

expression op expression, where op is a comparison operator (=, <>, >, >=, <, <=)

or a membership operator (IN, NOT IN) and expression is a column name, a constant

or an (arithmetic or string) expression. Note that here we assume that the WHERE

clause contains only conjunctions using the logical connective “AND”. We discuss

how to process complex SQL queries in Section 4.3.3. Some predicate expressions in

the WHERE clause of Q may involve comparisons with program variables. From the

corresponding abstract query Qabs, we check whether each predicate Ai contains any

program variables from V .

We take the path P3 (Line 04 true, Line 14 true, and Line 18 false) in our

preceding example shown in Figure 2 to illustrate the idea. The program input set is

I = {type, zip} and the path condition PC is
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P3:(type == 0) && (results.Read() == true) &&(diff <= 100000)

The program variable set V is {type,zip,fzip}. When flipping the condition

diff<=100000, Pex fails to generate satisfiable test inputs for the flipped condition

diff > 100000. The abstract form is shown as

Qabs: SELECT C.SSN, C.income, M.balance

FROM customer C, mortgage M

WHERE M.year=: years AND C.zipcode=: fzip AND C.SSN=M.SSN

We can see that the predicate set A in the WHERE clause is formed as

{M.year=:years, C.zipcode=:fzip, C.SSN=M.SSN}. Predicates M.year=:years and

C.zipcode=:fzip contain program variables years and fzip, respectively. Further-

more, the program variable fzip is contained in V . In other words, the predicate

C.zipcode=:fzip involves comparisons with program inputs.

Algorithm 3 shows our procedure to construct the auxiliary query Q̃ based on the

executed query (Q’s concrete string and its abstract form Qabs) and the intermediate

information collected by DSE. Lines 5-21 present how to construct the clauses (SE-

LECT, FROM, and WHERE) of the auxiliary query Q̃. We decompose Qabs using

a SQL parser13 and get its n predicates A = {A1, A2, ..., An} from the WHERE

clause. We construct an empty predicate set Ã. For each predicate Ai ∈ A, we check

whether Ai contains program variables. If not, we leave Ai unchanged and check

the next predicate. If yes, we then check whether any contained program variable

comes from the set V . If no program variables in the predicate are from V , we

13http://zql.sourceforge.net/
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substitute them with their corresponding concrete values in Q. In our example, the

predicate M.year=:years belongs to this category. We retrieve the concrete value of

years from Q and the predicate expression is changed as M.year=15. If some program

variables contained in the predicate come from V , we substitute them with their

symbolic expressions (expressed by the program inputs in I), substitute all the other

program variables that are not from V with their corresponding concrete values in

Q and copy the predicate Ai to Ã. The predicate C.zipcode=:fzip in our example

belongs to this category. We replace fzip with zip+1 and the new predicate becomes

C.zipcode=:zip+1. We also add Ai’s associated database attributes into a temporary

attribute set CV . Those attributes will be included in the SELECT clause of the

auxiliary query Q̃. For the predicate C.zipcode=:fzip, the attribute C.zipcode is

added to Ã and is also added in the SELECT clause of the auxiliary query Q̃.

After processing all the predicates in A, we get an attribute set CV = {CV 1, CV 2,

..., CV j} and a predicate set Ã = {Ã1, Ã2, ..., Ãl}. Note that here all the predicates in

Ã are still connected by the logical connective “AND”. The attributes from CV form

the attribute list of the Q̃’s SELECT clause. All the predicates in A - Ã connected by

“AND” form the predicates in the Q̃’s WHERE clause. Note that the from-list of the

Q̃’s FROM clause is the same as that of Q. In our example, Ã is C.zipcode=:zip+1,

A − Ã is M.year=15 AND C.SSN=M.SSN, and the attribute set CV is C.zipcode. The

constructed auxiliary query Q̃ has the form:

SELECT C.zipcode

FROM customer C, mortgage M
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WHERE M.year=15 AND C.SSN=M.SSN

When executing the preceding auxiliary query against the existing database state,

we get two zipcode values, 27695 and 28223. The corresponding program input zip

can take either 27694 or 28222 because of the constraint {C.zipcode=: zip+1} in our

example. A test input with the program input either “type=0, zip=27694” or “type=0,

zip=28222” can guarantee that the program execution enters the while loop body in

Lines 14-20. However, there is no guarantee that the returned record values satisfy

later executed branch conditions. For example, if we choose “type=0, zip=27694”

as the program input, the execution can enter the while loop body but still fails to

satisfy the branch condition (i.e., diff>100000) in Line 18. Hence it is imperative to

incorporate constraints from later branch conditions into the constructed auxiliary

query.

Program variables in branch condition pci ∈ PC after executing the query may

be data-dependent on returned record values. In our example, the value of program

variable diff in branch condition “diff > 100000” is derived from the values of the

two variables income, balance that correspond to the values of attributes C.income,

M.balance of returned records. Lines 22-32 in Algorithm 3 show how to incorporate

later branch conditions in constructing the WHERE clause of the auxiliary query.

Formally, we get the set of program variables U = {U1, U2, ..., Uw} that directly

retrieve the values from the query’s returned result set, and treat them as symbolic

inputs. For each program variable Ui, we also keep its corresponding database at-
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tribute CUi. Note that here CUi must come from the columns in the SELECT clause.

We save them in the set CU = {CU1, CU2, ..., CUw}. For each branch condition

pci ∈ PC, we check whether any program variables in pci are data-dependent on

variables in U . If yes, we substitute such variables in pci with their symbolic ex-

pressions with respect to the symbolic input variables from U and replace each Ui

in pci with its corresponding database attribute CUi. The modified pci is then ap-

pended to the Q̃’s WHERE clause. In our example, the modified branch condition

C.income-1.5*M.balance>100000 is appended to the WHERE clause, and the new

auxiliary query is

SELECT C.zipcode

FROM customer C, mortgage M

WHERE M.year=15 AND C.SSN=M.SSN AND C.income - 1.5 * M.balance $>$ 100000

When executing the preceding auxiliary query against the existing database state,

we get the zipcode value as “28223”. Having the constraint C.zipcode=:zip+1, in-

put “type=0, zip=28222” can guarantee that the program execution enters the true

branch in Line 18.

Program Input Generation: Note that executing the auxiliary query Q̃ against the

database returns a set of values RV for attributes in CV . Each attribute in CV can be

traced back to some program variable in V = {V1, V2, ..., Vt}. Recall that V contains

program variables that are data-dependent on program inputs I. Our final goal is to

derive the values for program inputs I. Recall in Algorithm 3, we already collected

in the predicate set Ã the symbolic expressions of CV with respect to program inputs
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I. After substituting the attributes CV with their corresponding concrete values in

RV resulted from executing Q̃ against the given database, we have new predicates

in Ã for program inputs I. We then feed these new predicates in Ã to a constraint

solver to derive the values for program inputs I. We give our pseudo procedure in

Algorithm 4.

In our illustrative example, after executing our auxiliary query on Table 6, we get a

returned value “28223” for the attribute C.zipcode. In Ã, we have C.zipcode=:zip+1.

After substituting C.zipcode in C.zipcode=:zip+1 with the value “28223”, we have

28223=:zip+1. The value “28222” for the program input zip can then be derived by

invoking a constraint solver.

In our prototype, we use the constraint solver Z314 integrated in Pex. Z3 is a high-

performance theorem prover being developed at Microsoft Research. The constraint

solver Z3 supports linear real and integer arithmetic, fixed-size bit-vectors, extensional

arrays, uninterpreted functions, and quantifiers. In practice, the result R could be

a set of values. For example, the execution of the auxiliary query returns a set of

satisfying zip code values. If multiple program input values are needed, we can repeat

the same constraint solving process to produce each returned value in R.

4.3.2 Dealing with Aggregate Calculation

Up to now, we have investigated how to generate program inputs through auxiliary

query construction. Our algorithm exploits the relationships among program inputs,

14http://research.microsoft.com/en-us/um/redmond/projects/z3/



56

program variables, executed queries, and path conditions in source code. Database

applications often deal with more than one returned record. In many database appli-

cations, multiple records are iterated from the query’s returned result set. Program

variables that retrieve values from the returned result set further take part in aggre-

gate calculations. The aggregate values then are used in the path condition. In this

section, we discuss how to capture the desirable aggregate constraints on the result set

returned for one or more specific queries issued from a database application. These

constraints play a key role in testing database applications but previous work [13, 22]

on generating database states has often not taken them into account.

Consider the following code after the query’s returned result set has been iterated

in our preceding example shown in Figure 2:

...

14: while (results.Read()){
15: int income = int.Parse(results["income"]);

16: int balance = int.Parse(results["balance"]);

17: int diff = income - 1.5 * balance;

18: if (diff > 100000){
19: count++;

20: totalBalance = totalBalance + balance;}}
20a: if (totalBalance > 500000)

20b: do other calculation...

21: return ...;}

Here, the program variable totalBalance is data-dependent on the variable balance

and thus is associated with the database attribute M.balance. The variable totalBalance

is involved in a branch condition totalBalance > 500000 in Line 20a. Note that the

variable totalBalance is aggregated from all returned record values. For simple ag-

gregate calculations (e.g., sum, count, average, minimum, and maximum), we are

able to incorporate the constraints from the branch condition in our auxiliary query



57

formulation. Our idea is to extend the auxiliary query with the GROUP BY and

HAVING clauses. For example, we learn that the variable totalBalance is a summa-

tion of all the values from the attribute M.balance. The variable totalBalance can

be transformed into an aggregation function sum(M.balance). We include C.zipcode

in the GROUP By clause and sum(M.balance) in the HAVING clause of the extended

auxiliary query:

SELECT C.zipcode,sum(M.balance)

FROM customer C, mortgage M

WHERE M.year=15 AND C.SSN=M.SSN AND C.income - 1.5 * M.balance > 100000

GROUP BY C.zipcode

HAVING sum(M.balance) > 500000

Cardinality Constraints: In many database applications, we often require the number

of returned records to meet some conditions (e.g., for performance testing). For

example, after execution reaches Line 20, we may have another piece of code appended

to Line 20 as

20c: if (count >= 3)

20d: computeSomething();

Here we can use a special DSE technique [25] for dealing with input-dependent

loops. With this technique, we can learn that the subpath with the conditions in

Lines 14 and 18 being true has to be invoked at least three times in order to cover

the branch condition count >= 3 in Line 20c. Hence we need to have at least three

records iterated into Line 18 so that true branches of Lines 14, 18, and 20c can be

covered. In our auxiliary query, we can simply add COUNT(*) >= 3 in the HAVING

clause to capture this cardinality constraint.
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SELECT C.zipcode

FROM customer C, mortgage M

WHERE M.year=15 AND C.SSN=M.SSN AND C.income - 1.5 * M.balance > 100000

GROUP BY C.zipcode

HAVING COUNT(*) >= 3

Program logic could be far more complex than the appended code in Lines 20a-d

of our example. We emphasize here that our approach up to now works for only

aggregate calculations that are supported by the SQL built-in aggregate functions.

When the logic iterating the result set becomes more complex than SQL’s support, we

cannot directly determine the appropriate values for program inputs. For example,

some zipcode values returned by our auxiliary query could not be used to cover

the true branch of Lines 20a-b because the returned records with the input zipcode

values may fail to satisfy the complex aggregate condition in Line 20a. However, our

approach can still provide a super set of valid program input values. Naively, we

could iterate all the candidate program input values to see whether some of them can

cover a specific branch or path.

4.3.3 Dealing with Complex Queries

SQL queries embedded in application program code could be very complex. For ex-

ample, they may involve nested subqueries with aggregation functions, union, distinct,

and group-by views, etc. The fundamental structure of a SQL query is a query block,

which consists of SELECT, FROM, WHERE, GROUP BY, and HAVING clauses.

If a predicate or some predicates in the WHERE or HAVING clause are of the form
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[Ck op Q] where Q is also a query block, the query is a nested query. A large body of

work exists on query transformation in databases. Various decorrelation techniques

(e.g., [34]) have been explored to unnest complex queries into equivalent single level

canonical queries and recent work [2] showed that almost all types of subqueries can

be unnested.

Generally, there are two types of canonical queries: DPNF with the WHERE clause

consisting of a disjunction of conjunctions as shown below

SELECT C1, C2, ..., Ch

FROM from-list

WHERE (A11 AND ... AND A1n) OR ... OR (Am1 AND ... AND Amn)

and CPNF with the WHERE clause consisting of a conjunction of disjunctions (such

as (A11 OR... OR A1n) AND ... AND (Am1 OR... OR Amn)). Note that DPNF and

CPNF can be transformed mutually using DeMorgan’s rules15.

Next we present our algorithm on how to formulate auxiliary queries and determine

program input values given a general DPNF query. Our previous Algorithm 3 deals

with only a special case of DPNF where the query’s WHERE clause contains only

one A11 AND ... AND A1n. We show the algorithm details in Algorithm 5. Our idea

is to decompose the DPNF query Qdpnf into m simple queries Qi (i = 1, · · · ,m).

The WHERE clause of each Qi contains only one disjunction in the canonical form,

Ai1 AND ... AND Ain. We apply Algorithm 3 to generate its corresponding auxiliary

query Q̃i and apply Algorithm 4 to generate program input values Ri. The union of

15http://en.wikipedia.org/wiki/DeMorgan’slaws
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Table 7: Symbolic query processing: t1 for path P5 and t2 for path P6.

(a) Symbolic customer

SSN zipcode income ...
t1 : $a1 $b1 $c1 ...
t2 : $a2 $b2 $c2 ...

(b) Symbolic customer after SQP

SSN zipcode income ...
t1 : $a1 $b1=:zip+1 $c1 - 1.5*$f1<=100000 ...
t2 : $a2 $b2=:zip+1 $c2 - 1.5*$f2>100000 ...

(c) Symbolic mortgage

SSN year balance ...
t1 : $d1 $e1 $f1 ...
t2 : $d2 $e2 $f2 ...

(d) Symbolic mortgage after SQP

SSN year balance ...
t1 : $d1=$a1 $e1=:years $c1 - 1.5*$f1<=100000 ...
t2 : $d2=$a2 $e2=:years $c2 - 1.5*$f2>100000 ...

(e) Instantiated customer

SSN zipcode income ...
t1 : 003 28223 50000 ...
t2 : 004 28223 150000 ...

(f) Instantiated mortgage

SSN year balance ...
t1 : 003 30 10000 ...
t2 : 004 30 20000 ...

Ris then contains all appropriate program input values.

4.3.4 Modifying Database State

Although constructing auxiliary queries provides a way of deriving effective pro-

gram inputs based on the existing database state, executing the constructed auxiliary

queries may still return an empty result set, which indicates that the current database

state is lack of qualified records. To deal with such situation, we need to generate

new records and populate them back to the database.

For the preceding example code in Figure 2, choosing Line 06 to be true will make

true the condition M.year = 30 for the WHERE clause from the query in Line 11,

where we observe that the database in Table 6 does not contain sufficient records.

Thus, to cover two new paths P5 and path P6 as shown below, we need to have at

least one record that satisfies constraints on the query result set.
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P5:(type != 0) && (results.Read() == true) &&(diff <= 100000)

P6:(type != 0) && (results.Read() == true) &&(diff > 100000)

In our approach, we generate new records by invoking the data instantiation com-

ponent. We build symbolic databases consisting of symbolic tuples. We use symbolic

query processing by parsing the SQL statement and substitute the symbolic tuples

in the symbolic databases with symbols that reflect the constraints from the SQL

statement.

Tables 7(a) and 7(c) show the symbolic tables of customer and mortgage, respec-

tively. For example, tuple t1 in Figure 7(a) is a symbolic tuple of symbolic relation

customer to cover path P5; symbol $a1 represents any value in the domain of attribute

SSN and symbol $c1 represents any value in the domain of attribute income. Simi-

larly, tuple t2 is a symbolic tuple to cover path P6. After symbolic query processing,

the symbolic tables shown in Tables 7(b) and 7(d) have captured all the constraint

requirements specified in the symbolic case to cover paths P5 and P6 but without

concrete data. We can see that t1 involves the constraint $c1 − 1.5 ∗ $f1 ≤ 100000

while t2 involves the constraint $c2− 1.5 ∗ $f2 > 100000.

In our approach, we also collect basic constraints at the database schema level

(e.g., not-NULL, uniqueness, referential integrity constraints, domain constraints,

and semantic constraints). For example, attribute age in table customer must be

in the range (0, 100) and attribute balance must be greater than 1000. The sym-

bolic tables together with the basic constraints are then sent to a constraint solver,



62

which can instantiate the symbolic tuples with concrete values. Tables 7(e) and 7(f)

show the instantiated records from a constraint solver. For example, the record t1

is instantiated as “C.SSN=003, C.zipcode=28223, C.income=50000” in table customer

and “M.SSN=003, M.year=30, M.balance=10000” in table mortgage. From constraints

such as “$b1=:zip+1”, the constraint solver also returns the value 28222 for input

parameter zip. Hence, a test with program input {type=1, zip=28222} on the newly

populated database state will lead to coverage of path P5.

To cover the preceding paths P5 and P6 for the example code in Figure 2, generating

one new record for each path could be enough. However, in practice, satisfying cardi-

nality constraints usually requires a large number of records. Cardinality constraints

significantly affect the total cost of generating new database records. Consider the

example related with cardinality constraints as discussed in Section 4.3.2. Suppose

that we have another piece of code appended to Line 20 as

20c: if (count >= 1000)

20d: computeSomething();

Note that here we have a more extensive cardinality constraint count >= 1000 for

the qualified records than the previous cardinality constraint (i.e., count >= 3). As

discussed in Section 4.3.2, we can first construct an auxiliary query as below to choose

values for program input zip.

SELECT C.zipcode

FROM customer C, mortgage M

WHERE M.year = 15 AND C.SSN = M.SSN AND C.income - 1.5 * M.balance > 100000

GROUP BY C.zipcode

HAVING COUNT(*) >= 1000
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However, executing this auxiliary query may return an empty result, indicating that

the current existing database does not contain sufficient qualified records. Naively,

we can generate at least 1000 new records from scratch and populate them back to

the database, requiring a huge cost. In practice, an empty result returned by the

auxiliary query could be caused by the insufficient size of existing qualified records.

For example, if the existing database has already contained 900 such records and in

that case, we need to generate only 100 other new records, requiring much lower cost

than generating all the 1000 records from scratch.

Based on the required cardinality constraints, to reduce the cost of generating new

records from scratch, we conduct database record generation in the following way.

First, we check whether we need to generate new records if the constructed auxiliary

query returns an empty result. If no, our technique does not need to help with such

situation; if yes, second, we check whether the constructed auxiliary query contains

cardinality constraints. If so, we remove the required cardinality constraints and

get another auxiliary query by selecting the size of current qualified records. Third,

we run this modified auxiliary query on the existing database and get the value for

the size of current qualified records. Fourth, we compare the size with the required

cardinality constraints. We can derive how many more records are needed and then

conduct the data generation.

For example, when we observe that running the auxiliary query returns an empty

result, we remove the cardinality constraints HAVING COUNT(*) >= 1000, add COUNT(*)



64

to the SELECT clause, and get a new auxiliary query as

SELECT C.zipcode, COUNT(*)

FROM customer C, mortgage M

WHERE M.year = 15 AND C.SSN = M.SSN AND C.income - 1.5 * M.balance > 100000

GROUP BY C.zipcode

Running this auxiliary query will return a value 900 for COUNT(*) if the existing

database has already contained 900 qualified records within a specific zipcode. Com-

paring with the required cardinality constraints COUNT(*) >= 1000, we detect that

at least 100 other records are needed. Hence, we generate new records by invoking

the data instantiation component. In this way, we can significantly reduce the cost

when the current existing database has already contained a large number of qualified

records and only a few more new records are needed.

4.3.5 Dealing with Multiple Queries

In practice, a database application may contain multiple queries to interact with

the existing database where the problem contexts become more complex. In this

section, we discuss about two typical cases of multiple queries and investigate the

relationship between these queries and program inputs. Figure 3 shows the brief log-

ical structures of the two cases. In the first case, the application contains two queries

and one program input, where the conditions from the first query are data-dependent

on the program input and the conditions from the second query are data-dependent

on the first query’s result-manipulation code. In the second case, the application

contains two queries and two program inputs, where the conditions from the first
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Figure 3: Two typical cases of database applications including two queries

01:public int calcStat(int zip) {
02: int totalIncome = 0, count1 = 0, count2 = 0;

03: SqlConnection sc = new SqlConnection();

04: sc.ConnectionString = "..";

05: sc.Open();

06: string query1 =

"SELECT C.SSN, C.income FROM customer C "

"WHERE C.gender = ’male’ AND C.zipcode=’" + zip + "’";

07: SqlCommand cmd1 = new SqlCommand(query1, sc);

08: SqlDataReader results1 = cmd1.ExecuteReader();

09: while (results1.Read()){
10: totalIncome += int.Parse(results["income"]);

11: count1++;}
12: int average = totalIncome/count1;

13: string query2 =

"SELECT * FROM mortgage M WHERE M.year = 15 AND ’"

+ average + "’ - 1.5 * M.balance > 100000";

14: SqlCommand cmd2 = new SqlCommand(query2, sc);

15: SqlDataReader results2 = cmd2.ExecuteReader();

16: while (results2.Read()){
...

17: count2++;}
18: return count2;}

Figure 4: An example code snippet involving two queries and one program input

query are data-dependent on one program input and the conditions from the second

query are data-dependent on both the first query’s result-manipulation code and the

other program input. For other minor cases, we introduce some examples and briefly

present the solutions.

Case One: We start from the basic case where the application contains two SQL

queries and one input. Consider the example code in Figure 4. The program has one

input zip and it is combined into the first query query1. query1 selects customers’ in-
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come values within a given zipcode from the customer table. Then, query1 is executed

and the returned records are iterated where the sum of each record’s C.income value is

calculated. An average variable is calculated as the average income within the input

zipcode. The average value is then combined into another query query2’s WHERE

clause, where query2 selects qualified records from the mortgage table. After query2

is executed, the returned records are iterated for some further calculations. The pro-

gram finally returns the calculated results. Note that in this example, the program

input (i.e., zip) affects the first query’s execution while the result manipulation (i.e.,

average) affects the later query’s execution.

The challenge exists in that the relationship between query2 and query1’s result-

manipulation cannot be directly or naturally captured by DSE unless query1’s result-

manipulation code has been fully explored. To generate effective zip values so that

both query1 and query2 can return non-empty results, we first apply our preced-

ing auxiliary-query-construction technique discussed in Section 4.3.1 on query1 and

construct an auxiliary query as

SELECT C.zipcode

FROM customer C

WHERE C.gender = ’male’

Executing this auxiliary query can help derive appropriate values for zip so that

DSE can reach the first query’s result-manipulation part. Then, DSE can capture the

data-dependency between conditions from the later query (i.e., query2) and the pro-

gram variables derived from the first query’s result-manipulation part (i.e., average).
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We observe that average performs as a “local” external input to query2. At this

point, we again apply our preceding technique in Section 4.3.1 on query2 and con-

struct another auxiliary query as

SELECT M.balance

FROM mortgage M

WHERE M.year = 15

Running this auxiliary query will return values for the attribute M.balance. From

the constraint average - 1.5 * M.balance > 100000 in query2, we replace M.balance

with these returned values. Thus, we are able to derive appropriate and fixed val-

ues (e.g., a value set V al) for the variable average. Then, based on the previously

captured relationship between average and its corresponding database attribute (i.e.,

C.income) by DSE, we modify the auxiliary query for query1 as

SELECT C.zipcode, AVG(C.income)

FROM customer C

WHERE C.gender = ’male’

GROUP BY C.zipcode

HAVING AVG(C.income) IN Val

Running this modified auxiliary query on the existing database will return effective

values for the program input zip. Using the returned values as input can guarantee

that both query1 and query2 return non-empty results. To formally summarize the

preceding technique, we derive program inputs as follows.

Assume we have a database application with an input I and the program con-

tains two SQL queries Q1 and Q2, where conditions in Q1 are data-dependent on I
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and conditions in Q2 are data-dependent on the variables derived from Q1’s result-

manipulation code. To generate effective program inputs so that executions of both

Q1 and Q2 can return non-empty results, we first construct an auxiliary query Q̃1 for

Q1. We run Q̃1 on the existing database and get concrete values for I. We pick an ar-

bitrary value for I and let DSE reach Q1’s result-manipulation code. DSE is also able

to capture the variable v involved in Q2 that is data-dependent on preceding variables

derived from Q1’s result-manipulation code. Then, for Q2, we treat v as a “local”

external input and construct another auxiliary query Q̃2 for Q2. Running Q̃2 on the

existing database and using the condition from Q2 that contains v , we get a value set

V al for v. We then modify Q̃1 by adding an extra constraint. The extra constraint is

derived from the information collected by DSE, using the value set V al for v and the

captured relationship between variables derived from Q1’s result-manipulation code

and these variables’ corresponding database attributes. For the example in Figure 4,

v in query2 is derived as average and we get a value set V al for average using the

constructed auxiliary query for query2. We also derive that average is related with

the database attribute C.income. We then convert the preceding data-dependency

average = totalIncome/count1 in Line 12 to be AVG(C.income) in V al and add this

extra constraint into the auxiliary query Q̃1 for query1. The modified Q̃1 can help

derive effective values for I.

Case Two: Based on the example in Figure 4, consider another typical case in
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01:public int calcStat(int zip, int inputDiff) {
02: int totalIncome = 0, count1 = 0, count2 = 0;

03: SqlConnection sc = new SqlConnection();

04: sc.ConnectionString = "..";

05: sc.Open();

06: string query1 =

"SELECT C.SSN, C.income FROM customer C "

"WHERE C.gender = ’male’ AND C.zipcode=’" + zip + "’";

07: SqlCommand cmd1 = new SqlCommand(query1, sc);

08: SqlDataReader results1 = cmd1.ExecuteReader();

09: while (results1.Read()){
10: totalIncome += int.Parse(results["income"]);

11: count1++;}
12: int average = totalIncome/count1;

13: string query2 =

"SELECT * FROM mortgage M WHERE M.year = 15 AND ’"

+ average + "’ - 1.5 * M.balance >’" + inputDiff + "’";

14: SqlCommand cmd2 = new SqlCommand(query2, sc);

15: SqlDataReader results2 = cmd2.ExecuteReader();

16: while (results2.Read()){
...

17: count2++;}
18: return count2;}

Figure 5: Another example code snippet involving two queries and two program
inputs

Figure 5. In this example, the program contains two inputs where one input affects

the first query while both the second input and the first query’s result-manipulation

affect the second query. To deal this category of multiple queries, we modify the

preceding technique as follows.

Assume that we have a database application with two inputs I1 and I2 and the

program contains two SQL queries Q1 and Q2, where conditions in Q1 are data-

dependent on I1 and conditions in Q2 are data-dependent on both I2 and the variables

derived from Q1’s result-manipulation code. To generate effective program inputs so

that executions of both Q1 and Q2 can return non-empty results, we first construct

an auxiliary query Q̃1 for Q1. We run Q̃1 on the existing database and get concrete

values for I1. Using these values, we let DSE reach Q1’s result-manipulation code.
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DSE is also able to capture the variable v involved in Q2 that is data-dependent on

preceding variables derived from Q1’s result-manipulation code. For Q2, DSE could

set concrete values for v using preceding values derived from Q1’s result-manipulation

code. Then, for I2 that appears in Q2, we treat I2 as a “local” external input and

construct another auxiliary query Q̃2 for Q2. We choose I2’s related database attribute

CI2 as the selection in Q̃2. Running Q̃2 on the existing database, we get values V al

for CI2 . Then, using the condition from Q2 that contains I2, we replace CI2 with V al

and derive the final values for I2. For the example in Figure 5, we construct auxiliary

query for query1 as

SELECT C.zipcode

FROM customer C

WHERE C.gender = ’male’

We can derive values for the input zip. Then, DSE can reach query1’s result-

manipulation code and the variable average is later set with concrete values. We

treat the input inputDiff as a “local” external input for query2 and we derive that

inputDiff is related with the database attribute M.balance. We construct another

auxiliary query for query2 as

SELECT M.balance

FROM mortgage M

WHERE M.year = 15

We can derive values for the attribute M.balance. Then, we replace both average

and M.balance in the condition average - 1.5 * M.balance > inputDiff with those
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derived values. We send the modified condition to a constraint solver and get final

values for inputDiff.

Other Minor Cases: The previously discussed techniques for dealing with the preced-

ing two typical cases containing two queries could be extended to dealing with more

than two queries by solving each individual query iteratively. In practice, we may have

other minor categories that involve multiple queries. For example, assume that the

program contains only one input and two queries, where the first query is static and

the second query contains conditions that are data-dependent on the input. In that

case, since the first query is static, DSE could directly reach the second query. We

can straightforwardly apply our auxiliary-query-construction technique on the second

query and derive values for the program input. For another example, assume that the

program contains two input and two queries, where each query is only data-dependent

on one input and the conditions in an individual query is not data-dependent on one

another. In that case, since there is no data-dependency among each individual query,

we can apply the auxiliary-query-construction technique separately on each individual

query and derive values for each program input.

4.4 Evaluation

Our approach can provide assistance to DSE-based test-generation tools (e.g., Pex

[1] for .NET) to improve code coverage in database application testing. In our eval-

uation, we seek to evaluate the benefit and cost of our approach from the following
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two perspectives:

RQ1: What is the percentage increase in code coverage by the program inputs gener-

ated by Pex with our approach’s assistance compared to the program inputs generated

without our approach’s assistance in testing database applications?

RQ2: What is the cost of our approach’s assistance?

In our evaluation, we first run Pex without our approach’s assistance to generate

test inputs. We record their statistics of code coverage, including total program

blocks, covered blocks, and coverage percentages. In our evaluation, we also record

the number of runs and execution time. A run represents one time that one path is

explored by Pex using a set of program input values. Because of the large or infinite

number of paths in the code under test, Pex uses exploration bounds to make sure

that Pex terminates after a reasonable amount of time. For example, the bound

TimeOut denotes the number of seconds after which the exploration stops. In our

evaluation, we use the default value TimeOut=120s and use “time out” to indicate

timeout cases.

Pex often fails to generate test inputs to satisfy or cover branch conditions that are

data-dependent on the query’s execution or its returned result set. We then perform

our algorithms to construct auxiliary queries based on the intermediate information

collected from Pex’s previous exploration. We then execute the auxiliary queries

against the existing database and generate new test inputs. We then run the test in-

puts previously generated by Pex and the new test inputs generated by our approach,
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and then record new statistics.

We conduct an empirical evaluation on two open source database applications

RiskIt and UnixUsage. The introductions to these two applications are previously

presented in Chapter 1.

4.4.1 Code Coverage

We show the evaluation results in Table 8 and Table 9. For each table, the first part

(Columns 1-2) shows the index and method names. The second part (Columns 3-6)

shows the code coverage result. Column 3 “total(blocks)” shows the total number of

blocks in each method. Columns 4-6 “covered(blocks)” show the number of covered

blocks by Pex without our approach’s assistance, the number of covered blocks by Pex

together with our approach’s assistance, and the percentage increase, respectively.

Within the RiskIt application, 17 methods are found to contain program inputs

related with database attributes. These 17 methods contain 943 code blocks in to-

tal. Test inputs generated by Pex without our approach’s assistance cover 588 blocks

while Pex with our approach’s assistance covers 871 blocks. In fact, Pex with our ap-

proach’s assistance can cover all branches except those branches related to exception

handling. For example, the method No. 1 contains 39 blocks in total. Pex without

our approach’s assistance covers 17 blocks while Pex with our approach’s assistance

covers 37 blocks. The two not-covered blocks belong to the catch statements, which

mainly deal with exceptions at runtime.

The UnixUsage application contains 28 methods whose program inputs are related
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with database attributes, with 394 code blocks in total. Pex without our approach’s

assistance covers 258 blocks while Pex with our approach’s assistance covers all 394

blocks. The UnixUsage application constructs a connection with the database in a

separate class that none of these 28 methods belong to. Thus, failing to generate

inputs that can cause runtime database connection exceptions has not been reflected

when testing these 28 methods.

4.4.2 Cost

In Tables 8 and 9, the third part (Columns 7-10) shows the cost. Columns 7 and

9 “Pex” show the number of runs and the execution time used by Pex without our

approach’s assistance. We notice that, for both applications, Pex often terminates

with “time out”. The reason is that Pex often fails to enter the loops of iterating the

returned result records. Columns 8 and 10 “ours” show the additional number of runs

by Pex with assistance of our approach and the extra execution time (i.e., the time of

constructing auxiliary queries, deriving program input values by executing auxiliary

queries against the existing database, and running new test inputs) incurred by our

approach.

We observe that, for both applications, Pex with assistance of our approach achieves

much higher code coverage with relatively low additional cost of a few runs and a

small amount of extra execution time. In our evaluation, we set the TimeOut as 120

seconds. For those “time out” methods, Pex could not achieve new code coverage

even given larger TimeOut values. Our approach could effectively help cover new
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branches not covered by Pex with relatively low cost.

Note that in our current evaluation, we loosely integrate Pex and our approach:

we perform our algorithms only after Pex finishes its previous exploration (i.e., after

applying Pex without our approach’s assistance) since our algorithms rely on the

intermediate information collected during Pex’s exploration. We expect that after

our approach is tightly integrated into Pex, our approach can effectively reduce the

overall cost of Pex integrated with our approach (which is currently the sum of the

time in Columns 9 and 10). In such tight integration, our algorithms can be triggered

automatically when Pex fails to generate test inputs to satisfy branch conditions that

are data-dependent on a query’s execution or its returned result set.
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Algorithm 3 Auxiliary Query Construction

Input: a canonical query Q, Q’s abstract form Qabs,
program input set I = {I1, I2, ..., Ik},
path condition PC = pc1 ∧ pc2 ∧ ... ∧ pcs

Output: an auxiliary query Q̃

1: Find variables V = {V1, V2, ..., Vt} data-dependent on I;
2: Decompose Qabs with a SQL parser for each clause;
3: Construct a predicate set A = {A1, A2, ..., An} from Q’s WHERE clause;
4: Construct an empty predicate set Ã, an empty attribute set CV , and an empty query

Q̃;
5: for each predicate Ai ∈ A do
6: if Ai does not contain program variables then
7: Leave Ai unmodified and check the next predicate;
8: else
9: if Ai does not contain program variables from V then

10: Substitute Ai’s program variables with their corresponding concrete values in
Q;

11: else
12: Substitute the variables from V with the expression expressed by I;
13: Substitute the variables not from V with their corresponding concrete values in

Q;
14: Copy Ai to Ã;
15: Add Ai’s associated database attributes to CV ;
16: end if
17: end if
18: end for
19: Append CV to Q̃’s SELECT clause;
20: Copy Q’s FROM clause to Q̃’s FROM clause;
21: Append A− Ã to Q̃’s WHERE clause;
22: Find variables U = {U1, U2, ..., Uu} coming directly from Q’s result set;
23: Find U ’s corresponding database attributes CU = {CU1, CU2, ..., CUw};
24: for each branch condition pci ∈ PC after Q’s execution do
25: if pci contains variables data-dependent on U then
26: Substitute the variables in pci with the expression expressed by the variables from

U ;
27: Substitute the variables from U in pci with U ’s corresponding database attributes

in CU ;
28: Add the branch condition in pci to P̃C;
29: end if
30: end for
31: Flip the last branch condition in P̃C;
32: Append all the branch conditions in P̃C to Q̃’s WHERE clause;
33: return Q̃;
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Algorithm 4 Program Input Generation

Input: an auxiliary query Q̃, program inputs I

intermediate results CV and Ã from Algorithm 3
Output: program input values R for I

1: Execute Q̃ against the given database, get resulting values RV for the attributes in CV ;
2: Substitute the attributes CV for predicates in Ã with the values in RV , resulting in new

predicates in Ã;
3: Feed the new predicates in Ã to a constraint solver and get final values R for I;
4: return Output final program input values R;

Algorithm 5 Program Input Generation for DPNF Query

Input: a DPNF query Qdpnf , program inputs I
Output: program input value set Rdpnf for I

1: for each disjunction Di in Qdpnf ’s WHERE clause do
2: Build an empty query Qi;
3: Append Qdpnf ’s SELECT clause to Qi’s SELECT clause;
4: Append Qdpnf ’s FROM clause to Qi’s FROM clause;
5: Append Di to Qi’s WHERE clause;
6: Apply Algorithm 3 on Qi and get its auxiliary query Q̃i;
7: Apply Algorithm 4 on Q̃i and get output Ri;
8: Rdpnf = Rdpnf ∪ Ri;
9: end for

10: return Output final program input values Rdpnf ;
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4.5 Conclusions

In this research, we have presented an approach that takes database applications

and a given database as input, and generates appropriate program input values to

achieve high code coverage. In our approach, we employ dynamic symbolic execution

to analyze the code under test and formulate auxiliary queries based on extracted

constraints to generate program input values. We incorporate data instantiation

component in our framework to deal with the case that no effective program input

values can be attained. We determine how to generate new records and populate them

in the new database state. We also extend our program-input-generation approach

to database applications including multiple queries. Empirical evaluations on two

open source database applications showed that our approach can assist Pex, a state-

of-the-art DSE tool, to generate program inputs that achieve higher code coverage

than the program inputs generated by Pex without our approach’s assistance. Part

of this research was published in ASE 2011 [44]. The extended work was submitted

to a journal [47] and is under review when preparing this dissertation.

In future work, we plan to extend our technique to construct auxiliary queries di-

rectly from embedded complex queries (e.g., nested queries), rather than from their

transformed norm forms. An execution path of an application can involve the exe-

cution of a sequence of SQL statements including both SELECT queries and state-

modifying SQL statements such as INSERT, UPDATE and DELETE. We aim to

explore how to extend our approach to state-modifying SQL statements.



CHAPTER 5: GENERATE TEST BY SYNTHESIZED INTERACTIONS

Testing database applications typically requires the generation of tests consisting

of both program inputs and database states. Recently, a testing technique called Dy-

namic Symbolic Execution (DSE) has been proposed to reduce manual effort in test

generation for software applications. However, applying DSE to generate tests for

database applications faces various technical challenges. For example, the database

application under test needs to physically connect to the associated database, which

may not be available for various reasons. The program inputs whose values are

used to form the executed queries are not treated symbolically, posing difficulties for

generating valid database states or appropriate database states for achieving high

coverage of query-result-manipulation code. To address these challenges, we propose

an approach called SynDB that synthesizes new database interactions to replace the

original ones from the database application under test. In this way, we bridge vari-

ous constraints within a database application: query-construction constraints, query

constraints, database schema constraints, and query-result-manipulation constraints.

We then apply a state-of-the-art DSE engine called Pex for .NET from Microsoft Re-

search to generate both program inputs and database states. The evaluation results

show that tests generated by our approach can achieve higher code coverage than
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existing test generation approaches for database applications.

5.1 Illustrative Example

In this section, we first use an example to intuitively introduce problems of existing

test generation approaches. We then apply our SynDB approach on the example code

to illustrate how our approach works.

01:public int calcStat(int inputYear) {
02: int zip = 28223, count = 0;

03: SqlConnection sc = new SqlConnection();

04: sc.ConnectionString = "..";

05: sc.Open();

06: string query = buildQuery(zip, inputYear);

07: SqlCommand cmd = new SqlCommand(query, sc);

08: SqlDataReader results = cmd.ExecuteReader();

09: while (results.Read()){
10: int income = results.GetInt(1);

11: int balance = results.GetInt(2);

12: int year = results.GetInt(3);

13: int diff = (income - 1.5 * balance) * year;

14: if (diff > 100000){
15: count++;}}
16: return count;}

06a:public string buildQuery(int x, int y) {
06b: string query = "SELECT C.SSN, C.income,"

+" M.balance, M.year FROM customer C, mortgage M"

+" WHERE C.SSN = M.SSN AND C.zipcode =’" + x +"’"

+" AND M.year =’" + y +"’";

06c: return query;}

Figure 6: A code snippet from a database application in C#

The code snippet in Figure 6 includes a portion of C# code from a database applica-

tion that calculates some statistics related to customers’ mortgages. The schema-level

descriptions and constraints of the associated database are given in Table 10. The

method calcStat first sets up database connection (Lines 03-05). It then constructs

a query by calling another method buildQuery (Lines 06, 06a, 06b, and 06c) and

executes the query (Lines 07-08). Note that the query is built with two program vari-
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Table 10: Database schema

customer table mortgage table
Attribute Type Constraint Attribute Type Constraint

SSN Int Primary Key SSN Int Primary Key
name String Not null Foreign Key
gender String ∈ {F, M} year Int ∈ {10, 15, 30}
zipcode Int [00001, 99999]

age Int (0, 100] balance Int [2000, Max)
income Int [100000, Max)

ables: a local variable zip and a program-input argument inputYear. The returned

result records are then iterated (Lines 09-15). For each record, a variable diff is

calculated from the values of the fields C.income, M.balance, and M.year. If diff is

greater than 100000, a counter variable count is increased (Line 15). The method

then returns the final result (Line 16). To achieve high structural coverage of this

program, we need appropriate combinations of database states and program inputs.

Typically, a database application communicates with the associated database through

four steps. First, the application sets up a connection with the database (e.g., con-

struct a SqlConnection object). Second, it constructs a query to be executed and

combines the query into the connection (e.g., construct a SqlCommand object using

the database connection and the string value of the query). Third, if the query’s

execution yields an output, the result is returned (e.g., construct a SqlDataReader

object by calling the API method ExecuteReader()16). Fourth, the returned query

result is manipulated for further execution.

16If the query is to modify the database state (such as INSERT, UPDATE, and DELETE),
methods ExecuteNonQuery() or ExecuteScalar() are applied.
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01:public int calcStat(int inputYear, DatabaseState dbState) {
02: int zip = 28223, count = 0;

03: SynSqlConnection sc = new SynSqlConnection(dbState);

04: sc.ConnectionString = "..";

05: sc.Open();

06: string query = buildQuery(zip, inputYear);

07: SynSqlCommand cmd = new SynSqlCommand(query, sc);

08: SynSqlDataReader results = cmd.ExecuteReader();

09: while(results.Read()){
10: int income = results.GetInt(1);

11: int balance = results.GetInt(2);

12: int year = results.GetInt(3);

13: int diff = (income - 1.5 * balance) * year;

14: if (diff > 100000){
15: count++;}}
16: return count;}

06a:public string buildQuery(int x, int y) {
06b: string query = "SELECT C.SSN, C.income,"

+" M.balance, M.year FROM customer C, mortgage M"

+" WHERE C.SSN = M.SSN AND C.zipcode =’" + x +"’"

+" AND M.year =’" + y +"’";

06c: return query;}

Figure 7: Transformed code produced by SynDB for the code in Figure 6

To test the preceding code, for existing DSE-based test generation approaches

[38, 53] where the application interacts with either real database or mock database,

in the first run, DSE chooses random or default values for inputYear (e.g., inputYear

= 0 or inputYear = 1). For generation of a database state, the constraint for the

attribute M.year in the concrete query becomes M.year = 0 or M.year = 1. Here, the

query-construction constraints are simply true. However, we observe from the schema

in Table 10 that the randomly chosen values (e.g., inputYear = 0 or 1) violate a

database schema constraint: M.year can be chosen from only the set {10, 15, 30}.

Query constraints (constraints derived from the WHERE clause of the concrete query)

thus conflict with the database schema constraints. As aforementioned, the violation

of database schema constraints would cause the generation of invalid database states.



85

public class customerTable {
public class customer {/*define attributes*/}
public List<customer> customerRecords;

public void checkConstraints() {/*check constraints for each attribute*/}}
public class mortgageTable {

public class mortgage {/*define attributes*/}
public List<mortgage> mortgageRecords;

public void checkConstraints() {/*check constraints for each attribute;

e.g., ‘year’ must be in {10,15,30}*/}}
public class DatabaseState {

public customerTable customerT = new customerTable( );

public mortgageTable mortgageT = new mortgageTable( );

public void checkConstraints(){/*check constraints for each table*/}}

Figure 8: Synthesized database state

Thus, existing DSE-based test generation approaches may fail to generate sufficient

database records to cause the execution to enter the query result manipulation (e.g.,

the while loop in Lines 09-15). Furthermore, even if the specific database schema

constraint (i.e., M.year ∈ {10, 15, 30}) does not exist and test execution is able to

reach later part, the branch condition in Line 14 cannot be satisfied. The values for

the attribute M.year (i.e., M.year = 0 or M.year = 1) from the query in Line 06b are

prematurely concretized. Then, such premature concretization causes conflict with

later constraints (i.e., the condition in Line 14) from sub-paths for manipulating the

query result. From these two types of constraint conflicts, we observe that treating

the database as an external component isolates the query constraints with database

schema constraints and query-result-manipulation constraints.

To address the preceding problems in testing database applications, our approach

replaces the original database interactions by constructing synthesized database in-

teractions. For example, we transform the example code in Figure 6 into another

form shown in Figure 7. Note that in the transformed code, methods in the bold font
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indicate our new synthesized database interactions. We also add a new input dbState

to the program with a synthesized data type DatabaseState. The type DatabaseState

represents a synthesized database state whose structure is consistent with the original

database schema. For example, for the schema in Table 10, its synthesized database

state is shown in Figure 8. The program input dbState is then passed through synthe-

sized database interactions SynSqlConnection, SynSqlCommand, and SynSqlDataReader.

Meanwhile, at the beginning of the synthesized database connections, we ensure that

the associated database state is valid by calling a method predefined in dbState to

check the database schema constraints for each table.

To synthesize the database operations for the synthesized database interactions,

we incorporate the query constraints as program-execution constraints in normal pro-

gram code. To do so, within the synthesized method ExecuteReader, we parse the

symbolic query and transform the constraints from conditions in the WHERE clause

into normal program code (e.g., whose exploration helps derive path conditions).

The query result is then assigned to the variable results with the synthesized type

SynSqlDataReader. The query result eventually becomes an output of the operation

on the symbolic database state.

We then apply a DSE engine on the transformed code to conduct test generation.

In the first run, DSE chooses random or default values for inputYear and dbState

(e.g., inputYear = 0, dbState = null). The value of dbState is passed through sc and

cmd. Note that for the database connection in Line 05, DSE’s exploration is guided



87

Table 11: A summary of synthesized database interactions

Original class SqlConnection SqlCommand SqlDataReader
New class SynSqlConnection SynSqlCommand SynSqlDataReader
New field DatabaseState DatabaseState DataTable

dbStateConn dbStateComm resultSet
SynSqlConnection SynSqlCommand( bool Read()
(DatabaseState SynSqlConnection -> iterate
dbStatePara) SSConn,string q) through the
->pass the ->pass the field
symbolic symbolic DataTable

Main modified database state database state resultSet
methods and SynSqlDataReader int GetInt32(),
functionalities DatabaseState ExecuteReader() double GetDouble()....

getDB() ->return ->simulate the ->read column values
the field query execution from DataTable

dbStateConn on the symbolic resultSet
database state

to check database schema constraints for each table (e.g., Mortgage.year ∈ {10, 15,

30}). Then, in Line 08, DSE’s exploration is guided to collect query constraints from

the symbolic query. In Line 09, because the query result is empty, DSE stops and

tries to generate new inputs. To cover the new path where Line 09 == true, the DSE

engine generates appropriate values for both inputYear and dbState using a constraint

solver based on the collected constraints. The generated program input and database

records are shown in Table 12 (e.g., inputYear = 15 and the record with C.SSN =

001). In the next run, the execution of the query whose WHERE clause has been

updated as C.SSN = M.SSN AND C.zipcode = 28223 AND M.year = 15 yields a record

so that DSE’s exploration enters the while loop (Lines 09-15). Straightforwardly, the

transformed code can also guide DSE’s exploration to collect later constraints (Line

14) from sub-paths for manipulating the query result to generate new inputs. For
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example, to cover Line 14 == true, the collected new constraint (income - 1.5 *

balance) * year is combined with previous constraints to generate new inputs (e.g.,

the input inputYear = 15 and the record with C.SSN = 002 as shown in Table 12).

Table 12: Generated program inputs and database states to cover the paths Line09

= true, Line14 = false and Line09 = true, Line14 = true

dbState
inputYear dbState.Customer dbState.Mortgage

SSN name gender zipcode age income SSN year balance
15 001 AAA F 28223 45 150000 001 15 100000
15 002 BBB M 28223 55 150000 002 15 50000

5.2 Problem Formalization and Proposed Solution

In general, for database applications, constraints used to generate effective pro-

gram inputs and sufficient database states often come from four parts: (1) query-

construction constraints, where constraints come from the sub-paths being explored

before the query-issuing location; (2) query constraints, where constraints come from

conditions in the query’s WHERE clause; (3) database schema constraints, where

constraints are predefined for attributes in the database schema; (4) query-result-

manipulation constraints, where constraints come from the sub-paths being explored

for iterating through the query result. Basically, query-construction constraints and

query-result-manipulation constraints are program-execution constraints while query

constraints and database schema constraints are environment constraints. Typically,

program-execution constraints are solved with a constraint solver for test generation,

but a constraint solver could not directly handle environment constraints.
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Considering the preceding four parts of constraints, applying DSE on testing database

applications faces great challenges for generating both effective program inputs and

sufficient database states. For existing DSE-based approaches of testing database ap-

plications, it is difficult to correlate program-execution constraints and environment

constraints. Performing symbolic execution of database interaction API methods

would face a significant problem: these API methods are often implemented in either

native code or unmanaged code, and even when they are implemented in managed

code, their implementations are of high complexity; existing DSE engines have diffi-

culty in exploring these API methods. In practice, existing approaches [38, 53] would

replace symbolic inputs involved in a query with concrete values observed at runtime.

Then, to allow concrete execution to iterate through a non-empty query result, ex-

isting approaches generate database records using constraints from conditions in the

WHERE clause of the concrete query and insert the records back to the database

(either real database [38] or mock database [53]) so that it returns a non-empty query

result for query-result-manipulation code to iterate through.

A problem of such design decision made in existing approaches is that values

for variables involved in the query issued to the database system could be prema-

turely concretized. Such premature concretization could pose barriers for achiev-

ing structural coverage because query constraints (constraints from the conditions in

the WHERE clause of the prematurely concretized query) may conflict with later

constraints, such as database schema constraints and query-result-manipulation con-
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straints. In particular, the violation of database schema constraints could cause the

generation of invalid database states, thus causing low code coverage of database ap-

plication code in general. On the other hand, the violation of query-result-manipulation

constraints could cause low code coverage of query-result manipulation code. Basi-

cally, there exists a gap between program-execution constraints and environment

constraints, caused by the complex black-box query-execution engine. Treating the

connected database (either real or mock) as an external component isolates the query

constraints with later constraints such as database schema constraints and query-

result-manipulation constraints.

In our research, we develop a DSE-based test generation approach called SynDB

to deal with the preceding challenges. Our approach is the first work that uses a

fully symbolic database. In our approach, we treat symbolically both the embed-

ded query and the associated database state by constructing synthesized database

interactions. We transform the original code under test into another form that the

synthesized database interactions can operate on. To force DSE to actively track

the associated database state in a symbolic way, we treat the associated database

state as a synthesized object, add it as an input to the program under test, and pass

it among synthesized database interactions. The synthesized database interactions

integrate the query constraints into normal program code. We also check whether

the database state is valid by incorporating the database schema constraints into

normal program code. Through this way, we correlate aforementioned four parts of
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constraints within a database application, and bridge the gap of program-execution

constraints and environment constraints. Then, based on the transformed code, we

guide DSE’s exploration through the operations on the symbolic database state to

collect constraints for both program inputs and the associate database state. By ap-

plying a constraint solver on the collected constraints, we thus attain effective program

inputs and sufficient database states to achieve high code coverage. In our approach,

we use a state-of-the-art tool called Pex [1] for .NET from Microsoft Research as the

DSE engine and also use it to conduct the test generation. Note that our approach

does not require the physical database to be in place. In practice, if needed, we can

map the generated database records back to the real database for further use.

5.3 Approach

Our approach relates the query construction, query execution, and query result

manipulation in one seamless framework. We conduct code transformation on the

original code under test by constructing synthesized database interactions. We treat

the database state symbolically and add it as an input to the program. In the trans-

formed code, the database state is passed through synthesized database interactions.

At the beginning of the synthesized database connection, we enforce database schema

constraints via checking code. The synthesized database interactions also incorporate

query constraints from conditions in the WHERE clause of the symbolic query into

normal program code. Then, when a DSE engine is applied on the transformed

code, DSE’s exploration is guided to collect constraints for both program inputs and
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database states. In this way, we generate sufficient database states as well as effective

program inputs.

5.3.1 Code Transformation

For the code transformation, we transform the code under test into another form

upon which our synthesized database interactions can execute. Basically, we replace

the standard database interactions with renamed API methods. We mainly deal with

the statements or stored procedures to execute against a SQL Server database [40].

We identify relevant method calls including the standard database API methods. We

replace the original database API methods with new names (e.g., we add “Syn” before

each method name). Note that replacing the original database API methods is a large

body of work. Even a single class could contain many methods and their relationships

could be very complex. In our SynDB framework, we mainly focus on the classes and

methods that are commonly used and can achieve the basic functionalities of database

applications. Table 11 gives a summary of the code transformation part.

We construct a synthesized object to represent the whole database state, according

to the given database schema. Within the synthesized database state, we define tables

and attributes. For example, for the schema in Table 10, the corresponding synthe-

sized database state is shown in Figure 8. Meanwhile, we check database schema

constraints for each table and each attribute by transforming the database schema

constraints into normal program code for checking these constraints. Note that we

are also able to capture complex constraints at the schema level such as constraints
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public class SynSqlConnection{
...

public DatabaseState dbStateConn; //new field

public void Open()

{dbStateConn.checkConstraints();}
public SynSqlConnection(DatabaseState dbStatePara)

{dbStateConn = dbStatePara;} //modified method

...}

Figure 9: Synthesized SqlConnection

across multiple tables and multiple attributes. We then add the synthesized database

state as an input to the transformed code. Through this way, we force DSE to track

the associated database state symbolically and guide DSE’s exploration to collect

constraints of the database state.

5.3.2 Database Interface Synthesization

We use synthesized database interactions to pass the synthesized database state,

which has been added as a new input to the program. For each database interact-

ing interface (e.g., database connection, query construction, and query execution),

we add a new field to represent the synthesized database state and use auxiliary

methods to pass it. Thus, DSE’s exploration on the transformed code is guided to

track the synthesized database state symbolically through these database interac-

tions. For example, as listed in Table 11, for the interactions SynSqlConnection and

SynSqlCommand, we add new fields and new methods.

For the synthesized database connection, at the beginning, we enforce the checking

of database schema constraints by calling auxiliary methods predefined in the passed

synthesized database state. In this way, we guarantee that the passed database state
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public class SynSqlCommand{
public string query;

public SynSqlConnection synSC;

public DatabaseState dbStateComm; //new field

public SynSqlCommand(string q, SynSqlConnection SSConn){
query = q;

synSC = SSConn;

dbStateComm = SSConn.getDB(); //pass the synthesized database}
public SynSqlDataReader ExecuteReader(){ //execute the select operation;

SynSqlDataReader synReader = new SynSqlDataReader();

DatabaseState synDB = this.getDB();

synReader = SelectExe (synDB,this.getQuery()); //details in Algorithm 6

return synReader;}
public SynSqlDataReader ExecuteNonQuery(){ //execute the modify operation;

DatabaseState synDB = this.getDB();

ModifyExe (synDB,this.getQuery());} //details in Algorithm 7

public DatabaseState getDB() {return dbStateComm;} //new method

public string getQuery() {return query;} //new method}

Figure 10: Synthesized SqlCommand

is valid. It is also guaranteed that the further operations issued by queries (e.g.,

SELECT and INSERT) on this database state would yield valid results. Figure 9 gives

the details of the synthesized database connection. For example, in SynSqlConnection,

we rewrite the method Open() by calling the method checkConstraints() predefined

in the passed synthesized database state.

Then, we synthesize new API methods to execute the query and synthesize a new

data type to represent the query result. For example, we rewrite API methods to

execute a query against the synthesized database state, according to various kinds of

queries (e.g., queries to select database records, and queries to modify the database

state). Figure 10 gives the details of SynSqlCommand whose methods ExecuteReader()

and ExecuteNonQuery() are used to execute queries. The details of algorithms for

ExecuteReader() and ExecuteNonQuery() are discussed later in Section 5.3.3 (Algo-

rithms 6 and 7, respectively).
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We construct a synthesized data type to represent the query result, whose structures

are built dynamically based on the query to be executed. For example, we construct

SynSqlDataReader to represent the query result and use a field with the type DataTable

to represent the returned records. We choose the type DataTable [39] because its

characteristics are very similar to a query’s real returned result set. The entire data

structure is expressed in a table format. For a DataTable object, its columns can be

built dynamically by indicating the column names and their data types.

5.3.3 Database Operation Synthesization

In this section, we illustrate how to use the preceding synthesized database in-

teractions to implement database operations. A database state is read or modified

by executing queries issued from a database application. In our SynDB framework,

we parse the symbolic query and transform the constraints from conditions in the

WHERE clause into normal program code (e.g., whose exploration helps derive path

conditions).

Select Operation

SELECT select-list

FROM from-list

WHERE qualification

Figure 11: A simple query

We first discuss how to deal with the SELECT statement for a simple query. A

simple query (shown in Figure 11) consists of three parts. In the FROM clause,

there is a from-list that consists of a list of tables. In the SELECT clause, there is a
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list of column names of tables named in the FROM clause. In the WHERE clause,

there is a qualification that is a boolean combination of conditions connected by

logical connectives (e.g., AND, OR, and NOT). A condition is of the form expression

op expression, where op is a comparison operator (=, <>, >, >=, <, <=) or a

membership operator (IN, NOT IN) and expression is a column name, a constant,

or an (arithmetic or string) expression. We leave discussion for complex queries in

Section 5.3.4.

In our approach, we rewrite the method ExecuteReader() (shown in Figure 10) to

deal with the SELECT statement. The return value of the method is a SynSqlDataReader

object. Recall that the SynSqlCommand object contains a field dbStateComm to represent

the symbolic database state. We evaluate the SELECT statement on this symbolic

database state in three steps. We construct the full cross-product of relation tables

followed by selection and then projection, which is based on the conceptual evalua-

tion of the SQL queries. The details of executing the SELECT statement is shown

in Algorithm 6. First, we compute a cross-product of related tables to get all rows

based on the FROM clause (Lines 1-14). A cross-product operation computes a rela-

tion instance that contains all the fields of one table followed by all fields of another

table. One tuple in a cross-product is a concatenation of two tuples coming from

the two tables. To realize cross-product computation, we update the columns of the

field DataTable resultSet by adding new columns corresponding to the attributes of

the tables appearing in the FROM clause. The new columns have the same names
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and data types as their corresponding attributes. We compute the cross-product by

copying all the rows to DataTable resultSet. Second, from the cross-product, we

select rows that satisfy the conditions specified in the WHERE clause (Lines 15-22).

For each row r, if it satisfies the conditions, we move to check the next row; otherwise,

we remove r. Note that, as aforementioned, we deal with the SELECT statement for

a simple query whose WHERE clause contains a qualification that is a boolean com-

bination of conditions connected by logical connectives (e.g., AND, OR, and NOT).

In this step, we transform the evaluation of the conditions specified in the WHERE

clause into normal program code in the following way. From the WHERE clause,

we replace the database attributes in the conditions with their corresponding column

names in DataTable resultSet. We also map those SQL logical connectives (e.g.,

AND, OR, and NOT) to program logical operators (e.g., &&, ||, and !), thus keep-

ing the original logical relations unchanged. After these transformations, we push

the transformed logical conditions into parts of a path condition (e.g., realized as

an assumption recognized by the DSE engine). Third, after scanning all the rows,

we remove unnecessary columns from DataTable resultSet based on the SELECT

clause (Lines 23-28). For each column c in DataTable resultSet, if it appears in the

SELECT clause, we keep this column; otherwise, we remove c. After the preceding

three steps, the field DataTable resultSet contains all rows with qualified values that

the SELECT statement should return.

Through this way, we construct a SynSqlDataReader object to relate the previous
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query execution and the path conditions later executed in the program. We transform

the later manipulations on the SynSqlDataReader object to be indirect operations

on the initial symbolic database state. To let this SynSqlDataReader object satisfy

the later path conditions, the test generation problem is therefore transformed to

generating a sufficient database state against which the query execution can yield an

appropriate returned result.

Modify Operation

To deal with queries that modify database states, we rewrite the API method called

ExecuteNonQuery() (shown in Figure 10). The pseudocode is shown in Algorithm

7. The method also operates on the field dbStateComm that represents the symbolic

database state. We first check the modification type of the query (e.g., INSERT,

UPDATE, and DELETE). For the INSERT statement (Lines 1-8), from the table in

the INSERT INTO clause, we find the corresponding table in dbStateComm. From

the VALUES clause, we then check whether the values of the new row to be inserted

satisfy database schema constraints. We also check after this insertion, whether the

whole database state still satisfy database schema constraints. If both yes, we add

this new row to the target table in dbStateComm, by mapping the attributes from

the INSERT query to their corresponding fields. For the UPDATE statement (Lines

9-19), from the UPDATE clause, we find the corresponding table in dbStateComm.

We scan the table with the conditions from the WHERE clause and locate target

rows. For each row, we also check whether the specified values satisfy the schema
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constraints. If qualified, we set the new values to their corresponding columns based

on the SET clause. For the DELETE statement (Lines 20-30), from the DELETE

FROM clause, we find the corresponding table in dbStateComm. We locate the target

rows using conditions from the WHERE clause. We then check whether this deletion

would violate the schema constraints; otherwise, we remove these rows.

5.3.4 Discussion

In this section, we present some complex cases that often occur in database appli-

cations. We introduce how our approach can deal with these cases, such as complex

queries, aggregate functions, and cardinality constraints.

Dealing with Complex Queries

Note that SQL queries embedded in the program code could be very complex.

For example, they may involve nested sub-queries with aggregation functions, union,

distinct, and group-by views, etc. The syntax of SQL queries is defined in the ISO

standardization17. The fundamental structure of a SQL query is a query block, which

consists of SELECT, FROM, WHERE, GROUP BY, and HAVING clauses. If a

predicate or some predicates in the WHERE or HAVING clause are of the form [Ck

op Q] where Q is also a query block, the query is a nested query. A large body of

work [34, 17, 2] on query transformation in databases has been explored to unnest

complex queries into equivalent single level canonical queries. Researchers showed

that almost all types of subqueries can be unnested except those that are correlated

17American National Standard Database Language SQL. ISO/IEC 9075:2008.
http://www.iso.org/iso/iso catalogue/catalogue tc/catalogue detail.htm?csnumber=45498
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SELECT C1, C2, ..., Ch

FROM from-list

WHERE (A11 AND ... AND A1n) OR ... OR (Am1 AND ... AND Amn)

Figure 12: A canonical query in DPNF

to non-parents, whose correlations appear in disjunction, or some ALL subqueries

with multi-item connecting condition containing null-valued columns.

Generally, there are two types of canonical queries: DPNF with the WHERE clause

consisting of a disjunction of conjunctions as shown in Figure 12, and CPNF with

the WHERE clause consisting of a conjunction of disjunctions (such as (A11 OR...

OR A1n) AND ... AND (Am1 OR... OR Amn)). Note that DPNF and CPNF can be

transformed mutually using DeMorgan’s rules18. For a canonical query in DPNF

or CPNF, SynDB can handle it well because we have mapped the logical relations

between the predicates in the WHERE clause to normal program code. We are thus

able to correctly express the original logical conditions from the WHERE clause using

program logical connectives.

Dealing with Aggregate Functions

An SQL aggregate function returns a single value, calculated from values in a

column (e.g., AVG(), MAX(), MIN(), COUNT(), and SUM()). It often comes in

conjunction with a GROUP BY clause that groups the result set by one or more

columns.

In general, we map these aggregate functions to be calculations on the object with

18http://en.wikipedia.org/wiki/DeMorgan’slaws
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the type SynSqlDataReader. Recall that for the SynSqlDataReader object that repre-

sents a query’s returned result set, its field DataTable resultSet contains qualified

rows selected by a SELECT statement. From these rows, we form groups according

to the GROUP BY clause. We form the groups by sorting the rows in DataTable

resultSet based on the attributes indicated in the GROUP BY clause. We discard

all groups that do not satisfy the conditions in the HAVING clause. We then apply

the aggregate functions to each group and retrieve values for the aggregations listed

in the SELECT clause.

Another special case that we would like to point out is, in the SELECT clause, it is

permitted to contain calculations among multiple database attributes. Suppose that

there are two new attributes checkingBalance and savingBalance in the mortgage ta-

ble. In the SELECT clause, we have a selected item calculated as mortgage.checkingBalance

+ mortgage.savingBalance. In our approach, dealing with such a complex case is still

consistent with how to deal with the aforementioned SELECT statement. From the

field DataTable resultSet in the SynSqlDataReader object, we merge the columns

involving in this selected item using the indicated calculation. For example, we

get a merged column by making an “add” calculation on the two related columns

mortgage.checkingBalance and mortgage.savingBalance. We also set the data type

of the merged column as the calculation result’s data type.
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Dealing with Cardinality Constraints

Program logic could be far more complex than our illustrative example. Cardinality

constraints for generating a sufficient database state may come from the query-result-

manipulation code. Since SynDB is a DSE-based test generation approach, the space-

explosion issue in path exploration still exists, especially after the query result is

returned.

Consider the example code in Figure 13. Inside the while loop after the result

set is returned, a variable count is updated every time when a condition balance

> 50000 is satisfied. Then, outside the while loop, branch conditions in Lines 10a

and 10c depend on the values of count. Manually, we can observe that the value of

count depends on how many records satisfy the branch condition in Line 09b. We

may generate enough database records so that branches in Lines 10a and 10c could

be entered. However, since there is a while loop, applying DSE to hunt for enough

database records (thus covering Lines 10a) faces significant challenges: the size of

results can range to a very large number, of which perhaps only a small number of

records can satisfy the condition in Line 09b. Hence, this problem is reduced to a

traditional issue [68]: to explore a program that contains one or more branches with

relational conditions (here, we have (count > 10)) where the operands are scalar

values (integers or floating-point numbers) computed based on control-flow decisions

connected to program inputs through data flow (here, we have if (balance > 50000)

count++;).
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...

09: while (results.Read()){
09a: int balance = results.GetInt(1);

09b: if (balance > 50000)

10: count++;}
10a: if (count > 10)

10b: return count;

10c: else

11: return 10;}

Figure 13: An example where cardinality constraints come from the query result
manipulation

In the literature, Xie et al. proposed an approach Fitnex [68] that uses a fitness

function to measure how close an already discovered feasible path is to a particular

test target. Each already explored path is assigned with a fitness value. Then a

fitness gain for each branch is computed and the approach gives higher priority to

flipping a branching node with a better fitness gain. The fitness function measures

how close the evaluation at runtime is to covering a target predicate.

Under the scenario of our approach, since we have built the consistency between the

database state and the returned result set, we can capture the relationship between the

database state and the target conditions (such as Lines 10a and 10c) depending on the

returned result set. We apply the search strategy that integrates the Fitnex approach

[68], so that generating enough database records with high efficiency becomes feasible.

For the example code in Figure 13, we detect that covering the path condition in Line

10a is dependant on covering the path condition in Line 09b. To satisfy the target

predicate in Line 10a, the search strategy would give priority to flip the branching

node in Line 09b. This step therefore helps achieve generating a sufficient database

state with high efficiency.
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5.4 Evaluation

Our approach replaces the original database API methods with synthesized database

interactions. We also treat the associated database state as a program input to guide

DSE to collect constraints for generating both program inputs and corresponding

database records. Through this way, tests generated by our approach are able to

achieve high code coverage for testing database applications. In our evaluation, we

seek to evaluate the performance of our approach from the following perspectives:

RQ1: What is the percentage increase in code coverage by the tests generated by

our approach compared to the tests generated by existing approaches [38, 53] in test-

ing database applications?

RQ2: What is the running cost of our approach compared with existing approaches

on generating tests?

5.4.1 Subject Applications

We conduct an empirical evaluation on three open source database applications:

iTRUST, RiskIt, and UnixUsage. The introductions to these applications are previously

presented in Chapter 1.

For these applications, we focus on the methods whose SQL queries are constructed

dynamically. For the iTRUST application, from the sub-package called iTRUST.DAO,

we choose 14 methods that contain queries whose variables are data-dependent on

program inputs. The iTRUST.DAO package mainly deals with database interactions and
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data accessing. The RiskIt application consists of 44 classes, of which 32 methods

are found to have at least one SQL query. Within these 32 methods, 17 methods

contain queries whose variables are data-dependent on program inputs. We choose

these 17 methods to conduct our evaluation. The UnixUsage application consists of

26 classes, of which 76 methods are found to have at least one SQL query. Within

these 76 methods, we choose 22 methods that contain queries whose variables are

data-dependent on program inputs to conduct our evaluation.

5.4.2 Evaluation Setup

The three applications have predefined their own schemas for the associated databases

in attached .sql files. For the iTRUST application, the predefined database schema con-

straints are more comprehensive than the other two. We list the contained constraints

related with the methods under test in Table 13. During our search for the subject

applications to be evaluated, we found that most database applications do not contain

very complex schema constraints. We observe that the predefined database schema

constraints for RiskIt and UnixUsage are over-simplified, such as the basic primary key

constraints and data type constraints. To better reflect real-world database schema

constraints in real practice, we extend the existing database schema constraints by

adding extra constraints. We choose certain attributes from the tables and augment

their constraints. The added extra constraints are ensured, as much as possible, to

be reasonable and consistent with real world settings. For example, for the RiskIt

application, we add a length constraint to the attribute ZIP from the userrecord table
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to ensure that the length of ZIP must be 5. Similarly, we ensure that the value of

the attribute EDUCATION from the education table must be chosen from the set {high

school, college, graduate}. The details of the added extra constraints for RiskIt

and UnixUsage are listed in Table 14.
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Algorithm 6 SelectExe:Evaluate a SELECT statement on a symbolic database state

Input: DatabaseState dbStateComm, a SELECT query Q
Output: SynSqlDataReader R

1: Construct a SynSqlDataReader object R;
2: for each table Ti in Q’s from-list do
3: for each attribute A in Ti do
4: Find A’s corresponding field F in schema;
5: Construct a new DataColumn C;
6: C.ColumnName = F .name;
7: C.DataType = F .type;
8: R.resultSet.Columns.Add(C);
9: end for

10: end for
11: for each table Ti in Q’s from-list do
12: Find Ti’s corresponding table T ′i in dbStateComm;
13: end for
14: R.resultSet.Rows = T ′1×T ′2...×T ′n;
15: Construct a string S = Q’s WHERE clause;
16: Replace the database attributes in S with their corresponding column names in

R.resultSet;
17: Replace the SQL logical connectives in S with corresponding program logical operators;
18: for each row r in R.resultSet.Rows do
19: if r does not satisfy S then
20: R.resultSet.Rows.Remove(r);
21: end if
22: end for
23: for each column c in R.resultSet.Columns do
24: if c does not appear in Q’s SELECT clause then
25: R.resultSet.Columns.Remove(c);
26: end if
27: end for
28: return R;
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Algorithm 7 ModifyExe:Evaluate a modification statement on a symbolic database
state
Input: DatabaseState dbStateComm, a modification query Q

1: if Q is an INSERT statement then
2: Get table T from Q’s INSERT INTO clause;
3: Find T ’s corresponding table T ′ in dbStateComm;
4: Construct a new row r based on VALUES clause;
5: if T’.check(r) == true &&

dbStateComm.T’.afterInsert(r) == true then
6: dbStateComm.T’.Add(r);
7: end if
8: end if
9: if Q is an UPDATE statement then

10: Get table T from Q’s UPDATE clause;
11: Find T ’s corresponding table T ′ in dbStateComm;
12: for each row r in T ′ do
13: if r satisfies the conditions in Q’s WHERE clause then
14: if dbStateComm.T’.afterUpdate(r) == true then
15: Set r with the specified values;
16: end if
17: end if
18: end for
19: end if
20: if Q is a DELETE statement then
21: Get table T from Q’s DELETE FROM clause;
22: Find T ’s corresponding table T ′ in dbStateComm;
23: for each row r in T do
24: if r satisfies the conditions in Q’s WHERE clause then
25: if dbStateComm.T’.afterDelete(r) == true then
26: dbStateComm.T’.Remove(r);
27: end if
28: end if
29: end for
30: end if
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We next implement code transformation on the original program code under test.

As aforementioned, our approach constructs synthesized database states based on

the schemas (e.g., attribute names and data types) and incorporates the database

schema constraints into normal program code by checking these constraints on the

synthesized database states. We then apply Pex on the transformed code to conduct

test generation.

Initially, for each method under test, the output of Pex’s execution on the trans-

formed code is saved in a methodname.g.cs file consisting of a number of generated

tests. To investigate RQ1, we intend to directly measure the code coverage on the

original program under test. We conduct the measurements in the following way.

From those methodname.g.cs files, we first populate the generated records back into

the real database. To do so, we instrument code at the end of each methodname.g.cs

file. The instrumented code builds connections with the real database, constructs

INSERT queries for each table, and runs the INSERT queries. Second, we construct

new tests using the program inputs generated by Pex’s execution on the transformed

code. Note that these program inputs have also been saved in the methodname.g.cs

files. Third, we run the constructed new tests for the original program under test

interacting with the real database to measure the code coverage. We record the

statistics of the code coverage, including total program blocks, covered blocks, and

coverage percentages.

We choose one method filterZipcode from the RiskIt application to illustrate the
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evaluation process. The method accepts an input zip to form an query, searches cor-

responding records from the userrecord table, and conduct some calculation from the

returned records. After the code transformation, we get a new method SynfilterZipcode

as shown in Figure 14. We next run Pex on the transformed code SynfilterZipcode

to conduct test generation. The generated tests are then automatically saved by Pex

in a SynfilterZipcode.g.cs file. For example, one of the tests is shown in Figure 15

(Lines 01-21). Running this test covers the path where Line 11 = true, and Line 16

= true in Figure 14. For the test in Figure 15, the generated database record is shown

in Lines 09-13 and the corresponding program inputs for method arguments zip and

dbstateRiskIt are shown in Line 20. The last statement (Line 21) makes an assertion

and completes the current test. After the assertion, we instrument auxiliary code to

populate the generated records back to the real database. We build a connection

with the real database and insert the records to corresponding tables (pseudocode

in Lines 22-28). Then, we construct new tests for the original code under test using

the program inputs contained in tests generated by Pex. For example, based on the

input values in Line 20 of the test shown in Figure 15, we construct a new test shown

in Figure 16. We run these new tests and then measure the code coverage for the

original code under test.

To compare our approach with an existing test-generation approach for database

application testing [38], we make use of our SynDB framework. Basically, we simulate

the approach [38] by generating database records using constraints from a concrete



112

01:public int SynfilterZipcode(String zip, dbStateRiskIt dbstateRiskIt){
02: int count = 0;

03: SynRiskItSqlDataReader result = null;

04: String cmd_zipSearch = "SELECT * from userrecord where zip = ’" + zip + "’";

05: SynRiskItSqlConnection conn = new SynRiskItSqlConnection(dbstateRiskIt);

06: conn.ConnectionString = "Data Source=local;Initial Catalog=riskit;Integrated Security=SSPI";

06: conn.Open();

07: SynRiskItSqlCommand cmd = new SynRiskItSqlCommand(cmd_zipSearch, conn);

08: result = cmd.ExecuteReader();

09: Console.WriteLine(‘‘List of customers for zipcode : ’’ + zip);

10: Console.WriteLine(‘‘%20s |%20s |’’, "NAME", "SSN");

11: while (result.Read()){
12: ++count;

13: Console.WriteLine(‘‘%s |%s |’’, result.GetValue(1).ToString(),

result.GetValue(0).ToString());}
14: if (count == 0)

15: Console.WriteLine(‘‘There are no customers enrolled in this zipcode’’);

16: else

17: Console.WriteLine(‘‘No. of customers in zipcode : ’’ + zip + ‘‘ is ’’ + count);

18: result.Close();

19: return count;}

Figure 14: SynfilterZipcode:Transformed code of method filterZipcode

01:[TestMethod]

02:[PexGeneratedBy(typeof(SynMethodTestRiskIt))]

03:public void SynfilterZipcode101(){
04: List<Userrecord> list;

05: UserrecordTable userrecordTable;

06: int i;

07: Userrecord[] userrecords = new Userrecord[1];

08: Userrecord s0 = new Userrecord();

09: s0.SSN = 100000000;

10: s0.NAME = "";

11: s0.ZIP = "10001";

12: ...;

13: s0.CITIZENSHIP = (string)null;

14: userrecords[0] = s0;

15: list = new List<Userrecord>

((IEnumerable<Userrecord>)userrecords);

16: userrecordTable = new UserrecordTable();

17: userrecordTable.UserrecordList = list;

18: dbStateRiskIt s1 = new dbStateRiskIt();

19: s1.userrecordTable = userrecordTable;

20: i = this.SynfilterZipcode("10001", s1);

21: Assert.AreEqual<int>(1, i); //Code instrumentation for records insertion (pseudocode)

22: SqlConnection conn = new SqlConnection();

23: conn.ConnectionString = "RiskIt";

24: for each table t in s1

25: if t.count > 0

26: for each record r in t

27: string query = INSERT INTO t VALUES (r)

28: conn.execute(query)}

Figure 15: Tests generated by Pex on SynfilterZipcode
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query. We seek to compare the performance with our approach from two perspec-

tives. First, constraints from the WHERE clause of a concrete query may conflict

with database schema constraints. In this step, we do not transform database schema

constraints into normal program code. We generate database records and correspond-

ing program input values. We insert these generated database records back to the

real database, use the generated program input values to form test cases, and mea-

sure the code coverage. Note that the insertion of these generated database records

may be rejected by the database due to conflicts with database schema constraints.

By doing this, we see how this omission of transformation regarding database schema

constraints would impact code coverage. Second, constraints from the WHERE clause

of a concrete query may conflict with later query-result-manipulation constraints. In

this step, at each query-issuing location, we get constraints from the WHERE clause

of the concrete query. We generate records based on these constraints and insert these

records to the real database. Then, DSE’s exploration can enter the query-result iter-

ation and we get additional constraints from the query-result-manipulation code. We

generate new records and insert them back to the real database again and see how

the addition of such new records would impact code coverage. For both perspectives,

we still conduct code transformation on the original code under test and then run

Pex to generate tests, populate the generated records back to the real database, and

construct new tests for the original code under test. After running the new tests, we

measure code coverage achieved by these existing approaches. Such simulated results
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01:[TestMethod]

02:[PexGeneratedBy(typeof(FilterZipcode))]

03:public void filterZipcode101(){
04: int i;

05: i = this.filterZipcode("10001");

06: Assert.AreEqual<int>(1, i);}

Figure 16: Constructed tests for filterZipcode

are expected to be equivalent to the results produced with the original implementa-

tions of the existing approach [38].

To compare our approach with another existing test-generation approach for database

application testing [53], we apply the MODA tool on the subject applications. Since

the initial version of MODA did not consider various kinds of database schema con-

straints during its preparation for the mock database, to fairly compare MODA with

our approach, we assist MODA by incorporating the database schema constraints

into the suitable location (i.e., in its MockDBMS.cs file). We then run MODA on

each method under test to conduct test generation. We measure the code coverage

achieved by MODA and meanwhile record its running time.

5.4.3 Results

We report the evaluation results in Tables 15, 16, and 17, from the perspectives

of code coverage and cost. The evaluation is conducted on a machine with hardware

configuration Intel Pentium 4 CPU 3.0 GHz, 2.0 GB Memory and OS Windows XP

SP2.
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Code Coverage

In Tables 15, 16, and 17, the first part (Columns 1-2) shows the index and method

names. The second part (Columns 3-6) shows the code coverage result. Column

3 “total(blocks)” shows the total number of blocks in each method. Columns 4-

6 “covered(blocks)” show the number of covered blocks using tests generated by

our approach, the number of covered blocks using tests generated by existing ap-

proaches, and the percentage increase, respectively. We find that for existing ap-

proaches [38, 53], they achieve the same code coverage for all the methods. The

reason is that they use the same design decision when conducting the generation for

database records, interacting with either a real database [38] or a mock database [53].

Note that our approach does not deal with generating program inputs and database

states to cause runtime database connection exceptions. Thus, the code blocks re-

lated to these exceptions (e.g., the catch statements) cannot be covered. The fourth

part (Columns 7-8) shows the running time consumed by MODA and our approach.

In our evaluation, we set the TimeOut as 120 seconds for Pex.

Within the iTRUST application, the 14 methods contain 343 code blocks in total.

Tests generated by existing approaches cover 262 blocks while our approach can cover

315 blocks (15.45% average increase). Within the RiskIt application, the 17 methods

contain 943 code blocks in total. Tests generated by existing approaches cover 672

blocks while our approach can cover 871 blocks (21.10% average increase). Within

the UnixUsage application, the 22 methods contain 336 code blocks in total. Tests
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generated by existing approaches cover 238 blocks while our approach can also cover

the whole 336 blocks (29.17% average increase).

We observe that tests generated by existing approaches fail to cover certain blocks

for some methods. The reason is that the generated records violate the database

schema constraints. When populating such records back into the real database, the

insertion operations are rejected by the database. Take the aforementioned example

method SynfilterZipcode shown in Figure 14 to illustrate such cases. Our simulated

results show that existing approaches are able to generate a record with a value “\0”

for the ZIP field. However, the value “\0” does not satisfy the database schema

constraint where ZIP.length = 5 as shown in Table 14. Thus, the real database

refuses the insertion of this record. As a result, correspondingly, running the tests

generated by existing approaches cannot retrieve effective records from the database

and fails to cover certain blocks (e.g., the while loop for the query-result iteration).

For iTRUST, the accompanied schema constraints are more comprehensive than the

constraints for the other two applications. The results show that our approach can

generate tests to cover more blocks for all the 14 methods under test. For example,

for the No.7 method getRole shown in Table 15, the original code is shown in Figure

17. One of its parameter String role is combined into a SQL query that selects

records from the Users table. The attribute Role related with the variable role

has a constraint shown in Table 14, where the value can be chosen from only a

predefined string set. Existing approaches fail to generate effective test inputs to
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01:public String getRole(long mid, String role) throws iTrustException, DBException {
02: Connection conn = null;

03: PreparedStatement ps = null;

04: try {
05: conn = factory.getConnection();

06: ps = conn.prepareStatement("SELECT role FROM Users WHERE MID=? AND Role=?");

07: ps.setLong(1, mid);

08: ps.setString(2, role);

09: ResultSet rs;

10: rs = ps.executeQuery();

11: if (rs.next())

12: return rs.getString("role");

13: else

14: throw new iTrustException("User does not exist with the designated role");}
15: catch (SQLException e){
16: e.printStackTrace();

17: throw new DBException(e);}
18: finally{
19: DBUtil.closeConnection(conn, ps);}}

Figure 17: Method getRole from iTRUST

cover Line 12 while our approach has captured such constraint and is able to generate

effective tests to cover more code blocks than existing approaches. Note that for this

method, the not-covered code (Line 12) by existing approaches is directly related

with query result manipulation, where such case is different from the method shown

in Figure 14. For the method shown in Figure 14, the not-covered code (Line 17)

is related with the variable manipulated within the query result manipulation (Line

12). The experimental results show that our approach can handle both cases because

our approach has correlated the constraints from the query result manipulation and

later program execution.

For RiskIt and UnixUsage, we add only a small number of extra database schema

constraints, where these constraints have not affected all the methods. The results

show that existing approaches achieve the same code coverage as our approach does

for some methods. For example, for the No.2 method filterOccupation in the RiskIt
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application shown in Table 16, we did not add any other constraints to the associated

tables. The result shows that, for the total 41 blocks, both existing approaches and

our approach can cover 37 blocks while the remaining not-covered blocks are related

to handling runtime exceptions. Note that the number of added extra constraints

in our evaluation is limited. In practice, applications could contain more complex

constraints. In that case, we expect that our approach can achieve much better code

coverage than existing approaches.

Another observation that we would like to point out is on complex constraints

involving multiple attributes and multiple tables. For example, for the No.12 method

filterEstimatedIncome in Table 16, the program input String getIncome appears

in a branch condition involving a mathematical formula comparing with a complex

calculation using the query’s returned result. The complex calculation derives a value

from multiple attributes (workweeks, weekwage, capitalGains, capitalLosses, and

stockDividents) across multiple tables (data tables job and investment). Recall that

our approach is able to capture complex constraints defined at the schema level. For

this method, if an extra complex constraint is defined for these attributes at the

schema level, we expect that our approach can achieve much better coverage than

existing approaches.
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Cost

We observe that the major factor that impacts the analysis time for test generation

is the complexity of the query embedded in a method. If a query joins multiple tables,

the exploration of checking database schema constraints for each table is linearly

increased. Meanwhile, if a table contains a large number of attributes, high cost is

also incurred. In the implementation of our approach, we apply one of Pex’s API

methods called PexAssume() to reduce the cost of exploring constraints. PexAssume()

is to filter out undesirable test inputs. By using PexAssume(), it is beneficial to

guarantee that database schema constraints are always enforced without unnecessary

negations. Complexity of the qualification in a query also influences the analysis time

as evaluating the conditions has been transformed into normal program code in our

approach.

Another observation from the running cost that we would like to point out is related

to Pex’s path exploration. As aforementioned, we evaluate the qualification in a

query by transforming it into normal program code. For example, the qualification in

a query is expressed by a boolean combination of conditions connected by program

logical connectives. A generated record that satisfies the whole qualification should

satisfy all the conditions. However, when Pex explores a branch, it neglects to explore

any subsequent boolean condition but starts a new run, if it finds that the first

condition does not hold. Thus, to make all the conditions true, Pex takes more runs,

whose number is linear to the number of conditions. In practice, to improve the
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efficiency, we force Pex to consider all the conditions together in one time, still using

Pex’s API method PexAssume().

Since the existing approach [38] is not publicly available and we simulate its func-

tionalities by using our SynDB framework, we ignore reporting the running time for

this approach. We report the analysis cost of our approach compared with MODA

in Tables 15, 16, and 17. Columns 7 and 8 show the running time for each method.

For example, the running time of our approach for method addUser in iTRUST is 17.1

seconds while MODA uses 33.3 seconds to conduct test generation. On average, for

all the three applications, the results show that our approach use much less running

time than MODA does.
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5.5 Conclusions

In this research, we have developed a DSE-based approach called SynDB for testing

database applications. The approach synthesizes new database interactions to replace

the original ones. Through this way, we bridge the gap between program-execution

constraints and environment constraints. Existing test-generation techniques treat

the database as an external component and may face problems when considering

constraints within a database application in an insufficient way. Our approach con-

siders both query constraints and database schema constraints, and transform them

to normal program code. We use a state-of-the-art DSE engine called Pex to generate

effective tests consisting of both program inputs and database states. Empirical eval-

uations show that our approach achieves higher program code coverage than existing

approaches. Part of this work was submitted to a journal and was accepted with

major revision [46].

In future work, we plan to extend our approach to various phases of functional

testing. We plan to investigate the problem of locating logical faults in database

applications using our approach. For example, there could be inherent constraint

conflicts within an application caused by careless developers. We plan to apply our

approach on more complex application contexts such as multiple queries. We also plan

to investigate how to apply our approach on generating a large number of database

records.



CHAPTER 6: GENERATE TEST FOR MUTATION TESTING

To assure high quality of database applications, testing database applications re-

mains the most popularly used approach. In testing database applications, tests

consist of both program inputs and database states. Assessing the adequacy of tests

allows targeted generation of new tests for improving their adequacy (e.g., fault-

detection capabilities). Comparing to code coverage criteria, mutation testing has

been a stronger criterion for assessing the adequacy of tests. Mutation testing would

produce a set of mutants (each being the software under test systematically seeded

with a small fault) and then check how high percentage of these mutants are killed

(i.e., detected) by the tests under assessment. However, existing test-generation ap-

proaches for database applications do not provide enough support for killing mutants

in database applications (in either program code or its embedded or resulted SQL

queries). In this research, we develop an approach called MutaGen that conducts

test generation for mutation testing on database applications. In our approach, we

first correlate various constraints within a database application through construct-

ing synthesized database interactions and transforming the constraints from SQL

queries into normal program code. Based on the transformed code, we generate

program-code mutants and SQL-query mutants, and then derive and incorporate



126

query-mutant-killing constraints into the transformed code. Then, we generate tests

to satisfy query-mutant-killing constraints. Evaluation results show that MutaGen

can effectively kill mutants in database applications, and MutaGen outperforms ex-

isting test-generation approaches for database applications in terms of strong mutant

killing.

6.1 Illustrative Example

Mutation testing is a fault-based software testing technique that is intensively stud-

ied for evaluating the adequacy of tests [19]. The original program under test is

mutated into a set of new programs, called mutants, caused by syntactic changes

following a set of rules. The mutants are (strongly) killed if running the mutants

against given tests produces different results than the results of the original program.

Killing more mutants reflects better adequacy and higher reliability of the tests under

assessment.

However, automatically producing tests that can kill mutants could be very time-

consuming and even intractable [20], because a short program may contain a large

number of mutants. To deal with the expensiveness of mutation testing, Howden et

al. [32] proposed weak mutation testing that focuses on intermediate results or out-

puts from components of the program under test. Instead of checking mutants after

the execution of the entire program, the mutants need only to be checked immedi-

ately after the mutated components. Researchers also developed subsets of mutation

operators to reduce time or space resources exhausted by large number of mutants.
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For example, Offutt et al. [42] proposed that five mutation operators (ABS, AOR,

ROR, LCR, and UOI) can perform as effectively as all the 22 mutation operators [21].

Mutation testing has also been applied to detect faults in SQL queries. Tuya et al.

proposed a set of mutation operators [59] and developed a tool called SQLMutation

[57] that implements this set of mutation operators to generate SQL-query mutants.

Briefly, the mutation operators are organized into four categories:

SC - SQL clause mutation operators: mutate the most distinctive features of SQL

(e.g., clauses, aggregate functions.).

OR - Operator replacement mutation operators: extend the expression modification

operators.

NL - NULL mutation operators: mutants related with incorrect treatment of NULL

values.

IR - Identifier replacement mutation operators: replacement of operands and opera-

tors (e.g., replacement of columns or constants.).

In our approach, for database applications, SQL queries are considered as compo-

nents of the program under test. Thus, applying weak mutation testing by seeding

faults [59] to the queries can reflect the adequacy of the associated test database

states.

We give a motivating example to illustrate the necessity of generating sufficient
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01:public int calcStat(int inputAge) {
02: int zip = 28223, count = 0;

03: SqlConnection sc = new SqlConnection();

04: sc.ConnectionString = "..";

05: sc.Open();

06: string query = "SELECT C.SSN, C.income,"

+" M.balance FROM customer C, mortgage M"

+" WHERE C.age=’" + inputAge +"’ AND"

+" C.zipcode=’"+ zip + "’ AND C.SSN = M.SSN";

07: SqlCommand cmd = new SqlCommand(query, sc);

08: SqlDataReader results = cmd.ExecuteReader();

09: while (results.Read()){
10: int income = results.GetInt(1);

11: int balance = results.GetInt(2);

12: int diff = income - balance;

13: if (diff > 50000){
14: count++;}}
15: return count;}

Figure 18: A code snippet from a database application in C#

Table 18: Database schema

customer table mortgage table
Attribute Type Constraint Attribute Type Constraint

SSN Int Primary Key SSN Int Primary Key
name String Not null Foreign Key
gender String ∈ {F, M} year Int ∈ {10, 20, 30}
zipcode Int [00001, 99999]

age Int [0, 100] balance Int [2000, Max)
income Int [100000, Max)

database states for mutation testing on database applications.

The code snippet in Figure 18 gives a portion of C# code from a database appli-

cation that calculates some statistics related to customers’ mortgages. The schema

of the associated database is shown in Table 18. The method calcStat sets up

database connection (Lines 03-05), constructs a query (Line 06), and executes the

query (Lines 07-08). The query contains two program variables: a local variable zip

and a program-input parameter inputAge. The returned records are then iterated



129

Table 19: Program inputs and database states to cover paths for program code in
Figure 18

input customer table mortgage table
inputAge SSN zipcode name gender age income SSN year balance

30 001 28223 Alice F 30 100000 001 20 30000
40 002 28223 Bob M 40 150000 002 20 30000

(Lines 09-14). For each record, a variable diff is calculated from the values of the

columns C.income and M.balance. If diff is greater than 50000, a counter variable

count is increased (Line 14). The method finally returns the value of count (Line 15).

To test the preceding method in Figure 18 for achieving high structural coverage,

existing test-generation approaches [38, 53] can generate both program inputs and

database states to cover feasible paths. For example, the generated values for input

inputAge and corresponding database records shown in Table 19 could achieve full

code coverage: a default value inputAge = 0 and an empty database state covers

the path where Line 09 = false; inputAge = 30 and the record whose column SSN

= 001 covers the path where Line 09 = true, Line 13 = false; inputAge = 40 and

the record whose column SSN = 002 covers the path where Line 09 = true, Line 13

= true.

However, in terms of mutation testing, tests in Table 19 are not enough. Killing

mutants in database applications requires more program inputs and multiple database

records so that executing the program with these inputs against the database could

produce different results. For example, in Figure 18, for a mutant in Line 13 where

diff > 50000 is mutated to diff >= 50000, none of the values for inputAge in Table 19
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could kill this mutant as the final program outputs are same. Similarly, for a mutant

of the query in Line 06 where the condition C.age = ‘inputAge’ is mutated to C.age

<= ‘inputAge’, all values for inputAge still could not kill this SQL-query mutant 19.

Hence, for database applications, achieving valid mutant-killing performance requires

both effective program inputs and sufficient database states.

6.2 Problem Formalization and Proposed Solution

Comparing to code coverage criteria (a popular type of testing requirements), mu-

tation testing [19] has been a stronger criterion for assessing the adequacy of tests.

Mutation testing would produce a set of mutants (each being the software under

test systematically seeded with a small fault) and then check how high percentage of

these mutants are killed (i.e., detected) by the tests under assessment. Other than

traditional mutation testing where mutants exist in normal program code, Tuya et

al. [59, 57] proposed a set of mutation operators for SQL queries and a tool called

SQLMutation that implements these mutation operators to generate SQL-query mu-

tants. To assess the adequacy of tests for Java database applications, Zhou et al. [72]

developed a tool called JDAMA based on the mutation operators for SQL queries [59].

To kill generated mutants, test generation for mutation testing has been addressed [20,

70]. However, for mutation testing on database applications, tests consist of both

program inputs and database states. Thus, these approaches become inapplicable

for database applications since sufficient and supportive back-end database states are

19Although for inputAge = 40, the mutant C.age <= ‘inputAge’ is weakly killed because
executions of the original query and this mutant on Table 19 produce different result sets.
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required for generated tests. Focusing on test generation for database application

testing, some recent approaches [38, 53, 44] have been proposed to automatically

generate database states and program inputs to achieve various testing requirements

such as high code coverage. However, these approaches do not consider mutation

testing as the main goal and cannot provide effective support for killing mutants in

database applications.

For a database application, a mutant may occur in either normal program code or

SQL queries. Generating appropriate program inputs and sufficient database states

to kill a mutant requires collecting and satisfying constraints for killing that mutant.

Typically, within a database application, a mutant in normal program code can affect

the query-construction constraints (where constraints come from the sub-paths ex-

plored before the query execution) and query-result-manipulation constraints (where

constraints come from the sub-paths explored for iterating through the query result),

while a mutant in SQL queries can affect the query constraints (where constraints

come from conditions in a query’s WHERE clause). Test generation by applying a

constraint solver on the collected constraints faces great challenges because a con-

straint solver can deal with program-execution constraints (e.g., query-construction

constraints and query-result-manipulation constraints) but cannot directly handle

environment constraints (e.g., query constraints).

Existing test-generation approaches [38, 53] for database applications choose to con-

sider program-execution constraints and environment constraints separately. Thus,
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when applying existing approaches [38, 53] for mutation testing on database applica-

tions, the design decision of these approaches requires a whole constraint system for

each mutant’s killing, making the whole process very costly or even infeasible [46].

On the other hand, although a recent approach called PexMutator [70] incorporates

all the mutant-killing constraints into the program under test, the approach still can-

not directly correlate program-execution constraints and environment constraints for

database applications, thus not being able to generate sufficient database states.

To address these issues, in this paper, we propose a new approach called MutaGen

(Test Generation for Mutation Testing on Database Applications) for killing mutants

in database applications based on our previous SynDB framework [46]. The SynDB

framework is based on Dynamic Symbolic Execution (DSE) [24, 49, 55] and correlates

program-execution constraints and environment constraints in a database application.

It constructs synthesized database interactions and transforms the original program

under test into another form that the synthesized database interactions can operate

on. Meanwhile, a synthesized object is constructed to replace the physical database

state and the query constraints are transformed into normal program code. The

framework focuses on generating program inputs and database states to achieve high

program code coverage. In MutaGen, we leverage SynDB as a supporting mechanism

for mutation testing on database applications.

To generate mutants that occur in the program code, we apply an existing code-

mutation tool [70] on the code transformed with the SynDB framework. To generate
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01:public int calcStat(int inputAge,

DatabaseState dbState) {
02: int zip = 28223, count = 0;

03: SynSqlConnection sc = new SynSqlConnection(dbState);

04: sc.ConnectionString = "..";

05: sc.Open();

06: string query = "SELECT C.SSN, C.income,"

+" M.balance FROM customer C, mortgage M"

+" WHERE C.age=’" + inputAge + "’ AND"

+" C.zipcode=’" + zip + "’ AND C.SSN = M.SSN";

07: SynSqlCommand cmd = new SynSqlCommand(query, sc);

08: SynSqlDataReader results = cmd.ExecuteReader();

09: while (results.Read()){
10: int income = results.GetInt(1);

11: int balance = results.GetInt(2);

12: int diff = income - balance;

13: if (diff > 50000){
14: count++;}}
15: return count;}

Figure 19: Code transformation for example code in Figure 18

SQL-query mutants, we apply an existing SQL-query-mutation tool [57] to generate

SQL-query mutants at query-issuing points. We then derive query-mutant-killing

constraints considering both the original query and its mutants. We finally incor-

porate the derived constraints into the transformed code. Specifically, solving these

query-mutant-killing constraints helps produce a database state on which running

the original query and its mutants can cause different query results, thus killing the

corresponding SQL-query mutants. The transformed code is able to guide DSE to

collect constraints for both program inputs and database states. By applying a con-

straint solver on the collected constraints, we generate effective tests for killing both

program-code mutants and SQL-query mutants.
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public class customerTable {
public class customer {//define attributes;}
public List<customer> customerRecords;

public void checkConstraints() {
/*method for checking schema constraints*/;}}

public class mortgageTable {
public class mortgage {//define attributes;}
public List<mortgage> mortgageRecords;

public void checkConstraints() {
/*method for checking schema constraints*/;}}

public class DatabaseState {
public customerTable customerT = new customerTable( );

public mortgageTable mortgageT = new mortgageTable( );

public void checkConstraints(){
/*check constraints for each table*/;}}

Figure 20: Synthesized database state

6.3 Approach

In this section, we present details of our MutaGen approach. The approach is

developed based on our previous SynDB framework [46]. The framework transforms

the original program under test into another form to correlate program-execution

constraints and environment constraints. It constructs new synthesized database

interactions to replace the original ones for the program under test. For example, the

transformed code of the example code in Figure 18 is shown in Figure 19. According to

the schema in Table 18, we construct a synthesized database state shown in Table 20.

In SynDB framework, we mainly focus on generating tests to achieve high program

code coverage. In MutaGen, we leverage SynDB as a supporting mechanism for

mutation testing.

Base on the transformed code with SynDB framework [46], MutaGen conducts

mutant killing for database applications from two aspects: killing mutants in original
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normal program code and killing SQL-query mutants. Based on the transformed

code, MutaGen seeds code-mutant-killing constraints by applying an existing mutant-

generation tool [70]. To kill SQL-query mutants, MutaGen calls a query-mutant-

generation tool [57] to generate SQL-query mutants at query-issuing points, derives

query-mutant-killing constraints, and inserts the constraints into the transformed

code. Thus, applying a DSE engine on the modified transformed code to satisfy

the weak-mutant-killing constraints is able to generate both effective program inputs

and sufficient database states to weakly kill program-code mutants and SQL-query

mutants.

6.3.1 Killing Program-Code Mutants

Mutants in original program code may affect test generation of database states

because variables in the mutated statements may be data-dependant on the database

attributes of the returned query result. For example, in Figure 18, the variable diff

in Line 13 is derived from database attributes C.income and M.balance. Hence, mu-

tants of the statement in Line 13 will cause changes to the constraints for generating

database states.

In our approach, MutaGen applies a tool called PexMutator [70] on the transformed

code of the original program under test. PexMutator is a mutant-generation tool that

constructs weak-mutant-killing constraints to guide test generation using sufficient

mutation operators. In the literature, Offutt et al. [42] proposed that five mutation

operators (called sufficient mutation operators: ABS, AOR, ROR, LCR, and UOI)
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12: ...

13a: if(((diff>50000) && !(diff>=50000)) ||

(!(diff>50000) && (diff>=50000)));

//to weakly kill the mutant diff>=50000

13b: if(((diff>50000) && !(diff==50000)) ||

(!(diff>50000) && (diff==50000)));

//to weakly kill the mutant diff==50000

13c: if(((diff>50000) && !(diff!=50000)) ||

(!(diff>50000) && (diff!=50000)));

//to weakly kill the mutant diff!=50000

...

13: if (diff > 50000){
14: count++;}}
15: return count;}

Figure 21: A code snippet of applying PexMutator on the transformed code in Figure
19

could achieve as effective performance as all the 22 mutation operators [21].

Note that in the transformed code, program-execution constraints affected by mu-

tants of original program code have been correlated with query constraints. Thus,

satisfying these generated weak-mutant-killing constraints will provide sufficient con-

straints for generating database states to help kill corresponding program-code mu-

tants. In MutaGen, applying PexMutator on the transformed code will not affect

the implementations of our constructed synthesized database interactions, because

PexMutator only focuses on the specific program (e.g., the program under test) indi-

cated by MutaGen. After introducing the weak-mutant-killing constraints, we apply

a DSE engine (e.g., Pex for .NET [55]) on the transformed code to generate database

records.

Figure 21 gives a code snippet of applying PexMutator on the transformed code

shown in Figure 19. For example, at the mutation point in Line 13, the gen-

erated weak-mutant-killing constraints (we list three of them) for the statement
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Table 20: Generated tests for program code in Figure 19 to weakly kill the three
mutants shown in Figure 21

int DatabaseState dbState
inputAge dbState.Customer dbState.Mortgage

SSN name gender zipcode age income SSN year balance
50 003 AAA F 28223 50 100000 003 30 50000
50 004 BBB M 28223 50 100000 004 30 40000
50 005 CCC M 28223 50 100000 005 30 60000

if(diff>50000) are inserted before Line 13. The variable diff is calculated from

the attributes C.income and M.balance. Then, applying a DSE engine on the modi-

fied transformed code will generate appropriate values for program inputs inputAge

and dbState to cover the true branches of Lines 13a, 13b, and 13c, weakly killing

the corresponding three mutants diff>=50000, diff==50000, and diff!=50000. For

example, tests to kill the three mutants are shown in Table 20.

Note that although PexMutator provides a general way of inserting weak-mutant-

killing constraints into the program code, combining PexMutator with existing test-

generation approaches [38, 53] cannot help directly generate tests to kill program-

code mutants in database applications. Program-execution constraints and query

constraints are still not correlated causing that a whole constraint system is needed

for each mutant killing.

6.3.2 Killing SQL-Query Mutants

Mutants occurring in SQL queries will directly affect constraints for generating

database states. To weakly kill a SQL-query mutant, MutaGen generates database
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records to expose the difference between the original query and the mutant so that

their executions produce different results.

In MutaGen, the transformed code has incorporated the query constraints into

normal program code. We first identify query-issuing points by finding correspond-

ing method signatures (e.g., SynSqlCommand.ExecuteReader()). Then, at each query-

issuing point, we get the symbolic query and call the tool SQLMutation [57] to gen-

erate its mutants. SQLMutation is developed by Tuya et al. [57] that automatically

generates SQL-query mutants (providing each mutant’s form, type, and generation

rule) based on a set of mutation operators [59] for SQL queries. As aforementioned,

the mutation operators are organized into four categories of which the SC operators

mainly focus on the main clauses (e.g., SELECT clause) and the other operators

(OR, NL, and IR) focus on the conditions in the WHERE clause. For example, one

of the mutants generated by the OR operators using SQLMutation for the query in

Figure 19 is shown in Figure 22, where the condition C.age = ‘inputAge’ is mutated

to C.age >= ‘inputAge’.

Next, we derive query-mutant-killing constraints based on the original query and

its mutants and insert these constraints into the transformed code 20. Algorithm 8

gives details of how to derive the query-mutant-killing constraints. The algorithm

mainly deals with mutants generated by OR, NL, and IR operators (e.g., mutating

operators or column names in the WHERE clause). In Algorithm 8, the inputs consist

20To avoid causing syntactic errors, in the transformed code, we insert these constraints before
the original query.
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of a constructed synthesized database state SynDB and a symbolic query Q and the

output is a set of program statements that contain conditions whose exploration

helps derive constraints for killing mutants of a given query. In Algorithm 8, we

construct an empty statement set S (Line 1) and a SQL-query mutant set Qm by

calling SQLMutation(Q) (Line 2). We retrieve Q’s WHERE clause s1 using a SQL

parser (Line 4). In Lines 5-17, for each mutant q in Qm, if q is generated by the

mutation operators OR, NL, or IR, we retrieve its WHERE clause s2 and construct

a query-mutant-killing constraint s = (!s1 AND s2) OR (s1 AND !s2). Note that if

a record r satisfies conditions in s, r can only satisfy either s1 or s2, causing different

execution results when executing Q and q against r. We then check the expressions in

s and replace the columns in s with their corresponding names from the constructed

synthesized database state SynDB. We add the query-mutant-killing constraint s to

the set S. After dealing with all the mutants in Qm, the algorithm finally returns

the set S. For example, to weakly kill the mutant shown in the top of Figure 22, the

constructed query-mutant-killing constraints based on the query’s WHERE clause

are shown in the bottom of Figure 22.

To deal with SQL-query mutants generated by the SC operators, we mainly focus on

cardinality constraints as killing mutants generated by SC operators requires different

sizes of qualified records. For example, a LEFT OUTER JOIN keyword requires the

two joined tables contain different numbers of qualified records for conditions in the

WHERE clause. To kill such mutants, we specify different cardinality constraints in
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Algorithm 8 QMutantGen: Generate query-mutant-killing constraints

Input: Synthesized database state SynDB, a symbolic query Q
Output: A set of program statements S

1: Statement set S = ®;
2: Query mutant set Qm = SQLMutation(Q);
3: Mutation operator set OP = {OR, NL, IR};
4: String s1 = Q.whereClause;
5: for each query q in Qm do
6: if q.type ∈ OP then
7: String s2 = q.whereClause;
8: String s = (!s1 AND s2) OR (s1 AND !s2);
9: for each expression e in s do

10: for each column c in e do
11: Variable v = findColumn(c, SynDB);
12: Replace(c, v);
13: end for
14: end for
15: S = S

⋃
s;

16: end if
17: end for
18: return S;

the transformed code for the query results.

6.4 Evaluation

In our evaluation, we seek to evaluate the effectiveness of MutaGen by investigating

the following research questions:

RQ1: What is the performance of MutaGen in generating tests to kill mutants in

database applications?

RQ2: What is the performance of MutaGen comparing with existing test-generation

approaches [38, 53] in terms of mutant killing and code coverage for database appli-

cation testing?
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A mutant generated by OR operators using SQLMutation:

OR(query) = "SELECT C.SSN, C.income, M.balance

FROM customer C, mortgage M

WHERE C.age >= ’inputAge’

AND C.zipcode = ’zip’ AND C.SSN = M.SSN

Constructed query-mutant-killing constraints:

((SynDB.customerTable.age == ’inputAge’ AND

SynDB.customerTable.zipcode == ’zip’

AND SynDB.customerTable.SSN == SynDB.mortgageTable.SSN) &&

!(SynDB.customerTable.age >= ’inputAge’ AND

SynDB.customerTable.zipcode == ’zip’

AND SynDB.customerTable.SSN == SynDB.mortgageTable.SSN))||

((!(SynDB.customerTable.age == ’inputAge’ AND

SynDB.customerTable.zipcode == ’zip’

AND SynDB.customerTable.SSN == SynDB.mortgageTable.SSN)) &&

(SynDB.customerTable.age >= ’inputAge’ AND

SynDB.customerTable.zipcode == ’zip’

AND SynDB.customerTable.SSN == SynDB.mortgageTable.SSN))

Figure 22: Generating query-mutant-killing constraints for the query shown in Figure
19

6.4.1 Subject Applications and Setup

We conduct the empirical evaluation on two open source database applications

RiskIt and UnixUsage. The introductions to these two applications are previously

presented in Chapter 1. Both applications contain existing records in their databases

but we do not use them because our approach is able to conduct test generation from

scratch. We use Pex [55] as the DSE engine.

The experimental procedure is as follows. To evaluate how MutaGen performs in

killing program-code mutants, we generate compiled file for the program under test

and apply the tool PexMutator [70] on the compiled file to generate meta-program

that has incorporated weak-mutant-killing constraints. We then generate compiled

files for the other programs (e.g., synthesized database interfaces constructed by our

SynDB framework). We send these compiled files together with the meta-program of
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the program under test to Pex for test generation. We insert the generated database

records back to the real database, run the original program under test using the gen-

erated program inputs, and record the number of weakly killed program-code mutants

at each mutation point. To evaluate how MutaGen performs in killing SQL-query

mutants, we call the tool SQLMutation [57] to generate SQL-query mutants at each

query-issuing point and use MutaGen to generate tests. We insert the generated

database records back to the real database and run the original program with our

generated program inputs. To measure the number of weakly killed SQL-query mu-

tants, we compare the returned result sets from executions of the original query and

its mutants by checking the metadata (e.g., number of rows, columns, and contents).

For both two kinds of mutants, we also record the numbers of strongly killed mutants

by comparing final results of the program.
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To compare MutaGen with existing test-generation approaches [38, 53], we simu-

late these approaches using our SynDB framework [46], by not incorporating either

program-mutant-killing constraints or query-mutant-killing constraints into the trans-

formed code. We insert the database records generated in this step back to the real

database and run the program under test with generated program inputs to measure

the numbers of weakly and strongly killed mutants and the code coverage.

6.4.2 Results

We give detailed evaluation results in Table 21. In the table, Column 1 lists

the subject applications and Column 2 lists method names; the remaining columns

give comparisons of performance using tests generated by MutaGen and existing ap-

proaches [38, 53] from three perspectives: killing program-code mutants (Columns

3-9), killing SQL-query mutants (Columns 10-16), and code coverage (Columns 17-

20), respectively. For mutant killing (Columns 3-9 and 10-16), we list the total num-

ber of mutants, the number of weakly killed mutants, the number of strongly killed

mutants, and percentage increase. For code coverage (Columns 17-20), we list the

number of total blocks, covered blocks, and percentage increase. For example, for the

first method “filterZipcode” in RiskIt, there are 24 program-code mutants in total,

of which our approach weakly kills 22 and strongly kills 16, achieving better mutant-

killing ratio (16.7% and 12.5% increase, respectively) than existing approaches. For

the total 14 SQL-query mutants, we also achieve better mutant-killing performance

(35.7% increase for weak-killing and 14.3% increase for strong-killing). Meanwhile,
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for the total 42 blocks, MutaGen achieves better code coverage (23.8% increase) than

existing approaches.

In summary, to answer RQ1, MutaGen can effectively kill a large portion of both

program-code mutants and SQL-query mutants for database applications, leaving

a few hard-to-kill mutants. To answer RQ2, MutaGen outperforms existing test-

generation approaches in terms of mutant killing. For example, for RiskIt, MutaGen

achieves a 16.3% percentage increase on average in weakly killing program-code mu-

tants and a 28.9% percentage increase on average in weakly killing SQL-query mu-

tants, while the average increases are 14.7% and 16.7% in strong mutant killing for

the aforementioned two kinds of mutants, respectively. Meanwhile, MutaGen achieves

higher code coverage (21.3% increase for RiskIt and 33.5% increase for UnixUsage).

6.5 Conclusions

In our research, we have developed an approach called MutaGen that generates

tests for mutation testing on database applications. In our approach, we leverage

our previous SynDB framework [46] that relates program-execution constraints and

query constraints within a database application. We incorporate weak-mutant-killing

constraints for the original program code and query-mutant-killing constraints for

the SQL queries into the transformed code, guiding DSE to generate both effective

program inputs and sufficient database states to kill mutants. Evaluation results show

that MutaGen achieves high effectiveness and outperforms existing test-generation

approaches in killing both program-code mutants and SQL-query mutants. Part of
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this work was included in a Technical Report at UNC Charlotte [45].

In future work, we plan to investigate how to generate program inputs based on a

given database state for mutation testing. We also plan to investigate techniques of

augmenting existing tests to detect logical faults in database applications.



CHAPTER 7: CONCLUSIONS

In this research, we investigate test generation for database application testing,

including generating both program input values and database states from various

testing aspects, under various testing requirements and environments.

Achieving higher block or branch coverage is a good indicator of the quality of test

inputs, as more potential faults could be exposed during the execution. In the lit-

erature, advanced structural coverage criteria are enforced to ensure desired features

of tests, so that testers can detect more faults that occur in boundaries or involve

complex logical expressions. In this research, we complement the traditional block or

branch coverage by developing an approach that generates database states to achieve

advanced code coverage including boundary value coverage(BVC) and logical cover-

age(LC) for program under test. We examine the close relationships among program

variables, embedded SQL queries, and branch conditions in source code. We then

derive constraints such that tests satisfying those constraints can achieve the tar-

get coverage criteria. Evaluations on two real database applications show that our

approach assists a state-of-the-art DSE tool called Pex for .NET to generate test

database states that can effectively achieve both BVC and LC.

We then investigate the problem context that how to conduct program-input gen-
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eration given an existing database state. We formally present the problem under this

testing scenario, which is the first problem formalization for program-input genera-

tion given an existing database state to achieve high code coverage. Although it is

desirable to use an existing database state when conduct test generation, there is a

significant challenge that there exists a gap between program-input constraints de-

rived from the program and those derived from the given existing database state. To

address this problem, we develop a novel program-input-generation approach based

on symbolic execution and query formulation for bridging the gap between program-

input constraints from the program and from the given existing database state. In our

research, we examine close relationships among program inputs, program variables,

branch conditions, embedded SQL queries, and database states. We formulate aux-

iliary queries based on the collected various intermediate information during DSE’s

exploration. The constructed auxiliary queries treat those database attributes related

with program inputs as the target selection and incorporate those path constraints

related with query result sets into selection condition. Executing these auxiliary

queries finally return effective program input values for achieving code coverage. We

conduct evaluations on two real database applications to assess the effectiveness of

our approach upon Pex and the results show that our approach assists Pex to generate

program inputs that achieve higher code coverage.

We investigate the problem of considering various constraints within a database ap-

plication in a insufficient way regarding existing test-generation approaches, caused by
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premature concretization made in existing DSE-based approaches. Such premature

concretization comes from the significant problem when performing symbolic execu-

tion of database interaction API methods, leading constraint conflicts among query

constraints, database schema constraints, and query-result-manipulation constraints.

In this research, we develop a DSE-based test generation approach called SynDB to

deal with this problem, even when the associated physical database is not available.

We comprehensively investigate the relations of program-execution constraints (e.g.,

query-construction constraints and query-result-manipulation constraints) and envi-

ronment constraints (e.g., query constraints and database schema constraints). Our

technique is the first work that uses a fully symbolic database. We bridge the gap

between program-execution constraints and environment constraints within database

applications by constructing synthesized database interactions, so that we solve the

problem that existing test-generation approaches may face constraint conflicts when

generating desirable database states. The synthesized database interactions incor-

porate query constraints into normal program code. We develop a test-generation

approach based on DSE through code transformation, treating symbolically both the

embedded query and the associated database state, correlating various parts of con-

straints. We implement our approach into a prototype. We conduct empirical evalu-

ations on open source packages and the results show that our approach can generate

effective program inputs and sufficient database states to achieve higher code coverage

than existing DSE-based test generation approaches for database applications.
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We also extend our research into test generation for mutation testing, which is

another important testing aspect. Mutation testing is considered as a stronger cri-

terion for assessing the adequacy of tests, by measuring the ratio of killed mutants

using given tests. However, for database applications, mutants could appear on ei-

ther program code or SQL queries, corresponding to program-execution constraints

(e.g., query-construction constraints and query-result-manipulation constraints) and

environment constraints (e.g., query constraints). Because a constraint solver cannot

directly handle environment constraints, existing test-generation approaches [38, 53]

for database applications choose to consider program-execution constraints and en-

vironment constraints separately, posing challenges when a whole constraint system

is required for each mutant’s killing. To address this problem, in our research, we

leveraging our SynDB framework as a supporting mechanism. We develop an ap-

proach called MutaGen that can generate both effective program inputs and sufficient

database states to kill mutants, by incorporating weak-mutant-killing constraints for

original program code and query-mutant-killing constraints for SQL queries into the

transformed code generated by SynDB framework. Then, solving these query-mutant-

killing constraints collected during DSE’s exploration helps produce a database state

on which running the original query and its mutants can cause different query results,

thus killing the corresponding SQL-query mutants. Experimental results show that

MutaGen is able to achieve high effectiveness and outperforms existing test-generation

approaches in killing both program-code mutants and SQL-query mutants.
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Throughout our research, we use Dynamic Symbolic Execution (DSE) as a major

background technique and a DSE tool called Pex for .NET as the experimental tool.

The evaluation results show that our proposed approaches are able to achieve effective

performance from the aforementioned testing aspects.

In future work, we plan to extend our research to performance testing. In the lit-

erature, little research has been conducted in connecting functional testing with per-

formance testing. We have investigated how to track constraints over both program

inputs and database attributes. Consequently, we are able to use those intermediate

constraint results to develop novel technique for applying it on a further performance

testing. A close estimate of the performance of a database application can be signifi-

cant for organizations that need to quantify the potential gain in performance. The

performance of a database application heavily depends on the statistical distribution

of the database from two perspectives, including the execution time of the query eval-

uation in the DBMS and the execution time of manipulating the query result set in

the application software. The database application can have substantial performance

differences on two database states with the same size even if the query results satisfy

the same cardinality constraints (which guarantees the same coverage for structural

testing).

To achieve this goal, we statically analyze the program statements related to ma-

nipulating query result sets to collect parameters that can be configured by testers to

allow the proposed approach to automatically generate desirable statistical distribu-
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tion of query result sets. For each test objective, we generate several representative

database states (e.g., corresponding to the worst, average, and best cases), which

can help organizations understand an overall picture of their software performance

under various situations. There are two challenges in generating database states for

performance testing. First, we need to identify which database attributes control the

performance. From technical point of view, we will use the intermediate results dur-

ing DSE’s exploration. Second, for performance testing, we usually need to generate

database states with large numbers of tuples. We aim to minimize the number of

calls to the constraint solver, by conducting additional optimization work here, such

as how to combine two path conditions together, how to use existing database states

to instantiate new database states by analyzing their constraints.

In future work, we also plan to extend our techniques to load testing for database

applications. Load testing aims to examine program’s execution performance under

various testing intensity. To generate tests for load testing, we plan to investigate

specific code portions that can cause potential performing differences within database

applications. Under aforementioned problem contexts discussed in previous chapters,

we plan to extend our techniques to deal with multiple queries as there are more

complex cases regarding different appearing sequences of queries.



153

REFERENCES

[1] Microsoft Research Foundation of Software Engineering Group, Pex:Dynamic
Analysis and Test Generation for .NET.

[2] Ahmed, R., Lee, A. W., Witkowski, A., Das, D., Su, H., Zait, M., and Cruanes,
T. Cost-based query transformation in oracle. In VLDB (2006), pp. 1026–1036.

[3] Ammann, P., Offutt, A. J., and Huang, H. Coverage criteria for logical expres-
sions. In ISSRE (2003), pp. 99–107.

[4] Bati, H., Giakoumakis, L., Herbert, S., and Surna, A. A genetic approach for
random testing of database systems. In VLDB (2007), pp. 1243–1251.

[5] Binnig, C., Kossmann, D., and Lo, E. Testing database applications. In SIGMOD
Conference (2006), pp. 739–741.

[6] Binnig, C., Kossmann, D., and Lo, E. Multi-RQP: generating test databases for
the functional testing of OLTP applications. In DBTest (2008), p. 5.

[7] Bruno, N., and Chaudhuri, S. Flexible database generators. In VLDB (2005),
pp. 1097–1107.

[8] Cabal, M. J. S., and Tuya, J. Improvement of test data by measuring sql state-
ment coverage. In STEP (2003), pp. 234–240.

[9] C.Binnig, D.Kossmann, and E.Lo. Reverse query processing. In ICDE (2007),
pp. 506–515.

[10] C.Binnig, D.Kossmann, E.Lo, and M.T.Ozsu. QAGen: Generating Query-Aware
Test Databases. In SIGMOD (2007), pp. 341–352.

[11] Chays, D., and Deng, Y. Demonstration of agenda tool set for testing relational
database applications. In ICSE (2003), pp. 802–803.

[12] Chays, D., Deng, Y., Frankl, P. G., Dan, S., Vokolos, F. I., and Weyuker, E. J. An
agenda for testing relational database applications. Softw. Test., Verif. Reliab.
14, 1 (2004), 17–44.

[13] Chays, D., Shahid, J., and Frankl, P. G. Query-based test generation for database
applications. In DBTest (2008), p. 6.

[14] Chilenski, J., and S.P.Miller. Applicability of modified condition/decision cover-
age to software testing. Software Engineering Journal (1994), 193–200.



154

[15] Clark, S. R., Cobb, J., Kapfhammer, G. M., Jones, J. A., and Harrold, M. J.
Localizing SQL faults in database applications. In ASE (2011), pp. 213–222.

[16] Clarke, L. A. A system to generate test data and symbolically execute programs.
In IEEE Trans. Softw. Eng.,2(3):215-222 (1976).

[17] Dayal, U. Of nests and trees: A unified approach to processing queries that
contain nested subqueries, aggregates, and quantifiers. In VLDB (1987), pp. 197–
208.

[18] de la Riva, C., Cabal, M. J. S., and Tuya, J. Constraint-based Test Database
Generation for SQL Queries. In AST (2010), pp. 67–74.

[19] DeMillo, R. A., Lipton, R. J., and Sayward, F. G. Hints on test data selection
help for the practicing programmer. IEEE Computer 11, 4 (April 1978), 34–41.

[20] DeMillo, R. A., and Offutt, A. J. Constraint-based automatic test data genera-
tion. IEEE Trans. Software Eng. 17, 9 (1991), 900–910.

[21] DeMillo, R. A., and Spafford, E. H. The mothra software testing environment.

[22] Deng, Y., and Chays, D. Testing database transactions with agenda. In ICSE
(2005), pp. 78–87.

[23] Farre, C., Rull, G., Teniente, E., and Urpi, T. SVTe: a tool to validate database
schemas giving explanations. In DBTest (2008), p. 9.

[24] Godefroid, P., Klarlund, N., and Sen, K. DART: directed automated random
testing. In PLDI (2005), pp. 213–223.

[25] Godefroid, P., and Luchaup, D. Automatic partial loop summarization in dy-
namic test generation. In ISSTA (2011), pp. 23–33.

[26] Gould, C., Su, Z., and Devanbu, P. T. Static checking of dynamically generated
queries in database applications. In ICSE (2004), pp. 645–654.

[27] Grechanik, M., Csallner, C., Fu, C., and Xie, Q. Is data privacy always good for
software testing? In ISSRE (2010), pp. 368–377.

[28] Haftmann, F., Kossmann, D., and Lo, E. Parallel execution of test runs for
database application systems. In VLDB (2005), pp. 589–600.

[29] Haftmann, F., Kossmann, D., and Lo, E. A framework for efficient regression
tests on database applications. VLDB J. 16, 1 (2007), 145–164.

[30] Halfond, W. G. J., and Orso, A. Command-form coverage for testing database
applications. In ASE (2006), pp. 69–80.



155

[31] Hoag, J. E., and Thompson, C. W. A parallel general-purpose synthetic data
generator. vol. 36, pp. 19–24.

[32] Howden, W. E. Weak mutation testing and completeness of test sets. IEEE
Trans. Software Eng. 8, 4 (1982), 371–379.

[33] Kapfhammer, G., and Soffa, M. A family of test adequacy criteria for database-
driven applications. In ESEC/SIGSOFT FSE (2003).

[34] Kim, W. On optimizing an sql-like nested query. ACM Trans. Database Syst. 7,
3 (1982), 443–469.

[35] King, J. C. Symbolic execution and program testing. In Commun. ACM,
19(7):385394 (1976).

[36] Kosmatov, N., Legeard, B., Peureux, F., and Utting, M. Boundary coverage
criteria for test generation from formal models. In ISSRE (2004), pp. 139–150.

[37] Li, C., and Csallner, C. Dynamic symbolic database application testing. In
DBTest (2010), pp. 01–06.

[38] M.Emmi, R.Majumdar, and K.Sen. Dynamic test input generation for database
applications. In ISSTA (2007), pp. 151–162.

[39] Microsoft. .NET Framework Class Library: DataTable.
http://msdn.microsoft.com/en-us/library/system.data.datatable.aspx (2012).

[40] Microsoft. .NET Framework Data Provider for SQL Server.
http://msdn.microsoft.com/en-us/library/system.data.sqlclient.aspx (2012).

[41] N.Bruno, S.Chaudhuri, and D.Thomas. Generating queries with cardinality con-
straints for dbms testing. In TKDE (2006).

[42] Offutt, A. J., Rothermel, G., and Zapf, C. An experimental evaluation of selective
mutation. In ICSE (1993), pp. 100–107.

[43] Pan, K., Wu, X., and Xie, T. Database state generation via dynamic symbolic
execution for coverage criteria. In DBTest (2011), pp. 01–06.

[44] Pan, K., Wu, X., and Xie, T. Generating program inputs for database application
testing. In ASE (2011), pp. 73–82.

[45] Pan, K., Wu, X., and Xie, T. Automatic test generation for mutation testing on
database applications. In Technical Report UNC Charlotte (2012).

[46] Pan, K., Wu, X., and Xie, T. Guided test generation for database applications
via synthesized database interactions. In submission to TOSEM (2012).



156

[47] Pan, K., Wu, X., and Xie, T. Program input generation for testing database
applications using existing database states. In submission to TSE (2012).

[48] Pandita, R., Xie, T., Tillmann, N., and de Halleux, J. Guided test generation
for coverage criteria. In ICSM (2010).

[49] Sen, K., Marinov, D., and Agha, G. CUTE: a concolic unit testing engine for C.
In ESEC/SIGSOFT FSE (2005), pp. 263–272.

[50] Shahriar, H., and Zulkernine, M. Music: Mutation-based sql injection vulnera-
bility checking. In QSIC (2008), pp. 77–86.

[51] S.Khalek, B.Elkarablieh, Laleye, Y., and Khurshid, S. Query-aware test genera-
tion using a relational constraint solver. In ASE (2008).

[52] Taneja, K., Grechanik, M., Ghani, R., and Xie, T. Testing software in age of
data privacy: A balancing act. In ESEC/FSE (2011), pp. 201–211.

[53] Taneja, K., Zhang, Y., and Xie, T. MODA: Automated Test Generation for
Database Applications via Mock Objects. In ASE (2010), pp. 289–292.

[54] Tang, E., Frankl, P. G., and Deng, Y. Test coverage tools for database appli-
cations. In Mid-Atlantic Student Workshop on Programming Languages and
Systems (2006).

[55] Tillmann, N., and de Halleux, J. Pex-White Box Test Generation for .NET. In
TAP (2008), pp. 134–153.

[56] Tillmann, N., and Schulte, W. Mock-object generation with behavior. In ASE
(2006), pp. 365–368.

[57] Tuya, J., Cabal, M. J. S., and de la Riva, C. SQLMutation: A tool to generate
mutants of SQL database queries. Mutation 2006.

[58] Tuya, J., Cabal, M. J. S., and de la Riva, C. A practical guide to sql white-box
testing. SIGPLAN Notices 41, 4 (2006), 36–41.

[59] Tuya, J., Cabal, M. J. S., and de la Riva, C. Mutating database queries. Infor-
mation and Software Technology 49, 4 (2007), 398–417.

[60] Tuya, J., Cabal, M. J. S., and de la Riva, C. Full predicate coverage for testing
sql database queries. vol. 20, pp. 237–288.

[61] Veanes, M., Grigorenko, P., de Halleux, P., and Tillmann, N. Symbolic query
exploration. In ICFEM (2009), pp. 49–68.

[62] Willmor, D., and Embury, S. M. A safe regression test selection technique for
database-driven applications. In ICSM (2005), pp. 421–430.



157

[63] Willmor, D., and Embury, S. M. An intensional approach to the specification of
test cases for database applications. In ICSE (2006), pp. 102–111.

[64] Wu, X., Sanghvi, C., Wang, Y., and Zheng, Y. Privacy aware data generation
for testing database applications. In IDEAS (2005), pp. 317–326.

[65] Wu, X., Wang, Y., Guo, S., and Zheng, Y. Privacy preserving database genera-
tion for database application testing. Fundam. Inform. 78, 4 (2007), 595–612.

[66] Wu, X., Wang, Y., and Zheng, Y. Privacy preserving database application test-
ing. In WPES (2003), pp. 118–128.

[67] Wu, X., Wang, Y., and Zheng, Y. Statistical database modeling for privacy
preserving database generation. In ISMIS (2005), pp. 382–390.

[68] Xie, T., Tillmann, N., de Halleux, P., and Schulte, W. Fitness-guided path
exploration in dynamic symbolic execution. In DSN (2009), pp. 359–368.

[69] Zhang, L., Ma, X., Lu, J., Tillmann, N., de Halleux, J., and Xie, T. Environment
modeling for automated testing of cloud applications. IEEE Software, Special
Issue on Software Engineering for Cloud Computing 29, 2 (2012), 30–35.

[70] Zhang, L., Xie, T., Zhang, L., Tillmann, N., de Halleux, J., and Mei, H. Test
generation via dynamic symbolic execution for mutation testing. In ICSM (2010),
pp. 1–10.

[71] Zhang, P., Elbaum, S. G., and Dwyer, M. B. Automatic generation of load tests.
In ASE (2011), pp. 43–52.

[72] Zhou, C., and Frankl, P. G. Mutation Testing for Java Database Applications.
In ICST (2009), pp. 396–405.

[73] Zhou, C., and Frankl, P. G. Inferential checking for mutants modifying database
states. In ICST (2011), pp. 259–268.


