

ESSAYS ON EXPLOITATION AND EXPLORATION IN SOFTWARE
DEVELOPMENT

by

Orcun Temizkan

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Computing and Information Systems

Charlotte

2012

Approved by:

Dr. Ram Kumar

Dr. Chandrasekar Subramaniam

Dr. Sungjune Park

Dr. Cem Saydam

Dr. Jaya Bishwal

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/345080268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

© 2012
Orcun Temizkan

ALL RIGHTS RESERVED

iii

ABSTRACT

ORCUN TEMIZKAN. Essays on exploitation and exploration in software
development (Under direction of DR. RAM KUMAR)

Software development includes two types of activities: software improvement

activities by correcting faults and software enhancement activities by adding new

features. Based on organizational theory, we propose that these activities can be classified

as implementation-oriented (exploitation) and innovation-oriented (exploration). In the

context of open source software (OSS) development, developing a patch would be an

example of an exploitation activity. Requesting a new software feature would be an

example of an exploration activity. This dissertation consists of three essays which

examine exploitation and exploration in software development.

The first essay analyzes software patch development (exploitation) in the context

of software vulnerabilities which could be exploited by hackers. There is a need for

software vendors to make software patches available in a timely manner for

vulnerabilities in their products. We develop a survival analysis model of the patch

release behavior of software vendors based on a cost-based framework of software

vendors. We test this model using a data set compiled from the National Vulnerability

Database (NVD), United States Computer Emergency Readiness Team (US-CERT), and

vendor web sites. Our results indicate that vulnerabilities with high confidentiality impact

or high integrity impact are patched faster than vulnerabilities with high availability

impact. Interesting differences in the patch release behavior of software vendors based on

software type (new release vs. update) and type of vendor (open source vs. proprietary)

are found.

iv

The second essay studies exploitation and exploration in the content of OSS

development. We empirically examine the differences between exploitation (patch

development) and exploration (feature request) networks of developers in OSS projects in

terms of their social network structure, using a data set collected from the SourceForge

database. We identify a new category of developers (ambidextrous developers) in OSS

projects who contribute to patch development as well as feature request activities. Our

results indicate that a patch development network has greater internal cohesion and

network centrality than a feature request network. In contrast, a feature request network

has greater external connectivity than a patch development network.

The third essay explores ambidexterity and ambidextrous developers in the

context of OSS project performance. Recent research on OSS development has studied

the social network structure of software developers as a determinant of project success.

However, this stream of research has focused on the project level, and has not recognized

the fact that software projects could consist of different types of activities, each of which

could require different types of expertise and network structures. We develop a

theoretical construct for ambidexterity based on the concept of ambidextrous developers.

We empirically illustrate the effects of ambidexterity and network characteristics on OSS

project performance. Our results indicate that a moderate level of ambidexterity, external

cohesion, and technological diversity are desirable for project success. Project success is

also positively related to internal cohesion and network centrality. We illustrate the roles

of ambidextrous developers on project performance and their differences compared to

other developers.

v

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my dissertation advisors, Dr. Ram

Kumar, for his continuous support and excellent guidance through my dissertation. I

would like to thank him for providing me with an excellent atmosphere for doing

research. He constantly encouraged me and generously devoted extensive amount of time

in refining key points of my work. He also provided me with the unique opportunity to

gain a broad and extensive range of experience in doing research. I would also like to

thank my dissertation committee members, Dr. Chandrasekar Subramaniam, Dr.

Sungjune Park, Dr. Cem Saydam, and Dr. Jaya Bishwal, for their excellent guidance,

helpful feedbacks and invaluable suggestions to my research. I also owe a special thanks

to Dr. Cem Saydam for his continuous support and guidance through my doctorate

program.

Finally, I would like to express my deepest gratitude to my mother (Huriye

Temizkan), my father (Osman Temizkan) and my brother (Erhan Temizkan) for their

continuous and unconditional supports through my doctorate program as well as through

my life. Their continuous and unconditional supports provided me enormous strength and

allowed me to overcome all obstacles during my doctorate program. I would also like to

express my deepest gratitude to my grandmother (Gul Ayse Tufan). I wish she could see

my graduation. Successful completion of the dissertation would not have been possible

without the love and patience of my family. I love all of you.

vi

TABLE OF CONTENTS

LIST OF TABLES xi

LIST OF FIGURES xiii

CHAPTER 1: INTRODUCTION 1

1.1. Background 1

1.2. Research Objectives and Organization of the Dissertation 5

CHAPTER 2: PATCH RELEASE BEHAVIORS OF SOFTWARE VENDORS 8
IN RESPONSE TO VULNERABILITIES: AN EMPIRICAL
ANALYSIS

2.1. Introduction 8

2.2. Literature Review 10

2.3. Common Vulnerability Scoring System (CVSS) 16

2.4. Theoretical Background and Hypotheses 18

2.4.1. Vulnerability Characteristics: Confidentiality, Integrity, and 19
Availability

2.4.2. Vulnerability Characteristics: Confidentiality vs. Integrity, and 21
Availability

2.4.3. Vulnerability Characteristics: Integrity vs. Availability 22

2.4.4. Patch Types 23

2.4.5. Software Vendor Types 24

2.4.6. Software Types 25

2.4.7. Patch Quality 26

2.4.8. Presence of Multiple Vendors 27

2.5. Variable Definitions and Operationalization 28

2.5.1. Computation of Dependent Variable 28

2.5.2. Independent Variables 29

vii

2.5.3. Control Variable 31

2.6. Research Methodology 32

2.7. Data 33

2.7.1. Data Sources and Collection 33

2.7.2. Sample Data 36

2.7.3. Data Analysis 39

2.7.4. Results 44

2.8. Discussion and Conclusion 48

CHAPTER 3: STRUCTURAL DIFFERENCES BETWEEN DIFFERENT 51
TYPES OF OPEN SOURCE SOFTWARE NETWORKS

3.1. Introduction 51

3.2. Literature Review 54

3.2.1. Open Source Software Development 55

3.2.2. Open Source Software Collaboration Network 57

3.2.3. Exploitation and Exploration Networks 58

3.2.4. Social Network and Team Structure 59

3.3. Theoretical Background and Hypotheses 65

3.3.1. Internal Cohesion 67

3.3.2 External Connectivity 70

3.3.2.1 External Cohesion 71

3.3.2.2. Direct Ties 74

3.3.2.3. Indirect Ties 75

3.3.2.4. Technological Diversity 76

3.3.3. Network Location 78

3.4. Data 79

3.4.1. Data Sources and Collection 79

viii

3.4.2. Network Construction 86

3.5. Variable Definitions and Operationalization 90

3.5.1. Internal Cohesion 92

3.5.2. External Connectivity 96

3.5.3. Network Location 99

3.6. Research Methodology 102

3.6.1. The Paired T-test 103

3.6.2. Results of the Paired T-test 106

3.6.3. Power Analysis for the Paired T-test 114

3.6.3. Quadratic Assignment Procedure (QAP) 115

3.7. Discussions and Contributions 118

3.9. Limitations and Future Research 123

CHAPTER 4: TEAM PERFORMANCE IN OPEN SOURCE SOFTWARE 125
NETWORKS: THE EFFECT OF AMBIDEXTERITY ON
THE PROJECT PERFORMANCE

4.1. Introduction 125

4.2. Literature Review 129

4.2.1. Open Source Software Development 131

4.2.2. Open Source Software Collaboration Network 132

4.2.3. Ambidextrous Organization through Exploitation and Exploration 133
Networks

4.2.4. Social Network and Team Structure 138

4.3. Theoretical Background and Hypotheses 144

4.3.1. Ambidexterity 146

4.3.2. Internal Cohesion 151

4.3.3. External Connectivity 153

ix

4.3.3.1. External Cohesion 154

4.3.3.2. Direct Ties 158

4.3.3.3. Indirect Ties 159

4.3.3.4. Direct and Indirect Tie Interaction 160

4.3.3.5. Technological Diversity 160

4.3.4. Network Location 162

4.3.5. Network Location of Ambidextrous Developers 163

4.4. Data 166

4.4.1. Data Sources and Collection 166

4.4.2. Network Construction 171

4.5. Variable Definitions and Operationalization 174

4.5.1. Dependent Variables 174

4.5.1.1. Technical Performance of a Project 175

4.5.2. Independent Variables 177

4.5.2.1. Ambidexterity 178

4.5.2.2. Internal Cohesion 179

4.5.2.3. External Connectivity 183

4.5.2.4. Network Location 186

4.5.2.5. Network Location of Ambidextrous Developers 189

4.5.2.6. Number of Projects which Ambidextrous Developers Work 192

4.5.3. Control Variables 193

4.6. Research Methodology 196

4.6.1. Technical Performance Models 212

4.6.1.1. Results of Independent Variables 212

4.6.1.2. Results of Control Variables 234

x

4.6.1.3. Illustrative Combined Models 236

4.7. Discussions and Contributions 241

4.9. Limitations and Future Research 248

REFERENCES 250

APPENDIX A: HAZARD RATIO CALCULATION FOR VARIABLES 266

APPENDIX B: VARIABLE CALCULATIONS 269

APPENDIX C: CORRELATION BETWEEN PAIRED VARIABLES 274

APPENDIX D: ADDITIONAL COMBINED MODELS 275

APPENDIX E: VULNERABILITY DATA 283

xi

LIST OF TABLES

TABLE 1: Variables and Descriptions/Measures 31

TABLE 2: Descriptive Statistics for Vulnerabilities across Years 36

TABLE 3: Sample Observations of Vulnerability-vendor Pairs 38

TABLE 4: Model Results (Dependent Variable: Patch Release Time, N=722) 40

TABLE 5: Pearson Correlation Analysis (N=722) 41

TABLE 6: Model Results (Dependent Variable: Patch Release Time, N=722) 43

TABLE 7: Project Statistics across Years 84

TABLE 8: Descriptive Statistics for Patch and Feature Request Networks 91

TABLE 9: Descriptive Statistics of Paired Variables (N=690) 105

TABLE 10: Summary of Hypotheses 106

TABLE 11: The Paired T-test Results (N=690) 108

TABLE 12: The Statistical Power of the Paired T-tests (Alpha = 0.05) 115

TABLE 13: Comparison of Stratified Sample Networks of Developers from 118
Patch Development and Feature Request Networks
(Network Size=1000)

TABLE 14: Project Statistics across Years 170

TABLE 15: Transformations Applied to Dependent and Independent Variables 205

TABLE 16: Descriptive Statistics of Untransformed Dependent and Independent 206
Variables (N=2360)

TABLE 17: Pearson Correlations among Untransformed Independent Variables 207
(N=2360)

TABLE 18: Pearson Correlations among Transformed Independent Variables 208
(N=2360) (Variables are Transformed as in Table 15)

TABLE 19: Summary of Hypotheses 213

TABLE 20: Results of Technical Performance Model (Dependent Variable: 214
CVS Commits, N=2360)

xii

TABLE 21: Results of Technical Performance Model (Dependent Variable: CVS 216
and SVN Commits, N=2360)

TABLE 22: Results of Illustrative Combined Models for Technical Performance 239
(Internal Cohesion Measure: Correlation Similarity,
Dependent Variable: CVS Commits, N=2360)

TABLE A1: Hazard Ratio Calculation for Disclosure 266

TABLE A2: Hazard Ratio Calculation for Multiple Vendors 266

TABLE A3: Hazard Ratio Calculation for Confidentiality 266

TABLE A4: Hazard Ratio Calculation for Integrity 267

TABLE A5: Hazard Ratio Calculation for Availability 267

TABLE A6: Hazard Ratio Calculation for Patch Type 267

TABLE A7: Hazard Ratio Calculation for Software Type 267

TABLE A8: Hazard Ratio Calculation for Patch Quality (Multiple Patches) 268

TABLE A9: Hazard Ratio Calculation for Vendor Type 268

TABLE C1: Correlations between Paired Variables (N=690) 274

TABLE D1: Results of Additional Combined Models for Technical Performance 275
(Internal Cohesion Measure: Clustering Coefficient,
Dependent Variable: CVS Commits, N=2360)

TABLE D2: Results of Additional Combined Models for Technical Performance 277
(Internal Cohesion Measure: Repeat Ties,
Dependent Variable: CVS Commits, N=2360)

TABLE D3: Results of Additional Combined Models for Technical Performance 279
(Internal Cohesion Measure: Third Party Ties,
Dependent Variable: CVS Commits, N=2360)

TABLE D4: Results of Additional Combined Models for Technical Performance 281
(Internal Cohesion Measure: Jaccard Similarity,
Dependent Variable: CVS Commits, N=2360)

TABLE E1: Vulnerability Data 283

xiii

LIST OF FIGURES

FIGURE 1: Research Overview 2

FIGURE 2: Distribution of Patch Release Time 36

FIGURE 3: OSS Network Construction at the Activity Level 88

FIGURE 4: Matrix Representations of OSS Networks at the Activity Level 89

FIGURE 5: OSS Network Construction at the Project Level 173

FIGURE 6: Matrix Representations of OSS Project Network at the Project Level 173

CHAPTER 1: INTRODUCTION

1.1. Background

Software development is an organizational process that software vendors use to

develop and maintain software (Hoffer et al. 2008). Software development primarily

depends on the economic behavior and organizational structure of software vendors. In

general, software vendors focus on effective management of software development. As

shown in Figure 1, one dimension of software development is an external environment in

which external entities such as government and interest groups (i.e., customers) impose

costs on a firm (Baron 2001) since software vendors internalize the external effects of

their decisions (Baron 2001). Other software vendors also affect the software

development from the competition perspective (Arora et al. 2010b, Cavusoglu et al.

2007). Therefore, the economic activity of software vendors is affected by government,

customers, and other software vendors. Moreover, the changing needs of customers also

affect software development since a software product is modified after delivery to correct

faults, to improve performance or other attributes, and to enhance the product by adapting

it to a modified environment (Banker and Slaughter 2000, Banker et al. 1998, IEEE

1983). As shown in Figure 1, another dimension of software development is an internal

environment in which organizational structure of software vendors affects software

development.

2

Other internal factors specific to software vendors, software products, patches, and

vulnerabilities also affect software development based on the cost structure of software

vendors. In this dissertation, we analyze the effects of external and internal factors on

software development.

FIGURE 1: Research Overview

Software development can be modeled with a systems development life cycle

(SDLC) which provides sequential activities such as planning, analysis, design,

implementation, and maintenance for software developers to follow. Software

maintenance is the last phase of a systems development life cycle. Software maintenance

3

is defined as the modification of a software product after delivery to correct faults and to

enhance the product by adding new features based on user requirements or by adapting it

to a modified environment (Banker and Slaughter 2000, Banker et al. 1998, IEEE 1983).

Although maintenance is the last phase, actually it covers all previous phases to be

performed (Hoffer et al. 2008), and thereby it resembles a systems development life cycle

itself (Hoffer et al. 2008). The total cost of system maintenance is estimated to comprise

at least 50% of total software life cycle costs (Van Vliet 2000, Kemerer and Slaughter

1999, Kemerer 1995). Thus, software maintenance is one of the major phases of a

software development. In software maintenance, there are two important types of OSS

project activities: software improvement activities by correcting faults (i.e.,

vulnerabilities) and software enhancement activities by adding new features.

In an organizational context, exploitation and exploration have been identified as

two types of activities for the development and use of knowledge in organizations (March

1991). Prior research indicates that different types of tasks require different

communication patterns and different amount of communication based on characteristics

and nature of a task (Katz and Tushman 1979). A task can differ along several

dimensions including time span, specific vs. general problem orientation, and the

generation of new knowledge vs. using existing knowledge (Katz and Tushman 1979).

March (1991) has suggested that exploitation and exploration represent fundamentally

incompatible and inconsistent activities. For example, exploitation represents activities

that improve existing organizational competencies and build on the existing technological

trajectory. Therefore, exploitation broadens existing knowledge and skills, improves

established designs, and expands existing products and services. In contrast, exploration

4

represents activities that changes the organizational competencies and build on a different

technological trajectory. Therefore, exploration requires new knowledge, offers new

designs, and creates new products and services. In addition, exploitation is related to

efficiency, centralization, and tight cultures while exploration is associated with

flexibility, decentralization, and loose cultures (Benner and Tushman 2003). Therefore,

exploitation and exploration require different organizational structures (Benner and

Tushman 2003, Levinthal and March 1993). We propose that OSS project activities can

be classified as implementation-oriented (exploitation) and innovation-oriented

(exploration) based on organizational theory (March 1991). In the context of OSS

development, developing a patch would be an example of an exploitation activity.

Requesting a new software feature would be an example of an exploration activity. To

the best of our knowledge, this is the first research to study OSS development at the

activity level.

While exploitation and exploration represent fundamentally incompatible and

inconsistent activities (March 1991), recent research on organizational literature has

stressed the importance of a balance between exploitation and exploration for

organizational survival (Benner and Tushman 2003, Tushman and O’Reilly 1996).

Structural differentiation is a proposed mechanism for organizations to build an

ambidextrous organization (Benner and Tushman 2003, Tushman and O’Reilly 1996).

Structural differentiation refers to the subdivision of organizational tasks into distinct

organizational units that develop appropriate contexts for exploitation and exploration

activities. However, the coordination and integration of exploitative and exploratory

activities is a necessary step in achieving ambidexterity (Jansen et al. 2009, Gilbert 2006,

5

Smith and Tushman 2005, Tushman and O’Reilly 1996). We identified a new category of

developers (ambidextrous developers) in OSS projects who contribute to exploitative

activities (patch development) and exploratory activities (feature request). We propose

that ambidextrous developers are an integration mechanism between patch development

and feature request activities. We develop a theoretical construct for project

ambidexterity based on the concept of ambidextrous developers. We develop a theoretical

construct of ambidexterity as a measure of the ability of OSS projects to pursue both

exploitative and exploratory activities concurrently.

1.2. Research Objectives and Organization of the Dissertation

This dissertation examines exploitation and exploration in software development.

It consists of three essays and is organized as follows.

In Chapter 2, we analyze software patch development (exploitation) in the context

of software vulnerabilities which could be exploited by hackers. In particular, we analyze

how the factors specific to vulnerabilities, patches, software, and software vendors affect

the patch release behavior of software vendors. We develop a survival analysis model of

the patch release behavior of software vendors based on the cost-based framework of

software vendors. We test it using a data set compiled from the National Vulnerability

Database (NVD), United States Computer Emergency Readiness Team (US-CERT), and

vendor web sites.

In Chapter 3, we study exploitation and exploration in the content of OSS

development. We introduce the use of organizational theory on exploration and

exploitation together with social network analysis as a theoretical lens to study different

types of sub-networks in OSS development. We empirically examine the differences

6

between exploitation (patch development) and exploration (feature request) networks of

developers in OSS projects in terms of their social network structure. We identify a new

category of developers (ambidextrous developers) in OSS projects who contribute to

patch development as well as feature request activities. We use a data set collected from

the SourceForge database. Our results indicate that a patch development network has

greater internal cohesion and network centrality than a feature request network. In

contrast, a feature request network has greater external connectivity than a patch

development network.

In Chapter 4, we explore ambidexterity and ambidextrous developers in the

context of OSS project performance. We introduce the use of organizational theory on

ambidexterity together with social network analysis as a theoretical lens to study OSS

project performance. Recent research on OSS development has studied the social network

structure of software developers as determinant of project success. However, this stream

of research has focused on the project level, and has not recognized the fact that software

projects could consist of different types of activities, each of which could require

different types of expertise and network structures. We develop a theoretical construct for

ambidexterity based on the concept of ambidextrous developers. We empirically illustrate

the effects of ambidexterity and network characteristics on OSS project performance. We

also study the effects of social network properties of OSS developers on OSS project

performance. We use a data set collected from the SourceForge database. Our results

indicate that a moderate level of ambidexterity, external cohesion, and technological

diversity are desirable for project success. Project success is also positively related to

internal cohesion and network centrality. We illustrate the roles of ambidextrous

7

developers and their differences compared to other developers. In summary, this

dissertation explores software development using an under-researched theoretical lens.

CHAPTER 2: PATCH RELEASE BEHAVIORS OF SOFTWARE VENDORS IN
RESPONSE TO VULNERABILITIES: AN EMPIRICAL ANALYSIS

2.1. Introduction

Software vulnerabilities of information systems have become a significant

concern for organizations, since these vulnerabilities result in security attacks such as

virus, theft of information, and denial of service (DOS) leading to significant financial

losses to users (Gordon et al. 2006). The existence of software vulnerabilities is an

important reason for security attacks (Ransbotham and Mitra 2009, Arora et al. 2006b).

The number of vulnerabilities reported by Computer Emergency Response Team /

Coordination Center (CERT/CC) increased dramatically from 171 to 7326 between 1995

and 2007. The public disclosure of such software vulnerabilities increases the risks posed

by security attacks (Arora et al. 2006b). Disclosed software vulnerabilities could expose

the systems of unprotected users to security attacks and could be exploited by attackers to

compromise organizational information systems through these unprotected systems. At

the same time, disclosure of vulnerabilities is used by social organizations such as

CERT/CC to hasten the release of software patches by vendors.

9

One of the important characteristics of a disclosed vulnerability is its severity and

prior research has found that the severity of the vulnerability affects the patch release

behavior of software vendors (Arora et al. 2010a, Kannan et al. 2007, Png et al. 2008).

However, these studies treat the severity as an aggregated measure. We expect that

vulnerabilities with same severity measures can, however, pose different risks for data

assets of an organization (Houmb et al. 2008, Mell and Scarfone 2007), depending on the

type of impact. For example, vulnerabilities that result in unauthorized information

disclosure may need to be responded to differently compared to vulnerabilities that lead

to unavailability of data. Hence, the patch release behavior of vendors is likely to be

different according to the expected impact of different aspects of the severity of the

vulnerability. We use the data on vulnerabilities published by United States Computer

Emergency Readiness Team (US-CERT) and cross-reference the data with National

Vulnerability Database (NVD) to capture detailed information about vulnerabilities and

patches released by vendors. We then test a survival model of the vulnerability with this

data, thereby extending prior research on patch release behavior and helping to

understand vendor’s patch release response in a more comprehensive way.

Our analysis shows that while confidentiality impact and integrity impact are the

most important vulnerability characteristics that affect the patch release behavior of

software vendors, these two impacts are highly correlated with each other. Therefore,

vendors tend to show almost identical behavior for the same level of impact of

confidentiality or integrity when releasing their patches. In general, higher confidentiality

impact or integrity impact makes vendors release patches faster while higher availability

impact results in slower release of patches. However, further analysis highlights some

10

interesting differences between open source software (OSS) and proprietary software

vendors in terms of their response to availability impact of vulnerabilities. We also find

that the patch release behavior of software vendors is different if the patch is an update

rather than a new release. Introducing the type of patch in our paper is a response to a call

in prior research (Arora et al. 2010a) for additional variables to describe patch release

behavior and for using additional data sources. Prior research has recognized differences

between OSS and proprietary vendors in debugging software (Raymod 1999). We find

interesting differences between the behavior of open source software and proprietary

software vendors in releasing patches for vulnerabilities, depending on the type of patch

(upgrade vs. new release). Prior research also indicated that patch quality depends on

patch development time (Arora et al. 2008) and cost of developing software (Arora et al.

2008, Slaughter et al. 1998). We find that lower quality patches are released faster

because of the trade-off between the quality of a patch and its cost to the vendors.

2.2. Literature Review

While there are multiple streams of research that help understand vendors’ patch

release behavior, the common theoretical underpinning of most of these studies is that the

release time and quality of security patches are largely determined by the economic

behavior of vendors each of whom have a specific cost structure. Arora et al. (2008)

introduce a model of vulnerability disclosure and software vendors’ patch release

behavior involving a social coordinator (e.g., CERT/CC) as an external entity who sets

the disclosure time and a vendor who decides on the patch release time. The model

focuses on a vendor’s cost and social cost as the two types of costs. Social cost is total

customer loss resulting from the exploitation of unpatched vulnerabilities by security

11

attackers. The vendor’s cost consists of two terms: the cost of patch development and the

portion of social cost internalized by the vendor. The cost of developing a patch is

determined by a vendor based on patch development time and patch quality because

accelerating patch development and increasing patch quality draw upon more resources

(Arora et al. 2008). Hence, vendors are likely to incur higher patch development costs

with accelerating patch development or increasing patch quality because of allocation of

more resources (Arora et al. 2008, Slaughter et al. 1998) or quality improvement

processes (Slaughter et al. 1998). In contrast, vendors internalize the portion of social

cost in the form of either a loss in reputation, a loss in future sales, or as customer support

costs (Arora et al. 2008). In this model, social coordinators set the disclosure policy and

influence vendor’s patch release behavior by determining optimal vulnerability disclosure

time in order to minimize social cost. In response, a vendor decides on the patch release

time in order to minimize its expected cost. Therefore, vendor’s patch release decision

depends on the trade-off between these costs. Arora et al. (2008) indicated that a vendor

is more responsive if a greater portion of the customer loss is internalized by the vendor.

Arora et al. (2010a) also used the same model and indicated the positive impact of

vulnerability disclosure on the patch release time, i.e., vulnerabilities that were publicly

disclosed were patched faster. Cavusoglu et al. (2007) use an analytical model to study

vulnerability disclosure mechanisms (i.e., instant disclosure, no disclosure, and optimal

disclosure) on patch release decisions. They show that even though each disclosure

mechanism ensures the release of patch by vendors, early disclosure does not always lead

to faster patch release by vendors because vendors may incur higher development costs if

they release patches faster. Hence, they may trade off development costs for higher

12

internalized customer loss. These studies provide analytical evidence that vulnerability

disclosure affects the vendors’ patch release behavior and patch release time. However,

the importance of these studies is to develop the model explaining software vendors’

patch release behavior in terms of their cost structure.

Prior research on corporate social responsibility identified government and

interest groups, such as customers, as external entities who impose costs on a firm (Baron

2001). Market and legislation mechanisms lead firms to internalize the external effects of

their decisions (Baron 2001). Therefore, economic activity of companies is affected by

government and customers through two mechanisms. One is through market, in which

customers influence economic activity of firms through either a loss in reputation, a loss

in future sales, or as customer support costs. The other is through government

legislations, in which government influences economic activity of firms through

legislations and associated penalties. From corporate governance perspective, the primary

objective of managers is to maximize shareholder value (Brigham and Ehrhardt 2008,

Baron 2001). However, Wood (1991) argued that business and society are interwoven

rather than being distinct entities and society has certain expectations for appropriate

business behavior and outcomes. Therefore, the social responsibility of business

encompasses the economic, legal, and ethical expectations (Carroll 1979). It is possible

that vendor patch release behavior is affected by such legislative mechanisms, through

their impacts on vendor’s cost components, such as internalization of social cost.

The impact of the severity of vulnerability on the patch release behavior of

software vendors has also been studied in prior research (Arora et al. 2010a). In Kannan

et al. (2007), reactions of vendors differ for different types of security attacks because an

13

attack may target a specific vulnerability and with a different purpose. The impact of the

severity of vulnerabilities on the number of attacks has been studied by Png et al. (2008),

who conclude that software vendors tend to spend more effort developing patches for

vulnerabilities having a higher severity impact than for vulnerabilities having a lower

severity impact. The confidentiality-integrity-availability (CIA) framework assesses

security attacks based on the risk posed by the attacks to confidentiality, integrity, and

availability of data assets. For example, theft of information is categorized as a

confidentiality attack since it poses the risk of unauthorized disclosure of information.

Virus attacks are categorized as integrity attacks since they pose the risk of unauthorized

modification of data assets. Denial of service (DOS) attack is categorized as an

availability attack since it makes systems unavailable. The severity of vulnerability

studied by Arora et al. (2010a) is an aggregate variable and does not capture the

confidentiality, integrity, and availability dimensions of vulnerabilities on the patch

release behavior of software vendors. It may be possible that components of vendor’s

cost, such as internalization of social costs, may be different for different dimensions of

vulnerability impact.

Software complexity is a major factor influencing the software’s maintenance

efforts (Banker and Slaughter 2000, Banker et al. 1998, Kemerer 1995, Roberts et al.

2004) and maintenance costs (Banker and Slaughter 2000, Banker et al. 1998). Software

maintenance is the modification of a software product after delivery in order to correct

faults, to improve performance or other attributes, and to enhance the product by adapting

it to a modified environment (IEEE 1983). Since releasing a patch for vulnerability is part

of the software maintenance effort, software complexity is an important variable when

14

studying vendor patch release behavior. Software complexity generally refers to the

characteristics of the data structures and procedures within software products that make it

difficult to understand and change and software complexity has been strongly linked with

software maintenance efforts (Banker et al. 1998). These results are supported by the

study of Banker and Slaughter (2000) in which software development is regarded as

software enhancement activity. Software complexity has also been studied as part of the

complexity of information systems development projects (Xia and Lee 2005). In this

study, the complexity has been analyzed based on the structural aspects of projects

capturing the impact of variety and interdependency of project elements on complexity.

As the number of project elements and their interdependencies increases, it becomes

more difficult to control the project.

Prior research has shown the impact of patch quality on patch development time

(Arora et al. 2008) and cost of developing software (Arora et al. 2008, Slaughter et al.

1998). This is based on the idea that software vendors choose the patch quality in order to

minimize their expected costs, which consist of the patch development cost and the

portion of total customer loss resulting from vulnerabilities exploited by attackers (Arora

et al. 2008). Arora et al. (2006a) also showed that a software vendor has incentives to

release a buggier product early and fix it later.

Raymond (1999) indicated that the nature of software debugging, an important

task in patch development, is different for proprietary and OSS vendors. OSS

development depends on contributions and collaboration of volunteer software

developers (Liu and Iyer 2007, Feller and Fitzgerald 2002). Prior studies show that

collaboration among product design teams is associated with a reduction in product

15

development cycle time (Espinosa et al. 2007, Banker et al. 2006) and a reduction in

software development cost (Jaisingh et al. 2008). Sen (2007) concludes that OSS vendors

benefit from the collective network of software developers in OSS development process

resulting in quicker releases of software than proprietary vendors.

Software can be categorized as application software and system software based on

what specific tasks the software is designed to accomplish (O’Brien and Marakas 2008)

and the category can affect the patch development efforts. Meil and Scarfone (2007)

indicated that the level of access to the operating system (i.e., root or user level of access)

provides different level of control over the operating system (OS) and show that

vulnerabilities at an operating system level are typically more severe than that on an

application level. Arora et al. (2010b) examined empirically the impact of competition

among multiple vendors on the patch release time. In particular, they looked at disclosure

threat effect, which is the effect on patch release time of the possibility that another

vendor releases a patch earlier and implicitly discloses the vulnerability. The disclosure

threat significantly reduces the patch release time (Arora et al. 2010b), which is

consistent with the results by Cavusoglu et al. (2007) who analyzed the multiple vendor

case and concluded that the patch release of one vendor affects the patch release

decisions of other vendors. Jaisingh et al. (2008) show that the software development

process of one vendor is affected by competition from other software developers.

The literature reviewed above suggests that vulnerability characteristics such as

confidentiality, integrity, and availability could impact vendors’ patch release behavior.

The patch release may also be affected by the software complexity, the software quality,

the types of software development processes, and the differences between software

16

categories. Prior research also indicates that the presence of multiple vendors

significantly affects the vendor’s patch release decision. Although prior research suggests

the impact of these factors on the vendor’s patch release behavior, our study is the first

empirical attempt to analyze the impact of the individual vulnerability characteristics

(i.e., confidentiality, integrity and availability) as well as the impact of patch quality. The

extant software vulnerability patch literature also does not consider the impact of

software complexity and its interaction with other factors on vendor patch release

behavior. On the premise that the time and cost to develop a patch are dependent on the

software complexity, we collect data regarding patch types for vulnerabilities and

examine how these patch types affect vendor patch release behavior. The following

section discusses the vulnerability scoring system that measures the severity of individual

vulnerability characteristics.

2.3. Common Vulnerability Scoring System (CVSS)

Information security is defined as the combination of the attributes of

confidentiality, integrity, and availability (Avizienis et al. 2004). The Control Objectives

for Information and Related Technology (COBIT) standards is a widely accepted set of

guidance for IT governance and also identities confidentiality, integrity, and availability

of data assets as important for IT governance. According to the Forum of Incident

Response and Security Teams (FIRST), confidentiality refers to limiting information

access and disclosure to only authorized users, as well as preventing access by or

disclosure to unauthorized users (Mell et al. 2007). Integrity refers to the trustworthiness

and guaranteed veracity of information while availability refers to the accessibility of

data resources (Mell et al. 2007).

17

While confidentiality, integrity, and availability are referred to as the primary

attributes of information security, secondary attributes such as accountability (Avizienis

et al. 2004, Pfleeger and Pfleeger 2003, Biskup 2009), assurance (Avizienis et al. 2004)

and authenticity (Avizienis et al. 2004) refine or specialize the primary attributes

(Avizienis et al. 2004). For example, accountability is defined as availability and integrity

of the identity of the person who performed an operation (Avizienis et al. 2004). The use

of information should be transparent so that it is possible to determine whether a

particular use is appropriate under a given set of rules and that the system enables

individuals and institutions to be held accountable for misuse (Weitzner et al. 2008).

Assurance is derived from integrity and is defined as the prevention of the unauthorized

modification or deletion of information, while authenticity is defined as the integrity of a

message content and origin (Avizienis et al. 2004). Although secondary attributes carry

more specific information about the vulnerability than primary attributes, the impact of

vulnerability is best represented by the impact scores of primary attributes. Moreover, the

NVD database does not disclose any of the secondary attributes. Hence, the scope of this

study is limited to primary attributes.

The Common Vulnerability Scoring System (CVSS)1 provides standard measures

for the impacts of vulnerability based on its severity. The characteristics of vulnerabilities

are assumed constant over time and across user environments, and categorized into

exploitability and impact subgroups (Mell et al. 2007). The CVSS gives an aggregated

severity score (on a scale of 0 to 10) for each vulnerability. This aggregated severity

score is calculated by combining exploitability and impact subscores. Although

1 The Common Vulnerability Scoring System (CVSS) is a standard for scoring the impact of

vulnerabilities. The CVSS was originally introduced by the National Infrastructure Advisory Council
(NIAC) and is currently managed by the Forum of Incident Response and Security Teams (FIRST).

18

exploitability subscores capture how a vulnerability is accessed, the focus of this study is

on impact subscores since the three impact metrics (i.e. confidentiality, integrity and

availability) measure the direct impact of an exploited vulnerability on data assets

(Chandramouli et al. 2006). Possible values for each impact subscore are “None, Partial

and Complete”2. While “None” indicates a total absence of the impact on data assets,

“Complete” means the maximum impact on data assets. “Partial” refers to a partial

impact on data assets. A higher value for each impact metric indicates higher severity for

that metric.

Although the definitions of the vulnerability characteristics do not overlap, they

may be correlated across vulnerabilities. For example, if security attackers gain a right to

modify data without authorization as a result of the exploitation of vulnerability, they

may also acquire the content of data. Therefore, violations of integrity may also lead to

the violation of confidentiality. The modification or destruction of data makes data

unavailable or inaccessible and thus violations of integrity may also result in the violation

of availability. We will analyze these possible correlations between any pairs of

vulnerability characteristics in the Research Methodology section.

2.4. Theoretical Background and Hypotheses

The primary purpose of this study is to analyze how the factors specific to

vulnerabilities, patches, software, and software vendors affect the patch release behavior

of software vendors based on extending the cost-based framework of Arora et al. (2008).

We develop a model of vendor patch release behavior and posit that software vendors’

patch release behaviors are affected by three impact dimensions of vulnerabilities, the

2 Corresponding coefficients of possible values for impact metrics are available at

http://www.first.org/cvss/cvss-guide.pdf

19

types of patches, the types of software vendors, the software categories, and the patch

quality. We also posit that software vendors’ patch release behaviors are affected by the

presence of multiple vendors whose products have the same vulnerability. We consider

government’s role in affecting components of vendor’s cost, such as internalization of

social costs, and propose that government actions cause software vendors to internalize a

higher amount of social cost via government enforcements and legislative penalties on

customers.

2.4.1. Vulnerability Characteristics: Confidentiality, Integrity, and Availability

Arora et al. (2010a) show that vendors release patches faster for more severe

vulnerabilities. However, the vulnerability severity used in their study is an aggregated

score computed from individual vulnerability characteristics (Mell et al. 2007) and the

impacts of individual vulnerability characteristics on vendors’ patch release behavior has

not been captured. Theoretically, different combinations of vulnerability characteristics

can produce the same aggregated severity score but pose different risks to users since the

actual risk depends on the impact of each vulnerability characteristic on data assets

(Houmb et al. 2008, Mell and Scarfone 2007). For example, a successfully exploited

vulnerability can cause a complete loss of confidentiality, and a partial loss of integrity,

but no loss of availability. In order to capture the impact of vulnerability characteristics in

more depth, the CIA framework, which underlies the confidentiality, integrity, and

availability impacts of vulnerability, is used in our study. The CIA framework is used in

prior research to classify security attack types (Kannan et al. 2007). Different types of

security attacks (e.g., virus attacks, theft of information, and DOS attacks) target different

aspects of data assets (i.e., confidentiality, integrity, and availability). Security attacks

20

that result in unauthorized information disclosure, such as theft of credit card numbers or

other customer information, are categorized as confidentiality attacks (e.g., theft of

information). Security attacks that result in authorized modification or total destruction of

data assets are categorized as integrity attacks (e.g., virus attacks). Security attacks that

make data resources or systems inaccessible are classified as availability attacks (e.g.,

DOS attacks).

Confidentiality, integrity, and availability impacts are considered as important

vulnerability characteristics by Sarbanes-Oxley (SOX) legislation and companies have to

establish the internal control over these dimensions. This view is supported by the

Federal Information Security Management Act (FISMA) that requires federal agencies to

protect information and information systems from unauthorized access, disclosure, use,

modification, or destruction of data to strengthen information security and provide

integrity, confidentiality and availability. Software vendors incur a higher cost from

customer loss resulting from vulnerabilities exploited by security attackers if the

vulnerabilities are critical (Arora et al. 2008). This view is supported by Png et al. (2008)

who report that software vendors expend greater effort to develop patches for

vulnerabilities having a higher severity impact. Software vendors are expected to react

faster in developing patches for vulnerabilities having a higher impact on confidentiality,

integrity and availability of data assets because they internalize a greater amount of

customer loss resulting from exploitation of vulnerabilities having a higher impact on

confidentiality, integrity and availability. Hence, this leads us to the following

hypotheses:

21

H1: Higher confidentiality impact of vulnerabilities is associated with faster patch

release by vendors.

H2: Higher integrity impact of vulnerabilities is associated with faster patch release

by vendors.

H3: Higher availability impact of vulnerabilities is associated with faster patch

release by vendors.

2.4.2. Vulnerability Characteristics: Confidentiality vs. Integrity, and Availability

Confidentiality attacks such as theft of information result in unauthorized

information disclosure. However, violations of confidentiality in the form of information

disclosure cannot be recoverable, while violations of integrity or availability can be

recovered by other means, such as having backup systems. Violations of confidentiality

may also be harder to detect than exploitations of integrity or availability. The risk of

unauthorized information disclosure for financial institutions has been demonstrated by

Johnson (2008). This study also provides companies with strategies on how to control

information disclosure. The confidentiality of information is associated with privacy and

regulated by various forms of legislation (O’Brien and Marakas 2008). The Electronic

Communication Privacy Act and the Computer Fraud and Abuse Act prohibit

intercepting data communication and stealing data (O’Brien and Marakas 2008). The

Health Insurance Portability and Accountability Act (HIPAA), which includes the

privacy rules and the security rules, addresses issues related to individual health

insurance. The HIPAA creates the safeguards against the unauthorized use, disclosure,

and distribution of an individual’s health care information held by health care service

providers without the specific consent or authorization. The Gramm-Leach-Bliley Act

22

(GLBA) is another legislation that includes provisions to govern the disclosure, and

protection of consumers’ nonpublic personal information held by companies. According

to the GLBA, companies are required to develop information security plans to protect

consumers from unauthorized disclosure of their nonpublic personal information. Given

the significant legislative pressure regarding privacy and confidentiality, we expect that

confidentiality impact is considered as more critical to respond to than availability and

integrity impact types. This is because software vendors are likely to internalize a greater

amount of customer loss for the violation of confidentiality than for the violation of

integrity or availability. This leads us to the following hypothesis:

H4: Confidentiality score has a greater positive impact on vendors’ patch release

time than integrity score or availability score.

2.4.3. Vulnerability Characteristics: Integrity vs. Availability

Integrity attacks such as virus attacks result in unauthorized modification or total

destruction of data assets. Modified or destructed data can be backed up and restored to a

clean state relatively easily when compared with violations of confidentiality. However,

in case of random data modifications by security attackers it is difficult to notice the

violation and to determine what has been changed. Violations of integrity may also result

in the violation of availability since modified or destructed data is not available.

Availability attacks such as DOS attacks make a system unavailable but it can be

recovered relatively easily since violations of availability are easier to notice than those

of integrity. For example, the HIPAA regulates that the access to and modification of

health care information is limited to authorized persons. This view is supported by

Sarbanes-Oxley whose objective is to improve accountability of information (Anand

23

2008). We conclude that integrity impacts of vulnerability are more severe than

availability impacts because software vendors internalize a greater amount of customer

loss for the violation of integrity than for the violation of availability. This leads us to the

following hypothesis:

H5: Integrity score has a greater positive impact on vendors’ patch release time than

availability score.

2.4.4. Patch Types

Software complexity generally refers to the characteristics of the data structures

and procedures within software products that make it difficult to understand and change

the software (Banker et al. 1998). A significant portion of the software developer's time is

required to understand the functionality of the software to be changed (Banker et al.

1998). Software complexity also affects the effectiveness of development teams (Roberts

et al. 2004). The more complex the software product, the more effort required to mitigate

the negative impact of software complexity on software development process. The

structure of software development projects such as variety and interdependency of project

elements also determine the software complexity (Xia and Lee 2005). As the number of

project elements increases, software development becomes more difficult to control.

Software complexity also determines the maintenance cost of software since high level of

software complexity interferes with the process of comprehending the application and

makes it difficult for developers to efficiently and correctly modify the application

(Banker and Slaughter 2000). We measure software complexity in terms of patch types:

an update or a new release. A new release patch is required to modify an entire product

and the data structures and procedures are more complex for a new release. Typically a

24

new release is larger in size than an update patch. We assume that a new release type of

software requires more development effort than an update type. Therefore, software

vendors incur higher development costs for a new release type of patch than an update

type of patch. This leads us to the following hypothesis:

H6: An update type of patch is released faster than a new release type of patch by

vendors.

2.4.5. Software Vendor Types

The nature of the software debugging task for proprietary and OSS vendors leads

to two fundamentally different software development styles: the cathedral model for

proprietary vendors and the bazaar model for OSS vendors (Raymond 1999). Software

development involves knowledge work and its most important resources are the

specialized skills and expertise that a developer brings to the project development

(Espinosa et al. 2007, Roberts et al. 2004, Faraj and Sproull 2000). Proprietary vendors

use a more closed environment and the development process is characterized by a

relatively strong control of design and implementation. In contrast, OSS vendors depend

mainly on voluntary contributions of software developers and, hence, a patch for OSS

product is developed in a collective manner beyond the boundaries of a single

organization. The network of developers becomes more important for OSS projects and

offers various benefits. First, collaboration among software developers can facilitate

access to and sharing of resources, allowing developers to combine their knowledge,

skills, and expertise. Second, new insights, ideas or ways to solve problems are conceived

by any one and accessed by others. This leads to decrease in time required to find a

solution for fixing vulnerabilities. Third, the volunteer group of software developers does

25

not depend on the schedule of a company to release a patch for vulnerabilities in the OSS.

In contrast, the release calendar of a patch by a proprietary vendor may be subject to the

vendor’s marketing and strategic needs. Fourth, the cost of software development is

mainly resulting from the investment on resources such as salaries paid to developers

(Jaisingh et al. 2008). However, OSS vendors benefit from voluntary contributions of

developers (Jaisingh et al. 2008). We expect that OSS vendors release patches faster than

proprietary vendors because the voluntary contributions of software developers to OSS

development reduces the development cost for OSS vendors. This view is consistent with

the results of Banker et al. (2006) which show that collaboration among design teams in

OSS projects is associated with a reduction in OSS development time. Espinosa et al.

(2007) also concluded that collaboration leads to benefits such as shorter development

time. This leads us to the following hypothesis:

H7: Open source vendors release patches faster than proprietary vendors.

2.4.6. Software Types

Software is primarily categorized as application software and system software

based on what specific tasks the software is designed to accomplish (O’Brien and

Marakas 2008). Application software, such as word processing, spreadsheets, graphics

programs or electronic mail applications, are stand-alone function-specific programs that

provide individual end users with common information processing tasks. In contrast,

system software manages and provides a vital software interface among computer

networks, hardware, and application software of end users. Operating systems,

application servers or network management programs are examples of system software.

Web-based software also provides a software interface over computer networks among

26

application software. For example, web browsers run other application software such as

web-based applications (e.g., Google Document) or other programming codes (e.g.,

ActiveX controls). Therefore, web-based software such as web browsers is categorized as

system software in our study. System software is more critical and important than

application software, since it provides a software interface among computer networks,

hardware, and application software of end users. Exploitation of vulnerabilities belonging

to system software affects the entire system and gives security attackers an OS level of

access and control to data resources. In contrast, exploitation of vulnerabilities belonging

to application software affects an application itself and gives security attackers a limited

level of access and control to data resources. We argue that vulnerabilities belonging to

system software are more serious and patched faster than those belonging to application

software because software vendors internalize more customer loss for the exploitation of

vulnerabilities affecting system software than vulnerabilities affecting application

software. This leads us to the following hypothesis:

H8: Vulnerabilities affecting system software are patched faster by vendors than

those affecting application software.

2.4.7. Patch Quality

Software vendors choose a patch quality that minimizes the total of the patch

development cost and the portion of total customer loss (Arora et al. 2008). Vendors

incur higher patch development costs with the higher patch quality because of allocation

of more resources (Arora et al. 2008, Slaughter et al. 1998) or quality improvement

processes such as design reviews and code inspections (Slaughter et al. 1998). However,

there are early mover advantages resulting in incentives to release products earlier despite

27

the product not being ready for release (Arora et al. 2010b). Hence, software vendors

have incentives to release an incomplete patch with partial fix early and fix it later (Arora

et al. 2006a) in order to offset the potential customer loss of not releasing any patch

(Arora et al. 2008). Software vendors may sacrifice quality by eliminating quality

improvement processes to achieve other objectives such as shorter development cycle

time and reduced development cost (Slaughter et al. 1998). We argue that lower quality

patches are released faster than higher quality patches because software vendors incur

less development cost for low quality patches and further reduce the potential customer

loss of not releasing any patch at least by releasing low quality patches early. This leads

us to the following hypothesis:

H9: Lower quality patches are released faster than higher quality patches.

2.4.8. Presence of Multiple Vendors

The impact of the presence of multiple vendors for a given vulnerability on the

patch release time has been analyzed from the competition perspective (Arora et al.

2010b, Cavusoglu et al. 2007). Arora et al. (2006a) study firms’ incentives to release their

software earlier to gain more market share and avoid the threat of competition in the

market, since the software market offers significant early mover advantages. In the

presence of multiple vendors, there is also a possibility that the release of a patch by

another vendor discloses the vulnerability, putting pressure on other vendors who have

not released a patch yet. We expect that the threat of disclosure and customers' penalty on

late patching could decrease the patch release time by vendors when multiple vendors are

affected by the same vulnerability. This leads us to the following hypothesis:

28

H10: Vulnerabilities affecting multiple vendors are patched faster than

vulnerabilities affecting a single vendor.

2.5. Variable Definitions and Operationalization

2.5.1. Computation of Dependent Variable

Patch Release Time: Patch release time is the dependent variable in our model.

The patch release time is measured as the number of days between the vendor notification

date and the patch release date. In our model, we have set June 20, 2009 as a cutoff date

for our study. If patch release date is earlier than our cutoff date, the patch release time is

the number of days between the vendor notification date and the patch release date.

However, some vendors had not released their patches by the cutoff date. These

observations were removed from the data set because patch release time and other patch

related information cannot be obtained. The vendor notification date is the date when a

vendor first knows the existence of vulnerability in its product(s). Vendors usually are

notified by US-CERT and for these vulnerabilities we have noted the vendor notification

date from the US-CERT website. For some vulnerabilities, vendors have been notified by

other security sources such as SecurityFocus, iDefense, and TippingPoint. US-CERT

referred to these sources for the vendor notification date. For these vulnerabilities, we

have noted the vendor notification date from the links provided by US-CERT. For some

vulnerabilities, vendors provide a date when they first became aware of the existence of

vulnerability in their products or when they were notified about the existence of

vulnerability in their products. We select the earliest notification date from among those

identified from US-CERT website, other security websites, and the software vendor’s

website. For some vulnerabilities, we use the vendor notification date as the date when

29

vulnerability information is first made public. Generally, the public date is the earliest of

the date when the vulnerability information is first published, the date when an exploit

was first discovered, or the date when the vendor first distributed a patch publicly. We

have noted the vulnerability public date directly from the US-CERT website. The patch

release date is the date when a vendor releases a patch for a vulnerability in its product.

However, the same software vendor may release multiple patches for the same

vulnerability. For these vulnerabilities, we selected the earliest date as the patch release

date. US-CERT and NVD websites do not directly provide patch release dates. Instead

they give the links for available solutions and refer us to patch release reports, security

bulletins or security advisories published by software vendors. Patch release dates have

been collected from these sources or from the digital signatures of patches.

2.5.2. Independent Variables

Vulnerability Characteristics (Confidentiality, Integrity, and Availability):

Confidentiality, integrity, and availability impacts are independent variables in our

model, and take a value of 0 for “None”, a value of 1 for “Partial”, and a value of 2 for

“Complete”. Data regarding vulnerability characteristics are collected from the NVD

website.

Patch Type (PType): Patch type data has been collected from the US-CERT

website or software vendors’ website. We identified different types of patches such as

configurations, scripts, updates, and new releases. We grouped configurations, scripts,

and updates under the update type of patches. Patch type takes a value of 1 for new

release patches and 0 for update type of patches.

30

Software Vendor Type (VType): Software vendor type has been identified for

each vendor by referencing websites such as the Open Source Vulnerability Database

(OSVDB). Software vendor type takes a value of 1 for open source vendors and 0 for

proprietary vendors.

Software Type (SWType): Software type has been identified from the list of

affected products provided by the US-CERT website and software vendors’ website.

Software type takes a value of 1 for system software and 0 for application software.

Patch Quality (MPatches): Beattie et al. (2002) measured the patch quality with

the number of patch released for the same vulnerability. Khoshgoftaar et al. (2000)

developed a software quality model and measured software quality with multiple releases

of software based on the idea that software is improved from faults in the last release.

Therefore, multiple patches imply lower quality in the first released patch. We measure

patch quality with the number of patch released for the same vulnerability. We identified

all patch releases along with patch release dates for the same vulnerability from patch

release reports, security bulletins, security advisories published by software vendors, and

the digital signatures of patches. It takes a value 1 if multiple patches are released for the

same vulnerability and 0 otherwise.

Presence of Multiple Vendors (MVendor): The data on multiple vendors has been

collected from the US-CERT and NVD websites. For each vulnerability, US-CERT and

NVD lists all affected vendors. However, there are cases where US-CERT lists only one

vendors but NVD lists multiple vendors, or vice versa. We treat both these cases as

multiple vendor case. MVendor variable takes a value 1 if vulnerabilities affect multiple

vendors and 0 otherwise.

31

2.5.3. Control Variable

Disclosure: Prior research has found that disclosure affects the patch release

behavior of software vendors. Thus, disclosure is a control variable in our model and has

been constructed as a time-dependent covariate, consistent with prior research (Arora et

al. 2010a). If vulnerability information is disclosed before patch release date, disclosure

takes value 1, which means vulnerability has been made public before the patch release,

otherwise it takes a value of zero.

The description and operationalization of variables in our research are

summarized in Table 1. The next section introduces the basis of our model and research

methods that we adopted.

TABLE 1: Variables and Descriptions/Measures

Variables Descriptions/Measures
Patch Release Time Time taken in days by vendors to release a patch
Disclosure Whether vulnerability information is disclosed before patch release date;

1 if vulnerability information is disclosed before patch release date, 0 otherwise
MPatches Whether multiple patches are released for the same vulnerability;

1 if multiple patches are released for the same vulnerability, 0 otherwise
Confidentiality Impact The impact of unauthorized information disclosure on data assets;

0 if none, 1 if partial, 2 if complete
Integrity Impact The impact of unauthorized modification or total destruction of data on data assets;

0 if none, 1 if partial, 2 if complete
Availability Impact The impact of unavailability of data resources on data assets;

0 if none, 1 if partial, 2 if complete
PType The type of a patch released by a vendor;

0 if an update, 1 if a new release
VType The type of a software vendor;

0 if a proprietary vendor, 1 if OSS vendor
SWType The type of software affected by a vulnerability;

0 if application software, 1 if system software
MVendor Whether there are multiple vendors affected by the same vulnerability;

1 if multiple vendors are affected by the same vulnerability, 0 otherwise

32

2.6. Research Methodology

The purpose of this study is to understand how factors specific to vulnerability

characteristics (i.e., confidentiality, integrity and availability impacts), patches, software

vendors and software affect the patch release behavior of software vendors, in particular

the time to release a patch. This study also examines the impact of the presence of

multiple vendors exposed to the same vulnerability on the patch release behavior of

software vendors. In order to accomplish these research objectives and test the hypothesis

developed in the previous sections, we use survival analysis based on the vulnerability

life cycle model.

Arbaugh et al. (2000) developed a vulnerability life cycle model which captures

all possible states that vulnerability can enter during its lifetime. The vulnerability life

cycle model considers vulnerability as a birth and death process. In this study, the vendor

notification event can be considered as the starting point of patch development process.

However, a vendor has a choice whether to release a patch or not. If a vendor releases a

patch for its product, the patch release date indicates the end of patch development

process. The vulnerability survives as long as the vendor does not release a patch, and

thus the time taken to release patch after the vendor knows about it is the survival time of

vulnerability. In this study, we have considered the vulnerability life cycle as a survival

model, in which the release of a patch by a software vendor is an event that ends the

survival of a vulnerability.

The survival model is preferred to traditional multiple regression models in our

study for several reasons. First, survival analysis does not impose any specific

distributional assumptions. Second, survival analysis enables us to use time-dependent

33

covariates. In our model, vulnerability disclosure is a time dependent covariate, following

Arora et al. (2010a). In contrast to survival analysis, multiple regression cannot handle

time-dependent covariates.

We use Cox’s proportional hazard model which is a semi-parametric survival

model (Cox 1972). The patch release time is the dependent variable in our model.

Peduzzi et al. (1995) suggested that at least 10 events are required for each independent

variable in the model, and the regression coefficients become more biased with a

decrease in the number of events for each variable. In this study, we have 10 variables

including time-dependent covariates and the interactions terms. Therefore, the sample

size of 722 is considered adequate when compared to the required sample size of 100.

Cox’s proportional hazard model is expressed as follows:

ℎ , ℎ exp

where h0 (t) is the baseline hazard function at time t when all values of independent

variables are equal to zero. Xi are independent variables for i = 1…k and Xj are time-

dependent covariates or the interaction terms for j = 1…n. βi and βj are model coefficients

for i = 1…k and j = 1…n respectively.

2.7. Data

2.7.1. Data Sources and Collection

Vulnerability data analyzed in this study has been collected from two sources:

US-CERT3 and NVD4, which are publicly available vulnerability databases. US-CERT

3 The US-CERT is the operational part of the National Cyber Security Division (NCSD) of the U.S.

Department of Homeland Security (DHS). The US-CERT provides the response and defense about
vulnerabilities against cyber-attacks.

34

publishes vulnerability information in the form of “Vulnerability Notes”. Vulnerability

notes include vendor notification date, vulnerability public date, available solutions, the

list of affected vendors, and the list of affected products for each vendor. US-CERT

cross-references their vulnerability databases with NVD through the Common

Vulnerabilities and Exposures (CVE)5 identifiers assigned by NVD. In this study, we

start with vulnerabilities that have been published by US-CERT, which are then cross-

referenced with NVD vulnerability list in order to acquire vulnerability characteristics.

After learning about a vulnerability, US-CERT contacts the vendor(s) to confirm

that their products are affected by the vulnerability. If a vendor acknowledges the

vulnerability in its product(s), US-CERT lists the vendor’s status as “vulnerable”. If a

vendor reports that its product(s) is not affected by the vulnerability, US-CERT lists the

vendor’s status as “not vulnerable”. However, a vendor may choose not to respond to US-

CERT. In this case, US-CERT lists the vendors’ status as “unknown”. It may be possible

that a vendor was affected by the vulnerability even if US-CERT listed a vendor’s status

as “unknown”. However, there is no practical way for us to verify whether a vendor was

actually affected by the vulnerability or not. Therefore, we select only those vendors

whose status is listed as “vulnerable” by US-CERT.

The unit of analysis is the vulnerability-vendor pair, since vulnerability can affect

multiple vendors. We created a list of 792 unique vulnerabilities published by US-CERT

from June 21, 2006 to June 20, 20096. Because more information about the vulnerabilities

4 The NVD is the U.S. government repository of standards based vulnerability management data

represented using the Security Content Automation Protocol (SCAP) standards. It is based on and
synchronized with the CVE vulnerability naming standard.

5 The CVE is a dictionary that provides common identifiers for publicly known information security
vulnerabilities and exposures.

6 Data, except multiple patch release data, have been collected during the period from August 2009 to
November 2009. Multiple patch release data have been collected during the period of February 2011.

35

has to be collected from and cross-referenced with NVD, we removed 109 vulnerabilities

from our list that have been published by US-CERT, but not by NVD. From the 256

vendors affected by these vulnerabilities, we created the initial data set of 1222

vulnerability-vendor pairs for 683 vulnerabilities and 256 vendors. From this list, we

could not determine the patch release date for 251 observations involving 155

vulnerabilities and 142 vendors and, hence, they were removed from our data set. After

calculating the patch release time for the remaining data, 59 observations involving 57

vulnerabilities and 33 vendors had a negative patch release time, which indicates that

vendors released a patch before they were notified. These observations were removed

from our data set. We dropped 183 observations, for 177 vulnerabilities and 30 vendors,

for which the vendors discovered vulnerabilities in their products by themselves or with

the help of third parties. Vendors disclosed these vulnerabilities to US-CERT along with

the release of patches. In these cases, we cannot exactly determine when a vendor knew

the existence of the vulnerability and we cannot determine the actual patch release time.

Finally, we dropped 3 observations, for 3 vulnerabilities and 3 vendors, for which

vendors had released their patches after the cutoff date. In these cases, patch related

information, such as patch release time and patch type, cannot be obtained by the cutoff

date. During the data analysis, we identified 4 observations as outliers, and hence they

were removed from our data set. The final data set includes 722 observations involving

388 vulnerabilities and 156 vendors. Table 2 provides the descriptive statistics for the

vulnerabilities in our data set for different years. In Figure 2, we create a histogram to

show the distribution of patch release time for the vulnerability-vendor pairs in our data

set. The figure shows that about 50% of vulnerabilities in our data set have been patched

36

within 30 days after vendors have been notified. The percentage of vulnerabilities

patched gradually decreases over time.

TABLE 2: Descriptive Statistics for Vulnerabilities across Years

Year Number of Observations Number of Vulnerabilities Number of Vendors
2006 280 134 28
2007 287 175 52
2008 132 65 59
2009 23 14 17
Total 722 388 156

FIGURE 2: Distribution of Patch Release Time

2.7.2. Sample Data

We present some examples of vulnerability information in Table 3. Vulnerability

VU#554257 was published by US-CERT and the same vulnerability was published by

NVD under the identifier CVE-2007-2798. This vulnerability allows a remote,

authenticated user to be able to execute arbitrary code on an affected system or cause the

affected program to crash, resulting in a denial of service according to US-CERT. This

vulnerability was discovered by an anonymous discoverer working with iDefense. US-

CERT lists 45 vendors whose products may be affected by this vulnerability and

37

contacted all the vendors about the possible existence of this vulnerability in their

products. Five vendors acknowledged the vulnerability in their products and US-CERT

lists these vendors’ status as “vulnerable”. Four vendors reported that their products are

not affected by this vulnerability and US-CERT lists their status as “not vulnerable”. The

remaining 36 vendors chose not to respond to US-CERT and their status is listed as

“unknown”. In this study, we focus on the vendors whose status is listed as “vulnerable”

by US-CERT. Sun Microsystems, and Debian GNU are illustrative examples for this

vulnerability VU#554257. US-CERT notified both vendors on 6/18/2007 about the

existence of this vulnerability in their products. US-CERT made this vulnerability public

on 6/26/2007, 8 days after notifying vendors. Debian GNU released its new release type

of patch for this vulnerability on 6/28/2007, 10 days after its notification. On the other

hand, Sun Microsystems released its update type of patch for this vulnerability on

8/15/2007, 58 days after its notification.

VU#993544 vulnerability was published by the US-CERT, and published by

NVD under the name of CVE-2007-3382. This vulnerability can increase the possibility

of a session hijacking success according to US-CERT. This vulnerability was reported to

US-CERT by a third party. US-CERT notified Apache Tomcat about the possible

existence of this vulnerability on 7/2/2007, and made public this vulnerability on

8/13/2007, 42 days after notifying vendors. This vulnerability affected Apache Tomcat

version 4, 5, and 6. Apache Tomcat released a new version of Apache Tomcat 6 for this

vulnerability 43 days after its notification, i.e., on 8/14/2007. Apache Tomcat released a

new version of Apache Tomcat 5 for this vulnerability on 9/8/2007 and a new version of

Apache Tomcat 4 for this vulnerability on 2/9/2008. Although US-CERT reported only

38

Apache Tomcat for this vulnerability, NVD listed multiple vendors such as Apple, HP,

SUSE Linux, RedHat, and Apache Tomcat. Therefore, we record that multiple vendors

were affected by this vulnerability.

VU#132419 vulnerability was published by the US-CERT, and published by

NVD under the name of CVE-2008-1585. This vulnerability allows an attacker to

execute arbitrary code and was reported to US-CERT by a member of GNUCITIZEN, a

white hat community working with TippingPoint’s Zero Day Initiative. Apple Computer

was notified by TippingPoint on 5/8/2008 and, hence, the vendor notification date has

been recorded for our study from TippingPoint website. TippingPoint and Apple

Computer coordinated the patch release and public disclosure of the vulnerability on the

same date, i.e., 6/9/2008. Apple Computer released a new version of Apple QuickTime

for this vulnerability on 6/9/2008, 32 days after its notification. It also released a new

version of Apple TV on 7/10/2008 that fixes this vulnerability.

TABLE 3: Sample Observations of Vulnerability-vendor Pairs

Vendor Sun Microsystems Debian GNU Apache Tomcat Apple Computer
CERT Name VU#554257 VU#554257 VU#993544 VU#132419
NVD Name CVE-2007-2798 CVE-2007-2798 CVE-2007-3382 CVE-2008-1585
Notification Date 6/18/2007 6/18/2007 7/2/2007 5/8/2008
Public Date 6/26/2007 6/26/2007 8/13/2007 6/9/2008
Patch Date 8/15/2007 6/28/2007 8/14/2007 6/9/2008
Patch Release Time 58 days 10 days 43 days 32 days
Disclosure Time 8 days 8 days 42 days 32 days
Confidentiality Complete Complete Partial Partial
Integrity Complete Complete None Partial
Availability Complete Complete None Partial
Patch Type Update New Release New Release New Release
Vendor Type Proprietary vendor OSS vendor OSS vendor Proprietary vendor
Software Type System software System software System Software Application Software
Multiple Vendor Yes Yes Yes No
Multiple Patches No No Yes Yes
Affected Product Solaris Debian GNU Linux Apache Tomcat Apple QuickTime

39

2.7.3. Data Analysis

One of the assumptions of Cox’s proportional hazard model is the absence of

outliers and the residual statistics such as deviance residuals that can be used to detect

outliers (Allison 1995). Deviance residuals that exceed ±3 indicate possible outliers

(Allison 1995). Our analysis showed that the deviance residuals of four observations

exceeded -3.0 and these observations were removed from the data set.

Cox’s proportional hazard model assumes that the hazards for each independent

variable should be proportional over time and the hazard ratio should be constant (Allison

1995). We tested this proportionality assumption with Shoenfeld residuals and our results

show that the software vendor type violates the proportionality assumption. According to

Allison (1995), one of the remedies for this violation is to treat the violating covariate as

a time-dependent variable. Hence, the software vendor type is treated as a time-dependent

covariate, allowing the hazard ratio for the vendor type to change over time.

The goodness of fit of the model is tested with the chi-square value of the

likelihood-ratio test which refers to the difference between the likelihood measures (-

2LL) for the null model and the proposed model (Allison 1995). The Chi-square statistic

for our model is 576.41 with 10 degrees of freedom, resulting in a p-value < 0.0001. We

reject the null hypothesis that all effects of the independent variables are zero, and, hence,

our base model is statistically significant. The results of the model are shown in Table 4.

40

TABLE 4: Model Results (Dependent Variable: Patch Release Time, N=722)

Variables Hazard Ratio Coefficients
Disclosure 2.954 *** 1.083
Multiple Patches 1.359 *** 0.307
Confidentiality 1.226 0.204
Integrity 1.064 0.061
Availability 0.904 -0.101
Patch Type 0.662 *** -0.412
Vendor Type 10.429 *** 2.345
Software Type 1.451 *** 0.373
Multiple Vendor 1.681 *** 0.519
Vendor Type x Time 0.693 *** -0.366
*Significant at 10% level, **Significant at 5% level, ***Significant at 1% level

In our base model, confidentiality impact, integrity impact, and availability

impact are not statistically significant. The results are contrary to our expectations and do

not support our hypotheses regarding vulnerability characteristics. These unexpected

results lead us to analyze the correlation between confidentiality, integrity, and

availability. Although the definitions given for vulnerability characteristics by FIRST do

not overlap, in practice there could be correlations between any pair of vulnerability

characteristics. For example, if security attackers gain a right to modify data without

authorization as a result of the exploitation of vulnerability, they may also acquire the

content of data. Therefore, violations of integrity may also lead to the violation of

confidentiality. The modification or destruction of data makes data unavailable or

inaccessible. Therefore, violations of integrity may also result in violations of

availability.

In addition, an assumption of Cox’s proportional hazard model is the absence of

multicolinearity (Allison 1995, Hosmer and Lemeshow 1999, Lin and Wei 1989). We

examined the correlations between confidentiality, integrity, and availability using the

Variance Inflation Factor (VIF) and Pearson Correlation analysis (Fox 1991).

41

Pearson Correlation analysis indicates statistically significant correlation among

confidentiality, integrity, and availability, as shown in Table 5. The highest correlation

was found between confidentiality and integrity, which may cause high standard errors

for model coefficients.

TABLE 5: Pearson Correlation Analysis (N=722)

Variables Confidentiality Integrity Availability
Confidentiality 1.000 0.928 *** 0.694 ***
Integrity 0.928 *** 1.000 0.631 ***
Availability 0.694 *** 0.631 *** 1.000
*Significant at 10% level, **Significant at 5% level, ***Significant at 1% level

In their study on Cox’s proportional hazard model, Poel and Lariviere (2004)

indicated that lower correlations result in more stable parameter estimates. Their results

show that the correlation coefficient cut-off can be 0.80 for Cox’s proportional hazard

model (Poel and Lariviere 2004). Given the definitions for vulnerability characteristics by

FIRST, each dimension of vulnerability is expected to be different in its impact on

information systems security. However, correlation analysis of our data set indicates that

confidentiality impact and integrity impact could not be separated, in part due to the

limitation of the vulnerability scoring system (CVSS) (Mell and Scarfone 2007). We also

tested the seriousness of high correlation between confidentiality and integrity with

variance inflation factor (VIF) (Fox 1991). The VIF is found to be 8.40 for

confidentiality, 7.23 for integrity, and 1.93 for availability. The VIF values greater than

4.0 for confidentiality and integrity indicate high multicollinearity (Fox 1991). However,

after dropping integrity impact in the model, the VIF has become 1.93 for both

confidentiality impact and availability impact. Likewise, after dropping confidentiality

impact from the data set, the VIF was reduced to 1.66 for both integrity impact and

42

availability impact. Therefore, we present two alternative models in our paper, with one

retaining confidentiality impact and dropping integrity impact and other retaining

integrity impact and dropping confidentiality impact.

The Chi-square statistic is 576.20 for the confidentiality model and 574.20 for the

integrity model with 9 degrees of freedom, resulting in a p-value < 0.0001. Hence, both

of our models are found to be statistically significant. We also evaluate the differences

between the confidentiality model and the integrity model using the Likelihood Ratio

Test (LRT) (Hosmer and Lemeshow 1999) by creating nested models with the base

model. In other words, we tested whether the two models show statistically different

model fits. The chi-square value of the LRT test is found as 0.2117 for the confidentiality

model and 2.2118 for the integrity model with 1 degree of freedom, resulting in a p-value

> 0.10. The result of LRT tests indicates that there is no statistical difference in model fits

between the two models, so we decided to retain both the confidentiality and integrity

models.

Even after resolving the multicollinearity problem with the confidentiality model

and the integrity model, availability impact is still not found to be statistically significant

although all other independent variables are. This led us to analyze the interaction terms

that are missing in the models, since availability impact may not be observable by itself

due to the interaction effect with other variables. We use backward stepwise regression

starting with all two-way interactions in order to reach a final model, in which the

interaction of availability impact with software vendor type is found significant. We

7 The chi-square value of the LRT test for the confidentiality model, which is the difference between Chi-

square statistics of two models, is calculated as follows: (0.211 = 576.41 – 576.20)
8 The chi-square value of the LRT test for the integrity model, which is the difference between Chi-square

statistics of two models, is calculated as follows: (2.211 = 576.41 – 574.20)

43

analyzed the vulnerability data set after including the interaction between software

vendor type and availability impact. The Chi-square statistics is 591.349 for the

confidentiality model and 589.3910 for the integrity model with 10 degrees of freedom,

resulting in a p-value < 0.0001. Hence, we conclude that our revised models (with the

interaction between software vendor type and availability impact) are statistically

significant. The results are shown in Table 6.

TABLE 6: Model Results (Dependent Variable: Patch Release Time, N=722)

 Confidentiality Model Integrity Model
Variables Hazard Ratio Coefficients Hazard Ratio Coefficients
Disclosure 2.935 *** 1.077 3.028 *** 1.108
Multiple Patches 1.371 *** 0.316 1.373 *** 0.317
Confidentiality 1.301 *** 0.263 - -
Integrity - - 1.278 *** 0.245
Availability 0.642 *** -0.443 0.685 *** -0.379
Patch Type 0.672 *** -0.397 0.677 *** -0.390
Vendor Type 5.064 *** 1.622 5.350 *** 1.677
Software Type 1.485 *** 0.396 1.468 *** 0.384
Multiple Vendor 1.643 *** 0.497 1.577 *** 0.455
Vendor Type x Time 0.679 *** -0.387 0.670 *** -0.400
Vendor Type x Availability 1.713 *** 0.538 1.712 *** 0.538
*Significant at 10% level, **Significant at 5% level, ***Significant at 1% level

We tested the robustness of our model by applying it on different data sets

different time periods. First, we changed the cutoff date from June 20, 2009 to June 20,

2008 and created one data set with 622 observations covering the period from June 21,

2006 to June 20, 2008. Then, we changed the beginning date from June 21, 2006 to

December 21, 2006, and created a second data set with 448 observations covering the

period from December 21, 2006 to June 20, 2009. Lastly, we created a third data set

9 The chi-square value of the LRT test for the confidentiality model is found as (-15.14 = 576.20 – 591.34)

with 1 degree of freedom, resulting in a p-value < 0.005. The result of LRT test indicates that this model
has the better fit.

10 The chi-square value of the LRT test is found as (-15.19 = 574.20 – 589.39) with 1 degree of freedom,
resulting in a p-value < 0.005. The result of LRT test indicates that this model has the better fit.

44

between December 21, 2006 and June 20, 2008 with 353 observations. The results from

the three data sets were not statistically different. In order for data sets to accurately

represent all years studied based on the number of vulnerabilities published in each year,

we used a stratified random sampling method, and created data sets with 216, 361, and

505 observations. We also found that the results from these three data sets were not

statistically different.

2.7.4. Results

The significance of the coefficient of each predictor is used to assess the support

for the relevant hypothesis. The hazard ratio (HR) for each predictor is computed using

the coefficients of the predictor and any other interactive terms involving the predictor. A

HR value greater than 1 for a predictor implies that an increase in the value of the

predictor will be associated with a quicker release of a patch by the vendor (positive

impact). A HR value less than 1 implies that an increase in the value of the predictor will

be associated with a slower release of the path (negative impact) and a HR value of 1

implies no effect of the predictor on the patch release time. The calculations of hazard

ratios for our model variables are presented in Appendix A. Although we created two

models (the confidentiality model and the integrity model), we use the confidentiality

model to explain our main results except when we explain the results regarding integrity

impact. The results show that vendor’s patch release behavior is affected by the

confidentiality impact score, integrity impact score, availability impact score, patch type,

software vendor type, software type, patch quality, and the presence of multiple vendors.

The result for disclosure (control variable in our model) is consistent with the results of

previous studies (Arora et al. 2010a) and show that vulnerabilities that are made public

45

are patched 2.93 times faster than those that are not made public (see Table A1 in

Appendix A).

Vendors release patches 1.30 times faster if the vulnerability’s confidentiality

impact score is 1 (partial) compared to vulnerabilities with no confidentiality impact. For

vulnerabilities with a confidentiality impact score of 2 (complete), the patches are

released 1.69 times faster compared to vulnerabilities with no confidentiality impact (see

Table A3 in Appendix A). Therefore, our hypothesis H1 is supported.

The integrity model shows that vendors release patches 1.28 times faster if the

vulnerability’s integrity impact score is 1 (partial) compared to vulnerabilities with no

integrity impact. For vulnerabilities with a integrity impact score of 2 (complete), the

patches are released 1.63 times faster compared to vulnerabilities with no integrity impact

(see Table A4 in Appendix A). Therefore, our hypothesis H2 is supported.

Confidentiality and integrity have statistically similar impacts on the patch release

time because the VIFs and Pearson Correlation analyses show high correlation between

confidentiality and integrity. Thus, they are the most serious vulnerability characteristics

that significantly affect the patch release behavior of vendors by decreasing the patch

release time. Hence, H5 is supported, and H4 is partially supported.

The model indicates that availability impact has an interaction with software

vendor type. When we consider software vendor type, the impact of availability score on

the patch release behavior is different for proprietary vendors and open source software

(OSS) vendors. Vulnerabilities are patched 1.10 times faster by OSS vendors if

availability impact is partial compared to no availability impact and 1.21 times faster if

availability impact is complete (see Table A5 in Appendix A). Higher availability impact,

46

therefore, decreases the patch release time of OSS vendors. In contrast, proprietary

vendors release patches slower (0.64 times slower if availability impact is partial

compared to no availability impact and 0.41 times slower if availability impact is

complete) (see Table A5 in Appendix A). Higher availability impact, therefore, increases

the patch release time of proprietary vendors. The patch release behavior of proprietary

vendors seems contrary to our expectations. One possible explanation is that proprietary

vendors prioritize the patching needs for availability impacts differently compared to

OSS vendors. Proprietary vendors may expect that vulnerabilities with availability

impacts could be countered sooner by customer actions such as backup, redundant sites

and other means without having to wait for proprietary vendor’s patch release cycle. It

could also be that the internalization of social cost in the absence of significant legislation

affecting availability (in contrast to confidentiality) is different for PS vendors compared

to OSS vendors. In other words PS vendors could view the components of social cost

(e.g., loss of reputation, loss of future business, and customer support costs) differently

compared to OSS vendors. This is an interesting issue that merits further research.

Vulnerabilities are patched 0.67 times slower if patch type is new release (see

Table A6 in Appendix A). In other words, vulnerabilities are patched 1.49 times (i.e.,

1/0.67 times) faster if patch type is update. An update type of patch, therefore, is patched

faster than a new release type of patches. Thus, H6 is supported.

Vulnerabilities pertaining to system software are patched 1.49 times faster than

vulnerabilities belonging to application software (see Table A7 in Appendix A) and,

hence, H8 is supported. The results show that software vendors’ response to

47

vulnerabilities belonging to different types of software is affected by the level of access

to and control of data resources, and a software interface provided by software.

Software vendors release lower quality patches 1.37 times faster than higher

quality patches (see Table A8 in Appendix A). Thus, H9 is supported. The results show

that software vendors may choose to release lower patch quality to incur less

development cost and also to reduce the potential customer loss by the early release of

patches, even though of low quality.

Vulnerabilities affecting multiple vendors are patched 1.64 times faster than

vulnerabilities affecting single vendor (see Table A2 in Appendix A). Thus, H10 is

supported. Vendor’s patch release decision is affected by the presence of other vendors’

products with the same vulnerability, and the possibility that other vendors release a

patch earlier. The underlying incentive of software vendors to release a patch earlier

could avoid the threat of disclosure and customers' penalty on late patching.

The model indicates that software vendor type has interaction with availability

impact. It has also an interaction with time. When availability impact is none, we found

that OSS vendors release patches 3.44 times faster than proprietary vendors (see Table

A9 in Appendix A). When availability impact is partial, we found that OSS vendors

release patches 5.89 times faster than proprietary vendors (see Table A9 in Appendix A).

When availability impact is complete, we found that OSS vendors release patches 10.10

times faster than proprietary vendors (see Table A9 in Appendix A). Although the patch

release time of software vendors is changed based on availability impact, the results show

that OSS vendors always release patches faster than proprietary vendors, thus H7 is

supported.

48

2.8. Discussion and Conclusion

Studying the patch release behaviors of software vendors is an emerging research

area with important policy implications. However, research in this area is just beginning

to emerge, with one recent pioneering empirical study (Arora et al. 2010a). This paper

both reinforces and adds to prior research (Arora et al. 2010a) by studying a proportional

hazard model of patch release behavior. A major contribution of this paper is the fact that

it highlights differential effects of confidentiality and availability impacts, and integrity

and availability impacts on vendor patch release behavior. It also points to the possible

importance of legislation as a means of influencing vendor patch release behavior.

The model presented in the previous sections addresses a call in prior research

(Arora et al. 2010a) for models with more comprehensive sets of variables to explain

software vendor patch release behavior. We have developed a model using cost-based

theory that includes development cost as well as internalization of social cost in the

presence of governmental action. Such a theory allows us to study different types of

vulnerabilities and their impact on vendor patch release behavior. The results presented in

the previous section, reinforce prior results and, in addition, provide new results with

important implications for policy and future research. We find that the impacts of

vulnerability severity, vendor type (open source or proprietary vendor), software type

(system or application software), and patch quality on patch release behavior are

consistent with prior research (Arora et al. 2010a). Our results also illustrate that

vulnerabilities that impact multiple vendors are patched faster than vulnerabilities that

impact single vendors, thus reinforcing the value of competition (Arora et al. 2010b,

Cavusoglu et al. 2007). Our results point to differential impacts of different types of

49

vulnerabilities on patch release behavior. We find that vulnerabilities that have high

confidentiality impact or high integrity impact are patched fastest. Given that

confidentiality impact and integrity impact are governed by legislation, our results have

important policy implications and illustrate that legislation could influence vendor

behavior in a socially optimal manner.

Though our results are interesting and represent a significant addition to

vulnerability disclosure research, additional research opportunities exist to use other

methodologies such as survey research. It is important to recognize the limitations of

CVSS. The CVSS mainly consists of three metric groups: 1) the base metrics which

describe the vulnerability characteristics that are constant over time and across user

environments, 2) the temporal metrics which describe vulnerability attributes that change

over time but are the same across user environments, and 3) the environmental metrics

which describe vulnerability attributes that are user environment specific. The base

metrics is mandatory and the CVSS score is calculated based on the values of base

metrics. However, the temporal and environmental metrics are optional and are not

reported by the FIRST. The CVSS score can be expanded by the combination with the

other two optional metrics. It is possible that differential impact of different types of

vulnerability could be accentuated due to the optional metrics.

Although the temporal and environmental metrics are not in the scope of this

study, the impact of environmental metrics on the results of this study should be

considered. Mell and Scarfone (2007) argued that the proper implementation of the

CVSS score is environment dependent. This view is consistent with the idea put forth by

Frühwirth and Männistö (2009). They argued that the actual impact of software

50

vulnerabilities may vary across different types of user environments. In particular, this

limitation of the CVSS may have an impact on the actual interpretation of availability

impact since losing the availability of information systems is often caused by DOS

attacks. The availability may be more important to some organizations (e.g.,

amazon.com) for business continuity, but less important to other organizations or

individual users. On the other hand, this limitation is not easily addressed due to the

difficulty of collecting environment-specific information. In our study, we assume that

vendors do not target the particular type of user groups with the release of patches for

their products.

CHAPTER 3: STRUCTURAL DIFFERENCES BETWEEN DIFFERENT TYPES OF
OPEN SOURCE SOFTWARE NETWORKS

3.1. Introduction

Traditionally, software has been developed by organizations that do not make the

source code of software publicly available. In the traditional software development,

software developers have worked in local clusters of collaboration that were generally

isolated within firms (Fleming and Marx 2006). More recently, open source software

(OSS) development has become the alternative way of developing software. OSS

development has brought together software developers spanning firm boundaries

(Raymond 1999). OSS development mainly depends on voluntary contributions of

software developers and OSS products are developed in a collective manner beyond the

boundaries of a single organization (Raymond 1999). Thus, formerly isolated software

developers have become large connected networks in OSS development. The network of

software developers becomes more important for OSS projects and offers various

benefits. First, collaboration among software developers can facilitate access to and

sharing of resources, allowing developers to combine their knowledge, skills, and

expertise (Raymond 1999).

52

Second, new insights, ideas or ways to solve problems are conceived by any one and

accessed by others (Raymond 1999). Thus, OSS development has changed the

conception of how software can be developed. However, not all software projects are

completed successfully (Li et al. 2010). Understanding the factors that lead to successful

OSS projects is an interesting area of current research. OSS development offers new

research opportunities to better understand the network structure of OSS developers.

Software product after delivery is improved by correcting faults or enhanced by

adding new features based on user requirements (Banker and Slaughter 2000, Banker et

al. 1998, IEEE 1983). The total cost of software maintenance is estimated to comprise at

least 50% of total software life cycle costs (Van Vliet 2000, Kemerer and Slaughter 1999,

Kemerer 1995). Thus, the modification of software after delivery is one of the major

phases of software development. In software maintenance, we identified two important

types of OSS project activities: patch development and feature request. Patch

development activities are used to correct faults in software while feature request

activities are used to enhance software by adding new features. Recent research on OSS

development focused on the analysis of OSS requirements and used feature request

activities in their analysis (Vlas and Robinson 2012). Software is defined as a knowledge

product (Slaughter et al. 2006) and critical inputs to software development are skills and

experience of developers (Li et al. 2010). Therefore, each activity requires different

structure of collaboration and knowledge sharing among the developers since each

activity has different objectives.

In an organizational context, exploitation and exploration have been identified as

two types of activities for the development and use of knowledge in organizations (March

53

1991). Prior research indicates that different types of tasks require different

communication patterns and different amount of communication based on characteristics

and nature of a task (Katz and Tushman 1979). A task can differ along several

dimensions including time span, specific vs. general problem orientation, and the

generation of new knowledge vs. using existing knowledge (Katz and Tushman 1979).

March (1991) has suggested that exploitation and exploration represent fundamentally

incompatible and inconsistent activities. For example, exploitation represents activities

that improve existing organizational competencies and build on the existing technological

trajectory. Therefore, exploitation broadens existing knowledge and skills, improves

established designs, and expands existing products and services. In contrast, exploration

represents activities that changes the organizational competencies and build on a different

technological trajectory. Therefore, exploration requires new knowledge, offers new

designs, and creates new products and services. In addition, exploitation is related to

efficiency, centralization, and tight cultures while exploration is associated with

flexibility, decentralization, and loose cultures (Benner and Tushman 2003). Therefore,

exploitation and exploration require different organizational structures (Benner and

Tushman 2003, Levinthal and March 1993). Different organizational structures for

exploitation and exploration enable exploitative teams to develop the best viable

solutions, and enable exploratory teams to explore new ideas (Fang et al. 2010).

Recent research on OSS development has focused on the project level (Singh et

al. 2011, Singh 2010, Singh et al. 2007, Grewal et al. 2006). However, this stream of

research has not recognized the fact that projects could consist of different types of

activities, each of which could require different types of expertise and network structures.

54

Developers who engage in project activities that are exploitation-oriented may be

networked differently compared to those who are engaged in exploration-oriented project

activities. Therefore, recent research on OSS development has not differentiated between

different types of OSS activities nor between different types of OSS networks. We

propose that OSS project activities can be classified as implementation-oriented

(exploitation) and innovation-oriented (exploration) based on organizational theory

(March 1991). In the context of OSS development, developing a patch would be an

example of an exploitation activity. Requesting a new software feature would be an

example of an exploration activity. To the best of our knowledge, this is the first research

to study OSS development at the activity level.

In this dissertation, we introduce the use of organizational theory on exploration

and exploitation together with social network analysis as a theoretical lens to study

different types of sub-networks in OSS development. Thus, we studied exploitation and

exploration in the content of OSS development. We empirically examined the differences

between exploitation (patch development) and exploration (feature request) networks of

developers in OSS projects in terms of their social network structure. We used a data set

collected from the SourceForge database. Our results indicate that a patch development

network has greater internal cohesion and network centrality than a feature request

network. In contrast, a feature request network has greater external connectivity than a

patch development network.

3.2. Literature Review

There are multiple streams of research that help us to understand the structural

differences of OSS networks. A software product after delivery is improved by correcting

55

faults or enhanced by adding new features based on user requirements (Banker and

Slaughter 2000, Banker et al. 1998, IEEE 1983). Thus, in software maintenance, we

identified two important types of OSS project activities: patch development and feature

request. Software is a knowledge product (Slaughter et al. 2006) and critical inputs to

software development are skills and experience of developers (Li et al. 2010). Therefore,

each activity requires different structure of collaboration and knowledge sharing among

the developers since each activity has different objectives. Recent studies on social

network literature indicated that network structures determine the structure of

collaboration and knowledge sharing among actors.

In an organizational context, exploitation and exploration have been identified as

two types of activities for the development and use of knowledge in organizations (March

1991). Prior research indicates that different types of tasks require different

communication patterns and different amount of communication based on characteristics

and nature of a task (Katz and Tushman 1979). March (1991) has suggested that

exploitation and exploration represent fundamentally incompatible and inconsistent

activities. Exploitation creates a narrow range of deeper solutions and more distinctive

competences since exploitation results in the convergence of ideas (March 1991). In

contrast, exploration creates a wide range of undeveloped new ideas and limited

distinctive competence (March 1991). Therefore, exploitation and exploration require

different organizational structures.

3.2.1. Open Source Software Development

Software maintenance is defined as the modification of a software product after

delivery to correct faults, to improve performance or other attributes, and to enhance the

56

product by adapting it to a modified environment (Banker and Slaughter 2000, Banker et

al. 1998, IEEE 1983). Thus, a software product is improved by correcting faults or

enhanced by adding new features based on user requirements.

Raymond (1999) indicated that the different nature of software development

process for proprietary and OSS vendors leads to two fundamentally different software

development styles: the cathedral model for proprietary vendors and the bazaar model for

OSS vendors (Raymond 1999). Software development involves knowledge work and its

most important resource is the specialized skills and expertise that a developer brings to

the project development (Espinosa et al. 2007, Roberts et al. 2004, Faraj and Sproull

2000). Proprietary software is developed in a more closed environment and, hence,

proprietary software development is characterized by a relatively strong control of design

and implementation (Raymond 1999). In contrast, OSS vendors mainly depend on

voluntary contributions of software developers and, hence, OSS products are developed

in the collective manner beyond the boundaries of a single organization (Raymond 1999).

Therefore, OSS development depends on contributions and collaboration of volunteer

software developers (Liu and Iyer 2007, Feller and Fitzgerald 2002). The network of

developers becomes more important for OSS projects and offers various benefits. First,

collaboration among software developers can facilitate access to and sharing of resources,

allowing developers to combine their knowledge, skills, and expertise. Second, new

insights, ideas or ways to solve problems are conceived by any one and accessed by

others. This leads to increase the performance of developer teams to find a solution for

developing patches or to add new features.

57

Given the benefits of voluntary contributions of software developers for OSS

development, the impact of network structure of OSS developer network (Singh et al.

2011, Singh 2010, Grewal et al. 2006) and the formation of OSS developer teams (Hahn

et al. 2008) have been intensively studied. Recent studies showed that the network

structure of OSS developers significantly affects OSS project success (Singh et al. 2011,

Singh 2010, Grewal et al. 2006).

3.2.2. Open Source Software Collaboration Network

In social network literature, an affiliation network is a special kind of network

which depends on the affiliation between two groups (Wasserman and Faust 1994).

Therefore, an affiliation network has two-modes. The first mode is a set of actors such as

developers. The second mode is a set of events such as OSS activities to which the actors

belong. The term affiliation refers to membership or participation to events. Therefore,

actors are related to each other through their joint affiliation with or their co-membership

to events. Events are also related to each other through common actor(s).

OSS software development is a community-based model which involves

collaboration among software developers. OSS developers may work on multiple

activities concurrently. An activity starts when a developer open new activity under a

project. Other developers may join and start participating to an activity. An activity is

performed by developers who joined to that activity. Thus, OSS developers belong to

multiple activities. A co-membership relationship exists between two developers if they

work together on the same activity. Similarly, a relationship between two activities also

exists if they share some developer(s). This kind of relationships between developers and

activities can be represented by an affiliation network. In OSS network, actors are

58

developers, and events are activities such as patch development and feature request

activities.

3.2.3. Exploitation and Exploration Networks

March (1991) modeled two general situations involving the development and use

of knowledge in organizations: the exploitation of old certainties and the exploration of

new possibilities. The first is the case of mutual learning between members of an

organization. The second is the case of learning and competitive advantage in

competition for primacy. Exploitation includes things such as refinement, choice,

production, efficiency, selection, implementation, and execution (March 1991). In

contrary, exploration includes things captured by terms such as search, variation, risk

taking, experimentation, play, flexibility, discovery, and innovation (March 1991).

According to Benner and Tushman (2003), exploitation represents activities that involve

improvements in existing components and build on the existing technological trajectory.

Exploitation is incremental innovations and designed to meet the needs of existing

customers or markets (Benner and Tushman 2003). It broadens existing knowledge and

skills, improves established designs, and expands existing products and services. Hence,

exploitation builds on existing knowledge and reinforces existing skills, processes, and

structures (Benner and Tushman 2002, Levinthal and March 1993, Lewin et al. 1999). In

contrast, exploration represents activities that involve a shift to a different technological

trajectory and changes the organizational competencies. Exploration is radical

innovations and designed to meet the needs of emerging customers or markets (Benner

and Tushman 2003). It offers new designs, creates new markets. Thus, exploration

59

requires new knowledge or departures from existing knowledge (Benner and Tushman

2002, Levinthal and March 1993).

For March (1991), exploitation and exploration represent the fundamentally

incompatible and inconsistent activities. Exploitation creates a narrow range of deeper

solutions and more distinctive competences in the short-run, which comes at the cost of

long-term performance since exploitation results in the convergence of ideas by

eliminating the differences (March 1991). In contrary, exploration creates a wide range of

undeveloped new ideas and too little distinctive competence in the long-term, which

comes at the cost of short-term performance (March 1991). Moreover, exploitation is

related to efficiency, centralization, and tight cultures while exploration is associated with

flexibility, decentralization, and loose cultures (Benner and Tushman 2003). Therefore,

exploitation and exploration require different organizational structures (Benner and

Tushman 2003, Levinthal and March 1993). Different organizational structures for

exploitation and exploration enable exploitative teams to develop the best viable

solutions, and enable exploratory teams to explore new ideas (Fang et al. 2010). Recent

studies found that organizational units pursuing exploration are smaller, more

decentralized, and more flexible than those responsible for exploitation (Benner and

Tushman 2003, Christensen 1998, Tushman and O’Reilly 1996).

3.2.4. Social Network and Team Structure

Software development is a highly interdependent task and requires team members

to interact with each other intensively to produce a successful system (He et al. 2007).

Therefore, interactions among team members are necessary activities to transform team

members’ knowledge to team knowledge that increase the project success (He et al.

60

2007). However, the nature of OSS development characterized by volunteer contribution

of software developers poses challenges in coordination among developers (Espinosa et

al. 2007, Roberts et al. 2004, Banker et al. 2006). Coordination is the process of

managing dependencies among activities (Malone and Crowston 1994). When the

activities of multiple individuals need to interrelate, the interdependencies among

activities should be well managed (Espinosa et al. 2007). Espinosa et al. (2007) indicated

that when software is produced from multiple locations, it becomes more difficult to

manage dependencies among activities and to coordinate developers, which increases the

development time. Therefore, the coordination among developers becomes important for

project success in software development.

He et al. (2007) created a model of the formation and evolution of team cognition

and analyzed the impacts of preexistent and ongoing collaboration ties on the formation

of team cognition in software project teams. Team cognition refers to the mental models

collectively held by a group of individuals that enable them to accomplish tasks by acting

as a coordinated unit (He et al. 2007). Team cognition helps software project teams

effectively manage their members’ knowledge, expertise, and skills as integrated assets

(He et al. 2007, Espinosa et al. 2007). Team cognition is created by both preexisting

conditions and ongoing team interactions. Preexisting conditions reflect both the prior

knowledge of team members and any previous shared experiences that team members

have. Team interactions refer to the interactive activities that members perform to carry

out project tasks and facilitate team performance. He et al. (2007) showed that the

positive relationship between team performance and team cognition. Similarly, Hahn et

al. (2008) studied the impact of prior collaboration ties on OSS collaboration team

61

formation mechanisms and on OSS project success. They indicated that team cohesion is

related to preference for repeat collaborations and results from prior relationships

between developers to benefit from prior relationships. Team members also tend to

interact more frequently with other members with whom they share some type of

proximity or similarity (Rosenkopf and Almeida 2003, Rosenkopf and Nerkar 2001).

In social network literature, social capital is defined as resources embedded in

social networks, and resources that can be accessed or mobilized through social ties in the

networks (Coleman 1988, Lin 2005). Through social ties, an actor may capture other

actors’ resources. These social resources can generate a return for the actor. In addition,

because of the facilitative role of network structure, relationships among actors in a

network are described as network resources (Gulati 1999). Recent studies also indicated

that the position of a team in a network affects team outcomes (Singh et al. 2011, Singh

2010, Zaheer and Bell 2005, Reagans and Zuckerman 2001, Jansen et al. 2006, Schilling

and Phelps 2007, Rosenkopf and Almeida 2003, Rosenkopf and Nerkar 2001).

In social network literature, there are two contradictory perspectives about the

form of network structures: the internal focus or social closure perspective (Coleman

1988) and the external focus or structural holes perspective (Burt 1992). From Coleman

(1988)’s social closure perspective, the optimal social structure is one generated by

building dense, interconnected networks. Social closure inside a group indicates the

presence of relationships or the absence of structural holes within a group, and is thought

to foster identification with the group (Reagans and Zuckerman 2001) and a level of

mutual trust, which facilitates exchange and collective action (Coleman 1988). Social

closure enables the convergence of individual interests to pursuit common initiatives and

62

to facilitate mutual coordination (Reagans and Zuckerman 2001). From Burt (1992)’s

structural holes perspective, constructing networks consisting of disconnected alters is the

optimal strategy. Structural holes perspective focuses value derived from bridging gaps

(i.e., structural holes) between nodes in a social network (Burt 1992). This boundary

spanning structure generates information benefits since information tends to be relatively

redundant within a given group (Burt 1992). As a result, actors who develop ties with

disconnected groups gain access to a broader range of ideas and opportunities than those

who have restricted access to single group (Granovetter 1973). Although prior research

on social network analysis indicated the trade-off between two contradictory

perspectives, these two perspectives do not conflict with one another (Reagans and

Zuckerman 2001). While the social closure perspective highlights the importance of the

presence of relationships in local interactions (i.e., internal cohesion), the external focus

perspective highlights information benefits created by structural holes that divide a social

network globally (i.e., external cohesion).

Ahuja (2000) studied the impact of social network structures on innovation in

terms of direct ties, indirect ties, and structural holes. The debate on structural holes

suggests that an accurate understanding of the role of structural holes in the collaboration

network must account for both Coleman's and Burt's variants of the argument (Ahuja

2000). Similarly, direct and indirect ties may vary in their content, which highlights the

importance of decomposing the firm's ego network into distinct and separate elements

and identifying the contents transmitted through each type of tie (Ahuja 2000). According

to Ahuja (2000), network ties are associated with two distinct kinds of network benefits.

First, they can provide the benefit of resource sharing, allowing firms to combine

63

knowledge, and skills. Second, collaborative linkages can provide access to knowledge

spillovers, serving as information conduits through which news of technical

breakthroughs, new insights to problems, or failed approaches travels from one firm to

another. In distinguishing between the resource-sharing and knowledge-spillover benefits

of collaboration, it is important to distinguish between know-how and information (Kogut

and Zander 1992). Know-how entails accumulated skills and expertise in some activity.

Information refers primarily to facts that can be transmitted through communication

(Kogut and Zander 1992, Szulanski 1996). The resource-sharing benefits of collaboration

relate primarily to the transfer and sharing of know-how while the knowledge-spillover

benefits are likely to involve predominantly information. Ahuja (2000) found that direct

and indirect ties both have a positive impact on innovation but that the impact of indirect

ties is moderated by the number of a firm's direct ties. Direct ties potentially provide both

resource sharing and knowledge spillover benefits. However, indirect ties do not entail

formal resource sharing benefits but can provide access to knowledge spillovers.

Structural holes influence both resource sharing and access to novel information (Ahuja

2000). Structural holes have both positive and negative influences on innovation.

Specifically, increasing structural holes has a negative effect on innovation, so the

optimal structure of networks depends on the objectives of the network members.

Zaheer and Bell (2005) examined the impact of the network structure on the

performance and innovativeness of companies by focusing on the external connectivity

constructed as structural holes. They highlight the importance of connections to external

sources for innovativeness. Zaheer and Bell (2005) found that firms bridging structural

holes are more innovative and perform better than other firms. They also indicated that

64

the internal connectiveness enables firms to further exploit the ideas obtained from

external resources.

Jansen et al. (2006) focused on the differences of exploration and exploitation,

and examined the impact of internal cohesion and centralization on exploitation and

exploration. They found that internal connectedness within teams positively affects the

performance of exploitation and exploration teams while centralization negatively affects

exploration teams. However, Balkundi and Harrison (2006) indicated that teams that are

central in their inter-group network tend to perform better.

Schilling and Phelps (2007) examined the impact of clustering on the innovative

output of firms that are members of the network. Innovation is characterized as a process

in which solutions are discovered via search process that leads to the creation of new

knowledge or the novel recombination of known elements of knowledge, problems, or

solutions (Fleming 2001). Schilling and Phelps (2007) indicated the positive association

between clustering and innovation output.

Rosenkopf and Nerkar (2001) studied the impact of organization and technology

domain on subsequent technological development. They stressed the importance of

knowledge internally acquired from the similar technology domains on exploitation, and

the importance of knowledge externally acquired from the distinct technology domains

on exploration. In other words, organizations can develop more distinctive competence

and becomes more expert in their current domain if they focus on their current

organizational domain and the similar technological areas. Distinctive competences can

improve the performance of developer teams on exploitation (March 1991, Rosenkopf

and Nerkar 2001). In contrast, organizations can develop more diverse and less

65

distinctive competence if they focus on their external organizational domain and the

distinct technological areas. More diverse and less distinctive competence can improve

the performance of developer teams on exploration (March 1991, Rosenkopf and Nerkar

2001). Lazer and Friedman (2007) on their agent-based simulation model of information

sharing found that a network that maintains diversity is better for exploration than other

networks, supporting a more thorough search for solutions in the long run.

Social network analysis (Wasserman and Faust 1994) has been used in a variety

of contexts to study the relationship between social entities. Based on the findings of

social network research (Gnyawali and Madhavan 2001, Ahuja 2000, Uzzi 1999, Uzzi

1997, Uzzi 1996, Watts and Strogatz 1998, Krackhardt 1998, Wasserman and Faust

1994, Burt 1992, Coleman 1988, Freeman, 1979, Granovetter 1973), organizational

research (Schilling and Phelps 2007, Hansen 2002, Hansen 1999, Reagans and

Zuckerman 2001), and OSS development research (Singh et al. 2011, Singh 2010, Singh

et al. 2007, Grewal et al. 2006), structural properties of the networks are used to analyze

the network. Many structural properties of these networks could have multiple social

network measures. For example, there are different types of internal cohesion measures

(clustering coefficient, repeat ties, third party ties, and structural equivalence), external

connectivity measures (external cohesion, direct ties, indirect ties, and technological

diversity), and network location measures (degree centrality, betweenness centrality, and

closeness centrality).

3.3. Theoretical Background and Hypotheses

In software development literature, software product after delivery is improved by

correcting faults or enhanced by adding new features based on user requirements (Banker

66

and Slaughter 2000, Banker et al. 1998, IEEE 1983). Therefore, we identified two types

of OSS project activities: patch development and feature request. Patch development

activities are used to correct faults in software while feature request activities are used to

enhance software by adding new features. In organizational literature, exploitation and

exploration have been identified as two types of activities for the development and use of

knowledge in organizations (March 1991). Combining findings of organizational

literature and software development literature, we propose that OSS project activities can

be classified as implementation-oriented (exploitation) and innovation-oriented

(exploration). In the context of OSS development, developing a patch would be an

example of an exploitation activity. Requesting a new software feature would be an

example of an exploration activity.

Prior research indicates that different types of tasks require different

communication patterns and different amount of communication based on characteristics

and nature of a task (Katz and Tushman 1979). A task can differ along several

dimensions including time span, specific vs. general problem orientation, and the

generation of new knowledge vs. using existing knowledge (Katz and Tushman 1979).

This is consistent with the view of March (1991) who has suggested that exploitation and

exploration represent fundamentally incompatible and inconsistent activities. For

example, exploitation represents activities that improve existing organizational

competencies and build on the existing technological trajectory. Therefore, exploitation

broadens existing knowledge and skills, improves established designs, and expands

existing products and services. In contrast, exploration represents activities that changes

the organizational competencies and build on a different technological trajectory.

67

Therefore, exploration requires new knowledge, offers new designs, and creates new

products and services. In addition, exploitation is related to efficiency, centralization, and

tight cultures while exploration is associated with flexibility, decentralization, and loose

cultures (Benner and Tushman 2003). Therefore, exploitation and exploration require

different organizational structures (Benner and Tushman 2003, Levinthal and March

1993). Different organizational structures for exploitation and exploration enable

exploitative teams to develop the best viable solutions, and enable exploratory teams to

explore new ideas (Fang et al. 2010). In addition, software is a knowledge product

(Slaughter et al. 2006) and critical inputs to the software development are skills and

experience of developers (Li et al. 2010). Therefore, each project activity could require

different types of expertise and network structures. In this dissertation, we empirically

examined the differences between exploitation (patch development) and exploration

(feature request) networks of developers in OSS projects in terms of their social network

structure.

3.3.1. Internal Cohesion

OSS development mainly depends on voluntary contributions of software

developers and OSS products are developed in the collective manner (Raymond 1999).

OSS development process is characterized by the lack of a relatively strong control of

design and implementation (Raymond 1999) and the lack of face-to-face communication

(Singh et al. 2011). Therefore, OSS teams require constructive environment to foster

trust, reciprocity norms and shared identity, and to improve collaboration and cooperation

among developers (Singh et al. 2011).

68

Internal cohesion increases the information transmission capacity of a team

(Schilling and Phelps 2007). First, internal cohesion improves access to information since

the same information is available via multiple paths (Schilling and Phelps 2007).

Information introduced into a team will quickly reach other team members through

multiple paths. Multiple paths also enhance the fidelity of information received.

Developers can compare information received from multiple partners, helping them to

identify whether it is distorted or incomplete (Schilling and Phelps 2007). Second,

internal cohesion makes information exchange meaningful and useful (Schilling and

Phelps 2007). It can increase the dissemination of alternative interpretations of problems

and their potential solutions, deepening the shared understanding and stimulating

collective problem solving. Shared knowledge develops over time from prior familiarity

with the product being developed and team members (Espinosa et al. 2007, He et al.

2007). Shared knowledge improves coordination among team members because it

enables team members to develop more accurate explanations and expectations about

tasks and other team members (Espinosa et al. 2007) because prior interactions enable

developers to acquire information about skills and capabilities of other developers

(Granovetter 1985) and who knows what (Faraj and Sproull 2000). In addition, shared

knowledge of problems and solutions enhances further learning (Schilling and Phelps

2007). Third, internal cohesion can make developers more willing and able to improve

information exchange and cooperation among team members by fostering trust,

reciprocity norms, and shared identity (Coleman 1988, Uzzi and Spiro 2005, Adler and

Kwon 2002, Levin and Cross 2004, Hansen 1999, Ahuja 2000). Enhanced trust,

reciprocity norms, and shared identity results in a high level of cooperation and

69

collaboration by providing self-enforcing informal governance mechanisms (Schilling

and Phelps 2007). Fourth, internal cohesion fosters group identification which enables the

convergence of individual interests to pursuit common initiatives and to facilitate mutual

coordination (Reagans and Zuckerman 2001). Fifth, internal cohesion also helps

developers to develop team cognition which promote team coordination (Espinosa et al.

2007, He et al. 2007). Team cognition refers to the mental models collectively held by a

group of individuals that enable them to accomplish tasks by acting as a coordinated unit

(He et al. 2007). Thus, team cognition helps developer teams effectively manage team

members’ knowledge, expertise, and skills as integrated assets (He et al. 2007, Espinosa

et al. 2007).

Internal cohesion results in a high level of cooperation and collaboration among

team members. By improving the information transmission capacity of a team, it also

enables to exchange and integrate greater amounts of information and knowledge more

rapidly. Internal cohesion allows individuals to develop a deep understanding to further

refine and improve existing products, and processes (Rowley et al. 2000). However,

internal cohesion diffuses strong norms and establishes shared expectations (Uzzi 1997,

Rowley et al. 2000). Therefore, it reduces deviant behavior, limits search scope, and

increases selective perception of alternatives. Internal cohesion may results in the

homogenization of information within a team (Burt 1992, Granovetter 1973) and the

convergence of knowledge and ideas (Levinthal and March 1993). Therefore, internal

cohesion may limit access to alternative ways of thinking and novel information

(Nahapiet and Ghoshal 1998).

70

Patch development teams (exploitation teams) should be built on existing

knowledge and reinforces existing skills, processes, and structures (Benner and Tushman

2003, Levinthal and March 1993, Lewin et al. 1999). Patch development teams broadens

existing knowledge and skills, improves established designs, and expands existing

products and services (Benner and Tushman 2003). Rowley et al. (2000) indicated that

internal cohesion enables team members to develop a deep understanding to further refine

and improve existing products and processes. In contrast, feature request teams

(exploration teams) should be built upon diverse knowledge that resides outside of the

team (Rosenkopf and Nerkar 2001) and require new knowledge (Benner and Tushman

2002, Levinthal and March 1993). Therefore, feature request teams are required to

acquire more novel information from external resources than patch development teams.

Hence, internal cohesion is more likely to enhance patch development activities when

compared to feature request activities. We argue that the internal cohesion of patch

development teams is greater than the internal cohesion of feature request teams. This

leads us to the following hypothesis:

H1: The internal cohesion of patch development teams will be greater than the

internal cohesion of feature request teams.

3.3.2 External Connectivity

Although the internal cohesion of a project team provides various benefits in

terms of trust and information transmission capacity, project developers have access to

external resources from their relationships to other developers outside of a project team.

The structure and type of external relationships affect the ability of project developers to

acquire various types of information (Singh et al. 2011). By following prior research, we

71

focus on the external network structure (the cohesion of external connections), types of

external connections (direct ties and indirect ties) and technological characteristics of

external connections that affect the diversity of external knowledge available to a focal

project.

External connections are associated with two distinct kinds of information

benefits (Ahuja 2000). First, they can provide the benefit of resource sharing which

allows teams to combine knowledge, and skills acquired from outside teams. Second,

they can provide access to knowledge spillovers which serves as information conduits

through which news of technical breakthroughs, new insights to problems, or failed

approaches acquired from outside project teams. Although direct ties potentially provide

both resource sharing and knowledge spillover benefits (Ahuja 2000), they more likely

provide redundant information (Hansen 1999). However, indirect ties do not provide

resource sharing benefits but can provide access to knowledge spillovers. Therefore,

information provided by indirect ties is novel information (Hansen 1999). On the other

hand, external cohesion provides both resource sharing and knowledge spillovers benefits

(Ahuja 2000). Although how external contacts are connected with each other affects

types of information, the characteristics of the external contacts may also affect the

diversity of knowledge. External contacts with different technological expertise are more

likely to provide novel information and knowledge.

3.3.2.1 External Cohesion

External cohesion is the cohesion among the external contacts of a project (Singh

et al. 2011). External cohesion is based on the idea of a structural hole which means the

absence of a connection between two developers who are connected to the common third

72

parties. Therefore, structural holes are defined as gaps in information flows between

actors connected to the same actor but not directly connected to each other (Burt 2000). A

structural hole separates developers on either side of the hole and creates the brokerage

opportunities for those developers to obtain information from disconnected developers

(Burt 1992). Therefore, structural holes provide both resource sharing and knowledge

spillovers benefits (Granovetter 1973).

External cohesion basically measures the extent to which external contacts of a

project are connected to each other. If external contacts of a project are highly connected

with each other (high external cohesion or low structural holes), a project is highly

constrained to have access to novel information since too much cohesion results in

homogenization of information and external contacts of a project may have relatively

redundant information (Burt 2004, Burt 1992, Granovetter 1973). However, high external

cohesion also enhances trust, reciprocity norms, and shared identity (Coleman 1988, Uzzi

and Spiro 2005, Adler and Kwon 2002, Levin and Cross 2004). High external cohesion

also improves access to external resources by enhancing information transmission

capacity of the network since the same information is available via multiple paths

(Schilling and Phelps 2007). Multiple paths also enhance the fidelity of the information

received (Schilling and Phelps 2007). In contrast, if external contacts of a project are not

connected with each other (low external cohesion or high structural holes), a project have

access to novel information from remote parts of the network such as other disconnected

project groups (Burt 1992). Therefore, the level of cohesion among the external contacts

of a project determines the diversity of knowledge acquired from external contacts.

73

OSS network is made up of distinct developer teams in which developers are

highly connected with each other within each project team, but weakly connected to other

developers across other project teams (Singh 2010). Project teams tend to be

heterogeneous across a network in terms of the knowledge they possess and produce

because each team started with the different initial conditions (Fang et al. 2010).

Therefore, external resources provide new knowledge, ideas, and insights (Rosenkopf

and Almeida 2003).

Knowledge is developed through combinations of existing and new knowledge

(Kogut and Zander 1992). The process of sharing ideas with other projects that have

novel information is to generate new knowledge, rather than merely exchanging existing

information (Nahapiet and Ghoshal 1998). This idea is consistent with the idea put forth

by March (1994) that projects connected to other projects that have novel information

may replicate innovative ideas and generate more new ideas which can be used to

introduce new and innovative products. A project whose external contacts are not highly

connected has access to new knowledge, ideas, and insights from disconnected external

projects (Burt 2004, Burt 1992) and they are able to develop new knowledge through

knowledge recombination (Rosenkopf and Almeida 2003). Therefore, a project whose

external contacts are not highly connected is able to develop new understandings not

possible to those whose external contacts are highly connected (Zaheer and Bell 2005).

Combining diverse knowledge from other projects (different technology areas) also

enhances the capacity for creative learning (Fleming 2001, Kogut and Zander 1992,

Reagans and Zuckerman 2001). Feature request teams (exploration teams) should be built

upon diverse knowledge that resides outside of the team (Rosenkopf and Nerkar 2001)

74

and require new knowledge (Benner and Tushman 2002, Levinthal and March 1993).

Therefore, feature request teams are required to acquire more novel information from

external resources than patch development teams. In order to acquire more novel

information from external resources, external contacts of a project should be diversified

in terms of knowledge they hold, thereby they should not be highly connected (low

external cohesion). We argue that external contacts of patch development teams are more

connected with each other than external contacts of feature request teams. This leads us

to the following hypothesis:

H2: The external cohesion of patch development teams will be greater than the

external cohesion of feature request teams.

3.3.2.2. Direct Ties

Direct ties in a social network potentially provide both resource sharing and

knowledge spillover benefits (Ahuja 2000). First, direct ties enable knowledge sharing.

When developers collaborate to develop a technology, the resultant knowledge is

available to all developers. Thus, each developer can potentially receive a greater amount

of knowledge from a collaborative activity than it would obtain from a comparable

research investment made independently (Ahuja 2000). Second, collaboration facilitates

bringing together complementary skills from different developers. In addition, direct ties

among two developers imply opportunities for repeat interactions (Singh et al. 2011).

Repeat interactions allow for resource pooling and joint problem solving (Kogut and

Zander 1992). However, over time, repeated interactions using the same direct ties are

more likely provide redundant information to a focal team (Hansen 1999). Hence, the

knowledge spillover benefit which is important for feature request activities could

75

decrease over time. The resource sharing benefit which is important for patch

development activities is more likely greater than knowledge spillover benefit. Direct ties

allow developers to combine knowledge and skills using repeating interactions (Kogut

and Zander 1992). Repeated interactions through direct ties allow for resource pooling

and joint problem solving (Kogut and Zander 1992) which do not decrease due to

repeated interactions. Hence, repeated interactions through direct ties are more likely to

enhance patch development activities when compared to feature request activities. Since

direct ties are also expensive to maintain (Hansen 1999, Hansen 2002, Shane and Cable

2002), we argue that they are more likely to be maintained for repeated use. Therefore,

we argue that patch development teams have a large number of direct ties than feature

request teams. This leads us to the following hypothesis:

H3: The number of direct ties of patch development teams will be greater than the

number of direct ties of feature request teams.

3.3.2.3. Indirect Ties

External connection can be a channel of communication between developers

through indirect contacts (Ahuja 2000). An indirect tie between two developers exists

when two developers do not work together but can be reached through mutual partners.

Therefore, indirect ties provide developers with access not just to knowledge held by

their immediate partners but also to knowledge held by their partner's partners (Gulati

and Garguilo 1999). However, indirect ties are distant and infrequent relationships

(Granovetter 1973). Therefore, they are less likely to provide opportunities for repeat

interactions and they are not as conducive to resource pooling as direct ties (Singh et al.

2011). They provide access to novel information by bridging otherwise disconnected

76

developers (Granovetter 1973). Indirect ties can provide access to knowledge spillovers

(Ahuja 2000), serving as information conduits through which news of technical

breakthroughs, new insights to problems, or failed approaches travels from one developer

to another (Ahuja 2000). Information provided by indirect ties is more likely novel

information (Hansen 1999). Innovation is characterized as a process in which solutions

are discovered via the creation of new knowledge or the novel recombination of known

elements of knowledge, problems or solutions (Fleming 2001). Therefore, the knowledge

spillover benefit provided by indirect ties is more important for feature request activities.

Distant and infrequent interactions through indirect ties are more likely to enhance

feature request activities when compared to patch development activities. Therefore, we

argue that feature request teams have a large number of indirect ties than patch

development teams. This leads us to the following hypothesis:

H4: The number of indirect ties of feature request teams will be greater than the

number of indirect ties of patch development teams.

3.3.2.4. Technological Diversity

Although how external contacts are connected with each other affects types of

information, the characteristics of external contacts may also affect the diversity of

knowledge since they may vary in terms of technological areas (Rosenkopf and Nerkar

2001). External contacts in different technological areas are more likely to provide novel

information and knowledge (Fleming 2001, Kogut and Zander 1992).

Patch development and feature request teams enjoy an enhanced capacity for

creative learning since diverse ideas provide alternative ways of thinking, more options

for creating new combinations which enhance both problem solving (patch development

77

teams) and innovation (feature request teams) (Reagans and Zuckerman 2001). However,

patch development teams can be built upon similar technology to create distinctive

competence (March 1991, Rosenkopf and Nerkar 2001, Henderson and Cockburn 1994).

Patch development teams become more expert in their technology area (March 1991,

Rosenkopf and Nerkar 2001). Therefore, patch development teams can draw most of their

members from similar technology areas to create more distinctive competence. In

contrast, feature request teams can develop more diverse and less distinctive competence

if they focus on different technological areas. More diverse and less distinctive

competence enhances exploration (March 1991, Rosenkopf and Nerkar 2001). Therefore,

feature request teams can draw most of their members from different technology areas to

create diverse and less distinctive competence.

Rosenkopf and Nerkar (2001) stressed the importance of knowledge acquired

from similar technology areas for exploitation, and the importance of knowledge acquired

from distinct technology areas for exploration. In other words, patch development teams

can develop more distinctive competence and becomes more expert if they focus on their

technological areas or similar technological areas. In contrast, feature request teams can

develop more diverse and less distinctive competence if they focus on different

technological areas. Therefore, we argue that the technological diversity of feature

request teams is greater than the technological diversity of patch development teams.

This leads us to the following hypothesis:

H5: The technological diversity of feature request teams will be greater than the

technological diversity of patch development teams.

78

3.3.3. Network Location

Centrality is defined as the extent to which an actor occupies a central position in

the network (Wasserman and Faust 1994). Developers who are more active in the

network act as a central actor in the network and are viewed as major channels of

information in the network (Singh et al. 2011, Singh et al. 2007). High centrality enables

greater amounts of information and knowledge to be exchanged and integrated more

rapidly. First, high centrality allows developers to have a broad range of knowledge,

including an understanding where such knowledge is located and how to obtain it

(Hansen 2002), which is unavailable to peripheral developers (Lin et al. 2007). Central

developers occupy a structurally advantageous position to see a more complete picture of

all the alternatives available in the network than the peripheral developers, so they have a

broad range of opportunities unavailable to those in the periphery (Lin et al. 2007). A

central developer has access to unique knowledge, including an understanding where

such knowledge is located and how to obtain it (Hansen 2002). With such information,

centrality enables a developer to make better decisions (Balkundi and Harrison 2006).

Second, high centrality also allows developers to have quick access to knowledge in the

network (Uzzi 1997, Powell and Smith-Doerr 1994). High centrality also allows

developers to rapidly disseminate knowledge in the network (Powell and Smith-Doerr

1994). Third, high centrality allows developer to control (Wasserman and Faust 1994,

Pfeffer and Salancik 1978), and regulate information flow among other developers

(Wasserman and Faust 1994, Krackhardt 1996), dispensing what is needed to other team

members (Balkundi and Harrison 2006). Thus, high centrality enhances a developer’s

ability to be central to the flow of information and resources in the network.

79

High centrality may allow a developer to have access to greater amounts of

relatively redundant knowledge from their immediate contacts (Hansen 2002). Once

developers accumulate too much relatively redundant knowledge, they may tent to be

blinded to alternative opportunities over time, which leads to learning myopia (Levinthal

and March 1993). Central developers may have a tendency to have access to relatively

redundant information, which results in the convergence of knowledge and ideas, and

may incur the risks of learning myopia (Levinthal and March 1993). Therefore, centrality

may be associated with the acquisition of relatively redundant knowledge and experience,

which hinders the exploration of new ideas (Lin et al. 2007). Centrality also decreases the

likelihood that team members seek innovative and new solutions (Jansen et al. 2006,

Atuahene-Gima 2003). Therefore, we argue that centrality is more likely lower for

feature request teams. In contrast, Jansen et al. (2006) indicated that centralized authority

is beneficial to speeding up exploitation. Exploitation mainly depends on the existing

competence and processes, so it is limited in scope and newness (Jansen et al. 2006).

Therefore, we argue that the centrality of patch development teams is more likely greater

than the centrality of feature request teams. This leads us to the following hypothesis:

H6: The centrality of patch development teams will be greater than the centrality of

feature request teams.

3.4. Data

3.4.1. Data Sources and Collection

OSS network data required for this study has been collected from the SourceForge

database (SourceForge.net). The SourceForge database is the primary repository for OSS

projects and accounts for about 90% of all open source projects (Singh et al. 2011).

80

Although all OSS projects are not hosted at the SourgeForge database and there are other

OSS hosting websites such as BerliOS Developer and GNU Savannah, the SourgeForge

database is the largest OSS development and collaboration website (Xu et al 2005). It can

be considered as the most representative of the OSS community because the large

number of projects and developers registered the SourgeForge database (Singh et al.

2011, Grewal et al. 2006, Xu et al 2005). Researchers analyzing issues related to OSS

development phenomenon have predominantly used SourceForge data (Singh et al. 2011,

Singh 2010, Singh 2007, Grewal et al 2006). The SourceForge database provides storage

space and services to OSS projects in order to organize and coordinate software

development activities by providing project web servers, trackers, mailing lists,

discussion boards, and software releases (Xu et al 2005). This database contains software

for download as well as statistics related to OSS projects. Researchers can create database

programs to download statistics that are of interest.

Our research objective is to empirically illustrate the differences between

exploration (feature request) and exploitation (patch development) networks of

developers in OSS projects in terms of their social network structure. Therefore, we need

to collect affiliation network data in order to construct these networks. Given a set of

activities (patch development and feature request) and developers, there are two methods

to collect affiliation network data: Snowball method and Whole network method

(Hanneman and Riddle 2005). The whole network method yields maximum information,

but it can also be difficult to execute while the snowball method yields considerably less

information about network structure, but it is often less difficult to implement (Hanneman

and Riddle 2005).

81

The snowball method begins with a focal actor or set of actors. Then, all the

actors connected to a focal actor or set of actors are tracked down. The snowball process

continues until no new actors are identified, or a large enough number of observations is

collected for analysis. However, there are major potential limitations of the snowball

method (Hanneman and Riddle 2005). First, actors who are not connected (i.e. actors in

different components) are not reached through this method. The snowball method may

tend to overstate the connectedness and solidarity of populations of actors based on the

starting actors and their connectivity to other actors. Therefore, there is no guaranteed

way of finding all of the connected individuals in the population.

The whole network method requires that we collect information about each

developer's ties with all other developers. Because we collect information about ties

between all developer-activity pairs, full network data gives the complete picture of

relations in the population (Hanneman and Riddle 2005). Whole network data is

necessary to properly define and measure many of the structural concepts of network

analysis (Hanneman and Riddle 2005). Whole network data also allows for very powerful

descriptions and analyses of social structures (Hanneman and Riddle 2005). However,

whole network data may also be very difficult to collect. The data collection task is made

more manageable by determining an appropriate boundary around the network since the

whole network method examines actors that are regarded as bounded social collectives

(Marsden 2005, Singh et al. 2011). This is the predominant method used in situation

where an appropriate network boundary is established. Prior studies on OSS development

used software development platforms called project foundries as a network boundary.

Project foundries are mainly built on programming languages, thereby project foundry

82

and programming language are similar concepts. For example, Singh et al. (2011) used

participation in Python foundry (uses Python programming language) and Grewal et al.

(2006) used participation in Perl foundry (uses Perl programming language) as a network

boundary. However, foundry data associated with OSS projects was not available at the

SouceForce database after 2005. Therefore, there is no way for us to associate projects

with foundries.

We used the whole network method to collect affiliation network data and

selected the C programming language as a network boundary. The selection of the C

programming language as a network boundary is acceptable for several reasons. First, it

is the system implementation language for the UNIX operating system and UNIX/Linux

operating system is dominant in OSS community (Subramanian et al. 2009). Second, it is

one of the preferred languages of OSS developers for codes that require portability, need

faster processing, have real-time requirements, or are tightly coupled to the UNIX/Linux

kernel (Subramanian et al. 2009). Third, developers who are familiar with the

programming language are able to understand the source code easily (Subramanian et al.

2009), thereby more efficient knowledge sharing may be possible within a project or

across projects written in the same programming language. Fourth, we analyzed the

number of projects and associated developers across programming languages and found

that the C language is in the top three languages used by the large number of software

developers at SourgeForge.

Data collection started by identifying developer-activity pairs since OSS

developers may work on multiple projects simultaneously if they are members of

different artifact teams (either different patch development or feature request activities).

83

A relationship exists between any two developers if they are members of the same artifact

team and consequently work together on the same activity. These kinds of relationships

between developers and activities can be represented by an affiliation network

(Wasserman and Faust 1994). Affiliation data for activities and developers (associated

with projects) has been collected from the SourceForge database for projects registered

from January 1999 to December 2008 at the SourceForge website. We have set

December 2008 as a cutoff date for our study for several reasons. First, constructing

feature request and patch networks (developer affiliation networks for different feature

request and patches) and calculating a variety of social network measures are extremely

computation intensive especially for larger networks. We used social network software

(UCINET) (Borgatti et al. 2002) to perform calculations and wrote our own code when

required to construct networks as well as to perform some calculations. We analyzed the

number of developers for projects written in the C language for each year from 2003 to

2011. We found that networks (especially project developers’ network used in Chapter 4)

have large number of developers (≥15,000) after December 2008 as shown in Table 7.

This results in extremely large networks that are challenging to process with UCINET.

Second, the first data snapshot of the SourceForge database is available for January 2003.

The difference between our cutoff date and the first data snapshot date of the

SourceForge data is 5 years which provides sufficient variation in network

characteristics. Third, we had a concern for data availability of our dependent variables

(the number of versions) in Chapter 4 because the SourceForge database provides data

for our dependent variables until December 2008.

84

TABLE 7: Project Statistics across Years

Years Number of Projects Number of Developers
Jan 31, 2003 741 4,371
Dec 31, 2004 1,271 6,999
Dec 31, 2005 1,532 8,400
Dec 31, 2006 1,830 9,935
Dec 31, 2007 2,117 11,330
Dec 31, 2008 2,374 12,665
Dec 31, 2009 2,515 14,933
Dec 31, 2010 2,608 15,564
Dec 31, 2011 2,665 15,950

In order to identify developer-activity pairs, we identified all projects that match

following criteria. First, we included the projects which are written in the C language (our

network boundary). Second, we excluded projects which have neither patch nor feature

request activities in order to ensure the creation of developer-activity pairs. If a project

has neither patch nor feature request activities, that project does not yield a developer-

activity pair in our networks. This also ensures the calculation of project ambidexterity as

described in Chapter 4. Prior research also indicated that a large proportion of projects

hosted at the SourceForge database show no activity (Singh et al. 2011, Singh 2010,

Chengalur-Smith and Sidorova 2003). These projects would be dead nodes in the

network and the relationships involving them would not facilitate any knowledge

transfers or spillovers (Singh et al. 2011). Therefore, including such projects in the

network may lead to misleading results. Following prior research (Singh et al. 2011,

Singh 2010), we excluded those projects. If a project has neither patch nor feature request

activities, we considered those projects as inactive because we assume that they showed

no sign of activity since their inception until December 2008. For the projects that match

our criteria, we identified all patch development and feature request activities that have

been successfully closed by using their “Activity ID”, “Activity Descriptions” and

85

“Status”. Patch development activities are defined as activities to correct faults in

software (SourceForge.net). Feature request activities are defines as software

enhancement activities to add new features based on new user requirement

(SourceForge.net). Then, we identified the developers who joined to either patch

development or feature request activities. This allows us to collect separate affiliation

network data (developer-activity pairs) and construct separate affiliation networks for

projects for patch and feature request activities.

Based on the finding of organizational literature (Jansen et al. 2009, Gupta and

Govindarajan 2000), some developers are expected to be members of teams involved in

exploitative activities (patch development) and members of teams involved in exploratory

activities (feature request). Consistent with the finding of organizational literature, we

identified a new category of developers (ambidextrous developers) in OSS projects who

contribute to multiple types of OSS activities. Therefore, we identified three types of

developers in the OSS community: patch developers, feature request developers, and

ambidextrous developers. Patch developers are developers who work on patch

development activities while feature request developers are developers who work on

feature request activities. Ambidextrous developers are developers who are members of

patch development and feature request teams and consequently work on both patch

development and feature request activities simultaneously. Therefore, there is an

overlapping between patch developers and feature request developers and patch

development and feature request networks. Although the focus of this chapter is to

empirically illustrate the differences between exploration (feature request) and

86

exploitation (patch development) networks, we develop a theoretical construct for

ambidexterity based on the concept of ambidextrous developers in Chapter 4.

Two separate affiliation networks were constructed based on the type of activities:

a patch network, and a feature request network. A patch network includes developers

involved in patch development activities (patch developers and ambidextrous

developers). A feature request network includes developers involved in feature request

activities (feature request developers and ambidextrous developers).

3.4.2. Network Construction

OSS network data analyzed in this study is the affiliation data between developers

and activities. Social network of the OSS community is represented by an affiliation

network such as a two-mode network based on a developer-activity pair. However, in

order to analyze the structure of OSS networks, we need a one-mode network at the

developer level. Therefore, we construct a patch network of developer and a feature

request network of developer in two steps.

We construct separate affiliation networks for patch development activities and

feature request activities based on developer-activity pairs. In these affiliation networks,

the actors are unique developers, and the events are either patch development or feature

request activities. A relationship exists between two developers if they work together on

the same activity. Figure 3 illustrates the process of developer affiliation network

construction. In Figure 3a, each activity has its own set of developers. A square node

represents a unique activity and a circular node represents a unique developer. A link

between any two developers exists if they work on the same activity. Figure 3b shows the

developer network for individual activities. However, some developers (D5 and D10)

87

work on more than one activity simultaneously. Thus, they belong to more than one

activity team and they are used to connect the individual teams in the network as shown

in Figure 3c (which shows the affiliation network of developers across activities). In

Figure 3c, a node represents a unique developer. We construct two separate affiliation

networks of developers for patch development and feature request activities.

A binary adjacency matrix (the matrix A) of affiliation networks represents the

relationships between activities and developers in the network in Figure 4a. The

adjacency matrix of affiliation networks lists unique developers across multiple activities

for a patch network and a feature request network. A row represents developers, and a

column represents activities. When a developer belongs to an activity, the corresponding

matrix element gets a value of one, and zero otherwise. The transpose (the matrix AT) of

an adjacency matrix of affiliation networks represents the relationships between activities

and developers in the network in Figure 4b. A row represents activities, and a column

represents developers. We converted two-mode network data to one-mode network data

by multiplying an adjacency matrix (the matrix A) of affiliation networks with the dot

product of the transpose (the matrix AT) of an adjacency matrix of affiliation networks

expressed as follows:

Adjacency matrixes (the matrix XA) of a patch network and a feature request

network represent the relationships between any two developers in Figure 4c. The row

and the column represent unique developers. A value of one or more corresponding to the

pair of two developers in the network indicates a presence of a relationship between

them, and a value of zero indicates the absence of relationship. The adjacency matrix is

88

undirected because relationship among two developers is mutual. We converted all values

greater than one to one which simply indicates a presence of a relationship between two

developers. These final adjacency matrices are our final patch and feature request

networks which are used in our analysis. The final patch network includes 23,603

artifacts and 4,727 unique developers under 1,173 projects. The final feature request

network includes 31,504 artifacts and 6,656 unique developers under 1,892 projects.

FIGURE 3: OSS Network Construction at the Activity Level

89

A =

1 2 3
1

2

3

4

5

6

7

8

9

10

11

12

13

14

1 0 0

1 0 0

1 0 0

1 0 0

1 1 0

0 1 0

0 1 0

0 1 0

0 1 0

0 1 1

0 0 1

0 0 1

0 0 1

0 0 1

a) Two-Mode Adjacency Matrix of Activities and Developers

AT =

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1

b) Transpose of Two-Mode Adjacency Matrix of Activities and Developers

FIGURE 4: Matrix Representations of OSS Networks at the Activity Level

90

XA =

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1

2

3

4

5

6

7

8

9

10

11

12

13

14

1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 2 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 1 2 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1 1 1

c) One-Mode Adjacency Matrix of OSS Activities

FIGURE 4: Cont'd

3.5. Variable Definitions and Operationalization

OSS network data analyzed in this study is the affiliation network data of

developers at the artifact level. However, we aggregated data to the project level in order

to test our hypotheses because of following concerns. First, some projects have relatively

more artifacts while some projects have relatively few artifacts. In Table 8, the maximum

number of artifacts for projects is 2791 in patch development network and 862 in feature

request network while the minimum number of artifacts for projects is 1 in both patch

development network and feature request network. Second, artifacts under the same

project have almost the same set of developers. Therefore, most of the observations may

be the same at the artifact level. Therefore, OSS network data analyzed in this study is an

aggregated data at the project level to eliminate repeated observations.

91

TABLE 8: Descriptive Statistics for Patch and Feature Request Networks

 Patch Network FR Network
Number of Project 1,173 1,892
Artifact Level Statistics

Total Number of Artifact 23,603 31,504
Average Number Artifact per Project 20.12 16.65
StdDev of Number Artifact per Project 123.95 52.70
Min Number Artifact per Project 1 1
Max Number Artifact per Project 2791 862

Developer Level Statistics
Total Number of Developers 4,727 6,656
Number of Ambidextrous Developers 3,140 3,140
Number of Artifact Developers 1,587 3,516
Average Number of Developers per Project 4.37 3.73
StdDev of Number of Developers per Project 5.78 5.26
Min Number of Developers per Project 1 1
Max Number of Developers per Project 73 75

We aggregated the affiliation network data of developers to the project level in

four steps. First, we calculated social network measures for individual developers (i.e.

clustering coefficient, the number of direct ties) and developer pairs (i.e. the number of

repeat ties, the number of third party ties) in patch development and feature request

networks. These network measures are used to calculate variables. Second, we associated

developers to activities by using “Developer ID” and “Activity ID” from their

membership to activities. Third, we associated activities to projects by using “Activity

ID” and “Project ID”. This allowed us to associate developers to projects by creating

relationship between “Developer ID” and “Project ID”. Thus, we identified the set of

unique developers for each project. However, some developers work on multiple

activities under the same project. We ensured that those developers are represented only

one time under each project since we identified unique developers by removing their

multiple occurrences. Fourth, we calculated variables for each project from network

measures of project developers. The final data set for feature request activities includes

92

1,892 projects and 6,656 unique developers. The final data set for patch development

activities includes 1,173 projects and 4,727 unique developers.

Social network analysis (Wasserman and Faust 1994) has been used in a variety

of contexts to study the relationship between social entities. Structural properties of the

networks are used to analyze the network. Many structural properties of these networks

could have multiple social network measures. For example, there are different types of

internal cohesion measures (clustering coefficient, repeat ties, third party ties, and

structural equivalence), external connectivity measures (external cohesion, direct ties,

indirect ties, and technological diversity), and network location measures (degree

centrality, betweenness centrality, and closeness centrality). Consistent with previous

studies on social network research (Gnyawali and Madhavan 2001, Ahuja 2000, Uzzi

1999, Uzzi 1997, Uzzi 1996, Watts and Strogatz 1998, Krackhardt 1998, Wasserman and

Faust 1994, Burt 1992, Coleman 1988, Freeman, 1979, Granovetter 1973), organizational

research (Schilling and Phelps 2007, Hansen 2002, Hansen 1999, Reagans and

Zuckerman 2001), and OSS development research (Singh et al. 2011, Singh 2010, Singh

et al. 2007, Grewal et al. 2006), we categorized our social network variables into three

categories: internal cohesion, external connectivity, and network location. In the

following section, we describe our variables used in this study along with the

construction of their measures.

3.5.1. Internal Cohesion

We measured internal cohesion for a project with clustering coefficient, repeat

ties, third party ties, and structural equivalence (Jaccard similarity and correlation

similarity).

93

Clustering Coefficient: The clustering coefficient captures the degree to which the

overall network contains localized pockets of dense connectivity (Watts and Strogatz

1998, Watts 1999). The clustering coefficient mainly measures the extent to which two

related developers share a relationship with a common third.

We measured the clustering coefficient for a project by following Watts and

Strogatz (1998). For each project developer, we calculated the clustering coefficient (see

Appendix B for the calculation of clustering coefficient). We took an average of each

project developer’s clustering coefficient over all the project developers to calculate a

measure of the clustering coefficient for a project.

The clustering coefficient lies strictly in the range from 0 to 1. The value of 1

indicates that all developers in the network share a direct relationship with each other.

That means each developer is directly connected to all other developers in the network,

which results in extreme clustering. In contrast, the value of 0 indicates that any two

connected developers do not share a relationship with a common third. A high score of

the clustering coefficient indicates greater clustering.

Repeat Ties: Repeated collaboration among project members captures the strength

of interpersonal connections among team members (Uzzi 1996, Uzzi 1999, Singh et al.

2011). Strong interpersonal connections indicate the presence of repeat collaborations

among project members (Uzzi 1997). As developers interact more frequently, the

strength of the collaborative tie increases, and they develop more closer and cohesive

relationships (Granovetter 1973, Hansen 1999). Team members rely on repeated ties

developed through joint participation in past teams because they are motivated to

continue to work with those with whom they have collaborated in the past (Hahn et al.

94

2008). Repeated ties from past interactions may result in greater trust and knowledge for

developers (Uzzi and Spiro 2005).

We measured the number of repeated ties for a project by following Singh et al.

(2011). We counted the total number of projects on which each pair of project developers

have worked together. We divided this number by the total number of pairs that exist in a

project to calculate a measure of repeat ties for a project. A high score of repeat ties

indicates that project developers have worked together on several projects.

Third Party Ties: Third party ties support direct relationships and imply that a

project team is composed of developers who work with many of the same collaborators

(Szulanski 1996, Coleman 1988, Singh et al. 2011). Third part ties are important for the

existence of effective norms and the trustworthiness in social structures (Coleman 1988).

Similarly, the concept of simmelian ties are the same with third party ties (Krackhardt

1998). Two people are simmelian tied to one another if they are reciprocally and strongly

tied to each other and to another one in common (Krackhardt 1998). Simmelian ties

enhance the conflict resolution and group norms (Krackhardt 1998).

We measured the number of third party ties for a project by following Singh et al.

(2011). We counted the total number of third party ties of all pairs of project developers

around the members of a project team (besides the focal team members). We divided this

number by the total number of pairs that exist in a project to calculate a measure of third

party ties for a project. A high score of third party ties indicates that project developers

have worked together with other developers on several projects.

Structural Equivalence: The structural equivalence measures to the extent to

which two actors have identical relationships to all other actors, i.e. they jointly occupy

95

the structurally equivalent position in the network (Wasserman and Faust 1994). Thus,

the structural equivalence is a pair-level measure of how similar the actors’ network

patterns are. Structurally equivalent actors have a similar pattern of relationships to other

actors in the network (Wasserman and Faust 1994, Gnyawali and Madhavan 2001).

Structurally equivalent actors tend to have similar profiles and behaviors (Gnyawali and

Madhavan 2001). Structurally equivalent actors tend to interact with similar others in

similar ways, which results in similar attitudes, resources, and behaviors (Gnyawali and

Madhavan 2001). Therefore, structurally equivalent actors may have similar asset,

information, and resources (Gnyawali and Madhavan 2001).

We measured the structural equivalence for a project with two measures: Jaccard

similarity, and Correlation similarity (Wasserman and Faust 1994). Jaccard similarity

measures the similarity of the relationships of two developers by comparing the size of

the overlap against the size of the relationships of two developers (Wasserman and Faust

(1994). Correlation similarity measures the similarity of the relationships of two

developers by calculating Pearson’s correlation of the relationships of two developers

(Wasserman and Faust (1994). Correlation similarity measures the strength of the

relationship between two developers and it is based on the similarity in pattern of ties

whereas Jaccard similarity account for the identity of ties between two developers.

We calculated Jaccard similarity and correlation similarity as follows. We

calculated the total of Jaccard similarity and correlation similarity of all pairs of project

developers. We divided these numbers by the total number of pairs that exist in a project

to calculate measures of Jaccard similarity and correlation similarity for a project. Jaccard

similarity and correlation similarity lie strictly in the range from 0 to 1. A value of one

96

represents perfect structural equivalence whereas a value of zero represents no structural

equivalence. A high score of structural equivalence indicates that project developers

worked with many of the same developers.

3.5.2. External Connectivity

We measured external connectivity for a project with external cohesion, direct

ties, indirect ties, and technological diversity.

External Cohesion: We measured the external cohesion with Burt’s (1992)

network constraint. Network constraint measures the extent to which a project member’s

external contacts share relationships with each other.

We calculated the external cohesion for a project as follows. For each project

developer, we calculated the network constraint (see Appendix B for the calculation of

external cohesion). We took an average of each project developer’s network constraint

over all the project developers to calculate a measure of the network constraint for a

project. Higher values of external cohesion indicate that external contacts of a project are

more directly connected with each other, which indicates greater external cohesion. In

contrast, lower values of external cohesion indicate that external contacts of a project are

less directly connected with each other, which indicates smaller external cohesion.

Direct Ties: We measured direct ties by following Ahuja (2000). Direct ties

measure the extent to which project members are directly connected to external contacts.

Direct ties are also associated with the capacity of a project to acquire tacit knowledge

from outside (Singh et al. 2011).

We calculated direct ties for a project as follows. For each project developer, we

counted the number of developers who a project developer has ties with other than the

97

other team members of the project. We took an average of this number over all the

project developers to calculate a measure of direct ties for a project. Higher values of

direct ties indicate that a project is more directly connected to external contacts.

Indirect Ties: Indirect ties are ties that provide access to external developers at

path distances of two or greater (local project developers’ partner's partners), which

excluded direct ties. Indirect ties measure the extent to which project members are

indirectly connected to external partner's partners. Indirect ties are also associated with

the capacity of a project to acquire explicit knowledge from outside (Singh et al. 2011).

We used two measures for indirect ties. The first measure is the number of

indirect ties. For each project developer, we counted the number of developers with

whom a project developer does not have a direct tie but can reach through others (at path

distances of two or greater, which excluded direct ties). We took an average of this

number over all the project developers to calculate a measure of indirect ties for a project.

This measure does not account for the weakening or decay of tie strength as

distance between two developer’s increases (Ahuja 2000). Burt (1992) provided a

frequency decay measure for indirect ties that accounts for this decline in tie strength

across distant ties (see Appendix B for the calculation of indirect ties with frequency

decay function). Thus, our second measure for indirect ties is a frequency decay measure

proposed by Burt (1992). The argument for the frequency decay function is that the rate

at which the strength of a relation decreases with the increasing length of its

corresponding path distance should vary with the social structure in which it occurs (Burt

1992). The larger the number of developers to which the focal project developer must

devote their time and energy, the weaker the relationship that the focal project developer

98

can sustain with any individual developer. Thus, decay in the strength of a relationship is

related to the number of other developers reached at each path distance.

For each project developer, we calculated a frequency decay function for indirect

ties. We took an average of this number over all the project developers to calculate a

measure of indirect ties with a frequency decay function for a project. Higher values of

indirect ties indicate that a project is more indirectly connected to external partner's

partners at path distances of two or greater.

Technological Diversity: Technological diversity measures the extent to which

two projects are different in terms of the angular distance of their technological positions.

In order to calculate the technological diversity for a project, we defined the

technological position of a project. The technological position of a project can be defined

in terms of different dimensions such as the type of the project, programming language,

user interface, and operating system (Singh et al. 2011). Each of these dimensions

represents different type of technical expertise. Project type represents the application

domain knowledge whereas the other three dimensions represent the tools knowledge and

expertise that comprise the knowledge of process, data and functional architecture (Kim

and Stohr 1998, Singh et al. 2011). The similarity of domain and tools affect the amount

of knowledge that can be reused from one project to another (Singh et al. 2011).

Following Jaffe (1986), we characterized a project’s technological position by a

vector Fp = (F1…Fk), where k is the total number of categories under the four dimensions,

and Fk is an indicator variable that equals to 1 if the project p falls under the category k.

A project can fall under several categories within a single dimension. Technological

diversity between the two projects p and q is then calculated by the angular separation or

99

uncentered correlation of their vectors (see Appendix B for the calculation of

technological diversity).

We calculate the technological diversities of all pairs of a focal project with all of

the projects with which it shares a developer. We summed these measures and divided it

by the number of projects (the total number of project pairs) to calculate a measure of

technological diversity for a project. Technological diversity lies in the range from 0 to 1.

A value of one represents the greatest technological diversity between two projects.

3.5.3. Network Location

We measured network location for a project with network centralities: degree

centrality, closeness centrality, and betweenness centrality.

Degree Centrality: We measured the degree centrality with Freeman’s (1979)

degree centrality. Degree centrality is the measure of how many an actor is connected to

other actors in the network through direct connections (Freeman 1979, Wasserman and

Frost 1994). Degree centrality of a developer reflects the activeness of a developer in the

network. Developers who are more active in the network act as a central actor in the

network and are viewed as major channels of information in the network (Singh et al.

2011, Singh et al. 2007).

We calculated the degree centrality for a project as follows. For each project

developer, we calculated the degree centrality (see Appendix B for the calculation of

degree centrality). We took an average of each project developer’s degree centrality over

all the project developers to calculate a measure of the degree centrality for a project.

The degree centrality is normalized by dividing by the maximum possible degree

in the network which is that one actor is connected to all other actors in the network. This

100

calculation results in that the degree centrality lies in the range from 0 to 1. However,

UCINET reports the normalized degree centrality as a percentage for each node by

multiplying with 100 (Wasserman and Frost 1994). Therefore, the measure of degree

centrality for a project ranges from 0 to 100. A high score of the degree centrality

indicates a project is comprised of developers who are connected to many developers in

the network.

Betweenness Centrality: We measured the betweenness centrality with Freeman’s

(1979) betweenness centrality. Betweenness centrality is the measure of how often a

developer falls on the shortest path between pairs of other developers (Freeman 1979,

Wasserman and Faust 1994). Developers with a high betweenness centrality lie in the

shortest path of information flow between other developers. These developers can exert

control over information flow among other developers, and potentially may have some

control over the interactions between other developers (Wasserman and Faust 1994).

Thus, betweenness centrality signifies a developer’s ability to be central to the flow of

information and resources in the network. These developers can be important to the

network-wide information diffusion process by occupying a central position on the

shortest path between other developers in a network.

We calculated the betweenness centrality for a project as follows. For each project

developer, we calculated the betweenness centrality (see Appendix B for the calculation

of betweenness centrality). We took an average of each project developer’s betweenness

centrality over all the project developers to calculate a measure of the betweenness

centrality for a project.

101

The betweenness centrality is normalized by dividing by the maximum possible

betweenness in the network which is the number of pairs of actors not including a focal

actor (the maximum possible paths passing through a focal actor). This calculation results

in that the betweenness centrality lies in the range from 0 to 1. However, UCINET

reports the normalized betweenness centrality as a percentage for each node by

multiplying with 100 (Wasserman and Frost 1994). Therefore, the measure of

betweenness centrality for a project ranges from 0 to 100. A high score of the

betweenness centrality indicates a project is comprised of developers who fall on many

shortest paths between other developers.

Closeness Centrality: We measured the closeness centrality with Freeman’s

(1979) closeness centrality. Closeness centrality is the measure of how close an actor is to

all other actors in the network through direct and indirect connections (Freeman 1979,

Wasserman and Frost 1994). It basically measures the inverse of the sum of geodesic

distances between actors in the network, thereby an actor with high closeness centrality

has minimum geodesic distances to other actors. Closeness centrality signifies a

developer’s ability to reach resources in the network (Gulati and Gargiulo1999).

Information would have to travel over shorter distances to reach a developer who is more

central in the network (Wasserman and Faust 1994). A developer who is close to many

developers can quickly interact and communicate with them without passing through

many intermediaries (Wasserman and Faust 1994).

We calculated the closeness centrality for a project as follows. For each project

developer, we calculated the closeness centrality (see Appendix B for the calculation of

closeness centrality). We took an average of each project developer’s closeness centrality

102

over all the project developers to calculate a measure of the closeness centrality for a

project.

The closeness centrality is normalized by multiplying by the maximum possible

path distance in the network which is that one actor is connected to another one actor

passing through all other actors in the network. This calculation results in that the

closeness centrality lies in the range from 0 to 1. However, UCINET reports the

normalized closeness centrality as a percentage for each node by multiplying with 100

(Wasserman and Frost 1994). Therefore, the measure of closeness centrality for a project

ranges from 0 to 100. A high score of the closeness centrality indicates a project is

comprised of developers who are very close to all other developers in the network via

shortest paths.

3.6. Research Methodology

Our research objective is to empirically examine the differences between

exploitation (patch development) and exploration (feature request) networks of

developers in OSS projects in terms of their social network structure. In order to

accomplish these research objectives and test the hypothesis developed in the previous

sections, we employed two statistical methods. First, we used the paired T-test (Cohen

1988, Cohen 1977) to determine whether there is a statistically significant difference

between the patch development and feature request networks in terms of their social

network structure. With the paired T-test, we tested the difference between the patch

development and feature request networks at the project level by using social network

variables (internal cohesion, external connectivity, and network location). Second, we

also used the Quadratic Assignment Procedure (QAP) (Hubert and Schultz 1976, Hubert

103

1987) in order to examine the degree of dissimilarity between patch development and

feature request networks. The QAP test preserves the integrity of the network structures.

With the QAP test, we tested the difference between the patch development and feature

request networks at the network level. The QAP test also provides greater reliability to

the findings the paired T-test and improves its robustness.

3.6.1. The Paired T-test

The paired t-test compares the means of two related groups to detect whether

there are any statistically significant differences between their means (Cohen 1988,

Cohen 1977). The paired t-test is the within-groups design in which subjects in each

group are matched into pairs and the same subjects contribute to independent variables in

each group (Ha and Ha 2012). The major advantage of the within-groups design is to

minimize the amount of error variance associated with individual differences that occur

between subjects and this increases the power of the test (Ha and Ha 2012, Cohen 1988,

Myers and Well 1991).

The paired t-test requires that subjects in two groups should be paired. The mean

difference score of two groups is a measure of independent variables that will be

compared to the mean difference score of the null hypothesis. The mean difference score

of the null hypothesis is assumed to be zero. If there is no difference between two groups

in terms of independent variables, the mean difference score of paired groups will be zero

or very close to the mean difference score of the null hypothesis. However, if there is

difference between two groups in terms of independent variables, the mean difference

score of two groups will be greater or less than zero. Therefore, the assumptions of the

paired t-test are centered on the difference scores of two groups.

104

OSS network data analyzed in this study is the affiliation network data of

developers at the artifact level. We created a list of 1,173 projects for patch development

activities and a list of 1,892 projects for feature request activities from the SourceForge

database for projects registered from January 1999 to December 2008. As described in

the variable definition part, we aggregated data to the project level in order to test our

hypotheses. The paired t-test assumes that the observations in the two groups should be

related (Cohen 1988, Myers and Well 1991). Therefore, we have matched projects from

patch development and feature request networks into pairs and each project contributes to

independent variables of both patch development and feature request networks.

Therefore, the unit of analysis is the pair of projects belonging to both patch development

and feature request networks.

One of important issues for the paired t-test is the absence of outliers. An outlier

is an observation with an extreme value and univariate statistics such as a standard score

can be used detect outliers (Tabachnick and Fidell 2007). Standard scores that exceed ±3

indicate possible univariate outliers (Tabachnick and Fidell 2007). We detected outliers

for each individual variable and then removed all observations that have at least one

outlier for at least one variable. The final data set includes 690 observations (projects)

belonging to both patch development and feature request networks. We tested our

hypotheses by the final data set including 690 observations (projects). We report the

descriptive statistics of our variables in Table 9.

The paired t-test also assumes that the difference scores of paired groups should

follow the normal distribution (Cohen 1988, Myers and Well 1991). We tested this

105

normality assumption with the Kolmogorov-Smirnov and Shapiro-Wilk tests of

normality. We found that the difference scores of paired groups are normally distributed.

TABLE 9: Descriptive Statistics of Paired Variables (N=690)

Variable Type Variable Name Mean Std. Dev. Std. Error Mean
Internal
Cohesion

Clustering Coefficient (Patch) 0.574 0.462 0.018
Clustering Coefficient (FR) 0.541 0.474 0.018
Repeat Ties (Patch) 0.771 0.473 0.018
Repeat Ties (FR) 0.752 0.474 0.018
Third Party Ties (Patch) 0.153 0.780 0.030
Third Party Ties (FR) 0.133 0.763 0.029
Jaccard Similarity (Patch) 0.495 0.458 0.017
Jaccard Similarity (FR) 0.473 0.464 0.018
Correlation Similarity (Patch) 0.659 0.437 0.017
Correlation Similarity (FR) 0.660 0.444 0.017

External
Connectivity

External Cohesion (Patch) 0.749 0.312 0.012
External Cohesion (FR) 0.767 0.304 0.012
Direct Ties (Patch) 5.382 6.615 0.252
Direct Ties (FR) 4.938 6.244 0.238
Indirect Ties (Patch) 2.546 4.648 0.177
Indirect Ties (FR) 6.721 18.529 0.705
Indirect Ties FD (Patch) 0.065 0.119 0.005
Indirect Ties FD (FR) 1.655 5.439 0.207
Technological Diversity (Patch) 0.195 0.276 0.011
Technological Diversity (FR) 0.184 0.273 0.010

Network
Location

Degree Centrality (Patch) 0.110893 0.132161 0.005031
Degree Centrality (FR) 0.072070 0.087780 0.003342
Betweenness Centrality (Patch) 0.000439 0.001819 0.000069
Betweenness Centrality (FR) 0.000092 0.000357 0.000014
Closeness Centrality (Patch) 0.021226 0.000136 0.000005
Closeness Centrality (FR) 0.011553 0.006378 0.000243

Pearson correlation analysis indicates statistically significant correlations between

paired variables (see Table C1 in Appendix C). This is the within-groups design in which

we used the same projects belonging to both patch development and feature request

activities, thereby project characteristics are the same for patch development and feature

request activities. The significant correlations between paired variables indicate that the

106

differences between patch development and feature request activities are associated with

network structures of developer teams, not other random effects.

3.6.2. Results of the Paired T-test

The significance of the t statistic of each paired variable is used to assess the

support for the relevant hypothesis. The null hypothesis assumes that the mean difference

of paired variable will be zero. The mean difference displays the average difference

between patch development and feature request teams for each variable. The mean

difference greater than zero implies that the mean of the variable of patch development

teams is greater than the mean of the variable of feature request teams. The mean

difference smaller than zero implies that the mean of the variable of patch development

teams is smaller than the mean of the variable of feature request teams. We summarize

the results of our hypotheses in Table 10. We report the results of the paired T-test in

Table 11.

TABLE 10: Summary of Hypotheses

Variable Type Hypotheses Tested with Variable Results Comments
Internal
Cohesion

Hypothesis 1 Clustering Coefficient Supported
Hypothesis 1 Repeat Ties Supported
Hypothesis 1 Third Party Ties Not Supported Not significant
Hypothesis 1 Jaccard Similarity Supported
Hypothesis 1 Correlation Similarity Not Supported Not significant

External
Connectivity

Hypothesis 2 External Cohesion Not Supported Opposite of hypothesis
Hypothesis 3 Direct Ties Supported
Hypothesis 4 Indirect Ties Supported
Hypothesis 4 Indirect Ties FD Supported
Hypothesis 5 Technological Diversity Not Supported Not significant

Network
Location

Hypothesis 6 Degree Centrality Supported
Hypothesis 6 Betweenness Centrality Supported
Hypothesis 6 Closeness Centrality Supported

107

We measured internal cohesion for a project with clustering coefficient, repeat

ties, third party ties, Jaccard similarity, and correlation similarity. In the hypothesis H1,

we expect that the internal cohesion of patch development teams will be greater than the

internal cohesion of feature request teams. We found support for our first hypothesis for

clustering coefficient, repeated ties, and Jaccard similarity. The mean of the clustering

coefficient of patch development teams is 0.033 points greater than the mean of the

clustering coefficient of feature request teams, and this difference is significant (2.974, p

< 0.01). The internal cohesion of patch development teams is greater than the internal

cohesion of feature request teams in terms of clustering coefficient. The mean of the

repeat ties of patch development teams is 0.019 points greater than the mean of the repeat

ties of feature request teams, and this difference is significant (1.813, p < 0.1). The

internal cohesion of patch development teams is greater than the internal cohesion of

feature request teams in terms of repeat ties. The mean of Jaccard similarity of patch

development teams is 0.021 points greater than the mean of Jaccard similarity of feature

request teams, and this difference is significant (2.130, p < 0.05).

108

T
A

B
L

E
 1

1:
 T

he
 P

ai
re

d
T

-t
es

t R
es

ul
ts

 (
N

=
69

0)

V
ar

ia
bl

e
T

yp
e

P
ai

re
d

V
ar

ia
bl

e
N

am
es

M

ea
n

D
if

fe
re

nc
e

S
td

. D
ev

.
S

td
. E

rr
or

 M
ea

n
t

S
ig

. (
2-

ta
ile

d)

In
te

rn
al

 C
on

ne
ct

iv
ity

C

lu
st

er
in

g
C

oe
ff

ic
ie

nt
 (

P
at

ch
)

C

lu
st

er
in

g
C

oe
ff

ic
ie

nt
 (

F
R

)
0.

03
3

0.
29

3
0.

01
1

2.
97

4
0.

00
3

**
*

R
ep

ea
t T

ie
s

(P
at

ch
)

R

ep
ea

t T
ie

s
(F

R
)

0.
01

9
0.

27
0

0.
01

0
1.

81
3

0.
07

0
*

T
hi

rd
 P

ar
ty

 T
ie

s
(P

at
ch

)

T
hi

rd
 P

ar
ty

 T
ie

s
(F

R
)

0.
02

0
0.

39
1

0.
01

5
1.

34
8

0.
17

8

Ja
cc

ar
d

S
im

il
ar

it
y

(P
at

ch
)

Ja

cc
ar

d
S

im
il

ar
it

y
(F

R
)

0.
02

1
0.

26
4

0.
01

0
2.

13
0

0.
03

3
**

C
or

re
la

tio
n

S
im

ila
ri

ty
 (

P
at

ch
)

C

or
re

la
tio

n
S

im
ila

ri
ty

 (
F

R
)

-0
.0

01

0.
26

7
0.

01
0

-0
.0

54

0.
95

7

E
xt

er
na

l C
on

ne
ct

iv
ity

E

xt
er

na
l C

oh
es

io
n

(P
at

ch
)

E

xt
er

na
l C

oh
es

io
n

(F
R

)
-0

.0
17

0.

17
6

0.
00

7
-2

.5
72

0.

01
0

**

D
ir

ec
t T

ie
s

(P
at

ch
)

D

ir
ec

t T
ie

s
(F

R
)

0.
44

4
3.

55
6

0.
13

5
3.

28
3

0.
00

1
**

*

In
di

re
ct

 T
ie

s
(P

at
ch

)

In
di

re
ct

 T
ie

s
(F

R
)

-4
.1

74

16
.4

14

0.
62

5
-6

.6
80

0.

00
0

**
*

In
di

re
ct

 T
ie

s
F

D
 (

P
at

ch
)

In

di
re

ct
 T

ie
s

F
D

 (
F

R
)

-1
.5

90

5.
39

2
0.

20
5

-7
.7

44

0.
00

0
**

*

T
ec

hn
ol

og
ic

al
 D

iv
er

si
ty

 (
P

at
ch

)

T
ec

hn
ol

og
ic

al
 D

iv
er

si
ty

 (
F

R
)

0.
01

1
0.

23
4

0.
00

9
1.

25
2

0.
21

1

N
et

w
or

k
L

oc
at

io
n

D
eg

re
e

C
en

tr
al

it
y

(P
at

ch
)

D

eg
re

e
C

en
tr

al
it

y
(F

R
)

0.
03

9
0.

07
6

0.
00

3
13

.4
00

0.

00
0

**
*

B
et

w
ee

nn
es

s
C

en
tr

al
it

y
(P

at
ch

)

B
et

w
ee

nn
es

s
C

en
tr

al
it

y
(F

R
)

0.
00

0
0.

00
2

0.
00

0
5.

55
9

0.
00

0
**

*

C
lo

se
ne

ss
 C

en
tr

al
ity

 (
P

at
ch

)

C
lo

se
ne

ss
 C

en
tr

al
ity

 (
F

R
)

0.
01

0
0.

00
6

0.
00

0
40

.0
28

0.

00
0

**
*

*S
ig

ni
fi

ca
nt

 a
t 1

0%
 le

ve
l,

**
Si

gn
if

ic
an

t a
t 5

%
 le

ve
l,

**
*S

ig
ni

fi
ca

nt
 a

t 1
%

 le
ve

l

109

The internal cohesion of patch development teams is greater than the internal cohesion of

feature request teams in terms of Jaccard similarity. Therefore, our hypothesis H1 is

supported by results of clustering coefficient, repeated ties, and Jaccard similarity.

However, we did not find support for our first hypothesis for third party ties and

correlation similarity since the difference between patch development and feature request

teams are not significant at the 0.10 alpha level. The internal cohesion of patch

development teams is the same as the internal cohesion of feature request teams in terms

of third party ties and correlation similarity. Therefore, our hypothesis H1 is partially

supported. The results of repeat ties and third party ties merit further discussion. Repeat

ties and third party ties are based on social interactions among developers. One possible

explanation for the insignificance of third party ties is that there may be a few social

interactions for the pairs of developers with common third parties, and these interactions

may not be have enough strength to support third party ties. In addition, third party ties

measure the number of relationship of a pair of developers to common third parties

outside the focal project team. Therefore, third party ties do not measure strong

relationships between two developers, but measure the relative relationship of already

connected two developers to the common third. Thus, they may represent relatively loose

connections. The common third developer is an outside developer of a focal team, and

thereby, that developer may not directly foster trust, reciprocity norms and shared identity

within a focal team which facilitate collaboration and cooperation among focal project

team members. In contrast, repeat ties capture the strength and deepness of the

relationship between two developers. The strength and deepness of relationship indicates

two developers interact more frequently, and they develop more closer and cohesive

110

relationships. Repeat ties from past interactions also result in greater trust within a focal

team. The results of Jaccard similarity and correlation similarity also merit further

discussion. Jaccard similarity and correlation similarity are measures for the structural

equivalence of developers. Correlation similarity measures the strength of the

relationship between two developers in terms of the similarity in a connectivity pattern of

ties between two developers. However, Jaccard similarity accounts for the identity of ties

between two developers, i.e. who is connected to who. Although Jaccard similarity

considers the identity of ties, correlation similarity does not consider the identity of ties.

Connecting to the same developers is more important than connecting the same number

of developers in terms of internal cohesion. If developers are connected to the same

developers, they may develop more closer and cohesive relationships which results in

greater trust within a focal team.

We measured external connectivity for a project with external cohesion, direct

ties, indirect ties, and technological diversity. However, we developed different

hypotheses for each external connectivity measures. In the hypothesis H2, we expect that

the external cohesion of patch development teams will be greater than the external

cohesion of feature request teams. The mean of the external cohesion of patch

development teams is 0.017 points smaller than the mean of the external cohesion of

feature request teams, and this difference is significant (-2.572, p < 0.01). Therefore, the

external cohesion of patch development teams is smaller than the external cohesion of

feature request teams. Although the network structures of patch development and feature

request teams are different in terms of external cohesion, the result is contrary to our

expectations and does not support our hypothesis H2. External cohesion measures the

111

extent to which external contacts of a project are connected to each other. Low external

cohesion allows a focal project which is connected to disconnected projects to acquire

more novel information from those disconnected projects. We selected the C

programming language as a network boundary. Within our network boundary, all projects

use the C programming language. Therefore, all projects in our data set are

technologically similar in terms of programming language. This is consistent with the

results of our fifth hypothesis. As explained later, we found that the technological

diversity of patch development teams is the same as the technological diversity of feature

request teams. The selection of the C programming language eliminates other projects

using different programming languages. Projects using different programming languages

may develop distinct knowledge from other projects using the same programming

language. They may be technologically diverse and provide access to novel information.

In addition, they may not be highly connected to each other. This means lower external

cohesion for a local project. Feature request teams may be more connected to projects

using different programming languages than patch development teams. However, the

selection of the C programming language may remove external connections to other

projects using different programming languages. This may result in high external

cohesion for feature request teams since most external connections of feature request

teams may have been removed. The inclusion of multiple programming languages may

produce results which will be consistent with our hypothesis regarding external cohesion.

In the hypothesis H3, we expect that the number of direct ties of patch

development teams will be greater than the number of direct ties of feature request teams.

The mean of direct ties of patch development teams is 0.444 points greater than the mean

112

of direct ties of feature request teams, and this difference is significant (3.283, p < 0.01).

The number of direct ties of patch development teams is greater than the number of direct

ties of feature request teams. Therefore, our hypothesis H3 is supported.

In the hypothesis H4, we expect that the number of indirect ties of feature request

teams will be greater than the number of indirect ties of patch development teams. We

measured indirect ties for a project with the number of indirect ties, and the number of

indirect ties calculated with frequency decay function. We found support for our fourth

hypothesis for both measures. The mean of indirect ties of patch development teams is

4.174 points smaller than the mean of indirect ties of feature request teams, and this

difference is significant (-6.680, p < 0.01). In addition, the mean of frequency decayed

indirect ties of patch development teams is 1.590 points smaller than the mean of

frequency decayed indirect ties of feature request teams, and this difference is significant

(-7.744, p < 0.01). The number of indirect ties of patch development teams is smaller

than the number of indirect ties of feature request teams. Therefore, our hypothesis H4 is

supported.

In the hypothesis H5, we expect that the technological diversity of feature request

teams will be greater than the technological diversity of patch development teams.

However, we did not find support for our fifth hypothesis since the difference between

patch development and feature request teams are not significant at the 0.10 alpha level.

The technological diversity of patch development teams is the same as the technological

diversity of feature request teams. Therefore, our hypothesis H5 is not supported. We

selected the C programming language as a network boundary. Within our network

boundary, all projects use the C programming language. Therefore, all projects in our

113

data set are technologically similar in terms of programming language. The selection of

the C programming language eliminates other projects using different programming

languages. Projects using different programming languages may develop distinct

knowledge from other projects using the same programming language. They may be

technologically diverse. The inclusion of multiple programming languages may produce

results which will be consistent with our hypothesis regarding technological diversity.

We measure network location for a project with network centralities: degree

centrality, betweenness centrality, and closeness centrality. In the hypothesis H6, we

expect that the centrality of patch development teams will be greater than the centrality

of feature request teams. We found support for our sixth hypothesis for the degree

centrality, betweenness centrality, and closeness centrality. The mean of the degree

centrality of patch development teams is 0.038 points greater than the mean of the degree

centrality of feature request teams, and this difference is significant (13.400, p < 0.01).

The centrality of patch development teams is greater than the centrality of feature request

teams in terms of degree centrality. The mean of the betweenness centrality of patch

development teams is 0.00034 points greater than the mean of the betweenness centrality

of feature request teams, and this difference is significant (5.559, p < 0.01). The centrality

of patch development teams is greater than the centrality of feature request teams in terms

of betweenness centrality. The mean of the closeness centrality of patch development

teams is 0.021 points greater than the mean of the closeness centrality of feature request

teams, and this difference is significant (40.028, p < 0.01). The centrality of patch

development teams is greater than the centrality of feature request teams in terms of

114

closeness centrality. Therefore, our hypothesis H6 is supported by results of the degree

centrality, betweenness centrality, and closeness centrality.

3.6.3. Power Analysis for the Paired T-test

The power of a statistical test is the probability that the test will reject the null

hypothesis when the null hypothesis is false, i.e. the probability of not committing a Type

II error (Cohen 1988, Greene 2003). The statistical power is calculated as (1 – ß) where

the ß (beta) is the Type II error (the probability of failing to reject the null hypothesis

when it is false).

When the alpha (α) is set at 0.05, Cohen (1988) assumes that the risk of failure to

find the beta (β) may be about four times less serious than the risk of finding what does

not exist (α). The test with the power greater than 0.80 is considered statistically powerful

at the 0.05 alpha level (Cohen 1988, Mazen et al. 1985). Given the number of

observations (N=690 projects) and the significance alpha level (α=0.05), we calculated

the power (1– β) of our T-tests by following Cohen (1988). We report the results of the

power test in Table 12.

We found that the power of all variables except unsupported variables (third party

ties, correlation similarity, and technological diversity) is greater than the cut-off point of

0.80. The high statistical power indicates that the T-test more likely detects the true effect

of the phenomenon and rejects the null hypothesis. The high statistical power also

indicates that the sample size for those variables are more than enough. However, the

power of unsupported variables (third party ties, correlation similarity, and technological

diversity) is lower than the cut-off point of 0.80. This indicates that the results of the T-

test for unsupported variables are not powerful. We may need more observations for

115

those variables since greater sample size reduces the standard error and increases the

statistical power (Cohen 1988, Mazen et al. 1985).

TABLE 12: The Statistical Power of the Paired T-tests (Alpha = 0.05)

Variable Type Paired Variable Names Power
Internal
Connectivity

Clustering Coefficient (Patch)
Clustering Coefficient (FR)

0.997

Repeat Ties (Patch)
Repeat Ties (FR)

0.888

Third Party Ties (Patch)
Third Party Ties (FR)

0.757

Jaccard Similarity (Patch)
Jaccard Similarity (FR)

0.960

Correlation Similarity (Patch)
Correlation Similarity (FR)

0.051

External
Connectivity

External Cohesion (Patch)
External Cohesion (FR)

0.994

Direct Ties (Patch)
Direct Ties (FR)

>0.999

Indirect Ties (Patch)
Indirect Ties (FR)

>0.999

Indirect Ties FD (Patch)
Indirect Ties FD (FR)

>0.999

Technological Diversity (Patch)
Technological Diversity (FR)

0.312

Network
Location

Degree Centrality (Patch)
Degree Centrality (FR)

>0.999

Betweenness Centrality (Patch)
Betweenness Centrality (FR)

>0.999

Closeness Centrality (Patch)
Closeness Centrality (FR)

>0.999

3.6.3. Quadratic Assignment Procedure (QAP)

The QAP is a social analysis method to compare two networks (Baker and Hubert

1981) and examine the degree of dissimilarity between them (Hubert and Schultz 1976,

Hubert 1987). The QAP is used to test the null hypothesis that two social network are

uncorrelated or dissimilar (Hubert and Schultz 1976, Hubert 1987). The QAP is a

nonparametric permutation-based test that preserves the integrity of the network

structures. The QAP can determine the distribution of all possible correlations given the

116

structures of two matrices by generating all correlations that result from permuting the

rows and columns of one matrix to those of second matrix.

The QAP has several advantages. First, it does not impose any specific

distributional assumptions since it is a permutation-based nonparametric test (Baker and

Hubert 1981). Second, it takes advantage of the dyadic information represented in each

matrix by preserving the integrity of the network structures (Baker and Hubert 1981).

Third, it can be used for non-independent relationships (Baker and Hubert 1981). Fourth,

it is immune to the highly complex autocorrelation structure of network data (Krackhardt

1987, Krackhardt 1988). Fifth, the QAP is relatively unbiased (Krackhardt 1987).

The QAP requires social networks which should be represented in the form of

square matrixes with equal size. However, the patch development network includes 4,727

unique developers whereas the feature request network includes 6,656 unique developers.

Therefore, we created separate sample networks for patch development and feature

request activities by extracting developers along with their network connections with

each other from patch development network and feature request networks.

We have identified three types of developers in the OSS community: patch

developers, feature request developers, and ambidextrous developers. The patch network

consists of patch and ambidextrous developers whereas the feature request network

consists of feature request and ambidextrous developers. In order to accurately represent

ambidextrous and non-ambidextrous developers in each network, we used a stratified

random sampling method. Each sample network consists of 1,000 developers stratified

based on the ratios of ambidextrous and non-ambidextrous developers in each network.

We created 25 stratified sample networks for patch development activities, and 25

117

stratified sample networks for feature request activities. We created 25 sample networks

pairs by pairing patch development sample networks and feature request sample

networks.

We used the QAP test as implemented in UCINET 6 (Borgatti et al. 2002). The

QAP test reports five (similarity) measures (Jaccard, correlation, simple matching,

Goodman-Kruskal Gamma, and Hamming distance). Although the result of the QAP test

is the same across five measures, we report the result of the QAP test with Jaccard

similarity and correlation similarity between sample networks of patch development and

feature request activities since these two measures are our variables as shown in Table

10.

We report the results of the QAP test in Table 13. We compared 25 stratified

sample network pairs from patch development and feature request networks. In Table 13,

each row is a comparison of two stratified sample networks from patch development and

feature request networks. We found that sample patch development and sample feature

request networks are not similar with each other. Although the correlation and Jaccard

similarities for the network pairs 5 and 17 are significant at 0.1 alpha level, the

correlation and Jaccard similarities are as low as 0.003 which indicates that sample patch

development and sample feature request networks for the network pairs 5 and 17 have

different network structures. For other pairs, we found that sample patch development

and sample feature request networks are not similar with each other since the correlation

and Jaccard similarities are very low (e.g., 0.002) and they are not significant. We accept

the null hypothesis that two network are uncorrelated. The results of the QAP test are

118

consistent with the results of the paired T-test. Therefore, we found that patch

development and feature request networks have different network structures.

TABLE 13: Comparison of Stratified Sample Networks of Developers from Patch

Development and Feature Request Networks (Network Size=1000)

Sample Patch
Network

Sample FR
Network

Correlation
Similarity

Sig.
Jaccard

Similarity
Sig.

1 1 0.000 0.616 0.001 0.616
2 2 0.000 0.621 0.001 0.648
3 3 0.000 0.464 0.001 0.464
4 4 0.001 0.348 0.001 0.348
5 5 0.003 0.084 * 0.002 0.084 *
6 6 0.001 0.308 0.001 0.308
7 7 0.001 0.440 0.001 0.857
8 8 0.001 0.353 0.000 0.888
9 9 0.001 0.474 0.001 0.844

10 10 0.001 0.420 0.000 0.858
11 11 0.002 0.121 0.002 0.121
12 12 0.000 0.545 0.001 0.545
13 13 0.000 0.676 0.001 0.606
14 14 0.001 0.475 0.001 0.834
15 15 0.000 0.564 0.001 0.564
16 16 0.002 0.110 0.002 0.110
17 17 0.002 0.092 * 0.002 0.092 *
18 18 0.001 0.420 0.000 0.858
19 19 0.000 0.498 0.001 0.498
20 20 0.002 0.176 0.000 1.000
21 21 0.002 0.159 0.002 0.159
22 22 0.001 0.321 0.001 0.321
23 23 0.001 0.394 0.001 0.394
24 24 0.002 0.131 0.002 0.131
25 25 0.002 0.126 0.000 1.000

*Significant at 10% level, **Significant at 5% level, ***Significant at 1% level

3.7. Discussions and Contributions

We empirically examined the differences between exploitation (patch

development) and exploration (feature request) networks of developers in OSS projects in

terms of their social network structure. In order to accomplish these research objectives

and test our hypothesis, we employed two statistical methods. First, we used the paired T-

119

test to determine whether there is a statistically significant difference between the patch

development and feature request networks in terms of their social network structure. With

the paired T-test, we tested the difference between the patch development and feature

request networks at the project level by using social network variables for internal

cohesion, external connectivity, and network location. Our results for the paired T-test

show that patch development and feature request networks have different network

structures. Our results indicate that a patch development network has greater internal

cohesion and network centrality than a feature request network. In contrast, a feature

request network has greater external connectivity than a patch development network. We

tested the statistical power of the results of the paired T-test. The power analysis indicates

that the T-test more likely detects the true effect of the phenomenon. The high statistical

power also indicates that the sample size is more than enough. Second, we also used the

QAP test in order to examine the degree of dissimilarity between patch development and

feature request networks at the network level. The results of the QAP test are consistent

with the results of the paired T-test. The QAP test provides greater reliability to the

results of the T-test.

We found that the internal cohesion of patch development teams is greater than

the internal cohesion of feature request teams. As measured by clustering coefficient,

repeated ties, and Jaccard similarity, our findings indicate that different measures of

internal cohesion are consistent and patch development teams have greater internal

cohesion than feature request teams. Our results indicate that developers in patch

development teams have greater trust with each other due to high internal cohesion,

which improves collaboration and cooperation, and facilitates information exchange in

120

patch development teams. However, the result of internal cohesion measured by third

party ties is not significant. This could be because, although repeat ties and third party

ties are based on social interactions among developers, repeat interactions between two

developers are much stronger than third party interactions with common third parties.

Thus, repeat interactions result in greater trust within a focal team. In addition, the result

of internal cohesion measured by correlation similarity is not significant. Jaccard

similarity and correlation similarity measures the structural equivalence of developers.

However, Jaccard similarity considers the identity of ties whereas correlation similarity

does not consider the identity of ties. The results could indicate that connecting to the

same developers is more important than connecting the same number of developers since

developers may develop more closer and cohesive relationships which results in greater

trust within a focal team.

We found that the external cohesion of patch development teams is smaller than

the external cohesion of feature request teams. Our results also indicate that the

technological diversity of patch development teams is the same as the technological

diversity of feature request teams. These results are contrary to our expectations possibly

because of the choice of one programming language as a network boundary. Within our

network boundary, all projects are technologically similar in terms of programming

language. The selection of one programming language eliminates other projects using

different programming languages. Projects using different programming languages may

develop distinct knowledge from other projects using the same programming language.

They may be technologically diverse and provide access to novel information. In

addition, they may not be highly connected to each other. This means lower external

121

cohesion for a local project. Feature request teams may be more connected to projects

using different programming languages than patch development teams. However, the

choice of one programming language may remove external connections to other projects

using different programming languages. This may result in high external cohesion for

feature request teams since most external connections of feature request teams may have

been removed. The inclusion of multiple programming languages may produce results

which will be consistent with our hypotheses regarding external cohesion and

technological diversity.

We found that the number of direct ties of patch development teams is greater

than the number of direct ties of feature request teams. Our results indicate that direct ties

facilitate resource pooling by enabling patch development teams to combine more

(relatively redundant) knowledge with repeating interactions than feature request teams.

We found that the number of indirect ties of patch development teams is smaller than the

number of indirect ties of feature request teams. Our results indicate that indirect ties

enable feature request teams to access more novel information through knowledge

spillovers than patch development teams.

We found that the centrality of patch development teams is greater than the

centrality of feature request teams. As measured by degree centrality, betweenness

centrality, and closeness centrality, our findings indicate that different measures of

centrality are consistent and patch development teams have greater centrality than feature

request teams. Our results indicate high centrality enables patch development teams to

exchange and integrate greater amounts of information more rapidly. It also enables patch

development teams to control and regulate information flow among developers.

122

By providing a more nuanced understanding of different types of sub-networks in

OSS development, this dissertation makes several important theoretical and practical

contributions.

From a theoretical perspective, we introduce the use of organizational theory on

exploration and exploitation together with social network analysis as a theoretical lens to

study different types of sub-networks in OSS development. Recent research on OSS

development has studied the social network structure of software developers as

determinant of project success (Singh et al. 2011, Singh 2010, Singh et al. 2007, Grewal

et al. 2006). However, this stream of research has focused on the project level, and has

not recognized the fact that projects could consist of different types of activities, each of

which could require different types of expertise and network structures. We propose that

OSS project activities can be classified as implementation-oriented (exploitation) and

innovation-oriented (exploration) based on organizational theory (March 1991). In the

context of OSS development, developing a patch would be an example of an exploitation

activity. Requesting a new software feature would be an example of an exploration

activity. To the best of our knowledge, this is the first research to study OSS development

at the activity level. Our data selection and analysis method are different from prior

research and novel.

This dissertation develops the theory for and then empirically tests the differences

between exploration and exploitation networks in OSS development in terms of their

social network structure. Our empirical results illustrate that these two types of networks

are significantly different in terms of their social network structure.

123

We identify a new category of developers (ambidextrous developers) in OSS

projects who contribute to exploitative activities (patch development) as well as

exploratory activities (feature request). A new theoretical construct for project

ambidexterity has been developed based on the concept of ambidextrous developers. A

nuanced understanding of different types of activities and the concept of ambidextrous

developers open opportunities for future research as discussed in the next chapter.

This dissertation also makes several important contributions to practice. We show

that exploitation and exploration activities in OSS development require specific network

structures based on characteristics and nature of each activity. Therefore, we provide OSS

project leaders with a way to optimize their exploitative and exploratory teams based on

requirements of each activity. OSS project leaders can allow some developers to

specialize in each activity. They can allow some developers to work on both activities in

order to enhance the ability of those developers (ambidextrous developers) to integrate

exploitative and exploratory teams. In a result, they can possibly better manage OSS

projects. This discussion is evolved further in the next chapter.

3.9. Limitations and Future Research

We examine the differences between exploitation (patch development) and

exploration (feature request) networks of developers in OSS projects in terms of their

social network structure. We assume that network structure affects knowledge transfer.

However, we did not observe knowledge transfer directly but rather infer it from the

relationship between network structure and project performance. Knowledge may flow

through other mechanisms. For example, a developer may acquire knowledge from

unconnected activities by using their software or by analyzing their software’s source

124

code. In this dissertation, we did not consider other mechanisms for knowledge flow. We

did not analyze characteristics of individual team members such as their experiences and

motivations which may also influence the extent to which knowledge is transferred or

absorbed (Cohen and Levinthal 1990). These aspects of relationships can be analyzed in

order to understand network structures in detail. These limitations have been recognized

in prior research on OSS social networks (Singh et al. 2011, Sing 2010).

We selected one programming language as a network boundary. Therefore, our

data is restricted to projects using the same programming language. Future research can

collect data for multiple programming languages.

We did not analyze the performance of exploitative and exploratory teams at the

activity level. Future research can analyze the performance of exploitative and

exploratory teams at the activity level.

CHAPTER 4: TEAM PERFORMANCE IN OPEN SOURCE SOFTWARE
NETWORKS: THE EFFECT OF AMBIDEXTERITY ON THE PROJECT

PERFORMANCE

4.1. Introduction

Traditionally, software has been developed by organizations that do not make the

source code of software publicly available. In the traditional software development,

software developers have worked in local clusters of collaboration that were generally

isolated within firms (Fleming and Marx 2006). More recently, open source software

(OSS) development has become the alternative way of developing software. OSS

development has brought together software developers spanning firm boundaries

(Raymond 1999). OSS development mainly depends on voluntary contributions of

software developers and OSS products are developed in a collective manner beyond the

boundaries of a single organization (Raymond 1999). Thus, formerly isolated software

developers have become large connected networks in OSS development. The network of

software developers becomes more important for OSS projects and offers various

benefits. First, collaboration among software developers can facilitate access to and

sharing of resources, allowing developers to combine their knowledge, skills, and

expertise (Raymond 1999). Second, new insights, ideas or ways to solve problems are

conceived by any one and accessed by others (Raymond 1999).

126

Thus, OSS development has changed the conception of how software can be developed.

However, not all software projects are completed successfully (Li et al. 2010).

Understanding the factors that lead to successful OSS projects is an interesting area of

current research. OSS development offers new research opportunities to better understand

the network structure of OSS developers.

Software product after delivery is improved by correcting faults or enhanced by

adding new features based on user requirements (Banker and Slaughter 2000, Banker et

al. 1998, IEEE 1983). The total cost of software maintenance is estimated to comprise at

least 50% of total software life cycle costs (Van Vliet 2000, Kemerer and Slaughter 1999,

Kemerer 1995). Thus, the modification of software after delivery is one of the major

phases of software development. In software maintenance, we identified two important

types of OSS project activities: patch development and feature request. Patch

development activities are used to correct faults in software while feature request

activities are used to enhance software by adding new features. Recent research on OSS

development focused on the analysis of OSS requirements and used feature request

activities in their analysis (Vlas and Robinson 2012). Software is defined as a knowledge

product (Slaughter et al. 2006) and critical inputs to software development are skills and

experience of developers (Li et al. 2010). Therefore, each activity requires different

structure of collaboration and knowledge sharing among the developers since each

activity has different objectives.

In an organizational context, exploitation and exploration have been identified as

two types of activities for the development and use of knowledge in organizations (March

1991). Prior research indicates that different types of tasks require different

127

communication patterns and different amount of communication based on characteristics

and nature of a task (Katz and Tushman 1979). A task can differ along several

dimensions including time span, specific vs. general problem orientation, and the

generation of new knowledge vs. using existing knowledge (Katz and Tushman 1979).

March (1991) has suggested that exploitation and exploration represent fundamentally

incompatible and inconsistent activities. For example, exploitation represents activities

that improve existing organizational competencies and build on the existing technological

trajectory. Therefore, exploitation broadens existing knowledge and skills, improves

established designs, and expands existing products and services. In contrast, exploration

represents activities that changes the organizational competencies and build on a different

technological trajectory. Therefore, exploration requires new knowledge, offers new

designs, and creates new products and services. In addition, exploitation is related to

efficiency, centralization, and tight cultures while exploration is associated with

flexibility, decentralization, and loose cultures (Benner and Tushman 2003). Therefore,

exploitation and exploration require different organizational structures (Benner and

Tushman 2003, Levinthal and March 1993). Different organizational structures for

exploitation and exploration enable exploitative teams to develop the best viable

solutions, and enable exploratory teams to explore new ideas (Fang et al. 2010).

Recent research on OSS development has studied the social network structure of

software developers as determinant of project success (Singh et al. 2011, Singh 2010,

Singh et al. 2007, Grewal et al. 2006). However, this stream of research has focused on

the project level, and has not recognized the fact that projects could consist of different

types of activities, each of which could require different types of expertise and network

128

structures. We propose that OSS project activities can be classified as implementation-

oriented (exploitation) and innovation-oriented (exploration) based on organizational

theory (March 1991). In the context of OSS development, developing a patch would be

an example of an exploitation activity. Requesting a new software feature would be an

example of an exploration activity.

While exploitation and exploration represent fundamentally incompatible and

inconsistent activities (March 1991), recent research on organizational literature has

stressed the importance of a balance between exploitation and exploration for

organizational survival (Benner and Tushman 2003, Tushman and O’Reilly 1996).

Structural differentiation is a proposed mechanism for organizations to build an

ambidextrous organization (Benner and Tushman 2003, Tushman and O’Reilly 1996).

Structural differentiation refers to the subdivision of organizational tasks into distinct

organizational units that develop appropriate contexts for exploitation and exploration

activities. Recent studies found that ambidextrous organizations perform better (Fang et

al. 2010, Jansen et al. 2009, Jansen et al. 2006, Lin at al. 2007). However, the

coordination and integration of exploitative and exploratory activities is a necessary step

in achieving ambidexterity (Jansen et al. 2009, Gilbert 2006, Smith and Tushman 2005,

Tushman and O’Reilly 1996). We identified a new category of developers (ambidextrous

developers) in OSS projects who contribute to exploitative activities (patch development)

and exploratory activities (feature request). We propose that ambidextrous developers are

an integration mechanism between patch development and feature request activities. We

develop a theoretical construct for project ambidexterity based on the concept of

ambidextrous developers. We construct ambidexterity as a measure of the ability of OSS

129

projects to pursue both exploitative and exploratory activities concurrently. To the best of

our knowledge, this is the first research to study ambidexterity and ambidextrous

developers in OSS development.

In this dissertation, we introduce the use of organizational theory on

ambidexterity together with social network analysis as a theoretical lens to study OSS

project performance. We studied the effects of ambidexterity and coordination

mechanisms (ambidextrous developers) on OSS project performance. We also studied the

effects of social network properties of OSS developers on OSS project performance. We

used a data set collected from the SourceForge database. We empirically illustrate the

significance of ambidexterity and network characteristics on OSS project performance.

We illustrate that a moderate level of ambidexterity, external cohesion, and technological

diversity are desirable for project success.

4.2. Literature Review

There are multiple streams of research that help us to understand the structural

differences of OSS networks. A software product after delivery is improved by correcting

faults or enhanced by adding new features based on user requirements (Banker and

Slaughter 2000, Banker et al. 1998, IEEE 1983). Thus, in software maintenance, we

identified two important types of OSS project activities: patch development and feature

request. Software is a knowledge product (Slaughter et al. 2006) and critical inputs to

software development are skills and experience of developers (Li et al. 2010). Therefore,

each activity requires different structure of collaboration and knowledge sharing among

the developers since each activity has different objectives. Recent studies on social

network literature indicated that network structures determine the structure of

130

collaboration and knowledge sharing among actors. Recent research on OSS

development has focused on project success as the function of the social network

structure of software developers (Singh et al. 2011, Singh 2010). They founded that OSS

network structure affects project success.

In an organizational context, exploitation and exploration have been identified as

two types of activities for the development and use of knowledge in organizations (March

1991). Prior research indicates that different types of tasks require different

communication patterns and different amount of communication based on characteristics

and nature of a task (Katz and Tushman 1979). March (1991) has suggested that

exploitation and exploration represent fundamentally incompatible and inconsistent

activities. Exploitation creates a narrow range of deeper solutions and more distinctive

competences since exploitation results in the convergence of ideas (March 1991). In

contrast, exploration creates a wide range of undeveloped new ideas and limited

distinctive competence (March 1991). Therefore, exploitation and exploration require

different organizational structures.

Recent research on organizational literature has argued that organizations need to

become ambidextrous, and perform explorative and exploratory activities simultaneously

in different organizational units (e.g., Benner and Tushman 2003, Tushman and O’Reilly

1996). Units that engage in exploitation build on existing knowledge and extend existing

products and services. Units that engage in exploration pursue new knowledge and

develop new products and services. Therefore, structural differentiation is a proposed

mechanism for organizations to build an ambidextrous organization (Benner and

Tushman 2003, Tushman and O’Reilly 1996). Structural differentiation refers to the

131

subdivision of organizational tasks into distinct organizational units that develop

appropriate contexts for explorative and exploratory activities. However, the coordination

and integration of explorative and exploratory activities is a necessary step in achieving

ambidexterity (Jansen et al. 2009, Gilbert 2006, Smith and Tushman 2005, Tushman and

O’Reilly 1996). Cross-functional interfaces have been proposed as an integration

mechanism to enable knowledge exchange between exploitative and exploratory units

(Jansen et al. 2009, Gupta and Govindarajan 2000).

4.2.1. Open Source Software Development

Software maintenance is defined as the modification of a software product after

delivery to correct faults, to improve performance or other attributes, and to enhance the

product by adapting it to a modified environment (Banker and Slaughter 2000, Banker et

al. 1998, IEEE 1983). Thus, a software product is improved by correcting faults or

enhanced by adding new features based on user requirements.

Raymond (1999) indicated that the different nature of software development

process for proprietary and OSS vendors leads to two fundamentally different software

development styles: the cathedral model for proprietary vendors and the bazaar model for

OSS vendors (Raymond 1999). Software development involves knowledge work and its

most important resource is the specialized skills and expertise that a developer brings to

the project development (Espinosa et al. 2007, Roberts et al. 2004, Faraj and Sproull

2000). Proprietary software is developed in a more closed environment and, hence,

proprietary software development is characterized by a relatively strong control of design

and implementation (Raymond 1999). In contrast, OSS vendors mainly depend on

voluntary contributions of software developers and, hence, OSS products are developed

132

in the collective manner beyond the boundaries of a single organization (Raymond 1999).

Therefore, OSS development depends on contributions and collaboration of volunteer

software developers (Liu and Iyer 2007, Feller and Fitzgerald 2002). The network of

developers becomes more important for OSS projects and offers various benefits. First,

collaboration among software developers can facilitate access to and sharing of resources,

allowing developers to combine their knowledge, skills, and expertise. Second, new

insights, ideas or ways to solve problems are conceived by any one and accessed by

others. This leads to increase the performance of developer teams to find a solution for

developing patches or to add new features.

Given the benefits of voluntary contributions of software developers for OSS

development, the impact of network structure of OSS developer network (Singh et al.

2011, Singh 2010, Grewal et al. 2006) and the formation of OSS developer teams (Hahn

et al. 2008) have been intensively studied. Recent studies showed that the network

structure of OSS developers significantly affects OSS project success (Singh et al. 2011,

Singh 2010, Grewal et al. 2006).

4.2.2. Open Source Software Collaboration Network

In social network literature, an affiliation network is a special kind of network

which depends on the affiliation between two groups (Wasserman and Faust 1994).

Therefore, an affiliation network has two-modes. The first mode is a set of actors such as

developers. The second mode is a set of events such as OSS projects to which the actors

belong. The term affiliation refers to membership or participation to events. Therefore,

actors are related to each other through their joint affiliation with or their co-membership

to events. Events are also related to each other through common actor(s).

133

OSS software development is a community-based model which involves

collaboration among software developers. OSS developers may work on multiple projects

concurrently. Thus, OSS developers belong to multiple projects. A co-membership

relationship exists between two developers if they work together on the same projects.

Similarly, a relationship between two projects also exists if they share some developer(s).

This kind of relationships between developers and projects can be represented by an

affiliation network. In OSS network, actors are developers, and events are projects.

4.2.3. Ambidextrous Organization through Exploitation and Exploration Networks

March (1991) modeled two general situations involving the development and use

of knowledge in organizations: the exploitation of old certainties and the exploration of

new possibilities. The first is the case of mutual learning between members of an

organization. The second is the case of learning and competitive advantage in

competition for primacy. Exploitation includes things such as refinement, choice,

production, efficiency, selection, implementation, and execution (March 1991). In

contrary, exploration includes things captured by terms such as search, variation, risk

taking, experimentation, play, flexibility, discovery, and innovation (March 1991).

According to Benner and Tushman (2003), exploitation represents activities that involve

improvements in existing components and build on the existing technological trajectory.

Exploitation is incremental innovations and designed to meet the needs of existing

customers or markets (Benner and Tushman 2003). It broadens existing knowledge and

skills, improves established designs, and expands existing products and services. Hence,

exploitation builds on existing knowledge and reinforces existing skills, processes, and

structures (Benner and Tushman 2002, Levinthal and March 1993, Lewin et al. 1999). In

134

contrast, exploration represents activities that involve a shift to a different technological

trajectory and changes the organizational competencies. Exploration is radical

innovations and designed to meet the needs of emerging customers or markets (Benner

and Tushman 2003). It offers new designs, creates new markets. Thus, exploration

requires new knowledge or departures from existing knowledge (Benner and Tushman

2002, Levinthal and March 1993).

For March (1991), exploitation and exploration represent the fundamentally

incompatible and inconsistent activities. Exploitation creates a narrow range of deeper

solutions and more distinctive competences in the short-run, which comes at the cost of

long-term performance since exploitation results in the convergence of ideas by

eliminating the differences (March 1991). In contrary, exploration creates a wide range of

undeveloped new ideas and too little distinctive competence in the long-term, which

comes at the cost of short-term performance (March 1991). Moreover, exploitation is

related to efficiency, centralization, and tight cultures while exploration is associated with

flexibility, decentralization, and loose cultures, (Benner and Tushman 2003).

While exploration and exploitation represent two fundamentally different

approaches to organizational learning, recent studies on organizational literature have

stressed the importance of a balance between exploitation and exploration for

organizational survival (Benner and Tushman 2003, Siggelkow and Levinthal 2003,

O'Reilly and Tushman 2004, Tushman and O’Reilly 1996, Levinthal and March 1993).

This view is supported by research on absorptive capacity which argues that although

internal knowledge processing and external knowledge acquisition are both necessary,

excessive dominance by one or the other will be dysfunctional (Cohen and Levinthal

135

1990). Consistent with March (1991)’s model of organizational learning, Narayanan et al.

(2009) examined the impacts of task specialization and task variety on the performance

of software maintenance teams. Task specialization is defined as the cumulative

experience at a specific task while task variety is defined as exposure to experience that is

dispersed across distinct tasks (Narayanan et al. 2009). They indicate that task

specialization and task variety affect the performance of software maintenance teams

through different mechanisms. However, task specialization and task variety jointly drive

the performance of software maintenance teams, thereby achieving a proper balance

between task specialization and task variety leads to the highest performance (Narayanan

et al. 2009).

The balanced view of exploitation and exploration is embedded in the concept of

ambidextrous organizations. Ambidextrous organizations are composed of structurally

differentiated exploitative and exploratory units (Benner and Tushman 2003, Siggelkow

and Levinthal 2003, O'Reilly and Tushman 2004, Tushman and O’Reilly 1996, Levinthal

and March 1993). Structural differentiation is a proposed mechanism for organizations to

build an ambidextrous organization (Benner and Tushman 2003, Tushman and O’Reilly

1996). Structural differentiation refers to “the state of segmentation of the organizational

system into subsystems, each of which tends to develop particular attributes in relation to

the requirements posed by its relevant external environment” (Lawrence and Lorsch

1967). In other words, structural differentiation refers to the subdivision of organizational

tasks into distinct organizational units that develop appropriate contexts for exploitation

and exploration activities. Structural differentiation establishes differences across

organizational units in terms of mindsets, time orientations, functions, and

136

product/market domains (Lawrence and Lorsch 1967). Structural differentiation can help

ambidextrous organizations to maintain multiple competencies that address paradoxical

demands (Gilbert 2005). Structural differentiation protects ongoing operations in

exploitative units from interfering with emerging competences being developed in

exploratory units (Jansen et al. 2009). Therefore, exploitation and exploration activities

can be achieved without corrupting the internal structures and processes within each

unit’s area of operation. Distinct organizational units can develop the best viable

solutions (i.e., exploitation), while still ensuring to explore new ideas (i.e., exploration)

(Fang et al. 2010). In this approach, organizational units pursuing exploration are smaller,

more decentralized, and more flexible than those responsible for exploitation (Benner and

Tushman 2003, Christensen 1998, Tushman and O’Reilly 1996). Therefore, structural

differentiation helps ambidextrous organizations to be capable of simultaneously

exploiting existing competencies and exploring new opportunities (Raisch et al. 2009).

Jansen et al. (2009) recognize organizational ambidexterity as a dynamic

capability that refers to the routines and processes by which ambidextrous organizations

mobilize, coordinate, and integrate contradictory efforts, and allocate, reallocate,

combine, and recombine resources and assets across differentiated exploitative and

exploratory units. Although the structural differentiation of exploitative and exploratory

activities is important to achieve organizational ambidexterity, ambidextrous

organizations also need to facilitate collective action (O’Reilly and Tushman 2004,

Jansen et al. 2009). This view is supported by O’Reilly and Tushman (2007) who argue

that the crucial task is not the simple organizational structural design in which

exploitative and exploratory units are separated, but the processes through which these

137

units are integrated in a value enhancing way. The structural differentiation of

exploitation and exploration activities may lead to distinct organizational capabilities and

competences (March 1991, Gilbert 2006). However, distinct capabilities and

competences developed within each unit must be effectively allocated, mobilized, and

integrated to generate new combinations (Sirmon et al. 2007). Therefore, the coordination

and integration of exploitative and exploratory units is a necessary step in achieving

ambidexterity (Gilbert 2006, Tushman and O’Reilly 1996, Jansen et al. 2009). Recent

research on organizational literature recognizes different types of integration mechanisms

such as cross-functional interfaces (Jansen et al. 2009, Jansen et al. 2006, Lawrence and

Lorsch 1967). Cross-functional interfaces are the cross-functional team of common

organizational members from both exploitative and exploratory units (Jansen et al. 2009).

In the similar concept, Koza and Lewin (1998) extended March’s (1991) concepts

into the strategic alliance literature to explore the balance between exploitative and

explorative alliances. For example, exploitative alliances are built on a firm’s aim to

leverage existing capabilities and competencies (Rothaermel and Deeds 2004). However,

exploratory alliances are built on a firm’s desire to discover new opportunities, build new

competencies, and adapt to environmental changes (Koza and Lewin 1998). The concept

of ambidexterity in alliance formation has been conceptualized in several ways. Lavie

and Rosenkopf (2006) identified three dimensions of ambidexterity: function-based,

structure-based, and attribute based dimensions. Structure based dimension based on the

network structure. For example, Lin et al. (2007) measured ambidexterity based on the

network structure of alliances.

138

4.2.4. Social Network and Team Structure

Software development is a highly interdependent task and requires team members

to interact with each other intensively to produce a successful system (He et al. 2007).

Therefore, interactions among team members are necessary activities to transform team

members’ knowledge to team knowledge that increase the project success (He et al.

2007). However, the nature of OSS development characterized by volunteer contribution

of software developers poses challenges in coordination among developers (Espinosa et

al. 2007, Roberts et al. 2004, Banker et al. 2006). Coordination is the process of

managing dependencies among activities (Malone and Crowston 1994). When the

activities of multiple individuals need to interrelate, the interdependencies among

activities should be well managed (Espinosa et al. 2007). Espinosa et al. (2007) indicated

that when software is produced from multiple locations, it becomes more difficult to

manage dependencies among activities and to coordinate developers, which increases the

development time. Therefore, the coordination among developers becomes important for

project success in software development.

He et al. (2007) created a model of the formation and evolution of team cognition

and analyzed the impacts of preexistent and ongoing collaboration ties on the formation

of team cognition in software project teams. Team cognition refers to the mental models

collectively held by a group of individuals that enable them to accomplish tasks by acting

as a coordinated unit (He et al. 2007). Team cognition helps software project teams

effectively manage their members’ knowledge, expertise, and skills as integrated assets

(He et al. 2007, Espinosa et al. 2007). Team cognition is created by both preexisting

conditions and ongoing team interactions. Preexisting conditions reflect both the prior

139

knowledge of team members and any previous shared experiences that team members

have. Team interactions refer to the interactive activities that members perform to carry

out project tasks and facilitate team performance. He et al. (2007) showed that the

positive relationship between team performance and team cognition. Similarly, Hahn et

al. (2008) studied the impact of prior collaboration ties on OSS collaboration team

formation mechanisms and on OSS project success. They indicated that team cohesion is

related to preference for repeat collaborations and results from prior relationships

between developers to benefit from prior relationships. Team members also tend to

interact more frequently with other members with whom they share some type of

proximity or similarity (Rosenkopf and Almeida 2003, Rosenkopf and Nerkar 2001).

In social network literature, social capital is defined as resources embedded in

social networks, and resources that can be accessed or mobilized through social ties in the

networks (Coleman 1988, Lin 2005). Through social ties, an actor may capture other

actors’ resources. These social resources can generate a return for the actor. In addition,

because of the facilitative role of network structure, relationships among actors in a

network are described as network resources (Gulati 1999). Recent studies also indicated

that the position of a team in a network affects team outcomes (Singh et al. 2011, Singh

2010, Zaheer and Bell 2005, Reagans and Zuckerman 2001, Jansen et al. 2006, Schilling

and Phelps 2007, Rosenkopf and Almeida 2003, Rosenkopf and Nerkar 2001).

In social network literature, there are two contradictory perspectives about the

form of network structures: the internal focus or social closure perspective (Coleman

1988) and the external focus or structural holes perspective (Burt 1992). From Coleman

(1988)’s social closure perspective, the optimal social structure is one generated by

140

building dense, interconnected networks. Social closure inside a group indicates the

presence of relationships or the absence of structural holes within a group, and is thought

to foster identification with the group (Reagans and Zuckerman 2001) and a level of

mutual trust, which facilitates exchange and collective action (Coleman 1988). Social

closure enables the convergence of individual interests to pursuit common initiatives and

to facilitate mutual coordination (Reagans and Zuckerman 2001). From Burt (1992)’s

structural holes perspective, constructing networks consisting of disconnected alters is the

optimal strategy. Structural holes perspective focuses value derived from bridging gaps

(i.e., structural holes) between nodes in a social network (Burt 1992). This boundary

spanning structure generates information benefits since information tends to be relatively

redundant within a given group (Burt 1992). As a result, actors who develop ties with

disconnected groups gain access to a broader range of ideas and opportunities than those

who have restricted access to single group (Granovetter 1973). Although prior research

on social network analysis indicated the trade-off between two contradictory

perspectives, these two perspectives do not conflict with one another (Reagans and

Zuckerman 2001). While the social closure perspective highlights the importance of the

presence of relationships in local interactions (i.e., internal cohesion), the external focus

perspective highlights information benefits created by structural holes that divide a social

network globally (i.e., external cohesion).

Ahuja (2000) studied the impact of social network structures on innovation in

terms of direct ties, indirect ties, and structural holes. The debate on structural holes

suggests that an accurate understanding of the role of structural holes in the collaboration

network must account for both Coleman's and Burt's variants of the argument (Ahuja

141

2000). Similarly, direct and indirect ties may vary in their content, which highlights the

importance of decomposing the firm's ego network into distinct and separate elements

and identifying the contents transmitted through each type of tie (Ahuja 2000). According

to Ahuja (2000), network ties are associated with two distinct kinds of network benefits.

First, they can provide the benefit of resource sharing, allowing firms to combine

knowledge, and skills. Second, collaborative linkages can provide access to knowledge

spillovers, serving as information conduits through which news of technical

breakthroughs, new insights to problems, or failed approaches travels from one firm to

another. In distinguishing between the resource-sharing and knowledge-spillover benefits

of collaboration, it is important to distinguish between know-how and information (Kogut

and Zander 1992). Know-how entails accumulated skills and expertise in some activity.

Information refers primarily to facts that can be transmitted through communication

(Kogut and Zander 1992, Szulanski 1996). The resource-sharing benefits of collaboration

relate primarily to the transfer and sharing of know-how while the knowledge-spillover

benefits are likely to involve predominantly information. Ahuja (2000) found that direct

and indirect ties both have a positive impact on innovation but that the impact of indirect

ties is moderated by the number of a firm's direct ties. Direct ties potentially provide both

resource sharing and knowledge spillover benefits. However, indirect ties do not entail

formal resource sharing benefits but can provide access to knowledge spillovers.

Structural holes influence both resource sharing and access to novel information (Ahuja

2000). Structural holes have both positive and negative influences on innovation.

Specifically, increasing structural holes has a negative effect on innovation, so the

optimal structure of networks depends on the objectives of the network members.

142

Zaheer and Bell (2005) examined the impact of the network structure on the

performance and innovativeness of companies by focusing on the external connectivity

constructed as structural holes. They highlight the importance of connections to external

sources for innovativeness. Zaheer and Bell (2005) found that firms bridging structural

holes are more innovative and perform better than other firms. They also indicated that

the internal connectiveness enables firms to further exploit the ideas obtained from

external resources.

Jansen et al. (2006) focused on the differences of exploration and exploitation,

and examined the impact of internal cohesion and centralization on exploitation and

exploration. They found that internal connectedness within teams positively affects the

performance of exploitation and exploration teams while centralization negatively affects

exploration teams. However, Balkundi and Harrison (2006) indicated that teams that are

central in their inter-group network tend to perform better.

Schilling and Phelps (2007) examined the impact of clustering on the innovative

output of firms that are members of the network. Innovation is characterized as a process

in which solutions are discovered via search process that leads to the creation of new

knowledge or the novel recombination of known elements of knowledge, problems, or

solutions (Fleming 2001). Schilling and Phelps (2007) indicated the positive association

between clustering and innovation output.

Rosenkopf and Nerkar (2001) studied the impact of organization and technology

domain on subsequent technological development. They stressed the importance of

knowledge internally acquired from the similar technology domains on exploitation, and

the importance of knowledge externally acquired from the distinct technology domains

143

on exploration. In other words, organizations can develop more distinctive competence

and becomes more expert in their current domain if they focus on their current

organizational domain and the similar technological areas. Distinctive competences can

improve the performance of developer teams on exploitation (March 1991, Rosenkopf

and Nerkar 2001). In contrast, organizations can develop more diverse and less

distinctive competence if they focus on their external organizational domain and the

distinct technological areas. More diverse and less distinctive competence can improve

the performance of developer teams on exploration (March 1991, Rosenkopf and Nerkar

2001). Lazer and Friedman (2007) on their agent-based simulation model of information

sharing found that a network that maintains diversity is better for exploration than other

networks, supporting a more thorough search for solutions in the long run.

Social network analysis (Wasserman and Faust 1994) has been used in a variety

of contexts to study the relationship between social entities. Based on the findings of

social network research (Gnyawali and Madhavan 2001, Ahuja 2000, Uzzi 1999, Uzzi

1997, Uzzi 1996, Watts and Strogatz 1998, Krackhardt 1998, Wasserman and Faust

1994, Burt 1992, Coleman 1988, Freeman, 1979, Granovetter 1973), organizational

research (Schilling and Phelps 2007, Hansen 2002, Hansen 1999, Reagans and

Zuckerman 2001), and OSS development research (Singh et al. 2011, Singh 2010, Singh

et al. 2007, Grewal et al. 2006), structural properties of the networks are used to analyze

the network. Many structural properties of these networks could have multiple social

network measures. For example, there are different types of internal cohesion measures

(clustering coefficient, repeat ties, third party ties, and structural equivalence), external

connectivity measures (external cohesion, direct ties, indirect ties, and technological

144

diversity), and network location measures (degree centrality, betweenness centrality, and

closeness centrality).

4.3. Theoretical Background and Hypotheses

In software development literature, software product after delivery is improved by

correcting faults or enhanced by adding new features based on user requirements (Banker

and Slaughter 2000, Banker et al. 1998, IEEE 1983). Therefore, we identified two types

of OSS project activities: patch development and feature request. Patch development

activities are used to correct faults in software while feature request activities are used to

enhance software by adding new features. In organizational literature, exploitation and

exploration have been identified as two types of activities for the development and use of

knowledge in organizations (March 1991). Combining findings of organizational

literature and software development literature, we propose that OSS project activities can

be classified as implementation-oriented (exploitation) and innovation-oriented

(exploration). In the context of OSS development, developing a patch would be an

example of an exploitation activity. Requesting a new software feature would be an

example of an exploration activity.

Prior research indicates that different types of tasks require different

communication patterns and different amount of communication based on characteristics

and nature of a task (Katz and Tushman 1979). A task can differ along several

dimensions including time span, specific vs. general problem orientation, and the

generation of new knowledge vs. using existing knowledge (Katz and Tushman 1979).

This is consistent with the view of March (1991) who has suggested that exploitation and

exploration represent fundamentally incompatible and inconsistent activities. For

145

example, exploitation represents activities that improve existing organizational

competencies and build on the existing technological trajectory. Therefore, exploitation

broadens existing knowledge and skills, improves established designs, and expands

existing products and services. In contrast, exploration represents activities that changes

the organizational competencies and build on a different technological trajectory.

Therefore, exploration requires new knowledge, offers new designs, and creates new

products and services. In addition, exploitation is related to efficiency, centralization, and

tight cultures while exploration is associated with flexibility, decentralization, and loose

cultures (Benner and Tushman 2003). Therefore, exploitation and exploration require

different organizational structures (Benner and Tushman 2003, Levinthal and March

1993). Different organizational structures for exploitation and exploration enable

exploitative teams to develop the best viable solutions, and enable exploratory teams to

explore new ideas (Fang et al. 2010). In addition, software is a knowledge product

(Slaughter et al. 2006) and critical inputs to the software development are skills and

experience of developers (Li et al. 2010). Therefore, each project activity could require

different types of expertise and network structures.

While exploitation and exploration are fundamentally incompatible and

inconsistent activities (March 1991), recent research on organizational literature has

stressed the importance of a balance between exploitation and exploration for

organizational survival (Benner and Tushman 2003, Tushman and O’Reilly 1996). The

balance between exploitation and exploration is embedded in the concept of

ambidextrous organizations. Ambidextrous organizations are composed of structurally

differentiated exploitative and exploratory units (Benner and Tushman 2003, Siggelkow

146

and Levinthal 2003, O'Reilly and Tushman 2004, Tushman and O’Reilly 1996, Levinthal

and March 1993). However, the coordination and integration of exploitative and

exploratory activities is a necessary step in achieving ambidexterity (Jansen et al. 2009,

Gilbert 2006, Smith and Tushman 2005, Tushman and O’Reilly 1996). Ambidextrous

organizations may use cross-functional interfaces (Jansen et al. 2009, Gupta and

Govindarajan 2000) such as ambidextrous developers as an integration mechanism

between exploitative activities (patch development) and exploratory activities (feature

request). In this dissertation, we studied the effects of ambidexterity and coordination

mechanisms (ambidextrous developers) on OSS project performance. We also studied the

effects of social network properties of OSS developers on OSS project performance.

4.3.1. Ambidexterity

Structural differentiation is a proposed mechanism for organizations to build an

ambidextrous organization (Benner and Tushman 2003, Tushman and O’Reilly 1996).

Structural differentiation establishes differences across organizational units in terms of

mindsets, time orientations, functions, and product/market domains (Lawrence and

Lorsch 1967). Therefore, structural differentiation can help project teams to develop and

maintain different competencies that are required for patch development and feature

request activities (Gilbert 2005). Structural differentiation protects ongoing operations in

patch development activities from interfering with emerging competences being

developed in feature request activities. Patch development and feature request activities

can be achieved without corrupting the internal structures and processes within each

unit’s area of operation. The structural differentiation of patch development and feature

request activities may lead to distinct organizational capabilities and competences within

147

each unit (March 1991, Gilbert 2006). However, these differentiated competences must

be effectively allocated, mobilized, coordinated, and integrated to achieve ambidexterity

(Sirmon et al. 2007). The important task in building ambidextrous organization is not the

simple organizational structural design in which patch development and feature request

activities are separated, but the processes by which these units are integrated in a value

enhancing way. Therefore, the coordination and integration of patch development and

feature request activities is a necessary step to achieve ambidexterity (Gilbert 2006,

Tushman and O’Reilly 1996, Jansen et al. 2009).

We identified a new category of developers (ambidextrous developers) in OSS

projects who contribute to exploitative activities (patch development) and exploratory

activities (feature request). We propose that ambidextrous developers are an integration

mechanism between patch development and feature request activities. Ambidextrous

developers facilitate knowledge exchange and combination between patch development

and feature request activities (Kogut and Zander 1992, Jansen et al. 2009). Through

combination and integration of differentiated skills and experiences, project teams are

able to synchronize, maintain, and further build portfolios of patch development and

feature request activities simultaneously (Tushman et al. 2006). Ambidextrous developers

facilitate new value creation through linking knowledge developed by patch development

and feature request teams (Cohen and Levinthal 1990). They also provide opportunities

to leverage common resources and obtaining synergies across patch development and

feature request activities (O’Reilly and Tushman 2007). In this way, knowledge

developed by patch development teams may be revisited, reinterpreted, and applied in

feature request teams, or vice versa (Garud and Nayyar 1994, Postrel 2002).

148

Ambidextrous developers facilitate other team members to reach a common frame of

reference and to build understanding and agreement (Daft and Lengel 1986, Egelhoff

1991). Ambidextrous developers also resolve differences across patch development and

feature request teams to overcome disagreement over organizational goals (Daft and

Lengel 1986). We develop a theoretical construct for project ambidexterity based on the

concept of ambidextrous developers. We construct ambidexterity as a measure of the

ability of OSS projects to pursue both patch development and feature request activities

concurrently.

Consistent with March (1991)’s model of organizational learning, Narayanan et

al. (2009) examined the impacts of task specialization and task variety on the

performance of software maintenance teams. Task specialization and task variety

represent fundamentally contradictory perspectives. Task specialization refers to gaining

cumulative experience from a specific task (Narayanan et al. 2009). In contrast, task

variety refers to gaining diverse experience from a variety of different tasks (Narayanan

et al. 2009). Consistent with Narayanan et al. (2009), we argue that ambidextrous

developers are project developers who gain diverse experience from a variety of different

tasks since they work on both patch development and feature request activities

concurrently. In contrast, we argue that non-ambidextrous developers are project

developers who are specialized in a specific task (either patch development or feature

request activities).

Project teams can gain more and deeper experience from specializing in one task

because the task becomes more routine and developers become more familiar with the

task (Narayanan et al. 2009). Specialized experience can improve project teams’ ability to

149

understand, enhance, and modify the source code through different mechanisms

(Narayanan et al. 2009). First, the experience gained from previous tasks is transferred to

perform the current task. Second, the experience gained from previous tasks is applied to

make further adjustments in the way of performing the current task. Third, the experience

gained from previous tasks enables project teams to better learn from the current task.

Therefore, the higher level of experience gained from a focused task increases project

performance.

Project teams can gain diverse knowledge from different types of tasks

(Narayanan et al. 2009). First, diverse knowledge can improve project teams’ ability to

better delineate knowledge that is more relevant to the current task from knowledge that

is less relevant (Narayanan et al. 2009). Therefore, it prevents situations in which project

teams spend time and effort in mastering new knowledge that is not really useful to the

current task. For example, project teams can better understand the various patterns of

software elements, and the interdependency and relationships of software elements. It

may provide project teams with a better appreciation of the software product itself and

the functionality of software elements. Therefore, project teams can make more informed

inferences regarding the source code with limited examination of the specific software

elements that is being worked on. Second, diverse knowledge allows project teams to

make correlations between tasks, and then apply them to solve a broader range of

problems (Narayanan et al. 2009). For example, when project teams work across different

tasks, they can develop rules regarding how to solve problems with underlying common

remedies. This knowledge may enable them to use preexisting solutions to known

150

problems. Furthermore, exposure to other tasks can help them better anticipate and avoid

problems when working within a given task.

Task specification and task variety represent the fundamentally contradictory

perspectives. Task specification is associated with gaining cumulative experience from a

specific task (Narayanan et al. 2009). In contrast, task variety is associated with gaining

diverse experience from a variety of different tasks (Narayanan et al. 2009). Therefore,

there is a trade-off between task specialization and task variety. However, Narayanan et

al. (2009) indicated that task specialization and task variety jointly drive the performance

of software maintenance teams, and achieving a proper balance between task

specialization and task variety leads to the highest performance. Excessive exposure to

task variety without adequate opportunity to specialize can lead to a lot of shallow

learning that ultimately does not enhance the performance (Narayanan et al. 2009). In

contrast, overspecialization on a small set of tasks can reduce the ability of project teams

to absorb and integrate new knowledge that will ultimately lead to higher performance

(Narayanan et al. 2009). Therefore, we argue that ambidextrous developers have access

to diverse knowledge from a different task types, and exchange and integrate greater

amounts of knowledge among other project developers. On the other hand, non-

ambidextrous developers specialize in a specific type of task, and they may benefit from

knowledge exchanged by ambidextrous developers applying to a specific task type. We

argue that a moderate level of ambidexterity enables project teams to access diverse

knowledge from different types of tasks, and to exchange relevant knowledge within a

project team, while ensuring adequate specialization to absorb and integrate new

knowledge. This leads us to the following hypothesis:

151

H1: A moderate level of ambidexterity results in higher project performance rather

than very high or very low levels of ambidexterity.

4.3.2. Internal Cohesion

OSS development mainly depends on voluntary contributions of software

developers and OSS products are developed in the collective manner (Raymond 1999).

OSS development process is characterized by the lack of a relatively strong control of

design and implementation (Raymond 1999) and the lack of face-to-face communication

(Singh et al. 2011). Therefore, OSS teams require constructive environment to foster

trust, reciprocity norms and shared identity, and to improve collaboration and cooperation

among developers (Singh et al. 2011).

Internal cohesion increases the information transmission capacity of a team

(Schilling and Phelps 2007). First, internal cohesion improves access to information since

the same information is available via multiple paths (Schilling and Phelps 2007).

Information introduced into a team will quickly reach other team members through

multiple paths. Multiple paths also enhance the fidelity of information received.

Developers can compare information received from multiple partners, helping them to

identify whether it is distorted or incomplete (Schilling and Phelps 2007). Second,

internal cohesion makes information exchange meaningful and useful (Schilling and

Phelps 2007). It can increase the dissemination of alternative interpretations of problems

and their potential solutions, deepening the shared understanding and stimulating

collective problem solving. Shared knowledge develops over time from prior familiarity

with the product being developed and team members (Espinosa et al. 2007, He et al.

2007). Shared knowledge improves coordination among team members because it

152

enables team members to develop more accurate explanations and expectations about

tasks and other team members (Espinosa et al. 2007) because prior interactions enable

developers to acquire information about skills and capabilities of other developers

(Granovetter 1985) and who knows what (Faraj and Sproull 2000). In addition, shared

knowledge of problems and solutions enhances further learning (Schilling and Phelps

2007). Third, internal cohesion can make developers more willing and able to improve

information exchange and cooperation among team members by fostering trust,

reciprocity norms, and shared identity (Coleman 1988, Uzzi and Spiro 2005, Adler and

Kwon 2002, Levin and Cross 2004, Hansen 1999, Ahuja 2000). Enhanced trust,

reciprocity norms, and shared identity results in a high level of cooperation and

collaboration by providing self-enforcing informal governance mechanisms (Schilling

and Phelps 2007). Fourth, internal cohesion fosters group identification which enables the

convergence of individual interests to pursuit common initiatives and to facilitate mutual

coordination (Reagans and Zuckerman 2001). Fifth, internal cohesion also helps

developers to develop team cognition which promote team coordination (Espinosa et al.

2007, He et al. 2007). Team cognition refers to the mental models collectively held by a

group of individuals that enable them to accomplish tasks by acting as a coordinated unit

(He et al. 2007). Thus, team cognition helps developer teams effectively manage team

members’ knowledge, expertise, and skills as integrated assets (He et al. 2007, Espinosa

et al. 2007).

Internal cohesion results in a high level of cooperation and collaboration among

team members. By improving the information transmission capacity of a team, it also

enables to exchange and integrate greater amounts of information and knowledge more

153

rapidly. Internal cohesion allows project developers to develop a deep understanding to

further refine and improve existing products, and processes (Rowley et al. 2000).

Therefore, we argue that internal cohesion is positively related to the performance of a

project11. This leads us to the following hypothesis:

H2: The performance of a project will be positively related to the internal cohesion of

a project.

4.3.3. External Connectivity

Although the internal cohesion of a project team provides various benefits in

terms of trust and information transmission capacity, project developers have access to

external resources from external relationships to other developers outside of a project

team. The structure and type of these relationships affect the ability of project developers

to acquire various types of information that potentially affect the success of a project

(Singh et al. 2011). By following prior research, we focus on the external network

structure (the cohesion of external connections), types of external connections (direct ties

and indirect ties) and technological characteristics of external connections that affect the

diversity of external knowledge available to a focal project.

External connections are associated with two distinct kinds of information

benefits (Ahuja 2000). First, they can provide the benefit of resource sharing which

allows teams to combine knowledge, and skills acquired from outside teams. Second,

they can provide access to knowledge spillovers which serves as information conduits

through which news of technical breakthroughs, new insights to problems, or failed

approaches acquired from outside project teams. Although direct ties potentially provide

11 Prior research hypothesized that a moderate level of internal cohesion results in higher project

performance rather than very high or very low levels of internal cohesion (Singh et al. 2011). However,
their results did not prove it.

154

both resource sharing and knowledge spillover benefits (Ahuja 2000), they more likely

provide redundant information (Hansen 1999). However, indirect ties do not provide

resource sharing benefits but can provide access to knowledge spillovers. Therefore,

information provided by indirect ties is novel information (Hansen 1999). On the other

hand, external cohesion provides both resource sharing and knowledge spillovers benefits

(Ahuja 2000). Although how external contacts are connected with each other affects

types of information, the characteristics of the external contacts may also affect the

diversity of knowledge. External contacts with different technological expertise are more

likely to provide novel information and knowledge.

4.3.3.1. External Cohesion

External cohesion is the cohesion among the external contacts of a project (Singh

et al. 2011). External cohesion is based on the idea of a structural hole which means the

absence of a connection between two developers who are connected to the common third

parties. Therefore, structural holes are defined as gaps in information flows between

actors connected to the same actor but not directly connected to each other (Burt 2000). A

structural hole separates developers on either side of the hole and creates the brokerage

opportunities for those developers to obtain information from disconnected developers

(Burt 1992). Therefore, structural holes provide both resource sharing and knowledge

spillovers benefits (Granovetter 1973).

External cohesion basically measures the extent to which external contacts of a

project are connected to each other. If external contacts of a project are highly connected

with each other (high external cohesion or low structural holes), a project is highly

constrained to have access to novel information since too much cohesion results in

155

homogenization of information and external contacts of a project may have relatively

redundant information (Burt 2004, Burt 1992, Granovetter 1973). However, high external

cohesion also enhances trust, reciprocity norms, and shared identity (Coleman 1988, Uzzi

and Spiro 2005, Adler and Kwon 2002, Levin and Cross 2004). High external cohesion

also improves access to external resources by enhancing information transmission

capacity of the network since the same information is available via multiple paths

(Schilling and Phelps 2007). Multiple paths also enhance the fidelity of the information

received (Schilling and Phelps 2007). In contrast, if external contacts of a project are not

connected with each other (low external cohesion or high structural holes), a project have

access to novel information from remote parts of the network such as other disconnected

project groups (Burt 1992). Therefore, the level of cohesion among the external contacts

of a project determines the diversity of knowledge acquired from external contacts.

OSS network is made up of distinct developer teams in which developers are

highly connected with each other within each project team, but weakly connected to other

developers across other project teams (Singh 2010). Project teams tend to be

heterogeneous across a network in terms of the knowledge they possess and produce

because each team started with the different initial conditions (Fang et al. 2010).

Therefore, external resources provide new knowledge, ideas, and insights (Rosenkopf

and Almeida 2003).

Knowledge is developed through combinations of existing and new knowledge

(Kogut and Zander 1992). The process of sharing ideas with other projects that have

novel information is to generate new knowledge, rather than merely exchanging existing

information (Nahapiet and Ghoshal 1998). This idea is consistent with the idea put forth

156

by March (1994) that projects connected to other projects that have novel information

may replicate innovative ideas and generate more new ideas which can be used to

introduce new and innovative products. A project whose external contacts are not highly

connected has access to new knowledge, ideas, and insights from disconnected external

projects (Burt 2004, Burt 1992) and they are able to develop new knowledge through

knowledge recombination (Rosenkopf and Almeida 2003). Therefore, a project whose

external contacts are not highly connected is able to develop new understandings not

possible to those whose external contacts are highly connected (Zaheer and Bell 2005).

Combining diverse knowledge from other projects (different technology areas) also

enhances the capacity for creative learning (Fleming 2001, Kogut and Zander 1992,

Reagans and Zuckerman 2001). Therefore, project teams that acquire knowledge from

unique parts of their network improve their performance. This view is supported by

Zaheer and Bell (2005) that actors bridging structural holes have been frequently shown

to perform better than other actors not so positioned.

Aforementioned discussions indicate that the impact of external cohesion on

resource sharing benefits is opposite to knowledge spillover benefits (Ahuja 2000).

Resource sharing benefits arise from the sharing and combination of knowledge and

skills acquired from outside project teams (Ahuja 2000, Uzzi 1997, Walker et al. 1997).

The development of mutual trust and shared norms are preconditions for successful

resource sharing (Coleman 1988, Uzzi and Spiro 2005, Adler and Kwon 2002, Levin and

Cross 2004). Without mutual trust and shared norms, the sharing and combination of

knowledge and skills are difficult and unproductive (Coleman 1988). High external

cohesion enhances mutual trust and shared norms (Coleman 1988, Uzzi and Spiro 2005,

157

Adler and Kwon 2002, Levin and Cross 2004). High external cohesion also improves

access to external resources by enhancing information transmission capacity of the

network through multiple paths (Schilling and Phelps 2007). Multiple paths also enhance

the fidelity of the information received (Schilling and Phelps 2007). However, high

external cohesion limits the ability of a project to have access to novel information since

too much cohesion results in homogenization of information and external contacts of a

project may have relatively redundant information (Burt 2004, Burt 1992, Granovetter

1973). In contrast, knowledge spillover benefits arises from access to novel information

in the forms of information conduits through which news of technical breakthroughs, new

insights to problems, or failed approaches acquired from outside project teams (Ahuja

2000, Uzzi 1997, Walker et al. 1997). Low external cohesion enables a project to have

access to novel information (Burt 1992), but reduces mutual trust and shared norms

among the external contacts of a project, thereby hinder the transmission of knowledge

(Coleman 1988). Therefore, there is a trade-off between resource sharing and knowledge

spillover benefits of external cohesion. We argue that a moderate level of external

cohesion enables project teams to develop mutual trust and shared norms, and to enable

successful resource sharing, while ensuring access to relatively diverse knowledge from

external resources which enables knowledge spillover. This leads us to the following

hypothesis:

H3: A moderate level of external cohesion results in higher project performance

rather than very high or very low levels of external cohesion.

158

4.3.3.2. Direct Ties

Direct ties in a social network potentially provide both resource sharing and

knowledge spillover benefits (Ahuja 2000). First, direct ties enable knowledge sharing.

When developers collaborate to develop a technology, the resultant knowledge is

available to all developers. Thus, each developer can potentially receive a greater amount

of knowledge from a collaborative activity than it would obtain from a comparable

research investment made independently (Ahuja 2000). Second, collaboration facilitates

bringing together complementary skills from different developers. By accessing to

complementary skills from different developers, a project team can enhance their own

knowledge base and improve their performance. In addition, direct ties among two

developers imply opportunities for repeat interactions (Singh et al. 2011). Repeat

interactions allow for resource pooling and joint problem solving (Kogut and Zander

1992). However, over time, repeated interactions using the same direct ties are more

likely provide redundant information to a focal team (Hansen 1999). Hence, the

knowledge spillover effect could decrease over time. Thus, the resource sharing benefit

of direct ties is more likely greater than knowledge spillover benefit. Direct ties allow

developers to combine knowledge and skills using repeating interactions (Kogut and

Zander 1992). Repeated interactions through direct ties allow for resource pooling and

joint problem solving (Kogut and Zander 1992) which do not decrease due to repeated

interactions. Therefore, we argue that the number of direct ties is positively related to the

performance of a project. This leads us to the following hypothesis:

H4: The performance of a project will be positively related to the number of direct

ties of a project.

159

4.3.3.3. Indirect Ties

External connection can be a channel of communication between developers

through indirect contacts (Ahuja 2000). An indirect tie between two developers exists

when two developers do not work together but can be reached through mutual partners.

Therefore, indirect ties provide developers with access not just to knowledge held by

their immediate partners but also to knowledge held by their partner's partners (Gulati

and Garguilo 1999). However, indirect ties are distant and infrequent relationships

(Granovetter 1973). Therefore, they are less likely to provide opportunities for repeat

interactions and they are not as conducive to resource pooling as direct ties (Singh et al.

2011). They provide access to novel information by bridging otherwise disconnected

developers (Granovetter 1973). Indirect ties can provide access to knowledge spillovers

(Ahuja 2000), serving as information conduits through which news of technical

breakthroughs, new insights to problems, or failed approaches travels from one developer

to another (Ahuja 2000). Information provided by indirect ties is more likely novel

information (Hansen 1999). Organizations develop knowledge through combinations of

existing and new knowledge (Kogut and Zander 1992). Novel information provided by

indirect ties can be useful to develop knowledge through knowledge recombination

(Rosenkopf and Almeida 2003). Combining diverse knowledge enhances the capacity for

creative learning (Fleming 2001, Kogut and Zander 1992, Reagans and Zuckerman

2001). Therefore, we argue that the number of indirect ties is positively related to the

performance of a project. This leads us to the following hypothesis:

H5: The performance of a project will be positively related to the number of indirect

ties of a project.

160

4.3.3.4. Direct and Indirect Tie Interaction

The degree to which a focal team benefits from indirect ties is contingent on the

number of direct ties of a focal team (Ahuja 2000). Project teams with few direct ties are

more likely to have greater benefits from their indirect ties than project teams with many

direct ties (Ahuja 2000). The relative addition to knowledge through indirect ties is

greater for teams with few direct ties than for teams with many direct ties (Ahuja 2000).

For teams with limited access to the network through direct ties, information provided by

indirect ties may represent a significant increment to a focal team’s existing information

base. Therefore, we argue that project teams with many direct ties are more likely to add

to less knowledge to their existing information base through their indirect ties than teams

with few direct ties. This leads us to the following hypothesis:

H6: The impact of indirect ties on the performance of a project will be moderated by

the number of direct ties of a project: the greater the number of direct ties, the

smaller the benefit from indirect ties.

4.3.3.5. Technological Diversity

Although how external contacts are connected with each other affects types of

information, the characteristics of external contacts may also affect the diversity of

knowledge since they may vary in terms of technological areas (Rosenkopf and Nerkar

2001). External contacts in different technological areas are more likely to provide novel

information and knowledge (Fleming 2001, Kogut and Zander 1992).

There is the trade-off between two contradictory perspectives in terms of the

effect of diversity on team performance (Reagans and Zuckerman 2001). According to

the first perspective, diversity provides creative learning benefits. In contract, according

161

to the second perspective, diversity creates coordination problems. Recent studies

indicated that combining diverse knowledge from different technology areas has a

positive impact on team performance (Fleming 2001, Kogut and Zander 1992).

Therefore, teams which draw their members from different technological areas perform

better since team members have different technical skills and expertise (Reagans and

Zuckerman 2001). These teams enhance their capacity for creative learning since diverse

ideas provide alternative ways of thinking, more options for creating new combinations

which enhance both problem solving and innovation (Reagans and Zuckerman 2001).

However, diversity introduces social divisions that hinder effective teamwork (Reagans

and Zuckerman 2001) or create tensions among team members (Pfeffer 1983). Therefore,

homogeneous teams may be expected to perform better since they can coordinate their

members more easily than diverse teams (McCain et al. 1983, O'Reilly et al. 1989,

Zenger and Lawrence 1989). However, the performance of homogeneous teams is

restricted by relatively redundant information of team developers (Ancona and Caldwell

1992, Pelled et al. 1999). In addition, teams vary widely in their capability to develop,

understand, or use knowledge based on their technological base and their prior

knowledge (Cohen and Levinthal 1990). Absorptive capacity of teams reflects their

ability to exploit novel knowledge (Zahra and George 2002) and determines their ability

to utilize and benefit from novel and unfamiliar ideas (Cohen and Levinthal 1990).

Teams can recognize and absorb knowledge close to their existing knowledge base

(Cohen and Levinthal 1990). When teams seek to expand their knowledge base, the

resultant search processes are restricted to familiar and proximate areas (Rosenkopf and

Almeida 2003). Therefore, we argue that a moderate level of technological diversity

162

enables project teams to access diverse knowledge from different technological areas and

provide creative learning benefits, while ensuring to absorb and integrate new knowledge

as well as to eliminate coordination problems. This leads us to the following hypothesis:

H7: A moderate level of technological diversity results in higher project performance

rather than very high or very low levels of technological diversity.

4.3.4. Network Location

Centrality is defined as the extent to which an actor occupies a central position in

the network (Wasserman and Faust 1994). Developers who are more active in the

network act as a central actor in the network and are viewed as major channels of

information in the network (Singh et al. 2011, Singh et al. 2007). High centrality enables

greater amounts of information and knowledge to be exchanged and integrated more

rapidly. First, high centrality allows developers to have a broad range of knowledge,

including an understanding where such knowledge is located and how to obtain it

(Hansen 2002), which is unavailable to peripheral developers (Lin et al. 2007). Central

developers occupy a structurally advantageous position to see a more complete picture of

all the alternatives available in the network than the peripheral developers, so they have a

broad range of opportunities unavailable to those in the periphery (Lin et al. 2007). A

central developer has access to unique knowledge, including an understanding where

such knowledge is located and how to obtain it (Hansen 2002). With such information,

centrality enables a developer to make better decisions (Balkundi and Harrison 2006).

Second, high centrality also allows developers to have quick access to knowledge in the

network (Uzzi 1997, Powell and Smith-Doerr 1994). High centrality also allows

developers to rapidly disseminate knowledge in the network (Powell and Smith-Doerr

163

1994). Third, high centrality allows developer to control (Wasserman and Faust 1994,

Pfeffer and Salancik 1978), and regulate information flow among other developers

(Wasserman and Faust 1994, Krackhardt 1996), dispensing what is needed to other team

members (Balkundi and Harrison 2006). Thus, high centrality enhances a developer’s

ability to be central to the flow of information and resources in the network. Therefore,

we argue that the centrality of a project is positively related to the performance of a

project. This leads us to the following hypothesis:

H8: The performance of a project will be positively related to the centrality of a

project.

4.3.5. Network Location of Ambidextrous Developers

Ambidextrous developers facilitate knowledge exchange and combination among

other developers (Kogut and Zander 1992, Jansen et al. 2009). We assume that

ambidextrous developers play an integration role by speeding up information flow and

allowing information and knowledge to be exchanged and integrated more rapidly among

other developers. Ambidextrous developers also play a control role to control and

regulate information flow among other developers. A node in a structurally advantageous

position in the network tends to receive benefits of information exchange and control

(Burt 1992). Centrality measures the extent to which an actor occupies a central position

in the network (Wasserman and Faust 1994). Therefore, central developers are viewed as

major channels of information in the network (Singh et al. 2011, Singh et al. 2007). High

centrality enables greater amounts of information and knowledge to be exchanged and

integrated more rapidly. Central developers occupy a central position in the flow of

information and resources in the network, which allows them to control and regulate

164

information flow among other developers. First, high centrality allows developers to have

a broad range of knowledge, including an understanding where such knowledge is

located and how to obtain it (Hansen 2002), which is unavailable to peripheral developers

(Lin et al. 2007). Central developers occupy a structurally advantageous position to see a

more complete picture of all the alternatives available in the network than the peripheral

developers, so they have a broad range of opportunities unavailable to those in the

periphery (Lin et al. 2007). A central developer has access to unique knowledge,

including an understanding where such knowledge is located and how to obtain it

(Hansen 2002). With such information, centrality enables a developer to make better

decisions (Balkundi and Harrison 2006). Second, high centrality also allows developers

to have quick access to knowledge in the network (Uzzi 1997, Powell and Smith-Doerr

1994). High centrality also allows developers to rapidly disseminate knowledge in the

network (Powell and Smith-Doerr 1994). Therefore, high centrality more likely improves

an integration role of ambidextrous developers by speeding up information flow and

allowing information and knowledge to be exchanged and integrated more rapidly among

other developers. Third, high centrality allows developer to control (Wasserman and

Faust 1994, Pfeffer and Salancik 1978), and regulate information flow among other

developers (Wasserman and Faust 1994, Krackhardt 1996), dispensing what is needed to

other team members (Balkundi and Harrison 2006). Therefore, high centrality enhances

ambidextrous developers’ ability to be central to the flow of information and resources in

the network. High centrally more likely improves a control role of ambidextrous

developers to control and regulate information flow among other developers. Therefore,

165

we argue that the centrality of ambidextrous developers is positively related to the

performance of a project.

The centrality of ambidextrous developers may be higher when they work on

more projects. Thus, high centrality may imply that ambidextrous developers are working

on more projects and may be exposed to too much information. However, individuals

have the cognitive limitations to learning (Simon 1991). Exposure to too much

information may lead to cognitive overload and poorer performance, which results in

lower performance (Jansen et al. 2006). If ambidextrous developers are exposed to too

much information, they may spend much time and effort to deal with overloaded

information, which reduces their learning and performance (Narayanan et al. 2009).

Therefore, we argue that the impact of the centrality of ambidextrous developers on the

performance of a project will be moderated by the number of projects on which

ambidextrous developers work. This leads us to the following hypothesis:

H9: The performance of a project will be positively related to the centrality of

ambidextrous developers.

H10: The impact of the centrality of ambidextrous developers on the performance of

a project will be moderated by the number of projects on which ambidextrous

developers work: the greater number of projects on which ambidextrous developers

work, the lower impact of the centrality of ambidextrous developers on the

performance of a project.

166

4.4. Data

4.4.1. Data Sources and Collection

OSS network data required for this study has been collected from the SourceForge

database (SourceForge.net). The SourceForge database is the primary repository for OSS

projects and accounts for about 90% of all open source projects (Singh et al. 2011).

Although all OSS projects are not hosted at the SourgeForge database and there are other

OSS hosting websites such as BerliOS Developer and GNU Savannah, the SourgeForge

database is the largest OSS development and collaboration website (Xu et al 2005). It can

be considered as the most representative of the OSS community because the large

number of projects and developers registered the SourgeForge database (Singh et al.

2011, Grewal et al. 2006, Xu et al 2005). Researchers analyzing issues related to OSS

development phenomenon have predominantly used SourceForge data (Singh et al. 2011,

Singh 2010, Singh 2007, Grewal et al 2006). The SourceForge database provides storage

space and services to OSS projects in order to organize and coordinate software

development activities by providing project web servers, trackers, mailing lists,

discussion boards, and software releases (Xu et al 2005). This database contains software

for download as well as statistics related to OSS projects. Researchers can create database

programs to download statistics that are of interest.

Our research objective is to study the effect of social network properties of OSS

developers and ambidexterity on project performance. Therefore, we need to collect

affiliation network data in order to construct the network of OSS developers. Given a set

of projects and developers, there are two methods to collect affiliation network data:

Snowball method and Whole network method (Hanneman and Riddle 2005). The whole

167

network method yields maximum information, but it can also be difficult to execute while

the snowball method yields considerably less information about network structure, but it

is often less difficult to implement (Hanneman and Riddle 2005).

The snowball method begins with a focal actor or set of actors. Then, all the

actors connected to a focal actor or set of actors are tracked down. The snowball process

continues until no new actors are identified, or a large enough number of observations is

collected for analysis. However, there are major potential limitations of the snowball

method (Hanneman and Riddle 2005). First, actors who are not connected (i.e. actors in

different components) are not reached through this method. The snowball method may

tend to overstate the connectedness and solidarity of populations of actors based on the

starting actors and their connectivity to other actors. Therefore, there is no guaranteed

way of finding all of the connected individuals in the population.

The whole network method requires that we collect information about each

developer's ties with all other developers. Because we collect information about ties

between all developer-project pairs, full network data give a complete picture of relations

in the population (Hanneman and Riddle 2005). Whole network data is necessary to

properly define and measure many of the structural concepts of network analysis

(Hanneman and Riddle 2005). Whole network data also allows for very powerful

descriptions and analyses of social structures (Hanneman and Riddle 2005). However,

whole network data can also be very difficult to collect. The data collection task is made

more manageable by determining an appropriate boundary around the network since the

whole network method examines actors that are regarded as bounded social collectives

(Marsden 2005, Singh et al. 2011). This is the predominant method used in situation

168

where an appropriate network boundary is established. Prior studies on OSS development

used software development platforms called project foundries as a network boundary.

Project foundries are mainly built on programming languages, thereby project foundry

and programming language are similar concepts. For example, Singh et al. (2011) used

participation in Python foundry (uses Python programming language) and Grewal et al.

(2006) used participation in Perl foundry (uses Perl programming language) as a network

boundary. However, foundry data associated with OSS projects was not available at the

SouceForce database after 2005. Therefore, there is no way for us to associate projects

with foundries.

We used the whole network method to collect affiliation network data and

selected the C programming language as a network boundary. The selection of the C

programming language as a network boundary is acceptable for several reasons. First, it

is the system implementation language for the UNIX operating system and UNIX/Linux

operating system is dominant in OSS community (Subramanian et al. 2009). Second, it is

one of the preferred languages of OSS developers for codes that require portability, need

faster processing, have real-time requirements, or are tightly coupled to the UNIX/Linux

kernel (Subramanian et al. 2009). Third, developers who are familiar with the

programming language are able to understand the source code easily (Subramanian et al.

2009), thereby more efficient knowledge sharing may be possible within a project or

across projects written in the same programming language. Fourth, we analyzed the

number of projects and associated developers across programming languages and found

that the C language is in the top three languages used by the large number of software

developers at SourgeForge.

169

Data collection started by identifying developer-project pairs since OSS

developers may work on multiple projects simultaneously if they are members of

different project teams. A relationship exists between any two developers if they are

members of different project teams and consequently work together on the same project.

These kinds of relationships between developers and projects can be represented by an

affiliation network (Wasserman and Faust 1994). Affiliation data for projects and

developers has been collected from the SourceForge database for projects registered from

January 1999 to December 2008 at the SourceForge website. We have set December

2008 as a cutoff date for our study for several reasons. First, constructing a network and

calculating a variety of social network measures are extremely computation intensive

especially for larger networks. We used social network software (UCINET) (Borgatti et

al. 2002) to perform calculations and wrote our own code when required to construct a

network as well as to perform some calculations. We analyzed the number of developers

for projects written in the C language for each year from 2003 to 2011. We found that

networks (especially project developers’ network used in Chapter 4) have large number

of developers (≥15,000) after December 2008 as shown in Table 14. This results in

extremely large networks that are challenging to process with UCINET. Second, the first

data snapshot of the SourceForge database is available for January 2003. The difference

between our cutoff date and the first data snapshot date of the SourceForge data is 5 years

which provides sufficient variation in network characteristics. Third, we had a concern

for data availability of our dependent variables (the number of versions) because the

SourceForge database provides data for our dependent variables until December 2008.

170

TABLE 14: Project Statistics across Years

Years Number of Projects Number of Developers
Jan 31, 2003 741 4,371
Dec 31, 2004 1,271 6,999
Dec 31, 2005 1,532 8,400
Dec 31, 2006 1,830 9,935
Dec 31, 2007 2,117 11,330
Dec 31, 2008 2,374 12,665
Dec 31, 2009 2,515 14,933
Dec 31, 2010 2,608 15,564
Dec 31, 2011 2,665 15,950

In order to identify developer-project pairs, we identified all projects that match

following criteria. First, we included the projects which are written in the C language (our

network boundary). Second, we excluded projects which have neither patch nor feature

request activities in order to ensure the calculation of project ambidexterity. Prior

research also indicated that a large proportion of projects hosted at the SourceForge

database show no activity (Singh et al. 2011, Singh 2010, Chengalur-Smith and Sidorova

2003). These projects would be dead nodes in the network and the relationships involving

them would not facilitate any knowledge transfers or spillovers (Singh et al. 2011).

Therefore, including such projects in the network may lead to misleading results. By

following prior research (Singh et al. 2011, Singh 2010), we excluded those projects. If a

project has neither patch nor feature request activities, we considered those projects as

inactive because we assume that they showed no sign of activity since their inception

until December 2008. Third, among the projects matching previous criteria, we selected

the projects whose patch development and feature request activities have been

successfully closed. In this way, our data collection procedure is the consistent with our

data collection procedure in Chapter 3. This is important since project ambidexterity is

calculated based on ambidextrous developers identified in Chapter 3. For the projects that

171

match our criteria, we identified the developers who joined to projects. This allows us to

collect affiliation network data (developer-project pairs) and construct an affiliation

network for projects.

4.4.2. Network Construction

OSS network data analyzed in this study is the affiliation data between developers

and projects. Social network of the OSS community is represented by an affiliation

network such as a two-mode network based on a developer-project pair. However, in

order to analyze the structure of OSS networks, we need a one-mode network at the

developer level. Therefore, we construct a project network in two steps.

We construct an affiliation network for projects based on the developer-project

pairs. In this affiliation network, the actors are unique developers, and the events are

projects. A relationship exists between two developers if they work together on the same

project. Figure 5 illustrates the process of developer affiliation network construction. In

Figure 5a, each project has its own set of developers. A square node represents a unique

project and a circular node represents a unique developer. A link between any two

developers exists if they work on the same project. Figure 5b shows the developer

network for individual projects. However, some developers (D5 and D10) work on more

than one project simultaneously. Thus, they belong to more than one project team and

they are used to connect the individual teams in the network as shown in Figure 5c

(which shows the network of developers across projects). In Figure 5c, a node represents

a unique developer.

A binary adjacency matrix (the matrix P) of affiliation networks represents the

relationships between projects and developers in the network in Figure 6a. The adjacency

172

matrix of affiliation networks lists unique developers across multiple projects. A row

represents developers, and a column represents projects. When a developer belongs to a

project, the corresponding matrix element gets a value of one, and zero otherwise. The

transpose (the matrix PT) of an adjacency matrix of affiliation networks represents the

relationships between projects and developers in the network in Figure 6b. A row

represents projects, and a column represents developers. We converted two-mode

network data to one-mode network data by multiplying an adjacency matrix (the matrix

P) of affiliation networks with the dot product of the transpose (the matrix PT) of an

adjacency matrix of affiliation networks expressed as follows:

 [3]

An adjacency matrix (the matrix XP) of a project network represents the

relationships between any two developers in Figure 6c. The row and the column represent

unique developers. A value of one or more corresponding to the pair of two developers in

the network indicates a presence of a relationship between them, and a value of zero

indicates the absence of relationship. The adjacency matrix is undirected because

relationship among two developers is mutual. We converted all values greater than one to

one which simply indicates a presence of a relationship between two developers. This

final adjacency matrix is our final network which is used in our analysis. The final

network includes 2,374 projects and 12,665 developers.

173

FIGURE 5: OSS Network Construction at the Project Level

P =

1 2 3
1

2

3

4

5

6

7

8

9

10

11

12

13

14

1 0 0

1 0 0

1 0 0

1 0 0

1 1 0

0 1 0

0 1 0

0 1 0

0 1 0

0 1 1

0 0 1

0 0 1

0 0 1

0 0 1

a) Two-Mode Adjacency Matrix of Projects and Developers

FIGURE 6: Matrix Representations of OSS Project Network at the Project Level

174

PT =

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1

b) Transpose of Two-Mode Adjacency Matrix of Projects and Developers

XP =

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1

2

3

4

5

6

7

8

9

10

11

12

13

14

1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 2 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 1 2 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1 1 1

c) One-Mode Adjacency Matrix of OSS Projects

FIGURE 6: Cont'd

4.5. Variable Definitions and Operationalization

4.5.1. Dependent Variables

Our theoretical background and associated hypotheses rely on the effect of social

network properties of OSS developers and ambidexterity on project performance. Recent

studies on OSS project performance measured OSS project performance in terms of the

technical performance of a project which represents the rate of knowledge creation by a

project (Singh et al. 2011, Singh 2010, Greval at al. 2006), and the commercial

175

performance of a project (Singh 2010, Greval at al. 2006). We measured the technical

performance (knowledge creation) of OSS projects with two types of dependent

variables. First, by following the prior research on OSS project performance, we

measured the technical performance of OSS projects with the Concurrent Versions

System (CVS) which commonly used in the OSS literature (Singh et al. 2011, Singh

2010, Grewal et al. 2006, Rai et al. 2002). Second, we measured the technical

performance of OSS projects with the Subversion System (SVN). CVS and SVN are

commonly used Source Code Management (SCM) tools to manage and track changes in

software source code (SourceForge.net). The number of the CVS commits and SVN

commits are our technical performance measures. Although we did not expect two types

of technical performance measures, in the data collection, we found that there are two

types of technical performance measures. Therefore, we focused on the technical

performance of a project. The commercial performance model is the topic of future

research since significant time involves collecting and analyzing data for the commercial

performance of a project.

4.5.1.1. Technical Performance of a Project

Based on Grant (1996)’s knowledge-based theory, a project is a structure to turn

team members’ knowledge into products. Therefore, software is a knowledge product

(Slaughter et al. 2006) and the amount of knowledge created by a project measures the

performance of a project (Singh et al. 2011). The dependent variable should represent the

amount of knowledge created by a project.

Extant research on software development has suggested the use of modification

requests (MR’s) as a measure of the rate of knowledge creation by a project that follows

176

an incremental software development approach (Singh et al. 2011, Singh 2010, Boh et al.

2007, Grewal et al. 2006). The MR measure represents the addition of new functionality

as well as the modification or repair of old functionality (Singh et al. 2011). In OSS

development literature, the CVS and SVN commit transactions measure a basic addition

of functionality similar to that taken into account by the MR measure in a commercial

development environment (Mockus et al. 2002). Therefore, the MR measure is equivalent

to CVS and SVN commits (Van Antwerp and Madey 2008).

Software developers use the CVS and SVN to manage the software development

process. The CVS and SVN enable project teams to store source code at a central

location, thus enabling team members to retrieve the source code to make changes. The

CVS and SVN also help project teams to keep track of every change, including what was

changed, when it was changed, and who made the change, and help in blending changes

made by different developers, including ensuring that developers do not accidentally

overwrite each other’s alterations. CVS and SVN commits occur when a developer

uploads the altered source code file, and the CVS and SVN tool updates the changed files

automatically.

Recent studies on OSS development have used CVS commits as a measure of the

technical performance of a project, and have not use SVN commits since the SVN is

relatively new (Van Antwerp and Madey 2008). After the SVN has been made available,

the adoption of the SVN was widespread throughout the OSS community and many

projects have migrated from the CVS to the SVN (Van Antwerp and Madey 2008).

Therefore, many projects have used the CVS in their first years and then started using the

SVN by migrating from the CVS to the SVN. The CVS and SVN may not be used in

177

parallel mode because this potentially creates difficulties for projects to track the same

changes in different systems. Projects may use the CVS and SVN for different modules

of their projects. Therefore, the same file (changes in source code) may not be submitted

to both systems. The overlapping between the CVS and SVN commits is very low. Based

on our assumptions, the marginal error to use the CVS and SVN commits as a combined

measure may be very low.

As CVS and SVN commits reflect changes to source code, we used the number of

CVS commits as well as the sum of CVS and SVN commits (combined score) as

measures of the technical performance of a project (the rate of knowledge creation by a

project). These measures of the technical performance of a project are consistent with the

literature on information system success (DeLone and McLean 1992). Recent studies

which are closely related to our study have used the number of CVS commits as a

measure of the technical performance of a project (Singh et al. 2011, Singh 2010, Grewal

et al. 2006, Rai et al. 2002).

4.5.2. Independent Variables

Based on the finding of organizational literature (Jansen et al. 2009, Gupta and

Govindarajan 2000), we identified a new category of developers (ambidextrous

developers) in OSS projects. We develop a new theoretical construct for OSS project

ambidexterity based on the concept of ambidextrous developers.

Social network analysis (Wasserman and Faust 1994) has been used in a variety

of contexts to study the relationship between social entities. Structural properties of the

networks are used to analyze the network. Many structural properties of these networks

could have multiple social network measures. For example, there are different types of

178

internal cohesion measures (clustering coefficient, repeat ties, third party ties, and

structural equivalence), external connectivity measures (external cohesion, direct ties,

indirect ties, and technological diversity), and network location measures (degree

centrality, betweenness centrality, and closeness centrality). Consistent with previous

studies on social network research (Gnyawali and Madhavan 2001, Ahuja 2000, Uzzi

1999, Uzzi 1997, Uzzi 1996, Watts and Strogatz 1998, Krackhardt 1998, Wasserman and

Faust 1994, Burt 1992, Coleman 1988, Freeman, 1979, Granovetter 1973), organizational

research (Schilling and Phelps 2007, Hansen 2002, Hansen 1999, Reagans and

Zuckerman 2001), and OSS development research (Singh et al. 2011, Singh 2010, Singh

et al. 2007, Grewal et al. 2006), we categorized our social network variables into three

categories: internal cohesion, external connectivity, and network location. In the

following section, we describe our variables used in this study along with the

construction of their measures.

4.5.2.1. Ambidexterity

Recent research on organizational performance has realized the importance of

ambidexterity and begun to study ambidexterity based on perceptual (survey) data in the

context of formal organizations (Jansen et al. 2009, Jansen et al. 2006, Jansen et al. 2005,

Lin et al. 2007). These studies have used ambidexterity as a measure of the ability of

organizations to pursue both exploitative and exploratory activities concurrently.

Based on the finding of organizational literature (Jansen et al. 2009, Gupta and

Govindarajan 2000), some developers are expected to be members of teams involved in

exploitative activities (patch development) and members of teams involved in exploratory

activities (feature request). Consistent with the finding of organizational literature, we

179

identified a new category of developers (ambidextrous developers) in OSS projects who

are members of teams involved in exploitative activities (patch development) and

members of teams involved in exploratory activities (feature request), and contribute to

both types of OSS activities. We develop a theoretical construct for project ambidexterity

based on the concept of ambidextrous developers. We assume that the contribution of

ambidextrous developers to patch development activities is independent from their

contribution to feature request activities, or vice versa.

We measured project ambidexterity as the percentage of ambidextrous developers

in a project. We calculated ambidexterity for a project as follows. First, we identified

ambidextrous developers from their memberships to exploitative activities (patch

development) and exploratory activities (feature request) for each project in Chapter 3.

Second, for each project, we identified project developers from their memberships to

projects. Third, we calculated the percentage of ambidextrous developers in a project as a

measure of ambidexterity for a project. Therefore, the measure of ambidexterity ranges

from 0 to 1. A high score of project ambidexterity indicates a project is mostly consisted

of ambidextrous developers rather than non-ambidextrous developers. The square of

ambidexterity is also included as an independent variable to capture the curvilinear

relationship as hypothesized in Hypothesis 1.

4.5.2.2. Internal Cohesion

We measured internal cohesion for a project with clustering coefficient, repeated

ties, third party ties, and structural equivalence (Jaccard similarity and correlation

similarity).

180

Clustering Coefficient: The clustering coefficient captures the degree to which the

overall network contains localized pockets of dense connectivity (Watts and Strogatz

1998, Watts 1999). The clustering coefficient mainly measures the extent to which two

related developers share a relationship with a common third.

We measured the clustering coefficient for a project by following Watts and

Strogatz (1998). For each project developer, we calculated the clustering coefficient (see

Appendix B for the calculation of clustering coefficient). We took an average of each

project developer’s clustering coefficient over all the project developers to calculate a

measure of the clustering coefficient for a project.

The clustering coefficient lies strictly in the range from 0 to 1. The value of 1

indicates that all developers in the network share a direct relationship with each other.

That means each developer is directly connected to all other developers in the network,

which results in extreme clustering. In contrast, the value of 0 indicates that any two

connected developers do not share a relationship with a common third. A high score of

the clustering coefficient indicates greater clustering.

Repeat Ties: Repeated collaboration among project members captures the strength

of interpersonal connections among team members (Uzzi 1996, Uzzi 1999, Singh et al.

2011). Strong interpersonal connections indicate the presence of repeat collaborations

among project members (Uzzi 1997). As developers interact more frequently, the

strength of the collaborative tie increases, and they develop more closer and cohesive

relationships (Granovetter 1973, Hansen 1999). Team members rely on repeated ties

developed through joint participation in past teams because they are motivated to

continue to work with those with whom they have collaborated in the past (Hahn et al.

181

2008). Repeated ties from past interactions may result in greater trust and knowledge for

developers (Uzzi and Spiro 2005).

We measured the number of repeated ties for a project by following Singh et al.

(2011). We counted the total number of projects on which each pair of project developers

have worked together. We divided this number by the total number of pairs that exist in a

project to calculate a measure of repeat ties for a project. A high score of repeat ties

indicates that project developers have worked together on several projects.

Third Party Ties: Third party ties support direct relationships and imply that a

project team is composed of developers who work with many of the same collaborators

(Szulanski 1996, Coleman 1988, Singh et al. 2011). Third part ties are important for the

existence of effective norms and the trustworthiness in social structures (Coleman 1988).

Similarly, the concept of simmelian ties are the same with third party ties (Krackhardt

1998). Two people are simmelian tied to one another if they are reciprocally and strongly

tied to each other and to another one in common (Krackhardt 1998). Simmelian ties

enhance the conflict resolution and group norms (Krackhardt 1998).

We measured the number of third party ties for a project by following Singh et al.

(2011). We counted the total number of third party ties of all pairs of project developers

around the members of a project team (besides the focal team members). We divided this

number by the total number of pairs that exist in a project to calculate a measure of third

party ties for a project. A high score of third party ties indicates that project developers

have worked together with other developers on several projects.

Structural Equivalence: The structural equivalence measures to the extent to

which two actors have identical relationships to all other actors, i.e. they jointly occupy

182

the structurally equivalent position in the network (Wasserman and Faust 1994). Thus,

the structural equivalence is a pair-level measure of how similar the actors’ network

patterns are. Structurally equivalent actors have a similar pattern of relationships to other

actors in the network (Wasserman and Faust 1994, Gnyawali and Madhavan 2001).

Structurally equivalent actors tend to have similar profiles and behaviors (Gnyawali and

Madhavan 2001). Structurally equivalent actors tend to interact with similar others in

similar ways, which results in similar attitudes, resources, and behaviors (Gnyawali and

Madhavan 2001). Therefore, structurally equivalent actors may have similar asset,

information, and resources (Gnyawali and Madhavan 2001).

We measured the structural equivalence for a project with two measures: Jaccard

similarity, and Correlation similarity (Wasserman and Faust 1994). Jaccard similarity

measures the similarity of the relationships of two developers by comparing the size of

the overlap against the size of the relationships of two developers (Wasserman and Faust

(1994). Correlation similarity measures the similarity of the relationships of two

developers by calculating Pearson’s correlation of the relationships of two developers

(Wasserman and Faust (1994). Correlation similarity measures the strength of the

relationship between two developers and it is based on the similarity in pattern of ties

whereas Jaccard similarity accounts for the identity of ties between two developers.

We calculated Jaccard similarity and correlation similarity as follows. We

calculated the total of Jaccard similarity and correlation similarity of all pairs of project

developers. We divided these numbers by the total number of pairs that exist in a project

to calculate measures of Jaccard similarity and correlation similarity for a project. Jaccard

similarity and correlation similarity lie strictly in the range from 0 to 1. A value of one

183

represents perfect structural equivalence whereas a value of zero represents no structural

equivalence. A high score of structural equivalence indicates that project developers

worked with many of the same developers.

4.5.2.3. External Connectivity

We measured external connectivity for a project with external cohesion, direct

ties, indirect ties, and technological diversity.

External Cohesion: We measured the external cohesion with Burt’s (1992)

network constraint. Network constraint measures the extent to which a project member’s

external contacts share relationships with each other.

We calculated the external cohesion for a project as follows. For each project

developer, we calculated the network constraint (see Appendix B for the calculation of

external cohesion). We took an average of each project developer’s network constraint

over all the project developers to calculate a measure of the network constraint for a

project. Higher values of external cohesion indicate that external contacts of a project are

more directly connected with each other, which indicates greater external cohesion. In

contrast, lower values of external cohesion indicate that external contacts of a project are

less directly connected with each other, which indicates smaller external cohesion. The

square of the external cohesion is also included as an independent variable to capture the

curvilinear relationship as hypothesized in Hypothesis 2.

Direct Ties: We measured direct ties by following Ahuja (2000). Direct ties

measure the extent to which project members are directly connected to external contacts.

Direct ties are also associated with the capacity of a project to acquire tacit knowledge

from outside (Singh et al. 2011).

184

We calculated direct ties for a project as follows. For each project developer, we

counted the number of developers who a project developer has ties with other than the

other team members of the project. We took an average of this number over all the

project developers to calculate a measure of direct ties for a project. Higher values of

direct ties indicate that a project is more directly connected to external contacts.

Indirect Ties: Indirect ties are ties that provide access to external developers at

path distances of two or greater (local project developers’ partner's partners), which

excluded direct ties. Indirect ties measure the extent to which project members are

indirectly connected to external partner's partners. Indirect ties are also associated with

the capacity of a project to acquire explicit knowledge from outside (Singh et al. 2011).

We used two measures for indirect ties. The first measure is the number of

indirect ties. For each project developer, we counted the number of developers with

whom a project developer does not have a direct tie but can reach through others (at path

distances of two or greater, which excluded direct ties). We took an average of this

number over all the project developers to calculate a measure of indirect ties for a project.

This measure does not account for the weakening or decay of tie strength as

distance between two developer’s increases (Ahuja 2000). Burt (1992) provided a

frequency decay measure for indirect ties that accounts for this decline in tie strength

across distant ties (see Appendix B for the calculation of indirect ties with frequency

decay function). Thus, our second measure for indirect ties is a frequency decay measure

proposed by Burt (1992). The argument for the frequency decay function is that the rate

at which the strength of a relation decreases with the increasing length of its

corresponding path distance should vary with the social structure in which it occurs (Burt

185

1992). The larger the number of developers to which the focal project developer must

devote their time and energy, the weaker the relationship that the focal project developer

can sustain with any individual developer. Thus, decay in the strength of a relationship is

related to the number of other developers reached at each path distance.

For each project developer, we calculated a frequency decay function for indirect

ties. We took an average of this number over all the project developers to calculate a

measure of indirect ties with a frequency decay function for a project. Higher values of

indirect ties indicate that a project is more indirectly connected to external partner's

partners at path distances of two or greater. The interaction terms of the number of direct

ties with the number of indirect ties and indirect ties with frequency decay function are

also included to capture the interaction effect between direct and indirect ties as

hypothesized in Hypothesis 6.

Technological Diversity: Technological diversity measures the extent to which

two projects are different in terms of the angular distance of their technological positions.

In order to calculate the technological diversity for a project, we defined the

technological position of a project. The technological position of a project can be defined

in terms of different dimensions such as the type of the project, programming language,

user interface, and operating system (Singh et al. 2011). Each of these dimensions

represents different type of technical expertise. Project type represents the application

domain knowledge whereas the other three dimensions represent the tools knowledge and

expertise that comprise the knowledge of process, data and functional architecture (Kim

and Stohr 1998, Singh et al. 2011). The similarity of domain and tools affect the amount

of knowledge that can be reused from one project to another (Singh et al. 2011).

186

Following Jaffe (1986), we characterized a project’s technological position by a

vector Fp = (F1…Fk), where k is the total number of categories under the four dimensions,

and Fk is an indicator variable that equals to 1 if the project p falls under the category k.

A project can fall under several categories within a single dimension. Technological

diversity between the two projects p and q is then calculated by the angular separation or

uncentered correlation of their vectors (see Appendix B for the calculation of

technological diversity).

We calculate the technological diversities of all pairs of a focal project with all of

the projects with which it shares a developer. We summed these measures and divided it

by the number of projects (the total number of project pairs) to calculate a measure of

technological diversity for a project. Technological diversity lies in the range from 0 to 1.

A value of one represents the greatest technological diversity between two projects. The

square of technological diversity is also included as an independent variable to capture

the curvilinear relationship as hypothesized in Hypothesis 7.

4.5.2.4. Network Location

We measured network location for a project with network centralities: degree

centrality, closeness centrality, and betweenness centrality.

Degree Centrality: We measured the degree centrality with Freeman’s (1979)

degree centrality. Degree centrality is the measure of how many an actor is connected to

other actors in the network through direct connections (Freeman 1979, Wasserman and

Frost 1994). Degree centrality of a developer reflects the activeness of a developer in the

network. Developers who are more active in the network act as a central actor in the

187

network and are viewed as major channels of information in the network (Singh et al.

2011, Singh et al. 2007).

We calculated the degree centrality for a project as follows. For each project

developer, we calculated the degree centrality (see Appendix B for the calculation of

degree centrality). We took an average of each project developer’s degree centrality over

all the project developers to calculate a measure of the degree centrality for a project.

The degree centrality is normalized by dividing by the maximum possible degree

in the network which is that one actor is connected to all other actors in the network. This

calculation results in that the degree centrality lies in the range from 0 to 1. However,

UCINET reports the normalized degree centrality as a percentage for each node by

multiplying with 100 (Wasserman and Frost 1994). Therefore, the measure of degree

centrality for a project ranges from 0 to 100. A high score of the degree centrality

indicates a project is comprised of developers who are connected to many developers in

the network.

Betweenness Centrality: We measured the betweenness centrality with Freeman’s

(1979) betweenness centrality. Betweenness centrality is the measure of how often a

developer falls on the shortest path between pairs of other developers (Freeman 1979,

Wasserman and Faust 1994). Developers with a high betweenness centrality lie in the

shortest path of information flow between other developers. These developers can exert

control over information flow among other developers, and potentially may have some

control over the interactions between other developers (Wasserman and Faust 1994).

Thus, betweenness centrality signifies a developer’s ability to be central to the flow of

information and resources in the network. These developers can be important to the

188

network-wide information diffusion process by occupying a central position on the

shortest path between other developers in a network.

We calculated the betweenness centrality for a project as follows. For each project

developer, we calculated the betweenness centrality (see Appendix B for the calculation

of betweenness centrality). We took an average of each project developer’s betweenness

centrality over all the project developers to calculate a measure of the betweenness

centrality for a project.

The betweenness centrality is normalized by dividing by the maximum possible

betweenness in the network which is the number of pairs of actors not including a focal

actor (the maximum possible paths passing through a focal actor). This calculation results

in that the betweenness centrality lies in the range from 0 to 1. However, UCINET

reports the normalized betweenness centrality as a percentage for each node by

multiplying with 100 (Wasserman and Frost 1994). Therefore, the measure of

betweenness centrality for a project ranges from 0 to 100. A high score of the

betweenness centrality indicates a project is comprised of developers who fall on many

shortest paths between other developers.

Closeness Centrality: We measured the closeness centrality with Freeman’s

(1979) closeness centrality. Closeness centrality is the measure of how close an actor is to

all other actors in the network through direct and indirect connections (Freeman 1979,

Wasserman and Frost 1994). It basically measures the inverse of the sum of geodesic

distances between actors in the network, thereby an actor with high closeness centrality

has minimum geodesic distances to other actors. Closeness centrality signifies a

developer’s ability to reach resources in the network (Gulati and Gargiulo1999).

189

Information would have to travel over shorter distances to reach a developer who is more

central in the network (Wasserman and Faust 1994). A developer who is close to many

developers can quickly interact and communicate with them without passing through

many intermediaries (Wasserman and Faust 1994).

We calculated the closeness centrality for a project as follows. For each project

developer, we calculated the closeness centrality (see Appendix B for the calculation of

closeness centrality). We took an average of each project developer’s closeness centrality

over all the project developers to calculate a measure of the closeness centrality for a

project.

The closeness centrality is normalized by multiplying by the maximum possible

path distance in the network which is that one actor is connected to another one actor

passing through all other actors in the network. This calculation results in that the

closeness centrality lies in the range from 0 to 1. However, UCINET reports the

normalized closeness centrality as a percentage for each node by multiplying with 100

(Wasserman and Frost 1994). Therefore, the measure of closeness centrality for a project

ranges from 0 to 100. A high score of the closeness centrality indicates a project is

comprised of developers who are very close to all other developers in the network via

shortest paths.

4.5.2.5. Network Location of Ambidextrous Developers

We measured network location of ambidextrous developers for a project with

their network centralities: degree centrality, closeness centrality, and betweenness

centrality.

190

Degree Centrality of Ambidextrous Developers: We measured the degree

centrality of ambidextrous developers with Freeman’s (1979) degree centrality. Degree

centrality is the measure of how many an actor is connected to other actors in the network

through direct connections (Freeman 1979, Wasserman and Frost 1994). We calculated

the degree centrality ambidextrous developers for a project as follows. For each

ambidextrous developer, we calculated the degree centrality (see Appendix B for the

calculation of degree centrality). We took an average of each ambidextrous developer’s

degree centrality over all ambidextrous project developers to calculate a measure of the

degree centrality of ambidextrous developers for a project.

The degree centrality is normalized by dividing by the maximum possible degree

in the network which is that one actor is connected to all other actors in the network. This

calculation results in that the degree centrality lies in the range from 0 to 1. However,

UCINET reports the normalized degree centrality as a percentage for each node by

multiplying with 100 (Wasserman and Frost 1994). Therefore, the measure of degree

centrality for a project ranges from 0 to 100. A high score of the degree centrality

indicates a project is comprised of ambidextrous developers who are connected to many

developers in the network.

Betweenness Centrality of Ambidextrous Developers: We measured the

betweenness centrality of ambidextrous developers with Freeman’s (1979) betweenness

centrality. Betweenness centrality is the measure of how often a developer falls on the

shortest path between pairs of other developers (Freeman 1979, Wasserman and Faust

1994).

191

We calculated the betweenness centrality of ambidextrous developers for a project

as follows. For each ambidextrous developer, we calculated the betweenness centrality

(see Appendix B for the calculation of betweenness centrality). We took an average of

each ambidextrous project developer’s betweenness centrality over all ambidextrous

project developers to calculate a measure of the betweenness centrality of ambidextrous

developers for a project.

The betweenness centrality is normalized by dividing by the maximum possible

betweenness in the network which is the number of pairs of actors not including a focal

actor (the maximum possible paths passing through a focal actor). This calculation results

in that the betweenness centrality lies in the range from 0 to 1. However, UCINET

reports the normalized betweenness centrality as a percentage for each node by

multiplying with 100 (Wasserman and Frost 1994). Therefore, the measure of

betweenness centrality for a project ranges from 0 to 100. A high score of the

betweenness centrality of ambidextrous developers indicates a project is comprised of

ambidextrous developers who fall on many shortest paths between other developers.

Closeness Centrality of Ambidextrous Developers: We measured the closeness

centrality of ambidextrous developers with Freeman’s (1979) closeness centrality.

Closeness centrality is the measure of how close an actor is to all other actors in the

network through direct and indirect connections (Freeman 1979, Wasserman and Frost

1994).

We calculated the closeness centrality of ambidextrous developers for a project as

follows. For each ambidextrous developer, we calculated the closeness centrality (see

Appendix B for the calculation of closeness centrality). We took an average of each

192

ambidextrous developer’s closeness centrality over all ambidextrous project developers

to calculate a measure of the closeness centrality of ambidextrous developers for a

project.

The closeness centrality is normalized by multiplying by the maximum possible

path distance in the network which is that one actor is connected to another one actor

passing through all other actors in the network. This calculation results in that the

closeness centrality lies in the range from 0 to 1. However, UCINET reports the

normalized closeness centrality as a percentage for each node by multiplying with 100

(Wasserman and Frost 1994). Therefore, the measure of closeness centrality for a project

ranges from 0 to 100. A high score of the closeness centrality indicates a project is

comprised of ambidextrous developers who are very close to all other developers in the

network via shortest paths.

4.5.2.6. Number of Projects which Ambidextrous Developers Work

The number of projects is the measure of how many projects ambidextrous

developers work on. We calculated the number of projects for a project as follows. For

each ambidextrous developer, we counted the number of projects on which that

ambidextrous developer works. We took an average of this number over all ambidextrous

project developers to calculate a measure of the number of projects for a project. The

interaction terms of the number of projects with the degree, betweenness and closeness

centralities of ambidextrous developers are also included to capture the interaction effect

the number of projects and ambidextrous developers’ centralities as hypothesized in

Hypothesis 9.

193

4.5.3. Control Variables

Consistent with prior research, we included control variables in order to control

effects of factors other than independent variables. We categorized control variable into

following categories: team human capital and ability, user input and market potential,

project age, and project characteristics (Singh et al. 2011, Singh 2010, Greval at al.

2006).

Team Human Capital and Ability: We included the number of developers (project

team size) associated with a project to account for human capital actively involved in the

project.

User Input and Market Potential: Although all projects use the C programming

language, the software developed by the project team may differ in terms of market

potential and extent of user participation (Singh et al. 2011). Users often play a critical

role in the development and evolution of an open source product (Von Hippel and Von

Krogh 2003). Activities such as bug reports, bug fixes, and user support requests are

user-driven activities since bugs and support requests represent user inputs to OSS

projects (Greval at al. 2006). Bugs play an important role to identify defects in software

(SourceForge.net). Support request made by users are associated with specific questions

and offered solutions which represent the collection of feedbacks (SourceForge.net).

Following Singh et al. (2011) and Greval at al. (2006), we controlled user inputs to OSS

projects by constructing two variables: the number of support requests and the number of

bugs. The number of support requests is constructed as the cumulative number of support

requests answered. The number of bugs is constructed as the cumulative number of bugs

closed.

194

Page views directly signals the general interest of users in the project and its

market potential (Greval at al. 2006). Following Singh et al. (2011) and Greval at al.

(2006), we controlled the general interest of users in the project and its market potential

with the number of page views which is constructed as the cumulative number of project

pages viewed.

Project Life-Cycle Effects: The software life cycle may also affect the dependent

variables (the number of CVS commits and the sum of CVS and SVN commits) since the

dependent variables are more likely to increase with the age of a project (Singh et al.

2011 and Greval at al. 2006). We controlled the effect of project life-cycle on the

dependent variables with a project age which is constructed as the number of months

since a project’s inception at SourceForge by network construction date. However,

projects are more likely to see a relatively higher CVS and SVN commits rate close to the

inception of the project as compared to later stages where the complexity of the software

increases with growth, making it harder to make improvements (Singh et al. 2011). To

control for potential nonlinear effect of project age on the dependent variables, we also

included the square of the project age. This accounts for the potential complexity

associated with software as the code grows.

Project Characteristics: Following Singh et al. (2011), we construct a broad range

of variables to control the effects of software characteristics on the dependent variables.

We control for a project type, intended audience, and user interface, language, and

development status by constructing dummy variables.

The type of the project may indicate the potential market size of the software. We

controlled the type of the project with 18 measures: Communications, Database,

195

Education, Formats Protocols, Games and Entertainment, Internet, Mobile, Multimedia,

Office Business, Printing, Religion Philosophy, Scientific Engineering, Security,

Sociology, Software Development, System, Terminals, Text Editors. A project can fall

under several categories. The measure of the project type takes a value 1 if the project is

categorized under that project type and 0 otherwise.

Intended audience may influence the quality of developers that are attracted

towards a project. For example, software that is aimed towards system administrators is

likely to attract more sophisticated developers (Lerner and Tirole 2002, Roberts et al.

2006). We controlled intended audience with 7 measures: Advanced End Users,

Developers, Desktop End Users, Industry and Sector Users, Quality Engineers, System

Administrators, Other Audience. A project can fall under several categories. The measure

of intended audience takes a value 1 if the project is categorized under that intended

audience and 0 otherwise.

User interface may also have an influence on the market size of a project. For

example, software with graphical user interface is easier to use and is likely to be adopted

more widely. We controlled user interface with 7 measures: Graphical Interface,

Grouping and Descriptive Interface, Non-interactive Interface, Plugins, Textual Interface,

Toolkits Libraries, Web Based Interface. A project can fall under several categories. The

measure of user interface takes a value 1 if the project is categorized under that user

interface and 0 otherwise.

Project’s whose language is not English restrict both the number of users and

developers that can participate in it. We construct the language as a dummy variable for

196

English. The measure of the language takes a value 1 if the project language is English

and 0 otherwise.

We also controlled the development status of software. Software can be at one of

the development stage: Planning, Pre-Alpha, Alpha, Beta, Production/Stable, and Mature.

The measure of the development status of software takes a value of 1 for a planning

stage, 2 for a pre-alpha stage, 3 for an alpha stage, 4 for a beta stage, 5 for a

production/stable stage, and 6 a mature stage.

4.6. Research Methodology

Our research objective is to study the effect of social network properties of OSS

developers and ambidexterity on OSS project performance. This study also examines the

impact of coordination mechanisms (ambidextrous developers) on OSS project

performance. In order to accomplish these research objectives and test the hypothesis

developed in the previous sections, we employed the Ordinary Least Squares (OLS)

regression.

OSS network data analyzed in this study is the affiliation network data of

developers at the project level. We created a list of 2,374 projects from the SourceForge

database for projects registered from January 1999 to December 2008. One of important

issues for the OLS regression is the absence of outliers. An outlier is an observation with

large residual and the multivariate statistics such as standardized residuals can be used to

detect outliers (Tabachnick and Fidell 2007, Pedhazur 1997, Myers 1990). Standardized

residuals that exceed ±3 indicate possible outliers (Tabachnick and Fidell 2007). We

detected outliers for each individual model and then removed all observations from our

data set. We identified 14 observations as outliers, and hence they were removed from

197

our data set. We tested our hypotheses by using the final data set including 2,360

observations (projects).

The required sample size for the OLS regression depends on a number of factors

including the power (1-β), the alpha level (α), and the number of predictors (Tabachnick

and Fidell 2007, Green 1991). When the alpha (α) is set at the 0.05 level, Cohen (1988)

assumes that the risk of failure to find the beta (β) may be about four times less serious

than the risk of finding what does not exist (α). The test with the power greater than 0.80

level is considered statistically powerful at the 0.05 alpha level (Green 1991, Cohen

1988). Given the significance alpha level (α=0.05) and the power level (1-β=0.80), Green

(1991) suggested that at least N > 50 + 8m (where m is the number of independent

variables) observations are required for testing the significance of the multiple

correlation, and at least N > 104 + m observations are required for testing the significance

of the individual predictors. Tabachnick and Fidell (2007) also recommended to choose

the larger number of observations required by these two rules. In this study, we have 26

independent variables including the squares of independent variables and the interaction

terms, and 40 control variables. As explained later, we also incorporated 3 interaction

terms that are missing in the models since some independent variables may not be

observable by themselves due to the interaction effect with other variables. We have 69

variables in total. Therefore, the sample size of 2360 is considered adequate when

compared to the required sample size of 603 (50+8*69) for testing the multiple

correlation. The sample size of 2360 is also considered adequate when compared to the

required sample size of 173 (104+69) for testing the individual predictors.

198

The OLS regression assumes that the relationship between the dependent variable

and each independent variable should be linear. However, we expect the curvilinear

relationship (inverse U-shaped relationship) for some of our independent variables

(ambidexterity, external cohesion, and technological diversity), and one of our control

variables (project age). Therefore, these variables violate the linearity assumption. One of

the remedies for this violation is to add the quadratic component of these variables as an

independent variable (Myers 1990, Allison 1999). Thus, we included the squares of

ambidexterity, external cohesion, technological diversity, and project age as independent

variables in the model in order to capture the curvilinear relationship.

The OLS regression also assumes that the error term should follow the normal

distribution. We tested this normality assumption with the Kolmogorov-Smirnov and

Shapiro-Wilk tests of normality. We found that the error terms are normally distributed.

We found that the dependent variables (the number of CVS commits and the sum

of CVS and SVN commits), some of the independent variables (repeat ties, third party

ties, direct ties, indirect ties, indirect ties with frequency decay function, and the number

of projects which ambidextrous developers work) and some of control variables (the

number of support requests answered, the number of bugs closed, and the number of page

views) were not normally distributed. In such a case, the OLS regression may yield

biased parameter estimates that cannot be easily interpreted (Gelman and Hill 2007).

Therefore, as suggested by Gelman and Hill (2007), we performed a logarithmic

transformation on dependent, non-normally distributed independent and control variables.

In addition, following Singh et al. (2011), we scaled down the number of direct ties,

indirect ties, and frequency decayed indirect ties by the factor of 100 before performing a

199

logarithmic transformation. Based on a review of prior OSS literature, we identified two

types of theoretical models in terms of analyzing of OSS project performance. We term

them as the forecasting model (Singh et al. 2011 and Singh 2010) and the cumulative

model (Grewal et al. 2006). We first reviewed the forecasting model used by Singh et al.

(2011) and Singh (2010) which based on the use of a lag between network variables and

the project performance measure. For example, Singh et al. (2011) measured the

dependent variable (CVS Commits) as the number of CVS commits for a project in one

year subsequent to network construction date. Thus, the dependent variable leads the

independent variables by one year. However, the choice of network construction date is

arbitrary. In addition, they used the cumulative number of CVS commits (the presample

CVS in Singh et al. 2011) until the network construction date as a control variable in

order to gauge the prior capacities of the project teams. However, there are major

potential limitations of the forecasting model. First, network data used in the forecasting

model is based on the cumulative social network interactions of software developers. The

SourceForge database provides monthly snapshots of projects hosted at the SourceForge

website. Each monthly data snapshot includes data associated with the current month and

all previous months (from the inception date of a project). Therefore, the forecasting

model implicitly tests the effect of cumulative network characteristics on project

performance over a short future period of time, i.e., one year in Singh et al. (2011) and

Singh (2010). Second, we analyzed the number of CVS commits for each year from 2003

to 2011, and found that the distribution of CVS commits is not uniform over years. For

example, a project may perform well for some periods and may not perform well for

other periods. Therefore, forecasting for short future time periods based on long

200

cumulative performance is sensitive choice of network construction date. Therefore, the

forecasting model is vulnerable to the arbitrary selection of time for both network

structure and project performance. Third, we analyzed the correlations among the

cumulative number of CVS commits (a control variable in Singh et al. 2011), and the

number of CVS commits in a subsequent year. We found that they are highly correlated,

hence, the cumulative number of CVS commits as a control variable may suppress the

importance of other independent variables since most of the variation in CVS commits

may explained by only one variable. In other words, if a project team has performed well

over a long period of time in the past, it is more likely to perform well in the future time

period. However, past performance is not a good predictor for performance if future time

periods are short.

The second model is a cumulative model used by Grewal et al. (2006). This

model is based on the project performance measures over the life span of a project. They

measured the dependent variable (CVS Commits) as the number of CVS commits for a

project over the life span of a project until network construction date. We used the

cumulative model for several reasons. First, both network data and performance data used

in the cumulative model are based on the cumulative social network interactions of

software developers. Therefore, the cumulative model measures the cumulative

performance of resulting developer teams. At any point in time, a social network is the

result of cumulative interactions of software developers. It makes sense to measure the

cumulative effects of network structures until network construction date. The cumulative

model tests the effect of cumulative network characteristics on project performance over

a long period of time (compared to the forecasting model). Second, the cumulative model

201

is not vulnerable to the arbitrary selection of time for network construction date. Third,

the cumulative model captures the final results of social network interactions of software

developers. Fourth, the cumulative model has been used in prior research (Grewal et al.

2006).

We present multiple technical performance models. With the first set of models,

we test the impacts of independent variables on the technical performance of a project

measured with the number of CVS commits. With the second set of models, we test the

impacts of independent variables on the technical performance of a project measured with

the sum of CVS and SVN commits. These models are variants of the following models:

CVS = f (β0 + β1 Ambi + β2 SQ_Ambi + β3 CCoeff + β4 RT + β5 TPT + β6 JS + β7 CS +

β8 EC + β9 SQ_EC + β10 DT + β11 IT + β12 (DT x IT) + β13 ITFD + β14

(DT x ITFD) + β15 TD + β16 SQ_TD + β17 DC + β18 BC + β19 CC + β20

Ambi_DC + β21 Ambi_BC + β22 Ambi_CC + β23 NP + β24 (Ambi_DC

x NP) + β25 (Ambi_BC x NP) + β26 (Ambi_CC x NP))

CVS and SVN = f (β0 + β1 Ambi + β2 SQ_Ambi + β3 CCoeff + β4 RT + β5 TPT + β6 JS +

β7 CS + β8 EC + β9 SQ_EC + β10 DT + β11 IT + β12 (DT x IT) + β13

ITFD + β14 (DT x ITFD) + β15 TD + β16 SQ_TD + β17 DC + β18 BC +

β19 CC + β20 Ambi_DC + β21 Ambi_BC + β22 Ambi_CC + β23 NP + β24

(Ambi_DC x NP) + β25 (Ambi_BC x NP) + β26 (Ambi_CC x NP))

where the CVS is the dependent variable of the technical performance model

which is measures as the number of CVS commits. The CVS and SVN is the another

dependent variable of the technical performance model which is measures as the sum of

CVS and SVN commits. The Ambi is project ambidexterity, the SQ_Ambi is the square

202

of project ambidexterity, the CCoeff is clustering coefficient for a project, the RT is the

number of repeat ties for a project, the TPT is the number of third part ties for a project,

the JS is Jaccard similarity for a project, the CS is correlation similarity for a project, the

EC is the external cohesion for a project, SQ_EC is the square of external cohesion, the

DT is the number of direct ties for a project, the IT is the number of indirect ties for a

project, the (DT x IT) is the interaction term between the number of direct ties and

indirect ties, the ITFD is the number of indirect ties calculated with frequency decay

function, the (DT x ITFD) the interaction term between the number of direct ties and

frequency decayed indirect ties, the TD is the technological diversity of a project, the

SQ_TD is the square of technological diversity, the DC is the degree centrality of a

project, the BC is the betweenness centrality of a project, the CC is the closeness

centrality of a project, the Ambi_DC is the degree centrality of ambidextrous developers

for a project, the Ambi_BC the betweenness centrality of ambidextrous developers for a

project, the Ambi_CC is the closeness centrality of ambidextrous developers for a

project, the NP is the number of projects on which ambidextrous developers work , the

(Ambi_DC x NP) is the interaction term between the degree centrality of ambidextrous

developers and the number of projects, the (Ambi_BC x NP) is the interaction term

between the betweenness centrality of ambidextrous developers and the number of

projects, the (Ambi_CC x NP) is the interaction term between the closeness centrality of

ambidextrous developers and the number of projects. In Table 15, the model variables,

their notations, and transformations applied to dependent and independent variables are

shown. In Table 16, the descriptive statistics of the untransformed dependent and

independent variables are shown.

203

Another important issue the OLS regression is the absence of multicollinearity

among independent variables. High multicollinearity results in reduced stability of the

corresponding parameter estimates, increased standard errors associated with coefficients

of predictors, and reduced power to measure effects (Cohen et al. 2003, Stevens 1992,

Myers 1990). We examined the correlations among independent variables including the

squares of independent variables and the interaction terms by using the Pearson

Correlation analysis (Allison 1999) and the Variance Inflation Factor (VIF) (Myers 1990,

Stevens 1992). Allison (1999) indicated that the cut-off value of a correlation coefficient

can be 0.70 for the OLS regression although the correlation coefficient greater than 0.60

may pose difficulties in testing and interpreting regression coefficients (Tabachnick and

Fidell 2007). Thus, we set the cut-off value of a correlation coefficient as 0.60. We report

correlation coefficients among untransformed independent variables in Table 17, and

correlation coefficients among transformed independent variables in Table 18. Pearson

Correlation analysis indicates statistically significant correlation among some

independent variables including the squares of independent variables and the interaction

terms. Therefore, we tested the seriousness of high correlations with the VIF. The VIF

values greater than 10 for the OLS regression indicate high multicollinearity problem

(Myers 1990, Stevens 2002).

We found that the squares of ambidexterity, external cohesion, technological

diversity, and project age were highly correlated with ambidexterity, external cohesion,

technological diversity, and project age respectively. Aiken and West (1991) and Myers

(1990) suggested that when the squared variables are included in the model, the

independent variables should be centered in order to reduce the correlation between them

204

to acceptable levels. Therefore, we mean centered ambidexterity, external cohesion,

technological diversity, and project age before taking their squares. Our approach is also

consistent with Singh et al. (2011) since they found a curvilinear relationship for external

cohesion, technological diversity, and project age. They included the squares of non-

linear variables (external cohesion, technological diversity, and project age), and mean

centered non-linear variables before taking their squares. After mean centering, the VIF

values for ambidexterity, external cohesion, technological diversity and project age, and

their squares are lower than 10. Thus, the VIF analysis does not indicate any

multicollinearity problems for these variables.

We also found that ambidextrous developers’ degree, betweenness and closeness

centralities, and the number of projects are highly correlated with their interaction terms.

Aiken and West (1991) and Myers (1990) suggested that when the interaction terms are

included in the model, the independent variables should be centered in order to reduce the

correlation between them to acceptable levels. Therefore, we mean centered

ambidextrous developers’ degree, betweenness and closeness centralities before

calculating their interaction terms with the number of projects. However, after mean

centering, the VIF values for ambidextrous developers’ degree, betweenness and

closeness centralities, the number of projects, and their interaction terms are found higher

than 10. Therefore, the VIF analysis still indicates multicollinearity problems. We chose

to report results with multicollinearity problems.

205

T
A

B
L

E
 1

5:
 T

ra
ns

fo
rm

at
io

ns
 A

pp
li

ed
 to

 D
ep

en
de

nt
 a

nd
 I

nd
ep

en
de

nt
 V

ar
ia

bl
es

V
ar

ia
b

le
 T

yp
e

V
ar

ia
b

le
 N

am
e

N
ot

at
io

n

T
ra

n
sf

or
m

at
io

ns
 A

p
p

li
ed

 t
o

K
ey

 V
ar

ia
b

le
s

D
ep

en
d

en
t

V
ar

ia
b

le
s

T

ec
hn

ic
al

 P
er

fo
rm

an
ce

C

V
S

 C
om

m
it

s
C

V
S

L

og
 tr

an
sf

or
m

ed

C
V

S
 a

nd
 S

V
N

 C
om

m
it

s
C

V
S

 a
nd

 S
V

N

L
og

 tr
an

sf
or

m
ed

In

d
ep

en
de

nt
 V

ar
ia

b
le

s

A
m

bi
de

xt
er

it
y

A
m

bi
de

xt
er

it
y

A
m

bi

M
ea

n
ce

nt
er

ed

A
m

bi
de

xt
er

it
y

Sq
ua

re
d

S
Q

_A
m

bi

S
qu

ar
e

of
 M

ea
n-

ce
nt

er
ed

 A
m

bi
de

xt
er

it
y

In
te

rn
al

 C
oh

es
io

n
C

lu
st

er
in

g
C

oe
ff

ic
ie

nt

C
C

oe
ff

N

o
tr

an
sf

or
m

at
io

n
R

ep
ea

t T
ie

s
R

T

L
og

 tr
an

sf
or

m
ed

T

hi
rd

 P
ar

ty
 T

ie
s

T
PT

L

og
 tr

an
sf

or
m

ed

Ja
cc

ar
d

Si
m

il
ar

it
y

JS

N
o

tr
an

sf
or

m
at

io
n

C
or

re
la

ti
on

 S
im

il
ar

ity

C
S

N

o
tr

an
sf

or
m

at
io

n
E

xt
er

na
l C

on
ne

ct
iv

ity

E
xt

er
na

l C
oh

es
io

n
E

C

M
ea

n
ce

nt
er

ed

E
xt

er
na

l C
oh

es
io

n
S

qu
ar

ed

S
Q

_E
C

S

qu
ar

e
of

 M
ea

n-
ce

nt
er

ed
 E

xt
er

na
l C

oh
es

io
n

D
ir

ec
t T

ie
s

D
T

L

og
 tr

an
sf

or
m

ed
 a

nd
 s

ca
le

d
do

w
n

by
 a

 f
ac

to
r

of
 1

00

In
di

re
ct

 T
ie

s
IT

L

og
 tr

an
sf

or
m

ed
 a

nd
 s

ca
le

d
do

w
n

by
 a

 f
ac

to
r

of
 1

00

D
ir

ec
t T

ie
s

x
In

di
re

ct
 T

ie
s

T
er

m

D
T

 x
 I

T

P
ro

du
ct

 o
f

L
og

 tr
an

sf
or

m
ed

 D
T

 a
nd

 I
T

In

di
re

ct
 T

ie
s

F
D

IT

F
D

L

og
 tr

an
sf

or
m

ed
 a

nd
 s

ca
le

d
do

w
n

by
 a

 f
ac

to
r

of
 1

00

D
ir

ec
t T

ie
s

x
In

di
re

ct
 T

ie
s

F
D

D

T
 x

 I
T

F
D

P

ro
du

ct
 o

f
L

og
 tr

an
sf

or
m

ed
 D

T
 a

nd
 I

T
F

D

T
ec

hn
ol

og
ic

al
 D

iv
er

si
ty

T

D

M
ea

n
ce

nt
er

ed

T
ec

hn
ol

og
ic

al
 D

iv
er

si
ty

 S
qu

ar
ed

S

Q
_T

D

S
qu

ar
e

of
 M

ea
n-

ce
nt

er
ed

 T
ec

hn
ol

og
ic

al
 D

iv
er

si
ty

N

et
w

or
k

L
oc

at
io

n
D

eg
re

e
C

en
tr

al
ity

D

C

M
ea

n
ce

nt
er

ed

B
et

w
ee

nn
es

s
C

en
tr

al
ity

B

C

M
ea

n
ce

nt
er

ed

C
lo

se
ne

ss
 C

en
tr

al
ity

C

C

M
ea

n
ce

nt
er

ed

N
et

w
or

k
L

oc
at

io
n

of

A
m

bi
de

xt
ro

us
 D

ev
el

op
er

s
A

m
bi

 D
eg

re
e

C
en

tr
al

it
y

A
m

bi
_D

C

M
ea

n
ce

nt
er

ed

A
m

bi
 B

et
w

ee
nn

es
s

C
en

tr
al

it
y

A
m

bi
_B

C

M
ea

n
ce

nt
er

ed

A
m

bi
 C

lo
se

ne
ss

 C
en

tr
al

it
y

A
m

bi
_C

C

M
ea

n
ce

nt
er

ed

N
um

be
r

of
 P

ro
je

ct
s

N
P

L

og
 tr

an
sf

or
m

ed

A
m

bi
 D

C
 x

 N
P

 T
er

m

A
m

bi
_D

C
 x

 N
P

P

ro
du

ct
 o

f
M

ea
n-

ce
nt

er
ed

 A
m

bi
 D

C
 a

nd
 L

og
 tr

an
sf

or
m

ed
 N

P

A
m

bi
 B

C
 x

 N
P

 T
er

m

A
m

bi
_B

C
 x

 N
P

P

ro
du

ct
 o

f
M

ea
n-

ce
nt

er
ed

 A
m

bi
 B

C
 a

nd
 L

og
 tr

an
sf

or
m

ed
 N

P

A
m

bi
 C

C
 x

 N
P

 T
er

m

A
m

bi
_C

C
 x

 N
P

P

ro
du

ct
 o

f
M

ea
n-

ce
nt

er
ed

 A
m

bi
 C

C
 a

nd
 L

og
 tr

an
sf

or
m

ed
 N

P

206

T
A

B
L

E
 1

6:
 D

es
cr

ip
ti

ve
 S

ta
ti

st
ic

s
of

 U
nt

ra
ns

fo
rm

ed
 D

ep
en

de
nt

 a
nd

 I
nd

ep
en

de
nt

 V
ar

ia
bl

es
 (

N
=

23
60

)

V
ar

ia
b

le
 T

yp
e

V
ar

ia
b

le
 N

am
e

M
ea

n

S
td

. D
ev

.
S

td
. E

rr
or

 M
ea

n

D
ep

en
d

en
t

V
ar

ia
b

le
s

T
ec

hn
ic

al
 P

er
fo

rm
an

ce

C
V

S
 C

om
m

it
s

80
2.

90
2

2,
46

6.
37

5
50

.7
70

C

V
S

 a
nd

 S
V

N
 C

om
m

it
s

92
9.

13
0

2,
60

8.
24

4
53

.6
90

In

d
ep

en
de

nt
 V

ar
ia

b
le

s

A

m
bi

de
xt

er
it

y
A

m
bi

de
xt

er
it

y
0.

25
4

0.
35

7
0.

00
7

A
m

bi
de

xt
er

it
y

Sq
ua

re
d

0.
19

2
0.

33
3

0.
00

7
In

te
rn

al
 C

oh
es

io
n

C
lu

st
er

in
g

C
oe

ff
ic

ie
nt

0.

59
7

0.
44

8
0.

00
9

R
ep

ea
t T

ie
s

0.
80

4
0.

49
0

0.
01

0
T

hi
rd

 P
ar

ty
 T

ie
s

0.
33

1
3.

81
2

0.
07

8
Ja

cc
ar

d
Si

m
il

ar
it

y
0.

49
8

0.
44

5
0.

00
9

C
or

re
la

ti
on

 S
im

il
ar

it
y

0.
65

6
0.

42
5

0.
00

9
E

xt
er

na
l C

on
ne

ct
iv

ity

E
xt

er
na

l C
oh

es
io

n
0.

51
1

0.
39

0
0.

00
8

E
xt

er
na

l C
oh

es
io

n
S

qu
ar

ed

0.
41

3
0.

43
6

0.
00

9
D

ir
ec

t T
ie

s
7.

46
3

12
.3

15

0.
25

4
In

di
re

ct
 T

ie
s

67
1.

73
6

1,
14

9.
18

4
23

.6
56

D

ir
ec

t T
ie

s
x

In
di

re
ct

 T
ie

s
T

er
m

12

,1
04

.9
47

31

,8
96

.3
33

65

6.
57

6
In

di
re

ct
 T

ie
s

F
D

28

6.
79

9
50

6.
89

0
10

.4
34

D

ir
ec

t T
ie

s
x

In
di

re
ct

 T
ie

s
F

D

5,
52

2.
91

2
15

,3
46

.0
78

31

5.
89

4
T

ec
hn

ol
og

ic
al

 D
iv

er
si

ty

0.
21

4
0.

27
1

0.
00

6
T

ec
hn

ol
og

ic
al

 D
iv

er
si

ty
 S

qu
ar

ed

0.
11

9
0.

17
0

0.
00

3
N

et
w

or
k

L
oc

at
io

n
D

eg
re

e
C

en
tr

al
it

y
0.

05
89

3
0.

09
72

4
0.

00
20

0
B

et
w

ee
nn

es
s

C
en

tr
al

it
y

0.
01

63
3

0.
06

84
5

0.
00

14
1

C
lo

se
ne

ss
 C

en
tr

al
it

y
0.

00
92

9
0.

00
23

8
0.

00
00

5
N

et
w

or
k

L
oc

at
io

n
of

A

m
bi

de
xt

ro
us

 D
ev

el
op

er
s

A
m

bi
 D

eg
re

e
C

en
tr

al
it

y
0.

05
67

8
0.

12
81

2
0.

00
26

4
A

m
bi

 B
et

w
ee

nn
es

s
C

en
tr

al
it

y
0.

03
27

3
0.

12
81

5
0.

00
26

4
A

m
bi

 C
lo

se
ne

ss
 C

en
tr

al
it

y
0.

00
46

5
0.

00
55

7
0.

00
01

1
N

um
be

r
of

 P
ro

je
ct

s
0.

84
8

1.
27

5
0.

02
6

A
m

bi
 D

C
 x

 N
P

0.

15
56

6
0.

57
76

0
0.

01
18

9
A

m
bi

 B
C

 x
 N

P

0.
11

49
4

0.
56

19
7

0.
01

15
7

A
m

bi
 C

C
 x

 N
P

0.

00
96

9
0.

01
64

2
0.

00
03

4

207

T
A

B
L

E
 1

7:
 P

ea
rs

on
 C

or
re

la
ti

on
s

am
on

g
U

nt
ra

ns
fo

rm
ed

 I
nd

ep
en

de
nt

 V
ar

ia
bl

es
 (

N
=

23
60

)

N
o

V
ar

ia
bl

e
1

2
3

4
5

6
7

8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1
A

m
bi

1

.9
65

.1

13

.0
99

.0

65

-.
03

0
-.

06
9

-.
06

1
-.

11
2

.1
89

.2
81

.1
97

.2
94

.2
08

.3
48

.3
16

.1
89

.1

78

.2
83

.1
39

.1
97

.2
40

.0
94

.7
13

.5
24

.1
39

.0
74

.4
37

.1
71

.0
50

2
SQ

_A
m

bi

.9
65

1

.0
45

.0

09

.0
53

-.

08
3

-.
11

1
-.

06
6

-.
09

3
.1

31
.1

83
.1

38
.1

99
.1

55
.2

58
.2

37
.1

31

.1
30

.1

84
.1

22
.1

38
.1

45
.0

31
.5

58
.3

95
.0

76
.0

20
.3

16
.0

90
.0

06

3
C

C
oe

ff

.1
13

.0

45

1
.5

16

.0
38

.8

99
.5

72
.2

17
.0

68
.3

61
.2

75
.2

00
.2

58
.1

82
.3

10
.2

66
.3

61

.0
61

.2

73
.0

36
.3

02
.2

43
.0

92
.2

91
.1

90
.1

15
.0

60
.1

83
.2

33
.3

72

4
R

T

.0
99

.0

09

.5
16

1

.2
01

.5

17
.7

32
.4

96
.3

53
.3

25
.2

70
.2

36
.2

66
.2

33
.2

92
.2

66
.3

25

.1
22

.2

68
.0

90
.2

96
.2

65
.1

38
.2

85
.3

08
.2

56
.1

47
.3

18
.2

45
.2

55

5
T

PT

.0
65

.0

53

.0
38

.2

01

1
.0

04
-.

00
4

-.
08

3
-.

07
6

.4
84

.1
23

.4
76

.1
49

.4
80

.1
06

.0
95

.4
84

.0

95

.1
27

.1
28

.5
01

.4
47

.0
61

.1
14

.2
12

.3
59

.0
94

.2
26

.1
35

.0
44

6
JS

-.

03
0

-.
08

3
.8

99

.5
17

.0

04

1
.7

17
.2

52
.1

45
.2

44
.0

59
.0

72
.0

35
.0

47
.0

62
.0

52
.2

44

-.
06

1
.0

54
-.

04
2

.1
77

.1
19

.0
01

.1
14

.0
03

.0
13

-.
02

0
-.

00
3

.2
04

.4
10

7
C

S
-.

06
9

-.
11

1
.5

72

.7
32

-.

00
4

.7
17

1
.6

25
.5

27
.1

36
-.

04
2

.0
03

-.
06

2
-.

01
7

-.
07

8
-.

07
3

.1
36

-.

09
9

-.
04

8
-.

06
6

.0
82

.0
41

-.
03

8
.0

30
-.

07
9

-.
02

7
-.

04
9

-.
08

2
.1

38
.3

15

8
E

C

-.
06

1
-.

06
6

.2
17

.4

96

-.
08

3
.2

52
.6

25
1

.9
62

-.
27

5
-.

24
6

-.
26

4
-.

25
9

-.
26

1
-.

19
4

-.
16

9
-.

27
5

-.
15

0
-.

24
7

-.
11

7
-.

27
7

-.
25

4
-.

15
7

-.
16

5
-.

16
2

-.
16

9
-.

12
3

-.
19

1
-.

24
1

-.
21

1

9
SQ

_E
C

-.

11
2

-.
09

3
.0

68

.3
53

-.

07
6

.1
45

.5
27

.9
62

1
-.

32
6

-.
34

7
-.

28
6

-.
34

9
-.

27
7

-.
32

9
-.

29
0

-.
32

6
-.

17
6

-.
34

7
-.

11
8

-.
31

7
-.

29
4

-.
18

6
-.

26
6

-.
24

7
-.

19
1

-.
14

7
-.

27
0

-.
26

5
-.

25
0

10

D
T

.1

89

.1
31

.3

61

.3
25

.4

84

.2
44

.1
36

-.
27

5
-.

32
6

1
.5

01
.9

02
.5

42
.8

84
.4

26
.3

60
1.

00
0

.3
22

.5

04
.3

41
.9

84
.8

36
.3

41
.4

41
.4

42
.5

40
.2

99
.4

74
.7

04
.7

72

11

IT

.2
81

.1

83

.2
75

.2

70

.1
23

.0

59
-.

04
2

-.
24

6
-.

34
7

.5
01

1
.6

47
.9

65
.6

11
.6

56
.5

59
.5

01

.4
02

.9

97
.2

41
.5

72
.5

62
.4

34
.7

08
.5

95
.3

94
.3

47
.6

76
.4

73
.2

81

12

D
T

 x
 I

T

.1
97

.1

38

.2
00

.2

36

.4
76

.0

72
.0

03
-.

26
4

-.
28

6
.9

02
.6

47
1

.6
81

.9
75

.4
23

.3
53

.9
02

.3

77

.6
48

.3
73

.9
64

.8
56

.4
05

.5
02

.4
93

.5
77

.3
50

.5
50

.7
25

.6
18

13

IT
FD

.2

94

.1
99

.2

58

.2
66

.1

49

.0
35

-.
06

2
-.

25
9

-.
34

9
.5

42
.9

65
.6

81
1

.6
88

.6
35

.5
39

.5
42

.4

94

.9
69

.3
21

.6
13

.6
03

.5
06

.6
97

.6
24

.4
51

.4
15

.7
04

.4
92

.2
75

14

D
T

 x
 I

T
FD

.2

08

.1
55

.1

82

.2
33

.4

80

.0
47

-.
01

7
-.

26
1

-.
27

7
.8

84
.6

11
.9

75
.6

88
1

.4
00

.3
31

.8
84

.4

45

.6
16

.4
64

.9
45

.8
47

.4
48

.4
82

.5
14

.6
17

.3
96

.5
69

.6
89

.5
45

15

T
D

.3

48

.2
58

.3

10

.2
92

.1

06

.0
62

-.
07

8
-.

19
4

-.
32

9
.4

26
.6

56
.4

23
.6

35
.4

00
1

.9
66

.4
26

.2

46

.6
57

.1
44

.4
34

.4
38

.2
60

.6
07

.5
65

.2
87

.2
08

.5
49

.3
74

.2
50

16

SQ
_T

D

.3
16

.2

37

.2
66

.2

66

.0
95

.0

52
-.

07
3

-.
16

9
-.

29
0

.3
60

.5
59

.3
53

.5
39

.3
31

.9
66

1
.3

60

.1
88

.5

60
.1

06
.3

65
.3

65
.1

95
.5

28
.4

88
.2

36
.1

55
.4

67
.3

11
.2

09

17

D
C

.1

89

.1
31

.3

61

.3
25

.4

84

.2
44

.1
36

-.
27

5
-.

32
6

1.
00

0
.5

01
.9

02
.5

42
.8

84
.4

26
.3

60
1

.3
22

.5

04
.3

41
.9

84
.8

36
.3

41
.4

41
.4

42
.5

40
.2

99
.4

74
.7

04
.7

72

18

B
C

.1

78

.1
30

.0

61

.1
22

.0

95

-.
06

1
-.

09
9

-.
15

0
-.

17
6

.3
22

.4
02

.3
77

.4
94

.4
45

.2
46

.1
88

.3
22

1

.4
09

.8
16

.3
54

.3
75

.7
54

.3
43

.4
28

.3
58

.6
43

.4
69

.2
22

.0
60

19

C
C

.2

83

.1
84

.2

73

.2
68

.1

27

.0
54

-.
04

8
-.

24
7

-.
34

7
.5

04
.9

97
.6

48
.9

69
.6

16
.6

57
.5

60
.5

04

.4
09

1

.2
46

.5
75

.5
64

.4
38

.7
09

.5
98

.3
98

.3
50

.6
79

.4
68

.2
77

20

D
C

 x
 B

C

.1
39

.1

22

.0
36

.0

90

.1
28

-.

04
2

-.
06

6
-.

11
7

-.
11

8
.3

41
.2

41
.3

73
.3

21
.4

64
.1

44
.1

06
.3

41

.8
16

.2

46
1

.3
65

.3
50

.5
64

.2
15

.3
09

.3
51

.4
79

.3
35

.1
91

.0
73

21

D
C

 x
 C

C

.1
97

.1

38

.3
02

.2

96

.5
01

.1

77
.0

82
-.

27
7

-.
31

7
.9

84
.5

72
.9

64
.6

13
.9

45
.4

34
.3

65
.9

84

.3
54

.5

75
.3

65
1

.8
65

.3
76

.4
77

.4
74

.5
70

.3
28

.5
17

.7
24

.7
20

22

A
m

bi
_D

C

.2
40

.1

45

.2
43

.2

65

.4
47

.1

19
.0

41
-.

25
4

-.
29

4
.8

36
.5

62
.8

56
.6

03
.8

47
.4

38
.3

65
.8

36

.3
75

.5

64
.3

50
.8

65
1

.5
55

.6
11

.6
59

.7
47

.5
25

.6
86

.7
88

.5
74

23

A
m

bi
_B

C

.0
94

.0

31

.0
92

.1

38

.0
61

.0

01
-.

03
8

-.
15

7
-.

18
6

.3
41

.4
34

.4
05

.5
06

.4
48

.2
60

.1
95

.3
41

.7

54

.4
38

.5
64

.3
76

.5
55

1
.4

00
.5

34
.5

30
.8

92
.5

80
.4

36
.1

62

24

A
m

bi
_C

C

.7
13

.5

58

.2
91

.2

85

.1
14

.1

14
.0

30
-.

16
5

-.
26

6
.4

41
.7

08
.5

02
.6

97
.4

82
.6

07
.5

28
.4

41

.3
43

.7

09
.2

15
.4

77
.6

11
.4

00
1

.8
10

.3
95

.3
20

.7
82

.5
31

.2
75

25

N
P

.5
24

.3

95

.1
90

.3

08

.2
12

.0

03
-.

07
9

-.
16

2
-.

24
7

.4
42

.5
95

.4
93

.6
24

.5
14

.5
65

.4
88

.4
42

.4

28

.5
98

.3
09

.4
74

.6
59

.5
34

.8
10

1
.7

19
.5

88
.9

80
.5

47
.1

52

26

A
m

bi
_D

C
 x

 N
P

.1
39

.0

76

.1
15

.2

56

.3
59

.0

13
-.

02
7

-.
16

9
-.

19
1

.5
40

.3
94

.5
77

.4
51

.6
17

.2
87

.2
36

.5
40

.3

58

.3
98

.3
51

.5
70

.7
47

.5
30

.3
95

.7
19

1
.7

40
.7

58
.5

48
.2

23

27

A
m

bi
_B

C
 x

 N
P

.0
74

.0

20

.0
60

.1

47

.0
94

-.

02
0

-.
04

9
-.

12
3

-.
14

7
.2

99
.3

47
.3

50
.4

15
.3

96
.2

08
.1

55
.2

99

.6
43

.3

50
.4

79
.3

28
.5

25
.8

92
.3

20
.5

88
.7

40
1

.6
31

.3
86

.0
96

28

A
m

bi
_C

C
 x

 N
P

.4
37

.3

16

.1
83

.3

18

.2
26

-.

00
3

-.
08

2
-.

19
1

-.
27

0
.4

74
.6

76
.5

50
.7

04
.5

69
.5

49
.4

67
.4

74

.4
69

.6

79
.3

35
.5

17
.6

86
.5

80
.7

82
.9

80
.7

58
.6

31
1

.5
62

.1
65

29

T
ea

m
 S

iz
e

.1
71

.0

90

.2
33

.2

45

.1
35

.2

04
.1

38
-.

24
1

-.
26

5
.7

04
.4

73
.7

25
.4

92
.6

89
.3

74
.3

11
.7

04

.2
22

.4

68
.1

91
.7

24
.7

88
.4

36
.5

31
.5

47
.5

48
.3

86
.5

62
1

.7
40

30

N
P

x
T

ea
m

 S
iz

e
.0

50

.0
06

.3

72

.2
55

.0

44

.4
10

.3
15

-.
21

1
-.

25
0

.7
72

.2
81

.6
18

.2
75

.5
45

.2
50

.2
09

.7
72

.0

60

.2
77

.0
73

.7
20

.5
74

.1
62

.2
75

.1
52

.2
23

.0
96

.1
65

.7
40

1

208

T
A

B
L

E
 1

8:
 P

ea
rs

on
 C

or
re

la
ti

on
s

am
on

g
T

ra
ns

fo
rm

ed
 I

nd
ep

en
de

nt
 V

ar
ia

bl
es

 (
N

=
23

60
)

(V
ar

ia
bl

es
 a

re
 T

ra
ns

fo
rm

ed
 a

s
in

 T
ab

le
 1

5)

N
o

V
ar

ia
bl

e
1

2
3

4
5

6
7

8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1
A

m
bi

1

.8
48

.1

13

.0
99

.0

65

-.
03

0
-.

06
9

-.
06

1
-.

20
4

.2
23

.2
87

.2
36

.2
90

.2
36

.3
48

.2
02

.1
89

.1

78

.2
83

.1
11

.1
18

.2
40

.0
94

.7
13

.6
72

.0
88

.0
26

.4
86

.1
99

.0
50

2
SQ

_A
m

bi

.8
48

1

-.
03

3
-.

09
1

.0
35

-.

13
4

-.
14

7
-.

06
6

-.
01

2
.0

65
.0

62
.0

75
.0

69
.0

81
.1

38
.0

98
.0

58

.0
68

.0

61
.0

91
.0

54
.0

29
-.

04
0

.3
44

.3
18

-.
05

0
-.

07
3

.1
76

.0
16

-.
04

3

3
C

C
oe

ff

.1
13

-.

03
3

1
.5

16

.0
38

.8

99
.5

72
.2

17
-.

47
3

.4
31

.2
83

.2
34

.2
69

.2
19

.3
10

.1
41

.3
61

.0

61

.2
73

-.
00

2
.0

51
.2

43
.0

92
.2

91
.2

45
.1

57
.0

56
.2

33
.2

55
.3

72

4
R

T

.0
99

-.

09
1

.5
16

1

.2
01

.5

17
.7

32
.4

96
-.

36
5

.3
77

.2
76

.2
68

.2
69

.2
62

.2
92

.1
73

.3
25

.1

22

.2
68

.0
52

.1
28

.2
65

.1
38

.2
85

.2
90

.2
57

.1
22

.3
08

.2
21

.2
55

5
T

PT

.0
65

.0

35

.0
38

.2

01

1
.0

04
-.

00
4

-.
08

3
-.

00
1

.4
00

.1
26

.4
09

.1
36

.4
12

.1
06

.0
59

.4
84

.0

95

.1
27

.0
90

.5
36

.4
47

.0
61

.1
14

.1
54

.4
58

.0
67

.1
84

.0
98

.0
44

6
JS

-.

03
0

-.
13

4
.8

99

.5
17

.0

04

1
.7

17
.2

52
-.

30
7

.2
94

.0
62

.0
79

.0
47

.0
64

.0
62

.0
24

.2
44

-.

06
1

.0
54

-.
05

8
-.

01
6

.1
19

.0
01

.1
14

.0
52

.0
53

-.
01

7
.0

33
.2

38
.4

10

7
C

S
-.

06
9

-.
14

7
.5

72

.7
32

-.

00
4

.7
17

1
.6

25
-.

15
8

.1
66

-.
04

2
.0

00
-.

05
4

-.
01

2
-.

07
8

-.
05

1
.1

36

-.
09

9
-.

04
8

-.
06

9
-.

03
6

.0
41

-.
03

8
.0

30
-.

03
7

.0
02

-.
04

5
-.

05
6

.1
66

.3
15

8
E

C

-.
06

1
-.

06
6

.2
17

.4

96

-.
08

3
.2

52
.6

25
1

.1
75

-.
29

9
-.

25
1

-.
29

8
-.

25
3

-.
29

0
-.

19
4

-.
09

4
-.

27
5

-.
15

0
-.

24
7

-.
08

2
-.

20
1

-.
25

4
-.

15
7

-.
16

5
-.

14
8

-.
22

3
-.

13
4

-.
21

8
-.

24
0

-.
21

1

9
SQ

_E
C

-.

20
4

-.
01

2
-.

47
3

-.
36

5
-.

00
1

-.
30

7
-.

15
8

.1
75

1
-.

35
0

-.
45

4
-.

21
4

-.
43

2
-.

19
9

-.
54

9
-.

29
8

-.
27

0
-.

13
9

-.
44

1
.0

07
.0

43
-.

22
2

-.
15

4
-.

41
8

-.
40

7
-.

13
4

-.
11

1
-.

39
8

-.
16

5
-.

20
7

10

D
T

.2

23

.0
65

.4

31

.3
77

.4

00

.2
94

.1
66

-.
29

9
-.

35
0

1
.5

86
.8

78
.5

94
.8

64
.4

96
.2

18
.9

74

.3
62

.5

76
.2

67
.7

19
.8

19
.3

87
.5

04
.4

84
.7

16
.3

35
.5

67
.7

12
.7

42

11

IT

.2
87

.0

62

.2
83

.2

76

.1
26

.0

62
-.

04
2

-.
25

1
-.

45
4

.5
86

1
.7

50
.9

93
.7

33
.6

76
.3

01
.5

13

.4
06

.9

98
.1

57
.3

90
.5

69
.4

36
.7

14
.6

20
.4

71
.3

59
.8

09
.4

54
.2

88

12

D
T

 x
 I

T

.2
36

.0

75

.2
34

.2

68

.4
09

.0

79
.0

00
-.

29
8

-.
21

4
.8

78
.7

50
1

.7
67

.9
95

.5
02

.2
04

.8
74

.4

33

.7
49

.3
11

.8
70

.8
49

.4
64

.5
78

.5
35

.7
64

.4
04

.6
85

.7
10

.5
66

13

IT
FD

.2

90

.0
69

.2

69

.2
69

.1

36

.0
47

-.
05

4
-.

25
3

-.
43

2
.5

94
.9

93
.7

67
1

.7
59

.6
54

.2
85

.5
22

.4

42

.9
95

.1
83

.4
19

.5
82

.4
66

.7
10

.6
21

.4
94

.3
90

.8
16

.4
54

.2
79

14

D
T

 x
 I

T
FD

.2

36

.0
81

.2

19

.2
62

.4

12

.0
64

-.
01

2
-.

29
0

-.
19

9
.8

64
.7

33
.9

95
.7

59
1

.4
80

.1
91

.8
59

.4

58

.7
34

.3
45

.8
75

.8
43

.4
81

.5
66

.5
31

.7
73

.4
23

.6
82

.6
87

.5
30

15

T
D

.3

48

.1
38

.3

10

.2
92

.1

06

.0
62

-.
07

8
-.

19
4

-.
54

9
.4

96
.6

76
.5

02
.6

54
.4

80
1

.7
35

.4
26

.2

46

.6
57

.0
80

.2
15

.4
38

.2
60

.6
07

.6
15

.3
19

.1
90

.6
14

.3
71

.2
50

16

S
Q

_T
D

.2

02

.0
98

.1

41

.1
73

.0

59

.0
24

-.
05

1
-.

09
4

-.
29

8
.2

18
.3

01
.2

04
.2

85
.1

91
.7

35
1

.1
80

.0

51

.2
89

-.
00

3
.0

65
.1

72
.0

44
.2

94
.3

04
.1

05
.0

11
.2

72
.1

51
.1

00

17

D
C

.1

89

.0
58

.3

61

.3
25

.4

84

.2
44

.1
36

-.
27

5
-.

27
0

.9
74

.5
13

.8
74

.5
22

.8
59

.4
26

.1
80

1
.3

22

.5
04

.2
48

.8
10

.8
36

.3
41

.4
41

.4
23

.7
20

.2
97

.4
99

.7
32

.7
72

18

B
C

.1

78

.0
68

.0

61

.1
22

.0

95

-.
06

1
-.

09
9

-.
15

0
-.

13
9

.3
62

.4
06

.4
33

.4
42

.4
58

.2
46

.0
51

.3
22

1

.4
09

.7
27

.3
01

.3
75

.7
54

.3
43

.3
80

.3
90

.7
20

.4
73

.1
78

.0
60

19

C
C

.2

83

.0
61

.2

73

.2
68

.1

27

.0
54

-.
04

8
-.

24
7

-.
44

1
.5

76
.9

98
.7

49
.9

95
.7

34
.6

57
.2

89
.5

04

.4
09

1

.1
59

.3
96

.5
64

.4
38

.7
09

.6
12

.4
69

.3
61

.8
07

.4
46

.2
77

20

D
C

 x
 B

C

.1
11

.0

91

-.
00

2
.0

52

.0
90

-.

05
8

-.
06

9
-.

08
2

.0
07

.2
67

.1
57

.3
11

.1
83

.3
45

.0
80

-.
00

3
.2

48

.7
27

.1

59
1

.2
89

.2
62

.4
78

.1
43

.1
84

.3
15

.4
56

.2
27

.0
81

.0
06

21

D
C

 x
 C

C

.1
18

.0

54

.0
51

.1

28

.5
36

-.

01
6

-.
03

6
-.

20
1

.0
43

.7
19

.3
90

.8
70

.4
19

.8
75

.2
15

.0
65

.8
10

.3

01

.3
96

.2
89

1
.7

78
.3

18
.3

13
.3

02
.7

10
.2

88
.3

99
.6

56
.5

25

22

A
m

bi
_D

C

.2
40

.0

29

.2
43

.2

65

.4
47

.1

19
.0

41
-.

25
4

-.
22

2
.8

19
.5

69
.8

49
.5

82
.8

43
.4

38
.1

72
.8

36

.3
75

.5

64
.2

62
.7

78
1

.5
55

.6
11

.6
28

.9
15

.5
08

.6
98

.7
71

.5
74

23

A
m

bi
_B

C

.0
94

-.

04
0

.0
92

.1

38

.0
61

.0

01
-.

03
8

-.
15

7
-.

15
4

.3
87

.4
36

.4
64

.4
66

.4
81

.2
60

.0
44

.3
41

.7

54

.4
38

.4
78

.3
18

.5
55

1
.4

00
.4

67
.5

95
.9

77
.5

71
.3

57
.1

62

24

A
m

bi
_C

C

.7
13

.3

44

.2
91

.2

85

.1
14

.1

14
.0

30
-.

16
5

-.
41

8
.5

04
.7

14
.5

78
.7

10
.5

66
.6

07
.2

94
.4

41

.3
43

.7

09
.1

43
.3

13
.6

11
.4

00
1

.9
35

.4
23

.2
96

.8
92

.5
35

.2
75

25

N
P

.6
72

.3

18

.2
45

.2

90

.1
54

.0

52
-.

03
7

-.
14

8
-.

40
7

.4
84

.6
20

.5
35

.6
21

.5
31

.6
15

.3
04

.4
23

.3

80

.6
12

.1
84

.3
02

.6
28

.4
67

.9
35

1
.5

12
.3

87
.9

12
.4

94
.1

97

26

A
m

bi
_D

C
 x

 N
P

.0
88

-.

05
0

.1
57

.2

57

.4
58

.0

53
.0

02
-.

22
3

-.
13

4
.7

16
.4

71
.7

64
.4

94
.7

73
.3

19
.1

05
.7

20

.3
90

.4

69
.3

15
.7

10
.9

15
.5

95
.4

23
.5

12
1

.6
09

.6
26

.5
97

.3
95

27

A
m

bi
_B

C
 x

 N
P

.0
26

-.

07
3

.0
56

.1

22

.0
67

-.

01
7

-.
04

5
-.

13
4

-.
11

1
.3

35
.3

59
.4

04
.3

90
.4

23
.1

90
.0

11
.2

97

.7
20

.3

61
.4

56
.2

88
.5

08
.9

77
.2

96
.3

87
.6

09
1

.4
99

.2
88

.1
15

28

A
m

bi
_C

C
 x

 N
P

.4
86

.1

76

.2
33

.3

08

.1
84

.0

33
-.

05
6

-.
21

8
-.

39
8

.5
67

.8
09

.6
85

.8
16

.6
82

.6
14

.2
72

.4
99

.4

73

.8
07

.2
27

.3
99

.6
98

.5
71

.8
92

.9
12

.6
26

.4
99

1
.5

16
.2

29

29

T
ea

m
 S

iz
e

.1
99

.0

16

.2
55

.2

21

.0
98

.2

38
.1

66
-.

24
0

-.
16

5
.7

12
.4

54
.7

10
.4

54
.6

87
.3

71
.1

51
.7

32

.1
78

.4

46
.0

81
.6

56
.7

71
.3

57
.5

35
.4

94
.5

97
.2

88
.5

16
1

.8
34

30

N
P

x
T

ea
m

 S
iz

e
.0

50

-.
04

3
.3

72

.2
55

.0

44

.4
10

.3
15

-.
21

1
-.

20
7

.7
42

.2
88

.5
66

.2
79

.5
30

.2
50

.1
00

.7
72

.0

60

.2
77

.0
06

.5
25

.5
74

.1
62

.2
75

.1
97

.3
95

.1
15

.2
29

.8
34

1

209

We found that the pair of log transformed direct ties and indirect ties, and the pair

of log transformed direct ties and frequency decayed indirect ties were highly correlated

with their interaction terms. However, the VIF values for direct ties, indirect ties,

frequency decayed indirect ties, and their interaction terms are lower than 10. Thus, the

VIF analysis does not indicate any multicollinearity problems, and we did not use any

additional transformation such as mean centered transformation for them.

The correlation analysis also indicates the high correlation among variables within

and between variable groups (internal cohesion, external connectivity, network location

of projects, and network location of ambidextrous developers). For example, there are

high correlations among the pairs of internal cohesion variables: clustering coefficient

and Jaccard similarities, correlation similarities and repeat ties, correlation similarities

and Jaccard similarities. There are high correlations among the pairs of external

connectivity variables: indirect ties and frequency decayed indirect ties, indirect ties and

technological diversity. External connectivity variable are also correlated with centrality

variables of projects and centrality variables of ambidextrous developers. For example,

there are high correlations among the pairs of following variables: direct ties and

projects’ degree centrality, direct ties and ambidextrous developers’ degree centrality,

indirect ties and projects’ closeness centrality, indirect ties and ambidextrous developers’

closeness centrality, indirect ties and the number of projects, frequency decayed indirect

ties and projects’ closeness centrality, frequency decayed indirect ties and ambidextrous

developers’ closeness centrality, frequency decayed indirect ties and the number of

projects, technological diversity and projects’ closeness centrality, technological diversity

and ambidextrous developers’ closeness centrality, technological diversity and the

210

number of projects. In addition, centrality variables of projects and centrality variables of

ambidextrous developers are also correlated with each other. For example, there are high

correlations among the pairs of following variables: projects’ degree centrality and

ambidextrous developers’ degree centrality, projects’ betweenness centrality and

ambidextrous developers’ betweenness centrality, projects’ closeness centrality and

ambidextrous developers’ closeness centrality. Because of high correlations among

independent variables within and between variable groups, we cannot test all variables in

one model. Therefore, we tested each independent variable along with ambidexterity in

separate models. We also created illustrative combined models in order to show that

further combined models are possible. However, there is no basis for which an

independent variable should be used for a representative for each variable group (internal

cohesion, external connectivity, network location of projects, and network location of

ambidextrous developers). Prior studies use one variable for internal cohesion as well as

one variable for external connectivity to test their hypotheses (Singh et al. 2011).

Consistent with prior studies, we select one variable for internal cohesion as well as one

variable for external connectivity along with ambidexterity to create our illustrative

combined models.

In the data analysis, we found that projects’ degree, betweenness and closeness

centralities were not statistically significant. The results are contrary to our expectations

and do not support our hypotheses regarding projects’ network locations. These

unexpected results lead us to analyze the interaction terms that are missing in the models.

We used backward stepwise regression starting with all two-way interactions in order to

reach a final model, in which the interaction of degree centrality with closeness centrality

211

and the interaction of degree centrality with betweenness centrality were found

significant. We analyzed the data set after including the interaction between degree

centrality with closeness centrality, and the interaction between degree centrality with

betweenness centrality. However, we found that projects’ degree, betweenness and

closeness centralities were highly correlated with their interaction terms. Aiken and West

(1991) and Myers (1990) suggested that when the interaction terms are included in the

model, the independent variables should be centered in order to reduce the correlation

between them to acceptable levels. Therefore, we mean centered projects’ degree,

betweenness and closeness centralities before calculating their interaction terms. After

mean centering, the VIF values for a projects’ degree, betweenness and closeness

centralities, and their interaction terms are lower than 10. Thus, the VIF analysis does not

indicate any multicollinearity problems for them.

In the data analysis, we also found that project ambidexterity and its square were

not statistically significant in testing hypothesis regarding to the network locations of

ambidextrous developers. The results are contrary to our expectations for project

ambidexterity. These unexpected results lead us to analyze the interaction terms that are

missing in the models. We used backward stepwise regression starting with all two-way

interactions in order to reach a final model, in which the interaction of the number of

projects with a project team size was found significant. We analyzed the data set after

including the interaction between the numbers of projects with a project team size.

212

4.6.1. Technical Performance Models

4.6.1.1. Results of Independent Variables

The significance of an overall regression model is tested with the analysis of

variance (Tabachnick and Fidell 2007, Myers 1990). Therefore, the F statistic is used to

assess the significance of the proposed model against the null model which assumes that

that all effects of the independent variables are zero (all regression coefficients are zero).

We measured the technical performance of a project using two measures (the number of

CVS commits and the sum of CVS and SVN commits). In Table 20, we report the results

of regression analyses for technical performance models in which the dependent variable

is the number of CVS commits. In Table 21, we report the results of regression analyses

for technical performance models in which the dependent variable is the sum of CVS and

SVN commits. In each table, Model 1 presents the base model with only ambidexterity

and control variables. Model 2.1 through Model 2.5 add internal cohesion measures to

Model 1 (clustering coefficient, repeat ties, third party ties, Jaccard similarity, and

correlation similarity respectively). Model 3.1 through Model 3.4 add external

connectivity measures to Model 1 (external cohesion, direct ties/indirect ties, direct

ties/frequency decayed indirect ties, and technological diversity respectively). Model 4

adds projects’ centralities measures to Model 1 (degree centrality, betweenness centrality,

and closeness centrality together). Model 5 adds ambidextrous developers’ centralities

measures and the number of projects to Model 1 (the degree centrality of ambidextrous

developers, the betweenness centrality of ambidextrous developers, the closeness

centrality of ambidextrous developers, and the number of projects together). The F

statistics of all models across two technical performance measures are significant at the

213

0.01 alpha level. We rejected the null hypotheses that the effects of the independent

variables are zero, and, hence, all models are found to be statistically significant. We

summarize the results of our hypotheses in Table 19.

TABLE 19: Summary of Hypotheses

Variable Type Hypotheses Tested with Variable Results Comments
Ambidexterity Hypothesis 1 Ambidexterity Supported
Internal
Cohesion

Hypothesis 2 Clustering Coefficient Supported
Hypothesis 2 Repeat Ties Supported
Hypothesis 2 Third Party Ties Not Supported Not significant
Hypothesis 2 Jaccard Similarity Supported
Hypothesis 2 Correlation Similarity Supported

External
Connectivity

Hypothesis 3 External Cohesion Supported
Hypothesis 4 Direct Ties Supported
Hypothesis 5 Indirect Ties Supported
Hypothesis 6 Direct Ties x Indirect Ties Supported
Hypothesis 5 Indirect Ties FD Supported
Hypothesis 6 Direct Ties x Indirect Ties FD Supported
Hypothesis 7 Technological Diversity Supported

Network
Location

Hypothesis 8 Degree Centrality Supported
Hypothesis 8 Betweenness Centrality Not Supported Opposite of hypothesis
Hypothesis 8 Closeness Centrality Supported

Network
Location of
Ambidextrous
Developers

Hypothesis 9 Ambi Degree Centrality Not Supported Opposite of hypothesis
Hypothesis 9 Ambi Betweenness Centrality Supported
Hypothesis 9 Ambi Closeness Centrality Supported
Hypothesis 10 Ambi DC x NP Not Supported Opposite of hypothesis
Hypothesis 10 Ambi BC x NP Supported
Hypothesis 10 Ambi CC x NP Supported

214

T
A

B
L

E
 2

0:
 R

es
ul

ts
 o

f
T

ec
hn

ic
al

 P
er

fo
rm

an
ce

 M
od

el
 (

D
ep

en
de

nt
 V

ar
ia

bl
e:

 C
V

S
 C

om
m

it
s,

 N
=

23
60

)

C

V
S

M

od
el

 1

C
V

S

M
od

el
 2

.1
C

V
S

M

od
el

 2
.2

C
V

S

M
od

el
 2

.3
C

V
S

M

od
el

 2
.4

C
V

S

M
od

el
 2

.5
C

V
S

M

od
el

 3
.1

C
V

S

M
od

el
 3

.2
C

V
S

M

od
el

 3
.3

C
V

S

M
od

el
 3

.4
C

V
S

M

od
el

 4

C
V

S

M
od

el
 5

In
de

pe
nd

en
t V

ar
ia

bl
es

A
m

bi
de

xt
er

it
y

A
m

bi
de

xt
er

it
y

5.
14

3
**

*
4.

09
2

**
*

3.
54

0
**

*
4.

93
7

**
*

4.
89

7
**

*
5.

12
4

**
*

3.
43

7
**

*
3.

70
9

**
*

3.
76

8
**

*
3.

43
9

**
*

4.
11

9
**

*
-2

.3
72

 *
*

A
m

bi
de

xt
er

it
y

Sq
ua

re
d

-4
.8

50
 *

**
 -

3.
75

2
**

*
-3

.0
29

 *
**

-4
.7

45
 *

**
-4

.0
46

 *
**

-4
.3

22
 *

**
-3

.2
73

 *
**

-3
.7

49
 *

**
-3

.8
13

 *
**

-3
.6

97
 *

**
-4

.1
15

 *
**

.8
18

In
te

rn
al

 C
oh

es
io

n

C
lu

st
er

in
g

C
oe

ff
ic

ie
nt

5.
67

7
**

*

R
ep

ea
t T

ie
s

5.
24

4
**

*

T
hi

rd
 P

ar
ty

 T
ie

s

0.
95

9

Ja
cc

ar
d

S
im

il
ar

it
y

5.
85

7
**

*

C
or

re
la

ti
on

 S
im

il
ar

it
y

5.

32
6

**
*

E
xt

er
na

l C
on

ne
ct

iv
it

y

E
xt

er
na

l C
oh

es
io

n

2.

07
9

**

E
xt

er
na

l C
oh

es
io

n
S

qu
ar

ed

-4
.7

31
 *

**

D
ir

ec
t T

ie
s

3.

91
3

**
*

3.
63

8
**

*

In
di

re
ct

 T
ie

s

2.
72

4
**

*

D
ir

ec
t x

 I
nd

ir
ec

t T
er

m

-4

.0
31

 *
**

In
di

re
ct

 T
ie

s
F

D

2.
26

9
**

D
ir

ec
t x

 I
nd

ir
ec

t T
ie

s
F

D

-3
.6

26
 *

**

T
ec

h.
 D

iv
er

si
ty

3.
43

7
**

*

T
ec

h.
 D

iv
er

si
ty

 S
qu

ar
ed

-2
.6

25
 *

**

N
et

w
or

k
L

oc
at

io
n

D
eg

re
e

C
en

tr
al

it
y

2.
80

4
**

*

B
et

w
ee

nn
es

s
C

en
tr

al
it

y

-2

.4
94

 *
*

C
lo

se
ne

ss
 C

en
tr

al
it

y

1.

73
7

*

D
C

 x
 B

C

2.
02

1
**

D
C

 x
 C

C

-3
.8

61
 *

**

215

T
A

B
L

E
 2

0:
 C

on
t'd

C

V
S

M

od
el

 1

C
V

S

M
od

el
 2

.1
C

V
S

M

od
el

 2
.2

C
V

S

M
od

el
 2

.3
C

V
S

M

od
el

 2
.4

C
V

S

M
od

el
 2

.5
C

V
S

M

od
el

 3
.1

C
V

S

M
od

el
 3

.2
C

V
S

M

od
el

 3
.3

C
V

S

M
od

el
 3

.4
C

V
S

M

od
el

 4

C
V

S

M
od

el
 5

N
et

w
or

k
L

oc
at

io
n

A
m

bi
 D

eg
re

e
C

en
tr

al
it

y

-2
.2

05
 *

*

A
m

bi
 B

et
w

ee
nn

es
s

C
en

tr
al

it
y

2.

28
4

**

A
m

bi
 C

lo
se

ne
ss

 C
en

tr
al

it
y

3.

96
 *

**

N
um

be
r

of
 P

ro
je

ct
s

1.

93
5

**

A
m

bi
 D

C
 x

 N
P

2.
54

1
**

A
m

bi
 B

C
 x

 N
P

-2
.3

66
 *

*

A
m

bi
 C

C
 x

 N
P

-3
.0

24
 *

*

N
P

 x
 P

ro
je

ct
 T

ea
m

 S
iz

e

-3
.4

28
 *

*

C
on

tr
ol

 V
ar

ia
bl

es

T
ea

m
 H

um
an

 C
ap

it
al

 a
nd

 A
bi

li
ty

P
ro

je
ct

 T
ea

m
 S

iz
e

7.
98

1
**

*
6.

29
9

**
*

7.
08

0
**

*
7.

93
9

**
*

5.
93

6
**

*
6.

70
5

**
*

7.
84

3
**

*
3.

86
9

**
*

3.
56

3
**

*
7.

08
5

**
*

3.
71

9
**

*
6.

70
7

**
*

U
se

r
In

pu
t a

nd
 M

ar
ke

t P
ot

en
tia

l

B
ug

s
C

lo
se

d
10

.2
77

 *
**

 9
.5

73
 *

**

9.
53

6
**

*
10

.2
45

 *
**

9.
20

6
**

*
9.

43
3

**
*

9.
87

3
**

*
9.

64
2

**
*

9.
69

4
**

*
10

.3
15

 *
**

9.
67

8
**

*
9.

63
8

**
*

S
up

po
rt

 R
eq

ue
st

s
A

ns
w

er
ed

-.

67
5

-.
65

9
-.

43
0

-.
60

9
-.

78
6

-.
69

3
-.

60
0

-.
53

5
-.

51
1

-.
52

3
-.

60
4

-.
45

0

P
ag

e
V

ie
w

s
4.

82
7

**
*

4.
58

6
**

*
4.

98
6

**
*

4.
86

5
**

*
4.

51
4

**
*

4.
75

0
**

*
4.

82
1

**
*

4.
79

3
**

*
4.

81
3

**
*

4.
87

9
**

*
4.

75
5

**
*

4.
70

3
**

*

Pr
oj

ec
t L

if
e-

C
yc

le
 E

ff
ec

ts

P
ro

je
ct

 A
ge

 (
in

 m
on

th
s)

27

.5
32

 *
**

 2
7.

23
0

**
*

27
.2

35
 *

**
27

.5
23

 *
**

27
.5

76
 *

**
27

.4
80

 *
**

27
.0

30
 *

**
27

.0
05

 *
**

27
.0

69
 *

**
27

.0
02

 *
**

27
.1

46
 *

**
26

.9
49

 *
**

P
ro

je
ct

 A
ge

 S
qu

ar
ed

6.

59
8

**
*

6.
45

3
**

*
6.

65
6

**
*

6.
59

9
**

*
6.

46
8

**
*

6.
57

0
**

*
6.

54
2

**
*

6.
52

9
**

*
6.

55
1

**
*

6.
46

4
**

*
6.

54
7

**
*

6.
47

3
**

*

D
ev

el
op

m
en

t S
ta

tu
s

-1
.6

85
 *

-1

.6
13

-1

.7
38

 *

-1
.7

37
 *

-1

.5
84

-1

.5
39

-1

.6
69

 *

-1
.7

29
 *

-1

.7
40

 *

-1
.7

45
 *

-1

.7
38

 *

-1
.6

29

E
ng

li
sh

2.

66
8

**
*

2.
66

7
**

*
2.

79
9

**
*

2.
68

0
**

*
2.

63
4

**
*

2.
70

3
**

*
2.

71
7

**
*

2.
75

0
**

*
2.

72
3

**
*

2.
75

2
**

*
2.

59
8

**
*

2.
91

5
**

*

R
es

ul
ts

F
 s

ta
ti

st
ic

s
46

.2
17

 *
**

 4
6.

50
0

**
*

46
.2

98
 *

**
45

.1
62

 *
**

46
.5

89
 *

**
46

.3
35

 *
**

45
.0

92
 *

**
43

.3
98

 *
**

43
.7

65
 *

**
44

.5
73

 *
**

42
.0

56
 *

**
40

.1
29

 *
**

D
eg

re
e

of
 F

re
ed

om

42

43
43

43
43

43

44
45

45
44

47
50

R

0.
67

5
0.

68
1

0.
68

0
0.

67
5

0.
68

1
0.

68
0

0.
67

9
0.

67
9

0.
67

8
0.

67
7

0.
67

9
0.

68
2

R
 S

qu
ar

e
0.

45
6

0.
46

3
0.

46
2

0.
45

6
0.

46
4

0.
46

2
0.

46
2

0.
46

1
0.

46
0

0.
45

9
0.

46
1

0.
46

5

A
dj

. R
 S

qu
ar

e
0.

44
6

0.
45

3
0.

45
2

0.
44

6
0.

45
4

0.
45

2
0.

45
1

0.
45

0
0.

44
9

0.
44

8
0.

45
0

0.
45

3

S
td

. E
rr

or
 o

f
E

st
im

at
e

2.
30

6
2.

29
1

2.
29

3
2.

30
6

2.
29

0
2.

29
3

2.
29

5
2.

29
8

2.
29

9
2.

30
1

2.
29

8
2.

29
1

*S
ig

ni
fi

ca
nt

 a
t 1

0%
 le

ve
l,

**
S

ig
ni

fi
ca

nt
 a

t 5
%

 le
ve

l,
**

*S
ig

ni
fi

ca
nt

 a
t 1

%
 le

ve
l

216

T
A

B
L

E
 2

1:
 R

es
ul

ts
 o

f
T

ec
hn

ic
al

 P
er

fo
rm

an
ce

 M
od

el
 (

D
ep

en
de

nt
 V

ar
ia

bl
e:

 C
V

S
 a

nd
 S

V
N

 C
om

m
it

s,
 N

=
23

60
)

C

V
S

/S
V

N

M
od

el
 1

C

V
S

/S
V

N

M
od

el
 2

.1
C

V
S

/S
V

N

M
od

el
 2

.2
C

V
S

/S
V

N

M
od

el
 2

.3
C

V
S

/S
V

N

M
od

el
 2

.4
C

V
S

/S
V

N

M
od

el
 2

.5
C

V
S

/S
V

N

M
od

el
 3

.1
C

V
S

/S
V

N

M
od

el
 3

.2
C

V
S

/S
V

N

M
od

el
 3

.3
C

V
S

/S
V

N

M
od

el
 3

.4
C

V
S

/S
V

N

M
od

el
 4

C

V
S

/S
V

N

M
od

el
 5

In
de

pe
nd

en
t V

ar
ia

bl
es

A
m

bi
de

xt
er

it
y

A
m

bi
de

xt
er

it
y

4.
77

3
**

*
3.

40
2

**
*

2.
62

4
**

*
4.

37
3

**
*

4.
47

3
**

*
4.

75
8

**
*

2.
48

4
**

2.

61
8

**
*

2.
68

7
**

*
2.

66
4

**
*

3.
13

9
**

*
-3

.0
80

 *
**

A
m

bi
de

xt
er

it
y

Sq
ua

re
d

-4
.6

14
 *

**
 -

3.
17

9
**

*
-2

.1
69

 *
*

-4
.3

95
 *

**
-3

.6
16

 *
**

-3
.9

53
 *

**
-2

.4
92

 *
*

-2
.9

22
 *

**
-2

.9
95

 *
**

-3
.1

69
 *

**
-3

.3
68

 *
**

1.
47

2

In
te

rn
al

 C
oh

es
io

n

C
lu

st
er

in
g

C
oe

ff
ic

ie
nt

7.
65

9
**

*

R
ep

ea
t T

ie
s

7.
38

5
**

*

T
hi

rd
 P

ar
ty

 T
ie

s

2.
29

1
**

Ja
cc

ar
d

S
im

il
ar

it
y

7.
43

9
**

*

C
or

re
la

ti
on

 S
im

il
ar

it
y

6.

83
6

**
*

E
xt

er
na

l C
on

ne
ct

iv
it

y

E
xt

er
na

l C
oh

es
io

n

2.

60
9

**
*

E
xt

er
na

l C
oh

es
io

n
S

qu
ar

ed

-6
.7

54
 *

**

D
ir

ec
t T

ie
s

5.

96
9

**
*

5.
84

8
**

*

In
di

re
ct

 T
ie

s

4.
42

2
**

*

D
ir

ec
t x

 I
nd

ir
ec

t T
er

m

-5

.9
75

 *
**

In
di

re
ct

 T
ie

s
F

D

3.
90

8
**

*

D
ir

ec
t x

 I
nd

ir
ec

t T
ie

s
F

D

-5
.7

52
 *

**

T
ec

h.
 D

iv
er

si
ty

3.
91

6
**

*

T
ec

h.
 D

iv
er

si
ty

 S
qu

ar
ed

-1
.9

06
 *

N
et

w
or

k
L

oc
at

io
n

D
eg

re
e

C
en

tr
al

it
y

4.
45

9
**

*

B
et

w
ee

nn
es

s
C

en
tr

al
it

y

-2

.7
16

 *
**

C
lo

se
ne

ss
 C

en
tr

al
it

y

2.

73
5

**
*

D
C

 x
 B

C

1.
96

6
**

D
C

 x
 C

C

-5
.8

58
 *

**

217

T
A

B
L

E
 2

1:
 C

on
t'd

C

V
S

/S
V

N

M
od

el
 1

C

V
S

/S
V

N

M
od

el
 2

.1
C

V
S

/S
V

N

M
od

el
 2

.2
C

V
S

/S
V

N

M
od

el
 2

.3
C

V
S

/S
V

N

M
od

el
 2

.4
C

V
S

/S
V

N

M
od

el
 2

.5
C

V
S

/S
V

N

M
od

el
 3

.1
C

V
S

/S
V

N

M
od

el
 3

.2
C

V
S

/S
V

N

M
od

el
 3

.3
C

V
S

/S
V

N

M
od

el
 3

.4
C

V
S

/S
V

N

M
od

el
 4

C

V
S

/S
V

N

M
od

el
 5

N
et

w
or

k
L

oc
at

io
n

A
m

bi
 D

eg
re

e
C

en
tr

al
it

y

-1
.6

73
 *

A
m

bi
 B

et
w

ee
nn

es
s

C
en

tr
al

it
y

1.

41
6

A
m

bi
 C

lo
se

ne
ss

 C
en

tr
al

it
y

3.

86
4

**
*

N
um

be
r

of
 P

ro
je

ct
s

2.

53
9

**

A
m

bi
 D

C
 x

 N
P

2.
06

7
**

A
m

bi
 B

C
 x

 N
P

-1
.5

1

A
m

bi
 C

C
 x

 N
P

-2
.5

35
 *

*

N
P

 x
 P

ro
je

ct
 T

ea
m

 S
iz

e

-5
.4

47
 *

**

C
on

tr
ol

 V
ar

ia
bl

es

T
ea

m
 H

um
an

 C
ap

it
al

 a
nd

 A
bi

li
ty

P
ro

je
ct

 T
ea

m
 S

iz
e

9.
26

5
**

*
7.

08
7

**
*

8.
06

3
**

*
9.

18
0

**
*

6.
74

1
**

*
7.

68
0

**
*

9.
07

8
**

*
3.

74
0

**
*

3.
25

9
**

*
8.

16
8

**
*

3.
67

3
**

*
8.

91
2

**
*

U
se

r
In

pu
t a

nd
 M

ar
ke

t P
ot

en
tia

l

B
ug

s
C

lo
se

d
13

.5
88

 *
**

 1
2.

71
5

**
*

12
.6

26
 *

**
13

.5
28

 *
**

12
.2

84
 *

**
12

.5
55

 *
**

13
.0

78
 *

**
12

.7
29

 *
**

12
.7

62
 *

**
13

.6
30

 *
**

12
.7

77
 *

**
12

.9
04

 *
**

S
up

po
rt

 R
eq

ue
st

s
A

ns
w

er
ed

-.

86
4

-.
84

6
-.

52
3

-.
70

8
-1

.0
08

-.

89
0

-.
76

5
-.

64
1

-.
59

7
-.

68
3

-.
72

3
-.

49
4

P
ag

e
V

ie
w

s
6.

70
1

**
*

6.
41

4
**

*
6.

96
3

**
*

6.
80

2
**

*
6.

33
6

**
*

6.
63

1
**

*
6.

71
2

**
*

6.
69

9
**

*
6.

72
1

**
*

6.
76

6
**

*
6.

65
3

**
*

6.
79

0
**

*

Pr
oj

ec
t L

if
e-

C
yc

le
 E

ff
ec

ts

P
ro

je
ct

 A
ge

 (
in

 m
on

th
s)

14

.2
45

 *
**

 1
3.

82
6

**
*

13
.8

35
 *

**
14

.2
40

 *
**

14
.2

24
 *

**
14

.1
25

 *
**

13
.6

18
 *

**
13

.6
18

 *
**

13
.7

00
 *

**
13

.7
03

 *
**

13
.7

88
 *

**
13

.6
16

 *
**

P
ro

je
ct

 A
ge

 S
qu

ar
ed

11

.8
57

 *
**

 1
1.

74
7

**
*

12
.0

23
 *

**
11

.8
71

 *
**

11
.7

69
 *

**
11

.8
88

 *
**

11
.8

46
 *

**
11

.8
20

 *
**

11
.8

49
 *

**
11

.7
13

 *
**

11
.8

30
 *

**
11

.8
92

 *
**

D
ev

el
op

m
en

t S
ta

tu
s

-1
.2

29

-1
.1

32

-1
.3

04

-1
.3

57

-1
.0

99

-1
.0

42

-1
.2

18

-1
.3

33

-1
.3

46

-1
.3

52

-1
.3

28

-1
.1

89

E
ng

li
sh

1.

66
8

*
1.

66
4

*
1.

85
1

*
1.

69
9

*
1.

62
0

1.
70

9
*

1.
74

2
*

1.
83

9
*

1.
79

8
*

1.
74

4
*

1.
66

1
*

1.
95

2
*

R
es

ul
ts

F
 s

ta
ti

st
ic

s
32

.5
72

 *
**

 3
3.

97
0

**
*

33
.8

18
 *

**
31

.9
95

 *
**

33
.8

48
 *

**
33

.5
29

 *
**

32
.8

07
 *

**
32

.0
74

 *
**

31
.9

52
 *

**
31

.6
86

 *
**

30
.6

11
 *

**
29

.1
07

 *
**

D
eg

re
e

of
 F

re
ed

om

42

43
43

43
43

43

44
45

45
44

47

R

0.
60

9
0.

62
2

0.
62

1
0.

61
0

0.
62

1
0.

61
9

0.
62

0
0.

62
0

0.
61

9
0.

61
3

0.
61

9
0.

62
2

R
 S

qu
ar

e
0.

37
1

0.
38

7
0.

38
6

0.
37

3
0.

38
6

0.
38

4
0.

38
4

0.
38

4
0.

38
3

0.
37

6
0.

38
4

0.
38

7

A
dj

. R
 S

qu
ar

e
0.

36
0

0.
37

5
0.

37
4

0.
36

1
0.

37
5

0.
37

2
0.

37
2

0.
37

2
0.

37
1

0.
36

4
0.

37
1

0.
37

3

S
td

. E
rr

or
 o

f
E

st
im

at
e

2.
26

9
2.

24
1

2.
24

3
2.

26
7

2.
24

3
2.

24
7

2.
24

7
2.

24
7

2.
24

9
2.

26
2

2.
24

9
2.

24
5

*S
ig

ni
fi

ca
nt

 a
t 1

0%
 le

ve
l,

**
Si

gn
if

ic
an

t a
t 5

%
 le

ve
l,

**
*S

ig
ni

fi
ca

nt
 a

t 1
%

 le
ve

l

218

The adjusted R2 statistics indicate a reasonable fit for all models with the adjusted

R2 around 0.450 for the number of CVS commits, and 0.370 for the sum of CVS and

SVN commits. The overall fit of models with the sum of CVS and SVN commits is lower

than the overall fit of models with the number of CVS commits. One possible explanation

for the relatively lower support for the CVS and SVN commits is that the SVN was not

mature enough to fully capture project performance until our network construction date

(December 2008) since it started being used around the end of 2006. After the SVN has

been available, the adoption of the SVN was widespread throughout the OSS community

and many projects have migrated from the CVS to the SVN (Van Antwerp and Madey

2008). Therefore, many projects have used the CVS in their first years and then started

using the SVN by migrating from the CVS system to the SVN system. However, the

CVS and SVN may not be used in parallel mode because this potentially creates

difficulties for projects to track the same changes in different systems. Projects may use

the CVS and SVN for different modules of their projects. Projects may still use the CVS

to track changes in core project modules which have been developed at the first years of

projects and submitted to the CVS system. Projects may not migrate these core modules

from the CVS system to the SVN system because of the following reasons. First, there

are difficulties to migrate these core modules from the CVS system to the SVN system.

Second, there are difficulties to track changes in both systems because of the impact of

variety and interdependency of project elements on software development process. In

Chapter 2, we analyzed the impact of variety and interdependency of project elements

(i.e., software complexity) on the software development process. The variety and

interdependency of project elements affect the effectiveness of development teams

219

(Roberts et al. 2004). The more complex the software product, the more effort required to

mitigate the negative impact of software complexity on software development process.

As the number of project elements increases, software development becomes more

difficult to control. Software complexity also determines the maintenance cost of

software since high level of software complexity interferes with the process of

comprehending the application and makes it difficult for developers to efficiently and

correctly modify the application (Banker and Slaughter 2000). Therefore, migrating core

modules from the CVS system to the SVN system and tracking changes in both systems

may be very challenging for project teams to effectively manage the interdependencies

among project modules. Projects may use the SVN system for non-core modules which

may not have interdependency to core project modules. Therefore, the SVN system may

be used to track changes which may have relatively lower impact on project performance.

Therefore, SVN commits should be analyzed over a long time period with very recent

data.

The t statistic is used to check the significance of each individual regression

coefficients, and hence, to assess the support for the relevant hypotheses. The results of

regression coefficients are consistent across two technical performance measures. We

found strong support for all of our ten hypotheses across two technical performance

measures as shown in Table 19.

Our first hypothesis states that ambidexterity has a curvilinear effect on project

performance, i.e. a moderate level of ambidexterity results in higher project performance

rather than very high or very low levels of ambidexterity. We found that ambidexterity

has a curvilinear effect on project performance. The coefficient for ambidexterity is

220

positive and significant (CVS commits: 5.143, p < 0.01; CVS and SVN commits: 4.773,

p < 0.01) whereas the coefficient for the square of ambidexterity is negative and

significant (CVS commits: –4.850, p < 0.01; CVS and SVN commits: -4.614, p < 0.01).

Therefore, our hypothesis H1 is supported. We propose ambidexterity as a measure of the

ability of projects to pursue both exploitative and exploratory activities concurrently. It is

based on the concept of ambidextrous developers who contribute to exploitative and

exploratory activities concurrently. Ambidextrous developers play important roles for

projects. First, they integrate exploitative and exploratory project teams. Second, they

facilitate knowledge exchange and combination between exploitative and exploratory

project teams, in turn they facilitate new value creation through linking knowledge

sources held by exploitative and exploratory project teams. Therefore, their important

roles are based on the idea that exploitative and exploratory project teams develop and

maintain distinct capabilities and competences. This view is consistent with the idea of

task specialization and task variety (Narayanan et al. 2009). Project teams can gain

diverse knowledge from different types of tasks since ambidextrous developers work on

both exploitative and exploratory activities (Narayanan et al. 2009). In contrast, project

teams can gain more and deeper experience from specializing in one task since non-

ambidextrous developers work on either exploitative or exploratory activities, and

become more familiar with the task (Narayanan et al. 2009). Therefore, ambidextrous

developers have access to diverse knowledge from exploitative and exploratory activities,

and quickly exchange and integrate greater amounts of knowledge with other project

developers. On the other hand, non-ambidextrous developers specialize in either

exploitative or exploratory activities, and they may benefit from knowledge exchanged

221

by ambidextrous developers. Therefore, ambidextrous developers play the same or

similar roles in both exploitative and exploratory activities. On the other hand, non-

ambidextrous developers play unique roles depending on their specializations on either

exploitative or exploratory activities. In addition, their roles are also different from the

roles of ambidextrous developers. Therefore, the results show that a moderate level of

ambidexterity enables project teams to access diverse knowledge from different types of

tasks, and to exchange relevant knowledge within a project team, while ensuring

adequate specialization to absorb and integrate new knowledge.

Our second hypothesis states that the performance of a project will be positively

related to the internal cohesion of a project. We measured internal cohesion for a project

with clustering coefficient, repeated ties, third party ties, Jaccard similarity, and

correlation similarity. We found support for our second hypothesis for clustering

coefficient (CVS commits: 5.677, p < 0.01; CVS and SVN commits: 7.659, p < 0.01),

repeated ties (CVS commits: 5.244, p < 0.01; CVS and SVN commits: 7.385, p < 0.01),

Jaccard similarity (CVS commits: 5.857, p < 0.01; CVS and SVN commits: 7.439, p <

0.01), and correlation similarity (CVS commits: 5.326, p < 0.01; CVS and SVN commits:

6.836, p < 0.01). Their coefficients are positive and significant. However, we found that

the number of third party ties is insignificant for the CVS measure, but significant for the

CVS and SVN measures. The results of repeat ties and third party ties merit further

discussion. Repeat ties and third party ties are based on social interactions among

developers. One possible explanation for the insignificance of third party ties is that there

may be a few social interactions for the pairs of developers with common third parties,

and these interactions may not be have enough strength to support third party ties. In

222

addition, third party ties measure the number of relationship of a pair of developers to

common third parties outside the focal project team. Therefore, third party ties do not

measure the strong relationship between two developers, but measure the relative

relationship of already connected two developers to the common third Thus, they may

represent relatively loose connections. The common third developer is an outside

developer of a focal team, and thereby, that developer may not directly foster trust,

reciprocity norms and shared identity within a focal project team which facilitate

collaboration and cooperation among focal project team members. In contrast, repeat ties

capture the strength and deepness of the relationship between two developers. The

strength and deepness of relationship indicates two developers interact more frequently,

and they develop more closer and cohesive relationships. Repeat ties from past

interactions also result in greater trust within a focal team. This contributes more to

project performance. Therefore, our hypothesis H2 is supported by results of the

clustering coefficient, repeated ties, Jaccard similarity, and correlation similarity.

Our third hypothesis states that external cohesion has a curvilinear effect on

project performance, i.e. a moderate level of external cohesion results in higher project

performance rather than very high or very low levels of external cohesion. We found that

external cohesion has a curvilinear effect on project performance. The coefficient for

external cohesion is positive and significant (CVS commits: 2.079, p < 0.01; CVS and

SVN commits: 2.609, p < 0.01) whereas the coefficient for the square of external

cohesion is negative and significant (CVS commits: –4.731, p < 0.01; CVS and SVN

commits: -6.754, p < 0.01). Therefore, our hypothesis H3 is supported. Although external

cohesion has resource sharing and knowledge spillovers benefits, the impact of external

223

cohesion on the resource sharing benefits is opposite to the impact of external cohesion

on knowledge spillover benefits. From the perspective of resource sharing benefits, a

moderate level of external cohesion enables project teams to access to a greater amount

of external knowledge by enhancing information transmission capacity of the external

network of a project, but does not limit the ability of project teams to access to novel

information. From the perspective of knowledge spillovers benefits, a moderate level of

external cohesion enables project teams to access to novel information in the forms of

information conduits, but does not reduce mutual trust and shared norms which facilitate

collaboration and cooperation among developers. Therefore, we found that a moderate

level of external cohesion facilitates both the access to and the diversity of external

knowledge resources available to a project team.

Our fourth hypothesis states that the performance of a project will be positively

related to the number of direct ties of a project. Our fifth hypothesis states that the

performance of a project will be positively related to the number of indirect ties of a

project. In the hypothesis H6, we expect that the impact of indirect ties on the

performance of a project will be moderated by the number of direct ties of a project, i.e.,

the greater the number of direct ties, the smaller the benefit from indirect ties. We used

two measures for indirect ties: the number of indirect ties and the number of indirect ties

calculated with the frequency decay function. Therefore, direct ties have been tested with

each measure of indirect ties in separate models. We found that direct ties have a positive

effect on project performance. The coefficient for direct ties is positive and significant

(CVS commits: 3.913, p < 0.01; CVS and SVN commits: 5.969, p < 0.01) when we

consider its interaction with the number of indirect ties. The coefficient for direct ties is

224

also positive and significant (CVS commits: 3.638, p < 0.01; CVS and SVN commits:

5.848, p < 0.01) when we consider its interaction with the number of frequency decayed

indirect ties. We found that indirect ties have a positive effect on project performance.

The coefficient for indirect ties is positive and significant (CVS commits: 2.724, p <

0.01; CVS and SVN commits: 4.422, p < 0.01). The coefficient for frequency decayed

indirect ties is also positive and significant (CVS commits: 2.269, p < 0.01; CVS and

SVN commits: 3.908, p < 0.01). Regarding the interaction of indirect ties with direct ties,

we found that the impact of indirect ties on project performance is moderated by the

number of direct ties. The coefficient for the interaction term of direct and indirect ties is

negative and significant (CVS commits: -4.031, p < 0.01; CVS and SVN commits: -

5.975, p < 0.01). The coefficient for the interaction term of direct and frequency decayed

indirect ties is negative and significant (CVS commits: -3.626, p < 0.01; CVS and SVN

commits: -5.752, p < 0.01). Although direct ties have both resource sharing and

knowledge spillover benefits, the resource sharing benefit of direct ties is greater than

knowledge spillover benefit, hence they facilitate resource pooling by enabling project

teams to combine knowledge and skills with repeating interactions. Indirect ties provide

novel information by enabling project teams to access to knowledge spillovers. However

knowledge spillover benefits provided by indirect ties are contingent on the number of

direct ties. We found that the ability of project teams to access novel knowledge is

constrained by many direct ties. Therefore, project teams with few direct ties enjoy

greater knowledge spillovers benefits from their indirect ties than teams with many direct

ties.

225

Our seventh hypothesis states that technological diversity has a curvilinear effect

on project performance, i.e. a moderate level of technological diversity results in higher

project performance rather than very high or very low levels of technological diversity.

We found that technological diversity has a curvilinear effect on project performance.

The coefficient for technological diversity is positive and significant (CVS commits:

3.437, p < 0.01; CVS and SVN commits: 3.916, p < 0.01) whereas the coefficient for the

square of external cohesion is negative and significant (CVS commits: –2.625, p < 0.01;

CVS and SVN commits: -1.906, p < 0.01). Therefore, our hypothesis H7 is supported.

OSS developer may work on multiple projects concurrently. When they join to another

project, they choose to work on projects that are moderately technologically diverse from

each other since they can recognize and absorb knowledge close to their existing

knowledge base (Cohen and Levinthal 1990). Therefore, a moderate level of

technological diversity between two projects improves the performance of developers on

each project.

Our eighth hypothesis states that the performance of a project will be positively

related to the centrality of a project. We measured network location for a project with

degree centrality, betweenness centrality, and closeness centrality. In the data analysis,

we found that degree centrality has interaction with closeness centrality and betweenness

centrality. During the analysis, we considered the interaction of degree centrality with

closeness centrality and betweenness centrality. In support for the hypothesis 8, we found

that degree centrality has a positive effect on project performance. The coefficient for

degree centrality is positive and significant (CVS commits: 2.804, p < 0.01; CVS and

SVN commits: 4.459, p < 0.01) when we consider its interaction with betweenness

226

centrality and closeness centrality. We also found that closeness centrality has a positive

effect on project performance. The coefficient for closeness centrality is positive and

significant (CVS commits: 1.737, p < 0.1; CVS and SVN commits: 2.735, p < 0.01) when

we consider its interaction with degree centrality. Therefore, we found support for our

eighth hypothesis for degree centrality and closeness centrality. Degree centrality is the

measure of how many an actor is connected to other actors in the network through direct

connections (Freeman 1979, Wasserman and Frost 1994). If a developer is connected to

many other developers through direct ties, a developer may access to greater amounts of

information and knowledge (Hansen 2002). However, direct ties more likely provide

relatively redundant information (Hansen 1999). Therefore, high degree centrality allows

a developer to have access to greater amounts of (relatively redundant) knowledge

(Hansen 2002). Therefore, a developer with high degree centrality may have access to

greater amounts of (relatively redundant) knowledge. As explained later, the results of

our ninth and tenth hypothesis indicates that ambidextrous developers play an integration

role. The integration role of ambidextrous developers on project performance depends on

access to novel information through indirect ties or from multiple projects: the greater the

access to novel information, the higher the impact on project performance. While high

degree centrality is undesirable for ambidextrous developers, it could be desirable for a

project as a whole. This is because, if every developer has access to greater amounts of

knowledge, the project, as a whole, could be positively affected. Closeness centrality is

the measure of how close an actor is to all other actors in the network through direct and

indirect connections (Freeman 1979, Wasserman and Frost 1994). If a developer is very

close to many other developers through direct and indirect ties, a developer may have

227

quick access to knowledge (Uzzi 1997, Powell and Smith-Doerr 1994). However, indirect

ties more likely provide access to novel information (Hansen 1999). Therefore, high

closeness centrality may allow a developer to have quick access to both redundant and

novel knowledge (Uzzi 1997, Powell and Smith-Doerr 1994). We found that high

closeness centrality provides quick access to knowledge, and in turn improves project

performance. However, we found that betweenness centrality has a negative effect on

project performance. The coefficient for betweenness centrality is negative and

significant (CVS commits: -2.494, p < 0.05; CVS and SVN commits: -2.716, p < 0.01)

when we consider its interaction with degree centrality. The effect of betweenness

centrality on project performance seems contrary to our expectations. Betweenness

centrality is the measure of how often a developer falls on the shortest path between pairs

of other developers (Freeman 1979, Wasserman and Faust 1994). Therefore, high

between centrality allows a developer to control (Wasserman and Faust 1994, Pfeffer and

Salancik 1978), and regulate information flow among other developers (Wasserman and

Faust 1994, Krackhardt 1996). Therefore, a developer with high betweenness centrality

may control and regulate too much information passing through him. As explained later,

the results of our ninth and tenth hypothesis indicates that ambidextrous developers play

a control role. The control role of ambidextrous developers on project performance

depends on the level of control on information flow among other developers: the greater

the level of control on information flow, the higher the impact on project performance.

While high betweenness centrality (high control) is desirable for ambidextrous

developers, it could be undesirable for a project as a whole. This is because, if every

228

developer has a high degree of control, the project, as a whole, could be negatively

affected.

Regarding the interaction of degree centrality with closeness centrality, we found

that the impact of closeness centrality on project performance is moderated by degree

centrality. The coefficient for the interaction term of closeness centrality and degree

centrality is negative and significant (CVS commits: -3.861, p < 0.01; CVS and SVN

commits: -5.858, p < 0.01). The ability of project teams to have quick access to the novel

information is constrained by high degree centrality. Degree centrality considers direct

connections whereas closeness centrality considers direct and indirect connections

(Freeman 1979, Wasserman and Frost 1994). Project teams with few direct ties add a

significant increment to their existing information base through indirect ties (Ahuja

2000). Project teams with many direct ties may be more constrained in their ability to

absorb new information (Cohen and Levinthal 1990). Therefore, the effect of closeness

centrality of project teams with lower degree centrality is greater than the effect of

closeness centrality of project teams with higher degree centrality. The result indicates

that project teams with high closeness centrality have quick access to more novel

information if their degree centrality is low, which improves project performance.

Regarding the interaction of degree centrality with betweenness centrality, we found that

the impact of betweenness centrality on project performance is moderated by degree

centrality. The coefficient for the interaction term of betweenness centrality and degree

centrality is positive and significant (CVS commits: 2.021, p < 0.05; CVS and SVN

commits: 1.966, p < 0.05). The ability of project teams to control and regulate

information flow is constrained by degree centrality. Therefore, the effect of betweenness

229

centrality of project teams with higher degree centrality is greater than the effect of

betweenness centrality of project teams with lower degree centrality. The results indicate

that project teams can more easily control and regulate information acquired from

immediate contacts through direct ties. The results also indicate that information acquired

from remote contacts may be more challenging to be controlled and regulated since

remote developers more likely provide novel information. Therefore, project teams can

more easily control and regulate information acquired from immediate developers than

information acquired from remote developers. People vary widely in their capability to

develop, understand, or use knowledge based on their technological base and their prior

knowledge (Cohen and Levinthal 1990). People recognize and absorb knowledge close to

their existing knowledge base (Cohen and Levinthal 1990). Therefore, too much novel

information acquired from remote contacts restricts the capability of project teams to

develop, understand, or use knowledge. This result is also consistent with the results of

technological diversity.

Our ninth hypothesis states that the performance of a project will be positively

related to the centrality of ambidextrous developers. We measured network location for

ambidextrous developers with degree centrality, betweenness centrality, and closeness

centrality. We expect the interaction of the number of projects with ambidextrous

developers’ degree centrality, betweenness centrality, and closeness centrality. We found

that ambidextrous developers’ betweenness centrality has a positive effect on project

performance. The coefficient for ambidextrous developers’ betweenness centrality is

positive and significant for the dependent variable of CVS commits, but not significant

for the dependent variable of CVS and SVN commits (CVS commits: 2.284, p < 0.05;

230

CVS and SVN commits: 1.416, p < 0.1) when we consider its interaction with the

number of projects. Therefore, we found support for our ninth hypothesis for

betweenness centrality. High betweenness centrality allows a developer to control

(Wasserman and Faust 1994, Pfeffer and Salancik 1978), and regulate information flow

among other developers (Wasserman and Faust 1994, Krackhardt 1996). In our eighth

hypothesis, we found that high betweenness centrality of a project negatively affect

project performance since project developers do not take advantage to control and

regulate information flow among other developers. However, we expect that

ambidextrous developers play an important role to control and regulate information flow

among other developers. On the other hand, non-ambidextrous developers play unique

roles depending on their specializations on either exploitative or exploratory activities. In

addition, their roles are also different from the roles of ambidextrous developers. They

may benefit from knowledge exchanged by ambidextrous developers. The result of

ambidextrous developers’ betweenness centrality indicates that ambidextrous developers

play an important role to control and regulate information flow among other developers.

Combined with the results of our tenth hypothesis, our results indicate that the control

role of ambidextrous developers on project performance depends on the level of control

on information flow among other developers: the greater the level of control on

information flow, the higher the impact on project performance. Therefore, an

ambidextrous developer with high betweenness centrality performs better than an

ambidextrous developer with low betweenness centrality. We found that ambidextrous

developers’ closeness centrality has a positive effect on project performance. The

coefficient for ambidextrous developers’ closeness centrality is positive and significant

231

(CVS commits: 3.960, p < 0.1; CVS and SVN commits: 3.864, p < 0.01) when we

consider its interaction with the number of projects. Therefore, we found support for our

ninth hypothesis for closeness centrality. High closeness centrality allows a developer to

have quick access to information (Uzzi 1997, Powell and Smith-Doerr 1994). Moreover,

high closeness centrality may allow a developer to have quick access to both redundant

and novel knowledge (Uzzi 1997, Powell and Smith-Doerr 1994). We expect that

ambidextrous developers play an integration role by speeding up information flow and

allowing information to be exchanged and integrated more rapidly among other

developers. The result of ambidextrous developers’ closeness centrality indicates that

ambidextrous developers play an integration role by speeding up information flow and

allowing information and knowledge to be exchanged and integrated more rapidly among

other developers. Therefore, an ambidextrous developer with high closeness centrality

performs better than an ambidextrous developer with low closeness centrality. However,

we found that degree centrality has a negative effect on project performance. The

coefficient for degree centrality is negative and significant (CVS commits: -2.205, p <

0.05; CVS and SVN commits: -1.673, p < 0.1) when we consider its interaction with the

number of projects. The effect of degree centrality on project performance seems

contrary to our expectations. High degree centrality may allow a developer to have access

to greater amounts of (relatively redundant) knowledge from immediate contacts (Hansen

2002). We expect that ambidextrous developers play an integration role by allowing

greater amounts of information and knowledge to be exchanged and integrated among

other developers. The result of ambidextrous developers’ degree centrality indicates that

ambidextrous developers with high degree centrality may have access to relatively

232

redundant information from immediate contacts which negatively affects their integration

role since most information exchanged by ambidextrous developers are redundant held

by all project developers. However, we expect that ambidextrous developers perform

well since they have access to diverse knowledge from both exploitative and exploratory

activities. Therefore, an ambidextrous developer with low degree centrality performs

better than an ambidextrous developer with high degree centrality since they may

exchange more novel information with other developers. Combined with the results of

our tenth hypothesis, our results indicate that the integration role of ambidextrous

developers on project performance depends on access to novel information through

indirect ties or from multiple projects: the greater the access to novel information, the

higher the impact on project performance.

Our tenth hypothesis states that that the impact of the centrality of ambidextrous

developers on the performance of a project will be moderated by the number of projects

on which ambidextrous developers work, i.e., the greater number of projects on which

ambidextrous developers work, the lower impact of the centrality of ambidextrous

developers on the performance of a project. We found that the number of projects has a

positive effect on project performance. The coefficient for the number of projects is

positive and significant (CVS commits: 1.935, p < 0.05; CVS and SVN commits: 2.539,

p < 0.01) when we consider its interaction with ambidextrous developers’ degree

centrality, betweenness centrality and closeness centrality. The results indicate that

ambidextrous developers perform better if they work on many projects since they may

access to more novel information from different projects, which improve the integration

role of ambidextrous developers by allowing them to exchange more novel information

233

with other developers. In the data analysis, we also found that the number of projects has

interaction with a project team size. When we considered the interaction of the number of

projects with a project team size, the coefficient for the interaction term is negative and

significant (CVS commits: -3.428, p < 0.05; CVS and SVN commits: -5.447, p < 0.01).

Therefore, the impact of the number of projects on project performance is constrained by

a project team size. The results indicate that the impact of the number of projects on

project performance decreases if ambidextrous developers work on many large projects

since they may spend more time and effort in maintaining connections with many

developers (Hansen 1999, Hansen 2002, Shane and Cable 2002). In contrast, if

ambidextrous developers work on many small projects, they may not spend too much

time and effort in maintaining connections with many developers while they access to

more novel information from different projects. In support for the hypothesis 10, we

found that the impact of betweenness centrality on project performance is moderated by

the number of projects. The coefficient for the interaction term of betweenness centrality

and the number of projects is negative and significant (CVS commits: -2.366, p < 0.05;

CVS and SVN commits: -1.510, p < 0.05). Therefore, we found support for tenth

hypothesis for betweenness centrality. If ambidextrous developers work on small number

of projects, the effect of their betweenness centrality on project performance becomes

higher. Regarding the interaction of the number of projects with closeness centrality, we

found that the impact of closeness centrality on project performance is moderated by the

number of projects. The coefficient for the interaction term of closeness centrality and the

number of projects is negative and significant (CVS commits: -3.024, p < 0.05; CVS and

SVN commits: -2.535, p < 0.05). Therefore, we also found support for tenth hypothesis

234

for closeness centrality. If ambidextrous developers work on small number of projects,

the effect of their closeness centrality on project performance becomes higher. Regarding

the interaction of the number of projects with degree centrality, the coefficient for the

interaction term of degree centrality and the number of projects is positive and significant

(CVS commits: 2.541, p < 0.05; CVS and SVN commits: 2.067, p < 0.05). Although the

impact of degree centrality on project performance is moderated by the number of

projects, the effect of the interaction term of degree centrality and the number of projects

seems contrary to our expectations. In our hypothesis 9, we found that high degree

centrality negatively affects the integration role of ambidextrous developers since most

information exchanged by ambidextrous developers are redundant held by all project

developers. However, we expect that ambidextrous developers perform well since they

have access to diverse knowledge from both exploitative and exploratory activities. If

ambidextrous developers work on many projects simultaneously, they may access to

more novel information from different projects, which improve the integration role of

ambidextrous developers by allowing them to exchange more novel information with

other developers.

4.6.1.2. Results of Control Variables

Consistent with prior research, we controlled effects of team human capital and

ability, user input and market potential, project life-cycle effects on the project technical

performance. The results for our control variables are consistent for all models across two

technical performance measures, and hence we discuss the results for the base model

(Model 1).

235

Regarding team human capital and ability, we found that a project team size has a

positive effect on the project technical performance. The coefficient for a project team

size is positive and significant (CVS commits: 7.981, p < 0.01; CVS and SVN commits:

9.265, p < 0.01). The results showed that projects with large teams perform better than

projects with small teams.

Regarding user input and market potential, we found that the number of bugs and

page views have a positive effect on the project technical performance. The coefficient

for bugs is positive and significant (CVS commits: 10.277, p < 0.01; CVS and SVN

commits: 13.588, p < 0.01). The coefficient for page views is positive and significant

(CVS commits: 4.827, p < 0.01; CVS and SVN commits: 6.701, p < 0.01). However, the

number of support requests does not have an effect on the project technical performance.

Bugs play an important role to identify defects in software, while support request are

associated with specific user questions and offered solutions. Thus, the number of defects

detected by users directly affects the project technical performance.

Regarding project life-cycle effects, we found that project age and project

language (English) have a positive effect on the project technical performance. The

coefficient for a project age is positive and significant (CVS commits: 27.532, p < 0.01;

CVS and SVN commits: 14.245, p < 0.01) and the coefficient for the square of project

age is also positive and significant (CVS commits: 6.598, p < 0.01; CVS and SVN

commits: 11.857, p < 0.01). Therefore, the results showed that a project age does not

have a curvilinear effect on the project technical performance. We found the development

status of software has a negative effect on the project technical performance for some

models, but not significant for other models. We may say that project teams may perform

236

better at the early stages of software development, and their performance decreases when

a project becomes stable or mature.

4.6.1.3. Illustrative Combined Models

In the previous section, we presented the results of hypotheses tested with an

individual model for each independent variable along with ambidexterity. In this section,

we present illustrative combined models in order to show that further combined models

are possible. We use the number of CVS commits as the dependent variable for our

illustrative combined models consistent with prior research (Singh et al. 2011, Singh

2010, Grewal et al. 2006, Rai et al. 2002). However, there is no basis for which an

independent variable should be used as representative for each variable group (internal

cohesion, external connectivity, network location of projects, and network location of

ambidextrous developers). Prior studies use one variable for internal cohesion as well as

one variable for external connectivity to test their hypotheses (Singh et al. 2011).

However, we have centrality measures for projects and ambidextrous developers. The

correlation analysis indicates the high correlation among variables within and between

variable groups as shown in Table 17 and Table 18. For example, there are high

correlations among the pairs of internal cohesion variables. There are also high

correlations among the pairs of external connectivity variables. External connectivity

variable are also correlated with centrality variables of projects and centrality variables of

ambidextrous developers. In addition, centrality variables of projects and centrality

variables of ambidextrous developers are also correlated with each other. Therefore, we

cannot create a combined model which includes external connectivity variables,

centrality variables of projects and centrality variables of ambidextrous developers.

237

However, ambidexterity and internal cohesion variables are not correlated with other

variable groups (external connectivity, network location of projects, and network location

of ambidextrous developers).

We have 5 internal cohesion variables (clustering coefficient, repeat ties, third

party ties, Jaccard similarity, and correlation similarity). We also have 4 external

connectivity variables (external cohesion, direct ties/indirect ties, direct ties/frequency

decayed indirect ties, and technological diversity). We have 2 groups of centrality

variables for projects and ambidextrous developers. First, we included each internal

cohesion variable along with ambidexterity and control variables. Second, we created all

possible combined models by adding each external connectivity variable and each

centrality variable group to ambidexterity, one internal cohesion variable and control

variables. Therefore, we ran all possible combined models (30=5*[4+2]). We selected

correlation similarity as a representative variable for internal cohesion. In Table 22, we

report the results of illustrative combined models which include ambidexterity,

correlation similarity and control variables along with each external connectivity variable

and each centrality variable group. We report the results of other combined models in

Appendix D. In Table 22, Model 1 presents the base model with only ambidexterity and

control variables. Model 2.1 through Model 2.4 add correlation similarity and one

external connectivity measure (external cohesion, direct ties/indirect ties, direct

ties/frequency decayed indirect ties, and technological diversity respectively) to Model 1.

Model 3 adds correlation similarity and projects’ centralities measures to Model 1

(degree centrality, betweenness centrality, and closeness centrality together). Model 4

adds correlation similarity, ambidextrous developers’ centralities measures and the

238

number of projects to Model 1 (the degree centrality of ambidextrous developers, the

betweenness centrality of ambidextrous developers, the closeness centrality of

ambidextrous developers, and the number of projects together).

The F statistics of all illustrative combined models are significant at the 0.01

alpha level. We rejected the null hypotheses that the effects of the independent variables

are zero, and, hence, all models are found to be statistically significant. The adjusted R2

statistics indicate a reasonable fit for all combined models with the adjusted R2 ranged

from 0.455 to 0.459. However, the contribution of internal cohesion, external

connectivity and centrality variables to the base model is marginal considering the

adjusted R2 statistic of the base model (0.446). The results indicate that ambidexterity is

significant in almost all illustrative models. Therefore, the results of ambidexterity are

stronger than the results of social network measures. We found that the result of each

variable in illustrative models is almost consistent with the result of the same variable in

individual technical performance models presented in the previous section. In a few

cases, the results of some variables in illustrative models are not significant. Therefore,

we concluded that the results of individual technical performance models and illustrative

models are generally the same. Additional analysis and model development may be

possible in future research.

239

T
A

B
L

E
 2

2:
 R

es
ul

ts
 o

f
Il

lu
st

ra
ti

ve
 C

om
bi

ne
d

M
od

el
s

fo
r

T
ec

hn
ic

al
 P

er
fo

rm
an

ce

(I
nt

er
na

l C
oh

es
io

n
M

ea
su

re
: C

or
re

la
ti

on
 S

im
il

ar
it

y,
 D

ep
en

de
nt

 V
ar

ia
bl

e:
 C

V
S

 C
om

m
it

s,
 N

=
23

60
)

C

om
bi

ne
d

M
od

el
 1

C

om
bi

ne
d

M
od

el
 2

.1

C
om

bi
ne

d
M

od
el

 2
.2

C

om
bi

ne
d

M
od

el
 2

.3

C
om

bi
ne

d
M

od
el

 2
.4

C

om
bi

ne
d

M
od

el
 3

C

om
bi

ne
d

M
od

el
 4

In
de

pe
nd

en
t V

ar
ia

bl
es

A
m

bi
de

xt
er

it
y

A
m

bi
de

xt
er

it
y

5.
14

3
**

*
4.

07
0

**
*

3.
39

9
**

*
3.

44
8

**
*

2.
84

6
**

*
3.

74
0

**
*

-2
.1

58
 *

*

A
m

bi
de

xt
er

it
y

Sq
ua

re
d

-4
.8

50
 *

**

-3
.3

04
 *

**

-3
.0

49
 *

**

-3
.0

96
 *

**

-2
.6

85
 *

**

-3
.3

58
 *

**

1.
03

9

In
te

rn
al

 C
oh

es
io

n

C
lu

st
er

in
g

C
oe

ff
ic

ie
nt

R
ep

ea
t T

ie
s

T
hi

rd
 P

ar
ty

 T
ie

s

Ja
cc

ar
d

Si
m

il
ar

it
y

C
or

re
la

ti
on

 S
im

il
ar

it
y

3.

30
4

**
*

5.
05

 *
**

5.

16
4

**
*

6.
13

7
**

*
5.

07
 *

**

4.
86

4
**

*

E
xt

er
na

l C
on

ne
ct

iv
ity

E
xt

er
na

l C
oh

es
io

n

2.
96

2
**

*

E
xt

er
na

l C
oh

es
io

n
S

qu
ar

ed

-2

.9
76

 *
**

D
ir

ec
t T

ie
s

3.
27

8
**

*
3.

06
7

**
*

In
di

re
ct

 T
ie

s

2.

77
3

**
*

D
ir

ec
t x

 I
nd

ir
ec

t T
er

m

-3
.0

03
 *

**

In
di

re
ct

 T
ie

s
F

D

2.

42
8

**

D
ir

ec
t x

 I
nd

ir
ec

t T
ie

s
F

D

-2

.7
18

 *
**

T
ec

h.
 D

iv
er

si
ty

4.

58
1

**
*

T
ec

h.
 D

iv
er

si
ty

 S
qu

ar
ed

-3

.0
95

 *
**

N
et

w
or

k
L

oc
at

io
n

D
eg

re
e

C
en

tr
al

it
y

2.

65
7

**
*

B
et

w
ee

nn
es

s
C

en
tr

al
it

y

-2
.1

66
 *

*

C
lo

se
ne

ss
 C

en
tr

al
it

y

2.
25

6
**

D
C

 x
 B

C

1.

75
3

*

D
C

 x
 C

C

-3

.0
90

 *
**

240

T
A

B
L

E
 2

2:
 C

on
t'd

C

om
bi

ne
d

M
od

el
 1

C

om
bi

ne
d

M
od

el
 2

.1

C
om

bi
ne

d
M

od
el

 2
.2

C

om
bi

ne
d

M
od

el
 2

.3

C
om

bi
ne

d
M

od
el

 2
.4

C

om
bi

ne
d

M
od

el
 3

C

om
bi

ne
d

M
od

el
 4

N
et

w
or

k
L

oc
at

io
n

A
m

bi
 D

eg
re

e
C

en
tr

al
it

y

-1

.2
45

A
m

bi
 B

et
w

ee
nn

es
s

C
en

tr
al

it
y

2.
02

6
**

A
m

bi
 C

lo
se

ne
ss

 C
en

tr
al

it
y

2.
86

6
**

*

N
um

be
r

of
 P

ro
je

ct
s

2.
00

0
**

A
m

bi
 D

C
 x

 N
P

1.

61
2

A
m

bi
 B

C
 x

 N
P

-2

.1
25

 *
*

A
m

bi
 C

C
 x

 N
P

-2

.0
08

 *
*

N
P

 x
 P

ro
je

ct
 T

ea
m

 S
iz

e

-2

.8
09

 *
**

C
on

tr
ol

 V
ar

ia
bl

es

T
ea

m
 H

um
an

 C
ap

it
al

 a
nd

 A
bi

li
ty

P
ro

je
ct

 T
ea

m
 S

iz
e

7.
98

1
**

*
4.

17
1

**
*

2.
89

6
**

*
2.

68
0

**
*

5.
32

8
**

*
2.

64
3

**
*

5.
07

5
**

*

U
se

r
In

pu
t a

nd
 M

ar
ke

t P
ot

en
ti

al

B
ug

s
C

lo
se

d
10

.2
77

 *
**

8.

52
7

**
*

8.
96

4
**

*
8.

99
5

**
*

9.
34

0
**

*
8.

98
9

**
*

9.
06

7
**

*

S
up

po
rt

 R
eq

ue
st

s
A

ns
w

er
ed

-.

67
5

-.
73

0
-.

54
7

-.
53

0
-.

48
6

-.
59

3
-.

34
1

P
ag

e
V

ie
w

s
4.

82
7

**
*

4.
44

8
**

*
4.

74
5

**
*

4.
75

6
**

*
4.

80
6

**
*

4.
72

7
**

*
4.

73
5

**
*

Pr
oj

ec
t L

if
e-

C
yc

le
 E

ff
ec

ts

P
ro

je
ct

 A
ge

 (
in

 m
on

th
s)

27

.5
32

 *
**

27

.2
10

 *
**

26

.8
35

 *
**

26

.8
94

 *
**

26

.7
79

 *
**

26

.9
52

 *
**

26

.8
70

 *
**

P
ro

je
ct

 A
ge

 S
qu

ar
ed

6.

59
8

**
*

6.
44

9
**

*
6.

49
4

**
*

6.
51

5
**

*
6.

38
1

**
*

6.
52

2
**

*
6.

48
4

**
*

D
ev

el
op

m
en

t S
ta

tu
s

-1
.6

85
 *

-1

.6
21

-1

.6
41

-1

.6
49

 *

-1
.6

19

-1
.6

55
 *

-1

.5
66

E
ng

li
sh

2.

66
8

**
*

2.
85

4
**

*
2.

84
6

**
*

2.
83

1
**

*
2.

81
6

**
*

2.
70

9
**

*
2.

99
3

**
*

R
es

ul
ts

F
 s

ta
ti

st
ic

s
46

.2
17

 *
**

45

.3
04

 *
**

43

.9
53

 *
**

43

.8
68

 *
**

45

.1
09

 *
**

42

.1
55

 *
**

40

.1
92

 *
**

D
eg

re
e

of
 F

re
ed

om

42
45

46
46

45

48
51

R

0.
67

5
0.

68
4

0.
68

3
0.

68
3

0.
68

4
0.

68
3

0.
68

6

R
 S

qu
ar

e
0.

45
6

0.
46

8
0.

46
6

0.
46

6
0.

46
7

0.
46

7
0.

47
0

A
dj

. R
 S

qu
ar

e
0.

44
6

0.
45

8
0.

45
6

0.
45

5
0.

45
7

0.
45

6
0.

45
9

S
td

. E
rr

or
 o

f
E

st
im

at
e

2.
30

6
2.

28
1

2.
28

6
2.

28
7

2.
28

3
2.

28
6

2.
28

0

*S
ig

ni
fi

ca
nt

 a
t 1

0%
 le

ve
l,

**
S

ig
ni

fi
ca

nt
 a

t 5
%

 le
ve

l,
**

*S
ig

ni
fi

ca
nt

 a
t 1

%
 le

ve
l

241

4.7. Discussions and Contributions

We empirically study the effect of ambidexterity and social network properties of

OSS developers on OSS project performance. We also examine the effect of

ambidextrous developers who participate in patch development and feature request

activities on OSS project performance. We develop technical performance models for

OSS projects and measure technical performance (knowledge creation) with two

measures. We measure technical performance using the number of CVS commits which

is commonly used in the OSS literature (Singh et al. 2011, Singh 2010, Grewal et al.

2006, Rai et al. 2002). We also measure technical performance using the sum of CVS and

SVN commits. The overall fit of models with the number of CVS commits is greater than

the overall fit of models with the sum of CVS and SVN commits. This could be due to

the fact that the SVN was not mature enough to fully capture project performance until

our network construction date (December 2008). Therefore, SVN commits should be

analyzed over a long time period with very recent data.

We found that ambidexterity has a curvilinear effect on project performance. Our

result indicates a balanced pursuit of both exploitative and exploratory activities

concurrently has a positive impact on project success. In addition, it shows the

importance of different roles and specializations of ambidextrous and non-ambidextrous

developers for project success. Ambidextrous developers have access to diverse

knowledge from exploitative and exploratory activities, and quickly exchange and

integrate greater amounts of knowledge with other project developers. On the other hand,

non-ambidextrous developers play unique roles depending on their specializations on

242

either exploitative or exploratory activities. They also benefit from knowledge exchanged

by ambidextrous developers.

Our results illustrate the roles of ambidextrous developers as coordination

mechanisms between patch development and feature request activities on project

performance. Ambidextrous developers play an integration role by speeding up

information flow and allowing information and knowledge to be exchanged and

integrated more rapidly among other developers. Our results indicate that the integration

role of ambidextrous developers on project performance depends on ambidextrous

developers’ access to novel information through indirect ties or from multiple projects:

the greater the access to novel information, the higher the impact on project performance.

Ambidextrous developers also play a control role to control and regulate information

flow among other developers. Our results indicate that the control role of ambidextrous

developers on project performance depends on the level of control on information flow

among other developers: the greater the level of control on information flow, the higher

the impact on project performance.

Our results for social network measures are consistent with the findings of prior

research on OSS development. However, the results of ambidexterity are stronger than

the results of social network measures whose contributions are relatively marginal.

Our results for projects’ centrality indicate that project performance is positively

related to degree and closeness centrality of a project. However, the result of betweenness

centrality of a project is opposite to our expectations since project performance is

negatively related to betweenness centrality of a project. Our results for ambidextrous

developers’ centrality indicate that project performance is positively related to

243

betweenness and closeness centrality of ambidextrous developers. However, the result of

degree centrality of ambidextrous developers is opposite to our expectations since project

performance is negatively related to degree centrality of ambidextrous developers.

Combined results of projects’ centrality and ambidextrous developers’ centrality show

interesting differences between the effects of ambidextrous developers’ centrality and

projects’ centrality. Contrary to our expectations, degree and betweenness centrality

measures do not behave in the same way for projects and ambidextrous developers.

Degree centrality of a project positively affects project performance whereas

degree centrality of ambidextrous developers negatively affects project performance.

Therefore, while high degree centrality is undesirable for ambidextrous developers, it

could be desirable for a project as a whole. Our results for the interaction between degree

centrality and the number of projects indicate that the impact of ambidextrous

developers’ degree centrality on project performance is moderated by the number of

projects. If ambidextrous developers work on many projects simultaneously, they may

access to more novel information from multiple projects. Therefore, the number of

projects positively affects the impact of ambidextrous developers’ degree centrality on

project performance. The integration role of ambidextrous developers on project

performance is facilitated by low degree centrality or access to multiple projects which

enables ambidextrous developers to access to novel information.

Betweenness centrality of a project negatively affects project performance

whereas betweenness centrality of ambidextrous developers positively affects project

performance. Therefore, while high betweenness centrality is desirable for ambidextrous

developers, it could be undesirable for a project as a whole. The control role of

244

ambidextrous developers on project performance is facilitated by high betweenness

centrality which enables ambidextrous developers to control and regulate information

flow among other developers. Our results indicate that high closeness centrality provides

quick access to information, thereby it is desirable for both ambidextrous developers as

well as projects.

We found that project performance is positively related to the internal cohesion of

a project. As measured by clustering coefficient, repeat ties, Jaccard similarity, and

correlation similarity, our findings indicate that different measures of internal cohesion

are consistent and have a positive impact on project performance. However, the result of

internal cohesion measured by third party ties is not significant. This could be because,

although repeat ties and third party ties are based on social interactions among

developers, repeat interactions between two developers are much stronger than third party

interactions with common third parties since repeat interactions result in greater trust

within a focal team.

We found that external cohesion has a curvilinear effect on project performance.

A moderate level of external cohesion facilitates both the access to and the diversity of

external knowledge resources available to a project team.

We found that project performance is positively related to the number of direct

and indirect ties. Our results show that the resource sharing benefit of direct ties is greater

than knowledge spillover benefit, hence direct ties facilitate resource pooling by enabling

project teams to combine knowledge with repeating interactions. Indirect ties provide

novel information by enabling project teams to access to knowledge spillovers. However,

we found that knowledge spillovers provided by provided by indirect ties are not equally

245

accessible to or appropriated by everyone since knowledge spillover benefits provided by

indirect ties are contingent on the number of direct ties.

We found that technological diversity has a curvilinear effect on project

performance. Our results indicate that when developers join to another project, they

perform better if they work on projects that are moderately technologically diverse from

each other since they can recognize and absorb knowledge close to their existing

knowledge base. Therefore, OSS developers who work on multiple projects

simultaneously should choose work on projects that are moderately technologically

diverse from one another. OSS project leaders should encourage developers to work on

projects that are moderately technologically diverse.

By providing a more comprehensive understanding of the effects of ambidexterity

and social network structure of OSS developers combined with the effect of coordination

mechanisms (ambidextrous developers) on project performance, this dissertation makes

several important theoretical and practical contributions.

From a theoretical perspective, we develop the theory for and then empirically

test how ambidexterity affects project performance. Recent research on OSS

development has studied the social network structure of software developers as

determinant of project success (Singh et al. 2011, Singh 2010, Singh et al. 2007, Grewal

et al. 2006). However, this stream of research has focused on the project level, and has

not recognized the fact that projects could consist of different types of activities, each of

which could require different types of expertise. We propose that OSS project activities

can be classified as implementation-oriented (exploitation) and innovation-oriented

(exploration) based on organizational theory (March 1991). We identified a new category

246

of developers (ambidextrous developers) in OSS projects who contribute to exploitative

activities (patch development) and exploratory activities (feature request). We develop a

theoretical construct for project ambidexterity based on the concept of ambidextrous

developers. We construct ambidexterity as a measure of the ability of OSS projects to

pursue both exploitative and exploratory activities concurrently. To the best of our

knowledge, this is the first research to study ambidexterity in OSS development. Recent

research in organizational science has begun to study ambidexterity based on perceptual

(survey) data in the context of formal organizations (Jansen et al. 2009, Jansen et al.

2006, Lin et al. 2007), In contrast, we used real-world project data to study

ambidexterity. Our results illustrate the roles of ambidextrous developers as coordination

mechanisms between patch development and feature request activities on project

performance. Our results also illustrate ambidextrous developers’ differences compared

to other developers in terms of roles played by ambidextrous developers.

We replicated recent research on OSS development that has studied the effect of

social network structure of software developers on project performance (Singh et al.

2011, Singh 2010, Singh et al. 2007, Grewal et al. 2006). However, we used larger and

more recent data from the SourceForge database. Our data is also different from data

used in recent research since we used a different foundry (programming language) to

select projects. Our findings associated with the social network structure of software

developers are consistent with the findings of recent studies on OSS development. Thus,

we provide greater reliability to their findings and increase the generability of their

findings.

247

This dissertation also makes several important contributions to practice. We

empirically illustrated how ambidexterity affects project performance. We found that a

moderate level of ambidexterity results in the higher performance of a project rather than

very high or very low levels of ambidexterity. A moderate level of ambidexterity enables

project teams to access diverse knowledge from different types of tasks, and to exchange

relevant knowledge within a project team. A moderate level of ambidexterity also enables

project teams to access more and deeper experience by ensuring adequate specialization

to absorb and integrate new knowledge. Team composition is often a central concern for

OSS project leaders. We illustrate the importance of team composition to the success of a

project in terms of the optimal mix of ambidextrous and non-ambidextrous developers.

We found that non-ambidextrous developers play unique roles depending on their

specializations on specific tasks (either exploitative or exploratory tasks). On the other

hand, ambidextrous developers play the same or similar roles based on a variety of

different tasks (both exploitative and exploratory tasks) on which they work. Therefore,

we suggest that projects should be composed of both ambidextrous and non-

ambidextrous developers for the following reasons. First, projects should be composed of

ambidextrous who work on both exploitative and exploratory activities in order to gain

diverse knowledge from different types of tasks. Second, we also suggest that projects

should be composed of non-ambidextrous developers who specialize in either

exploitative or exploratory activities in order to gain more and deeper experience from

their specializations. Therefore, we provide OSS project leaders with a way to optimize

their team compositions. OSS project leaders should identify, recruit, and retain both

248

ambidextrous and non-ambidextrous developers while trying to maintain a moderate level

of ambidexterity.

4.9. Limitations and Future Research

We measure the effects of social network structure of OSS developers on project

performance which represents the rate of knowledge creation by a project. We assume

that network structure affects knowledge transfer. However, we did not observe

knowledge transfer directly but rather infer it from the relationship between network

structure and project performance. Knowledge may flow to projects through other

mechanisms. For example, a developer may acquire knowledge from unconnected

projects by using their software or by analyzing their software’s source code. In this

dissertation, we did not consider other mechanisms for knowledge flow. We did not

analyze characteristics of individual team members such as their experiences and

motivations which may also influence the extent to which knowledge is transferred or

absorbed (Cohen and Levinthal 1990). These aspects of relationships can be analyzed in

order to understand the mechanism through which network structure affects project

performance. These limitations have been recognized in prior research on OSS social

networks (Singh et al. 2011, Sing 2010).

We focus on the technical performance of a project measured as the rate of

knowledge creation by a project. While we have presented several models, additional

analysis and model development may be possible in future research.

We select one programming language as a network boundary. Therefore, our data

is restricted to projects using the same programming language. Future research can

collect data for multiple programming languages.

249

We measure project performance using the cumulative number of CVS and SVN

commits over the life span of a project. Grewal et al. (2006) indicated the existence of

multiple regimes each with possibly different models. Analyzing the effects of

ambidexterity and social network structure of OSS developers on project performance in

different regimes can produce interesting results.

Future research can investigate the commercial performance of a project

measured as the number of downloads which represents user acceptance.

250

REFERENCES

Adler, P. S., and Kwon, S. W. (2002) Social Capital: Prospects for a New Concept.

Academy of Management Review 27 17-40.

Ahuja, G. (2000) Collaboration Networks, Structural Holes, and Innovation: A
Longitudinal Study. Administrative Science Quarterly, 45, 425-455.

Aiken, L. S., and West, S. G. (1991) Multiple Regression: Testing and Interpreting
Interactions. Sage Publications, Thousand Oaks, California.

Allison, P. D. (1999) Multiple regression: A primer. Pine Forge Press, Thousand Oaks,
California.

Allison, P. D. (1995) Survival Analysis using the SAS System: A Practical Guide. Cary,
NC: SAS publishing.

Anand, S. (2008) Information Security Implications of Sarbanes-Oxley. Information
Security Journal: A Global Perspective, 17, 2, 75-79.

Ancona, D. G., and Caldwell, D. F. (1992) Demography and design: Predictors of new
product team productivity. Organizational Science, 3, pp. 321-341.

Antwerp, M.V.; and Madey, G. (2005) Advances in the SourceForge Research Data
Archive (SRDA), The 4th International Conference on Open Source Systems
(WoPDaSD 2008), Milan, Italy, available at
http://www.cse.nd.edu/~oss/Papers/papers.html

Arbaugh, W. A., Fithen, W. L., and McHugh, J. (2000) Windows of vulnerability: a case
study analysis. Computer, 33, 12, 52-58.

Arora, A., Krishnan, R., Telang, R., and Yang, Y. (2010a) An empirical analysis of
software vendors’ patch release behavior: Impact of vulnerability disclosure.
Information Systems Research, 21, 1, 115-132.

Arora, A., Forman, C., Nandkumar, A., and Telang, R. (2010b) Competition and patching
of security vulnerabilities: An empirical analysis. Information Economics and
Policy, 22, 164-177.

Arora, A., Telang, R., and Xu, H. (2008) Optimal policy for software vulnerability
disclosure. Management Science, 54, 4, 642-656.

Arora A., Caulkins, J. P., and Telang, R. (2006a) Sell first, fix later: Impact of patching
on software quality. Management Science, 52, 3, 465-471.

251

Arora, A., Nandkumar, A., and Telang, R. (2006b) Does information security attack
frequency increase with vulnerability disclosure? An empirical analysis.
Information Systems Frontiers, 8, 5, 350-362.

Atuahene-Gima, K. (2003) The Effects of Centrifugal and Centripetal Forces on Product
Development Speed and Quality: How Does Problem Solving Matter? The
Academy Management Journal, 46, 3, 359-373.

Avizienis, A., Laprie, J. C., Randell, B., and Landwehr, C. (2004) Basic Concepts and
Taxonomy of Dependable and Secure Computing. IEEE Transactions on
Dependable and Secure Computing, 1, 1, 11-33.

Baker, F. B., and Hubert, L.J. (1981) The Analysis of Social Interaction Data: A
Nonparametric Technique. Sociological Methods and Research, 9, 3, 339-361.

Balkundi, P., and Harrison, D. A. (2006) Ties, Leaders, and Time in Teams: Strong
Inference about Network Structure’s Effects on Team Viability and Performance.
Academy of Management Journal, 49, 1, 49-68.

Banker, R. D., Bardhan, I., and Asdemir, O. (2006) Understanding the impact of
collaboration software on product design and development. Information Systems
Research, 17, 4, 352-373.

Banker, R. D., and Slaughter, S. A. (2000) The moderating effects of structure on
volatility and complexity in software enhancement. Information Systems
Research, 11, 3, 219-240.

Banker, R. D., Davis, G. B., and Slaughter, S. A. (1998) Software development practices,
software complexity, and software maintenance performance: A field study.
Management Science, 44, 4, 433-450.

Barrick, M., Stewart, G., Neubert, M. J., and Mount, M. (1998) Relating member ability
and personality to work-team processes and team effectiveness, Journal of
Applied Psychology, 83, 377-391.

Baron, D. P. (2001) Private Politics, Corporate Social Responsibility, and Integrated
Strategy. Journal of Economics & Management Strategy, 10, 1, 7-45.

Beattie, S., Arnold, s., Cowan, C., Wagle, P., and Wright, C. (2002) Timing the
Application of Security Patches for Optimal Uptime. Proceedings of LISA:
Sixteenth Systems Admininistration Conference, USENIX Association, Berkeley,
CA, 233-242.

Benner, M. J. and Tushman, M. L. (2003) Exploitation, Exploration, and Process
Management: The Productivity Dilemma Revisited. Academy of Management
Review, 28, 2, 238-256.

252

Biskup, J. (2009) Security in Computing Systems: Challenges, Approaches and
Solutions. Springer-Verlag, Berlin, Germany.

Boh, W., S. Slaughter, A. Espinosa. 2007. Learning from experience in software
development: A multi-level analysis. Management Science 53(8) 1315–1331.

Borgatti, S. P. (2005) Centrality and Network Flow. Social Networks, 27, 1, 55-71.

Borgatti, S.P. and Halgin, D. (2011) Analyzing Affiliation Networks. In Carrington, P.
and Scott, J. (eds.) The Sage Handbook of Social Network Analysis, Sage
Publications.

Borgatti, S. P., Everett, M. G., and Freeman, L. C. (2002) Ucinet for Windows: Software
for Social Network Analysis. Harvard, MA: Analytic Technologies.

Brigham, E. F. and Ehrhardt, M. C. (2008) Financial Management: Theory and Practice,
Thomson South-Western.

Burt, R. S. (2000) The Network Structure of Social Capital. Research in Organizational
Behavior, 22, 345-423.

Burt, R.S. (1992) Structural Holes: The Social Structure of Competition. Harvard
University Press, Cambridge, MA.

Burt, R.S. (2004) Structural Holes and Good Ideas. American Journal of Sociology 110,
2, 349-399.

Cardinal, L. B. (2001) Technological innovation in the pharmaceutical industry: The use
of organizational control in managing research and development. Organizational
Science, 12, pp. 19-36.

Carroll, A. B. A (1979) Three-Dimensional Conceptual Model of Corporate Social
Performance. Academy of Management Review, 4, 497-505.

Cavusoglu, H., Cavusoglu, H., and Raghunathan, S. (2007) Efficiency of vulnerability
disclosure mechanisms to disseminate vulnerability knowledge. IEEE
Transactions on Software Engineering, 33, 3, 171-184.

Chandramouli, R., Grance, T., Kuhn, R., and Landau, S. (2006) Common Vulnerability
Scoring System. IEEE Security & Privacy, 4, 6, 85-89.

Chengalur-Smith, S.; and Sidorova, A. (2003) Survival of Open-Source Projects: A
Population Ecology Perspective. ICIS 2003 Proceedings, Paper 66.

Christensen, C. M. (1998) The Innovator’s Dilemma. Harvard Business School Press,
Boston.

253

Cohen, J., Cohen, P., West, S. G., and Aiken, L. S. (2003) Applied Multiple
Regression/Correlation Analysis for the Behavioral Sciences. 3rd edition,
Lawrence Erlbaum Associates, Mahwah, New Jersey.

Cohen, J., and Cohen, P. (1983) Applied Multiple Regression/Correlation Analysis for
the Behavioral Sciences. Lawrence Erlbaum Associates, Hillsdale, New Jersey.

Cohen, W., and Levinthal, D. (1990) Absorptive capacity: A new perspective on learning
and innovation. Administrative Science Quarterly, 35, 1, 128-152.

Cohen, J. (1988) Statistical Power Analysis for the Behavioral Sciences. 2nd edition,
Lawrence Erlbaum Associates, Hillsdale, NJ, England.

Cohen, J. (1977) Statistical Power Analysis for the Behavioral Sciences. 1st edition,
Lawrence Erlbaum Associates, Hillsdale, NJ, England.

Coleman, J. S. (1988) Social capital in the creation of human capital. American Journal
Sociology, 94, 95-120.

Computer Emergency Response Team/Coordination Center (CERT/CC) Statistics,
available at http://www.cert.org/stats/

Control Objectives for Information and Related Technology (COBIT), governed by
Information Systems Audit and Control Association (ISACA),
www.isaca.org/COBIT

Cox, D.R. (1972) Regression models and life tables. Journal of the Royal Statistical
Society, B34, 187-220.

Crowston, K., Annabi, H. and Howison, J. (2003) Defining Open Source Software
Project Success. Twenty-Fourth International Conference on Information
Systems.

Daft, R. L., and Lengel, R. H. (1986) Organizational Information Requirements, Media
Richness and Structural Design. Management Science, 32, 5, 554-571.

DeLone, W. H., and McLean, E. R. (1992) Information Systems Success: The Quest for
the Dependent Variable. Information Systems Research, 3, 1, 60-95.

Eisenhardt, K. M., and Brown, S. L. (1999) Patching. Restitching business portfolios in
dynamic markets. Harvard Business Review, 77, 3, 72-82.

Egelhoff, W. G. (1991) Information-Processing Theory and the Multinational Enterprise.
Journal of International Business Studies, 22, 3, 341-368.

Espinosa, J. A., Slaughter, S. A., Kraut, R. E., and Herbsleb, J. D. (2007) Team
knowledge and coordination in geographically distributed software development,
Journal of Management Information Systems, 24, 1, 135-169.

254

Fang, C., Lee, J., and Schilling, M. A., (2010) Balancing Exploration and Exploitation
through Structural Design: The Isolation of Subgroups and Organizational
Learning. Organization Science, 21, 3, 625–642.

Faraj, S., and Sproull, L. S. (2000) Coordinating Expertise in Software Development
Teams. Management Science, 46, 12, 1554-1568.

Feller, J., and Fitzgerald, B. (2002) Understanding Open Source Software Development.
London, UK: Pearson Education Limited.

Fleming, L., and Marx, M. (2006) Managing Creativity in Small Worlds. California
Management Review, 48, 4, 6-27.

Fleming, L. (2001) Recombinant Uncertainty in Technological Search. Management
Science, 47, 1, 117–132.

Fox, J. (1991) Regression Diagnostics. Beverly Hills, CA: Sage Publications.

Frühwirth, C., and Männistö, T. (2009) Improving CVSS-based vulnerability
prioritization and response with context information. 3rd International
Symposium on Empirical Software Engineering and Measurement, Washington,
DC: IEEE Computer Society, 535-544.

Gacek, C., and Arief, B. (2004) The many meanings of open source. IEEE Software, 21,
1, 34-40.

Garud, R., Nayyar, P. R. (1994) Transformative Capacity: Continual Structuring by
Intertemporal Technology Transfers. Strategic Management Journal, 15, 5, 365-
385.

Gelman, A., and Hill, J. (2007) Data Analysis Using Regression and
Multilevel/Hierarchical Models. Cambridge University Press, New York.

Gilbert, C. G. (2005) Unbundling the Structure of Inertia: Resource versus Routine
Rigidity. The Academy of Management Journal, 48, 5, 741-763.

Gilbert, C. G. (2006) Change in the Presence of Residual Fit: Can Competing Frames
Coexist? Organization Science, 17, 1, 150-167.

Gordon, L. A., Loeb, M. P., Lucyshyn, W., and Richardson, R. (2006) CSI/FBI Computer
Crime and Security Survey. Computer Security Institute.

Gramm-Leach-Bliley Act (GLBA), available at
http://www.ftc.gov/privacy/privacyinitiatives/glbact.html

Grant, R. M. (1996) Toward a Knowledge-Based Theory of the Firm. Strategic
Management Journal, 17, 109-122.

255

Granovetter, M. (1985) Economic Action and Social Structure: The Problem of
Embeddedness. American Journal of Sociology, 91, 3, 481-510.

Granovetter, M. S. (1973) The Strength of Weak Ties. American Journal of Sociology,
78, 6, 1360-1380.

Greene, W. H. (2003) Econometric Analysis, 5th edition, Prentice Hall, Upper Saddle
River, NJ.

Gruenfeld, D. H., Mannix, E. A., Williams, K. Y., and Neale, M. A. (1996) Group
Composition and Decision Making: How Member Familiarity and Information
Distribution Affect Process and Performance. Organizational Behavior and
Human Decision Processes, 67, 1, 1-15.

Gupta, R., and Govindarajan, R. (2000) Knowledge flows within multinational
corporations. Strategic Management Journal, 21, 4, 473-496.

Gupta, A. K., Smith, K. G., and Shalley, C. E. (2006) The Interplay Between Exploration
And Exploitation. Academy of Management Journal, 49, 4, 693-706.

Gnyawali, D. R., and Madhavan, R. (2001) Cooperative Networks and Competitive
Dynamics: A Structural Embeddedness Perspective. Academy of Management
Review, 26, 3, 431-445.

Green, S. A. (1991). How Many Subjects Does It Take To Do A Multiple Regression
Analysis. Multivariate Behavioral Research, 26, 3, 499-510.

Grewal, R., Lilien, G. L., and Mallapragada, G. (2006) Location, Location, Location:
How Network Embeddedness Affects Project Success in Open Source Systems.
Management Science, 52, 7, 1043-1056

Gulati, R. (1999) Network location and learning: The influence of network resources and
firm capabilities on alliance formation. Strategic Management Journal, 20, 397-
420.

Gulati, R., and Garguilo, M. (1999) Where do networks come from?. American Journal
of Sociology, 104, 1439-1493.

Ha, R. R., and J. C. Ha (2012) Integrative Statistics for the Social and Behavioral
Sciences. SAGE Publications, Washington, USA.

Hahn, J., Moon, J. Y., and Zhang, C. (2008) Emergence of New Project Teams from
Open Source Software Developer Networks: Impact of Prior Collaboration Ties.
Information Systems Research, 19, 3, 369-391.

Hambrick, D. C. (1983) Some Tests of the Effectiveness and Functional Attributes of
Miles and Snow's Strategic Types. Academy of Management Journal, 26, 1, 5-26.

256

Hanneman, R. A., and Riddle, M. (2005) Introduction to social network methods.
Riverside, CA: University of California, Riverside (Available in digital form at
http://faculty.ucr.edu/~hanneman/)

Hansen, M. T. (2002) Knowledge Networks: Explaining Effective Knowledge Sharing in
Multiunit Companies. Organization Science, 13, 3, 232-248.

Hansen, M. T. (1999) The Search-Transfer Problem: The Role Of Weak Ties in Sharing
Knowledge Across Organizational Subunits. Administrative Science Quarterly,
44, 82-111.

He, J., Butler, B. S., and King, W. R. (2007) Team Cognition: Development and
Evolution in Software Project Teams. Journal of Management Information
Systems, 24, 2, 261-292.

He, Z., and Wong, P. K. (2004) Exploration vs. exploitation: An empirical test of the
ambidexterity hypothesis. Organizational Science, 15, 4, 481-494.

Henderson, R., and Cockburn, I. (1994) Measuring Competence? Exploring Firm Effects
in Pharmaceutical Research. Strategic Management Journal, 15, 63-84.

Hosmer, D. W., and Lemeshow, S. (1999) Applied Survival Analysis: Regression
Modeling of Time to Event Data. New York: John Wiley.

Houmb, S. H., Franqueira, V. N. L., and Engum, E. A. (2008) Estimating Impact and
Frequency of Risks to Safety and Mission Critical Systems using CVSS. IEEE CS
Conference Proceedings, Seattle: IEEE Computer Society Press.

Hubert, L. (1987) Assignment Methods in Combinatorial Data Analysis. Dekker, New
York.

Hubert, L., and Schultz, J. (1976) Quadratic Assignment as a General Data Analysis
Strategy. British Journal of Mathematical and Statistical Psychology, 29, 190-241.

IEEE Standard for Software Maintenance. IEEE, New York: The Institute of Electrical
and Electronics Engineers, 1993.

Jaisingh, J., See-To, E. W. K., and Tam, K. Y. (2009) The impact of open source
software on the strategic choices of firms developing proprietary software.
Journal of Management Information Systems, 25, 3, 241-275.

Jaffe, A.B. (1986) Technological Opportunity and Spillovers of R&D: Evidence from
Firms' Patents, Profits and Market Value. American Economic Review, 76, 5,
984-999.

Jansen, J. J. P., Tempelaar, M., Van den Bosch, F. A. J., and Volberda, H. (2009)
Structural differentiation and ambidexterity: The mediating role of integration
mechanisms. Organizational Science, 20, 4, 797-811.

257

Jansen, J. J. P., Van Den Bosch, F. A. J., and Volberda, H. W. (2006) Exploratory
Innovation, Exploitative Innovation, and Performance: Effects of Organizational
Antecedents and Environmental Moderators. Management Science, 52, 11, 1661-
1674.

Johnson, M. E. (2008) Information risk of inadvertent disclosure: An analysis of file-
sharing risk in the financial supply chain. Journal of Management Information
Systems, 25, 2, 97-123.

Kannan, K., Rees, J., and Sridhar, S. (2007) Market reactions to information security
breach announcements: an empirical analysis. International Journal of Electronic
Commerce, 12, 1, 69-91.

Kemerer, C. F. and Slaughter, S. (1999) An Empirical Approach to Studying Software
Evolution. IEEE Transactions on Software Engineering, 25, 4, 493-509.

Kemerer, C. F. (1995) Software complexity and software maintenance: A survey of
empirical research. Annals of Software Engineering, 1, 1, 1-22.

Kim, Y., Stohr, E.A. (1998) Software Reuse: Survey and Research Directions. Journal of
Management Information Systems, 14, 4, 113-148.

Khoshgoftaar, T. M., Allen, E. B., Jones, W. D., and Hudepohl, J. P. (2000)
Classification-Tree Models of Software-Quality over Multiple Releases. IEEE
Transactions on Reliability, 49, 1, 4-11.

Kogut, B., Zander, U. (1992). Knowledge of the firm, combinative capabilities, and the
replication of technology, Organization Science, 3, 3, 383-397.

Koza, M. P., and Lewin, A. Y. (1998) The co-evolution of strategic alliances.
Organizational Science, 9, 3, 255-264.

Krackhardt, D. (1998) Simmelian Ties: Super Strong and Sticky. In Roderick Kramer and
Margaret Neale (eds.) Power and Influence in Organizations. Thousand Oaks,
CA: Sage, 21-38.

Krackhardt, D. (1996) Social networks and the liability of newness for managers. Journal
of Organizational Behavior, 3, 159-173.

Krackhardt, D. (1992) The Strength of Strong Ties: The Importance of Philos in
Organizations. In N. Nohria & R. Eccles (eds.), Networks and Organizations:
Structure, Form and Action, Boston, MA: Harvard Business School Press, 216-
239.

Krackhardt, D. (1988) Predicting with Networks: Nonparameteric Multiple Regression
Analysis of Dyadic Data. Social Networks, 10, 4, 359-381.

258

Krackhardt, D. (1987) QAP Partialling as a Test of Spuriousness. Social Networks, 9,
171-186.

Krishnan, M. S., Mukhopadhyay, T., and Kriebel, C. H. A (2004) Decision Model for
Software Maintenance. Information Systems Research, 15, 4, 396-412.

Lazer, D., and Friedman, A. (2007) The Network Structure of Exploration and
Exploitation. Administrative Science Quarterly, 52, 667-694.

Lawrence, P. R., and Lorsch, J. W. (1967) Differentiation and Integration in Complex
Organizations. Administrative Science Quarterly, 12, 1, 1-47.

Lavie, D., and Rosenkopf, L. (2006) Balancing exploration and exploitation in alliance
formation. Academy of Management Journal, 49, 6, 797-818.

Lerner, J., and Tirole, J. (2005) The Scope of Open Source Licensing. Journal of Law,
Economics, & Organization, 21, 1, 20-56.

Levinthal, D. A., and March, J. G. (1993) The myopia of Learning. Strategic
Management Journal, 14, 95-112.

Levin, D. Z., and Cross, R. (2004) The Strength of Weak Ties You Can Trust: The
Mediating Role of Trust in Effective Knowledge Transfer. Management Science,
50, 11, 1477-1490.

Lewin, A. Y., Long, C. P., and Caroll, T. N. (1999) The Coevolution of New
Organizational Forms. Organization Science, 10, 5, 535-550.

Li, S., Shang, J., and Slaughter, S. A. (2010) Why Do Software Firms Fail? Capabilities,
Competitive Actions, and Firm Survival in the Software Industry from 1995 to
2007. Information Systems Research, 21, 3, pp. 631–654.

Lin, N. (2005) A Network Theory of Social Capital. Handbook on Social Capital, Oxford
University Press.

Lin, N. (1999) Building a Network Theory of Social Capital. Connections, 22, 1, 28-51.

Lin, Z., Yang, H., and Demirkan, I. (2007) The Performance Consequences of
Ambidexterity in Strategic Alliance Formations: Empirical Investigation and
Computational Theorizing. Management Science, 53, 10, 1645-1658.

Lin, D. Y. and Wei, L. J. (1989) The robust inference for the Cox proportional hazards
model. Journal of the American Statistical Association, 84, 408, 1074-1078.

Liu, X., and Iyer, B. (2007) Design Architecture, Developer Networks, and Performance
of Open Source Software Projects. International Conference on Information
Systems, Montreal: Association for Information Systems.

259

Malone, T. W., and Crowston, K. (1994) The interdisciplinary study of coordination.
ACM Computing Surveys, 26, 1, 87-119.

March, J. G. (1991) Exploration and Exploitation in Organizational Learning.
Organization Science, 2, 1, 71-87.

Marsden, P. V. (2005) Recent Developments in Network Measurement, in Models and
Methods in Social Network Analysis, P. Carrington and J. Scott and S.
Wasserman, Eds. New York: Cambridge University Press.

Mazen, A., Magid, M., Hemmasi, M., and Lewis, M. F. (1985) In Search of Power: A
Statistical Power Analysis of Contemporary Research in Strategic Management.
Academy of Management Proceedings, 30-34.

McCain, B. E., O'Reilly, C., and Pfeffer, J. (1983) The Effects of Departmental
Demography on Turnover: The Case of a University. The Academy of
Management Journal, 26, 4, 626-641.

Mell, P., Scarfone, K., and Romanosky, S. A. (2007) Complete Guide to the Common
Vulnerability Scoring System Version 2.0. Forum of Incident Response and
Security Teams, available at http://www.first.org/cvss/cvss-guide.pdf

Mell, P., and Scarfone, K. (2007) Improving the Common Vulnerability Scoring System.
IET Information Security, 1, 3, 119-127.

Mockus A., Fielding, R., and Herbsleb, J. (2002) Two Case Studies of Open Source
Software Development: Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology, 11, 3, 309-346.

Myers, R.H. 1990. Classical and Modern Regression Application. 2nd edition, Duxbury
Press, Belmont, California.

Nahapiet, J., and Ghoshal, S. (1998) Social capital, intellectual capital, and the
organizational advantage. Academy of Management Review, 23, pp. 242-266.

Narayanan, S., Balasubramanian, S., and Swaminathan, J. M. (2009) A Matter of
Balance: Specialization, Task Variety, and Individual Learning in a Software
Maintenance Environment. Management Science, 55, 11, 1861-1876.

National Vulnerability Database (NVD), available at http://nvd.nist.gov/

Nelson, R., and Winter, S. (1982) An Evolutionary Theory of Economic Change. Harvard
University Press, Cambridge: M A.

Nelson, M. L., Sen, R., and Subramaniam, C. (2006) Understanding open source
software: A research classification framework. Communications of AIS, 17, 12,
266-287.

260

Newman, M. E. J., Strogatz, S. H., and Watts, D. J. (2001) Random graphs with arbitrary
degree distributions and their applications. Physical Review E, 64, 1-17.

Nord, W. R., and Tucker, S. (1987) Implementing Routine and Radical Innovations.
Lexington Books, Lexington, MA.

O’Brien, J. A. and Marakas, G. M. (2008) Management Information Systems. New York:
McGraw-Hill/Irwin.

O'Reilly, C. A., and Tushman, M. L. (2004) The Ambidextrous Organization. Harvard
Business Review, 82, 4, 74-81.

O'Reilly, C. A., Caldwell, D. F., and Barnett, W. P. (1989) Work Group Demography,
Social Integration, and Turnover. Administrative Science Quarterly, 34, 1, 21-37.

Open Source Vulnerability Database (OSVDB), available at http://www.osvdb.org/

Park, S. H., Chen, R., and Gallagher, S. (2002) Firm resources as moderators of the
relationship between market growth and strategic alliances in semiconductor start-
ups. Academy of Management Journal, 45, 527-545.

Pedhazur, E.J. (1997). Multiple Regression in Behavioral Research. 3rd edition. New
York: Harcourt Brace College Publishers.

Peduzzi, P., Concato, J., Feinstein, A. R., and Holford, T. R. (1995) Importance of events
per independent variable in proportional hazards regression analysis II. Accuracy
and precision of regression estimates. Journal of Clinical Epidemiology, 48, 12,
1503-1510.

Pelled, L. H., Eisenhardt, K. M., and Xin, K. R. (1999) Exploring the black box: An
analysis of work group diversity, conflict, and productivity. Administrative
Science Quarterly, 44, pp 1-28.

Pfeffer, J. (1983) Organizational demography: Implications for management. California
Management Review, 28, pp. 67-81.

Pfeffer, J., and Salancik, G. R. (1978) The External Control of Organizations: A
Resource Dependence Perspective, Harper, New York.

Pfleeger, C. P. and Pfleeger, S. L. (2003) Security in Computing. Prentice Hall, NJ, USA.

Postrel, S. (2002) Islands of Shared Knowledge: Specialization and Mutual
Understanding in Problem-Solving Teams. Organization Science, 13, 3 303-320.

Powell, W. W., and Smith-Doerr, L. (1994) Networks and Economic Life. The Handbook
of Economic Sociology, Princeton, NJ: Princeton University Press, 368-402.

261

Png, I. P. L., Wang, C. Y., and Wang, Q. H. (2008) The deterrent and displacement
effects of information security enforcement: International evidence. Journal of
Management Information Systems, 25, 2, 125-144.

Poel, D. V. D., and Lariviere, B. (2004) Customer attrition analysis for financial services
using proportional hazard models. European Journal of Operational Research,
157, 1, 196-217.

Portes, A., and Sensenbrenner, J. (1993) Embeddedness and immigration: Notes on the
social determinants of economic action. American Journal of Sociology, 98, pp.
1320-1350.

Powell, W. W., Koput, K. W., and Smith-Doerr, L. (1996) Interorganizational
Collaboration and the Locus of Innovation: Networks of Learning in
Biotechnology. Administrative Science Quarterly, 41, 116-145.

Rai, A., Lang, S. S., and Welker, R. B. (2002) Assessing the validity of IS success
models: An empirical test and theoretical analysis. Information Systems Research,
13, 1, 50-69.

Raisch, S., Birkinshaw, J., Probst, G., and Tushman, M. L. (2009) Organizational
Ambidexterity: Balancing Exploitation and Exploration for Sustained
Performance. Organization Science, 20, 4, 685–695.

Ransbotham, S. and Mitra, S. (2009) Choice and Chance: A Conceptual Model of Paths
to Information Security Compromise, Information Systems Research, 20, 1, 121-
139.

Raymond, E. S. (1999) The Cathedral and the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary. (1st Edition). Cambridge: O'Reilly Media
Inc.

Reagans, R., and Zuckerman, E. W. (2001) Networks, Diversity, and Productivity: The
Social Capital of Corporate R&D Teams. Organization Science, 12, 4, 502-517.

Roberts, T. L., Cheney, P. H., Sweeney, P. D., and Hightower, R. T. (2005) The effects
of information technology project complexity on group interaction, Journal of
Management Information Systems, 21, 3, 223-247.

Roberts, J., Hann, I. H., and Slaughter, S. (2006) Understanding the Motivations,
Participation, and Performance of Open Source Software Developers: A
Longitudinal Study of the Apache Projects. Management Science, 52, 7, 984-999.

Rosenkopf, L., and Almeida, P. (2003) Overcoming Local Search through Alliances and
Mobility. Management Science, 49, 6, 751-766.

262

Rosenkopf, L., and Nerkar, A. (2001) Beyond local search: Boundary spanning,
exploration, and impact in the optical disk industry. Strategic Management
Journal, 22, 4, 287-306.

Rothaermel, F. T., and Deeds, D. (2004) Exploration and exploitation alliances in
biotechnology: A system of new product development. Strategic Management
Journal, 25, 201-221.

Rowley, T., Behrens, D., and Krackhardt D. (2000) Redundant Governance Structures:
An Analysis of Structural and Relational Embeddedness in the Steel and
Semiconductor Industries. Strategic Management Journal, 21, 369-386.

Schilling, M. A., and Phelps, C .C. (2007) Interfirm Collaboration Networks: The impact
of Large Scale Network Structure on Firm Innovation. Management Science, 53,
7, 1113-1126.

Sen, R. (2007) A strategic analysis of competition between open source and proprietary
software. Journal of Management Information Systems, 24, 1, 233-257.

Shaft, T. M., and Vessey, I. (2006) The Role of Cognitive Fit in The Relationship
Between Software Comprehension and Modification. MIS Quarterly, 30, 1, 29-
55.

Shane, S., and Cable, D. (2002) Network Ties, Reputation, and the Financing of New
Ventures. Management Science, 48, 3, pp. 364-381.

Siggelkow, N., and Levinthal, D. A. (2003) Temporarily Divide to Conquer: Centralized,
Decentralized, and Reintegrated Organizational Approaches to Exploration and
Adaptation. Organization Science, 14, 6, 650-669.

Simon, H. (1991) Bounded Rationality and Organizational Learning. Organization
Science, 2, 1, 125-134.

Singh, P. V., Tan, Y., and Mookerjee, V. (2011) Network Effects: The Influence of
Structural Social Capital on Open Source Project Success. Management
Information Systems Quarterly, 35, 4, 813-829.

Singh, P. V. (2010) The Small World Effect: The Influence of Macro Level Properties of
Developer Collaboration Networks on Open Source Project Success. ACM
Transactions of Software Engineering and Methodology, 20, 2, 1-37.

Singh, P.V., Tan, Y., and Mookerjee, V. (2007) Social Capital, Structural Holes, and
Team Composition: Collaborative Networks of the Open Source Software
Community. Proceedings of the 28th ICIS.

Sirmon, D. G., Hitt, M. A., and Ireland, R. D. (2007) Managing Firm Resources in
Dynamic Environments to Create Value: Looking Inside the Black Box. Academy
of Management Review, 32, 1, 273-292.

263

Slaughter, S. A., Levine, L., Ramesh, B., Pries-Heje, J., and Baskerville, R (2006)
Aligning Software Processes with Strategy. MIS Quarterly, 30, 4, 891-918.

Slaughter, S. A., Harter, D. E., and Krishnan, M. S. (1998) Evaluating the Cost of
Software Quality. Communications of the ACM, 41, 8, 67-73.

SourceForge.net. Available at http://SourceForge.net.

Smith, W. K., and Tushman, M. L. (2005) Managing Strategic Contradictions: A Top
Management Model for Managing Innovation Streams. Organization Science, 16,
5, 522-536.

Snow, C. C., and Hrebiniak, L. G., (1980) Strategy, Distinctive Competence, and
Organizational Performance. Administrative Science Quarterly, 25, 2, 317-336.

Subramaniam, C.; Sen, R.; and Nelson, M. L. (2009) Determinants of open source
software project success: A longitudinal study. Decision Support Systems, 46,
576–585.

Stephenson, K., and Zelen, M. (1989) Rethinking Centrality: Methods and Applications.
Social Networks, 13.

Stevens, J. P. (2002). Applied Multivariate Statistics for the Social Sciences, 4th edition,
Lawrence Erlbaum Associates, Hillsdale, New Jersey.

Subramaniam, M., and Youndt, M. A. (2005) The influence of intellectual capital on the
types of innovative capabilities. Academy of Management Journal, 48, 450-463.

Szulanski, G. (1996) Exploring Internal Stickiness: Impediments to the Transfer of Best
Practice within the Firm. Strategic Management Journal, 17, 27-43.

Tabachnick, B. G., and Fidell, L. S. (2007) Using Multivariate Statistics. 5th Edition,
Pearson Education, Boston.

Tan, P. N., Steinbach, M., and Kumar, V. Introduction to Data Mining. Pearson Addison
Wesley, 2006.

Tushman, M. L., and O’Reilly, C. A. (2006) Ambidextrous Organizations: Managing
Evolutionary and Revolutionary Change. California Management Review, 38, 4,
8-30.

Katz, R. and Tushman, R. (1979) Communication Patterns, Project Performance, and
Task Characteristics: An Empirical Evaluation and Integration in an R&D Setting,
Organizational Behavior and Human Performance, 23, 139-162.

United States Computer Emergency Readiness Team (US-CERT), available at
http://www.us-cert.gov/

264

Uzzi, B., and Spiro, J. (2005) Collaboration and Creativity: The Small World Problem.
American Journal of Sociology, 11, 2, 447-504.

Uzzi, B. (1999) Embeddedness in the making of financial capital: How social relations
and networks benefit firms seeking financing. American Sociological Review, 64,
481-505.

Uzzi, B. (1997) Social Structure and Competition in Interfirm Networks: The Paradox of
Embeddedness. Administrative Science Quarterly, 42, 35-67.

Uzzi, B. (1996) The sources and consequences of embeddedness for the economic
performance of organizations: The network effect. American Sociological
Review, 61, 674-698.

Van Antwerp, M., and Madey, G. (2008) Advances in the SourceForge Research Data
Archive (SRDA). Proceedings of the 4th International Conference on Open
Source Systems, Milan, Italy, September 7-10. available at
http://www.nd.edu/~oss/Papers/srda_final.pdf

Van den Bosch, F. A. J., Volberda, H. W., and Boer, M. D. (1999) Coevolution of Firm
Absorptive Capacity and Knowledge Environment: Organizational Forms and
Combinative Capabilities. Organizational Science, 10, 5, 551-568.

Van Vliet, H. (2000). Software Engineering: Principles and Practices, 2nd Edition.
JohnWiley & Sons, West Sussex, England.

Vlas, R. E., and Robinson, W. N. (2012) Two Rule-Based Natural Language Strategies
for Requirements Discovery and Classification in Open Source Software
Development Projects. Journal of Management Information Systems, 28, 4, 11-
38.

Von Hippel, E., and Von Krogh, G. (2003) Open Source Software and the ‘Private–
Collective’ Innovation Model: Issues for Organization Science. Organization
Science, 14, 2, 209-225.

Wasserman, S., and Frost, K. (1994) Social Network Analysis: Methods and
Applications. Cambridge Univeersity Press, Cambridge, UK.

Walker, G., Kogut, B., and Shan, W. (1997) Social capital, structural holes and the
formation of an industry network. Organization Science, 8, 109-125.

Watts, D.J. (1999) Networks, Dynamics, and the Small World Phenomenon. American
Journal of Sociology, 105, 2, 493-527.

Watts, D.J., and Strogatz, S.H. (1998) Collective Dynamics of Small World Networks.
Nature, 393, 440-442.

265

Weitzner, D. J., Abelson, H., Berners-Lee, T., Feigenbaum, J., Hendler, J., and Sussman,
G. J. (2008) Information Accountability. Communications of the ACM, 51, 6, 82-
87.

Wejnert, B. (2002) Integrating models of diffusion of innovation: A conceptual
framework. Annual Review of Sociology, 28 pp. 297-326.

Wood, D. J. (1991) Corporate Social Performance Revisited. Academy of Management
Review, 16, 4, 691-718.

Xia, W., and Lee, G. (2005) Complexity of information systems development projects:
Conceptualization and measurement development. Journal of Management
Information Systems, 22, 1, 45-83.

Xu, J.; Gao, Y.; Christley, S.; and Madey, G. (2005) A Topological Analysis of the Open
Source Software Development Community, The 38th Hawaii International
Conference on Systems Science (HICSS-38), Hawaii, available at
http://www.cse.nd.edu/~oss/Papers/papers.html

Zaheer, A., and Bell, G. G. (2005) Benefiting From Network Position: Firm Capabilities,
Structural Holes, and Performance. Strategic Management Journal, 26, 809-825.

Zenger, T. R., and Lawrence, B. S. (1989) Organizational Demography: The Differential
Effects of Age and Tenure Distributions on Technical Communication. The
Academy of Management Journal, 32, 2, 353-376.

266

APPENDIX A: HAZARD RATIO CALCULATION FOR VARIABLES

Hazard ratios of model variables on patch release time have been calculated based
on Cox’s proportional hazard model expressed as follows:

, 	exp	

where:
h0 (t) = Baseline hazard function at time t
β = Model coefficient of independent variables or interactions
X = Independent variables

TABLE A1: Hazard Ratio Calculation for Disclosure

 Confidentiality Model Integrity Model

Disclosure exp[Disclosure*βDisclosure] exp[Disclosure*βDisclosure]

0 [Not disclosed] exp[0*(1.07655)] = 1 exp[0*(1.10792)] = 1

1 [Disclosed] exp[1*(1.07655)] = 2.93 exp[1*(1.10792)] = 3.03

TABLE A2: Hazard Ratio Calculation for Multiple Vendors

 Confidentiality Model Integrity Model

MVendor exp[MVendor*βMVendor] exp[MVendor*βMVendor]

0 [Single] exp[0*(0.49679)] = 1 exp[0*(0.45523)] = 1

1 [Multiple] exp[1*(0.49679)] = 1.64 exp[1*(0.45523)] = 1.58

TABLE A3: Hazard Ratio Calculation for Confidentiality

 Confidentiality Model

Confidentiality exp[C*βConfidentiality]

0 [None] exp[0*(0.26318)] = 1

1 [Partial] exp[1*(0.26318)] = 1.30

2 [Complete] exp[2*(0.26318)] = 1.69

267

TABLE A4: Hazard Ratio Calculation for Integrity

 Integrity Model

Integrity exp[I*βIntegrity]

0 [None] exp[0*(0.24536)] = 1

1 [Partial] exp[1*(0.24536)] = 1.28

2 [Complete] exp[2*(0.24536)] = 1.63

TABLE A5: Hazard Ratio Calculation for Availability

 Confidentiality Model Integrity Model

Availability VType *
exp[A*βAvailability +
A*VType*βVType_A]

exp[A*βAvailability +
A*VType*βVType_A]

0 [None] 0 [PS]
exp[0*(-0.44305) +
0*0*(0.53838)] = 1

exp[0*(-0.37897) +
0*0*(0.53785)] = 1

0 [None] 1 [OSS]
exp[0*(-0.44305) +
0*1*(0.53838)] = 1

exp[0*(-0.37897) +
0*1*(0.53785)] = 1

1 [Partial] 0 [PS]
exp[1*(-0.44305) +
1*0*(0.53838)] = 0.64

exp[1*(-0.37897) +
1*0*(0.53785)] = 0.68

1 [Partial] 1 [OSS]
exp[1*(-0.44305) +
1*1*(0.53838)] = 1.10

exp[1*(-0.37897) +
1*1*(0.53785)] = 1.17

2 [Complete] 0 [PS]
exp[2*(-0.44305) +
2*0*(0.53838)] = 0.41

exp[2*(-0.37897) +
2*0*(0.53785)] = 0.47

2 [Complete] 1 [OSS]
exp[2*(-0.44305) +
2*1*(0.53838)] = 1.21

exp[2*(-0.37897) +
2*1*(0.53785)] = 1.37

* Availability has an interaction with Vendor Type.

TABLE A6: Hazard Ratio Calculation for Patch Type

 Confidentiality Model Integrity Model

PType exp[PType*βPType] exp[PType*βPType]

0 [Update] exp[0*(-0.39724)] = 1 exp[0*(-0.39043)] = 1

1 [New Release] exp[1*(-0.39724)] = 0.67 exp[1*(-0.39043)] = 0.68

TABLE A7: Hazard Ratio Calculation for Software Type

 Confidentiality Model Integrity Model

SWType exp[SWType*βSWType] exp[SWType*βSWType]

0 [Application SW] exp[0*(0.39553)] = 1 exp[0*(0.38421)] = 1

1 [System SW] exp[1*(0.39553)] = 1.49 exp[1*(0.38421)] = 1.47

268

TABLE A8: Hazard Ratio Calculation for Patch Quality (Multiple Patches)

 Confidentiality Model Integrity Model

Multiple Patches exp[MPatches*βMPatches] exp[MPatches*βMPatches]

0 [Single] exp[0*(0.31560)] = 1 exp[0*(0.31731)] = 1

1 [Multiple] exp[1*(0.31560)] = 1.37 exp[1*(0.31731)] = 1.37

TABLE A9: Hazard Ratio Calculation for Vendor Type

 Confidentiality Model Integrity Model

VType * Availability **
exp[VType*βVType +
VType*βVTypeT +
VType*A*βVType_A]

exp[VType*βVType +
VType*βVTypeT +
VType*A*βVType_A]

0 [PS] 0 [None]
exp[0*(1.62207) +
0*(-0.38656) +
0*0*(0.53838)] = 1

exp[0*(1.67718) +
0*(-0.39976) +
0*0*(0.53785)] = 1

0 [PS] 1 [Partial]
exp[0*(1.62207) +
0*(-0.38656) +
0*1*(0.53838)] = 1

exp[0*(1.67718) +
0*(-0.39976) +
0*1*(0.53785)] = 1

0 [PS] 2 [Complete]
exp[0*(1.62207) +
0*(-0.38656) +
0*2*(0.53838)] = 1

exp[0*(1.67718) +
0*(-0.39976) +
0*2*(0.53785)] = 1

1 [OSS] 0 [None]
exp[1*(1.62207) +
1*(-0.38656) +
1*0*(0.53838)] = 3.44

exp[1*(1.67718) +
1*(-0.39976) +
1*0*(0.53785)] = 3.59

1 [OSS] 1 [Partial]
exp[1*(1.62207) +
1*(-0.38656) +
1*1*(0.53838)] = 5.89

exp[1*(1.67718) +
1*(-0.39976) +
1*1*(0.53785)] = 6.14

1 [OSS] 2 [Complete]
exp[1*(1.62207) +
1*(-0.38656) +
1*2*(0.53838)] = 10.10

exp[1*(1.67718) +
1*(-0.39976) +
1*2*(0.53785)] = 10.52

* Vendor Type has been constructed as a time-dependent covariate due to its interaction with time.
** Vendor Type has an interaction with Availability.

269

APPENDIX B: VARIABLE CALCULATIONS

Calculation of Clustering Coefficient:

Following Watts and Strogatz (1998), we measured the clustering coefficient as

follows:

	
3 	

	

The “triangles” are trios of vertices where each one is connected to the other two.
The “connected triples” are trios where at least one is connected to the other two (Watts
and Strogatz 1998). A triplet consists of three nodes that are connected by either two or
three undirected ties. A triangle consists of the three different configurations of closed
trios of three vertices. In order to account for the three different configurations, a factor
of three is added in the numerator (Watts and Strogatz 1998). The factor of three ensures
that the clustering coefficient lies strictly in the range from 0 to 1.

Calculation of External Cohesion:

We measured the external cohesion with Burt’s (1992) network constraint.

Network constraint measures the extent to which a project member i’s external network is
invested in his relationship with an external alter j. The network constraint posed by
external alter12 j on ego i is measured as:

	
∑ ∑ ∑

, ,

where Np is the number of project members and Ne is the number of developers
external to the project. There are two components to this constraint measure. The first
component is the proportion of her total network time and energy that a project member i
directly allocates to external alter j:

∑

where zij is the tie strength between i and j. The second component is the strength
of the indirect connections between i and j through mutual contacts q:

12 In social network analysis, the focal actor is termed as ego and the actors who have ties to the ego are

termed as alters.

270

Here piq is the proportion of her total network time and energy that i devotes to q
and pqj is the proportion of her total network time and energy that contact q devotes to
contact j. Note that contact q belongs to a group a developers that are external to the focal
project. This formulation allows us to measure the extent to which a project member’s
external contacts share relationships with each other.

Calculation of Technological Diversity:

In order to calculate Technological diversity, we first defined the technological

position of each project. The technological position of a project can be defined in terms
of different dimensions such as the type of the project, programming language, user
interface, and operating system (Singh et al. 2011). Each of these dimensions represents
different type of technical expertise. A project type represents the application domain
knowledge whereas other three dimensions represent the tool knowledge and expertise
that comprise the knowledge of process, data and functional architecture (Kim and Stohr
1998, Singh et al. 2011). The similarity of domain and tools affect the amount of
knowledge that can be reused from one project to another (Singh et al. 2011).

Following Jaffe (1986), we characterized a project’s technological position by a

vector Fp = (F1…Fk), where k is the total number of categories under the four dimensions,
and Fk is an indicator variable that equals to 1 if the project p falls under the category k.
A project can fall under several categories within a single dimension. For example, a
project can fall under education, internet, communication, and office/business categories
in the project type dimension. A project can fall under developers, industrial users,
system administrators, and end users in the user interface (target users) dimension.
Technological diversity between the two projects p and q is then calculated by the
angular separation or uncentered correlation of the vectors Fp and Fq as follows (Jaffe
1986):

	
1

Calculation of Indirect Ties with Frequency Decay Function:

Burt (1992) provided a frequency decay measure for indirect ties that accounts for

this decline in tie strength across distant ties. The argument for the frequency decay
function is that the rate at which the strength of a relation decreases with the increasing
length of its corresponding path distance should vary with the social structure in which it

271

occurs (Burt 1992). Following Burt (1992), this decay function for the developer i is
given as:

1
1

where fij is the number of developers that the developer i can reach within and
including path length j, and Ni is the total number of developers that the developer i can
reach in the network. Then dij is the decay associated with the information that is
received from developers at path length j. The measure of indirect ties with a frequency
decay function for the developer i is then calculated as:

where N is the total number of developers in the network and wij is the number of
developers that lie at a path length of j from i.

Calculation of Degree Centrality:

We measured the degree centrality with Freeman’s (1979) degree centrality.

Degree centrality is the measure of how many an actor is connected to other actors in the
network, i.e. the number of direct connections of an actor (Freeman 1979, Wasserman
and Frost 1994). Degree centrality of a developer reflects the activeness of a developer in
the network. Following Wasserman and Frost (1994), the degree centrality of an actor i is
defined as:

1

∑

1

where ki is the degree of an actor i calculated as the sum of Xij which gets the
value of 1 if an actor i is connected to j, otherwise gets the value of 0. N is the total
number of actors in the network. The degree centrality is normalized by dividing by the
maximum possible degree in the network (N-1) which is that one actor is connected to all
other actors in the network. This calculation results in that the degree centrality lies in the
range from 0 to 1. However, UCINET reports the normalized degree centrality as a
percentage for each node by multiplying with 100 (Wasserman and Frost 1994).
Therefore, the measure of degree centrality for a project ranges from 0 to 100.

Calculation of Betweenness Centrality:

We measured the betweenness centrality with Freeman’s (1979) betweenness

centrality. Betweenness centrality is the measure of how often a developer falls on the
shortest path between pairs of other developers (Freeman 1979, Wasserman and Faust

272

1994). Developers with a high betweenness centrality lie in the shortest path of
information flow between other developers. These developers can exert control over
information flow among other developers, and potentially may have some control over
the interactions between other developers (Wasserman and Faust 1994). Thus,
betweenness centrality signifies a developer’s ability to be central to the flow of
information and resources in the network. These developers can be important to the
network-wide information diffusion process by occupying a central position on the
shortest path between other developers in a network. Following Wasserman and Frost
(1994), the degree centrality of an actor i is defined as:

∑

1 2 /2

where njk is the number of shortest paths between actors j and k, ai
jk is the number

of shortest paths between actors j and k passing through an actor i. N is the total number
of actors in the network. The betweenness centrality is normalized by dividing by the
maximum possible betweenness in the network [(N-1)(N-2)/2] which is the number of
pairs of actors not including an actor i (the maximum possible paths passing through an
actor). This calculation results in that the betweenness centrality lies in the range from 0
to 1. However, UCINET reports the normalized betweenness centrality as a percentage
for each node by multiplying with 100 (Wasserman and Frost 1994). Therefore, the
measure of betweenness centrality for a project ranges from 0 to 100.

Calculation of Closeness Centrality:

We measured the closeness centrality with Freeman’s (1979) closeness centrality.

Closeness centrality is the measure of how close an actor is to all other actors in the
network by considering direct and indirect connections to all other actors (Freeman 1979,
Wasserman and Frost 1994). It basically measures the inverse of the sum of geodesic
distances between actors in the network, thereby an actor with high closeness centrality
has minimum geodesic distances to other actors. Closeness centrality signifies a
developer’s ability to reach resources in the network (Gulati and Gargiulo1999).
Information would have to travel over shorter distances to reach a developer who is more
central in the network (Wasserman and Faust 1994). A developer who is close to many
developers can quickly interact and communicate with them without passing through
many intermediaries (Wasserman and Faust 1994). Following Wasserman and Frost
(1994), the closeness centrality of an actor i is defined as:

1
∑ ,

where d(ni, nj) is the shortest path distance between actors j and k. N is the total
number of actors in the network. The closeness centrality is normalized by multiplying by

273

the maximum possible path distance in the network (N-1) which is that one actor is
connected to another one actor passing through all other actors in the network, i.e., there
are (N-1) path distances between those two actors. This calculation results in that the
closeness centrality lies in the range from 0 to 1. However, UCINET reports the
normalized closeness centrality as a percentage for each node by multiplying with 100
(Wasserman and Frost 1994). Therefore, the measure of closeness centrality for a project
ranges from 0 to 100.

274

APPENDIX C: CORRELATION BETWEEN PAIRED VARIABLES

TABLE C1: Correlations between Paired Variables (N=690)

Variable Type Paired Variable Names Correlation Sig.
Internal
Connectivity

Clustering Coefficient (Patch)
Clustering Coefficient (FR)

0.804 .000 ***

Repeat Ties (Patch)
Repeat Ties (FR)

0.837 .000 ***

Third Party Ties (Patch)
Third Party Ties (FR)

0.872 .000 ***

Jaccard Similarity (Patch)
Jaccard Similarity (FR)

0.835 .000 ***

Correlation Similarity (Patch)
Correlation Similarity (FR)

0.816 .000 ***

External
Connectivity

External Cohesion (Patch)
External Cohesion (FR)

0.836 .000 ***

Direct Ties (Patch)
Direct Ties (FR)

0.849 .000 ***

Indirect Ties (Patch)
Indirect Ties (FR)

0.554 .000 ***

Indirect Ties FD (Patch)
Indirect Ties FD (FR)

0.405 .000 ***

Technological Diversity (Patch)
Technological Diversity (FR)

0.638 .000 ***

Network
Location

Degree Centrality (Patch)
Degree Centrality (FR)

0.835 .000 ***

Betweenness Centrality (Patch)
Betweenness Centrality (FR)

0.584 .000 ***

Closeness Centrality (Patch)
Closeness Centrality (FR)

0.234 .000 ***

*Significant at 10% level, **Significant at 5% level, ***Significant at 1% level

275

A
P

P
E

N
D

IX
 D

: A
D

D
IT

IO
N

A
L

 C
O

M
B

IN
E

D
 M

O
D

E
L

S

T

A
B

L
E

 D
1:

 R
es

ul
ts

 o
f

A
dd

it
io

na
l C

om
bi

ne
d

M
od

el
s

fo
r

T
ec

hn
ic

al
 P

er
fo

rm
an

ce

(I
nt

er
na

l C
oh

es
io

n
M

ea
su

re
: C

lu
st

er
in

g
C

oe
ff

ic
ie

nt
, D

ep
en

de
nt

 V
ar

ia
bl

e:
 C

V
S

 C
om

m
it

s,
 N

=
23

60
)

C

om
bi

ne
d

M
od

el
 1

C

om
bi

ne
d

M
od

el
 2

.1

C
om

bi
ne

d
M

od
el

 2
.2

C

om
bi

ne
d

M
od

el
 2

.3

C
om

bi
ne

d
M

od
el

 2
.4

C

om
bi

ne
d

M
od

el
 3

C

om
bi

ne
d

M
od

el
 4

In
de

pe
nd

en
t V

ar
ia

bl
es

A
m

bi
de

xt
er

it
y

A
m

bi
de

xt
er

it
y

5.
14

3
**

*
3.

31
7

**
*

3.
39

4
**

*
3.

43
0

**
*

2.
99

7
**

*
3.

69
4

**
*

-1
.9

70
 *

*

A
m

bi
de

xt
er

it
y

Sq
ua

re
d

-4
.8

50
 *

**

-3
.1

02
 *

**

-3
.2

87
 *

**

-3
.3

20
 *

**

-3
.0

53
 *

**

-3
.5

49
 *

**

.7
38

In
te

rn
al

 C
oh

es
io

n

C
lu

st
er

in
g

C
oe

ff
ic

ie
nt

3.
78

1
**

*
4.

08
4

**
*

4.
31

2
**

*
5.

17
4

**
*

4.
37

1
**

*
4.

19
2

**
*

R
ep

ea
t T

ie
s

T
hi

rd
 P

ar
ty

 T
ie

s

Ja
cc

ar
d

Si
m

il
ar

it
y

C
or

re
la

ti
on

 S
im

il
ar

it
y

E
xt

er
na

l C
on

ne
ct

iv
ity

E
xt

er
na

l C
oh

es
io

n

2.
26

4
**

E
xt

er
na

l C
oh

es
io

n
S

qu
ar

ed

-2

.4
68

 *
*

D
ir

ec
t T

ie
s

1.
83

0
*

1.
56

2

In
di

re
ct

 T
ie

s

1.

53
5

D
ir

ec
t x

 I
nd

ir
ec

t T
er

m

-1
.9

58
 *

In
di

re
ct

 T
ie

s
F

D

1.

19
4

D
ir

ec
t x

 I
nd

ir
ec

t T
ie

s
FD

-1
.6

04

T
ec

h.
 D

iv
er

si
ty

2.

47
7

**

T
ec

h.
 D

iv
er

si
ty

 S
qu

ar
ed

-2

.1
94

 *
*

N
et

w
or

k
L

oc
at

io
n

D
eg

re
e

C
en

tr
al

it
y

1.

24
9

B
et

w
ee

nn
es

s
C

en
tr

al
it

y

-2
.2

22
 *

*

C
lo

se
ne

ss
 C

en
tr

al
it

y

1.
36

6

D
C

 x
 B

C

1.

90
8

*

D
C

 x
 C

C

-1

.9
14

 *

276

T
A

B
L

E
 D

1:
 C

on
t'd

C

om
bi

ne
d

M
od

el
 1

C

om
bi

ne
d

M
od

el
 2

.1

C
om

bi
ne

d
M

od
el

 2
.2

C

om
bi

ne
d

M
od

el
 2

.3

C
om

bi
ne

d
M

od
el

 2
.4

C

om
bi

ne
d

M
od

el
 3

C

om
bi

ne
d

M
od

el
 4

N
et

w
or

k
L

oc
at

io
n

A
m

bi
 D

eg
re

e
C

en
tr

al
it

y

-1

.9
19

 *

A
m

bi
 B

et
w

ee
nn

es
s

C
en

tr
al

it
y

2.
08

2
**

A
m

bi
 C

lo
se

ne
ss

 C
en

tr
al

it
y

3.
27

0
**

*

N
um

be
r

of
 P

ro
je

ct
s

1.
49

7

A
m

bi
 D

C
 x

 N
P

2.

16
8

**

A
m

bi
 B

C
 x

 N
P

-2

.1
49

 *
*

A
m

bi
 C

C
 x

 N
P

-2

.5
27

 *
*

N
P

 x
 P

ro
je

ct
 T

ea
m

 S
iz

e

-2

.0
27

 *
*

C
on

tr
ol

 V
ar

ia
bl

es

T
ea

m
 H

um
an

 C
ap

it
al

 a
nd

 A
bi

li
ty

P
ro

je
ct

 T
ea

m
 S

iz
e

7.
98

1
**

*
6.

10
6

**
*

3.
84

3
**

*
3.

67
1

**
*

5.
82

6
**

*
3.

65
4

**
*

4.
67

0
**

*

U
se

r
In

pu
t a

nd
 M

ar
ke

t P
ot

en
ti

al

B
ug

s
C

lo
se

d
10

.2
77

 *
**

9.

46
1

**
*

9.
36

4
**

*
9.

39
3

**
*

9.
64

7
**

*
9.

33
8

**
*

9.
23

8
**

*

S
up

po
rt

 R
eq

ue
st

s
A

ns
w

er
ed

-.

67
5

-.
63

0
-.

59
0

-.
58

3
-.

55
1

-.
64

5
-.

47
7

P
ag

e
V

ie
w

s
4.

82
7

**
*

4.
58

6
**

*
4.

60
5

**
*

4.
60

8
**

*
4.

64
0

**
*

4.
55

4
**

*
4.

48
8

**
*

Pr
oj

ec
t L

if
e-

C
yc

le
 E

ff
ec

ts

P
ro

je
ct

 A
ge

 (
in

 m
on

th
s)

27

.5
32

 *
**

27

.0
00

 *
**

26

.8
92

 *
**

26

.9
34

 *
**

26

.8
53

 *
**

26

.9
99

 *
**

26

.7
76

 *
**

P
ro

je
ct

 A
ge

 S
qu

ar
ed

6.

59
8

**
*

6.
43

6
**

*
6.

43
5

**
*

6.
44

5
**

*
6.

36
7

**
*

6.
44

3
**

*
6.

34
8

**
*

D
ev

el
op

m
en

t S
ta

tu
s

-1
.6

85
 *

-1

.6
47

-1

.6
50

 *

-1
.6

53
 *

-1

.6
47

 *

-1
.6

59
 *

-1

.5
95

E
ng

li
sh

2.

66
8

**
*

2.
71

0
**

*
2.

71
4

**
*

2.
70

0
**

*
2.

73
3

**
*

2.
58

2
**

*
2.

89
8

**
*

R
es

ul
ts

F
 s

ta
ti

st
ic

s
46

.2
17

 *
**

44

.6
61

 *
**

43

.5
98

 *
**

43

.5
43

 *
**

44

.6
63

 *
**

41

.9
00

 *
**

39

.9
69

 *
**

D
eg

re
e

of
 F

re
ed

om

42
45

46
46

45

48
51

R

0.
67

5
0.

68
2

0.
68

1
0.

68
1

0.
68

2
0.

68
2

0.
68

5

R
 S

qu
ar

e
0.

45
6

0.
46

5
0.

46
4

0.
46

4
0.

46
5

0.
46

5
0.

46
9

A
dj

. R
 S

qu
ar

e
0.

44
6

0.
45

4
0.

45
4

0.
45

3
0.

45
4

0.
45

4
0.

45
7

S
td

. E
rr

or
 o

f
E

st
im

at
e

2.
30

6
2.

28
9

2.
29

0
2.

29
1

2.
28

9
2.

28
9

2.
28

3

*S
ig

ni
fi

ca
nt

 a
t 1

0%
 le

ve
l,

**
S

ig
ni

fi
ca

nt
 a

t 5
%

 le
ve

l,
**

*S
ig

ni
fi

ca
nt

 a
t 1

%
 le

ve
l

277

T
A

B
L

E
 D

2:
 R

es
ul

ts
 o

f
A

dd
it

io
na

l C
om

bi
ne

d
M

od
el

s
fo

r
T

ec
hn

ic
al

 P
er

fo
rm

an
ce

(I

nt
er

na
l C

oh
es

io
n

M
ea

su
re

: R
ep

ea
t T

ie
s,

 D
ep

en
de

nt
 V

ar
ia

bl
e:

 C
V

S
 C

om
m

it
s,

 N
=

23
60

)

C

om
bi

ne
d

M
od

el
 1

C

om
bi

ne
d

M
od

el
 2

.1

C
om

bi
ne

d
M

od
el

 2
.2

C

om
bi

ne
d

M
od

el
 2

.3

C
om

bi
ne

d
M

od
el

 2
.4

C

om
bi

ne
d

M
od

el
 3

C

om
bi

ne
d

M
od

el
 4

In
de

pe
nd

en
t V

ar
ia

bl
es

A
m

bi
de

xt
er

it
y

A
m

bi
de

xt
er

it
y

5.
14

3
**

*
2.

49
2

**

2.
83

1
**

*
2.

85
6

**
*

2.
33

7
**

3.

14
0

**
*

-2
.8

21
 *

**

A
m

bi
de

xt
er

it
y

Sq
ua

re
d

-4
.8

50
 *

**

-2
.1

13
 *

*
-2

.5
81

 *
**

-2

.6
01

 *
**

-2

.2
51

 *
*

-2
.8

41
 *

**

1.
65

3
*

In
te

rn
al

 C
oh

es
io

n

C
lu

st
er

in
g

C
oe

ff
ic

ie
nt

R
ep

ea
t T

ie
s

4.

09
8

**
*

4.
15

4
**

*
4.

29
9

**
*

4.
99

6
**

*
4.

40
4

**
*

4.
54

1
**

*

T
hi

rd
 P

ar
ty

 T
ie

s

Ja
cc

ar
d

Si
m

il
ar

it
y

C
or

re
la

ti
on

 S
im

il
ar

it
y

E
xt

er
na

l C
on

ne
ct

iv
ity

E
xt

er
na

l C
oh

es
io

n

1.
85

3
*

E
xt

er
na

l C
oh

es
io

n
S

qu
ar

ed

-1

.8
74

 *

D
ir

ec
t T

ie
s

2.
66

1
**

*
2.

41
3

**

In
di

re
ct

 T
ie

s

2.

08
8

**

D
ir

ec
t x

 I
nd

ir
ec

t T
er

m

-2
.9

31
 *

**

In
di

re
ct

 T
ie

s
F

D

1.

71
2

*

D
ir

ec
t x

 I
nd

ir
ec

t T
ie

s
F

D

-2

.5
84

 *
*

T
ec

h.
 D

iv
er

si
ty

2.

99
5

**
*

T
ec

h.
 D

iv
er

si
ty

 S
qu

ar
ed

-2

.5
92

 *
**

N
et

w
or

k
L

oc
at

io
n

D
eg

re
e

C
en

tr
al

it
y

1.

83
9

*

B
et

w
ee

nn
es

s
C

en
tr

al
it

y

-2
.4

08
 *

*

C
lo

se
ne

ss
 C

en
tr

al
it

y

1.
52

0

D
C

 x
 B

C

1.

98
0

**

D
C

 x
 C

C

-2

.7
96

 *
**

278

T
A

B
L

E
 D

2:
 C

on
t'd

C

om
bi

ne
d

M
od

el
 1

C

om
bi

ne
d

M
od

el
 2

.1

C
om

bi
ne

d
M

od
el

 2
.2

C

om
bi

ne
d

M
od

el
 2

.3

C
om

bi
ne

d
M

od
el

 2
.4

C

om
bi

ne
d

M
od

el
 3

C

om
bi

ne
d

M
od

el
 4

N
et

w
or

k
L

oc
at

io
n

A
m

bi
 D

eg
re

e
C

en
tr

al
it

y

-1

.5
67

A
m

bi
 B

et
w

ee
nn

es
s

C
en

tr
al

it
y

2.
03

0
**

A
m

bi
 C

lo
se

ne
ss

 C
en

tr
al

it
y

3.
76

8
**

*

N
um

be
r

of
 P

ro
je

ct
s

1.
88

8
*

A
m

bi
 D

C
 x

 N
P

1.

84
8

*

A
m

bi
 B

C
 x

 N
P

-2

.0
80

 *
*

A
m

bi
 C

C
 x

 N
P

-3

.0
92

 *
**

N
P

 x
 P

ro
je

ct
 T

ea
m

 S
iz

e

-2

.5
37

 *
*

C
on

tr
ol

 V
ar

ia
bl

es

T
ea

m
 H

um
an

 C
ap

it
al

 a
nd

 A
bi

li
ty

P
ro

je
ct

 T
ea

m
 S

iz
e

7.
98

1
**

*
5.

49
0

**
*

3.
98

5
**

*
3.

74
8

**
*

6.
37

9
**

*
3.

78
8

**
*

5.
18

6
**

*

U
se

r
In

pu
t a

nd
 M

ar
ke

t P
ot

en
ti

al

B
ug

s
C

lo
se

d
10

.2
77

 *
**

9.

06
2

**
*

9.
19

9
**

*
9.

22
8

**
*

9.
59

9
**

*
9.

17
3

**
*

9.
11

3
**

*

S
up

po
rt

 R
eq

ue
st

s
A

ns
w

er
ed

-.

67
5

-.
37

4
-.

38
0

-.
35

8
-.

30
9

-.
43

0
-.

28
6

P
ag

e
V

ie
w

s
4.

82
7

**
*

4.
87

6
**

*
4.

92
1

**
*

4.
94

1
**

*
5.

02
6

**
*

4.
88

4
**

*
4.

81
8

**
*

Pr
oj

ec
t L

if
e-

C
yc

le
 E

ff
ec

ts

P
ro

je
ct

 A
ge

 (
in

 m
on

th
s)

27

.5
32

 *
**

26

.9
92

 *
**

26

.8
51

 *
**

26

.9
00

 *
**

26

.7
91

 *
**

26

.9
71

 *
**

26

.7
76

 *
**

P
ro

je
ct

 A
ge

 S
qu

ar
ed

6.

59
8

**
*

6.
60

3
**

*
6.

58
9

**
*

6.
60

8
**

*
6.

53
8

**
*

6.
60

5
**

*
6.

50
8

**
*

D
ev

el
op

m
en

t S
ta

tu
s

-1
.6

85
 *

-1

.8
61

 *

-1
.7

50
 *

-1

.7
60

 *

-1
.7

72
 *

-1

.7
63

 *

-1
.6

43

E
ng

li
sh

2.

66
8

**
*

2.
91

8
**

*
2.

83
0

**
*

2.
81

3
**

*
2.

87
2

**
*

2.
69

1
**

*
2.

97
5

**
*

R
es

ul
ts

F
 s

ta
ti

st
ic

s
46

.2
17

 *
**

44

.7
64

 *
**

43

.6
21

 *
**

43

.5
39

 *
**

44

.5
88

 *
**

41

.9
11

 *
**

40

.0
81

 *
**

D
eg

re
e

of
 F

re
ed

om

42
45

46
46

45

48
51

R

0.
67

5
0.

68
2

0.
68

2
0.

68
1

0.
68

1
0.

68
2

0.
68

5

R
 S

qu
ar

e
0.

45
6

0.
46

5
0.

46
5

0.
46

4
0.

46
4

0.
46

5
0.

47
0

A
dj

. R
 S

qu
ar

e
0.

44
6

0.
45

5
0.

45
4

0.
45

3
0.

45
4

0.
45

4
0.

45
8

S
td

. E
rr

or
 o

f
E

st
im

at
e

2.
30

6
2.

28
7

2.
29

0
2.

29
1

2.
28

9
2.

28
9

2.
28

1

*S
ig

ni
fi

ca
nt

 a
t 1

0%
 le

ve
l,

**
S

ig
ni

fi
ca

nt
 a

t 5
%

 le
ve

l,
**

*S
ig

ni
fi

ca
nt

 a
t 1

%
 le

ve
l

279

T
A

B
L

E
 D

3:
 R

es
ul

ts
 o

f
A

dd
it

io
na

l C
om

bi
ne

d
M

od
el

s
fo

r
T

ec
hn

ic
al

 P
er

fo
rm

an
ce

(I

nt
er

na
l C

oh
es

io
n

M
ea

su
re

: T
hi

rd
 P

ar
ty

 T
ie

s,
 D

ep
en

de
nt

 V
ar

ia
bl

e:
 C

V
S

 C
om

m
it

s,
 N

=
23

60
)

C

om
bi

ne
d

M
od

el
 1

C

om
bi

ne
d

M
od

el
 2

.1

C
om

bi
ne

d
M

od
el

 2
.2

C

om
bi

ne
d

M
od

el
 2

.3

C
om

bi
ne

d
M

od
el

 2
.4

C

om
bi

ne
d

M
od

el
 3

C

om
bi

ne
d

M
od

el
 4

In
de

pe
nd

en
t V

ar
ia

bl
es

A
m

bi
de

xt
er

it
y

A
m

bi
de

xt
er

it
y

5.
14

3
**

*
3.

18
6

**
*

3.
68

8
**

*
3.

75
0

**
*

3.
39

5
**

*
4.

07
7

**
*

-2
.5

85
 *

*

A
m

bi
de

xt
er

it
y

Sq
ua

re
d

-4
.8

50
 *

**

-3
.1

22
 *

**

-3
.7

27
 *

**

-3
.7

95
 *

**

-3
.6

77
 *

**

-4
.0

71
 *

**

.9
95

In
te

rn
al

 C
oh

es
io

n

C
lu

st
er

in
g

C
oe

ff
ic

ie
nt

R
ep

ea
t T

ie
s

T
hi

rd
 P

ar
ty

 T
ie

s

1.
30

9
0.

44
7

0.
35

9
0.

54
2

0.
81

2
1.

32
4

Ja
cc

ar
d

Si
m

il
ar

it
y

C
or

re
la

ti
on

 S
im

il
ar

it
y

E
xt

er
na

l C
on

ne
ct

iv
ity

E
xt

er
na

l C
oh

es
io

n

5.
00

1
**

*

E
xt

er
na

l C
oh

es
io

n
S

qu
ar

ed

-4

.7
63

 *
**

D
ir

ec
t T

ie
s

3.
45

6
**

*
3.

22
7

**
*

In
di

re
ct

 T
ie

s

2.

75
5

**
*

D
ir

ec
t x

 I
nd

ir
ec

t T
er

m

-4
.0

51
 *

**

In
di

re
ct

 T
ie

s
F

D

2.

29
1

**

D
ir

ec
t x

 I
nd

ir
ec

t T
ie

s
F

D

-3

.6
36

 *
**

T
ec

h.
 D

iv
er

si
ty

3.

33
2

**
*

T
ec

h.
 D

iv
er

si
ty

 S
qu

ar
ed

-2

.6
26

 *
**

N
et

w
or

k
L

oc
at

io
n

D
eg

re
e

C
en

tr
al

it
y

2.

06
6

**

B
et

w
ee

nn
es

s
C

en
tr

al
it

y

-2
.4

66
 *

*

C
lo

se
ne

ss
 C

en
tr

al
it

y

1.
79

3
*

D
C

 x
 B

C

2.

03
4

**

D
C

 x
 C

C

-3

.8
62

 *
**

280

T
A

B
L

E
 D

3:
 C

on
t'd

C

om
bi

ne
d

M
od

el
 1

C

om
bi

ne
d

M
od

el
 2

.1

C
om

bi
ne

d
M

od
el

 2
.2

C

om
bi

ne
d

M
od

el
 2

.3

C
om

bi
ne

d
M

od
el

 2
.4

C

om
bi

ne
d

M
od

el
 3

C

om
bi

ne
d

M
od

el
 4

N
et

w
or

k
L

oc
at

io
n

A
m

bi
 D

eg
re

e
C

en
tr

al
it

y

-2

.2
28

 *
*

A
m

bi
 B

et
w

ee
nn

es
s

C
en

tr
al

it
y

2.
21

0
**

A
m

bi
 C

lo
se

ne
ss

 C
en

tr
al

it
y

4.
15

8
**

*

N
um

be
r

of
 P

ro
je

ct
s

1.
94

6
*

A
m

bi
 D

C
 x

 N
P

2.

29
2

**

A
m

bi
 B

C
 x

 N
P

-2

.2
17

 *
*

A
m

bi
 C

C
 x

 N
P

-3

.2
43

 *
**

N
P

 x
 P

ro
je

ct
 T

ea
m

 S
iz

e

-3

.2
71

 *
**

C
on

tr
ol

 V
ar

ia
bl

es

T
ea

m
 H

um
an

 C
ap

it
al

 a
nd

 A
bi

li
ty

P
ro

je
ct

 T
ea

m
 S

iz
e

7.
98

1
**

*
7.

83
3

**
*

3.
60

8
**

*
3.

31
2

**
*

7.
08

3
**

*
3.

62
5

**
*

6.
70

2
**

*

U
se

r
In

pu
t a

nd
 M

ar
ke

t P
ot

en
ti

al

B
ug

s
C

lo
se

d
10

.2
77

 *
**

9.

83
0

**
*

9.
62

1
**

*
9.

67
7

**
*

10
.2

93
 *

**

9.
62

0
**

*
9.

55
7

**
*

S
up

po
rt

 R
eq

ue
st

s
A

ns
w

er
ed

-.

67
5

-.
50

7
-.

51
2

-.
49

2
-.

48
9

-.
56

8
-.

42
7

P
ag

e
V

ie
w

s
4.

82
7

**
*

4.
88

1
**

*
4.

80
3

**
*

4.
82

0
**

*
4.

89
7

**
*

4.
75

8
**

*
4.

70
1

**
*

Pr
oj

ec
t L

if
e-

C
yc

le
 E

ff
ec

ts

P
ro

je
ct

 A
ge

 (
in

 m
on

th
s)

27

.5
32

 *
**

27

.0
13

 *
**

27

.0
04

 *
**

27

.0
65

 *
**

27

.0
02

 *
**

27

.1
54

 *
**

26

.9
69

 *
**

P
ro

je
ct

 A
ge

 S
qu

ar
ed

6.

59
8

**
*

6.
54

5
**

*
6.

52
5

**
*

6.
54

8
**

*
6.

46
7

**
*

6.
53

0
**

*
6.

44
5

**
*

D
ev

el
op

m
en

t S
ta

tu
s

-1
.6

85
 *

-1

.7
36

 *

-1
.7

44
 *

-1

.7
52

 *

-1
.7

69
 *

-1

.7
65

 *

-1
.6

60
 *

E
ng

li
sh

2.

66
8

**
*

2.
73

1
**

*
2.

74
6

**
*

2.
72

0
**

*
2.

75
8

**
*

2.
59

9
**

*
2.

89
2

**
*

R
es

ul
ts

F
 s

ta
ti

st
ic

s
46

.2
17

 *
**

44

.1
42

 *
**

42

.9
34

 *
**

42

.8
00

 *
**

43

.5
76

 *
**

41

.1
87

 *
**

39

.3
90

 *
**

D
eg

re
e

of
 F

re
ed

om

42
45

46
46

45

48
51

R

0.
67

5
0.

68
0

0.
67

9
0.

67
8

0.
67

7
0.

67
9

0.
68

2

R
 S

qu
ar

e
0.

45
6

0.
46

2
0.

46
1

0.
46

0
0.

45
9

0.
46

1
0.

46
5

A
dj

. R
 S

qu
ar

e
0.

44
6

0.
45

1
0.

45
0

0.
44

9
0.

44
8

0.
45

0
0.

45
4

S
td

. E
rr

or
 o

f
E

st
im

at
e

2.
30

6
2.

29
5

2.
29

8
2.

30
0

2.
30

2
2.

29
8

2.
29

0

*S
ig

ni
fi

ca
nt

 a
t 1

0%
 le

ve
l,

**
S

ig
ni

fi
ca

nt
 a

t 5
%

 le
ve

l,
**

*S
ig

ni
fi

ca
nt

 a
t 1

%
 le

ve
l

281

T
A

B
L

E
 D

4:
 R

es
ul

ts
 o

f
A

dd
it

io
na

l C
om

bi
ne

d
M

od
el

s
fo

r
T

ec
hn

ic
al

 P
er

fo
rm

an
ce

(I

nt
er

na
l C

oh
es

io
n

M
ea

su
re

: J
ac

ca
rd

 S
im

il
ar

it
y,

 D
ep

en
de

nt
 V

ar
ia

bl
e:

 C
V

S
 C

om
m

it
s,

 N
=

23
60

)

C

om
bi

ne
d

M
od

el
 1

C

om
bi

ne
d

M
od

el
 2

.1

C
om

bi
ne

d
M

od
el

 2
.2

C

om
bi

ne
d

M
od

el
 2

.3

C
om

bi
ne

d
M

od
el

 2
.4

C

om
bi

ne
d

M
od

el
 3

C

om
bi

ne
d

M
od

el
 4

In
de

pe
nd

en
t V

ar
ia

bl
es

A
m

bi
de

xt
er

it
y

A
m

bi
de

xt
er

it
y

5.
14

3
**

*
3.

71
5

**
*

3.
44

6
**

*
3.

49
0

**
*

2.
96

3
**

*
3.

75
7

**
*

-1
.9

12
 *

A
m

bi
de

xt
er

it
y

Sq
ua

re
d

-4
.8

50
 *

**

-3
.1

26
 *

**

-3
.0

49
 *

**

-3
.0

84
 *

**

-2
.7

18
 *

**

-3
.3

25
 *

**

.8
79

In
te

rn
al

 C
oh

es
io

n

C
lu

st
er

in
g

C
oe

ff
ic

ie
nt

R
ep

ea
t T

ie
s

T
hi

rd
 P

ar
ty

 T
ie

s

Ja
cc

ar
d

S
im

il
ar

it
y

4.

56
3

**
*

4.
96

4
**

*
5.

14
6

**
*

6.
17

9
**

*
5.

09
1

**
*

4.
90

9
**

*

C
or

re
la

ti
on

 S
im

il
ar

it
y

E
xt

er
na

l C
on

ne
ct

iv
ity

E
xt

er
na

l C
oh

es
io

n

2.
79

7
**

*

E
xt

er
na

l C
oh

es
io

n
S

qu
ar

ed

-3

.1
53

 *
**

D
ir

ec
t T

ie
s

2.
44

4
**

2.

23
8

**

In
di

re
ct

 T
ie

s

2.

20
1

**

D
ir

ec
t x

 I
nd

ir
ec

t T
er

m

-2
.1

75
 *

*

In
di

re
ct

 T
ie

s
F

D

1.

90
4

*

D
ir

ec
t x

 I
nd

ir
ec

t T
ie

s
F

D

-1

.9
04

 *

T
ec

h.
 D

iv
er

si
ty

3.

96
4

**
*

T
ec

h.
 D

iv
er

si
ty

 S
qu

ar
ed

-2

.8
76

 *
**

N
et

w
or

k
L

oc
at

io
n

D
eg

re
e

C
en

tr
al

it
y

2.

02
9

**

B
et

w
ee

nn
es

s
C

en
tr

al
it

y

-2
.1

41
 *

*

C
lo

se
ne

ss
 C

en
tr

al
it

y

2.
03

8
**

D
C

 x
 B

C

1.

74
7

*

D
C

 x
 C

C

-2

.3
02

 *
*

282

T
A

B
L

E
 D

4:
 C

on
t'd

C

om
bi

ne
d

M
od

el
 1

C

om
bi

ne
d

M
od

el
 2

.1

C
om

bi
ne

d
M

od
el

 2
.2

C

om
bi

ne
d

M
od

el
 2

.3

C
om

bi
ne

d
M

od
el

 2
.4

C

om
bi

ne
d

M
od

el
 3

C

om
bi

ne
d

M
od

el
 4

N
et

w
or

k
L

oc
at

io
n

A
m

bi
 D

eg
re

e
C

en
tr

al
it

y

-1

.3
64

A
m

bi
 B

et
w

ee
nn

es
s

C
en

tr
al

it
y

2.
04

5
**

A
m

bi
 C

lo
se

ne
ss

 C
en

tr
al

it
y

2.
88

3
**

*

N
um

be
r

of
 P

ro
je

ct
s

1.
61

0

A
m

bi
 D

C
 x

 N
P

1.

73
9

*

A
m

bi
 B

C
 x

 N
P

-2

.1
37

 *
*

A
m

bi
 C

C
 x

 N
P

-2

.0
08

 *
*

N
P

 x
 P

ro
je

ct
 T

ea
m

 S
iz

e

-2

.2
92

 *
*

C
on

tr
ol

 V
ar

ia
bl

es

T
ea

m
 H

um
an

 C
ap

it
al

 a
nd

 A
bi

li
ty

P
ro

je
ct

 T
ea

m
 S

iz
e

7.
98

1
**

*
5.

52
7

**
*

2.
89

4
**

*
2.

72
6

**
*

4.
88

9
**

*
2.

62
5

**
*

4.
32

7
**

*

U
se

r
In

pu
t a

nd
 M

ar
ke

t P
ot

en
ti

al

B
ug

s
C

lo
se

d
10

.2
77

 *
**

9.

01
3

**
*

8.
94

0
**

*
8.

96
0

**
*

9.
19

1
**

*
8.

93
6

**
*

8.
93

6
**

*

S
up

po
rt

 R
eq

ue
st

s
A

ns
w

er
ed

-.

67
5

-.
74

0
-.

65
8

-.
65

0
-.

61
5

-.
70

0
-.

48
1

P
ag

e
V

ie
w

s
4.

82
7

**
*

4.
47

6
**

*
4.

54
0

**
*

4.
54

3
**

*
4.

55
6

**
*

4.
51

9
**

*
4.

49
0

**
*

Pr
oj

ec
t L

if
e-

C
yc

le
 E

ff
ec

ts

P
ro

je
ct

 A
ge

 (
in

 m
on

th
s)

27

.5
32

 *
**

27

.2
07

 *
**

27

.0
01

 *
**

27

.0
56

 *
**

26

.9
85

 *
**

27

.1
15

 *
**

26

.9
84

 *
**

P
ro

je
ct

 A
ge

 S
qu

ar
ed

6.

59
8

**
*

6.
42

5
**

*
6.

41
6

**
*

6.
43

1
**

*
6.

30
5

**
*

6.
44

0
**

*
6.

37
7

**
*

D
ev

el
op

m
en

t S
ta

tu
s

-1
.6

85
 *

-1

.6
31

-1

.6
78

 *

-1
.6

84
 *

-1

.6
55

 *

-1
.6

92
 *

-1

.6
12

E
ng

li
sh

2.

66
8

**
*

2.
69

6
**

*
2.

75
8

**
*

2.
74

7
**

*
2.

72
6

**
*

2.
62

4
**

*
2.

91
5

**
*

R
es

ul
ts

F
 s

ta
ti

st
ic

s
46

.2
17

 *
**

44

.9
30

 *
**

43

.9
19

 *
**

43

.8
60

 *
**

45

.1
31

 *
**

42

.1
63

 *
**

40

.2
09

 *
**

D
eg

re
e

of
 F

re
ed

om

42
45

46
46

45

48
51

R

0.
67

5
0.

68
3

0.
68

3
0.

68
3

0.
68

4
0.

68
3

0.
68

6

R
 S

qu
ar

e
0.

45
6

0.
46

6
0.

46
6

0.
46

6
0.

46
7

0.
46

7
0.

47
0

A
dj

. R
 S

qu
ar

e
0.

44
6

0.
45

6
0.

45
6

0.
45

5
0.

45
7

0.
45

6
0.

45
9

S
td

. E
rr

or
 o

f
E

st
im

at
e

2.
30

6
2.

28
5

2.
28

6
2.

28
7

2.
28

3
2.

28
6

2.
27

9

*S
ig

ni
fi

ca
nt

 a
t 1

0%
 le

ve
l,

**
S

ig
ni

fi
ca

nt
 a

t 5
%

 le
ve

l,
**

*S
ig

ni
fi

ca
nt

 a
t 1

%
 le

ve
l

283

A
P

P
E

N
D

IX
 E

: V
U

L
N

E
R

A
B

IL
IT

Y
 D

A
T

A

T

A
B

L
E

 E
1:

 V
ul

ne
ra

bi
li

ty
 D

at
a

C
E

R
T

N

am
e

N
V

D

N
am

e
P

at
ch

D

at
e

N
ot

if
ic

at
io

n
D

at
e

P
ub

li
c

D

at
e

P
at

ch

T
im

e
D

is
cl

os
ur

e

T
im

e
M

ul
tip

le

P
at

ch
es

P

at
ch

T

yp
e

SW

T
yp

e
V

en
do

r
T

yp
e

M
ul

tip
le

V
en

do
r

C
I

A

V
U

#7
01

12
1

C
V

E
-2

00
6-

31
34

5/

24
/2

00
6

3/
20

/2
00

6
6/

27
/2

00
6

65
99

0

0
0

0
1

2
2

2
V

U
#5

97
72

1
C

V
E

-2
00

6-
11

76

6/
12

/2
00

6
6/

8/
20

06

6/
21

/2
00

6
4

13

0
0

0
0

0
1

1
1

V
U

#7
01

12
1

C
V

E
-2

00
6-

31
34

6/

27
/2

00
6

5/
11

/2
00

6
6/

27
/2

00
6

47
47

0

0
0

0
1

2
2

2
V

U
#9

07
83

6
C

V
E

-2
00

6-
14

67

6/
29

/2
00

6
4/

7/
20

06

6/
29

/2
00

6
83

83

0
0

0
0

0
1

1
1

V
U

#2
43

68
1

C
V

E
-2

00
6-

21
99

6/

30
/2

00
6

6/
29

/2
00

6
6/

29
/2

00
6

1
0

1
1

1
1

1
2

2
2

V
U

#2
43

68
1

C
V

E
-2

00
6-

21
99

7/

3/
20

06

6/
29

/2
00

6
6/

29
/2

00
6

4
0

1
0

1
1

1
2

2
2

V
U

#2
43

68
1

C
V

E
-2

00
6-

21
99

7/

3/
20

06

6/
29

/2
00

6
6/

29
/2

00
6

4
0

0
0

1
1

1
2

2
2

V
U

#9
71

70
5

C
V

E
-2

00
6-

36
87

7/

5/
20

06

2/
27

/2
00

6
7/

17
/2

00
6

12
8

14
0

0
1

1
0

0
1

1
1

V
U

#1
70

11
3

C
V

E
-2

00
6-

21
98

7/

6/
20

06

6/
29

/2
00

6
6/

29
/2

00
6

7
0

1
1

1
1

1
2

2
2

V
U

#2
43

68
1

C
V

E
-2

00
6-

21
99

7/

10
/2

00
6

6/
29

/2
00

6
6/

29
/2

00
6

11
0

1
0

1
0

1
2

2
2

V
U

#6
68

56
4

C
V

E
-2

00
6-

00
07

7/

11
/2

00
6

5/
27

/2
00

5
7/

11
/2

00
6

41
0

41
0

0
0

0
0

0
2

2
2

V
U

#2
57

16
4

C
V

E
-2

00
6-

23
72

7/

11
/2

00
6

12
/2

6/
20

05

7/
11

/2
00

6
19

7
19

7
0

0
1

0
0

2
2

2
V

U
#1

89
14

0
C

V
E

-2
00

6-
13

14

7/
11

/2
00

6
3/

1/
20

06

7/
11

/2
00

6
13

2
13

2
0

0
1

0
0

1
1

1
V

U
#5

27
67

6
C

V
E

-2
00

6-
38

11

7/
25

/2
00

6
5/

1/
20

06

7/
25

/2
00

6
85

85

1
1

1
1

1
1

1
1

V
U

#5
13

06
8

C
V

E
-2

00
6-

38
38

7/

25
/2

00
6

5/
10

/2
00

6
7/

26
/2

00
6

76
77

0

1
0

0
1

2
2

2
V

U
#3

98
49

2
C

V
E

-2
00

6-
38

12

7/
25

/2
00

6
5/

15
/2

00
6

7/
25

/2
00

6
71

71

0
1

1
1

1
0

1
0

V
U

#4
76

72
4

C
V

E
-2

00
6-

38
01

7/

25
/2

00
6

5/
17

/2
00

6
7/

25
/2

00
6

69
69

0

1
1

1
1

1
1

1
V

U
#9

11
00

4
C

V
E

-2
00

6-
38

10

7/
25

/2
00

6
5/

19
/2

00
6

7/
25

/2
00

6
67

67

0
1

1
1

1
1

1
1

V
U

#8
97

54
0

C
V

E
-2

00
6-

38
04

7/

25
/2

00
6

5/
30

/2
00

6
7/

25
/2

00
6

56
56

0

1
0

1
1

0
0

1
V

U
#6

87
39

6
C

V
E

-2
00

6-
38

07

7/
25

/2
00

6
6/

7/
20

06

7/
25

/2
00

6
48

48

1
1

1
1

1
1

1
1

V
U

#6
70

06
0

C
V

E
-2

00
6-

36
77

7/

25
/2

00
6

6/
16

/2
00

6
7/

25
/2

00
6

39
39

0

1
1

1
1

1
1

1
V

U
#8

76
42

0
C

V
E

-2
00

6-
38

05

7/
25

/2
00

6
6/

18
/2

00
6

7/
25

/2
00

6
37

37

0
1

1
1

1
1

1
1

V
U

#2
39

12
4

C
V

E
-2

00
6-

31
13

7/

25
/2

00
6

6/
23

/2
00

6
7/

25
/2

00
6

32
32

0

1
1

1
1

1
1

1
V

U
#2

65
96

4
C

V
E

-2
00

6-
38

03

7/
25

/2
00

6
7/

14
/2

00
6

7/
25

/2
00

6
11

11

0
1

1
1

1
1

1
1

V
U

#3
95

41
2

C
V

E
-2

00
6-

37
47

7/

27
/2

00
6

7/
25

/2
00

6
7/

27
/2

00
6

2
2

1
1

1
1

1
2

2
2

284

T
A

B
L

E
 E

1:
 C

on
t'd

C
E

R
T

N

am
e

N
V

D

N
am

e
P

at
ch

D

at
e

N
ot

if
ic

at
io

n
D

at
e

P
ub

li
c

D

at
e

P
at

ch

T
im

e
D

is
cl

os
ur

e

T
im

e
M

ul
tip

le

P
at

ch
es

P

at
ch

T

yp
e

SW

T
yp

e
V

en
do

r
T

yp
e

M
ul

tip
le

V
en

do
r

C
I

A

V
U

#3
72

87
8

C
V

E
-2

00
6-

11
78

7/

28
/2

00
6

3/
28

/2
00

6
7/

27
/2

00
6

12
2

12
1

0
1

1
1

0
0

0
1

V
U

#3
95

41
2

C
V

E
-2

00
6-

37
47

7/

28
/2

00
6

7/
25

/2
00

6
7/

27
/2

00
6

3
2

1
0

1
1

1
2

2
2

V
U

#3
95

41
2

C
V

E
-2

00
6-

37
47

7/

28
/2

00
6

7/
25

/2
00

6
7/

27
/2

00
6

3
2

1
0

1
1

1
2

2
2

V
U

#3
95

41
2

C
V

E
-2

00
6-

37
47

7/

28
/2

00
6

7/
25

/2
00

6
7/

27
/2

00
6

3
2

0
0

1
1

1
2

2
2

V
U

#3
95

41
2

C
V

E
-2

00
6-

37
47

8/

1/
20

06

7/
25

/2
00

6
7/

27
/2

00
6

7
2

0
1

1
1

1
2

2
2

V
U

#1
99

34
8

C
V

E
-2

00
6-

40
82

8/

3/
20

06

8/
1/

20
06

8/

1/
20

06

2
0

0
1

1
0

0
2

2
2

V
U

#2
30

20
8

C
V

E
-2

00
6-

39
92

8/

7/
20

06

7/
28

/2
00

6
7/

28
/2

00
6

10
0

1
1

1
0

1
1

1
1

V
U

#1
59

22
0

C
V

E
-2

00
6-

33
57

8/

8/
20

06

4/
27

/2
00

6
7/

2/
20

06

10
3

66

0
0

1
0

0
1

1
1

V
U

#1
19

18
0

C
V

E
-2

00
6-

34
50

8/

8/
20

06

6/
14

/2
00

6
8/

8/
20

06

55
55

1

0
1

0
0

1
1

1
V

U
#2

62
00

4
C

V
E

-2
00

6-
34

51

8/
8/

20
06

6/

14
/2

00
6

8/
8/

20
06

55

55

1
0

1
0

0
1

1
1

V
U

#6
55

10
0

C
V

E
-2

00
6-

32
81

8/

8/
20

06

6/
27

/2
00

6
6/

27
/2

00
6

42
0

0
0

1
0

0
1

1
1

V
U

#8
83

10
8

C
V

E
-2

00
6-

32
80

8/

8/
20

06

6/
27

/2
00

6
6/

27
/2

00
6

42
0

1
0

1
0

0
1

1
1

V
U

#9
36

94
5

C
V

E
-2

00
6-

35
90

8/

8/
20

06

7/
13

/2
00

6
7/

13
/2

00
6

26
0

0
0

0
0

0
1

1
1

V
U

#4
01

66
0

C
V

E
-2

00
6-

30
84

8/

8/
20

06

7/
26

/2
00

6
7/

26
/2

00
6

13
0

1
0

1
1

1
2

2
2

V
U

#5
80

12
4

C
V

E
-2

00
6-

30
83

8/

8/
20

06

7/
26

/2
00

6
7/

26
/2

00
6

13
0

1
0

1
1

1
2

2
2

V
U

#6
50

76
9

C
V

E
-2

00
6-

34
39

8/

8/
20

06

8/
3/

20
06

8/

8/
20

06

5
5

1
0

1
0

0
2

2
2

V
U

#4
01

66
0

C
V

E
-2

00
6-

30
84

8/

9/
20

06

7/
26

/2
00

6
7/

26
/2

00
6

14
0

1
0

1
1

1
2

2
2

V
U

#4
01

66
0

C
V

E
-2

00
6-

30
84

8/

10
/2

00
6

7/
26

/2
00

6
7/

26
/2

00
6

15
0

1
1

1
1

1
2

2
2

V
U

#5
80

12
4

C
V

E
-2

00
6-

30
83

8/

10
/2

00
6

7/
26

/2
00

6
7/

26
/2

00
6

15
0

1
1

1
1

1
2

2
2

V
U

#3
95

41
2

C
V

E
-2

00
6-

37
47

8/

25
/2

00
6

7/
25

/2
00

6
7/

27
/2

00
6

31
2

1
0

1
0

1
2

2
2

V
U

#3
00

36
8

C
V

E
-2

00
6-

44
47

8/

31
/2

00
6

8/
29

/2
00

6
8/

29
/2

00
6

2
0

0
0

1
1

1
2

2
2

V
U

#6
97

16
4

C
V

E
-2

00
6-

40
96

9/

5/
20

06

8/
23

/2
00

6
9/

5/
20

06

13
13

0

0
1

1
1

0
0

1
V

U
#9

15
40

4
C

V
E

-2
00

6-
40

95

9/
5/

20
06

8/

23
/2

00
6

9/
5/

20
06

13

13

0
0

1
1

1
0

0
1

V
U

#5
42

19
7

C
V

E
-2

00
6-

43
79

9/

6/
20

06

6/
22

/2
00

6
9/

7/
20

06

76
77

1

1
1

0
0

1
1

1
V

U
#6

97
16

4
C

V
E

-2
00

6-
40

96

9/
6/

20
06

7/

3/
20

06

9/
5/

20
06

65

64

0
1

1
1

1
0

0
1

V
U

#9
15

40
4

C
V

E
-2

00
6-

40
95

9/

6/
20

06

8/
18

/2
00

6
9/

5/
20

06

19
18

0

1
1

1
1

0
0

1
V

U
#6

97
16

4
C

V
E

-2
00

6-
40

96

9/
6/

20
06

8/

23
/2

00
6

9/
5/

20
06

14

13

1
1

1
1

1
0

0
1

V
U

#6
97

16
4

C
V

E
-2

00
6-

40
96

9/

6/
20

06

8/
23

/2
00

6
9/

5/
20

06

14
13

1

0
1

1
1

0
0

1

285

T
A

B
L

E
 E

1:
 C

on
t'd

C
E

R
T

N

am
e

N
V

D

N
am

e
P

at
ch

D

at
e

N
ot

if
ic

at
io

n
D

at
e

P
ub

li
c

D

at
e

P
at

ch

T
im

e
D

is
cl

os
ur

e

T
im

e
M

ul
tip

le

P
at

ch
es

P

at
ch

T

yp
e

SW

T
yp

e
V

en
do

r
T

yp
e

M
ul

tip
le

V
en

do
r

C
I

A

V
U

#6
97

16
4

C
V

E
-2

00
6-

40
96

9/

6/
20

06

8/
23

/2
00

6
9/

5/
20

06

14
13

0

0
1

1
1

0
0

1
V

U
#9

15
40

4
C

V
E

-2
00

6-
40

95

9/
6/

20
06

8/

23
/2

00
6

9/
5/

20
06

14

13

1
1

1
1

1
0

0
1

V
U

#9
15

40
4

C
V

E
-2

00
6-

40
95

9/

6/
20

06

8/
23

/2
00

6
9/

5/
20

06

14
13

1

0
1

1
1

0
0

1
V

U
#9

15
40

4
C

V
E

-2
00

6-
40

95

9/
6/

20
06

8/

23
/2

00
6

9/
5/

20
06

14

13

0
0

1
1

1
0

0
1

V
U

#8
45

62
0

C
V

E
-2

00
6-

43
39

9/

6/
20

06

9/
5/

20
06

9/

5/
20

06

1
0

1
0

1
1

1
1

1
1

V
U

#8
45

62
0

C
V

E
-2

00
6-

43
39

9/

6/
20

06

9/
5/

20
06

9/

5/
20

06

1
0

1
0

1
1

1
1

1
1

V
U

#8
45

62
0

C
V

E
-2

00
6-

43
39

9/

6/
20

06

9/
5/

20
06

9/

5/
20

06

1
0

0
0

1
1

1
1

1
1

V
U

#8
45

62
0

C
V

E
-2

00
6-

43
39

9/

7/
20

06

9/
5/

20
06

9/

5/
20

06

2
0

1
1

1
1

1
1

1
1

V
U

#6
97

16
4

C
V

E
-2

00
6-

40
96

9/

8/
20

06

8/
23

/2
00

6
9/

5/
20

06

16
13

0

0
1

1
1

0
0

1
V

U
#9

15
40

4
C

V
E

-2
00

6-
40

95

9/
8/

20
06

8/

23
/2

00
6

9/
5/

20
06

16

13

0
0

1
1

1
0

0
1

V
U

#6
97

16
4

C
V

E
-2

00
6-

40
96

9/

8/
20

06

9/
5/

20
06

9/

5/
20

06

3
0

0
0

1
1

1
0

0
1

V
U

#8
45

62
0

C
V

E
-2

00
6-

43
39

9/

8/
20

06

9/
5/

20
06

9/

5/
20

06

3
0

1
0

1
1

1
1

1
1

V
U

#9
15

40
4

C
V

E
-2

00
6-

40
95

9/

8/
20

06

9/
5/

20
06

9/

5/
20

06

3
0

0
0

1
1

1
0

0
1

V
U

#6
97

16
4

C
V

E
-2

00
6-

40
96

9/

9/
20

06

8/
23

/2
00

6
9/

5/
20

06

17
13

0

1
1

1
1

0
0

1
V

U
#9

15
40

4
C

V
E

-2
00

6-
40

95

9/
9/

20
06

8/

23
/2

00
6

9/
5/

20
06

17

13

0
1

1
1

1
0

0
1

V
U

#8
45

62
0

C
V

E
-2

00
6-

43
39

9/

10
/2

00
6

9/
5/

20
06

9/

5/
20

06

5
0

1
1

1
1

1
1

1
1

V
U

#4
06

23
6

C
V

E
-2

00
6-

00
01

9/

12
/2

00
6

3/
8/

20
05

9/

12
/2

00
6

55
3

55
3

0
0

0
0

0
2

2
2

V
U

#4
74

59
3

C
V

E
-2

00
6-

35
87

9/

12
/2

00
6

7/
10

/2
00

6
7/

10
/2

00
6

64
0

0
1

0
0

1
1

1
1

V
U

#8
45

62
0

C
V

E
-2

00
6-

43
39

9/

12
/2

00
6

9/
5/

20
06

9/

5/
20

06

7
0

1
1

1
1

1
1

1
1

V
U

#8
45

62
0

C
V

E
-2

00
6-

43
39

9/

12
/2

00
6

9/
5/

20
06

9/

5/
20

06

7
0

1
0

1
0

1
1

1
1

V
U

#6
97

16
4

C
V

E
-2

00
6-

40
96

9/

14
/2

00
6

8/
23

/2
00

6
9/

5/
20

06

22
13

0

0
1

1
1

0
0

1
V

U
#9

15
40

4
C

V
E

-2
00

6-
40

95

9/
14

/2
00

6
8/

23
/2

00
6

9/
5/

20
06

22

13

0
0

1
1

1
0

0
1

V
U

#8
45

62
0

C
V

E
-2

00
6-

43
39

9/

14
/2

00
6

9/
1/

20
06

9/

5/
20

06

13
4

0
1

1
1

1
1

1
1

V
U

#6
97

16
4

C
V

E
-2

00
6-

40
96

9/

15
/2

00
6

8/
23

/2
00

6
9/

5/
20

06

23
13

0

1
1

1
1

0
0

1
V

U
#9

15
40

4
C

V
E

-2
00

6-
40

95

9/
15

/2
00

6
8/

23
/2

00
6

9/
5/

20
06

23

13

0
1

1
1

1
0

0
1

V
U

#8
45

62
0

C
V

E
-2

00
6-

43
39

9/

19
/2

00
6

9/
5/

20
06

9/

5/
20

06

14
0

1
0

1
1

1
1

1
1

V
U

#6
97

16
4

C
V

E
-2

00
6-

40
96

9/

21
/2

00
6

8/
23

/2
00

6
9/

5/
20

06

29
13

1

1
1

1
1

0
0

1
V

U
#9

15
40

4
C

V
E

-2
00

6-
40

95

9/
21

/2
00

6
8/

23
/2

00
6

9/
5/

20
06

29

13

1
1

1
1

1
0

0
1

286

T
A

B
L

E
 E

1:
 C

on
t'd

C
E

R
T

N

am
e

N
V

D

N
am

e
P

at
ch

D

at
e

N
ot

if
ic

at
io

n
D

at
e

P
ub

li
c

D

at
e

P
at

ch

T
im

e
D

is
cl

os
ur

e

T
im

e
M

ul
tip

le

P
at

ch
es

P

at
ch

T

yp
e

SW

T
yp

e
V

en
do

r
T

yp
e

M
ul

tip
le

V
en

do
r

C
I

A

V
U

#4
84

38
0

C
V

E
-2

00
6-

48
19

9/

21
/2

00
6

9/
15

/2
00

6
10

/1
7/

20
06

6

32

0
1

1
1

1
1

1
1

V
U

#8
45

62
0

C
V

E
-2

00
6-

43
39

9/

22
/2

00
6

9/
5/

20
06

9/

5/
20

06

17
0

1
0

1
1

1
1

1
1

V
U

#8
45

62
0

C
V

E
-2

00
6-

43
39

9/

22
/2

00
6

9/
5/

20
06

9/

5/
20

06

17
0

1
1

1
0

1
1

1
1

V
U

#4
16

09
2

C
V

E
-2

00
6-

48
68

9/

26
/2

00
6

9/
18

/2
00

6
9/

18
/2

00
6

8
0

1
0

1
0

1
2

2
2

V
U

#3
86

96
4

C
V

E
-2

00
6-

43
43

9/

28
/2

00
6

9/
6/

20
06

9/

28
/2

00
6

22
22

1

1
1

1
1

0
0

1
V

U
#5

47
30

0
C

V
E

-2
00

6-
37

38

9/
28

/2
00

6
9/

6/
20

06

9/
28

/2
00

6
22

22

1
1

1
1

1
2

2
2

V
U

#3
86

96
4

C
V

E
-2

00
6-

43
43

9/

28
/2

00
6

9/
15

/2
00

6
9/

28
/2

00
6

13
13

1

1
1

1
1

0
0

1
V

U
#3

86
96

4
C

V
E

-2
00

6-
43

43

9/
28

/2
00

6
9/

15
/2

00
6

9/
28

/2
00

6
13

13

1
1

1
1

1
0

0
1

V
U

#3
86

96
4

C
V

E
-2

00
6-

43
43

9/

28
/2

00
6

9/
15

/2
00

6
9/

28
/2

00
6

13
13

1

0
1

1
1

0
0

1
V

U
#3

86
96

4
C

V
E

-2
00

6-
43

43

9/
28

/2
00

6
9/

15
/2

00
6

9/
28

/2
00

6
13

13

1
0

1
1

1
0

0
1

V
U

#5
47

30
0

C
V

E
-2

00
6-

37
38

9/

28
/2

00
6

9/
15

/2
00

6
9/

28
/2

00
6

13
13

1

1
1

1
1

2
2

2
V

U
#5

47
30

0
C

V
E

-2
00

6-
37

38

9/
28

/2
00

6
9/

15
/2

00
6

9/
28

/2
00

6
13

13

1
1

1
1

1
2

2
2

V
U

#5
47

30
0

C
V

E
-2

00
6-

37
38

9/

28
/2

00
6

9/
15

/2
00

6
9/

28
/2

00
6

13
13

1

0
1

1
1

2
2

2
V

U
#5

47
30

0
C

V
E

-2
00

6-
37

38

9/
28

/2
00

6
9/

15
/2

00
6

9/
28

/2
00

6
13

13

1
0

1
1

1
2

2
2

V
U

#2
47

74
4

C
V

E
-2

00
6-

29
37

9/

28
/2

00
6

9/
20

/2
00

6
9/

28
/2

00
6

8
8

1
0

1
1

1
0

0
2

V
U

#7
87

44
8

C
V

E
-2

00
6-

49
24

9/

28
/2

00
6

9/
25

/2
00

6
9/

27
/2

00
6

3
2

0
0

1
1

1
0

0
2

V
U

#3
86

96
4

C
V

E
-2

00
6-

43
43

9/

29
/2

00
6

9/
15

/2
00

6
9/

28
/2

00
6

14
13

1

0
1

1
1

0
0

1
V

U
#3

86
96

4
C

V
E

-2
00

6-
43

43

9/
29

/2
00

6
9/

15
/2

00
6

9/
28

/2
00

6
14

13

0
0

1
1

1
0

0
1

V
U

#5
47

30
0

C
V

E
-2

00
6-

37
38

9/

29
/2

00
6

9/
15

/2
00

6
9/

28
/2

00
6

14
13

1

0
1

1
1

2
2

2
V

U
#5

47
30

0
C

V
E

-2
00

6-
37

38

9/
29

/2
00

6
9/

15
/2

00
6

9/
28

/2
00

6
14

13

0
0

1
1

1
2

2
2

V
U

#2
62

35
2

C
V

E
-2

00
6-

49
58

9/

29
/2

00
6

9/
21

/2
00

6
9/

21
/2

00
6

8
0

0
1

0
0

0
1

1
1

V
U

#7
87

44
8

C
V

E
-2

00
6-

49
24

9/

29
/2

00
6

9/
27

/2
00

6
9/

27
/2

00
6

2
0

1
1

1
1

1
0

0
2

V
U

#7
87

44
8

C
V

E
-2

00
6-

49
24

9/

29
/2

00
6

9/
27

/2
00

6
9/

27
/2

00
6

2
0

1
0

1
1

1
0

0
2

V
U

#2
47

74
4

C
V

E
-2

00
6-

29
37

9/

29
/2

00
6

9/
28

/2
00

6
9/

28
/2

00
6

1
0

0
0

1
1

1
0

0
2

V
U

#7
87

44
8

C
V

E
-2

00
6-

49
24

9/

30
/2

00
6

9/
27

/2
00

6
9/

27
/2

00
6

3
0

0
0

1
1

1
0

0
2

V
U

#8
51

34
0

C
V

E
-2

00
6-

50
51

9/

30
/2

00
6

9/
29

/2
00

6
9/

29
/2

00
6

1
0

0
0

1
1

1
2

2
2

V
U

#8
45

62
0

C
V

E
-2

00
6-

43
39

10

/2
/2

00
6

9/
5/

20
06

9/

5/
20

06

27
0

1
0

1
0

1
1

1
1

V
U

#8
51

34
0

C
V

E
-2

00
6-

50
51

10

/2
/2

00
6

9/
29

/2
00

6
9/

29
/2

00
6

3
0

0
1

1
1

1
2

2
2

287

T
A

B
L

E
 E

1:
 C

on
t'd

C
E

R
T

N

am
e

N
V

D

N
am

e
P

at
ch

D

at
e

N
ot

if
ic

at
io

n
D

at
e

P
ub

li
c

D

at
e

P
at

ch

T
im

e
D

is
cl

os
ur

e

T
im

e
M

ul
tip

le

P
at

ch
es

P

at
ch

T

yp
e

SW

T
yp

e
V

en
do

r
T

yp
e

M
ul

tip
le

V
en

do
r

C
I

A

V
U

#2
02

60
4

C
V

E
-2

00
6-

50
84

10

/3
/2

00
6

9/
23

/2
00

6
10

/3
/2

00
6

10
10

0

1
0

1
0

1
1

1
V

U
#7

87
44

8
C

V
E

-2
00

6-
49

24

10
/3

/2
00

6
9/

27
/2

00
6

9/
27

/2
00

6
6

0
0

0
1

1
1

0
0

2
V

U
#7

87
44

8
C

V
E

-2
00

6-
49

24

10
/4

/2
00

6
9/

27
/2

00
6

9/
27

/2
00

6
7

0
1

1
1

1
1

0
0

2
V

U
#3

61
79

2
C

V
E

-2
00

6-
51

43

10
/5

/2
00

6
4/

7/
20

06

10
/5

/2
00

6
18

1
18

1
0

1
1

1
0

1
1

1
V

U
#9

46
82

0
C

V
E

-2
00

6-
49

27

10
/5

/2
00

6
9/

19
/2

00
6

10
/6

/2
00

6
16

17

1
0

0
0

0
1

1
1

V
U

#3
00

36
8

C
V

E
-2

00
6-

44
47

10

/9
/2

00
6

8/
29

/2
00

6
8/

29
/2

00
6

41
0

0
1

1
1

1
2

2
2

V
U

#1
76

55
6

C
V

E
-2

00
6-

38
64

10

/1
0/

20
06

6/

14
/2

00
6

10
/1

0/
20

06

11
8

11
8

0
0

0
0

0
2

2
2

V
U

#1
87

02
8

C
V

E
-2

00
6-

34
35

10

/1
0/

20
06

6/

14
/2

00
6

10
/1

0/
20

06

11
8

11
8

0
0

0
0

0
2

2
2

V
U

#5
34

27
6

C
V

E
-2

00
6-

36
50

10

/1
0/

20
06

6/

14
/2

00
6

10
/1

0/
20

06

11
8

11
8

0
0

0
0

0
2

2
2

V
U

#7
06

66
8

C
V

E
-2

00
6-

23
87

10

/1
0/

20
06

6/

15
/2

00
6

10
/1

0/
20

06

11
7

11
7

1
0

0
0

0
1

1
1

V
U

#1
43

29
2

C
V

E
-2

00
6-

34
31

10

/1
0/

20
06

7/

3/
20

06

7/
3/

20
06

99

0
1

0
0

0
0

1
1

1
V

U
#7

53
04

4
C

V
E

-2
00

6-
37

30

10
/1

0/
20

06

7/
18

/2
00

6
7/

18
/2

00
6

84
0

0
0

1
0

0
2

2
2

V
U

#8
06

54
8

C
V

E
-2

00
6-

45
34

10

/1
0/

20
06

9/

5/
20

06

9/
5/

20
06

35

0
0

0
0

0
0

2
2

2
V

U
#2

31
20

4
C

V
E

-2
00

6-
46

94

10
/1

0/
20

06

9/
27

/2
00

6
9/

27
/2

00
6

13
0

0
0

0
0

0
2

2
2

V
U

#1
80

86
4

C
V

E
-2

00
6-

41
82

10

/1
5/

20
06

8/

16
/2

00
6

10
/1

6/
20

06

60
61

0

1
0

1
1

1
1

1
V

U
#3

18
76

4
C

V
E

-2
00

6-
53

41

10
/1

7/
20

06

11
/1

/2
00

5
10

/1
7/

20
06

35

0
35

0
0

0
0

0
0

2
2

2
V

U
#7

17
14

0
C

V
E

-2
00

6-
53

32

10
/1

7/
20

06

11
/1

/2
00

5
10

/1
7/

20
06

35

0
35

0
0

0
0

0
0

2
2

2
V

U
#7

36
32

4
C

V
E

-2
00

6-
53

35

10
/1

7/
20

06

11
/1

/2
00

5
10

/1
7/

20
06

35

0
35

0
0

0
0

0
0

2
2

2
V

U
#8

69
29

2
C

V
E

-2
00

6-
53

40

10
/1

7/
20

06

4/
19

/2
00

6
10

/1
7/

20
06

18

1
18

1
0

0
0

0
0

2
2

2
V

U
#3

95
41

2
C

V
E

-2
00

6-
37

47

10
/1

7/
20

06

7/
25

/2
00

6
7/

27
/2

00
6

84
2

0
0

1
0

1
2

2
2

V
U

#3
66

02
0

C
V

E
-2

00
6-

41
54

10

/1
7/

20
06

8/

16
/2

00
6

10
/1

4/
20

06

62
59

0

1
1

1
1

1
1

1
V

U
#1

80
86

4
C

V
E

-2
00

6-
41

82

10
/1

7/
20

06

10
/1

6/
20

06

10
/1

6/
20

06

1
0

0
0

1
1

1
1

1
1

V
U

#1
80

86
4

C
V

E
-2

00
6-

41
82

10

/1
8/

20
06

10

/1
6/

20
06

10

/1
6/

20
06

2

0
0

0
1

1
1

1
1

1
V

U
#2

45
98

4
C

V
E

-2
00

6-
43

42

10
/1

9/
20

06

9/
7/

20
06

10

/1
9/

20
06

42

42

0
0

1
1

0
0

0
2

V
U

#1
80

86
4

C
V

E
-2

00
6-

41
82

10

/1
9/

20
06

10

/1
6/

20
06

10

/1
6/

20
06

3

0
0

1
1

1
1

1
1

1
V

U
#5

21
25

2
C

V
E

-2
00

6-
54

44

10
/1

9/
20

06

10
/1

7/
20

06

10
/1

8/
20

06

2
1

0
0

1
1

1
1

1
1

V
U

#7
87

44
8

C
V

E
-2

00
6-

49
24

10

/2
0/

20
06

9/

27
/2

00
6

9/
27

/2
00

6
23

0
0

0
1

1
1

0
0

2
V

U
#7

88
86

0
C

V
E

-2
00

6-
51

57

10
/2

1/
20

06

6/
27

/2
00

6
10

/2
/2

00
6

11
6

97

0
0

0
0

0
1

1
1

288

T
A

B
L

E
 E

1:
 C

on
t'd

C
E

R
T

N

am
e

N
V

D

N
am

e
P

at
ch

D

at
e

N
ot

if
ic

at
io

n
D

at
e

P
ub

li
c

D

at
e

P
at

ch

T
im

e
D

is
cl

os
ur

e

T
im

e
M

ul
tip

le

P
at

ch
es

P

at
ch

T

yp
e

SW

T
yp

e
V

en
do

r
T

yp
e

M
ul

tip
le

V
en

do
r

C
I

A

V
U

#1
80

86
4

C
V

E
-2

00
6-

41
82

10

/2
4/

20
06

10

/1
6/

20
06

10

/1
6/

20
06

8

0
0

1
1

1
1

1
1

1
V

U
#8

45
62

0
C

V
E

-2
00

6-
43

39

10
/2

5/
20

06

9/
5/

20
06

9/

5/
20

06

50
0

0
0

1
0

1
1

1
1

V
U

#1
47

25
2

C
V

E
-2

00
6-

53
79

10

/2
5/

20
06

10

/1
6/

20
06

10

/1
6/

20
06

9

0
1

1
1

1
1

1
1

1
V

U
#3

83
09

2
C

V
E

-2
00

5-
24

54

10
/2

6/
20

06

7/
22

/2
00

5
10

/1
8/

20
06

46

1
45

3
0

1
0

0
0

1
1

1
V

U
#8

45
62

0
C

V
E

-2
00

6-
43

39

10
/3

1/
20

06

9/
5/

20
06

9/

5/
20

06

56
0

0
1

1
1

1
1

1
1

V
U

#8
45

62
0

C
V

E
-2

00
6-

43
39

10

/3
1/

20
06

9/

5/
20

06

9/
5/

20
06

56

0
1

0
0

0
1

1
1

1
V

U
#3

63
99

2
C

V
E

-2
00

6-
54

68

10
/3

1/
20

06

10
/2

3/
20

06

10
/2

7/
20

06

8
4

0
1

0
1

1
0

0
1

V
U

#7
23

73
6

C
V

E
-2

00
6-

48
05

10

/3
1/

20
06

10

/2
3/

20
06

10

/2
7/

20
06

8

4
0

1
0

1
1

0
0

1
V

U
#1

47
25

2
C

V
E

-2
00

6-
53

79

11
/2

/2
00

6
10

/1
6/

20
06

10

/1
6/

20
06

17

0
0

1
1

0
1

1
1

1
V

U
#1

02
46

5
C

V
E

-2
00

7-
06

03

11
/2

/2
00

6
10

/2
0/

20
06

1/

25
/2

00
7

13
97

0

1
0

0
0

2
2

2
V

U
#9

01
85

2
C

V
E

-2
00

6-
66

03

11
/2

/2
00

6
10

/2
6/

20
06

12

/8
/2

00
6

7
43

0

1
0

0
0

2
2

2
V

U
#4

95
28

8
C

V
E

-2
00

6-
54

64

11
/7

/2
00

6
8/

27
/2

00
6

11
/8

/2
00

6
72

73

0
1

1
1

1
0

0
1

V
U

#3
90

48
0

C
V

E
-2

00
6-

57
48

11

/7
/2

00
6

10
/5

/2
00

6
11

/8
/2

00
6

33
34

0

1
1

1
1

0
0

1
V

U
#7

14
49

6
C

V
E

-2
00

6-
54

63

11
/7

/2
00

6
10

/5
/2

00
6

11
/8

/2
00

6
33

34

0
1

1
1

1
1

1
1

V
U

#8
15

43
2

C
V

E
-2

00
6-

57
47

11

/7
/2

00
6

10
/5

/2
00

6
11

/8
/2

00
6

33
34

0

1
1

1
1

1
1

1
V

U
#3

35
39

2
C

V
E

-2
00

6-
54

62

11
/7

/2
00

6
10

/1
0/

20
06

11

/8
/2

00
6

28
29

0

1
1

1
1

1
1

0
V

U
#8

45
62

0
C

V
E

-2
00

6-
43

39

11
/8

/2
00

6
9/

5/
20

06

9/
5/

20
06

64

0
1

1
1

1
1

1
1

1
V

U
#4

74
59

3
C

V
E

-2
00

6-
35

87

11
/1

4/
20

06

7/
10

/2
00

6
7/

10
/2

00
6

12
7

0
1

0
0

0
1

1
1

1
V

U
#1

97
85

2
C

V
E

-2
00

6-
46

87

11
/1

4/
20

06

7/
18

/2
00

6
11

/1
4/

20
06

11

9
11

9
0

0
1

0
0

1
1

1
V

U
#7

78
03

6
C

V
E

-2
00

6-
46

91

11
/1

4/
20

06

7/
25

/2
00

6
11

/1
4/

20
06

11

2
11

2
0

0
1

0
0

2
2

2
V

U
#7

96
95

6
C

V
E

-2
00

6-
45

11

11
/1

4/
20

06

8/
17

/2
00

6
10

/3
/2

00
6

89
47

1

0
0

0
0

0
0

1
V

U
#2

25
21

7
C

V
E

-2
00

6-
38

90

11
/1

4/
20

06

8/
21

/2
00

6
11

/1
4/

20
06

85

85

0
1

0
0

0
2

2
2

V
U

#8
13

58
8

C
V

E
-2

00
6-

44
46

11

/1
4/

20
06

8/

28
/2

00
6

8/
28

/2
00

6
78

0
0

0
0

0
0

0
0

1
V

U
#5

12
80

4
C

V
E

-2
00

6-
51

98

11
/1

4/
20

06

8/
28

/2
00

6
11

/1
4/

20
06

78

78

0
1

0
0

0
1

1
0

V
U

#1
68

37
2

C
V

E
-2

00
6-

46
40

11

/1
4/

20
06

9/

12
/2

00
6

9/
12

/2
00

6
63

0
1

0
0

0
1

1
1

1
V

U
#4

51
38

0
C

V
E

-2
00

6-
33

11

11
/1

4/
20

06

9/
12

/2
00

6
9/

12
/2

00
6

63
0

1
0

0
0

1
1

1
1

V
U

#3
77

36
9

C
V

E
-2

00
6-

47
77

11

/1
4/

20
06

9/

13
/2

00
6

9/
13

/2
00

6
62

0
0

0
0

0
0

2
2

2
V

U
#3

52
82

5
C

V
E

-2
00

6-
58

64

11
/2

0/
20

06

11
/9

/2
00

6
11

/9
/2

00
6

11
0

1
1

1
1

1
1

1
1

289

T
A

B
L

E
 E

1:
 C

on
t'd

C
E

R
T

N

am
e

N
V

D

N
am

e
P

at
ch

D

at
e

N
ot

if
ic

at
io

n
D

at
e

P
ub

li
c

D

at
e

P
at

ch

T
im

e
D

is
cl

os
ur

e

T
im

e
M

ul
tip

le

P
at

ch
es

P

at
ch

T

yp
e

SW

T
yp

e
V

en
do

r
T

yp
e

M
ul

tip
le

V
en

do
r

C
I

A

V
U

#3
00

63
6

C
V

E
-2

00
6-

58
54

11

/2
1/

20
06

10

/2
/2

00
6

11
/2

1/
20

06

50
50

0

1
1

0
0

1
1

1
V

U
#6

53
07

6
C

V
E

-2
00

6-
58

54

11
/2

1/
20

06

10
/2

/2
00

6
11

/2
1/

20
06

50

50

0
1

1
0

0
1

1
1

V
U

#3
52

82
5

C
V

E
-2

00
6-

58
64

11

/2
4/

20
06

11

/9
/2

00
6

11
/9

/2
00

6
15

0
1

1
1

1
1

1
1

1
V

U
#8

45
62

0
C

V
E

-2
00

6-
43

39

11
/2

8/
20

06

9/
5/

20
06

9/

5/
20

06

84
0

1
0

0
0

1
1

1
1

V
U

#8
48

96
0

C
V

E
-2

00
6-

44
12

11

/2
8/

20
06

9/

5/
20

06

11
/2

8/
20

06

84
84

0

0
1

0
0

1
1

1
V

U
#8

70
96

0
C

V
E

-2
00

6-
44

06

11
/2

8/
20

06

9/
14

/2
00

6
11

/2
8/

20
06

75

75

0
0

1
0

0
1

1
1

V
U

#1
91

33
6

C
V

E
-2

00
6-

57
10

11

/2
8/

20
06

11

/1
/2

00
6

11
/1

/2
00

6
27

0
0

0
1

0
0

1
1

1
V

U
#3

35
39

2
C

V
E

-2
00

6-
54

62

11
/2

8/
20

06

11
/8

/2
00

6
11

/8
/2

00
6

20
0

0
0

1
0

1
1

1
0

V
U

#3
35

39
2

C
V

E
-2

00
6-

54
62

11

/2
8/

20
06

11

/8
/2

00
6

11
/8

/2
00

6
20

0
0

1
1

0
1

1
1

0
V

U
#4

27
00

9
C

V
E

-2
00

6-
62

35

11
/2

8/
20

06

11
/2

4/
20

06

12
/6

/2
00

6
4

12

1
1

1
1

1
2

2
2

V
U

#2
21

70
0

C
V

E
-2

00
6-

61
21

11

/2
9/

20
06

11

/1
9/

20
06

11

/1
9/

20
06

10

0
0

0
1

0
1

2
2

2
V

U
#2

10
96

9
C

V
E

-2
00

6-
63

34

12
/4

/2
00

6
9/

19
/2

00
6

11
/2

9/
20

06

76
71

0

1
0

0
0

1
1

1
V

U
#4

48
56

9
C

V
E

-2
00

6-
58

56

12
/5

/2
00

6
4/

7/
20

06

12
/6

/2
00

6
24

2
24

3
0

1
0

0
0

1
1

1
V

U
#3

50
62

5
C

V
E

-2
00

6-
58

55

12
/5

/2
00

6
5/

9/
20

06

12
/4

/2
00

6
21

0
20

9
0

0
1

0
0

2
2

2
V

U
#1

98
90

8
C

V
E

-2
00

6-
60

27

12
/5

/2
00

6
11

/1
7/

20
06

11

/1
7/

20
06

18

0
1

1
0

0
0

2
2

2
V

U
#9

89
14

4
C

V
E

-2
00

6-
62

23

12
/6

/2
00

6
11

/1
7/

20
06

11

/1
7/

20
06

19

0
0

0
0

0
0

0
1

0
V

U
#4

27
00

9
C

V
E

-2
00

6-
62

35

12
/6

/2
00

6
12

/4
/2

00
6

12
/6

/2
00

6
2

2
1

1
1

1
1

2
2

2
V

U
#4

27
00

9
C

V
E

-2
00

6-
62

35

12
/6

/2
00

6
12

/4
/2

00
6

12
/6

/2
00

6
2

2
1

0
1

1
1

2
2

2
V

U
#4

27
00

9
C

V
E

-2
00

6-
62

35

12
/6

/2
00

6
12

/5
/2

00
6

12
/6

/2
00

6
1

1
0

0
1

1
1

2
2

2
V

U
#4

27
00

9
C

V
E

-2
00

6-
62

35

12
/7

/2
00

6
12

/6
/2

00
6

12
/6

/2
00

6
1

0
0

1
1

1
1

2
2

2
V

U
#4

27
00

9
C

V
E

-2
00

6-
62

35

12
/7

/2
00

6
12

/6
/2

00
6

12
/6

/2
00

6
1

0
1

0
1

1
1

2
2

2
V

U
#4

27
00

9
C

V
E

-2
00

6-
62

35

12
/8

/2
00

6
12

/6
/2

00
6

12
/6

/2
00

6
2

0
0

0
1

1
1

2
2

2
V

U
#4

27
00

9
C

V
E

-2
00

6-
62

35

12
/8

/2
00

6
12

/6
/2

00
6

12
/6

/2
00

6
2

0
1

0
1

1
1

2
2

2
V

U
#4

27
00

9
C

V
E

-2
00

6-
62

35

12
/9

/2
00

6
12

/6
/2

00
6

12
/6

/2
00

6
3

0
0

1
1

1
1

2
2

2
V

U
#4

27
00

9
C

V
E

-2
00

6-
62

35

12
/1

0/
20

06

12
/6

/2
00

6
12

/6
/2

00
6

4
0

0
1

1
1

1
2

2
2

V
U

#9
25

52
9

C
V

E
-2

00
6-

63
32

12

/1
0/

20
06

12

/7
/2

00
6

12
/7

/2
00

6
3

0
0

1
1

1
1

1
1

1
V

U
#4

27
00

9
C

V
E

-2
00

6-
62

35

12
/1

1/
20

06

12
/6

/2
00

6
12

/6
/2

00
6

5
0

0
0

1
1

1
2

2
2

V
U

#9
25

52
9

C
V

E
-2

00
6-

63
32

12

/1
1/

20
06

12

/7
/2

00
6

12
/7

/2
00

6
4

0
1

0
1

0
1

1
1

1

290

T
A

B
L

E
 E

1:
 C

on
t'd

C
E

R
T

N

am
e

N
V

D

N
am

e
P

at
ch

D

at
e

N
ot

if
ic

at
io

n
D

at
e

P
ub

li
c

D

at
e

P
at

ch

T
im

e
D

is
cl

os
ur

e

T
im

e
M

ul
tip

le

P
at

ch
es

P

at
ch

T

yp
e

SW

T
yp

e
V

en
do

r
T

yp
e

M
ul

tip
le

V
en

do
r

C
I

A

V
U

#8
54

85
6

C
V

E
-2

00
6-

47
04

12

/1
2/

20
06

6/

15
/2

00
6

11
/1

/2
00

6
18

0
13

9
1

0
0

0
0

1
1

1
V

U
#3

47
44

8
C

V
E

-2
00

6-
55

81

12
/1

2/
20

06

8/
31

/2
00

6
12

/1
2/

20
06

10

3
10

3
1

0
1

0
0

2
2

2
V

U
#2

08
76

9
C

V
E

-2
00

6-
61

34

12
/1

2/
20

06

11
/2

2/
20

06

11
/2

2/
20

06

20
0

1
0

0
0

1
1

1
1

V
U

#6
07

31
2

C
V

E
-2

00
6-

62
22

12

/1
3/

20
06

8/

14
/2

00
6

12
/1

4/
20

06

12
1

12
2

0
1

1
0

0
2

2
2

V
U

#6
50

43
2

C
V

E
-2

00
6-

58
22

12

/1
3/

20
06

8/

14
/2

00
6

12
/1

4/
20

06

12
1

12
2

0
1

1
0

0
2

2
2

V
U

#3
39

00
4

C
V

E
-2

00
6-

38
96

12

/1
8/

20
06

8/

10
/2

00
6

12
/1

8/
20

06

13
0

13
0

0
1

1
0

0
1

1
1

V
U

#4
05

09
2

C
V

E
-2

00
6-

65
03

12

/1
9/

20
06

9/

4/
20

06

12
/1

9/
20

06

10
6

10
6

0
1

1
1

1
1

1
1

V
U

#4
28

50
0

C
V

E
-2

00
6-

65
02

12

/1
9/

20
06

9/

10
/2

00
6

12
/1

9/
20

06

10
0

10
0

0
1

1
1

1
0

0
2

V
U

#4
47

77
2

C
V

E
-2

00
6-

64
98

12

/1
9/

20
06

9/

15
/2

00
6

12
/1

9/
20

06

95
95

0

1
1

1
1

1
1

1
V

U
#7

22
24

4
C

V
E

-2
00

6-
65

00

12
/1

9/
20

06

9/
20

/2
00

6
12

/1
9/

20
06

90

90

0
1

1
1

1
1

1
1

V
U

#2
63

41
2

C
V

E
-2

00
6-

65
01

12

/1
9/

20
06

9/

30
/2

00
6

12
/1

9/
20

06

80
80

0

1
1

1
1

1
1

1
V

U
#4

27
97

2
C

V
E

-2
00

6-
64

99

12
/1

9/
20

06

10
/2

8/
20

06

12
/1

9/
20

06

52
52

0

1
1

1
1

0
0

1
V

U
#9

28
95

6
C

V
E

-2
00

6-
65

04

12
/1

9/
20

06

11
/8

/2
00

6
12

/1
9/

20
06

41

41

0
1

1
1

1
2

2
2

V
U

#6
06

26
0

C
V

E
-2

00
6-

64
97

12

/1
9/

20
06

11

/1
3/

20
06

12

/1
9/

20
06

36

36

0
1

1
1

1
1

1
1

V
U

#8
87

33
2

C
V

E
-2

00
6-

65
05

12

/1
9/

20
06

11

/2
9/

20
06

12

/1
9/

20
06

20

20

0
1

0
1

1
1

1
1

V
U

#2
63

41
2

C
V

E
-2

00
6-

65
01

12

/1
9/

20
06

12

/1
4/

20
06

12

/1
9/

20
06

5

5
1

0
1

1
1

1
1

1
V

U
#4

05
09

2
C

V
E

-2
00

6-
65

03

12
/1

9/
20

06

12
/1

4/
20

06

12
/1

9/
20

06

5
5

1
0

1
1

1
1

1
1

V
U

#4
28

50
0

C
V

E
-2

00
6-

65
02

12

/1
9/

20
06

12

/1
4/

20
06

12

/1
9/

20
06

5

5
1

0
1

1
1

0
0

2
V

U
#4

47
77

2
C

V
E

-2
00

6-
64

98

12
/1

9/
20

06

12
/1

4/
20

06

12
/1

9/
20

06

5
5

1
0

1
1

1
1

1
1

V
U

#6
06

26
0

C
V

E
-2

00
6-

64
97

12

/1
9/

20
06

12

/1
4/

20
06

12

/1
9/

20
06

5

5
1

0
1

1
1

1
1

1
V

U
#2

63
41

2
C

V
E

-2
00

6-
65

01

12
/2

2/
20

06

12
/1

9/
20

06

12
/1

9/
20

06

3
0

1
0

1
1

1
1

1
1

V
U

#4
05

09
2

C
V

E
-2

00
6-

65
03

12

/2
2/

20
06

12

/1
9/

20
06

12

/1
9/

20
06

3

0
1

0
1

1
1

1
1

1
V

U
#4

47
77

2
C

V
E

-2
00

6-
64

98

12
/2

2/
20

06

12
/1

9/
20

06

12
/1

9/
20

06

3
0

1
0

1
1

1
1

1
1

V
U

#6
06

26
0

C
V

E
-2

00
6-

64
97

12

/2
2/

20
06

12

/1
9/

20
06

12

/1
9/

20
06

3

0
1

0
1

1
1

1
1

1
V

U
#8

63
31

3
C

V
E

-2
00

6-
67

61

12
/2

3/
20

06

10
/1

0/
20

06

12
/2

3/
20

06

74
74

0

0
0

0
0

1
1

1
V

U
#9

44
27

3
C

V
E

-2
00

6-
67

62

12
/2

3/
20

06

10
/1

6/
20

06

12
/2

3/
20

06

68
68

0

0
0

0
0

0
0

1
V

U
#2

63
41

2
C

V
E

-2
00

6-
65

01

12
/2

3/
20

06

12
/1

9/
20

06

12
/1

9/
20

06

4
0

0
0

1
1

1
1

1
1

V
U

#4
05

09
2

C
V

E
-2

00
6-

65
03

12

/2
3/

20
06

12

/1
9/

20
06

12

/1
9/

20
06

4

0
0

0
1

1
1

1
1

1

291

T
A

B
L

E
 E

1:
 C

on
t'd

C
E

R
T

N

am
e

N
V

D

N
am

e
P

at
ch

D

at
e

N
ot

if
ic

at
io

n
D

at
e

P
ub

li
c

D

at
e

P
at

ch

T
im

e
D

is
cl

os
ur

e

T
im

e
M

ul
tip

le

P
at

ch
es

P

at
ch

T

yp
e

SW

T
yp

e
V

en
do

r
T

yp
e

M
ul

tip
le

V
en

do
r

C
I

A

V
U

#4
28

50
0

C
V

E
-2

00
6-

65
02

12

/2
3/

20
06

12

/1
9/

20
06

12

/1
9/

20
06

4

0
0

0
1

1
1

0
0

2
V

U
#4

47
77

2
C

V
E

-2
00

6-
64

98

12
/2

3/
20

06

12
/1

9/
20

06

12
/1

9/
20

06

4
0

0
0

1
1

1
1

1
1

V
U

#6
06

26
0

C
V

E
-2

00
6-

64
97

12

/2
3/

20
06

12

/1
9/

20
06

12

/1
9/

20
06

4

0
0

0
1

1
1

1
1

1
V

U
#2

58
75

3
C

V
E

-2
00

6-
64

25

12
/2

5/
20

06

8/
14

/2
00

6
12

/2
3/

20
06

13

3
13

1
0

0
0

0
0

2
2

2
V

U
#3

81
16

1
C

V
E

-2
00

6-
64

24

12
/2

5/
20

06

8/
14

/2
00

6
12

/2
3/

20
06

13

3
13

1
0

0
0

0
0

2
2

2
V

U
#9

12
50

5
C

V
E

-2
00

6-
64

24

12
/2

5/
20

06

9/
8/

20
06

12

/2
3/

20
06

10

8
10

6
0

0
0

0
0

2
2

2
V

U
#8

45
62

0
C

V
E

-2
00

6-
43

39

12
/2

8/
20

06

9/
5/

20
06

9/

5/
20

06

11
4

0
0

0
1

1
1

1
1

1
V

U
#4

81
56

4
C

V
E

-2
00

6-
61

43

12
/2

8/
20

06

12
/5

/2
00

6
1/

9/
20

07

23
35

0

1
1

1
1

2
2

2
V

U
#2

63
41

2
C

V
E

-2
00

6-
65

01

12
/2

9/
20

06

12
/1

9/
20

06

12
/1

9/
20

06

10
0

1
0

1
1

1
1

1
1

V
U

#4
05

09
2

C
V

E
-2

00
6-

65
03

12

/2
9/

20
06

12

/1
9/

20
06

12

/1
9/

20
06

10

0
1

0
1

1
1

1
1

1
V

U
#4

47
77

2
C

V
E

-2
00

6-
64

98

12
/2

9/
20

06

12
/1

9/
20

06

12
/1

9/
20

06

10
0

1
0

1
1

1
1

1
1

V
U

#6
06

26
0

C
V

E
-2

00
6-

64
97

12

/2
9/

20
06

12

/1
9/

20
06

12

/1
9/

20
06

10

0
1

0
1

1
1

1
1

1
V

U
#7

22
24

4
C

V
E

-2
00

6-
65

00

12
/2

9/
20

06

12
/1

9/
20

06

12
/1

9/
20

06

10
0

1
0

1
1

1
1

1
1

V
U

#2
63

41
2

C
V

E
-2

00
6-

65
01

1/

2/
20

07

12
/1

9/
20

06

12
/1

9/
20

06

14
0

1
1

1
1

1
1

1
1

V
U

#2
63

41
2

C
V

E
-2

00
6-

65
01

1/

2/
20

07

12
/1

9/
20

06

12
/1

9/
20

06

14
0

1
1

1
1

1
1

1
1

V
U

#4
05

09
2

C
V

E
-2

00
6-

65
03

1/

2/
20

07

12
/1

9/
20

06

12
/1

9/
20

06

14
0

1
1

1
1

1
1

1
1

V
U

#4
05

09
2

C
V

E
-2

00
6-

65
03

1/

2/
20

07

12
/1

9/
20

06

12
/1

9/
20

06

14
0

1
1

1
1

1
1

1
1

V
U

#4
28

50
0

C
V

E
-2

00
6-

65
02

1/

2/
20

07

12
/1

9/
20

06

12
/1

9/
20

06

14
0

1
1

1
1

1
0

0
2

V
U

#4
28

50
0

C
V

E
-2

00
6-

65
02

1/

2/
20

07

12
/1

9/
20

06

12
/1

9/
20

06

14
0

1
1

1
1

1
0

0
2

V
U

#4
28

50
0

C
V

E
-2

00
6-

65
02

1/

2/
20

07

12
/1

9/
20

06

12
/1

9/
20

06

14
0

0
0

1
1

1
0

0
2

V
U

#4
47

77
2

C
V

E
-2

00
6-

64
98

1/

2/
20

07

12
/1

9/
20

06

12
/1

9/
20

06

14
0

1
1

1
1

1
1

1
1

V
U

#4
47

77
2

C
V

E
-2

00
6-

64
98

1/

2/
20

07

12
/1

9/
20

06

12
/1

9/
20

06

14
0

1
1

1
1

1
1

1
1

V
U

#6
06

26
0

C
V

E
-2

00
6-

64
97

1/

2/
20

07

12
/1

9/
20

06

12
/1

9/
20

06

14
0

1
1

1
1

1
1

1
1

V
U

#6
06

26
0

C
V

E
-2

00
6-

64
97

1/

2/
20

07

12
/1

9/
20

06

12
/1

9/
20

06

14
0

1
1

1
1

1
1

1
1

V
U

#2
63

41
2

C
V

E
-2

00
6-

65
01

1/

4/
20

07

12
/1

9/
20

06

12
/1

9/
20

06

16
0

1
1

1
1

1
1

1
1

V
U

#4
05

09
2

C
V

E
-2

00
6-

65
03

1/

4/
20

07

12
/1

9/
20

06

12
/1

9/
20

06

16
0

1
1

1
1

1
1

1
1

V
U

#4
28

50
0

C
V

E
-2

00
6-

65
02

1/

4/
20

07

12
/1

9/
20

06

12
/1

9/
20

06

16
0

1
1

1
1

1
0

0
2

V
U

#4
47

77
2

C
V

E
-2

00
6-

64
98

1/

4/
20

07

12
/1

9/
20

06

12
/1

9/
20

06

16
0

1
1

1
1

1
1

1
1

292

T
A

B
L

E
 E

1:
 C

on
t'd

C
E

R
T

N

am
e

N
V

D

N
am

e
P

at
ch

D

at
e

N
ot

if
ic

at
io

n
D

at
e

P
ub

li
c

D

at
e

P
at

ch

T
im

e
D

is
cl

os
ur

e

T
im

e
M

ul
tip

le

P
at

ch
es

P

at
ch

T

yp
e

SW

T
yp

e
V

en
do

r
T

yp
e

M
ul

tip
le

V
en

do
r

C
I

A

V
U

#6
06

26
0

C
V

E
-2

00
6-

64
97

1/

4/
20

07

12
/1

9/
20

06

12
/1

9/
20

06

16
0

1
1

1
1

1
1

1
1

V
U

#7
22

24
4

C
V

E
-2

00
6-

65
00

1/

4/
20

07

12
/1

9/
20

06

12
/1

9/
20

06

16
0

1
1

1
1

1
1

1
1

V
U

#4
37

30
0

C
V

E
-2

00
6-

60
76

1/

5/
20

07

11
/2

1/
20

06

11
/2

1/
20

06

45
0

1
0

1
1

0
2

2
2

V
U

#6
98

92
4

C
V

E
-2

00
6-

58
57

1/

9/
20

07

3/
9/

20
06

1/

10
/2

00
7

30
6

30
7

1
1

0
0

0
2

2
2

V
U

#7
49

96
4

C
V

E
-2

00
7-

00
27

1/

9/
20

07

7/
11

/2
00

6
1/

9/
20

07

18
2

18
2

1
0

0
0

0
2

2
2

V
U

#3
02

83
6

C
V

E
-2

00
7-

00
30

1/

9/
20

07

9/
14

/2
00

6
1/

9/
20

07

11
7

11
7

1
0

0
0

0
2

2
2

V
U

#6
25

53
2

C
V

E
-2

00
7-

00
31

1/

9/
20

07

9/
22

/2
00

6
1/

9/
20

07

10
9

10
9

1
0

0
0

0
2

2
2

V
U

#1
22

08
4

C
V

E
-2

00
7-

00
24

1/

9/
20

07

10
/3

/2
00

6
1/

9/
20

07

98
98

1

0
1

0
0

2
2

2
V

U
#2

51
96

9
C

V
E

-2
00

6-
64

88

1/
9/

20
07

12

/4
/2

00
6

1/
2/

20
07

36

29

0
0

0
0

0
1

1
1

V
U

#8
15

96
0

C
V

E
-2

00
7-

00
45

1/

9/
20

07

12
/2

9/
20

06

12
/2

9/
20

06

11
0

1
1

0
0

1
0

1
0

V
U

#2
20

28
8

C
V

E
-2

00
6-

58
70

1/

9/
20

07

1/
4/

20
07

1/

4/
20

07

5
0

0
0

0
0

1
2

2
2

V
U

#4
81

56
4

C
V

E
-2

00
6-

61
43

1/

9/
20

07

1/
4/

20
07

1/

9/
20

07

5
5

0
0

1
1

1
2

2
2

V
U

#4
81

56
4

C
V

E
-2

00
6-

61
43

1/

9/
20

07

1/
4/

20
07

1/

9/
20

07

5
5

0
0

1
1

1
2

2
2

V
U

#8
31

45
2

C
V

E
-2

00
6-

61
44

1/

9/
20

07

1/
4/

20
07

1/

9/
20

07

5
5

0
0

1
1

1
0

0
1

V
U

#8
31

45
2

C
V

E
-2

00
6-

61
44

1/

9/
20

07

1/
4/

20
07

1/

9/
20

07

5
5

0
0

1
1

1
0

0
1

V
U

#4
81

56
4

C
V

E
-2

00
6-

61
43

1/

10
/2

00
7

1/
4/

20
07

1/

9/
20

07

6
5

0
0

1
1

1
2

2
2

V
U

#4
81

56
4

C
V

E
-2

00
6-

61
43

1/

10
/2

00
7

1/
4/

20
07

1/

9/
20

07

6
5

0
0

1
1

1
2

2
2

V
U

#8
31

45
2

C
V

E
-2

00
6-

61
44

1/

10
/2

00
7

1/
4/

20
07

1/

9/
20

07

6
5

0
0

1
1

1
0

0
1

V
U

#4
81

56
4

C
V

E
-2

00
6-

61
43

1/

10
/2

00
7

1/
9/

20
07

1/

9/
20

07

1
0

0
1

1
1

1
2

2
2

V
U

#8
31

45
2

C
V

E
-2

00
6-

61
44

1/

10
/2

00
7

1/
9/

20
07

1/

9/
20

07

1
0

0
1

1
1

1
0

0
1

V
U

#6
62

40
0

C
V

E
-2

00
7-

01
68

1/

11
/2

00
7

11
/1

/2
00

6
1/

11
/2

00
7

71
71

0

0
1

1
0

1
1

1
V

U
#1

51
03

2
C

V
E

-2
00

7-
01

69

1/
11

/2
00

7
11

/8
/2

00
6

1/
11

/2
00

7
64

64

0
0

1
1

0
1

1
1

V
U

#2
63

41
2

C
V

E
-2

00
6-

65
01

1/

11
/2

00
7

12
/1

9/
20

06

12
/1

9/
20

06

23
0

0
0

1
1

1
1

1
1

V
U

#4
05

09
2

C
V

E
-2

00
6-

65
03

1/

11
/2

00
7

12
/1

9/
20

06

12
/1

9/
20

06

23
0

0
0

1
1

1
1

1
1

V
U

#4
28

50
0

C
V

E
-2

00
6-

65
02

1/

11
/2

00
7

12
/1

9/
20

06

12
/1

9/
20

06

23
0

0
0

1
1

1
0

0
2

V
U

#4
47

77
2

C
V

E
-2

00
6-

64
98

1/

11
/2

00
7

12
/1

9/
20

06

12
/1

9/
20

06

23
0

0
0

1
1

1
1

1
1

V
U

#6
06

26
0

C
V

E
-2

00
6-

64
97

1/

11
/2

00
7

12
/1

9/
20

06

12
/1

9/
20

06

23
0

0
0

1
1

1
1

1
1

V
U

#7
22

24
4

C
V

E
-2

00
6-

65
00

1/

11
/2

00
7

12
/1

9/
20

06

12
/1

9/
20

06

23
0

0
0

1
1

1
1

1
1

293

T
A

B
L

E
 E

1:
 C

on
t'd

C
E

R
T

N

am
e

N
V

D

N
am

e
P

at
ch

D

at
e

N
ot

if
ic

at
io

n
D

at
e

P
ub

li
c

D

at
e

P
at

ch

T
im

e
D

is
cl

os
ur

e

T
im

e
M

ul
tip

le

P
at

ch
es

P

at
ch

T

yp
e

SW

T
yp

e
V

en
do

r
T

yp
e

M
ul

tip
le

V
en

do
r

C
I

A

V
U

#4
28

50
0

C
V

E
-2

00
6-

65
02

1/

12
/2

00
7

12
/1

9/
20

06

12
/1

9/
20

06

24
0

0
0

1
1

1
0

0
2

V
U

#4
43

10
8

C
V

E
-2

00
6-

40
97

1/

12
/2

00
7

1/
5/

20
07

1/

5/
20

07

7
0

1
1

1
1

0
0

0
2

V
U

#4
77

16
4

C
V

E
-2

00
6-

40
98

1/

12
/2

00
7

1/
5/

20
07

1/

5/
20

07

7
0

1
1

1
1

0
2

2
2

V
U

#7
44

24
9

C
V

E
-2

00
7-

01
05

1/

12
/2

00
7

1/
5/

20
07

1/

8/
20

07

7
3

1
1

1
1

0
1

1
1

V
U

#4
81

56
4

C
V

E
-2

00
6-

61
43

1/

15
/2

00
7

1/
4/

20
07

1/

9/
20

07

11
5

0
1

1
1

1
2

2
2

V
U

#4
81

56
4

C
V

E
-2

00
6-

61
43

1/

15
/2

00
7

1/
9/

20
07

1/

9/
20

07

6
0

1
1

1
1

1
2

2
2

V
U

#3
88

28
9

C
V

E
-2

00
7-

02
43

1/

16
/2

00
7

6/
16

/2
00

6
1/

16
/2

00
7

21
4

21
4

0
1

1
0

1
1

1
1

V
U

#8
45

62
0

C
V

E
-2

00
6-

43
39

1/

16
/2

00
7

9/
5/

20
06

9/

5/
20

06

13
3

0
0

0
0

0
1

1
1

1
V

U
#3

86
96

4
C

V
E

-2
00

6-
43

43

1/
16

/2
00

7
9/

28
/2

00
6

9/
28

/2
00

6
11

0
0

0
0

0
0

1
0

0
1

V
U

#5
47

30
0

C
V

E
-2

00
6-

37
38

1/

16
/2

00
7

9/
28

/2
00

6
9/

28
/2

00
6

11
0

0
0

0
0

0
1

2
2

2
V

U
#9

63
88

9
C

V
E

-2
00

7-
44

74

1/
17

/2
00

7
10

/1
9/

20
06

12

/2
0/

20
07

90

42
7

1
1

0
0

1
2

2
2

V
U

#9
63

88
9

C
V

E
-2

00
7-

44
74

1/

17
/2

00
7

10
/1

9/
20

06

12
/2

0/
20

07

90
42

7
1

1
0

0
1

2
2

2
V

U
#8

45
62

0
C

V
E

-2
00

6-
43

39

1/
23

/2
00

7
9/

5/
20

06

9/
5/

20
06

14

0
0

0
0

1
0

1
1

1
1

V
U

#3
35

39
2

C
V

E
-2

00
6-

54
62

1/

23
/2

00
7

11
/8

/2
00

6
11

/8
/2

00
6

76
0

0
0

1
0

1
1

1
0

V
U

#4
42

49
7

C
V

E
-2

00
7-

00
15

1/

23
/2

00
7

1/
2/

20
07

1/

2/
20

07

21
0

0
0

0
0

0
1

1
1

V
U

#4
81

56
4

C
V

E
-2

00
6-

61
43

1/

24
/2

00
7

1/
4/

20
07

1/

9/
20

07

20
5

0
1

1
1

1
2

2
2

V
U

#8
31

45
2

C
V

E
-2

00
6-

61
44

1/

24
/2

00
7

1/
4/

20
07

1/

9/
20

07

20
5

0
1

1
1

1
0

0
1

V
U

#5
83

55
2

C
V

E
-2

00
6-

62
92

1/

25
/2

00
7

11
/2

5/
20

06

11
/3

0/
20

06

61
5

1
0

1
0

0
0

0
2

V
U

#4
05

09
2

C
V

E
-2

00
6-

65
03

1/

27
/2

00
7

12
/1

9/
20

06

12
/1

9/
20

06

39
0

1
1

1
1

1
1

1
1

V
U

#4
28

50
0

C
V

E
-2

00
6-

65
02

1/

27
/2

00
7

12
/1

9/
20

06

12
/1

9/
20

06

39
0

1
1

1
1

1
0

0
2

V
U

#4
47

77
2

C
V

E
-2

00
6-

64
98

1/

27
/2

00
7

12
/1

9/
20

06

12
/1

9/
20

06

39
0

1
1

1
1

1
1

1
1

V
U

#5
84

43
6

C
V

E
-2

00
7-

06
69

1/

31
/2

00
7

1/
28

/2
00

7
2/

8/
20

07

3
11

1

0
1

1
1

1
1

1
V

U
#9

19
36

9
C

V
E

-2
00

7-
13

50

2/
1/

20
07

12

/1
2/

20
06

3/

7/
20

07

51
85

1

0
0

0
0

1
1

1
V

U
#6

49
73

2
C

V
E

-2
00

7-
04

54

2/
5/

20
07

1/

8/
20

07

2/
5/

20
07

28

28

0
0

1
1

1
1

1
1

V
U

#3
03

01
2

C
V

E
-2

00
7-

04
46

2/

7/
20

07

10
/2

7/
20

06

2/
8/

20
07

10

3
10

4
0

0
0

0
0

2
2

2
V

U
#8

31
45

2
C

V
E

-2
00

6-
61

44

2/
7/

20
07

1/

9/
20

07

1/
9/

20
07

29

0
1

1
1

1
1

0
0

1
V

U
#2

82
24

0
C

V
E

-2
00

7-
08

56

2/
7/

20
07

1/

17
/2

00
7

2/
7/

20
07

21

21

0
1

0
0

0
2

2
2

V
U

#7
84

36
9

C
V

E
-2

00
7-

03
25

2/

12
/2

00
7

10
/6

/2
00

6
2/

15
/2

00
7

12
9

13
2

0
1

0
0

0
2

2
2

294

T
A

B
L

E
 E

1:
 C

on
t'd

C
E

R
T

N

am
e

N
V

D

N
am

e
P

at
ch

D

at
e

N
ot

if
ic

at
io

n
D

at
e

P
ub

li
c

D

at
e

P
at

ch

T
im

e
D

is
cl

os
ur

e

T
im

e
M

ul
tip

le

P
at

ch
es

P

at
ch

T

yp
e

SW

T
yp

e
V

en
do

r
T

yp
e

M
ul

tip
le

V
en

do
r

C
I

A

V
U

#6
13

56
4

C
V

E
-2

00
7-

02
17

2/

13
/2

00
7

8/
16

/2
00

6
2/

13
/2

00
7

18
1

18
1

1
0

1
0

0
2

2
2

V
U

#2
05

94
8

C
V

E
-2

00
6-

38
77

2/

13
/2

00
7

10
/1

0/
20

06

10
/1

0/
20

06

12
6

0
1

0
0

0
0

2
2

2
V

U
#5

89
27

2
C

V
E

-2
00

6-
55

59

2/
13

/2
00

7
10

/2
4/

20
06

10

/2
4/

20
06

11

2
0

0
0

1
0

0
2

2
2

V
U

#1
67

92
8

C
V

E
-2

00
6-

59
94

2/

13
/2

00
7

12
/5

/2
00

6
12

/5
/2

00
6

70
0

0
0

0
0

0
2

2
2

V
U

#1
66

70
0

C
V

E
-2

00
6-

64
56

2/

13
/2

00
7

12
/1

0/
20

06

12
/1

0/
20

06

65
0

0
0

0
0

0
2

2
2

V
U

#9
96

89
2

C
V

E
-2

00
6-

65
61

2/

13
/2

00
7

12
/1

2/
20

06

12
/1

2/
20

06

63
0

0
0

0
0

0
2

2
2

V
U

#4
12

22
5

C
V

E
-2

00
7-

05
15

2/

13
/2

00
7

1/
25

/2
00

7
1/

25
/2

00
7

19
0

0
0

0
0

0
2

2
2

V
U

#6
13

74
0

C
V

E
-2

00
7-

06
71

2/

13
/2

00
7

2/
2/

20
07

2/

2/
20

07

11
0

1
0

0
0

0
2

2
2

V
U

#8
81

87
2

C
V

E
-2

00
7-

08
82

2/

13
/2

00
7

2/
10

/2
00

7
2/

10
/2

00
7

3
0

1
0

1
0

0
2

2
2

V
U

#5
22

39
3

C
V

E
-2

00
7-

03
24

2/

15
/2

00
7

11
/2

1/
20

06

2/
15

/2
00

7
86

86

0
1

0
0

0
1

1
1

V
U

#2
40

88
0

C
V

E
-2

00
7-

01
97

2/

15
/2

00
7

1/
9/

20
07

1/

9/
20

07

37
0

0
0

1
0

0
1

1
1

V
U

#3
49

39
3

C
V

E
-2

00
7-

10
70

2/

15
/2

00
7

1/
19

/2
00

7
2/

20
/2

00
7

27
32

1

0
0

0
0

2
2

2
V

U
#7

94
75

2
C

V
E

-2
00

7-
00

21

2/
15

/2
00

7
1/

20
/2

00
7

1/
20

/2
00

7
26

0
0

0
0

0
0

1
1

1
V

U
#3

15
85

6
C

V
E

-2
00

7-
00

23

2/
15

/2
00

7
1/

23
/2

00
7

1/
23

/2
00

7
23

0
0

0
0

0
0

2
2

2
V

U
#8

36
02

4
C

V
E

-2
00

7-
07

10

2/
15

/2
00

7
1/

29
/2

00
7

1/
30

/2
00

7
17

1
0

0
0

0
0

0
0

1
V

U
#3

08
08

7
C

V
E

-2
00

7-
10

83

2/
16

/2
00

7
12

/2
2/

20
06

2/

16
/2

00
7

56
56

0

0
0

1
0

2
2

2
V

U
#1

96
24

0
C

V
E

-2
00

6-
52

76

2/
19

/2
00

7
2/

17
/2

00
7

2/
19

/2
00

7
2

2
0

1
0

1
1

2
2

2
V

U
#4

41
78

5
C

V
E

-2
00

6-
64

90

2/
22

/2
00

7
8/

21
/2

00
6

2/
22

/2
00

7
18

5
18

5
0

0
0

0
1

2
2

2
V

U
#5

51
43

6
C

V
E

-2
00

7-
07

76

2/
23

/2
00

7
11

/1
4/

20
06

2/

23
/2

00
7

10
1

10
1

0
1

1
1

1
2

2
2

V
U

#2
69

48
4

C
V

E
-2

00
7-

07
77

2/

23
/2

00
7

12
/5

/2
00

6
2/

23
/2

00
7

80
80

0

1
1

1
1

2
2

2
V

U
#7

61
75

6
C

V
E

-2
00

7-
07

75

2/
23

/2
00

7
12

/1
4/

20
06

2/

23
/2

00
7

71
71

0

1
1

1
1

1
1

1
V

U
#3

77
81

2
C

V
E

-2
00

7-
00

08

2/
23

/2
00

7
12

/1
8/

20
06

2/

23
/2

00
7

67
67

0

1
1

1
1

1
1

1
V

U
#5

92
79

6
C

V
E

-2
00

7-
00

09

2/
23

/2
00

7
12

/1
8/

20
06

2/

23
/2

00
7

67
67

0

1
1

1
1

1
1

1
V

U
#8

85
75

3
C

V
E

-2
00

7-
09

81

2/
23

/2
00

7
2/

14
/2

00
7

2/
14

/2
00

7
9

0
0

1
1

1
1

1
1

1
V

U
#1

96
24

0
C

V
E

-2
00

6-
52

76

2/
23

/2
00

7
2/

19
/2

00
7

2/
19

/2
00

7
4

0
1

1
1

1
1

2
2

2
V

U
#3

93
92

1
C

V
E

-2
00

7-
10

92

2/
25

/2
00

7
2/

22
/2

00
7

2/
22

/2
00

7
3

0
0

1
1

1
1

2
2

2
V

U
#3

77
81

2
C

V
E

-2
00

7-
00

08

2/
26

/2
00

7
2/

23
/2

00
7

2/
23

/2
00

7
3

0
1

1
1

1
1

1
1

1
V

U
#3

77
81

2
C

V
E

-2
00

7-
00

08

2/
26

/2
00

7
2/

23
/2

00
7

2/
23

/2
00

7
3

0
1

1
1

1
1

1
1

1

295

T
A

B
L

E
 E

1:
 C

on
t'd

C
E

R
T

N

am
e

N
V

D

N
am

e
P

at
ch

D

at
e

N
ot

if
ic

at
io

n
D

at
e

P
ub

li
c

D

at
e

P
at

ch

T
im

e
D

is
cl

os
ur

e

T
im

e
M

ul
tip

le

P
at

ch
es

P

at
ch

T

yp
e

SW

T
yp

e
V

en
do

r
T

yp
e

M
ul

tip
le

V
en

do
r

C
I

A

V
U

#5
92

79
6

C
V

E
-2

00
7-

00
09

2/

26
/2

00
7

2/
23

/2
00

7
2/

23
/2

00
7

3
0

1
1

1
1

1
1

1
1

V
U

#5
92

79
6

C
V

E
-2

00
7-

00
09

2/

26
/2

00
7

2/
23

/2
00

7
2/

23
/2

00
7

3
0

1
1

1
1

1
1

1
1

V
U

#3
77

81
2

C
V

E
-2

00
7-

00
08

2/

28
/2

00
7

2/
23

/2
00

7
2/

23
/2

00
7

5
0

1
0

1
1

1
1

1
1

V
U

#5
92

79
6

C
V

E
-2

00
7-

00
09

2/

28
/2

00
7

2/
23

/2
00

7
2/

23
/2

00
7

5
0

1
0

1
1

1
1

1
1

V
U

#8
61

81
7

C
V

E
-2

00
7-

07
14

3/

5/
20

07

8/
14

/2
00

6
3/

6/
20

07

20
3

20
4

0
1

0
0

0
2

2
2

V
U

#4
98

55
3

C
V

E
-2

00
6-

38
92

3/

5/
20

07

11
/1

7/
20

06

2/
26

/2
00

7
10

8
10

1
0

0
0

1
0

2
2

2
V

U
#3

13
22

5
C

V
E

-2
00

7-
07

18

3/
5/

20
07

12

/6
/2

00
6

3/
6/

20
07

89

90

0
1

0
0

0
0

1
1

V
U

#3
04

06
4

C
V

E
-2

00
7-

00
59

3/

5/
20

07

1/
3/

20
07

1/

3/
20

07

61
0

0
0

0
0

0
1

1
1

V
U

#3
77

81
2

C
V

E
-2

00
7-

00
08

3/

6/
20

07

2/
23

/2
00

7
2/

23
/2

00
7

11
0

1
0

1
1

1
1

1
1

V
U

#5
92

79
6

C
V

E
-2

00
7-

00
09

3/

6/
20

07

2/
23

/2
00

7
2/

23
/2

00
7

11
0

1
0

1
1

1
1

1
1

V
U

#9
86

42
5

C
V

E
-2

00
7-

13
65

3/

7/
20

07

2/
20

/2
00

7
3/

12
/2

00
7

15
20

1

0
1

1
0

2
2

2
V

U
#3

77
81

2
C

V
E

-2
00

7-
00

08

3/
7/

20
07

2/

23
/2

00
7

2/
23

/2
00

7
12

0
0

0
1

1
1

1
1

1
V

U
#5

92
79

6
C

V
E

-2
00

7-
00

09

3/
7/

20
07

2/

23
/2

00
7

2/
23

/2
00

7
12

0
0

0
1

1
1

1
1

1
V

U
#9

20
68

9
C

V
E

-2
00

7-
10

00

3/
7/

20
07

3/

6/
20

07

3/
12

/2
00

7
1

6
0

1
1

1
1

2
2

2
V

U
#7

65
09

6
C

V
E

-2
00

6-
58

36

3/
13

/2
00

7
11

/9
/2

00
6

11
/9

/2
00

6
12

4
0

0
0

1
0

0
2

2
2

V
U

#3
67

42
4

C
V

E
-2

00
6-

60
61

3/

13
/2

00
7

11
/2

0/
20

06

11
/2

0/
20

06

11
3

0
0

0
1

0
0

2
2

2
V

U
#2

14
04

0
C

V
E

-2
00

6-
60

62

3/
13

/2
00

7
11

/2
1/

20
06

11

/2
1/

20
06

11

2
0

0
0

1
0

0
1

1
1

V
U

#3
46

65
6

C
V

E
-2

00
6-

61
29

3/

13
/2

00
7

11
/2

6/
20

06

11
/2

6/
20

06

10
7

0
0

0
1

0
0

1
1

1
V

U
#5

52
13

6
C

V
E

-2
00

6-
56

79

3/
13

/2
00

7
1/

10
/2

00
7

1/
10

/2
00

7
62

0
0

0
1

0
0

1
1

1
V

U
#5

15
79

2
C

V
E

-2
00

7-
02

99

3/
13

/2
00

7
1/

11
/2

00
7

1/
11

/2
00

7
61

0
0

0
1

0
0

0
0

2
V

U
#3

63
11

2
C

V
E

-2
00

7-
04

67

3/
13

/2
00

7
1/

28
/2

00
7

1/
28

/2
00

7
44

0
0

0
1

0
0

2
2

2
V

U
#5

89
09

7
C

V
E

-2
00

7-
18

19

3/
13

/2
00

7
1/

30
/2

00
7

3/
27

/2
00

7
42

56

0
0

0
0

0
2

2
2

V
U

#9
26

55
1

C
V

E
-2

00
7-

13
19

3/

16
/2

00
7

1/
12

/2
00

6
3/

16
/2

00
7

42
8

42
8

0
1

0
0

0
2

2
2

V
U

#3
77

81
2

C
V

E
-2

00
7-

00
08

3/

18
/2

00
7

2/
23

/2
00

7
2/

23
/2

00
7

23
0

1
1

1
1

1
1

1
1

V
U

#5
92

79
6

C
V

E
-2

00
7-

00
09

3/

18
/2

00
7

2/
23

/2
00

7
2/

23
/2

00
7

23
0

1
1

1
1

1
1

1
1

V
U

#3
75

35
3

C
V

E
-2

00
7-

14
47

3/

20
/2

00
7

3/
16

/2
00

7
3/

16
/2

00
7

4
0

0
0

1
1

0
2

2
2

V
U

#6
47

27
3

C
V

E
-2

00
7-

14
48

3/

20
/2

00
7

3/
16

/2
00

7
3/

16
/2

00
7

4
0

0
0

1
1

0
0

0
1

V
U

#6
06

70
0

C
V

E
-2

00
7-

15
36

3/

22
/2

00
7

3/
19

/2
00

7
3/

19
/2

00
7

3
0

0
0

1
1

1
2

2
2

296

T
A

B
L

E
 E

1:
 C

on
t'd

C
E

R
T

N

am
e

N
V

D

N
am

e
P

at
ch

D

at
e

N
ot

if
ic

at
io

n
D

at
e

P
ub

li
c

D

at
e

P
at

ch

T
im

e
D

is
cl

os
ur

e

T
im

e
M

ul
tip

le

P
at

ch
es

P

at
ch

T

yp
e

SW

T
yp

e
V

en
do

r
T

yp
e

M
ul

tip
le

V
en

do
r

C
I

A

V
U

#7
14

59
3

C
V

E
-2

00
7-

14
98

3/

23
/2

00
7

3/
13

/2
00

7
3/

13
/2

00
7

10
0

0
0

0
0

0
2

2
2

V
U

#6
06

70
0

C
V

E
-2

00
7-

15
36

3/

25
/2

00
7

3/
19

/2
00

7
3/

19
/2

00
7

6
0

1
0

1
1

1
2

2
2

V
U

#3
77

81
2

C
V

E
-2

00
7-

00
08

3/

29
/2

00
7

2/
23

/2
00

7
2/

23
/2

00
7

34
0

1
0

1
0

1
1

1
1

V
U

#5
92

79
6

C
V

E
-2

00
7-

00
09

3/

29
/2

00
7

2/
23

/2
00

7
2/

23
/2

00
7

34
0

1
0

1
0

1
1

1
1

V
U

#6
06

70
0

C
V

E
-2

00
7-

15
36

3/

30
/2

00
7

3/
19

/2
00

7
3/

19
/2

00
7

11
0

1
0

1
1

1
2

2
2

V
U

#6
06

70
0

C
V

E
-2

00
7-

15
36

3/

30
/2

00
7

3/
19

/2
00

7
3/

19
/2

00
7

11
0

1
1

1
1

1
2

2
2

V
U

#4
95

28
8

C
V

E
-2

00
6-

54
64

4/

2/
20

07

11
/8

/2
00

6
11

/8
/2

00
6

14
5

0
0

1
1

0
1

0
0

1
V

U
#6

06
70

0
C

V
E

-2
00

7-
15

36

4/
2/

20
07

3/

19
/2

00
7

3/
19

/2
00

7
14

0
0

1
1

1
1

2
2

2
V

U
#6

06
70

0
C

V
E

-2
00

7-
15

36

4/
3/

20
07

3/

19
/2

00
7

3/
19

/2
00

7
15

0
1

0
1

1
1

2
2

2
V

U
#2

20
81

6
C

V
E

-2
00

7-
09

56

4/
3/

20
07

3/

21
/2

00
7

4/
3/

20
07

13

13

0
0

1
1

1
2

2
2

V
U

#2
20

81
6

C
V

E
-2

00
7-

09
56

4/

3/
20

07

3/
21

/2
00

7
4/

3/
20

07

13
13

1

0
1

1
1

2
2

2
V

U
#2

20
81

6
C

V
E

-2
00

7-
09

56

4/
3/

20
07

3/

21
/2

00
7

4/
3/

20
07

13

13

0
1

1
1

1
2

2
2

V
U

#2
20

81
6

C
V

E
-2

00
7-

09
56

4/

3/
20

07

3/
21

/2
00

7
4/

3/
20

07

13
13

1

0
1

1
1

2
2

2
V

U
#4

19
34

4
C

V
E

-2
00

7-
12

16

4/
3/

20
07

3/

21
/2

00
7

4/
3/

20
07

13

13

0
1

1
1

1
2

2
2

V
U

#7
04

02
4

C
V

E
-2

00
7-

09
57

4/

3/
20

07

3/
21

/2
00

7
4/

3/
20

07

13
13

0

1
1

1
1

2
2

2
V

U
#1

91
60

9
C

V
E

-2
00

7-
00

38

4/
3/

20
07

3/

29
/2

00
7

3/
29

/2
00

7
5

0
1

0
1

0
1

2
2

2
V

U
#4

19
34

4
C

V
E

-2
00

7-
12

16

4/
3/

20
07

4/

2/
20

07

4/
3/

20
07

1

1
0

0
1

1
1

2
2

2
V

U
#7

04
02

4
C

V
E

-2
00

7-
09

57

4/
3/

20
07

4/

2/
20

07

4/
3/

20
07

1

1
0

0
1

1
1

2
2

2
V

U
#2

20
81

6
C

V
E

-2
00

7-
09

56

4/
4/

20
07

3/

21
/2

00
7

4/
3/

20
07

14

13

0
1

1
1

1
2

2
2

V
U

#2
20

81
6

C
V

E
-2

00
7-

09
56

4/

4/
20

07

3/
21

/2
00

7
4/

3/
20

07

14
13

1

0
1

0
1

2
2

2
V

U
#2

20
81

6
C

V
E

-2
00

7-
09

56

4/
4/

20
07

3/

21
/2

00
7

4/
3/

20
07

14

13

1
0

1
1

1
2

2
2

V
U

#4
19

34
4

C
V

E
-2

00
7-

12
16

4/

4/
20

07

3/
21

/2
00

7
4/

3/
20

07

14
13

0

1
1

1
1

2
2

2
V

U
#7

04
02

4
C

V
E

-2
00

7-
09

57

4/
4/

20
07

3/

21
/2

00
7

4/
3/

20
07

14

13

0
1

1
1

1
2

2
2

V
U

#2
20

81
6

C
V

E
-2

00
7-

09
56

4/

4/
20

07

4/
3/

20
07

4/

3/
20

07

1
0

1
1

1
1

1
2

2
2

V
U

#4
19

34
4

C
V

E
-2

00
7-

12
16

4/

4/
20

07

4/
3/

20
07

4/

3/
20

07

1
0

1
1

1
1

1
2

2
2

V
U

#4
19

34
4

C
V

E
-2

00
7-

12
16

4/

4/
20

07

4/
3/

20
07

4/

3/
20

07

1
0

1
0

1
1

1
2

2
2

V
U

#7
04

02
4

C
V

E
-2

00
7-

09
57

4/

4/
20

07

4/
3/

20
07

4/

3/
20

07

1
0

1
1

1
1

1
2

2
2

V
U

#7
04

02
4

C
V

E
-2

00
7-

09
57

4/

4/
20

07

4/
3/

20
07

4/

3/
20

07

1
0

1
0

1
1

1
2

2
2

297

T
A

B
L

E
 E

1:
 C

on
t'd

C
E

R
T

N

am
e

N
V

D

N
am

e
P

at
ch

D

at
e

N
ot

if
ic

at
io

n
D

at
e

P
ub

li
c

D

at
e

P
at

ch

T
im

e
D

is
cl

os
ur

e

T
im

e
M

ul
tip

le

P
at

ch
es

P

at
ch

T

yp
e

SW

T
yp

e
V

en
do

r
T

yp
e

M
ul

tip
le

V
en

do
r

C
I

A

V
U

#7
54

28
1

C
V

E
-2

00
6-

38
94

4/

5/
20

07

12
/1

/2
00

6
5/

22
/2

00
7

12
5

17
2

0
1

1
0

1
0

0
1

V
U

#7
30

16
9

C
V

E
-2

00
7-

29
27

4/

5/
20

07

2/
12

/2
00

7
8/

1/
20

07

52
17

0
1

1
1

0
1

0
0

1
V

U
#2

20
81

6
C

V
E

-2
00

7-
09

56

4/
5/

20
07

3/

21
/2

00
7

4/
3/

20
07

15

13

1
0

1
1

1
2

2
2

V
U

#4
19

34
4

C
V

E
-2

00
7-

12
16

4/

5/
20

07

4/
3/

20
07

4/

3/
20

07

2
0

1
0

1
1

1
2

2
2

V
U

#7
04

02
4

C
V

E
-2

00
7-

09
57

4/

5/
20

07

4/
3/

20
07

4/

3/
20

07

2
0

1
0

1
1

1
2

2
2

V
U

#7
04

02
4

C
V

E
-2

00
7-

09
57

4/

5/
20

07

4/
3/

20
07

4/

3/
20

07

2
0

0
0

1
0

1
2

2
2

V
U

#7
04

02
4

C
V

E
-2

00
7-

09
57

4/

6/
20

07

4/
3/

20
07

4/

3/
20

07

3
0

1
0

1
1

1
2

2
2

V
U

#7
28

05
7

C
V

E
-2

00
7-

12
05

4/

10
/2

00
7

11
/1

2/
20

06

4/
10

/2
00

7
14

9
14

9
0

0
1

0
0

2
2

2
V

U
#3

37
95

3
C

V
E

-2
00

7-
12

06

4/
10

/2
00

7
12

/1
2/

20
06

4/

10
/2

00
7

11
9

11
9

1
0

1
0

0
2

2
2

V
U

#7
40

63
6

C
V

E
-2

00
6-

67
97

4/

10
/2

00
7

12
/1

5/
20

06

12
/1

5/
20

06

11
6

0
1

0
1

0
0

2
0

2
V

U
#2

19
84

8
C

V
E

-2
00

7-
12

09

4/
10

/2
00

7
1/

19
/2

00
7

4/
10

/2
00

7
81

81

1
0

1
0

0
2

2
2

V
U

#1
20

24
1

C
V

E
-2

00
7-

18
91

4/

11
/2

00
7

4/
3/

20
07

4/

16
/2

00
7

8
13

0

1
0

0
0

2
2

2
V

U
#4

88
42

4
C

V
E

-2
00

7-
25

08

4/
13

/2
00

7
2/

1/
20

07

5/
7/

20
07

71

95

0
0

0
0

0
2

2
2

V
U

#4
19

34
4

C
V

E
-2

00
7-

12
16

4/

19
/2

00
7

4/
3/

20
07

4/

3/
20

07

16
0

0
0

1
0

1
2

2
2

V
U

#7
04

02
4

C
V

E
-2

00
7-

09
57

4/

19
/2

00
7

4/
3/

20
07

4/

3/
20

07

16
0

0
0

1
0

1
2

2
2

V
U

#8
21

86
5

C
V

E
-2

00
7-

28
83

4/

19
/2

00
7

4/
4/

20
07

5/

24
/2

00
7

15
50

1

0
1

0
0

1
1

1
V

U
#9

79
82

5
C

V
E

-2
00

7-
21

39

4/
24

/2
00

7
3/

8/
20

07

4/
24

/2
00

7
47

47

0
0

1
1

0
2

2
2

V
U

#1
51

30
5

C
V

E
-2

00
7-

17
85

4/

24
/2

00
7

3/
29

/2
00

7
3/

29
/2

00
7

26
0

0
0

1
1

0
2

2
2

V
U

#4
26

73
7

C
V

E
-2

00
7-

29
29

4/

25
/2

00
7

2/
1/

20
07

8/

14
/2

00
7

83
19

4
0

0
0

0
1

0
1

1
V

U
#5

70
70

5
C

V
E

-2
00

7-
22

40

4/
25

/2
00

7
2/

1/
20

07

8/
14

/2
00

7
83

19
4

0
0

0
0

1
0

1
1

V
U

#5
99

65
7

C
V

E
-2

00
7-

29
28

4/

25
/2

00
7

2/
1/

20
07

8/

14
/2

00
7

83
19

4
0

0
0

0
1

0
1

1
V

U
#4

26
73

7
C

V
E

-2
00

7-
29

29

4/
25

/2
00

7
3/

13
/2

00
7

8/
14

/2
00

7
43

15
4

0
0

0
0

1
0

1
1

V
U

#5
70

70
5

C
V

E
-2

00
7-

22
40

4/

25
/2

00
7

3/
13

/2
00

7
8/

14
/2

00
7

43
15

4
0

0
0

0
1

0
1

1
V

U
#5

99
65

7
C

V
E

-2
00

7-
29

28

4/
25

/2
00

7
3/

13
/2

00
7

8/
14

/2
00

7
43

15
4

0
0

0
0

1
0

1
1

V
U

#2
67

28
9

C
V

E
-2

00
7-

22
42

4/

26
/2

00
7

4/
24

/2
00

7
4/

24
/2

00
7

2
0

0
0

1
1

1
0

0
2

V
U

#7
73

72
0

C
V

E
-2

00
7-

24
46

4/

28
/2

00
7

4/
25

/2
00

7
5/

14
/2

00
7

3
19

1

0
1

1
1

2
2

2
V

U
#7

18
46

0
C

V
E

-2
00

7-
22

41

4/
30

/2
00

7
4/

29
/2

00
7

5/
1/

20
07

1

2
0

1
1

1
1

0
0

2
V

U
#4

20
66

8
C

V
E

-2
00

7-
21

75

5/
1/

20
07

4/

20
/2

00
7

4/
20

/2
00

7
11

0
0

0
0

0
0

2
2

2

298

T
A

B
L

E
 E

1:
 C

on
t'd

C
E

R
T

N

am
e

N
V

D

N
am

e
P

at
ch

D

at
e

N
ot

if
ic

at
io

n
D

at
e

P
ub

li
c

D

at
e

P
at

ch

T
im

e
D

is
cl

os
ur

e

T
im

e
M

ul
tip

le

P
at

ch
es

P

at
ch

T

yp
e

SW

T
yp

e
V

en
do

r
T

yp
e

M
ul

tip
le

V
en

do
r

C
I

A

V
U

#3
05

65
7

C
V

E
-2

00
7-

36
24

5/

2/
20

07

1/
11

/2
00

7
7/

5/
20

07

11
1

17
5

0
1

0
0

0
2

2
2

V
U

#6
79

04
1

C
V

E
-2

00
7-

36
14

5/

2/
20

07

1/
11

/2
00

7
7/

5/
20

07

11
1

17
5

0
1

0
0

0
1

1
1

V
U

#3
55

80
9

C
V

E
-2

00
7-

22
39

5/

3/
20

07

3/
27

/2
00

7
5/

3/
20

07

37
37

0

0
0

0
0

2
2

2
V

U
#2

53
82

5
C

V
E

-2
00

7-
12

14

5/
8/

20
07

2/

8/
20

07

5/
8/

20
07

89

89

1
0

0
0

0
1

1
1

V
U

#3
32

40
4

C
V

E
-2

00
7-

08
70

5/

8/
20

07

2/
9/

20
07

2/

9/
20

07

88
0

0
0

0
0

0
2

2
2

V
U

#5
55

48
9

C
V

E
-2

00
7-

12
02

5/

8/
20

07

2/
27

/2
00

7
5/

8/
20

07

70
70

0

0
0

0
0

1
1

1
V

U
#5

55
92

0
C

V
E

-2
00

7-
17

48

5/
8/

20
07

4/

13
/2

00
7

4/
13

/2
00

7
25

0
1

0
1

0
0

2
2

2
V

U
#7

18
46

0
C

V
E

-2
00

7-
22

41

5/
9/

20
07

5/

1/
20

07

5/
1/

20
07

8

0
0

0
1

1
1

0
0

2
V

U
#2

68
33

6
C

V
E

-2
00

7-
24

47

5/
9/

20
07

5/

7/
20

07

5/
14

/2
00

7
2

7
1

0
1

1
1

1
1

1
V

U
#5

89
18

8
C

V
E

-2
00

7-
44

70

5/
10

/2
00

7
10

/6
/2

00
6

9/
6/

20
07

21

6
33

5
0

1
0

1
0

2
2

2
V

U
#6

80
61

6
C

V
E

-2
00

7-
25

22

5/
12

/2
00

7
11

/6
/2

00
6

5/
11

/2
00

7
18

7
18

6
0

0
0

1
0

2
2

2
V

U
#7

88
41

6
C

V
E

-2
00

7-
25

23

5/
12

/2
00

7
2/

7/
20

07

5/
11

/2
00

7
94

93

0
0

0
1

0
2

2
2

V
U

#7
73

72
0

C
V

E
-2

00
7-

24
46

5/

14
/2

00
7

5/
8/

20
07

5/

14
/2

00
7

6
6

0
0

1
1

1
2

2
2

V
U

#2
68

33
6

C
V

E
-2

00
7-

24
47

5/

14
/2

00
7

5/
11

/2
00

7
5/

14
/2

00
7

3
3

0
0

1
1

1
1

1
1

V
U

#2
68

33
6

C
V

E
-2

00
7-

24
47

5/

15
/2

00
7

5/
14

/2
00

7
5/

14
/2

00
7

1
0

1
1

1
1

1
1

1
1

V
U

#7
73

72
0

C
V

E
-2

00
7-

24
46

5/

15
/2

00
7

5/
14

/2
00

7
5/

14
/2

00
7

1
0

1
1

1
1

1
2

2
2

V
U

#9
83

95
3

C
V

E
-2

00
7-

16
89

5/

16
/2

00
7

2/
12

/2
00

7
5/

16
/2

00
7

93
93

0

0
0

0
0

2
2

2
V

U
#2

67
28

9
C

V
E

-2
00

7-
22

42

5/
16

/2
00

7
4/

24
/2

00
7

4/
24

/2
00

7
22

0
0

0
1

0
1

0
0

2
V

U
#2

67
28

9
C

V
E

-2
00

7-
22

42

5/
16

/2
00

7
4/

24
/2

00
7

4/
24

/2
00

7
22

0
0

0
1

1
1

0
0

2
V

U
#2

68
33

6
C

V
E

-2
00

7-
24

47

5/
16

/2
00

7
5/

14
/2

00
7

5/
14

/2
00

7
2

0
1

1
1

1
1

1
1

1
V

U
#6

84
66

4
C

V
E

-2
00

7-
24

45

5/
17

/2
00

7
5/

8/
20

07

5/
16

/2
00

7
9

8
1

1
1

1
1

0
0

1
V

U
#6

84
66

4
C

V
E

-2
00

7-
24

45

5/
17

/2
00

7
5/

8/
20

07

5/
16

/2
00

7
9

8
0

0
1

1
1

0
0

1
V

U
#7

89
12

1
C

V
E

-2
00

7-
22

38

5/
21

/2
00

7
12

/1
4/

20
06

4/

15
/2

00
9

15
8

85
3

0
0

0
0

0
2

2
2

V
U

#7
54

28
1

C
V

E
-2

00
6-

38
94

5/

22
/2

00
7

11
/3

0/
20

06

5/
22

/2
00

7
17

3
17

3
1

1
1

1
1

0
0

1
V

U
#5

24
68

1
C

V
E

-2
00

7-
03

28

5/
22

/2
00

7
3/

6/
20

07

5/
31

/2
00

7
77

86

0
0

0
0

1
2

2
2

V
U

#7
46

88
9

C
V

E
-2

00
7-

28
81

5/

25
/2

00
7

3/
20

/2
00

7
5/

25
/2

00
7

66
66

1

1
1

0
0

2
2

2
V

U
#6

09
95

6
C

V
E

-2
00

7-
28

68

5/
30

/2
00

7
4/

11
/2

00
7

5/
31

/2
00

7
49

50

0
1

1
1

1
2

2
2

V
U

#7
51

63
6

C
V

E
-2

00
7-

28
67

5/

30
/2

00
7

4/
11

/2
00

7
5/

31
/2

00
7

49
50

0

1
1

1
1

2
2

2

299

T
A

B
L

E
 E

1:
 C

on
t'd

C
E

R
T

N

am
e

N
V

D

N
am

e
P

at
ch

D

at
e

N
ot

if
ic

at
io

n
D

at
e

P
ub

li
c

D

at
e

P
at

ch

T
im

e
D

is
cl

os
ur

e

T
im

e
M

ul
tip

le

P
at

ch
es

P

at
ch

T

yp
e

SW

T
yp

e
V

en
do

r
T

yp
e

M
ul

tip
le

V
en

do
r

C
I

A

V
U

#6
84

66
4

C
V

E
-2

00
7-

24
45

5/

31
/2

00
7

5/
8/

20
07

5/

16
/2

00
7

23
8

0
1

1
1

1
0

0
1

V
U

#1
05

10
5

C
V

E
-2

00
7-

28
64

6/

5/
20

07

2/
16

/2
00

7
6/

5/
20

07

10
9

10
9

0
0

0
1

0
2

2
2

V
U

#7
39

40
9

C
V

E
-2

00
7-

28
63

6/

5/
20

07

2/
16

/2
00

7
6/

5/
20

07

10
9

10
9

0
0

0
1

0
2

2
2

V
U

#2
00

92
8

C
V

E
-2

00
7-

33
16

6/

7/
20

07

6/
6/

20
07

6/

20
/2

00
7

1
14

1

0
0

1
1

2
2

2
V

U
#9

83
24

9
C

V
E

-2
00

7-
29

21

6/
11

/2
00

7
8/

17
/2

00
6

6/
13

/2
00

7
29

8
30

0
0

1
0

0
0

2
2

2
V

U
#5

07
43

3
C

V
E

-2
00

7-
22

22

6/
12

/2
00

7
10

/1
6/

20
06

6/

12
/2

00
7

23
9

23
9

0
0

1
0

0
2

2
2

V
U

#8
10

07
3

C
V

E
-2

00
7-

22
18

6/

12
/2

00
7

3/
19

/2
00

7
6/

12
/2

00
7

85
85

0

0
1

0
0

2
2

2
V

U
#2

67
28

9
C

V
E

-2
00

7-
22

42

6/
14

/2
00

7
4/

24
/2

00
7

4/
24

/2
00

7
51

0
0

1
1

1
1

0
0

2
V

U
#1

87
03

3
C

V
E

-2
00

7-
24

78

6/
18

/2
00

7
5/

4/
20

07

6/
18

/2
00

7
45

45

0
0

0
0

0
2

2
2

V
U

#3
99

89
6

C
V

E
-2

00
7-

29
49

6/

18
/2

00
7

6/
14

/2
00

7
7/

3/
20

07

4
19

0

0
0

1
1

1
1

1
V

U
#2

67
28

9
C

V
E

-2
00

7-
22

42

6/
20

/2
00

7
4/

24
/2

00
7

4/
24

/2
00

7
57

0
1

0
1

0
1

0
0

2
V

U
#6

84
66

4
C

V
E

-2
00

7-
24

45

6/
22

/2
00

7
5/

8/
20

07

5/
16

/2
00

7
45

8
0

0
1

1
1

0
0

1
V

U
#8

45
62

0
C

V
E

-2
00

6-
43

39

6/
25

/2
00

7
9/

5/
20

06

9/
5/

20
06

29

3
0

0
1

0
0

1
1

1
1

V
U

#3
56

96
1

C
V

E
-2

00
7-

24
42

6/

26
/2

00
7

6/
18

/2
00

7
6/

26
/2

00
7

8
8

1
0

1
1

1
2

2
2

V
U

#3
65

31
3

C
V

E
-2

00
7-

24
43

6/

26
/2

00
7

6/
18

/2
00

7
6/

26
/2

00
7

8
8

1
1

1
1

1
2

2
2

V
U

#3
65

31
3

C
V

E
-2

00
7-

24
43

6/

26
/2

00
7

6/
18

/2
00

7
6/

26
/2

00
7

8
8

1
0

1
1

1
2

2
2

V
U

#3
65

31
3

C
V

E
-2

00
7-

24
43

6/

26
/2

00
7

6/
18

/2
00

7
6/

26
/2

00
7

8
8

0
0

1
1

1
2

2
2

V
U

#5
54

25
7

C
V

E
-2

00
7-

27
98

6/

26
/2

00
7

6/
18

/2
00

7
6/

26
/2

00
7

8
8

1
1

1
1

1
2

2
2

V
U

#5
54

25
7

C
V

E
-2

00
7-

27
98

6/

26
/2

00
7

6/
18

/2
00

7
6/

26
/2

00
7

8
8

1
0

1
1

1
2

2
2

V
U

#7
70

90
4

C
V

E
-2

00
7-

34
10

6/

27
/2

00
7

6/
26

/2
00

7
6/

26
/2

00
7

1
0

1
0

1
1

1
2

2
2

V
U

#6
84

66
4

C
V

E
-2

00
7-

24
45

6/

28
/2

00
7

5/
8/

20
07

5/

16
/2

00
7

51
8

1
0

1
0

1
0

0
1

V
U

#3
56

96
1

C
V

E
-2

00
7-

24
42

6/

28
/2

00
7

6/
18

/2
00

7
6/

26
/2

00
7

10
8

0
1

1
1

1
2

2
2

V
U

#3
65

31
3

C
V

E
-2

00
7-

24
43

6/

28
/2

00
7

6/
18

/2
00

7
6/

26
/2

00
7

10
8

0
1

1
1

1
2

2
2

V
U

#5
54

25
7

C
V

E
-2

00
7-

27
98

6/

28
/2

00
7

6/
18

/2
00

7
6/

26
/2

00
7

10
8

0
1

1
1

1
2

2
2

V
U

#1
38

54
5

C
V

E
-2

00
7-

27
88

6/

29
/2

00
7

6/
4/

20
07

6/

4/
20

07

25
0

1
0

1
0

1
1

1
1

V
U

#7
18

46
0

C
V

E
-2

00
7-

22
41

7/

1/
20

07

5/
1/

20
07

5/

1/
20

07

61
0

0
1

1
1

1
0

0
2

V
U

#3
56

96
1

C
V

E
-2

00
7-

24
42

7/

2/
20

07

6/
18

/2
00

7
6/

26
/2

00
7

14
8

0
0

1
0

1
2

2
2

V
U

#1
38

45
7

C
V

E
-2

00
7-

34
57

7/

10
/2

00
7

3/
12

/2
00

7
7/

10
/2

00
7

12
0

12
0

0
1

0
0

1
0

1
0

300

T
A

B
L

E
 E

1:
 C

on
t'd

C
E

R
T

N

am
e

N
V

D

N
am

e
P

at
ch

D

at
e

N
ot

if
ic

at
io

n
D

at
e

P
ub

li
c

D

at
e

P
at

ch

T
im

e
D

is
cl

os
ur

e

T
im

e
M

ul
tip

le

P
at

ch
es

P

at
ch

T

yp
e

SW

T
yp

e
V

en
do

r
T

yp
e

M
ul

tip
le

V
en

do
r

C
I

A

V
U

#7
30

78
5

C
V

E
-2

00
7-

34
56

7/

10
/2

00
7

3/
12

/2
00

7
7/

10
/2

00
7

12
0

12
0

0
1

0
0

1
2

2
2

V
U

#1
10

29
7

C
V

E
-2

00
7-

20
22

7/

10
/2

00
7

4/
12

/2
00

7
4/

12
/2

00
7

89
0

0
1

0
0

1
1

1
1

V
U

#2
13

69
7

C
V

E
-2

00
7-

35
09

7/

11
/2

00
7

5/
1/

20
07

7/

11
/2

00
7

71
71

0

0
1

0
0

1
1

1
V

U
#7

30
78

5
C

V
E

-2
00

7-
34

56

7/
12

/2
00

7
7/

10
/2

00
7

7/
10

/2
00

7
2

0
1

0
1

1
1

2
2

2
V

U
#1

43
29

7
C

V
E

-2
00

7-
30

89

7/
17

/2
00

7
5/

19
/2

00
7

6/
4/

20
07

59

16

0
1

1
1

1
0

1
0

V
U

#3
58

01
7

C
V

E
-2

00
7-

36
70

7/

17
/2

00
7

6/
13

/2
00

7
7/

10
/2

00
7

34
27

0

1
1

1
1

0
1

0
V

U
#8

71
49

7
C

V
E

-2
00

7-
33

75

7/
18

/2
00

7
6/

25
/2

00
7

6/
25

/2
00

7
23

0
0

1
1

0
1

1
1

1
V

U
#7

30
78

5
C

V
E

-2
00

7-
34

56

7/
19

/2
00

7
7/

10
/2

00
7

7/
10

/2
00

7
9

0
0

0
1

1
1

2
2

2
V

U
#2

52
73

5
C

V
E

-2
00

7-
29

26

7/
24

/2
00

7
5/

29
/2

00
7

7/
24

/2
00

7
56

56

0
1

1
1

1
0

1
0

V
U

#2
05

07
3

C
V

E
-2

00
7-

44
73

7/

25
/2

00
7

1/
13

/2
00

7
12

/1
4/

20
07

19

3
33

5
0

1
0

0
0

2
2

2
V

U
#5

54
25

7
C

V
E

-2
00

7-
27

98

7/
25

/2
00

7
6/

18
/2

00
7

6/
26

/2
00

7
37

8
0

1
1

1
1

2
2

2
V

U
#1

87
29

7
C

V
E

-2
00

7-
29

25

7/
26

/2
00

7
7/

24
/2

00
7

7/
24

/2
00

7
2

0
0

1
1

1
1

1
1

0
V

U
#1

09
05

6
C

V
E

-2
00

7-
42

18

7/
27

/2
00

7
6/

14
/2

00
7

8/
21

/2
00

7
43

68

0
0

0
0

0
2

2
2

V
U

#2
04

44
8

C
V

E
-2

00
7-

42
18

7/

27
/2

00
7

6/
14

/2
00

7
8/

21
/2

00
7

43
68

0

0
0

0
0

2
2

2
V

U
#9

59
40

0
C

V
E

-2
00

7-
42

19

7/
27

/2
00

7
6/

14
/2

00
7

8/
21

/2
00

7
43

68

0
0

0
0

0
2

2
2

V
U

#2
52

73
5

C
V

E
-2

00
7-

29
26

7/

30
/2

00
7

7/
24

/2
00

7
7/

24
/2

00
7

6
0

0
0

1
1

1
0

1
0

V
U

#7
83

40
0

C
V

E
-2

00
7-

38
45

7/

30
/2

00
7

7/
25

/2
00

7
7/

25
/2

00
7

5
0

0
1

1
1

1
2

2
2

V
U

#8
45

70
8

C
V

E
-2

00
7-

24
01

7/

31
/2

00
7

6/
14

/2
00

7
6/

21
/2

00
7

47
7

0
0

1
0

0
0

1
0

V
U

#2
52

73
5

C
V

E
-2

00
7-

29
26

8/

1/
20

07

7/
24

/2
00

7
7/

24
/2

00
7

8
0

1
0

1
1

1
0

1
0

V
U

#9
70

84
9

C
V

E
-2

00
7-

36
44

8/

3/
20

07

7/
12

/2
00

7
7/

12
/2

00
7

22
0

0
0

1
1

1
0

0
1

V
U

#7
30

78
5

C
V

E
-2

00
7-

34
56

8/

8/
20

07

7/
10

/2
00

7
7/

10
/2

00
7

29
0

0
1

1
1

1
2

2
2

V
U

#9
70

84
9

C
V

E
-2

00
7-

36
44

8/

8/
20

07

7/
12

/2
00

7
7/

12
/2

00
7

27
0

0
1

1
1

1
0

0
1

V
U

#7
47

23
3

C
V

E
-2

00
7-

03
19

8/

12
/2

00
7

12
/1

2/
20

06

8/
14

/2
00

7
24

3
24

5
0

0
0

0
0

1
1

1
V

U
#9

93
54

4
C

V
E

-2
00

7-
33

82

8/
13

/2
00

7
7/

2/
20

07

8/
13

/2
00

7
42

42

1
1

1
1

1
1

0
0

V
U

#3
61

96
8

C
V

E
-2

00
7-

22
23

8/

14
/2

00
7

5/
17

/2
00

6
8/

14
/2

00
7

45
4

45
4

1
0

1
0

0
2

2
2

V
U

#4
68

80
0

C
V

E
-2

00
7-

17
49

8/

14
/2

00
7

10
/2

4/
20

06

8/
14

/2
00

7
29

4
29

4
1

0
1

0
0

2
2

2
V

U
#1

21
02

4
C

V
E

-2
00

7-
30

32

8/
14

/2
00

7
3/

21
/2

00
7

8/
14

/2
00

7
14

6
14

6
0

0
1

0
0

1
1

1
V

U
#5

58
64

8
C

V
E

-2
00

7-
30

33

8/
14

/2
00

7
3/

21
/2

00
7

8/
14

/2
00

7
14

6
14

6
0

0
0

0
0

1
1

1

301

T
A

B
L

E
 E

1:
 C

on
t'd

C
E

R
T

N

am
e

N
V

D

N
am

e
P

at
ch

D

at
e

N
ot

if
ic

at
io

n
D

at
e

P
ub

li
c

D

at
e

P
at

ch

T
im

e
D

is
cl

os
ur

e

T
im

e
M

ul
tip

le

P
at

ch
es

P

at
ch

T

yp
e

SW

T
yp

e
V

en
do

r
T

yp
e

M
ul

tip
le

V
en

do
r

C
I

A

V
U

#6
40

13
6

C
V

E
-2

00
7-

30
34

8/

14
/2

00
7

3/
27

/2
00

7
8/

14
/2

00
7

14
0

14
0

1
0

1
0

0
2

2
2

V
U

#5
54

25
7

C
V

E
-2

00
7-

27
98

8/

15
/2

00
7

6/
18

/2
00

7
6/

26
/2

00
7

58
8

0
0

1
0

1
2

2
2

V
U

#2
67

28
9

C
V

E
-2

00
7-

22
42

8/

16
/2

00
7

4/
24

/2
00

7
4/

24
/2

00
7

11
4

0
0

0
1

0
1

0
0

2
V

U
#5

15
96

8
C

V
E

-2
00

7-
43

91

8/
21

/2
00

7
8/

15
/2

00
7

8/
15

/2
00

7
6

0
0

0
0

0
0

2
2

2
V

U
#2

52
73

5
C

V
E

-2
00

7-
29

26

8/
22

/2
00

7
7/

24
/2

00
7

7/
24

/2
00

7
29

0
1

0
1

0
1

0
1

0
V

U
#9

27
90

5
C

V
E

-2
00

7-
29

30

8/
29

/2
00

7
7/

26
/2

00
7

8/
27

/2
00

7
34

32

0
0

1
1

1
0

1
0

V
U

#9
81

84
9

C
V

E
-2

00
7-

48
27

8/

30
/2

00
7

8/
20

/2
00

7
9/

20
/2

00
7

10
31

1

0
1

0
0

1
1

1
V

U
#9

07
48

1
C

V
E

-2
00

7-
03

22

9/
4/

20
07

8/

21
/2

00
6

9/
4/

20
07

37

9
37

9
0

1
0

0
0

2
2

2
V

U
#9

79
63

8
C

V
E

-2
00

7-
44

71

9/
4/

20
07

8/

21
/2

00
6

9/
4/

20
07

37

9
37

9
0

1
0

0
0

2
2

2
V

U
#3

77
54

4
C

V
E

-2
00

7-
40

00

9/
4/

20
07

8/

23
/2

00
7

9/
4/

20
07

12

12

1
0

1
1

1
2

2
2

V
U

#8
83

63
2

C
V

E
-2

00
7-

39
99

9/

4/
20

07

8/
23

/2
00

7
9/

4/
20

07

12
12

1

0
1

1
1

2
2

2
V

U
#3

77
54

4
C

V
E

-2
00

7-
40

00

9/
4/

20
07

8/

24
/2

00
7

9/
4/

20
07

11

11

0
0

1
1

1
2

2
2

V
U

#8
83

63
2

C
V

E
-2

00
7-

39
99

9/

4/
20

07

8/
24

/2
00

7
9/

4/
20

07

11
11

1

1
1

1
1

2
2

2
V

U
#8

83
63

2
C

V
E

-2
00

7-
39

99

9/
4/

20
07

8/

24
/2

00
7

9/
4/

20
07

11

11

1
0

1
1

1
2

2
2

V
U

#7
87

44
8

C
V

E
-2

00
6-

49
24

9/

6/
20

07

9/
27

/2
00

6
9/

27
/2

00
6

34
4

0
0

1
1

0
1

0
0

2
V

U
#1

66
52

1
C

V
E

-2
00

7-
29

31

9/
11

/2
00

7
1/

31
/2

00
7

1/
31

/2
00

7
22

3
0

1
1

0
0

0
2

2
2

V
U

#1
96

24
0

C
V

E
-2

00
6-

52
76

9/

11
/2

00
7

2/
19

/2
00

7
2/

19
/2

00
7

20
4

0
0

0
0

0
1

2
2

2
V

U
#7

16
87

2
C

V
E

-2
00

7-
30

40

9/
11

/2
00

7
7/

9/
20

07

9/
11

/2
00

7
64

64

0
0

1
0

0
2

2
2

V
U

#3
77

54
4

C
V

E
-2

00
7-

40
00

9/

11
/2

00
7

8/
24

/2
00

7
9/

4/
20

07

18
11

0

1
1

1
1

2
2

2
V

U
#8

83
63

2
C

V
E

-2
00

7-
39

99

9/
11

/2
00

7
8/

24
/2

00
7

9/
4/

20
07

18

11

1
1

1
1

1
2

2
2

V
U

#8
54

76
9

C
V

E
-2

00
7-

03
26

9/

17
/2

00
7

8/
16

/2
00

6
9/

14
/2

00
7

39
7

39
4

0
1

0
1

0
2

2
2

V
U

#5
44

65
6

C
V

E
-2

00
7-

46
19

9/

17
/2

00
7

8/
29

/2
00

7
10

/1
1/

20
07

19

43

0
1

1
1

1
2

2
2

V
U

#7
51

80
8

C
V

E
-2

00
7-

46
73

9/

18
/2

00
7

9/
12

/2
00

7
9/

12
/2

00
7

6
0

0
1

1
1

1
2

2
2

V
U

#3
77

54
4

C
V

E
-2

00
7-

40
00

9/

28
/2

00
7

8/
24

/2
00

7
9/

4/
20

07

35
11

1

0
1

1
1

2
2

2
V

U
#8

83
63

2
C

V
E

-2
00

7-
39

99

9/
28

/2
00

7
8/

24
/2

00
7

9/
4/

20
07

35

11

1
0

1
1

1
2

2
2

V
U

#6
39

16
9

C
V

E
-2

00
7-

56
02

10

/2
/2

00
7

8/
21

/2
00

7
1/

30
/2

00
8

42
16

2
0

1
0

0
0

2
2

2
V

U
#7

51
80

8
C

V
E

-2
00

7-
46

73

10
/3

/2
00

7
9/

12
/2

00
7

9/
12

/2
00

7
21

0
0

0
0

0
1

2
2

2
V

U
#1

38
63

3
C

V
E

-2
00

7-
60

33

10
/1

0/
20

07

10
/2

/2
00

7
11

/1
9/

20
07

8

48

0
1

1
0

1
2

2
2

302

T
A

B
L

E
 E

1:
 C

on
t'd

C
E

R
T

N

am
e

N
V

D

N
am

e
P

at
ch

D

at
e

N
ot

if
ic

at
io

n
D

at
e

P
ub

li
c

D

at
e

P
at

ch

T
im

e
D

is
cl

os
ur

e

T
im

e
M

ul
tip

le

P
at

ch
es

P

at
ch

T

yp
e

SW

T
yp

e
V

en
do

r
T

yp
e

M
ul

tip
le

V
en

do
r

C
I

A

V
U

#3
49

21
7

C
V

E
-2

00
7-

53
34

10

/1
8/

20
07

8/

5/
20

07

10
/1

9/
20

07

74
75

0

1
1

1
1

0
1

0
V

U
#2

98
52

1
C

V
E

-2
00

7-
56

03

10
/1

9/
20

07

9/
20

/2
00

7
11

/1
/2

00
7

29
42

0

0
1

1
0

2
2

2
V

U
#4

03
15

0
C

V
E

-2
00

7-
38

96

10
/2

2/
20

07

7/
25

/2
00

7
7/

25
/2

00
7

89
0

0
1

0
0

1
2

2
2

V
U

#8
83

63
2

C
V

E
-2

00
7-

39
99

10

/2
2/

20
07

8/

24
/2

00
7

9/
4/

20
07

59

11

0
0

1
0

1
2

2
2

V
U

#7
59

38
5

C
V

E
-2

00
7-

50
80

10

/2
5/

20
07

10

/2
/2

00
6

10
/2

9/
20

07

38
8

39
2

0
1

0
1

0
2

2
2

V
U

#4
49

08
9

C
V

E
-2

00
7-

29
19

10

/2
5/

20
07

2/

21
/2

00
7

6/
5/

20
07

24

6
10

4
0

1
0

0
0

2
2

2
V

U
#8

71
67

3
C

V
E

-2
00

7-
56

01

10
/2

5/
20

07

10
/1

6/
20

07

10
/1

8/
20

07

9
2

0
0

0
1

1
2

2
2

V
U

#4
46

89
7

C
V

E
-2

00
7-

43
51

10

/3
1/

20
07

10

/1
6/

20
07

10

/3
1/

20
07

15

15

0
1

1
1

1
2

2
2

V
U

#4
46

89
7

C
V

E
-2

00
7-

43
51

10

/3
1/

20
07

10

/1
9/

20
07

10

/3
1/

20
07

12

12

1
0

1
1

1
2

2
2

V
U

#4
46

89
7

C
V

E
-2

00
7-

43
51

11

/1
/2

00
7

10
/2

0/
20

07

10
/3

1/
20

07

12
11

1

0
1

1
1

2
2

2
V

U
#6

90
51

5
C

V
E

-2
00

7-
46

76

11
/5

/2
00

7
9/

14
/2

00
7

11
/5

/2
00

7
52

52

0
1

0
0

0
2

2
2

V
U

#4
46

89
7

C
V

E
-2

00
7-

43
51

11

/6
/2

00
7

10
/1

7/
20

07

10
/3

1/
20

07

20
14

0

1
1

1
1

2
2

2
V

U
#4

84
64

9
C

V
E

-2
00

7-
38

98

11
/1

3/
20

07

4/
30

/2
00

7
11

/1
3/

20
07

19

7
19

7
0

0
1

0
0

0
1

1
V

U
#4

03
15

0
C

V
E

-2
00

7-
38

96

11
/1

3/
20

07

7/
25

/2
00

7
7/

25
/2

00
7

11
1

0
0

0
1

0
1

2
2

2
V

U
#4

98
10

5
C

V
E

-2
00

7-
46

82

11
/1

4/
20

07

10
/2

4/
20

06

10
/1

4/
20

07

38
6

35
5

0
1

1
0

0
1

1
1

V
U

#2
12

98
4

C
V

E
-2

00
7-

56
15

11

/1
8/

20
07

10

/2
5/

20
07

11

/3
/2

00
7

24
9

0
1

1
1

1
0

1
0

V
U

#2
37

88
8

C
V

E
-2

00
7-

56
13

11

/1
8/

20
07

10

/2
5/

20
07

11

/5
/2

00
7

24
11

0

1
1

1
1

0
1

0
V

U
#4

38
61

6
C

V
E

-2
00

7-
56

14

11
/1

8/
20

07

10
/2

5/
20

07

11
/5

/2
00

7
24

11

0
1

1
1

1
1

1
1

V
U

#7
15

73
7

C
V

E
-2

00
7-

59
47

11

/2
6/

20
07

11

/7
/2

00
7

11
/7

/2
00

7
19

0
1

1
1

1
1

0
1

0
V

U
#2

03
22

0
C

V
E

-2
00

8-
00

06

12
/2

/2
00

7
9/

26
/2

00
7

1/
17

/2
00

8
67

11
3

1
0

1
1

1
1

1
1

V
U

#3
05

20
8

C
V

E
-2

00
8-

24
62

12

/5
/2

00
7

11
/2

8/
20

07

12
/5

/2
00

7
7

7
0

1
1

1
0

0
1

0
V

U
#4

38
39

5
C

V
E

-2
00

7-
60

15

12
/6

/2
00

7
11

/2
2/

20
07

12

/1
0/

20
07

14

18

1
0

1
1

1
2

2
2

V
U

#1
10

94
7

C
V

E
-2

00
8-

01
77

12

/8
/2

00
7

11
/3

0/
20

07

2/
6/

20
08

8

68

0
1

1
0

1
0

0
2

V
U

#5
70

08
9

C
V

E
-2

00
7-

62
55

12

/1
1/

20
07

5/

29
/2

00
7

12
/1

1/
20

07

19
6

19
6

0
0

0
0

0
2

2
2

V
U

#8
04

08
9

C
V

E
-2

00
7-

39
01

12

/1
1/

20
07

9/

28
/2

00
7

12
/1

1/
20

07

74
74

1

0
1

0
1

2
2

2
V

U
#6

59
76

1
C

V
E

-2
00

7-
61

66

12
/1

3/
20

07

11
/2

3/
20

07

11
/2

3/
20

07

20
0

0
0

0
0

1
2

2
2

V
U

#1
20

59
3

C
V

E
-2

00
7-

63
30

12

/1
4/

20
07

5/

29
/2

00
7

12
/1

1/
20

07

19
9

19
6

0
0

0
0

0
2

2
2

V
U

#2
32

88
1

C
V

E
-2

00
7-

62
39

12

/1
8/

20
07

11

/2
7/

20
07

11

/2
7/

20
07

21

0
0

0
1

1
1

0
0

1

303

T
A

B
L

E
 E

1:
 C

on
t'd

C
E

R
T

N

am
e

N
V

D

N
am

e
P

at
ch

D

at
e

N
ot

if
ic

at
io

n
D

at
e

P
ub

li
c

D

at
e

P
at

ch

T
im

e
D

is
cl

os
ur

e

T
im

e
M

ul
tip

le

P
at

ch
es

P

at
ch

T

yp
e

SW

T
yp

e
V

en
do

r
T

yp
e

M
ul

tip
le

V
en

do
r

C
I

A

V
U

#9
29

65
6

C
V

E
-2

00
7-

63
72

12

/1
8/

20
07

12

/1
2/

20
07

12

/1
2/

20
07

6

0
0

1
1

0
1

0
0

2
V

U
#9

70
84

9
C

V
E

-2
00

7-
36

44

1/
8/

20
08

7/

12
/2

00
7

7/
12

/2
00

7
18

0
0

0
1

1
1

1
0

0
1

V
U

#2
32

88
1

C
V

E
-2

00
7-

62
39

1/

9/
20

08

11
/2

7/
20

07

11
/2

7/
20

07

43
0

0
0

1
1

1
0

0
1

V
U

#2
32

88
1

C
V

E
-2

00
7-

62
39

1/

9/
20

08

11
/2

7/
20

07

11
/2

7/
20

07

43
0

1
0

1
1

1
0

0
1

V
U

#3
08

55
6

C
V

E
-2

00
8-

01
76

1/

11
/2

00
8

12
/2

0/
20

07

1/
24

/2
00

8
22

35

0
0

1
0

0
2

2
2

V
U

#2
03

61
1

C
V

E
-2

00
8-

01
22

1/

14
/2

00
8

12
/1

0/
20

07

12
/1

0/
20

07

35
0

0
1

1
1

1
2

2
2

V
U

#4
74

43
3

C
V

E
-2

00
7-

44
67

1/

15
/2

00
8

8/
15

/2
00

6
8/

28
/2

00
7

51
8

37
8

0
0

0
0

0
2

2
2

V
U

#1
80

87
6

C
V

E
-2

00
8-

01
74

1/

17
/2

00
8

12
/2

0/
20

07

1/
24

/2
00

8
28

35

0
1

1
0

0
1

0
0

V
U

#2
03

22
0

C
V

E
-2

00
8-

00
06

1/

18
/2

00
8

1/
8/

20
08

1/

17
/2

00
8

10
9

1
0

1
1

1
1

1
1

V
U

#2
03

22
0

C
V

E
-2

00
8-

00
06

1/

18
/2

00
8

1/
17

/2
00

8
1/

17
/2

00
8

1
0

1
1

1
1

1
1

1
1

V
U

#2
03

22
0

C
V

E
-2

00
8-

00
06

1/

20
/2

00
8

1/
17

/2
00

8
1/

17
/2

00
8

3
0

1
1

1
1

1
1

1
1

V
U

#1
58

60
9

C
V

E
-2

00
8-

04
01

1/

22
/2

00
8

10
/2

4/
20

07

1/
24

/2
00

8
90

92

0
1

1
0

0
2

2
2

V
U

#2
03

22
0

C
V

E
-2

00
8-

00
06

1/

22
/2

00
8

1/
17

/2
00

8
1/

17
/2

00
8

5
0

0
0

1
1

1
1

1
1

V
U

#2
03

22
0

C
V

E
-2

00
8-

00
06

1/

23
/2

00
8

1/
17

/2
00

8
1/

17
/2

00
8

6
0

0
0

1
1

1
1

1
1

V
U

#3
39

34
5

C
V

E
-2

00
8-

01
75

1/

31
/2

00
8

12
/2

0/
20

07

1/
24

/2
00

8
42

35

0
1

1
0

0
1

1
1

V
U

#1
10

94
7

C
V

E
-2

00
8-

01
77

2/

1/
20

08

11
/3

0/
20

07

2/
6/

20
08

63

68

1
0

1
1

1
0

0
2

V
U

#1
10

94
7

C
V

E
-2

00
8-

01
77

2/

5/
20

08

11
/3

0/
20

07

2/
6/

20
08

67

68

0
1

1
0

1
0

0
2

V
U

#1
12

17
9

C
V

E
-2

00
8-

02
34

2/

6/
20

08

1/
10

/2
00

8
1/

10
/2

00
8

27
0

1
0

0
0

0
2

2
2

V
U

#8
79

05
6

C
V

E
-2

00
8-

04
19

2/

7/
20

08

10
/2

0/
20

07

2/
7/

20
08

11

0
11

0
0

1
1

1
1

2
2

2
V

U
#3

09
60

8
C

V
E

-2
00

8-
04

18

2/
7/

20
08

1/

22
/2

00
8

2/
7/

20
08

16

16

0
1

1
1

1
1

0
0

V
U

#2
03

22
0

C
V

E
-2

00
8-

00
06

2/

8/
20

08

1/
17

/2
00

8
1/

17
/2

00
8

22
0

1
0

1
1

1
1

1
1

V
U

#8
62

60
0

C
V

E
-2

00
7-

33
83

2/

9/
20

08

7/
2/

20
07

7/

21
/2

00
7

22
2

19

0
1

1
1

1
0

1
0

V
U

#2
28

56
9

C
V

E
-2

00
8-

00
77

2/

12
/2

00
8

10
/2

4/
20

07

2/
12

/2
00

8
11

1
11

1
1

0
1

0
0

2
2

2
V

U
#2

64
38

5
C

V
E

-2
00

8-
05

56

2/
13

/2
00

8
12

/1
2/

20
07

2/

13
/2

00
8

63
63

1

0
0

1
0

1
1

1
V

U
#1

10
94

7
C

V
E

-2
00

8-
01

77

2/
14

/2
00

8
11

/3
0/

20
07

2/

6/
20

08

76
68

0

1
1

1
1

0
0

2
V

U
#9

29
65

6
C

V
E

-2
00

7-
63

72

2/
24

/2
00

8
12

/1
2/

20
07

12

/1
2/

20
07

74

0
0

1
1

0
1

0
0

2
V

U
#6

61
65

1
C

V
E

-2
00

8-
03

04

2/
26

/2
00

8
1/

14
/2

00
8

2/
26

/2
00

8
43

43

1
1

0
1

1
1

1
1

V
U

#4
04

51
5

C
V

E
-2

00
8-

11
45

3/

1/
20

08

2/
20

/2
00

8
3/

6/
20

08

10
15

1

1
1

1
1

1
0

0

304

T
A

B
L

E
 E

1:
 C

on
t'd

C
E

R
T

N

am
e

N
V

D

N
am

e
P

at
ch

D

at
e

N
ot

if
ic

at
io

n
D

at
e

P
ub

li
c

D

at
e

P
at

ch

T
im

e
D

is
cl

os
ur

e

T
im

e
M

ul
tip

le

P
at

ch
es

P

at
ch

T

yp
e

SW

T
yp

e
V

en
do

r
T

yp
e

M
ul

tip
le

V
en

do
r

C
I

A

V
U

#2
23

02
8

C
V

E
-2

00
8-

11
96

3/

4/
20

08

2/
1/

20
08

3/

6/
20

08

32
34

0

0
1

0
1

1
1

1
V

U
#5

12
49

1
C

V
E

-2
00

8-
00

72

3/
5/

20
08

3/

3/
20

08

3/
5/

20
08

2

2
1

0
1

1
1

1
1

1
V

U
#5

12
49

1
C

V
E

-2
00

8-
00

72

3/
5/

20
08

3/

4/
20

08

3/
5/

20
08

1

1
1

1
1

1
1

1
1

1
V

U
#5

12
49

1
C

V
E

-2
00

8-
00

72

3/
6/

20
08

3/

5/
20

08

3/
5/

20
08

1

0
0

0
0

1
1

1
1

1
V

U
#3

93
30

5
C

V
E

-2
00

8-
01

10

3/
11

/2
00

8
7/

3/
20

07

3/
11

/2
00

8
25

2
25

2
1

0
0

0
0

2
2

2
V

U
#3

62
84

9
C

V
E

-2
00

7-
62

53

3/
11

/2
00

8
11

/1
9/

20
07

3/

11
/2

00
8

11
3

11
3

0
0

0
0

0
2

2
2

V
U

#2
48

37
2

C
V

E
-2

00
8-

12
62

3/

13
/2

00
8

12
/2

7/
20

07

3/
6/

20
08

77

70

0
1

1
0

0
2

2
2

V
U

#3
29

67
3

C
V

E
-2

00
7-

62
54

3/

18
/2

00
8

5/
9/

20
07

3/

18
/2

00
8

31
4

31
4

0
0

0
0

0
2

2
2

V
U

#3
74

12
1

C
V

E
-2

00
8-

09
47

3/

18
/2

00
8

3/
6/

20
08

3/

18
/2

00
8

12
12

0

0
1

1
1

2
2

2
V

U
#8

95
60

9
C

V
E

-2
00

8-
00

62

3/
18

/2
00

8
3/

6/
20

08

3/
18

/2
00

8
12

12

0
0

1
0

1
2

2
2

V
U

#8
95

60
9

C
V

E
-2

00
8-

00
62

3/

18
/2

00
8

3/
6/

20
08

3/

18
/2

00
8

12
12

0

0
1

1
1

2
2

2
V

U
#9

14
78

5
C

V
E

-2
00

7-
16

82

3/
19

/2
00

8
7/

7/
20

06

8/
25

/2
00

7
62

1
41

4
0

1
0

1
0

2
2

2
V

U
#3

74
12

1
C

V
E

-2
00

8-
09

47

3/
19

/2
00

8
3/

6/
20

08

3/
18

/2
00

8
13

12

0
1

1
1

1
2

2
2

V
U

#8
95

60
9

C
V

E
-2

00
8-

00
62

3/

19
/2

00
8

3/
6/

20
08

3/

18
/2

00
8

13
12

0

1
1

1
1

2
2

2
V

U
#7

76
93

1
C

V
E

-2
00

8-
06

60

3/
21

/2
00

8
11

/2
2/

20
07

11

/2
2/

20
07

12

0
0

0
1

0
0

0
2

2
2

V
U

#4
66

52
1

C
V

E
-2

00
8-

12
33

3/

25
/2

00
8

1/
6/

20
08

3/

25
/2

00
8

79
79

0

1
1

1
1

1
1

1
V

U
#8

58
59

5
C

V
E

-2
00

8-
11

00

4/
14

/2
00

8
3/

10
/2

00
8

4/
14

/2
00

8
35

35

0
1

0
1

1
2

2
2

V
U

#4
41

52
9

C
V

E
-2

00
8-

13
80

4/

16
/2

00
8

3/
27

/2
00

8
4/

16
/2

00
8

20
20

0

1
1

1
1

2
2

2
V

U
#2

18
39

5
C

V
E

-2
00

8-
17

22

4/
18

/2
00

8
4/

15
/2

00
8

4/
15

/2
00

8
3

0
0

1
1

1
1

0
0

1
V

U
#5

96
26

8
C

V
E

-2
00

8-
20

05

4/
28

/2
00

8
1/

30
/2

00
8

5/
5/

20
08

89

96

0
0

1
0

0
0

0
1

V
U

#1
40

12
9

C
V

E
-2

00
7-

56
63

5/

6/
20

08

10
/3

/2
00

7
2/

9/
20

08

21
6

12
9

0
1

0
0

1
2

2
2

V
U

#6
66

28
1

C
V

E
-2

00
7-

56
59

5/

6/
20

08

2/
9/

20
08

2/

9/
20

08

87
0

0
1

0
0

1
2

2
2

V
U

#9
36

52
9

C
V

E
-2

00
7-

60
26

5/

13
/2

00
8

11
/1

6/
20

07

11
/1

6/
20

07

17
9

0
0

0
1

0
0

2
2

2
V

U
#3

15
10

7
C

V
E

-2
00

7-
60

78

5/
19

/2
00

8
11

/2
1/

20
07

11

/2
1/

20
07

18

0
0

0
1

0
1

0
1

1
1

V
U

#9
29

65
6

C
V

E
-2

00
7-

63
72

5/

19
/2

00
8

12
/1

2/
20

07

12
/1

2/
20

07

15
9

0
1

1
1

0
1

0
0

2
V

U
#1

19
74

7
C

V
E

-2
00

8-
11

04

5/
20

/2
00

8
4/

23
/2

00
8

5/
20

/2
00

8
27

27

1
1

0
0

0
2

2
2

V
U

#1
10

94
7

C
V

E
-2

00
8-

01
77

5/

28
/2

00
8

11
/3

0/
20

07

2/
6/

20
08

18

0
68

1

0
1

0
1

0
0

2
V

U
#1

90
93

9
C

V
E

-2
00

7-
56

04

6/
3/

20
08

4/

11
/2

00
8

6/
4/

20
08

53

54

0
0

0
0

0
1

1
1

305

T
A

B
L

E
 E

1:
 C

on
t'd

C
E

R
T

N

am
e

N
V

D

N
am

e
P

at
ch

D

at
e

N
ot

if
ic

at
io

n
D

at
e

P
ub

li
c

D

at
e

P
at

ch

T
im

e
D

is
cl

os
ur

e

T
im

e
M

ul
tip

le

P
at

ch
es

P

at
ch

T

yp
e

SW

T
yp

e
V

en
do

r
T

yp
e

M
ul

tip
le

V
en

do
r

C
I

A

V
U

#8
78

04
4

C
V

E
-2

00
8-

09
60

6/

4/
20

08

5/
20

/2
00

8
5/

31
/2

00
8

15
11

0

1
1

0
1

2
2

2
V

U
#1

32
41

9
C

V
E

-2
00

8-
15

85

6/
9/

20
08

5/

8/
20

08

6/
9/

20
08

32

32

1
1

0
0

0
1

1
1

V
U

#8
78

04
4

C
V

E
-2

00
8-

09
60

6/

9/
20

08

5/
16

/2
00

8
5/

31
/2

00
8

24
15

0

1
1

1
1

2
2

2
V

U
#8

78
04

4
C

V
E

-2
00

8-
09

60

6/
9/

20
08

5/

20
/2

00
8

5/
31

/2
00

8
20

11

1
0

1
0

1
2

2
2

V
U

#8
78

04
4

C
V

E
-2

00
8-

09
60

6/

9/
20

08

5/
31

/2
00

8
5/

31
/2

00
8

9
0

1
1

1
1

1
2

2
2

V
U

#8
78

04
4

C
V

E
-2

00
8-

09
60

6/

10
/2

00
8

5/
20

/2
00

8
5/

31
/2

00
8

21
11

1

0
1

1
1

2
2

2
V

U
#8

78
04

4
C

V
E

-2
00

8-
09

60

6/
11

/2
00

8
5/

31
/2

00
8

5/
31

/2
00

8
11

0
0

1
1

1
1

2
2

2
V

U
#4

76
34

5
C

V
E

-2
00

8-
26

39

6/
12

/2
00

8
4/

14
/2

00
8

6/
11

/2
00

8
59

58

1
0

0
0

0
2

2
2

V
U

#1
27

18
5

C
V

E
-2

00
8-

23
06

6/

19
/2

00
8

6/
9/

20
08

6/

19
/2

00
8

10
10

0

0
1

0
0

2
2

2
V

U
#8

00
11

3
C

V
E

-2
00

8-
14

47

6/
27

/2
00

8
4/

21
/2

00
8

7/
8/

20
08

67

78

0
0

1
0

1
0

1
1

V
U

#1
66

65
1

C
V

E
-2

00
8-

43
85

7/

3/
20

08

4/
21

/2
00

8
10

/1
4/

20
08

73

17
6

0
1

0
0

0
2

2
2

V
U

#8
00

11
3

C
V

E
-2

00
8-

14
47

7/

3/
20

08

6/
3/

20
08

7/

8/
20

08

30
35

0

0
1

0
1

0
1

1
V

U
#8

89
74

7
C

V
E

-2
00

8-
09

51

7/
8/

20
08

2/

19
/2

00
8

3/
20

/2
00

8
14

0
30

0

0
1

0
0

2
2

2
V

U
#8

00
11

3
C

V
E

-2
00

8-
14

47

7/
8/

20
08

4/

14
/2

00
8

7/
8/

20
08

85

85

1
0

1
0

1
0

1
1

V
U

#8
00

11
3

C
V

E
-2

00
8-

14
47

7/

8/
20

08

4/
21

/2
00

8
7/

8/
20

08

78
78

0

0
1

1
1

0
1

1
V

U
#8

00
11

3
C

V
E

-2
00

8-
14

47

7/
8/

20
08

4/

29
/2

00
8

7/
8/

20
08

70

70

0
1

1
1

1
0

1
1

V
U

#8
00

11
3

C
V

E
-2

00
8-

14
47

7/

8/
20

08

5/
1/

20
08

7/

8/
20

08

68
68

1

1
1

1
1

0
1

1
V

U
#8

00
11

3
C

V
E

-2
00

8-
14

47

7/
8/

20
08

5/

5/
20

08

7/
8/

20
08

64

64

1
1

1
1

1
0

1
1

V
U

#8
00

11
3

C
V

E
-2

00
8-

14
47

7/

8/
20

08

5/
5/

20
08

7/

8/
20

08

64
64

1

0
1

1
1

0
1

1
V

U
#8

00
11

3
C

V
E

-2
00

8-
14

47

7/
8/

20
08

5/

5/
20

08

7/
8/

20
08

64

64

1
0

1
1

1
0

1
1

V
U

#8
00

11
3

C
V

E
-2

00
8-

14
47

7/

8/
20

08

5/
5/

20
08

7/

8/
20

08

64
64

1

1
1

1
1

0
1

1
V

U
#8

00
11

3
C

V
E

-2
00

8-
14

47

7/
9/

20
08

4/

21
/2

00
8

7/
8/

20
08

79

78

0
0

1
0

1
0

1
1

V
U

#8
00

11
3

C
V

E
-2

00
8-

14
47

7/

9/
20

08

5/
5/

20
08

7/

8/
20

08

65
64

1

0
1

1
1

0
1

1
V

U
#8

00
11

3
C

V
E

-2
00

8-
14

47

7/
9/

20
08

5/

5/
20

08

7/
8/

20
08

65

64

1
0

1
1

1
0

1
1

V
U

#8
00

11
3

C
V

E
-2

00
8-

14
47

7/

9/
20

08

5/
5/

20
08

7/

8/
20

08

65
64

0

0
1

1
1

0
1

1
V

U
#8

00
11

3
C

V
E

-2
00

8-
14

47

7/
9/

20
08

7/

3/
20

08

7/
8/

20
08

6

5
0

0
1

0
1

0
1

1
V

U
#8

00
11

3
C

V
E

-2
00

8-
14

47

7/
10

/2
00

8
4/

21
/2

00
8

7/
8/

20
08

80

78

0
0

1
0

1
0

1
1

V
U

#8
00

11
3

C
V

E
-2

00
8-

14
47

7/

10
/2

00
8

4/
21

/2
00

8
7/

8/
20

08

80
78

0

1
1

0
1

0
1

1

306

T
A

B
L

E
 E

1:
 C

on
t'd

C
E

R
T

N

am
e

N
V

D

N
am

e
P

at
ch

D

at
e

N
ot

if
ic

at
io

n
D

at
e

P
ub

li
c

D

at
e

P
at

ch

T
im

e
D

is
cl

os
ur

e

T
im

e
M

ul
tip

le

P
at

ch
es

P

at
ch

T

yp
e

SW

T
yp

e
V

en
do

r
T

yp
e

M
ul

tip
le

V
en

do
r

C
I

A

V
U

#8
00

11
3

C
V

E
-2

00
8-

14
47

7/

11
/2

00
8

4/
21

/2
00

8
7/

8/
20

08

81
78

1

0
1

0
1

0
1

1
V

U
#8

00
11

3
C

V
E

-2
00

8-
14

47

7/
11

/2
00

8
5/

5/
20

08

7/
8/

20
08

67

64

1
0

1
1

1
0

1
1

V
U

#8
00

11
3

C
V

E
-2

00
8-

14
47

7/

11
/2

00
8

5/
5/

20
08

7/

8/
20

08

67
64

1

0
1

0
1

0
1

1
V

U
#8

00
11

3
C

V
E

-2
00

8-
14

47

7/
11

/2
00

8
6/

6/
20

08

7/
8/

20
08

35

32

1
1

1
1

1
0

1
1

V
U

#8
00

11
3

C
V

E
-2

00
8-

14
47

7/

11
/2

00
8

7/
8/

20
08

7/

8/
20

08

3
0

0
1

1
1

1
0

1
1

V
U

#8
00

11
3

C
V

E
-2

00
8-

14
47

7/

13
/2

00
8

5/
5/

20
08

7/

8/
20

08

69
64

0

1
1

1
1

0
1

1
V

U
#8

00
11

3
C

V
E

-2
00

8-
14

47

7/
14

/2
00

8
7/

8/
20

08

7/
8/

20
08

6

0
1

1
1

0
1

0
1

1
V

U
#1

30
92

3
C

V
E

-2
00

8-
29

33

7/
15

/2
00

8
6/

22
/2

00
8

7/
16

/2
00

8
23

24

1
1

1
1

1
1

0
0

V
U

#2
77

31
3

C
V

E
-2

00
8-

43
87

7/

16
/2

00
8

7/
7/

20
07

11

/7
/2

00
8

37
5

48
9

0
0

0
0

0
2

2
2

V
U

#8
00

11
3

C
V

E
-2

00
8-

14
47

7/

16
/2

00
8

4/
21

/2
00

8
7/

8/
20

08

86
78

1

0
1

0
1

0
1

1
V

U
#8

00
11

3
C

V
E

-2
00

8-
14

47

7/
17

/2
00

8
7/

8/
20

08

7/
8/

20
08

9

0
0

0
1

0
1

0
1

1
V

U
#8

00
11

3
C

V
E

-2
00

8-
14

47

7/
21

/2
00

8
5/

5/
20

08

7/
8/

20
08

77

64

0
1

1
0

1
0

1
1

V
U

#8
00

11
3

C
V

E
-2

00
8-

14
47

7/

21
/2

00
8

5/
5/

20
08

7/

8/
20

08

77
64

0

1
1

0
1

0
1

1
V

U
#8

00
11

3
C

V
E

-2
00

8-
14

47

7/
24

/2
00

8
7/

8/
20

08

7/
8/

20
08

16

0
1

1
1

0
1

0
1

1
V

U
#8

31
45

7
C

V
E

-2
00

8-
13

09

7/
25

/2
00

8
3/

10
/2

00
8

3/
10

/2
00

8
13

7
0

0
1

0
1

0
2

2
2

V
U

#8
00

11
3

C
V

E
-2

00
8-

14
47

7/

28
/2

00
8

7/
8/

20
08

7/

8/
20

08

20
0

0
0

1
0

1
0

1
1

V
U

#8
00

11
3

C
V

E
-2

00
8-

14
47

7/

30
/2

00
8

4/
21

/2
00

8
7/

8/
20

08

10
0

78

0
1

1
0

1
0

1
1

V
U

#8
78

04
4

C
V

E
-2

00
8-

09
60

7/

30
/2

00
8

5/
20

/2
00

8
5/

31
/2

00
8

71
11

0

0
1

0
1

2
2

2
V

U
#8

00
11

3
C

V
E

-2
00

8-
14

47

7/
31

/2
00

8
5/

5/
20

08

7/
8/

20
08

87

64

1
0

1
0

1
0

1
1

V
U

#7
16

38
7

C
V

E
-2

00
8-

32
57

8/

4/
20

08

7/
21

/2
00

8
7/

21
/2

00
8

14
0

0
0

1
0

0
2

2
2

V
U

#8
00

11
3

C
V

E
-2

00
8-

14
47

8/

5/
20

08

4/
21

/2
00

8
7/

8/
20

08

10
6

78

0
0

0
0

1
0

1
1

V
U

#8
00

11
3

C
V

E
-2

00
8-

14
47

8/

8/
20

08

5/
5/

20
08

7/

8/
20

08

95
64

0

0
1

0
1

0
1

1
V

U
#3

09
73

9
C

V
E

-2
00

8-
22

45

8/
12

/2
00

8
4/

10
/2

00
8

8/
12

/2
00

8
12

4
12

4
0

0
1

0
0

2
2

2
V

U
#8

37
78

5
C

V
E

-2
00

8-
24

63

8/
12

/2
00

8
7/

1/
20

08

7/
7/

20
08

42

6
1

0
0

0
0

1
1

1
V

U
#6

61
82

7
C

V
E

-2
00

8-
35

58

8/
14

/2
00

8
6/

20
/2

00
8

8/
7/

20
08

55

48

1
1

0
1

0
2

2
2

V
U

#2
98

65
1

C
V

E
-2

00
7-

54
00

8/

14
/2

00
8

7/
25

/2
00

8
7/

25
/2

00
8

20
0

0
1

0
1

1
2

2
2

V
U

#9
38

32
3

C
V

E
-2

00
8-

29
36

8/

14
/2

00
8

8/
1/

20
08

8/

18
/2

00
8

13
17

0

1
1

1
1

2
2

2
V

U
#9

38
32

3
C

V
E

-2
00

8-
29

36

8/
14

/2
00

8
8/

1/
20

08

8/
18

/2
00

8
13

17

0
0

1
1

1
2

2
2

307

T
A

B
L

E
 E

1:
 C

on
t'd

C
E

R
T

N

am
e

N
V

D

N
am

e
P

at
ch

D

at
e

N
ot

if
ic

at
io

n
D

at
e

P
ub

li
c

D

at
e

P
at

ch

T
im

e
D

is
cl

os
ur

e

T
im

e
M

ul
tip

le

P
at

ch
es

P

at
ch

T

yp
e

SW

T
yp

e
V

en
do

r
T

yp
e

M
ul

tip
le

V
en

do
r

C
I

A

V
U

#9
38

32
3

C
V

E
-2

00
8-

29
36

8/

15
/2

00
8

8/
1/

20
08

8/

18
/2

00
8

14
17

0

0
1

1
1

2
2

2
V

U
#9

85
44

9
C

V
E

-2
00

7-
44

75

8/
19

/2
00

8
7/

21
/2

00
8

3/
31

/2
00

9
29

25
3

0
0

0
0

1
2

2
2

V
U

#8
17

94
0

C
V

E
-2

00
8-

24
64

9/

4/
20

08

8/
22

/2
00

8
8/

22
/2

00
8

13
0

0
0

1
1

1
0

0
2

V
U

#1
46

89
6

C
V

E
-2

00
8-

36
36

9/

9/
20

08

3/
13

/2
00

8
10

/7
/2

00
8

18
0

20
8

0
1

0
0

1
2

2
2

V
U

#5
38

01
1

C
V

E
-2

00
8-

24
68

9/

12
/2

00
8

9/
3/

20
08

9/

12
/2

00
8

9
9

0
0

1
0

0
2

2
2

V
U

#1
26

78
7

C
V

E
-2

00
8-

36
18

9/

15
/2

00
8

12
/1

3/
20

07

9/
15

/2
00

8
27

7
27

7
0

0
1

0
0

2
2

2
V

U
#8

89
48

4
C

V
E

-2
00

8-
39

64

9/
18

/2
00

8
9/

5/
20

08

9/
5/

20
08

13

0
0

1
1

1
1

0
0

1
V

U
#8

00
11

3
C

V
E

-2
00

8-
14

47

9/
26

/2
00

8
4/

21
/2

00
8

7/
8/

20
08

15

8
78

0

1
1

0
1

0
1

1
V

U
#8

37
09

2
C

V
E

-2
00

8-
10

93

9/
26

/2
00

8
9/

16
/2

00
8

9/
16

/2
00

8
10

0
0

1
0

0
1

2
2

2
V

U
#4

72
36

3
C

V
E

-2
00

8-
44

04

10
/1

/2
00

8
7/

30
/2

00
8

10
/2

/2
00

8
63

64

0
1

1
1

1
2

2
2

V
U

#4
72

36
3

C
V

E
-2

00
8-

44
04

10

/2
/2

00
8

7/
30

/2
00

8
10

/2
/2

00
8

64
64

0

0
1

1
1

2
2

2
V

U
#4

72
36

3
C

V
E

-2
00

8-
44

04

10
/2

/2
00

8
7/

30
/2

00
8

10
/2

/2
00

8
64

64

0
0

1
0

1
2

2
2

V
U

#4
72

36
3

C
V

E
-2

00
8-

44
04

10

/2
/2

00
8

7/
30

/2
00

8
10

/2
/2

00
8

64
64

0

1
1

0
1

2
2

2
V

U
#1

46
89

6
C

V
E

-2
00

8-
36

36

10
/7

/2
00

8
3/

13
/2

00
8

10
/7

/2
00

8
20

8
20

8
0

0
0

0
1

2
2

2
V

U
#3

43
97

1
C

V
E

-2
00

8-
24

74

10
/8

/2
00

8
9/

25
/2

00
8

9/
25

/2
00

8
13

0
0

0
1

0
0

2
2

2
V

U
#4

06
93

7
C

V
E

-2
00

8-
09

57

10
/1

4/
20

08

8/
16

/2
00

6
5/

19
/2

00
8

79
0

64
2

0
0

0
0

0
1

1
1

V
U

#7
93

23
3

C
V

E
-2

00
8-

14
46

10

/1
4/

20
08

5/

2/
20

08

10
/1

4/
20

08

16
5

16
5

1
0

1
0

0
2

2
2

V
U

#1
46

89
6

C
V

E
-2

00
8-

36
36

10

/1
5/

20
08

3/

13
/2

00
8

10
/7

/2
00

8
21

6
20

8
0

1
0

0
1

2
2

2
V

U
#1

83
65

7
C

V
E

-2
00

8-
24

69

10
/2

3/
20

08

9/
18

/2
00

8
10

/2
1/

20
08

35

33

0
1

1
0

1
2

2
2

V
U

#4
72

36
3

C
V

E
-2

00
8-

44
04

10

/2
7/

20
08

7/

30
/2

00
8

10
/2

/2
00

8
89

64

0
0

1
1

1
2

2
2

V
U

#8
37

09
2

C
V

E
-2

00
8-

10
93

10

/2
9/

20
08

9/

16
/2

00
8

9/
16

/2
00

8
43

0
0

0
0

0
1

2
2

2
V

U
#4

72
36

3
C

V
E

-2
00

8-
44

04

10
/3

1/
20

08

7/
30

/2
00

8
10

/2
/2

00
8

93
64

0

1
1

1
1

2
2

2
V

U
#5

93
40

9
C

V
E

-2
00

8-
29

92

11
/4

/2
00

8
3/

21
/2

00
8

11
/4

/2
00

8
22

8
22

8
0

1
0

0
0

2
2

2
V

U
#5

24
68

1
C

V
E

-2
00

7-
03

28

11
/2

7/
20

08

5/
31

/2
00

7
5/

31
/2

00
7

54
6

0
0

1
0

0
0

2
2

2
V

U
#4

93
88

1
C

V
E

-2
00

8-
48

44

12
/1

7/
20

08

12
/9

/2
00

8
12

/9
/2

00
8

8
0

0
0

1
0

1
2

2
2

V
U

#5
41

02
5

C
V

E
-2

00
8-

24
34

12

/1
8/

20
08

8/

18
/2

00
8

12
/2

1/
20

08

12
2

12
5

0
1

0
0

0
2

2
2

V
U

#7
02

62
8

C
V

E
-2

00
8-

24
35

12

/1
8/

20
08

8/

25
/2

00
8

12
/2

1/
20

08

11
5

11
8

0
1

0
0

0
2

2
2

V
U

#7
68

68
1

C
V

E
-2

00
6-

52
68

1/

12
/2

00
9

8/
8/

20
08

11

/1
1/

20
08

15

7
95

1

0
0

0
0

2
2

2

308

T
A

B
L

E
 E

1:
 C

on
t'd

C
E

R
T

N

am
e

N
V

D

N
am

e
P

at
ch

D

at
e

N
ot

if
ic

at
io

n
D

at
e

P
ub

li
c

D

at
e

P
at

ch

T
im

e
D

is
cl

os
ur

e

T
im

e
M

ul
tip

le

P
at

ch
es

P

at
ch

T

yp
e

SW

T
yp

e
V

en
do

r
T

yp
e

M
ul

tip
le

V
en

do
r

C
I

A

V
U

#1
94

50
5

C
V

E
-2

00
8-

43
88

1/

15
/2

00
9

10
/1

7/
20

08

1/
15

/2
00

9
90

90

0
1

0
0

0
2

2
2

V
U

#1
31

10
0

C
V

E
-2

00
9-

03
05

2/

10
/2

00
9

8/
20

/2
00

8
2/

10
/2

00
9

17
4

17
4

0
1

0
0

0
2

2
2

V
U

#6
96

64
4

C
V

E
-2

00
8-

54
16

2/

10
/2

00
9

12
/9

/2
00

8
12

/9
/2

00
8

63
0

1
0

1
0

0
2

2
2

V
U

#4
61

32
1

C
V

E
-2

00
9-

02
08

2/

21
/2

00
9

10
/1

/2
00

8
2/

24
/2

00
9

14
3

14
6

0
0

0
0

0
2

2
2

V
U

#4
72

36
3

C
V

E
-2

00
8-

44
04

3/

5/
20

09

7/
30

/2
00

8
10

/2
/2

00
8

21
8

64

0
1

1
0

1
2

2
2

V
U

#9
05

28
1

C
V

E
-2

00
9-

06
58

3/

10
/2

00
9

2/
19

/2
00

9
2/

19
/2

00
9

19
0

1
0

0
0

1
2

2
2

V
U

#2
76

56
3

C
V

E
-2

00
8-

45
64

3/

17
/2

00
9

1/
14

/2
00

9
3/

17
/2

00
9

62
62

0

0
0

0
1

2
2

2
V

U
#1

96
61

7
C

V
E

-2
00

9-
07

99

3/
19

/2
00

9
2/

23
/2

00
9

4/
16

/2
00

9
24

52

0
0

0
1

1
0

0
1

V
U

#8
78

04
4

C
V

E
-2

00
8-

09
60

3/

23
/2

00
9

5/
20

/2
00

8
5/

31
/2

00
8

30
7

11

0
1

0
0

1
2

2
2

V
U

#9
26

67
6

C
V

E
-2

00
8-

48
41

4/

14
/2

00
9

12
/9

/2
00

8
12

/9
/2

00
8

12
6

0
1

0
0

0
0

2
2

2
V

U
#1

96
61

7
C

V
E

-2
00

9-
07

99

4/
16

/2
00

9
3/

12
/2

00
9

4/
16

/2
00

9
35

35

1
1

1
1

1
0

0
1

V
U

#1
96

61
7

C
V

E
-2

00
9-

07
99

4/

16
/2

00
9

3/
12

/2
00

9
4/

16
/2

00
9

35
35

1

0
1

1
1

0
0

1
V

U
#1

96
61

7
C

V
E

-2
00

9-
07

99

4/
16

/2
00

9
3/

31
/2

00
9

4/
16

/2
00

9
16

16

0
0

1
0

1
0

0
1

V
U

#1
96

61
7

C
V

E
-2

00
9-

07
99

4/

28
/2

00
9

4/
6/

20
09

4/

16
/2

00
9

22
10

1

0
1

1
1

0
0

1
V

U
#1

96
61

7
C

V
E

-2
00

9-
07

99

5/
5/

20
09

4/

6/
20

09

4/
16

/2
00

9
29

10

1
1

1
1

1
0

0
1

V
U

#2
38

01
9

C
V

E
-2

00
9-

06
88

5/

12
/2

00
9

4/
8/

20
09

4/

8/
20

09

34
0

0
0

1
1

1
1

1
1

V
U

#9
70

18
0

C
V

E
-2

00
9-

14
92

5/

12
/2

00
9

4/
28

/2
00

9
4/

28
/2

00
9

14
0

1
0

0
0

1
2

2
2

V
U

#8
53

09
7

C
V

E
-2

00
9-

12
52

5/

18
/2

00
9

5/
6/

20
09

5/

18
/2

00
9

12
12

1

0
1

1
1

1
1

1
V

U
#8

53
09

7
C

V
E

-2
00

9-
12

52

5/
19

/2
00

9
5/

6/
20

09

5/
18

/2
00

9
13

12

1
1

1
1

1
1

1
1

V
U

#8
53

09
7

C
V

E
-2

00
9-

12
52

5/

26
/2

00
9

5/
7/

20
09

5/

18
/2

00
9

19
11

0

1
1

1
1

1
1

1
V

U
#1

96
61

7
C

V
E

-2
00

9-
07

99

6/
8/

20
09

2/

23
/2

00
9

4/
16

/2
00

9
10

5
52

1

1
1

0
1

0
0

1
V

U
#7

87
93

2
C

V
E

-2
00

9-
15

35

6/
9/

20
09

3/

12
/2

00
9

3/
12

/2
00

9
89

0
0

0
0

0
0

2
2

2
V

U
#8

53
09

7
C

V
E

-2
00

9-
12

52

6/
9/

20
09

5/

6/
20

09

5/
18

/2
00

9
34

12

0
0

1
1

1
1

1
1

V
U

#5
68

15
3

C
V

E
-2

00
9-

18
61

6/

9/
20

09

5/
8/

20
09

6/

9/
20

09

32
32

1

0
0

0
1

2
2

2
V

U
#2

51
79

3
C

V
E

-2
00

9-
06

90

6/
19

/2
00

9
6/

2/
20

09

6/
19

/2
00

9
17

17

0
1

0
0

0
2

2
2

