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Abstract 

 
THE FINER THINGS IN LIFE: COMPARING HIGH RESOLUTION FOSSIL FUEL 

CARBON DIOXIDE EMISSIONS INVENTORIES 

 

Maya Gabrielle Hutchins  

B.S., Appalachian State University 

M.A., Appalachian State University 

 

 

Chairperson:  Jeffrey D. Colby 

Co-Chairperson: Gregg Marland 

 

 

The quantification of fossil fuel contributions to carbon dioxide concentrations is 

necessary in order to accurately represent carbon cycle fluxes and to support climate change 

research. In addition, the monitoring, reporting, and verification of carbon dioxide emissions 

is necessary for the success of international agreements to reduce emissions. However, 

existing fossil fuel carbon dioxide (FFCO2) emissions inventories vary in terms of the data 

and methods used to estimate and distribute FFCO2. This paper will compare how the 

approaches used to create FFCO2 emissions inventories effect the magnitude and spatial 

distribution of emissions estimates. Five FFCO2 emission inventories were compared: Carbon 

Dioxide Information and Analysis Center (CDIAC), Emission Database for Global 

Atmospheric Research (EDGAR), Fossil Fuel Data Assimilation System (FFDAS), Open-

source Data Inventory for Anthropogenic CO2 (ODIAC), and Vulcan. The effects of using 

specific data and approaches in the creation of spatially explicit FFCO2 emissions 

inventories, and the effect of resolution on data representation are analyzed using graphical, 

numerical, and cartographic data. Data were compared using spatial correlation, the sum of 
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absolute differences, logarithmic plots, cumulative emissions curves, distribution curves, and 

spatial distribution maps to understand the effects of using top-down versus bottom-up 

approaches, nightlights versus population, and the inclusion of large point sources. The 

results indicate that the approach used to distribute emissions in space creates distinct 

patterns in the magnitudes and distribution of emissions estimates. Understanding the 

relationship between these patterns and how they change with resolution supports future 

development of gridded FFCO2 emissions inventories. 
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Foreword 

 

 The main body of this thesis will be submitted to Global Biogeochemical Cycles, an 

international journal publishing peer-reviewed articles; it has been formatted according to the 

style guide for that journal. The journal is published by the American Geophysical Union 

(AGU). 
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1.1.Introduction 

Anthropogenic sources of carbon dioxide emissions result from the manufacture of 

cement, the destruction of forests, and the consumption of coal, petroleum, and natural 

gas. In 2011, the global atmospheric concentration of CO2 had increased by 40% since 

1750, primarily from fossil fuel emissions [Hartmann et al., 2013]. Fossil Fuel Carbon 

Dioxide (FFCO2) emissions inventories describe CO2 emissions from fossil fuel 

combustion at different scales and resolutions.  

 

In general, the scale at which human and physical systems are modeled and represented 

are important because physical processes cannot be successfully modeled unless data are 

available at an appropriate scale and at the defined level of detail [Goodchild, 2001]. 

How the world is described determines the kind of science that can be done with the 

description, making the level of detail of geographic data one of its most important 

properties [Goodchild, 2001]. The four meanings of scale, as defined by Cao and Lam 

[1997], are 1) cartographic or map scale, 2) geographic or observational scale, 3) 

operational scale and 4) measurement of scale [Cao and Lam, 1997]. The two types of 

scale related to digital geographic data are measurement scale, scale as the level of detail 

of description, and geographic scale, scale as the extent of area covered [Cao and Lam, 

1997; Goodchild, 2001, 2011].  

 

This paper investigates how the difference approaches used in the creation of (FFCO2) 

emissions inventories effect the magnitude and spatial distribution of emissions estimates 

at sub-national scales. In addition, the effect of scale and resolution on the representation 
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of FFCO2 emissions was examined. This paper will use the two meanings of scale most 

related to digital data: geographic scale (extent) and measurement scale (resolution) [Cao 

and Lam, 1997; Goodchild, 2001, 2011]. Specifically, the magnitude and spatial 

distribution of five spatially explicit FFCO2 data sets were compared for the Continental 

United States at a range of scales using a geographic information system (GIS). The 

datasets analyzed include the Carbon Dioxide Information and Analysis Center (CDIAC), 

the Emission Database for Global Atmospheric Research (EDGAR), the Fossil Fuel Data 

Assimilation System (FFDAS), the Open-source Data Inventory for Anthropogenic CO2  

(ODIAC), and Vulcan (Table 1).  FFCO2 emissions inventories were analyzed for the 

years 2002 and 2008 due to the limited temporal scale of Vulcan, available only for the 

year 2002, and ODIAC, available only for the year 2008.  

 

Detailed methods for estimating the spatial distribution of fossil fuel carbon dioxide 

emissions vary and no comprehensive comparison of datasets has previously been 

performed. Such comparisons are necessary to understand the importance of using 

different data and approaches in the creation of spatially explicit FFCO2 emissions 

inventories. Additionally, issues of scale and resolution are traditionally important issues 

in geography, and as GIS’s have advanced, multi-scale data is starting to play a more 

important role in studies such as global change [Cao and Lam, 1997]. Both geographic 

scale and measurement scale have large implications for the development and use of 

FFCO2   emissions inventories.  
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This analysis will evaluate the difference between more time consuming methods like 

those used in bottom-up inventories and less detailed top-down approaches. Comparisons 

of the different approaches will inform future development of gridded distributions of 

FFCO2 emissions and their associated uncertainty with the ultimate goal of creating a 

detailed yet globally consistent FFCO2 emissions inventory. A variety of graphical and 

numerical methods were employed to compare the existing, spatially-explicit FFCO2 

data sets and to explore how their methods and selection of proxy data are reflected in 

their final products.  Comparisons between datasets were conducted using metrics found 

in similar analyses of FFCO2 datasets [e.g., Andres et al., 1996; Marland et al., 1999; 

Gregg and Andres, 2008; Gurney et al., 2009; Rayner et al., 2010; Andres et al., 2011; 

Oda and Maksyutov, 2011] including spatial correlation, sum of absolute differences, and 

difference maps. Cumulative emissions curves, distribution curves, and spatial 

distribution maps were also analyzed to lend greater insight into the relationships 

between emissions inventories. The data sets were compared at various levels of 

aggregation to assess how the virtues of each emissions inventory can best be utilized. 

1.2. The Author’s Role in the Article Section of this Research 

The primary author for the manuscript submitted as a part of this thesis to meet the Cratis 

D. Williams Graduate School requirement for completion of the Master of Arts in 

Geography acquired the data from its sources, imported and converted the data to usable 

formats, and analyzed the data. With guidance from her thesis committee she drafted the 

manuscript that will be submitted to Global Biogeochemical cycles, an international 

journal associated with the American Geophysical Union that publishes peer-reviewed 

research. 
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Key Points 

 Approaches used for spatially distributing FFCO2 emissions estimates matter 

 Spatial uncertainty across FFCO2 emissions inventories needs to be addressed 

 Issues of scale and resolution related to FFCO2 emissions inventories need to be 

addressed 

 More detailed metadata are needed to fully utilize FFCO2 emissions inventories 
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Abstract 

 

The quantification of fossil fuel contributions to carbon dioxide concentrations is necessary 

in order to accurately represent carbon cycle fluxes and to support climate change research. 

In addition, the monitoring, reporting, and verification of carbon dioxide emissions is 

necessary for the success of international agreements to reduce emissions. However, existing 

fossil fuel carbon dioxide (FFCO2) emissions inventories vary in terms of the data and 

methods used to estimate and distribute FFCO2. This paper will compare how the approaches 

used to create FFCO2 emissions inventories effect the magnitude and spatial distribution of 

emissions estimates. Five FFCO2 emission inventories were compared: Carbon Dioxide 

Information and Analysis Center (CDIAC), Emission Database for Global Atmospheric 

Research (EDGAR), Fossil Fuel Data Assimilation System (FFDAS), Open-source Data 

Inventory for Anthropogenic CO2 (ODIAC), and Vulcan. The effects of using specific data 

and approaches in the creation of spatially explicit FFCO2 emissions inventories, and the 

effect of resolution on data representation are analyzed using graphical, numerical, and 

cartographic data. Data were compared using spatial correlation, the sum of absolute 

differences, logarithmic plots, cumulative emissions curves, distribution curves, and spatial 

distribution maps to understand the effects of using top-down versus bottom-up approaches, 

nightlights versus population, and the inclusion of large point sources. The results indicate 

that the approach used to distribute emissions in space creates distinct patterns in the 

magnitudes and distribution of emissions estimates. Understanding the relationship between 

these patterns and how they change with resolution supports future development of gridded 

FFCO2 emissions inventories. 
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1. Introduction 

Anthropogenic sources of carbon dioxide emissions result from the manufacture of 

cement, the destruction of forests, and the consumption of coal, petroleum, and natural 

gas. In 2011, the global atmospheric concentration of CO2 had increased by 40% since 

1750, primarily from fossil fuel emissions [Hartmann et al., 2013]. Fossil Fuel Carbon 

Dioxide (FFCO2) emissions inventories describe CO2 emissions from fossil fuel 

combustion at different scales and resolutions.  

 

This paper investigates how the difference approaches used in the creation of (FFCO2) 

emissions inventories effect the magnitude and spatial distribution of emissions estimates 

at sub-national scales. In addition, the effect of scale and resolution on the representation 

of FFCO2 emissions was examined. This paper will use the two meanings of scale most 

related to digital data: geographic scale (extent) and measurement scale (resolution) [Cao 

and Lam, 1997; Goodchild, 2001, 2011]. Specifically, the magnitude and spatial 

distribution of five spatially explicit FFCO2 data sets were compared for the Continental 

United States at a range of scales using a geographic information system (GIS). The 

datasets analyzed include the Carbon Dioxide Information and Analysis Center (CDIAC), 

the Emission Database for Global Atmospheric Research (EDGAR), the Fossil Fuel Data 

Assimilation System (FFDAS), the Open-source Data Inventory for Anthropogenic CO2  

(ODIAC), and Vulcan (Table 1).  FFCO2 emissions inventories were analyzed for the 

years 2002 and 2008 due to the limited temporal scale of Vulcan, available only for the 

year 2002, and ODIAC, available only for the year 2008.  
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Detailed methods for estimating the spatial distribution of fossil fuel carbon dioxide 

emissions vary and no comprehensive comparison of datasets has previously been 

performed. Such comparisons are necessary to understand the importance of using 

different data and approaches in the creation of spatially explicit FFCO2 emissions 

inventories. Additionally, issues of scale and resolution are traditionally important issues 

in geography, and as GIS’s have advanced, multi-scale data is starting to play a more 

important role in studies such as global change [Cao and Lam, 1997]. Both geographic 

scale and measurement scale have large implications for the development and use of 

FFCO2   emissions inventories.  

 

This analysis will evaluate the difference between more time consuming methods like 

those used in bottom-up inventories and less detailed top-down approaches. Comparisons 

of the different approaches will inform future development of gridded distributions of 

FFCO2 emissions and their associated uncertainty with the ultimate goal of creating a 

detailed yet globally consistent FFCO2 emissions inventory. A variety of graphical and 

numerical methods were employed to compare the existing, spatially-explicit FFCO2 

data sets and to explore how their methods and selection of proxy data are reflected in 

their final products.  Comparisons between datasets were conducted using metrics found 

in similar analyses of FFCO2 datasets [e.g., Andres et al., 1996; Marland et al., 1999; 

Gregg and Andres, 2008; Gurney et al., 2009; Rayner et al., 2010; Andres et al., 2011; 

Oda and Maksyutov, 2011] including spatial correlation, sum of absolute differences, and 

difference maps. Cumulative emissions curves, distribution curves, and spatial 

distribution maps were also analyzed to lend greater insight into the relationships 
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between emissions inventories. The data sets were compared at various levels of 

aggregation (0.1°, 0.5°, 1°, 2°, and 3°) to assess how the virtues of each emissions 

inventory can best be utilized. 

 

1.1.1. A Brief Overview 

Fossil fuel carbon dioxide (FFCO2) emissions are historically estimated at national and 

annual scales from national level energy statistics published by either the International 

Energy Agency (IEA), the United Nations (UN), British Petroleum Corporation (BP), the 

U.S. Department of Energy/Energy Information Administration (DOE/EIA), or the U.S. 

Environmental Protection Agency (EPA) (see table 1). Energy statistics are often divided 

into sectors and/or fuel types, and emissions per fuel type are calculated from emissions 

factors, the ratio of pollutant emitted per unit of fossil fuel burned. There are now five 

widely used emissions inventories that use one or more of the national level energy 

statistics published by the above agencies to estimate CO2 emissions at the national level: 

IEA, CDIAC, USDOE/EIA, BP, and EDGAR (see Table 1). All of these emissions 

inventories are global or national, and annual in scale. However, the “emphases, 

categories, units, unit conversions and reporting, data processing, and quality assurance” 

of energy statistics vary across organizations, leading to variability in the estimated 

magnitudes of emissions [Andres et al., 2012].  

 

1.1.2. Fine Resolution Emissions Inventories 

Despite increasing concern for the impacts of increasing concentrations of carbon dioxide 

in the atmosphere, little work has been done to estimate the seasonal flux or the sub-
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national distribution of carbon dioxide emissions [Gregg and Andres, 2008] As a result, 

modern climate change research is struggling to make accurate projections of future 

climatic changes and informative assessments of biogeochemical feedbacks within the 

carbon cycle [Gurney et al., 2009; Oda and Maksyutov, 2011;  Andres et al., 2011].  

Fossil fuel consumption statistics were historically compiled at national extents because 

energy data were generally available at large scales, and questions regarding global 

climate change during the twentieth century did not require data at smaller scales. Recent 

climate and carbon science, as well as public policy, necessitates an increase in the 

spatio-temporal resolution of fossil fuel carbon dioxide emissions inventories [Gurney et 

al.,  2009; Andres et al., 2011].  

 

Finer resolution FFCO2 emissions inventories seek to estimate the location of FFCO2   

emissions at the subnational scale (extent) and resolutions of 1° or finer. Fossil fuel 

carbon dioxide estimates are used as a priori information in carbon flux models to 

distinguish between human and natural sources of carbon dioxide and supporting 

evidence for anthropogenic contributions to carbon dioxide emissions relies on “bottom-

up” inventories of FFCO2 emissions [Rayner et al., 2010; Andres et al., 2011]. More 

specifically, spatially distributed FFCO2 emissions are necessary to identify areas of 

pollution concentration for inputs into air simulation models and result in decreased 

errors in dispersion emissions transport models [Dai and Rocke, 1999; Wang et al., 

2012]. Carbon flux models require the input of carbon dioxide sources and sinks, which 

depend on FFCO2 inventories to distinguish between natural and anthropogenic sources 

of CO2. Furthermore, spatially explicit FFCO2 emissions inventories lend insight into the 
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relationship between fossil fuel use and economic strength, [Andres et al., 2011]. By 

improving the spatial and temporal resolution of bottom-up emissions inventories it may 

be possible to corroborate atmospheric composition with remotely sensed data, making 

confirmation of international emissions estimates possible [Andres et al., 2011].  The 

magnitude and spatial distribution of FFCO2 emissions at fine resolutions are necessary 

for monitoring, reporting, and verifying carbon emissions, and will become increasingly 

important as cap and trade programs or other emissions mitigation programs are 

developed and the global community continues to move toward a global emissions 

agreement.  

 

In response to the need for sub-national data on FFCO2 emissions, there has been 

increasing interest in creating spatially explicit FFCO2 emissions inventories at 

resolutions of 1° or finer. Finer resolution emissions inventories are created using three 

primary methodologies (top-down approaches, bottom-up approaches, and data 

assimilation) and two primary data types (non-point source and point-source 

information). However, non-point source data is not distinct from point-source data. In 

this analysis we make a distinction between emissions from small point sources and large 

point sources (LPS). Small point sources of emissions, such as homes and small 

businesses, are statistically treated as areal (non-point) sources in emissions inventories. 

Large point sources describe emissions from large facilities related to the generation of 

electric power, industrial processes, and petroleum refineries. However, data are not 

generally available to characterize emissions from industrial facilities and refineries at the 
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global scale. The term LPS in this paper refers strictly to emissions from large electric 

power generating facilities.  

 

Non-point source FFCO2 emissions estimates are derived from the national level CO2 

emissions inventories referenced previously (IEA, CDIAC, USDOE, BP, and EDGAR). 

Non-point source data is disaggregated from the national scale to subnational scales and 

finer resolutions using top-down approaches.  Top down approaches generally utilize 

proxies such as population and/or satellite-observed nightlights data to distribute 

emissions in space [Andres et al., 1996; Gurney et al., 2009; Rayner et al., 2010; Andres 

et al., 2011; Oda and Maksyutov, 2011; Wang et al., 2012]. The resolution of spatially 

explicit FFCO2   emissions inventories that utilize a top-down approach rely on the 

resolution of the proxy data being used for the disaggregation of emissions in space. Data 

assimilation uses observational data to constrain dynamic models, such as the Kaya 

identity, which estimates CO2 emissions using data on population, gross domestic 

production (GDP), and energy consumption [Rayner et al., 2010]. Bottom-up approaches 

generally involve data collection on fuel consumption or emissions at the building scale 

or lower and sum individual sources of emissions to estimate FFCO2 emissions at the 

county-, state-, or national scales [Gurney et al.,  2009].  

 

Emissions from large point sources account for approximately 40% of total national 

emissions in most countries [Singer et al., 2014]. As a result, emissions from LPS have 

been recently utilized in the development of spatially explicit FFCO2 emissions 

inventories and have been incorporated into top-down, bottom-up, and data assimilation 
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approaches. Emissions from LPS of FFCO2 are estimated using material balance 

calculations and continuous emissions monitors (CEMs). Material balance approaches 

multiply the difference between the amount of material entering a process and the final 

product by an emissions factor to estimate the CO2 emissions that result from a specific 

process. LPS emissions data are available from the U.S. EPA, the U.S. DOE/EIA, and the 

Center for Global Development. The U.S. EPA publishes three data sets on LPS 

emissions, the Emissions & Generation Resource Integrated Database (eGRID), the 

National Emissions Inventory (NEI), and the Greenhouse Gas Reporting Program 

(GHGRP). The GHGRP and NEI include emissions estimates from all LPSs, while 

eGRID estimates CO2 emissions from electrical generation only. The NEI reports 

emissions of carbon monoxide (CO) from point sources in the U.S., which can be 

converted to estimate CO2 emissions using emissions factors. The Center for Global 

Development publishes CARMA (Carbon Monitoring for Action), which reports 

emissions of CO2 from electric power plants globally.  

 

2. Data and Methods 

2.1.Data 

Materials used in this analysis include five data sets on FFCO2 emissions inventories for 

the U.S. A comparison is made among the five FFCO2 emissions inventories for 

similarities and differences in the energy statistics used, the sectors included, and most 

significantly, the methods used for spatial disaggregation or allocation of emissions 

(Table 1). 
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FFDAS was created using a data-assimilation approach and uses energy statistics from 

the International Energy Agency (IEA). Observational data from population and 

nightlight data are used to constrain a predictive model known as the Kaya identity, 

which estimates the flux of FFCO2 emissions through a region. Sectors in FFDAS are 

based on IEA emissions sectors, including emissions from commercial electricity 

generation, manufacture, international and domestic transport, and emissions from other 

sectors such as residential, agriculture, and fishing. It is important to note that FFDAS 

does not include emissions from industrial processes such as calcining limestone in the 

manufacture of cement [Rayner et al., 2010]. While data assimilation is a slightly 

different approach for estimating the location of FFCO2 than top-down approaches, for 

the analysis performed in this paper top-down will be used to refer to both traditional top-

down approaches and data assimilation approaches. 

 

The EDGAR data set was created using a top-down approach and utilizes activity data 

primarily based on energy statistics produced by the IEA, but supplemented by data from 

the United Nations (U.N.), as well as from commercial firms that compile industry 

statistics [Marland et al., 1999; EDGARv4 methodology, unpublished report, available at 

http://edgar.jrc.ec.europa.eu/methodology.php] EDGAR includes emissions from fuel 

combustion, fugitive emissions from fuel use, industrial processes such as cement 

manufacture, non-energy use of lubricants/waxes, and solvent and other product uses. 

Emissions are calculated for the years 2000 to 2010. Emissions are distributed on a 0.1° 

grid using the location of energy and manufacturing facilities, road networks, shipping 

http://edgar.jrc.ec.europa.eu/methodology.php


16 

routes, and population density [ Andres et al., 2012; EDGARv4 methodology, 

unpublished report, available at http://edgar.jrc.ec.europa.eu/methodology.php]. 

 

The CDIAC data set was created using a top- down approach, where nationally 

aggregated emissions are distributed on a regular 1° grid using a 1984 population 

distribution data set from the Goddard Institute of Space Studies (GISS). CDIAC relies 

on energy statistics produced by the United Nations (U.N.) and includes emissions from 

fossil fuel burning, cement manufacture, and gas flaring in oil fields [Andres et al., 1996; 

Marland et al., 1999]. CDIAC data spans the longest time period, from 1751 to 2010 

[Andres et al., 1996]. 

 

The ODIAC data set was created using a top-down approach which disaggregates 

national emissions estimates produced by CDIAC, but distributes them using nightlight 

data and the location of LPS inventoried in CARMA. ODIAC is published at the same 

resolution as the nightlight data, approximately 1 km, or 0.008333°, for the year 2008 

[Oda and Maksyutov, 2011]. 

 

The Vulcan data set was created using a bottom-up approach and utilizes 7 primary 

datasets to estimate FFCO2 emissions. Vulcan uses CO2 emissions directly when 

estimates are available, or CO emissions and CO2 emissions factors as an alternative 

when CO2 emissions are not reported. Vulcan estimates emissions from air transport, 

commercial, industrial, and residential energy use, cement manufacturing, utilities, and 

non-road and on-road mobile activities [Gurney et al., 2009]. Emissions from LPSs are 

http://edgar.jrc.ec.europa.eu/methodology.php
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retrieved from the EPA/EIA NEI and the EPA CAMD ETS/CEMs data. County-level 

road- specific emissions are distributed using a GIS road-atlas with twelve road types 

falling under the more general road classifications of rural and urban. Non-point source 

emissions are available from the NEI at the county scale, and are downscaled to census 

tracts using the total floor square footage of industrial, commercial, and residential 

buildings within each census tract [Gurney et al., unpublished report, available at 

http://vulcan.project.asu.edu/pdf/Vulcan.documentation.v2.0.online.pdf]. The data is then 

rendered to a regular 10 km grid using area-based weighting [Gurney et al., 2009). 

Vulcan is considered to be the most accurate FFCO2   emissions inventory, but data on 

FFCO2 emissions at the subnational scale are not very common, and are usually collected 

for very specific purposes [Andres et al., 2012]. Due to limited data availability at 

subnational resolutions, bottom- up approaches are currently constrained to regional 

scales and shorter time scales. Vulcan is thus available only for the year 2002 and is 

limited to the U.S. in terms of spatial extent. 

 

2.2.Methods  

Data files representing the five emissions data sets were acquired from their authors and 

imported into ArcGIS (ESRI 2014. ArcGIS Desktop: Release 10.1. Redlands, CA: 

Environmental Systems Research Institute) using geographic coordinate system (GCS) 

WGS84.  

 

There are two primary referencing systems that assign data to a geographic location on 

the surface of the earth (geo-referencing system). A spherical coordinate system 

http://vulcan.project.asu.edu/pdf/Vulcan.documentation.v2.0.online.pdf
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represents locations of a feature in latitude and longitude in units of degree, minutes and 

seconds on a spherical grid. However, rather than dealing with a curved surface, it can be 

more useful to represent the earth’s surface on a flat plane. For example, paper maps are 

flat, a planar representation is required to see all of Earth at one time, and it is much 

easier to measure distances on a plane. Because Earth is not a perfect sphere, representing 

Earth on a planar surface involves representing the Earth as a ‘best fit’ ellipsoid. Initially, 

countries adopted their own ellipsoid models. However, because the earth is not shaped 

like a perfect ellipsoid, each ellipsoid representation of the earth may have better fits to 

different geographic regions on the globe. Today, an international standard ellipsoid for 

representing the globe has been adopted, known as the World Geodetic System 

(WGS84). The decision to use GCS WGS84 for this study is based on discussions with 

the authors of FFDAS and ODIAC. When no geo-referencing was specified beyond 

spherical coordinates the data were displayed using a WGS84 ellipsoid model. Total 

FFCO2 emissions were calculated for each inventory’s largest available extent using 

zonal statistics in ArcGIS and compared to the author-documented totals to ensure the 

data were read correctly into the GIS. 

 

All data were analyzed for the continental U.S. only, where the U.S. is defined as all grid 

spaces in Vulcan with non-zero values. After the global data sets were masked to the 

extent of the Vulcan inventory, national level emissions were calculated using zonal 

statistics in ArcGIS. Since the data are masked to the extent of the Vulcan inventory, 

comparisons between emissions inventories occur only at locations where Vulcan has 

non-zero values. At the 0.1° resolution the maximum number of cells included in the 
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comparison is 81,841 grid cells. There are 928 grid cells at 1° resolution. The scale of this 

analysis is limited to the continental U.S. because Vulcan, which is considered the most 

detailed data set, is limited to the United States. Vulcan is also limited to the year 2002 so 

comparisons are completed for 2002. ODIAC, a fine resolution data set at 1km 

resolution, is available only for the year 2008, so comparisons are also performed for the 

year 2008. All other datasets are available for both 2002 and 2008 comparisons.  

 

The data being analyzed were initially acquired at resolutions ranging from 1 km to 1°. In 

order to make comparisons between emissions inventories at a variety of resolutions, all 

data were resampled to the same resolution after they were masked to the Vulcan extent. 

ODIAC was acquired at a 1 km, or 0.008333° resolution, and was aggregated to 0.1° 

resolution using the aggregation tool in ArcGIS with an aggregation factor of 12 and an 

aggregation method of sum. Vulcan was analyzed using a 0.1° resolution version of 

Vulcan produced by the original authors of the data set. It should be noted that the 0.1° 

data set is provided to assist users with re-gridding and that users are encouraged to re-

grid the 10 km resolution data set on their own. The authors of Vulcan assume no 

responsibility for re-gridding choices that do not match expectation. However, due to the 

distortions that are inherent with un-projecting geographic data from planar coordinates 

to spherical coordinates we chose not to re-grid the 10 km Vulcan data set, but to use the 

0.1° data set provided by the authors of Vulcan. EDGAR, FFDAS, and Vulcan were 

acquired at 0.1° resolution. EDGAR, FFDAS, ODIAC, and Vulcan were aggregated from 

0.1° resolution to 0.5°, 1°, 2°, and 3° resolutions using the aggregate tool in ArcGIS with 

an aggregation method of sum and aggregation factors of 5, 10, 20, and 30, respectively. 
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All data were aggregated from their 0.1° resolution to each of the respective resolutions. 

CDIAC was acquired at 1° resolution and was aggregated to 2° and 3° resolutions using 

the aggregate tool in ArcGIS with an aggregation method of sum and aggregation factors 

of 2 and 3, respectively. The sum aggregation method was used for this analysis because 

it was necessary to preserve the national total of FFCO2 emissions for each data set across 

different resolutions.   All of the data sets except CDIAC were originally represented at 

0.1° resolution or finer, so analyses were conducted at 0.1° and aggregates thereof, except 

comparisons that included CDIAC at aggregates of 1° and greater.  

 

Comparisons between datasets were conducted using metrics found in similar analyses of 

FFCO2   datasets [e.g., Andres et al., 1996; Marland et al., 1999; Gregg and Andres, 

2008; Gurney et al., 2009; Rayner et al., 2010; Andres et al., 2011; Oda and Maksyutov, 

2011; Wang et al., 2012]. The cumulative emissions curves of each emissions inventory 

were plotted and compared against each other at 0.1° and 1° resolutions. Emissions were 

arranged in ascending order and plotted on a logarithmic scale to represent the 

distribution of emissions magnitudes within the continental U.S. For visual comparison, 

maps of each data set were generated in ArcGIS at 0.1°, 0.5°, 1°, and 2° resolutions. 

Difference maps for the most and least correlated pairs of inventories at each resolution 

(0.1°, 0.5°, 1°, and 2°) were also generated and analyzed. 

 

Spatial correlation coefficients compare the magnitude of one dataset at one location to 

the magnitude of another data set at the same location, allowing for a numeric 

comparison of the similarities and differences in the spatial distribution of emissions 
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inventories. Additionally, the sum of absolute differences is a useful metric for 

understanding differences in the magnitude of emissions across datasets. The sum of 

absolute differences and spatial correlation coefficients were calculated between FFCO2   

emissions inventories of the same year and resolution. Spatial correlation coefficients 

were calculated for each data set in MATLAB. FFCO2 emissions inventories were 

exported from ArcGIS in geotiff format for all resolutions (0.1°, 0.5°, 1°, 2°, and 3°) and 

imported into MATLAB as matrices. Matrices were reshaped into vector arrays for each 

resolution using the reshape command in MATLAB. The MATLAB reshape command 

reshapes a matrix by taking elements from the original matrix in a column-wise approach 

and rewriting them to an array of the same number of pixels. The vector array of each 

data set contains the same number of values as the original matrix, and each matrix is 

reshaped according to the same column-wise approach, so each row in the new vector 

array represents the same location as the corresponding row in the vector array it is being 

compared against. After each geotiff matrix was reshaped into vector arrays, the cov and 

corrcov functions were used to calculate the correlation between each FFCO2   emissions 

inventory at resolutions of 0.1°, 0.5°, 1°, 2°, and 3°. The cov command creates a 

covariance matrix between two vectors, and the corrcov command computes a correlation 

matrix corresponding to the covariance matrix generated by the cov command. 

Correlation coefficients were calculated for each data set against the others in pairs for 

relevant resolutions and years. In previous studies the emissions in each dataset were 

scaled to the same total so that the spatial correlation coefficient was independent of 

magnitude [Rayner et al., 2010; Oda and Maksyutov, 2011]. However, for this analysis 

the authors believe that both the spatial location and magnitude of emissions are 
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important when comparing FFCO2   emissions, and the magnitude of emissions is also 

reflected in the correlation coefficient. The sum of absolute differences (SAD) totals the 

absolute difference of emissions at each pixel location across all pixels and is used to 

measure similarity between two images. The sum of absolute differences was calculated 

in MATLAB by taking the sum of the absolute differences between each set of values in 

the vector array. 

 

Due to the large range of values contained within each data set, plots of the natural log of 

each dataset against the other in pairs (Log A versus Log B) emphasizes both high and 

low emissions values. The natural log of the ratio of two data sets (Log of (A/B)) plotted 

against the mean of the two data sets (A+B/2) compares the relative magnitude against 

the absolute value of the two data sets. Using this metric, values will cluster around zero 

when they are equal, and will be symmetric about the zero axis when they differ by a 

similar factor [Marland et al., 1999].  

 

Lastly, the role of LPS emissions was examined by comparing the magnitude of each 

FFCO2   emissions inventory at the location of the top fifty LPS emitting raster cells. 

LPSs inventoried in eGRID were converted from points to a raster in ArcGIS, so that 

each grid cell accounted for emissions from multiple eGRID LPSs. The grid cells were 

then converted back to points, with each point representing all eGRID sources located in 

a 0.1° cell. The Extract Value to Point tool in ArcGIS was used to retrieve the emissions 

value of each FFCO2   emissions inventory at the location of the top fifty cells 

representing emissions from eGRID.  
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3. Results and Discussion 

3.1.Distribution of Emissions 

The calculated and author-documented totals of emissions in the five studied datasets are 

shown in Table 2. After rounding errors the authors assume the documented totals and 

calculated totals to be equal. ODIAC and FFDAS have the lowest emissions estimates, 

while Vulcan has the highest. EDGAR author-documented totals varied by source of 

documentation and whether totals were calculated across sectors or across countries. 

 

Cumulative emissions at 0.1° (Figure 1) show that FFDAS rises in emissions at the 

slowest rate, indicating that it attributes the majority of emissions to a small number of 

high emitting cells. ODIAC follows approximately the same cumulative curve as 

FFDAS, but rises at a slightly faster rate than FFDAS, indicating that ODIAC also 

assigns more emissions to a small number of high emitting cells compared to the other 

datasets. ODIAC has nearly half the number of non-zero grid spaces as the other FFCO2   

emissions inventories (Figure 2). The 0.1° spatial distribution maps of FFDAS and 

ODIAC (Figures 3b and 3c) also illustrate this distribution of values, where cells located 

in less populated areas out west do not contain nightlights and are not assigned emissions 

values. However, because FFDAS also uses population as a spatial proxy, it attributes 

emissions to more cells than ODIAC does based on nightlights alone. In both FFDAS and 

ODIAC emissions are concentrated in urban areas where nightlight values and population 

density are high.  Distribution plots for FFDAS at 0.1° resolution show discrete clustering 

of emissions values at lower magnitudes (Figure 2). At the 0.1° resolution FFDAS and 
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ODIAC attribute emissions to cells of the same value at lower magnitudes, creating 

discrete intervals of emissions. As soon as FFDAS and ODIAC reach lower emissions 

values, their distribution curves drop to zero (Figure 2). 

 

The cumulative emissions curve for Vulcan at 0.1° rises at a faster rate than both FFDAS 

and ODIAC, indicating that it attributes more emissions to low and intermediate emitting 

cells. Vulcan assigns more emissions to the mid-west than either FFDAS or ODIAC. The 

detailed, fine resolution data used to build the Vulcan FFCO2   emissions inventory 

allows it to capture emissions in locations that cannot be predicted by nightlights, 

population, or large point sources alone. Vulcan’s detailed methods not only distribute 

emissions to the west, but also to extensive transportation networks (Figure 3a). Vulcan 

has the second to largest range of emissions values, just behind EDGAR. 

 

EDGAR’s cumulative emissions curve at 0.1° rises at the fastest initial rate, indicating 

that a larger fraction of EDGAR’s emissions are located in low and intermediate cells, 

and that its emissions values are distributed more evenly, rather than being concentrated 

in major urban areas. The distribution of emissions at 0.1° (Figure 2) highlights the lower 

emissions values contained in EDGAR, with the lowest values in EDGAR being orders 

of magnitude smaller than other FFCO2   emissions inventories. The more uniform 

distribution of emissions values in EDGAR is shown by the large range of emissions 

values, with the majority of cells being concentrated between 100 and 10,000 tonnes of 

C. EDGAR tends to estimate on the low end for major cities and other urban areas, while 

allocating more emissions to areas surrounding cities (Figure 3d). EDGAR also attributes 
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a greater amount of emissions out west than FFDAS, ODIAC, or Vulcan. The spatial 

distribution of EDGAR is unique compared to the other FFCO2   emissions inventories in 

this analysis, but the documentation for EDGAR is not detailed enough to provide insight 

into how emissions are distributed and why the data exhibit such unique patterns.  

 

At the 1° resolution CDIAC is also available for comparison and the differences between 

data sets become less apparent (Figure 4). Similar to 0.1° resolution, EDGAR’s 

cumulative curve at 1° resolution rises at a faster rate than the other emissions 

inventories, indicating that it attributes more emissions to a greater number of low and 

intermediate emitting cells. At 1° resolution, CDIAC, FFDAS, ODIAC, and Vulcan 

follow a similar curve, attributing fewer emissions to low emitting cells. After 

approximately three-quarters of all grid cells, CDIAC’s cumulative emissions curve 

diverges from FFDAS, ODIAC, and Vulcan, and continues to rise at a slower rate.  

CDIAC’s cumulative emissions rise quickly in the last 100 cells, indicating that CDIAC 

attributes the majority of its emissions to a lower number of very high emitting cells, and 

that even less of CDIAC emissions are located in low emitting cells than other emissions 

inventories. The same distinct intervals of emissions values present in the distribution 

curve of FFDAS are visible in the distribution curve of CDIAC at 1° resolution (Figure 

5). The effect of data aggregation is further shown in the spatial distribution maps at 1° 

resolution (Figure 6) and 2° resolution (Figure 7). It is important to note that CDIAC 

assigns values of zero to many cells along the East coast and some along the West coast 

that Vulcan and the other emissions inventories do not (Figure 6e and Figure 7e). 
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While the emissions inventories become more similar at 1° resolution, each data set holds 

distinct patterns of emissions that reflect their respective methods of spatial attribution. In 

order to further explore the relationships of emissions inventories to each other, 

correlation coefficients were calculated and plotted on a threshold graph to delineate the 

relationship between data sets at decreasing resolutions (Figure 8).  

 

Difference maps were calculated for the least and most correlated inventories for the year 

2002 at 0.1° and for the years 2002 and 2008 at 1° resolutions. At 0.1° resolution for the 

year 2002, EDGAR and FFDAS have the lowest correlation, while Vulcan and FFDAS 

have the highest correlation (Table 3). When FFDAS is subtracted from EDGAR it 

becomes apparent that EDGAR slightly overestimates in the areas surrounding major 

urban area, underestimates the majority of the urban area, and then overestimates at the 

very core of the city with respect to FFDAS (Figure 9a and 9b). A similar pattern appears 

in the difference map of EDGAR and ODIAC (not shown).  

 

At 1° resolution for the year 2002, CDIAC and FFDAS are the least correlated, while 

Vulcan and FFDAS are the most correlated (Table 3). At 1° resolution for the year 2008, 

CDIAC and EDGAR are the least correlated, and ODIAC and FFDAS are the most 

correlated (Table 4). The difference maps between CDIAC and FFDAS for 2002 (Figure 

10a) and CDIAC and EDGAR (Figure 10c) for 2008 are very similar. At 1° resolution, 

CDIAC tends to overestimate emissions in cells that contain major cities. In some case 

when CDIAC is compared to FFDAS, CDIAC underestimates for the cell that contains a 

major city, and overestimates a cell adjacent to it, such as Houston, Cleveland, and 
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Minneapolis. CDIAC underestimates for Baltimore, Philadelphia, and New York due to 

zero magnitude cells along the East coast (Figure 10a, 10c, 6e, 7e). The difference maps 

for the most correlated inventories are similar in that Vulcan and ODIAC both differ the 

most from FFDAS in urban areas. However, the magnitude difference between FFDAS 

and Vulcan is much greater than the difference between FFDAS and ODIAC. Vulcan 

also has more of a tendency to either overestimate or underestimate emissions in major 

cities compared to FFDAS than ODIAC does when compared to FFDAS.  

 

In an effort to gain more insight into the difference seen between EDGAR and other 

emissions inventories around urban areas, profiles were taken from the SW to the NE 

across three major cities, Baltimore, Philadelphia, and New York. Emissions from 

EDGAR, FFDAS, and ODIAC at the 0.1° resolution were plotted along the transect to 

further explore the urban distribution of FFCO2   emissions (Figure 11). While all three 

data sets have good agreement over Baltimore, EDGAR overestimates at the center of 

both Philadelphia and New York compared to FFDAS and ODIAC. EDGAR similarly 

overestimates emissions at the core of other major cities, such as Los Angeles, when 

compared to FFDAS and ODIAC. The tendency for EDGAR to both under estimate and 

over estimate in comparison to FFDAS, ODIAC, and to a lesser degree, Vulcan, is 

demonstrated by the ‘three-prong’ distribution of EDGAR when plotted against FFDAS 

(Figure 11a), ODIAC (Figure 12b and 12c), and Vulcan (Figure 13a). 

 

Many of the differences and similarities in emissions distributions presented thus far can 

be related to the methods and data used to create them. In order to make broader 
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statements about the different approaches used for creating FFCO2   emissions 

inventories, the relationships between specific datasets are further explored. In addition to 

analyzing the calculated correlation coefficients, the data are plotted against each other in 

pairs on a log scale to evaluate differences and similarities in spatial allocation 

approaches such as top-down versus bottom-up, nightlights versus population, and the 

treatment of large point sources. 

 

3.1.1. Top down vs. bottom up 

While bottom-up emissions inventories such as Vulcan are considered to be more 

detailed, they are time and labor intensive and encounter both spatial and temporal 

limitations. Top-down approaches are less detailed but are less costly and are more 

globally consistent. In order to make comparisons between less intensive top-down 

approaches and more detailed bottom-up approaches, FFCO2   emissions inventories for 

the year 2002 were compared against Vulcan. Vulcan is considered to be the most 

detailed FFCO2   emissions inventory, so FFCO2   emissions inventories that are better 

correlated with Vulcan may be considered better representations of FFCO2   estimates. 

The threshold of correlation was graphed for EDGAR, FFDAS, and CDIAC against 

Vulcan at all comparable resolutions (Figure 8). At 0.1° resolution, the log of FFDAS and 

EDGAR (2002) were plotted against the log of Vulcan (Figure 13a and 13b). At 1° 

resolution the log of EDGAR, FFDAS, and CDIAC were plotted against the log of 

Vulcan (Figure 13c-e). 
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At the 0.1° resolution, EDGAR and Vulcan have a spatial correlation of 0.43 (Figure 13a, 

Table 3). FFDAS and Vulcan are the most correlated data sets at 0.1° resolution with a 

correlation coefficient of 0.62 (Figure 13b, Table 3). However, as indicated by previous 

results, there is a limitation in FFDAS to discriminate between emissions levels at low 

emissions magnitudes (13b). 

 

As resolution decreases to 1°, the relationship of EDGAR and FFDAS to Vulcan 

strengthens with correlation coefficients of 0.94 (Figure 13c) and 0.95 (Figure 9d), 

respectively (Table 3). At 1° resolution CDIAC is also available for analysis, showing a 

correlation with Vulcan of 0.39 (Figure 13e, Table 3). As shown in the threshold graph 

(Figure 8), CDIAC consistently has poor correlation with Vulcan, while FFDAS and 

EDGAR are best correlated with Vulcan at 1° resolution. 

 

FFDAS underestimates compared to Vulcan (Figure 13c and 13d), which was expected 

that for this analysis because FFDAS does not contain emissions from cement 

manufacture while Vulcan does. The exclusion of emissions from cement in FFDAS may 

significantly lower the correlation between FFDAS and Vulcan. When CDIAC is plotted 

against Vulcan on a log scale at 1°, CDIAC displays discrete intervals of emissions 

values as an artifact of the population data that CDIAC’s spatial distribution is based on 

(Figure 13e). As shown in Figure 6e, CDIAC assigns the same population density to all 

cells that fall within a specific state, thereby creating distinct clusters of values. At 1° 

resolution, Vulcan and CDIAC are poorly associated, with a spatial correlation 

coefficient of 0.39 (Table 3). Even at 3° resolution the correlation between Vulcan and 
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CDIAC is only 0.79, indicating that there is a large discrepancy between the spatial 

distribution and magnitude of Vulcan and CDIAC data.  

 

At a 1° resolution the differences between two top-down approaches, FFDAS and 

EDGAR, nearly disappear when compared to Vulcan. If FFCO2   emissions inventories 

are going to be used at 1° resolution then these top-down approaches estimate and 

distribute emissions no differently than the bottom-up approaches. If data are to be used 

at finer resolutions of 0.5° or 0.1°, the approach for distributing emissions begins to 

matter much more. However, because all of these inventories are estimates it is not 

possible to definitively say which approach is more accurate. Vulcan is generally 

considered to be the most detailed representation of emissions for the U.S. FFDAS may 

be considered the best global representation because it has better correlation with Vulcan 

for the U.S. However, Vulcan and FFDAS share the same authors, so a stronger 

correlation is expected between Vulcan and FFDAS. In addition, the relationships that 

FFDAS uses to distribute emissions may be most accurate for more developed countries 

like the U.S., and the quality of FFDAS’s ability to distribute emissions should not be 

extrapolated beyond the national extent examined in this analysis.  

 

3.1.2. Nightlights vs. Population density 

Top-down FFCO2   emissions inventories utilize different methods and proxy data sets for 

spatially disaggregating national level emissions into subnational units. ODIAC relies on 

nightlight data to distribute FFCO2   emissions in space, while CDIAC relies on 

population density, for example. FFDAS utilizes both nightlight data and population in 
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the disaggregation of FFCO2   emissions. Comparisons are made between FFDAS and 

ODIAC, FFDAS and CDIAC, and ODIAC and CDIAC to compare the effects of using 

nightlight data, population, or a combination of the two in the distribution of FFCO2   

emissions. The relationship between ODIAC and CDIAC is especially of interest because 

these data sets start with the same global and national emissions totals but use different 

approaches to distribute them in space. The relationship between ODIAC and FFDAS is 

also of interest because both datasets use nightlight data to distribute emissions.  

 

ODIAC and CDIAC use the same emissions estimates (with in a range of 2-3%), but 

distribute national level emissions using different approaches. ODIAC uses nightlights 

data and the location of large point sources as inventoried in CARMA to distribute 

emissions on a 1 km grid, while CDIAC uses a 1984 population density map to distribute 

emissions on a 1° grid. The relationship between ODIAC and CDIAC is poor, with a 

correlation coefficient of 0.38 at 1° resolution and 0.76 at 3° resolution (Figure 14, Table 

4).  

 

At 0.1° resolution FFDAS and ODIAC have the best fit at cells with higher emissions 

magnitudes. The greatest agreement between ODIAC and FFDAS at higher emissions 

values reflects the tendency of both FFDAS and ODIAC to concentrate the majority of 

their emissions to high-emitting cells in urban areas. The distribution of ODIAC and 

FFDAS become much more similar at the 1° resolution, trending at the same values 

throughout the distribution (Figure 5). Figures 8 and 11 show that as resolution decreases 

the fit between FFDAS and ODIAC increases. At 0.1° resolution the correlation of 
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FFDAS and ODIAC is 0.92, which jumps to 0.98 at 0.5° resolution, and 0.99 at 1° 

resolution and lower (Figure 8, Table 4). As resolution decreases to 2° it becomes 

apparent that FFDAS has slightly lower values than ODIAC. When the absolute value of 

FFDAS and ODIAC are compared to their relative value, the emissions magnitudes 

cluster just below zero, reflecting the lower national total of emissions estimated by 

FFDAS.  

 

As previously indicated, FFDAS and CDIAC display discrete clustering of emissions 

values (Figure 2 and Figure 5). However, this pattern is also seen in ODIAC. When 

CDIAC (Figure 14a) and FFDAS (Figure 15a) are plotted against ODIAC on a log scale, 

clustering of emissions values are visible in all three emissions inventories, signifying 

that this pattern is related to the use of nightlights and population in the distribution of 

emissions. This suggests that the use of nightlights data and population are not a good 

discriminator of emissions at lower magnitudes. However, since this pattern is present in 

FFDAS, ODIAC, and CDIAC, it is hard to attribute this limitation specifically to 

nightlight data or population. Nonetheless, the clustering seen in CDIAC only occurs 

because of the coarse resolution population data it is based on and the clustering in 

ODIAC cannot be a result of population data. Since FFDAS and ODIAC both display 

discrete values of emissions at low values, and both use nightlight data, this pattern may 

be reflective of a limitation in nightlight data rather than population.  

 

After FFDAS and ODIAC are aggregated to 1° resolution the range of emissions values 

decrease and the clustering of data values become less distinct. At 3° resolution the 
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discrete intervals in CDIAC disappear when plotted against ODIAC (Figure 10b). At 1° 

resolution, the limitation in nightlight data at low values may not be significant. However 

the difference between FFDAS and CDIAC and ODIAC and CDIAC is poor at all 

resolutions, indicating that the 1° resolution population data set that CDIAC uses does 

not produce good agreement with other emissions inventories. 

 

3.1.3. Treatment of Large Point Sources 

While large differences between FFCO2   emissions inventories may be the result using of 

different disaggregation methods, it is more likely that the largest difference between the 

data sets occurs due to the treatment of large point sources. If large point source locations 

are included in the distribution of FFCO2   emissions, nearly half the national total of 

emissions has been accurately allocated in space. When high emissions values are not 

directly related to an urban area, they are more than likely associated with emissions from 

large point sources.  

 

Emissions from the top 50 CO2 emitting grid spaces from the eGRID database for the 

year 2009 are plotted against values of emissions from each FFCO2   emissions inventory 

at the corresponding location at 0.1° (Figure 16) and 1° (Figure 17) resolutions. It should 

be noted that CARMA is a more commonly used LPS inventory for global FFCO2 

emissions inventories than eGRID.  At 0.1° resolution (Figure 16) FFDAS and ODIAC 

have the best agreement with emissions from large point sources, reflecting the 

incorporation of large point sources into these emissions inventories. At 0.1° resolution 

Vulcan and EDGAR have poor agreement with emissions from LPS’s. This pattern is 
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unexpected as Vulcan places all point values in the grid cell occupied by their geocoded 

location. However, the Vulcan inventory uses neither eGRID nor CARMA data to 

estimate emissions from electrical generation, but rather relies on the EPA ETS/CEMs 

data, which is one input into eGRID. However, CEMs measured emissions do not always 

agree with emissions calculated using material balance. In addition to using different LPS 

data than eGRID, Vulcan is developed for the year 2002, while the eGRID data in this 

analysis estimates emissions for the year 2009. EDGAR reports the use of point source 

data in their methodology, although no reference to a specific LPS inventory is given.  

 

At 1° resolution (Figure 17) all FFCO2   emissions have values consistently equal to or 

higher than the large point sources located in that grid cell except for CDIAC. At the 1° 

resolution CDIAC has consistently lower values than other emissions inventories in cells 

where the top 20 large point source emitters are located (Figure 16). In the five instances 

where CDIAC does exceed emissions that can be attributed to large point sources, the 

cells are located over major cities. 

 

3.2.Geo-referencing 

Few FFCO2   emissions inventories explicitly describe the geo-referencing system used to 

analyze and represent the data. The selection of a map projection commonly relies on the 

projection of the data set used to delineate the borders within which the FFCO2   

emissions will be distributed [Andres et al., 2012]. Traditionally, FFCO2   emissions 

inventories are represented on a regular 0.1° grid using spherical coordinates. All data 

sets analyzed use spherical coordinates, represented in geographic coordinate system 
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WGS84, except for Vulcan, which was built on regular 10km grid and represented in 

lambert conformal conic projection and NAD83 datum. Andres et al. [2012] address the 

importance of map projections, recognizing that the conversion from a three-dimensional 

world to a two-dimensional surface can distort shape, area, distance, or direction. 

Mathematical equations exist to transform data from one projection to another, but the 

distortion caused by conversions between planar coordinate systems and three-

dimensional spherical representations of the earth are important considerations that 

should be addressed in future analyses.  Map projections are especially important when 

FFCO2   emissions inventories are going to be used in a model with a specific, and 

possibly different, map projection built into it [Andres et al., 2012]. 

 

3.3.Scale Issues 

The power of a geographic information system (GIS) lies in its ability to transform, 

analyze and manipulate geographic data, however, all of these abilities rely on 

measurements of scale [Goodchild, 2011]. The primary questions considered in 

geographic studies are what the appropriate extent and resolution is to examine a specific 

geographic phenomenon [Cao and Lam, 1997]. In geography, the concept of ecological 

fallacy describes the practice of attributing characteristic of data from a large scale to 

smaller scales [Cao and Lam, 1997; Goodchild, 2001, 2011]. Global FFCO2   emissions 

totals are not used to characterize national level FFCO2   emissions totals since total CO2 

emissions at the national scale do not agree with total emissions at the global scale. 

Therefore, attributing national level emissions to subnational scales may represent a form 

of ecological fallacy, in which data at a larger scale is erroneously attributed to a smaller 
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scale. In addition, while there are proxies used in the disaggregation of FFCO2   emissions 

inventories, the relationships between proxies are scale dependent. For example, 

population density is not a good proxy for FFCO2   at fine scales [Andres et al., 2011]. If 

top-down approaches incorporate errors of ecological fallacy and spatial dependence, 

bottom-up approaches may be a stronger approach for estimating subnational FFCO2   

emissions. However, data are often only available at scales that are too coarse for 

modeling a given process at the correct scale. Models that predict the effects of scale on 

the properties of data without actually acquiring data at those scale are useful for 

evaluating the impacts of using data that are too coarse for their purpose [Goodchild, 

2001]. However, because the Vulcan inventory was acquired at such fine scales it is 

possible to measure the impacts of using data that are too coarse for their purpose. 

Models are also capable of simulating the disaggregation of data so that there is good 

agreement between the simulated data and the expected data. While some of the proxies 

used to disaggregate emissions are scale dependent, future simulations may address more 

accurate and complex methods for disaggregation.  

 

When masking global FFCO2   emissions inventories to the Vulcan extent, national level 

emissions from one inventory may not be captured if that emissions inventory uses a 

different boundary definition for the continental U.S., making comparisons of U.S. 

national totals across FFCO2   emissions inventories using this methodology imprecise. 

One example of differing boundaries is shown in Figure 6e and 7e, where CDIAC 

contains zero-magnitude cells along the border where other emissions inventories assign 

non-zero values. In general, the effects of border issues can be seen in lower emissions 
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values along the outward edge of all emissions inventories at 0.5°, 1° (Figure 6), and 2° 

(Figure 7) resolutions. There are also higher standard deviations along boundaries in this 

analysis, indicating poor agreement along the edges of clipped data (Figure 18e and 18f). 

 

Additionally, when masking data at the global scale to a national extent, issues arise as to 

whether or not it is more appropriate to first aggregate the data at the global scale, and 

then mask it to the national scale, or to first mask the data and then aggregate. If the data 

is first aggregated and then masked to the extent of Vulcan, the coarser resolutions 

capture a higher magnitude of emissions from outside the U.S., causing emissions at the 

national level to increase with resolution. Aggregating the global data sets after they have 

been masked produces consistent national totals but misleadingly excludes data values 

that may be relevant, depending on the national boundary definition for that data set. In 

particular, smaller magnitudes and higher standard deviations are seen in cells along the 

Canada and Mexico borders, where emissions at the global scale were clipped to the 

national extent of Vulcan. 

 

Across each comparison made in this study, aggregating the FFCO2   emissions 

inventories to coarser resolutions produced better correlation between the datasets. 

However, while the correlations increased, previous studies in geography indicate that the 

improvements correlation at aggregated resolutions tend to be offset by the loss of 

degrees of freedom, making the relationships between aggregated data no more 

significant [Goodchild, 2011].  
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3.4.Uncertainty across emissions inventories 

While comparing FFCO2   emissions inventories against the distributions, magnitudes, 

and inputs of other FFCO2   emissions inventories lends great insight into the effects of 

methods and data on FFCO2   emissions estimates, it does not fully capture the 

uncertainty that arises from the variability of FFCO2   emissions estimates.  

 

In a first attempt to estimate uncertainty across FFCO2   emissions inventories, maps of 

the average emissions for the U.S. for the year 2002 were generated at 0.1° and 1° 

resolution (Figures 18a and 18b). Averages for the year 2002 include emissions from 

EDGAR, FFDAS, and Vulcan at 0.1° resolution and EDGAR, FFDAS, Vulcan, and 

CDIAC at 1° resolution. The standard deviation across datasets was also mapped for the 

year 2002 at 0.1° and 1° resolution (Figure 18c and 18d). The standard deviation was 

divided by the mean to produce a map of the coefficient of variation, which compares the 

relative magnitude to the variance at each grid cell (Figure 18e and 18f).  

 

The spatial distribution of emissions is not significantly different at 0.1° or 1° resolutions. 

Emissions magnitudes have the highest standard deviations where the most emissions are 

located, i.e. in major urban areas (Figure 18c and 18d). Areas which have the highest 

emissions are the most important locations for emissions inventories to agree on, as these 

areas have greater impact on fossil fuel carbon dioxide emissions and have greater policy 

implications for the monitoring and reduction of carbon dioxide emissions. However, 

after the standard deviation is normalized to the emissions magnitude, and the coefficient 
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of variance is calculated, the greatest relative disagreement between emissions 

inventories occurs at lower emissions values.  

 

4. Conclusions 

Each of the approaches compared in this paper is known to have both strengths and 

weaknesses. Bottom-up approaches are more detailed, but are also more time and labor 

intensive. Top-down approaches are less time intensive, but are not as detailed and rely 

on fuzzy relationships that change with scale [Rayner et al., 2010]. For example, 

disaggregation by nightlights relies on a relationship between nightlight data and 

population, and correlations between population and CO2 emissions that are not exact 

[Rayner et al., 2010; Oda and Maksyutov, 2011].  

 

At coarser resolutions (1° and higher) distinctive differences in the patterns are hard to 

detect, but at finer resolutions distinct patterns and relationships between datasets become 

apparent as functions of inputs and methods used in their creation. The results presented 

in this analysis reveal that primary differences between data sets are related to differences 

in top-down and bottom-up approaches, the use of night lights versus population density 

in the spatial distribution of emissions, and the treatment of large point sources in the 

emissions inventory. The best fit between FFCO2   emissions inventories occurs between 

FFDAS and ODIAC, both of which rely heavily on nightlights data. CDIAC shows the 

least correlation to any of the FFCO2   emissions inventories. As a function of CDIAC’s 

coarse resolution it is unable to fully capture the fine distribution of emissions that occurs 

sub-nationally. Additionally, the lack of consideration for emissions from large point 



40 

sources in CDIAC increases differences in the spatial distribution of FFCO2   in CDIAC 

and the other four FFCO2   emissions inventories. Therefore, the distinction between 

point source data and non-point source data in the creation of spatially explicit FFCO2   

emissions inventories is critical. 

 

The unique patterns presented in EDGAR should be further analyzed after more detailed 

information on the methodologies can be obtained or are published. In order for these 

FFCO2   emission inventories to be used to their fullest potential more detailed 

methodologies should be published and maintained for each data set. Vulcan has the most 

comprehensive documentation, allowing for a better understanding of how the inputs and 

method of spatial allocation influence the spatial distribution of emissions in Vulcan 

compared to other inventories. Future research should also investigate the strengths and 

weaknesses of nightlight data in distribution emissions related to specific activities. For 

example, nightlights data may be more strongly related to residential or commercial 

emissions versus transportation and industrial sources of emissions. An expanded 

analysis into the differences in urban emissions profiles for major U.S. cities could also 

lend insight into what is happening in these very important sources of FFCO2 emissions.  

 

The differences among these five spatial FFCO2   emissions inventories are visible both 

graphically and numerically, but are far from encapsulating the uncertainty associated 

with current methodologies for representing FFCO2   emissions in space. While there is 

better correlation between the data sets at coarser resolutions, there is also a considerable 

amount of information loss. The comparison of these five FFCO2   emissions inventories 
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across multiple resolutions brings into question whether or not coarser resolution 

emissions inventories are more accurate because they have better agreement with each 

other, or if the loss of information makes the use of aggregated data more uncertain. 

 

While atmospheric concentrations of carbon and carbon from fossil fuel combustion are 

considered the least uncertain values in the global carbon cycle, there is still a lot of 

uncertainty associated with our understanding of FFCO2   emissions inventories. 

Uncertainties in the global carbon cycle limit our ability to effectively measure, monitor, 

or verify where, when, and how much carbon is being emitted from fossil fuel sources. 

However, by developing a cohesive carbon monitoring system that seeks to develop best 

practice methodologies for quantifying carbon, uncertainties in the carbon cycle can 

eventually be reduced. In addition, such a carbon monitoring system will allow for the 

monitoring and verification of international agreements, which seek to limit carbon 

emissions globally. Ultimately, the decision to use top-down versus bottom-up 

approaches depends on what the data are going to be used for, which will ultimately 

determine if the collection of data at finer resolution is worth the cost. 
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Table 2: Author-documented totals compared to user calculated global and national totals 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data 

 

Author-Documented Total 

(Tonnes C) 

Global Calculated 

Total (Tonnes C) 

U.S. Calculated Total 

(Tonnes C) 

Vulcan 2002: 1,541,353,052.7 (U.S.) 
N/A 

 
1,541,353,000 

ODIAC 2008: 8,468,120,000 (±2-3%) 8,468,069,000 1,533,826,000 

FFDAS 
2002: 6,222,573,500 

2008: 7,617,185,500 

2002: 6,222,573,000  

2008: 7,617,185,000 

2002: 1,396,513,000 

2008: 1,380,671,000 

CDIAC 
2002: 6,712,000,000 

2008: 8,288,000,000 

2002: 6,711,645,000  

2008: 8,287,658,000 

2002: 1,505,423,000 

2008: 1,509,024,000 

EDGAR ? 
2002: 7,041,831,063 

2008: 8,654,032,698 

2002: 1,519,385,000 

2008: 1,499,356,000 
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Table 3: Correlation Coefficients and Sum of Absolute Differences (SAD)in MtC 

(megatonne of Carbon) for the year 2002 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 FFDAS vs. 

Vulcan 

EDGAR vs. 

Vulcan 

FFDAS vs. 

EDGAR 2002 

EDGAR vs. 

CDIAC 2002 

Vulcan vs. 

CDIAC 2002 

  Corr. SAD Corr. SAD Corr. SAD Corr. SAD Corr. SAD 

0.1 0.62 1172 0.43 1494 0.37 1404 - - - - 

0.5 0.91 521 0.55 663 0.89 650 - - - - 

1 0.95 392 0.94 468 0.94 469 0.35 1603 0.39 1650 

2 0.97 292 0.97 311 0.97 320 0.71 1012 0.72 1034 

3 0.98 248 0.98 271 0.98 262 0.77 839 0.79 805 
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Table 4: Correlation Coefficients and Sum of Absolute Differences (SAD)in MtC 

(megatonne of Carbon) for the year 2008 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 FFDAS vs. 

ODIAC 

EDGAR vs. 

ODIAC 2008 

FFDAS vs. 

EDGAR 2008 

EDGAR vs. 

CDIAC 2008 

ODIAC vs. 

CDIAC 2008 

 Corr. SAD Corr. SAD Corr. SAD Corr. SAD Corr. SAD 

0.1 0.92 500 0.39 1419 0.37 1390 - - - - 

0.5 0.98 259 0.89 661 0.88 637 - - - - 

1 0.99 214 0.94 468 0.93 470 0.35 1603 0.38 1662 

2 0.99 174 0.97 319 0.96 326 0.71 1007 0.70 1037 

3 1.00 164 0.98 246 0.98 264 0.78 832 0.76 898 
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Figure Captions 

Figure 1: Cumulative emissions curves for Vulcan (2002), ODIAC (2008), FFDAS (2002 & 

2008), and EDGAR (2002 & 2008) at 0.1-degree resolution. Values are compared at 81,841 

non-zero grid cells in the 0.1-degree resolution Vulcan dataset. Solid lines represent data for 

2002, while dashed line represent data for 2008. 

 

Figure 2: Distributed emissions for Vulcan (2002), ODIAC (2008), FFDAS (2002 & 2008), 

and EDGAR (2002 & 2008) at 0.1-degree resolution. Emissions are arranged in ascending 

order of emissions and plotted against their point ID. Data are displayed on a log scale to 

highlight both high and low values. 

 

Figure 3: Spatial distribution of the most recent years of Vulcan (a), ODIAC (b), EDGAR 

(c), and FFDAS (d) at 0.1-degree resolution. Data are represented on a log scale in order to 

display the data from different inventories on the same color ramp, and to highlight both high 

and low emissions values. As a result of representing the data on a log scale, values of zero 

do not appear on the color ramp. Zero values are instead represented by the color black. 

 

Figure 4: Cumulative emissions curves for Vulcan (2002), ODIAC (2008), FFDAS (2002 & 

2008), EDGAR (2002 & 2008), and CDIAC (2002 & 2008) at 1-degree resolution. There are 

928 non- zero grid cells in the 1-degree resolution Vulcan dataset. Solid lines represent data 

for 2002, while dashed line represent data for 2008. 

 

Figure 5: Distributed emissions for Vulcan (2002), ODIAC (2008), FFDAS (2002 & 2008), 

EDGAR (2002 & 2008), and CDIAC (2002 & 2008) at 1-degree resolution. Emissions are 

arranged in ascending order of emissions and plotted against their point ID. Data are 

displayed on a log scale to highlight both high and low values. 

 

Figure 6: Spatial distribution of the most recent years of Vulcan (a), ODIAC (b), EDGAR 

(c), FFDAS (d), and CDIAC (e) at 1-degree resolution. Data are represented on a log scale in 

order to display the data from different inventories on the same color ramp, and to highlight 

both high and low emissions values. As a result of representing the data on a log scale, values 

of zero do not appear on the color ramp. Zero values are instead represented by the color 

black. 

 

Figure 7: Spatial distribution of the most recent years of Vulcan (a), ODIAC (b), EDGAR 

(c), FFDAS (d), and CDIAC (e) at 2-degree resolution. Data are represented on a log scale in 

order to display the data from different inventories on the same color ramp, and to highlight 

both high and low emissions values. As a result of representing the data on a log scale, values 

of zero do not appear on the color ramp. Zero values are instead represented by the color 

black. 

 

Figure 8: Correlation coefficients are plotted against resolution to depict the correlation 

threshold at the resolution at which emissions inventories show the most agreement. FFDAS 

is represented in yellow, EDGAR is represented in gray, and CDIAC is represented in 

orange. Solid line represent the above inventories (FFDAS, EDGAR, and CDIAC) compared 

to Vulcan (2002), while dashed lines represent each inventory compared to ODIAC (2008). 
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Figure 9: Difference maps for the least (a) and most (b) correlated emissions inventories at 

0.1-degree resolution. Note the color ramps are not on the same scale. 

 

Figure 10: Difference maps for the least (a, c) and most (b, d) correlated emissions 

inventories at 1-degree resolution for 2002(a, b) and 2008(c, d). Note the color ramps are not 

on the same scale. 

 

Figure 11: Transect profile of FFCO2 emissions across three U.S. cities: Baltimore, 

Philadelphia, and New York. FFDAS is represented in yellow, EDGAR is represent in gray, 

and ODIAC is represented in green.  

 

Figure 12: The ‘three-prong’ distribution of EDGAR, representing the tendency of EDGAR 

to either agree with another emissions inventory or to significantly over- or under- estimate 

it. 

 

Figure 13: Vulcan (bottom-up approach) compared to three top-down emissions inventories. 

Vulcan is compared to EDGAR and FFDAS at 0.1-degree resolution (a, b) and to EDGAR, 

FFDAS, and CDIAC at 1-degree resolution (c, d, e). 

 

Figure 14: Log of ODIAC versus the log of CDIAC at 1- and 3-degree resolutions. ODIAC 

and CDIAC use the same global and national totals but distribute emissions at the sub-

national scale using different spatial proxies. 

 

Figure 15: Log of FFDAS versus the log of ODIAC at 0.1-, 0.5-, 1- and 2-degree resolutions. 

ODIAC and FFDAS use different global and national emissions totals, but both use 

nightlight data as a spatial proxy to distribute emissions sub-nationally. FFDAS also uses 

population as a spatial proxy, while ODIAC does not. 

 

Figure 16: The emissions values of EDGAR, FFDAS, ODIAC, and Vulcan corresponding to 

the top 50 electricity-generating LPS emitting grid cells from eGRID. Point sources from 

eGRID (2009) were converted to a 0.1-degree grid and the top 50 emitting cells were 

compared to emissions values of each FFCO2 emissions inventory at 0.1-degree resolution. 

 

Figure 17: The emissions values of CDIAC, EDGAR, FFDAS, ODIAC, and Vulcan 

corresponding to the top 50 electricity-generating LPS emitting grid cells from eGRID. Point 

sources from eGRID (2009) were converted to a 1-degree grid and the top 50 emitting cells 

were compared to emissions values of each FFCO2 emissions inventory at 1-degree 

resolution. 

 

Figure 18: The average, standard deviation, and normalized standard deviation (coefficient of 

variance) were calculated for the year 2002 at 0.1-degree (a, c, and e) and 1-degree 

resolutions (b, d, and f).Note that the color ramps are on different scales and are not equal in 

magnitude across maps. Because the range of values varies between maps, leaving the color 

ramps on different scales better highlights the differences in the spatial distribution rather 

than magnitude of differences. 
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Figures 

 
Figure 1: Cumulative Emissions, 0.1 degree resolution 
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Figure 2: Distribution of Emissions, 0.1 degree resolution 
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Figure 3: Spatial Distribution of FFCO2 Emissions Inventories, 0.1 degree resolution 
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Figure 4: Cumulative Emissions, 1 degree resolution 
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Figure 5: Distribution of Emissions, 1 degree resolution 
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Figure 6: Spatial Distribution of FFCO2 Emissions Inventories, 1 degree resolution 
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Figure 7: Spatial Distribution of FFCO2 Emissions Inventories, 2 degree resolution 
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Figure 8: Correlation Thresholds 
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Figure 9: Differences between Emissions Inventories, 0.1 degree resolution 
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Figure 10: Differences between Emissions Inventories, 1 degree resolution 
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Figure 11: Emissions Profile of FFDAS, EDGAR, and ODIAC through 3 U.S. Cities, 0.1 

degree resolution 
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Figure 12: EDGAR versus FFDAS and ODIAC, 2008 
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Figure 13: Vulcan versus FFDAS, EDGAR, and CDIAC, 2002 
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Figure 14: CDIAC versus ODIAC, 2008 
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Figure 15: FFDAS versus ODIAC, 2008 
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Figure 16: Top 50 LPS grid cells, 0.1 degree resolution 
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Figure 17: Top 50 LPS grid cells, 1 degree resolution 
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Figure 18: Mean and Variance of Emissions Inventories for 2002 
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