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ABSTRACT 
 
 

WENYI SHAO. Microwave power imaging for ultra-wide band for 
early breast cancer detection. (Under the direction of DR. RYAN S. ADAMS) 

 
    Due to the critical need for complementary or/and alternative modalities to current X-

ray mammography for early-stage breast cancer detection, a 3D active microwave 

imaging system has been developed. This thesis presents a detailed method for rapid, 

high contrast microwave imaging for the purpose of breast survey. In the proposed 

imaging system, several transmitters polarized in different directions take turns sending 

out a low-power UWB pulse into the breast; backscattered signals are recorded by a 

synthetic aperture antenna array. These backscattered signals are passed through a 

beamformer, which spatially focuses the waveforms to image backscattered energy as a 

function of location in the breast. A simple Delay-and-Sum algorithm is applied to test 

the proposed multistatic multi-polarized detection scheme. The obtained 2-D and 3-D 

numerical results have demonstrated the feasibility and superiority of detecting small 

malignant breast tumors using our antenna strategy. An improved algorithm of 

microwave power imaging for detecting small breast tumors within an MRI-derived 

phantom is also introduced. Our imaging results demonstrate that a high-quality image 

can be reached without solving the inverse problem. 

    To set up an experimental system for future clinical investigation, we developed two 

Vivaldi antennas, which have a notable broad band property, good radiation pattern, and 

a suitable size for breast cancer detection. Finally, an antenna array which consists of 

eight proposed Vivaldi antennas is introduced. By conveniently moving up/down and 



iv 
 

rotating this antenna array, it can be used for the multistatic breast cancer imaging and 

qualified for our multi-polarized scan mode. 
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CHAPTER 1: INTRODUCTION

1.1 Background and motivation

Breast cancer is the most common form of cancer among women. In 2005, an

estimated 211,240 new cases of invasive breast cancer were diagnosed among women

in the U.S., as well as an estimated 58,490 additional cases of in situ breast cancer [1].

In 2007, the estimated number of new breast cancer is markedly lower than the

estimate for 2005 due to the use of new, more accurate estimation methods. However,

thereafter the number has increased year by year. An estimated 230,480 new cases of

invasive breast cancer will be diagnosed among women in 2011, as well as an estimated

57,650 additional cases of in situ breast cancer [2]. In addition, appromimately 40,000

women are expected to die from breast cancer each year since 2005. According to a

new survey commissioned by the Society for Womens Health Research, breast cancer

has been the disease American women fear the most [3].

Naturally, diagnosing breast cancer early can help women receive treatment early,

so they have an increased chance of survival. Many techniques have been developed

to use for breast cancer detection:

X-ray mammography is currently the leading method for detecting this type of

cancer. Unfortunately, this method is fraught with problems such as high false neg-

ative rates [4] and high false positive rates [5]. Additionally, the ionizing nature of

X-rays poses a considerable risk of causing the very cancer it attempts to detect.

Moreover, there are minor problems such as: since X-ray mammography is a 2-D pro-

jection imaging technique, breast compression is required to create a uniform volume

between the flat-source board and the flat-receiver board. This makes patients feel

very uncomfortable.
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Magnetic resonance imaging (MRI) is assumed to be the most accurate and ideal

imaging approach. It was even believed by some experts that this technique had

the potential to distinguish malignant tumor from the glandular tissues, which is

much denser than any other healthy breast tissues. However, a recent report shows

that MRI is too sensitive to detect early-stage breast cancer, which might lead to

unnecessary surgery [6]. Moreover, an MRI scan is generally very expensive. Addi-

tionally, there are relatively few MRI centers, especially outside of major cities. These

drawbacks make MRI less suitable for routine breast cancer screening.

Ultrasound is used to determine whether a lesion detected on a mammogram is

a liquid cyst or a solid tumor, but is not able to provide additional information.

Other imaging methods, including thermography and electrical impedance imaging,

are not appropriate for early breast detection because of limitations in image quality

and diagnosis accuracy. Therefore, a new safe, low-cost, reliable complement to the

X-ray mammography with high image contrast and resolution for early breast cancer

detection is neccessary. Microwave detection has the potential to satisfy this need.

However, several issues must be solved before microwave imaging is equipped for

practical use. For instance, are the methods applied in RADAR imaging or ground

penetrating imaging suitable for microwave medical examination? Is the current

screening approach and strategy sufficient? Secondly, loss in tissues tends to increase

with frequency, so generally the frequency is limited to approximately 10 GHz. This

begs the question: how much bandwidth is enough to generate sufficient resolution

for breast cancer detection, and what resolution can it reach with less than 10 GHz

bandwidth?... This dissertation aims to answer questions like these, and contribute

to the microwave medical breast cancer detection community.
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1.2 Dielectric properties of breast tissues

The physical basis of microwave imaging for breast cancer detection is the dielectric-

property contrast between normal and malignant tissue in the microwave spectrum.

This section briefly reviews several published dielectric measurements on breast tis-

sues at microwave-frequencies.

From 1984 to 1994, a few studies have been conducted on the dielectric proper-

ties of cancerous and healthy breast tissues at microwave frequencies. For instance,

Chaudhary et al. [7] measured the dielectric properties of excised healthy and malig-

nant breast tissue specimens from 3 MHz-3 GHz in 1984. 4 years later, Surowiec et

al. [8] published the measurement of dielectric properties of infiltrating breast carci-

noma and selected surrounding nonmalignant tissue in the range of 20 kHz-100 MHz.

In 1994, Joines et al. [9] measured the dielectric properties of freshly excised tissues

from several organs, including breasts, over the frequency range 50-900 MHz. These

three studies have consistently shown that the dielectric constant and conductivity

for cancerous breast tissue is three or more times greater than that of the host tissue.

These studies are summarized in Fig. 1.1. These data suggest a contrast between

malignant and healthy breast tissue of approximately 5:1 in dielectric constant and

10:1 in conductivity in the microwave frequency range. Fig. 1.1 also shows that the

comparison of permittivity and conductivity between normal and malignant tissue

continues over 3 GHz, based on the single-pole Debye equation.

Further extrapolation and results regarding dielectric properties of normal breast

tissue and cancerous tissue were presented in 2007 bby Lazebnik and her colleagues

[11] [14]. Rather than discuss “healthy“ breast tissue simply as in previous investiga-

tions, Lazebnik et al. measured composition of adipose, glandular and fibroconnec-

tive tissue at microwave frequency. It was found that both the dielectric constant and

conductivity tend to decrease as the adipose content increases, and conversely as the

percent glandular and/or fibroconnective tissue increases, both the dielectric constant
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Figure 1.1: Single-pole Debye curve fits of measured baseline dielectric-properties
data for normal and malignant breast tissue at radio and microwave frequencies [10].

and conductivity increase [11]. This trend is consistent over a wide frequency band

from 0.5 GHz to 20 GHz.

The difference in dielectric properties arise essentially due to the large differences

in water content of breast tissues (adipose, glandular and fibroconnective tissue). As

the adipose content increases, the water content is reduced, corresponding to the

reduced microwave dielectric properties. Fig. 1.2 shows how the dielectric properties

change as the tissue composition of normal breast tissue changes. Note that when

the adipose content nears zero, (i.e. the tissue is only composed of glandular and

fibroconnective tissue), the dielectric constant and conductivity have reached the level

of malignant tissue indicated in Fig. 1.1. However, there is still a large dielectric-

property contrast between the normal adipose-dominated tissues and the malignant

tissues in the breast. Reference [14] implies a nearly 10:1 contrast between malignant
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Figure 1.2: Percent tissue type as a function of dielectric constant for (a), and effective
conductivity for (b) at 5GHz [14].

tissue and normal tissue that is almost entirely adipose. Although these data were

measured at 5 GHz, similar trends were observed at 10 and 15GHz.

Therefore, the performance of “normal” breast tissue may be different due to its

composition. Fig. 1.3 gives a better illustration of the change of dielectric properties

over a wide frequency band. The curves are color coded based on the adipose content

of each sample. In the order of highest to lowest adipose content, the colors are red,

purple, blue, cyan and green. This implies that for those with low-adipose content,

breasts are not very transparent to microwave. And it might be difficult to recognize

malignant tumors in these dense breasts with microwave energy.

To solve this problem, one feasible solution is to classify the breasts according to

their density, and treat each class differently. To design numerical breast phantoms

with dispersion models that are suitable for computational electromagnetics simu-

lations of micowave imaging and cancer detection, Lazebnik et. al. classified all of

their specimens of breast tissue into 3 groups based on the percent adipose tissue in

each sample. Group 1 contained all samples with 0 − 30% adipose tissue (the high-

water-content group); group 2 contained all samples with 31 − 84% adipose tissue,
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Figure 1.3: 85 normal data specimens for dielectric constant and conductivity over 20
GHz bandwidth. The solid black curve represents the dielectric properties of saline,
the dashed black curve represents the dielectric properties of lipids, and the dash-dot
black curve represents the dielectric properties of blood [14].

and group 3 contained all samples with 85 − 100% adipose tissue (the low-water-

content group). Median dielectric constant and conductivity dispersion curves were

obtained for each group and finally concluded in Fig. 1.4. Solid lines in Fig. 1.4 (a)

and (b) stand for three adiposed-defined normal tissue groups obtained from cancer

surgeries. In the order of highest to lowest dielectric properties are group 1, group 2

and group 3. Dashed lines are median Cole-Cole curves [Appendix] [12] [13] for group

2 for nomal tissue samples obtained from reduction surgeries. Fig. 1.4 (c) and (d) are

median Cole-Cole curves for the dielectric constant and conductivity respectively, of

cancer samples with minimum malignant tissue content of 30%. Note that the curve

of group 1 (from very dense breast) is close to that of the cancerous sample (as men-

tioned in [14], contrast between malignant and fibroconnective/glandular-dominated

tissue is 610%). While group 2 and group 3 still have a significant comparative

difference from cancerous tissue.

Thus, the dielectric property contrast at microwave frequencies appears to be

more significant than the few-percent contrast exploited by X-rays, especially for
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Figure 1.4: Comparison of median Cole-Cole curves for normal and malignant tissue.
(a) and (b) are dielectric constant and conductivity, respectively, for 3 groups normal
tissue (solid lines). (c) and (d) are dielectric constant and conductivity, respectively, of
cancer samples. Symbols stand for measured dielectric properties for tissue-mimicking
phantom materials (*, 10% oil; O, 30% oil; /, 50% oil; �, 80% oil) [15].

breasts that are not very dense (like group 2 and group 3 in Lazebnik’s experiment).

Actually, when assisted with contrast agents, microwave detection is even able to

provide a good image for very dense breasts, in which the contrast agents modify

the dieletric properties of malignant tissue to increase the dielectric contrast with

fibroglandular tissue [16] [17].
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1.3 Active microwave imaging for breast cancer detection

To date, two main types of active microwave breast imaging techniques have been

proposed: hybrid microwave-induced acoustic imaging, and radar-based microwave

imaging (non-hybrid). In the hybrid mode [19]− [25], microwave signals are trans-

mitted into the breast to heat the tumor - due to the difference of water content, a

tumor absorbs more heat than normal breast tissues - and ularasound transducers

are used to detect pressure waves generated by the heated tumor.

In the non-hybrid method, the breast is first illuminated by a microwave signal,

and the scattered microwave signals are processed to form an image of the can-

cerous region. Due to the difference in dielectric properties inroduced in Section

1.2, an inverse scattering method that constructs images by recovering the permit-

tivity or conductivity profile of the breast is an intuitive approach to detect can-

cerous growth. Examples of such methods are diffraction tomographic (DT) algo-

rithm [26], Born approximation (BA) [27], Born iterative method (BIM) [28] and

distorted BIM (DBIM) [29]. These methods were originally developed for ground

penetrating RADAR (GPR), but some of these, and other similar inverse methods,

have been effectively applied in the area of breast cancer medical imaging [30]− [35].

However, these methods are generally time-consuming for processing 3-D images, es-

pecially when a relatively large number of iterations are involved to obtain an accurate

image.

In 2001 and thereafter, Hagness et al proposed a simple, rapid but effective ap-

proach for the microwave detection of breast cancer [10] [36] [37]. This approach only

focuses on reflections from scatterers but avoids estimating the dielectric properties

of the entire area. The essence of this approach is Delay-And-Sum (DAS). As the

illuminating signal is an ultra-wideband pulse, this translates to simply time shifting

and summing signals. Fig. 1.5(a) shows the cylindrical model Hagness et al used for

studying the DAS method. A cylinder, covered with a thin skin layer, was assummed
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(a) (b)

Figure 1.5: (a) The cylindrical model and the monostatic antenna system to detect a
buried malignant tumor; (b) the reconstructed image for (a) in the x-y plane where
the tumor exists [37].

to contain healthy breast tissue (εr = 9, σ = 0.4S/m, random variation up to ±10%)

and a small malignant tumor (εr = 50, σ = 4S/m). Antennas are settled in 9 rows and

each acts as a transmitter and a receiver. Fig. 1.5(b) shows the reconstructed image

in the x-y cross-plane in which the tumor exists. Although the breast model in [37]

looks very simple today, it illustrated a new way in which microwave medical imaging

can be accomplished easiliy, rapidly and efficiently. A more developed DAS method

– improved-DAS (IDAS) [38], is an extension of DAS. It uses an additional weight

factor that essentially represents the preprocessing and coherent radar operation, cal-

culated at each focal point to improve image quality. The Delay-Multipy-and-Sum

(DMAS) is another appoach in the DAS family, in which the time-shifted signals are

multiplied in pair before summing [39]. DAS and its follow-up algorithms have shown

to be very efficient approaches with acceptable image contrast and resolution.

Furthermore, many other beamforming approaches have been presented to localize

the breast tumor. Typical examples are space-time beamforming [40]− [42], robust

capon beamforming (RCB) [43], FDTD-based time reversal (FBTR) [44]− [46], gen-
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eralized likelihood ratio test [47], adaptive [48] and multistatic adaptive microwave

imaging (MAMI) [49] [50]. These methods have contributed to microwave breast can-

cer diagnosis research, and proved that the active microwave method is an effective

complement to the current techniques for breast cancer detection.

To apply the approaches described above, researchers have designed a variety of

antennas to excite and receive UWB probing signals. The trend of UWB antennas is

to make them small, and able be moved/rotated conveniently throughout the scan.

A review of UWB antennas for medical applications is made in Chapter 5.

1.4 Objects and outline

This dissertation proposes an improved scheme for UWB microwave imaging for

small breast tumor detection. The primary goals of this research include:

- characterization of UWB signals propagating in the breast tissue and scattering

from cancerous tissue employed by the finite-difference-time-domain (FDTD) method;

- development and evaluation of imaging algorithms for detecting early (small)

breast tumors;

- design and measurement of an UWB antenna and antenna array;

- some conclusions and suggestions for the clinical experiment system setup.

In this dissertation, a multistatic antenna system is employed to detect a small

tumor with diameter less than 1 cm in a simple breast model (Chapter 3) and an

MRI-derived breast phantom (Chapter 4), respectively. The transmitter sends out

a short-pulse signal into the breast and the backscatters are recorded by several re-

ceivers. The backscattered signals are then processed similar to a beamformer, to

image the backscattered energy as a function of the locations in the breast. Chap-

ter 2 introduces the behavior of programmed FDTD which simulates the process

of detecting signal excitation, propagation, and backscattered signal collection. In

Chapter 3, the DAS approach is applied to image a simple breast model through the

data extracted from the FDTD simulation of Charpter 2. Chapter 4 proposes a new
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algorithm that is similar to DAS. Tested by imaging an MRI-derived breast phan-

tom, this new algorithm is able to produce a better-quality image than any previous

DAS-family approach, but keeps the advantage of DAS-family’s efficiency. Chapter

5 presents a new UWB antenna and an antenna array for the breast cancer detection

measurement. And the final conclusion is made in Chapter 6.



CHAPTER 2: FDTD-BASED SIMULATION OF A BREAST MODEL

The finite-difference time-domain (FDTD) formulation of electromagnetic simula-

tion is a convenient tool for solving scattering problems. This method, first introduced

by Yee in 1966 [51] and later developed by Taflove and others [52]- [55], is a direct

solution of Maxwell’s time-dependent curl equations. This scheme treats the irradi-

ation of the scatterer as an initial value problem. In this chapter, discussion of the

FDTD method will cover:

* finite difference equations;

* absorbing boundary conditions and stability;

* 2-D field FDTD example;

* 3-D field FDTD example.

Note that the contents discussed in this chapter is related to, and based on the

topic of breast tissue/model applied in this dissertation .

2.1 Finite Difference Equations

In an isotropic medium, Maxwell’s equations can be written

5× E = −µ
∂H

∂t
(2.1)

5×H = σE + ε
∂E

∂t
(2.2)

The vector Eqn (2.1) and (2.2) represent a six scalar equation series, which can

be expressed in Cartesian coordinates as:
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∂Hx

∂t
=

1

µ

(
∂Ey

∂z
− ∂Ez

∂y

)
(2.3)

∂Hy

∂t
=

1

µ

(
∂Ez

∂x
− ∂Ex

∂z

)
(2.4)

∂Hz

∂t
=

1

µ

(
∂Ex

∂y
− ∂Ey

∂x

)
(2.5)

∂Ex

∂t
=

1

ε

(
∂Hz

∂y
− ∂Hy

∂z
− σEx

)
(2.6)

∂Ey

∂t
=

1

ε

(
∂Hx

∂z
− ∂Hz

∂x
− σEy

)
(2.7)

∂Ez

∂t
=

1

ε

(
∂Hy

∂x
− ∂Hx

∂y
− σEz

)
(2.8)

Following Yee’s approach, these differential equations can be approximated with dif-

ference equations if one positions the components of E and H throughout a unit cell

of the lattice as shown in Fig. 2.1.

We take Eqn. (2.6) as an example and write its equivalent difference equation:

ε
En+1

x (i + 1
2
, j, k)− En

x (i + 1
2
, j, k)

∆t

=
H

n+1/2
z (i + 1

2
, j + 1

2
, k)−H

n+1/2
z (i + 1

2
, j − 1

2
, k)

∆y

−
H

n+1/2
y (i + 1

2
, j, k + 1

2
)−H

n+1/2
y (i + 1

2
, j, k − 1

2
)

∆z
− σEn+1/2

x (i +
1

2
, j, k)) (2.9)

where, n + 1/2 represents the time instant t = (n + 1/2)∆t. If the approximation

En+1/2
x (i +

1

2
, j, k) =

En+1
x (i + 1

2
, j, k) + En

x (i + 1
2
, j, k)

2
(2.10)

is made, Eqn. (2.9) can be rearranged as
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Figure 2.1: Yee cell in FDTD. [51]

En+1
x (i +

1

2
, j, k)

=CA(m) · En
x (i +

1

2
, j, k)

+ CB(m) ·

[
H

n+1/2
x (i + 1

2
, j + 1

2
, k)−H

n+1/2
z (i + 1

2
, j − 1

2
, k)

∆y

−
H

n+1/2
y (i + 1

2
, j, k + 1

2
)−H

n+1/2
y (i + 1

2
, j, k − 1

2
)

∆z

]
(2.11)

where

CA(m) =
ε(m)
∆t
− σ(m)

2
ε(m)
∆t

+ σ(m)
2

=
1− σ(m)∆t

2ε(m)

1 + σ(m)∆t
2ε(m)

(2.12)

CB(m) =
1

ε(m)
∆t

+ σ(m)
2

=

∆t
ε(m)

1 + σ(m)∆t
2ε(m)

(2.13)

where m = (i + 1/2, j + 1/2, k + 1/2), i.e. the center of the Yee cell. Similarly, the

difference equations of Eqn. (2.7) and Eqn. (2.8) may be written as
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En+1
y (i, j +

1

2
, k)

=CA(m) · En
y (i, j +

1

2
, k)

+ CB(m) ·

[
H

n+1/2
x (i, j + 1

2
, k + 1

2
)−H

n+1/2
x (i, j + 1

2
, k − 1

2
)

∆z

−
H

n+1/2
z (i + 1

2
, j + 1

2
, k)−H

n+1/2
z (i− 1

2
, j + 1

2
, k)

∆x

]
(2.14)

and

En+1
z (i, j, k +

1

2
)

=CA(m) · En
z (i, j, k +

1

2
)

+ CB(m) ·

[
H

n+1/2
y (i + 1

2
, j, k + 1

2
)−H

n+1/2
y (i− 1

2
, j, k + 1

2
)

∆x

−
H

n+1/2
x (i, j + 1

2
, k + 1

2
)−H

n+1/2
x (i, j − 1

2
, k + 1

2
)

∆y

]
(2.15)

Eqn.(2.11), (2.14), and (2.15) are computations of electric field in FDTD over time

and space. Similarly, at any instant of t = n∆t, we can obtain the equations for H

field computaion:

Hn+1/2
x (i, j +

1

2
, k +

1

2
)

=CP (m) ·Hn−1/2
x (i, j +

1

2
, k +

1

2
)

− CQ(m) ·
[
En

z (i, j + 1, k + 1
2
)− En

z (i, j, k + 1
2
)

∆y

−
En

y (i, j + 1
2
, k + 1)− En

y (i, j + 1
2
, k)

∆z

]
(2.16)
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Hn+1/2
y (i +

1

2
, j, k +

1

2
)

=CP (m) ·Hn−1/2
y (i +

1

2
, j, k +

1

2
)

− CQ(m) ·
[
En

x (i + 1
2
, j, k + 1)− En

x (i + 1
2
, j, k)

∆z

−
En

z (i + 1, j, k + 1
2
)− En

z (i, j, k + 1
2
)

∆x

]
(2.17)

Hn+1/2
z (i +

1

2
, j +

1

2
, k)

=CP (m) ·Hn−1/2
z (i +

1

2
, j +

1

2
, k)

− CQ(m) ·

[
En

y (i + 1, j + 1
2
, k)− En

y (i, j + 1
2
, k)

∆x

−
En

x (i + 1
2
, j + 1, k)− En

x (i + 1
2
, j, k)

∆y

]
(2.18)

where

CP (m) =
µ
∆t
− σm(m)

2
µ(m)
∆t

+ σm(m)
2

(2.19)

CQ(m) =
1

µ(m)
∆t

+ σm(m)
2

(2.20)

In our simulation, we assume that the magnetic conductivity, σm = 0 everywhere in

the breast. And for high frequency, µ = µ0, hence CP (m) and CQ(m) are simplified

to

CP (m) = 1 (2.21)

CQ(m) =
∆t

µ0

(2.22)

For convenience, we will use identical grid spacing in the x, y, and z directions, i.e.

∆x = ∆y = ∆z = δ. Hence, Eqn. (2.11) and Eqn.(2.14) − Eqn.(2.18) can be

arranged:
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En+1
x

(
i +

1

2
, j, k

)
=CA(m) · En

x

(
i +

1
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, j, k

)
+ CB′(m)
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z
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1

2
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)
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z

(
i +

1

2
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2
, k

)
−Hn+1/2

y

(
i +

1

2
, j, k +

1

2

)
+ Hn+1/2

y

(
i +

1

2
, j, k − 1

2

)]
(2.23)

En+1
y

(
i, j +

1

2
, k

)
=CA(m) · En

y

(
i, j +

1

2
, k

)
+ CB′(m)

[
Hn+1/2

x

(
i, j +

1

2
, k +

1

2

)
−Hn+1/2

x

(
i, j +

1

2
, k − 1

2

)
−Hn+1/2

z

(
i +

1

2
, j +

1

2
, k

)
+ Hn+1/2

z

(
i− 1

2
, j +

1

2
, k

)]
(2.24)

En+1
z

(
i, j, k +

1

2

)
=CA(m) · En

z

(
i, j, k +

1

2

)
+ CB′(m)

[
Hn+1/2

y

(
i +

1

2
, j, k +

1

2

)
−Hn+1/2

y

(
i− 1

2
, j, k +

1

2

)
−Hn+1/2

x

(
i, j +

1

2
, k +

1

2

)
+ Hn+1/2

x

(
i, j − 1

2
, k +

1

2

)]
(2.25)

Hn+1/2
x

(
i, j +

1

2
, k +

1

2

)
=Hn−1/2

x

(
i, j +

1

2
, k +

1

2

)
+ CQ′(m) ·

[
En

y

(
i, j +

1

2
, k + 1

)
− En

y

(
i, j +

1

2
, k

)
−En

z

(
i, j + 1, k +

1

2

)
+ En

z

(
i, j, k +

1

2

)]
(2.26)

Hn+1/2
y

(
i +

1

2
, j, k +

1

2

)
=Hn−1/2

y

(
i +

1

2
, j, k +

1

2

)
+ CQ′(m) ·

[
En

z

(
i + 1, j, k +

1

2

)
− En

z

(
i, j, k +

1

2

)
−En

x

(
i +

1

2
, j, k + 1

)
+ En

x

(
i +

1

2
, j, k

)]
(2.27)
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Hn+1/2
z

(
i +

1

2
, j +

1

2
, k

)
=Hn−1/2

z

(
i +

1

2
, j +

1

2
, k

)
+ CQ′(m) ·

[
En

x

(
i +

1

2
, j + 1, k

)
− En

x

(
i +

1

2
, j, k

)
−En

y

(
i + 1, j +

1

2
, k

)
+ En

y

(
i, j +

1

2
, k

)]
(2.28)

where

CQ′(m) =
CQ(m)

δ
=

∆t

µ0δ
(2.29)

Hence, Eqn.(2.23) − (2.28), and Eqn.(2.12), (2.13), and 2.29 are the final difference

equations that will be applied in our FDTD simulation.

2.2 Absorbing boundary conditions and stability

An artificial termination is necessary to truncate the solution region electrically

close to the radiating/scattering object but effectively simulate the solution to infinity.

These termination conditions, known as absorbing boundary conditions (ABCs), are

theoretically able to absorb incident and scattered fields. The accuracy of the ABC

dictates the accuracy of the simulation. Reference [56] − [65] have listed various types

of ABCs, among which, the perfectly matched layer (PML) [60]− [64] is probably the

most accurate approach. However, the reason PML is not applied in our simulation is

that PML generally consumes too much computation resources, such that a simulation

with PML absorbing boundary usually takes an unreasonably long time. Considering

the efficiency, we use Liao’s ABCs [57] [58], instead.

Liao’s absorbing boundary conditions are an efficient tool and have shown to yield

excellent results using double-precision arithmetic when the angle of incidence is not

too large [66]. We will apply Liao’s ABCs in our simulation but before this, an

evaluation will be made to understand the accuracy of this boundary condition.

Let E(t, x1) (electric field, or H if magnetic field) denote the wave incident on the

boundary point x1 at time t. Then, using Liao’s boundary condition, we have
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E(t + ∆t, x1) ≈
N∑

j=1

(−1)j+1CN
j TjEj (2.30)

where CN
j is the binomial coefficient and N is the order of the binomial coefficient.

The vector Ej is defined as

Ej =



E1,j

E2,j

. . .

E2j+1,j


(2.31)

where


Ei,j = E(tj, xi)

tj = t− (j − 1)∆t

xi = x1 − (i− 1)∆x

(2.32)

For 2nd order Liao’s ABC, i.e., N = 2, we obtain

E(t + ∆t, x1) ≈ 2T1E1 −T2E2 (2.33)

The interpolation vector, T1 and T2 are defined as follows:

T2 = T1 ·


T1 0 0

0 T1 0

0 0 T1

 (2.34)

and

T1 =

(
T11 T12 T13

)
(2.35)
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where



T11 = (2− s)(1− s)/2

T12 = s(2− s)

T13 = s(s− 1)/2

s = v∆t/∆x

(2.36)

where v is the propagatation speed of the wave. Eqn.(2.33) indicates that if the 2nd

order Liao’s ABC is applied, we need to record the data of the current-step electric

field and the previous-step electric field for the next step computation. T1 and T2 are

parameters of current-step electric field and previous-step electric field, respectively

for the computation, and can be obtained through Eqn. (2.34) − Eqn. (2.36).

Figure 2.2: A waveguider-like model to test the absorbing boundary.

To evaluate the result of Liao’s 2nd order ABC, we set up a long-retangular box

that has a length of 500 Yee cells in the z direction and 20× 20 cells in the x-y plane,

as shown in Fig. 2.2. This box is bounded with perfect electric conductor (PEC) on

the upper and lower surfaces, and perfect magnetic conductor (PMC) on the front

and back. A plane wave signal, sent from the source plane in the middle of the

box, and absorbed by the absorbing boundary at the terminals, is a simple Gaussian
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pulse. Assuming that the upper limit of the frequency is 10 GHz, this translates

to 3cm-long wavelength in free space, and 1cm wavelength in typical breast tissue

(relative permitivity =9). Thus, a grid spacing of the Yee cell of 1mm×1mm×1mm

is sufficient to provide accuracy. Consider the stability condition [54] [67], the time

step is required to satisfy the equation:

∆t ≤ δ

c
√

3
≈ 1.9× 10−12second (2.37)

Hence, we select ∆t = 5
3
ps, i.e., 5

3
× 10−12s. If this box is filled with air (or

vacuum), according to Eqn. (2.36), then we have s = 0.5. Fig. 2.3 despicts several

instants of propagation in the model, terminated by Liao’s 2nd order ABC, using the

FDTD method. In Fig. 2.3(a), the Gaussian pulse is generated in the center position

of the model; (b) shows the generated pulse starts to move in the +z and -z direction,

respectively; (c) shows the pulses continuing to propagate in the model; (d) shows the

pulses impinging upon the boundary; (e) indicates that there is a reflection from the

boundary, meanwhile, most of the pulse energy has “gone out” of the model through

the boundary; (f) shows the reflected wave propagating back, and its amplitude drops

to approximately 2× 10−5 (-94 dB). It is interesting to note that the reflected pulse

is distorted, instead of the simple Gaussian pulse originarily generated. Fig. 2.3

demonstrates that the absorption of Liao’s 2nd order ABC from normal incidence in

air is quite good.

As a second test, assume that the box shown in Fig. 2.2 is filled with a particular

medium (εr = 9, σ = 0), which has similar dielectric constant to that of typical

breast tissue. Using the same δ and ∆t as above, we can obtain s = 0.167, and

corresponding T1, T2 through Eqn. (2.34) − Eqn. (2.36). Fig. 2.4 shows the

signal propagating in the medium-filled model, using FDTD and Liao’s 2nd order

ABC. Fig.2.4(a) shows the Gaussian pulse forming; (b) indicates that the pulse has
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been completely generated and starts propagating toward both two terminals; (c)

shows the signal propagating in the medium-filled box; (d) shows the microwave

signal is impinging upon the absorbing boundary; in Fig. 2.4(e), the signal vibrates

dramatically because of the combination of the Gausian-pulse’s tail and the reflected

wave; (f) shows the reflected wave heading back. Again, the shape of reflected wave

is no longer the original Gaussian pulse but distorted. We do not know why this

happens, but its maximum value is reduced to about 2.5 × 10−5 (-92 dB), which is

what we expected to see.

(a) (b)

(c) (d)

Figure 2.3: Wave propagates in the model shown in Fig.2.2. (a) 100th step, (b) 150th
step, (c) 400th step, (d) 560th step.
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(e) (f)

Figure 2.3: Wave propagates in the model shown in Fig.2.2: (e) 600th, (f) 700th step.

(a) (b)

(c) (d)

Figure 2.4: Wave propagates in the model shown in Fig.2.2 filled with medium. (a)
80th step, (b) 210th step, (c) 480th step, (d) 1400th step.
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(e) (f)

Figure 2.4: Wave propagates in the model shown in Fig.2.2 filled with medium. (e)
1460th step, (f) 1970th step.

To summrize, we have demonstrated that the 2nd order Liao’s ABC is able to ab-

sorb most of the energy of the incident wave. Meanwhile, it yields a −94dB reflection

in air, and a −92dB reflected wave if in a specific medium with εr = 9, σ = 0. This

slight reflection is negligible in our FDTD simulation for the breast caner detection

investigation.

2.3 2-D FDTD simulation

Our purpose is to simulate microwave signal propagation and scattering in the

breast. Before we extend it to 3-D, a 2-D model is introduced in order to easily

explain our scheme. In Fig. 2.5, the 2-D space is split into several parts. The skin

layer is located from Y = 75mm to Y = 77mm, below which is the breast region and

above that is the air. The black spot buried in the breast region represents a tumor.

The excitation source and the receivers are located in the air, on the surface of the

skin. The dielectric parameters for each part is displayed in Table 2.1. Since the

dielectric difference of the air and skin is very large, we assume that our excitation

and receivers are positioned on the surface of the skin tightly to prevent most of the

signal energy from reflecting on the surface of the skin but not enter the breast region.
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Figure 2.5: 2-D FDTD simulation for a simplified breast model.

The absorbing boundaries have been designed for each region (air, skin, and breast

region) that contacts the boundary.

Table 2.1: Dielectric properties for each part in Fig. 2.5

Tissues Relative Permittivity (F/m) Conductivity (S/m)
air 1 0

Skin 36 4
Breast Tissue 9 0.4

Tumor 50 4

The TM mode is applied in our 2-D FDTD simulation. Therefore, only Hx, Hy,

and Ez are used in the FDTD equations and only 3 difference equations (Eqn. (2.38)

− (2.40) are employed in the computation. Note that the absorbing boundaries are

H-field boundaries. The excitation signal is a modulated Gaussian pulse, which is

shown in the time-domain and frequency domain, respectively, in Fig. 2.6(a) and (b).
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(a) (b)

Figure 2.6: The detecting UWB signal in (a) time domain, and (b) in frequency
domain.
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The 3dB bandwidth of the signal is approximately 5 GHz, while the peak of the

spectrum appears near 3.2 GHz. Assuming that the excitation is positioned at x =

60mm, y = 77mm in Fig. 2.5, and 4 receivers are positioned at (x = 20mm, y =

77mm), (x = 40mm, y = 77mm), (x = 80mm, y = 77mm), and (x = 100mm, y =

77mm) respectively. Fig. 2.7 records the electric field Ez at several time steps.
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Fig. 2.7(a) shows the source starts to radiate at step t = 100∆t. (b) represents the

excitation is strengthening. In (c), the excitation has reached its maximum, which is

corresponding to the time instant t = 400ps in Fig.2.6(a). (d) and (e) denote that

the radiated pulse penetrates through the skin layer and goes deeper into the breast

tissue area. Note that the wave speed in air is much faster than in the skin and the

breast, therefore, a wavefront in the air has already met the top boundary, when the

wavefront in the breast is still propagating toward the tumor. (f) and (g) show that

the wave is passing through the tumor. It can be seen that the field in the area close

to x = 60mm, y = 60mm, which is the center of the tumor, is much stronger than

elsewhere, resulting from the field response of the tumor. Fig. 2.7(h)-(k) denote that

the wave propagates deeper into the breast, and has arrived the left and right bound-

ary in (k). At this point, it is worth noting that the scattered field of the tumor is

combined with the incident field, and cannot be discerned in these figures, since the

scattered field is much weaker than the incident field. In Fig. 2.7(l)-(n), the process

of wave absorption by the bottom absorbing boundary is depicted.

(a) 100th step (b) 180th step

Figure 2.7: Electric Field evolves within the computation region over time.
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(c) 240th step (d) 280th step

(e) 310th step (f) 340th step

(g) 360th step (h) 400th step

Figure 2.7: continued figure, electric Field evolves within the computation region over
time.
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(i) 440th step (j) 500th step

(k) 570th step (l) 650th step

(m) 710th step (n) 810th step

Figure 2.7: continued figure, electric Field evolves within the computation region over
time.
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The entire process of simulation contains 1000 time steps and this takes less than

2 minutes. The signals recorded at 4 watching points (on the surface of skin layer)

in the time domain converges very well. The success of 2-D simulation indicates

that FDTD is able to imitate the process of transmission and receiving of microwave

signals, and to provide effective data for breast cancer detection. In the next section,

we will extend this simulation to 3D, with the same scheme described in this section.

2.4 3-D FDTD simulation

3-D FDTD is much more complicated, memory-consuming, and time-consuming

than 2-D simulation. In this section, we develop a simple 3-D model for our FDTD

simulation. Assumming that the grid size is still ∆x = ∆y = ∆z = 1mm, and

the time step remains ∆t = 5
3
ps. The computation model, which approximates a

compressed breast, is illustrated in Fig. 2.8.

A muscle layer has been added at the bottom of the model, which is 25 mm thick

in the z direction. It has similar dielectric properties (εr = 50, σ = 4.0) to that of

the tumor. A spherical tumor, shown in red in Fig. 2.8, is 25mm beneath the skin

layer. A transmitter, prepared to send out a UWB microwave pulse, is highlighted

in green on the surface of the skin; Twenty-five receivers to collect the response from

the tumor are placed on the surface of the skin. Above the skin is an air layer which

is 30mm thick.

Since the rectangular model has six faces, the absorbing boundaries are designed

to fit each part of the breast model. For the left, right, front, and rear faces, the

absorbing boundaries are split into several layers to fit each layer in the breast model

(muscle layer, breast tissue layer, skin layer and air layer).

The total computation volume is 120mm × 120mm × 107mm. One simulation,

containing 2000 time steps to allow the detecting signal transmission and the backscat-

tered signals received at the antenna array, takes approximately 30 minutes on our

linux computation server. Fig. 2.9 illustrates 4 selected signals obtained by 4 re-
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Figure 2.8: A rectangular breast model for microwave breast cancer imaging.

ceivers, respectively, of the collecting-antenna-array. Note that the signals collected

by the receivers on the surface of the skin, are composed of the incident wave from

the excitation source, the reflections from the interface between the skin and breast

tissue, and the tumor response. Thus, a calibration step is required to extract the

tumor response and will be discussed in the next chapter.
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(a) Antenna No.1 (b) Antenna No.2

(c) Antenna No.3 (d) Antenna No.4

Figure 2.9: Signals obtained from 4 receivers.



CHAPTER 3: MICROWAVE IMAGING VIA SIMPLIFIED BREAST MODELS

In this chapter, two simplied breast models are employed to attempt detection

of a malignant tumor, using the delay-and-sum(DAS) algorithm. The idea of multi-

polarization detection will also be introduced in this chapter.

3.1 Antenna array and signal calibration

To detect a tumor growth in the breast, the simplified rectangular breast model

shown in Fig. 2.8 described in section 2.4, is used in this section, as well as the UWB

probing pulse introduced in Fig. 2.6. The antenna array utilized in our investigation,

consisting of 25 elements, is shown in Fig. 3.1. The separation between the elements

is 20mm in the x direction as well as in the y direction, and is less than the Nyquist

sampling space for the pulse employed. Each element in the array is an electrically

small dipole antenna (an advanced fabricated UWB antenna will be discussed in

Chapter 6). Our 5 × 5 array creates an 80mm × 80mm synthetic aperture in the

horizontal plane at z = 77mm. Theoretically, the cross-resolution is proportional to

the size of the synthetic aperture, i.e. the bigger the synthetic aperture the higher

the cross resolution. However, the equation for calculating far-field resolution for

synthetic aperture radar may not be suitable for near-field imaging. Therefore, we

will use a numerical method to investigate the resolution problem. This will be

discussed later in this chapter.

A simulated scan involves 25 independent signals recorded by the antenna array.

These stored waveforms include the incident signal, skin reflection, and the tumor

response. To isolate tumor reponse, a calibration process is required to remove the

artifacts.
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Figure 3.1: The antenna array for detecting tumor in the rectangular breast model.

There are two basic types of calibration methods: experimental method, and

signal-processing method. A typical example of the experimental method is reported

in [38], in which Klemm et al. proposed a symmetical antenna array to remove

the undesired signal. Fig. 3.2 illustrates the symmetrical curved antenna array for

microwave breast cancer detection applied in Klemm’s experiment. By physically

rotating the antenna array around its center, two or more radar measurements are

performed. In these sets of measured data, undesired signals (skin reflection and

mechanical-part reflection) are supposed to be identical and appear at the same time

position, so that they can be eliminated. However, this method faces many limita-

tions: (i) distance between antennas and skin must remain unchanged, (ii) skin prop-

erties and thickness must remain the same, and (iii) healthy breast tissue properties

must be homogenous. The signal-processing method to remove unwanted artifacts

can be quite complicated, such as in [68], where an algorithm based on multiplication

of adjacent wavelet subbands is applied to enhance the tumor response while reducing

the skin reflection. The skin responses are finally distinguished and eliminated in the
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Figure 3.2: A self-symmetrical antenna array for microwave radar breast cancer de-
tection in Klemm’s experiment [38].

wavelet domain using an artificial threshold. Some relatively simple signal-processing

methods, such as subtraction from the averaged skin reflection (see in [37]), are not

necessarily able to yield the result in real world scenarios as desired. Therefore, to

date, artifact removal is still a problem that needs to be overcome in the microwave

breast-cancer-detection community.

In our investigation, the tumor response is extracted by subtracting a reference

model, which is an indentical but tumor-free model from the tumor-included model.

Since a regular tomography examination is recommended at least once each year [69],

the previous exmamination data can be reasonably used as reference data. Since

tissue properties may vary over time, in our investigation the breast model containing

a tumor has ±10% random variation (in dielectric constant as well as conductivity for

each cell) from the tumor-free model. In Fig. 3.3(a), the blue dashed curve represents
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(a) (b)

Figure 3.3: Signal calibration. (a) signal obtianed by an antenna in a tumor-
free/tumor-bearing model. (b) Tumor response, after the subtraction.

a signal obtained from a single receiver in a tumor-free model, while the red solid curve

represents a signal obtained from the same receiver in a tumor-bearing model. In this

figure, a notable difference appears only over a specific short time window, which is

assumed to be the echo of the tumor. The calibrated signal, after subtraction, is

illustrated in Fig. 3.3(b), which represents the tumor response. This result suggests

that the tumor response is much weaker than the undesired signals, compared to

the waveforms shown in 3.3(a). This method, using a priori information, though

not perfect, helps us to easily obtain reliable tumor-response data for performance

analysis of the imaging approach.

3.2 Delay and Sum

The DAS method, first proposed for breast cancer detection [10] [37], was designed

for a monostatic detecting system. In this system, a UWB antenna is used as a

transmitter as well as the receiver and is moved across the breast to form a virtual

synthetic aperture. The tumor-backscatter signals received by all antennas, are time-

shifted (phase-shifted) before they are summed to form a synthetic focal point. The
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mth time-delay, needed to compensate (shift) the mth antenna for a given focal point,

is given by

Tm(−→r ) =
2dm(−→r )

v
(3.1)

where dm(−→r ) represents the distance between the focal point and the mth transmit-

ter/receiver element located at position −→r , and v represents the average velocity of

propagation in the breast at the center frequency of the pulse. In our multistatic

detecting system, time delays from the transmitter to the target point are identical

for any received signal, since only one transmitter is employed. Therefore, the time-

delay required for compensation only contains the propagation from the target point

to the receiver. Thus, the time-delay compensation in our multistactic system should

be rewritten as

Tm(−→r ) =
dm(−→r )

v
(3.2)

where (1 6 m 6 25). A multistatic system avoids the issue that the transmitting

channel and the receiving channel must be highly isolated as in a monostatic system,

since the echo of the tumor is extremely weak when compared with the transmitted

microwave signal.

Finally, the summation of all time-shifted signals form the intensity of a pixel in

the reconstructed image. This process can be expressed by

I(−→r ) =

[
25∑

m=1

S(Tm(−→r ))

]2

(3.3)

Note that in some applicaitons of the DAS algorithm, there is a weight term

used to compensate the attenuation for each signal propagating in the breast. This

compensation term was not used in our investigation since this artificial adjustment

may cause additional undesired effects. Additionally, previous investigations have
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shown that an attenuation-compensated summation does not convincingly provide a

better image over non-attenuation-compensated summation.

(a)

(b) (c)

Figure 3.4: The reconstructed image (a) in the x − y plane, (b) in the z − x plane,
and (c) in the z − y plane. (unit: mm).

Since the signals add coherently at the target point and incoherently everywhere

else, intensity at the target area is much stronger than any other location in the breast

region. A focal-point scan throughout the breast was carried out in increments of 1
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mm in x, y, as well as z directions in 3-D space. The reconstructed images are

shown in Fig. 3.4. The red spot located at (50, 50) in Fig. 3.4(a) is the precise

location of a 6-mm-diameter tumor in the FDTD model. Note that the suppression

of clutter signals in the surrounding regions is quite good. This result demonstrates

that the simulation data generated from our FDTD code are correct and effective.

Some visible bright spots around the tumor represent leakages and can be reduced

by increasing the number of antennas used in the array, or by image post-processing.

The profile of the tumor in the coronal plane (z − x plane) and in the sagittal plane

(z− y plane) is distorted, due to poor resolution in the z direction, resulting from no

synthetic aperture in the z direction. In the next section, we will use a hemispherical

breast model so a synthetic aperture can be formed in the z direction as well.

3.3 Hemispherical breast model

A hemispherical breast model is clearly more practical than a retangular model. In

this section, a hemispherical model, shown in Fig. 3.5, is developed for the microwave

breast cancer imaging.

In Fig. 3.5, a hemisphere with 100mm diameter, centered at (70,70,25), filled

with breast tissues, and covered with a layer of 2mm-thick skin, is positioned above a

25mm thick muscle layer (the muscle layer is shown in Fig. 3.6(a)). The black point

in Fig. 3.6(a) and (b), embedded in the normal tissue represents a 6mm diameter

malignant tumor. The dielectric properties of the fatty breast tissues are assumed to

be Gaussian random variables with variations of ±10% around their nominal values.

The nominal values are chosen to be typical of the reported data [7]− [9] [11]− [15], as

summarized in Table 3.1. The glandular tissue is the main source of clutters because

their dielectric properties have an upper bound very close to those of malignant tumors

[11] [14]. The size of the glandular tissue ranges from 1 to 5 mm in diameter randomly

and their locations are also random in the generated breast model. The randomly
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Figure 3.5: The simplified inhomogeneous hemispherical breast model viewed in 3D.

distributed breast tissues with variable dielectric properties are representative of the

inhomogeneity of the breast of an actual patient.

Table 3.1: Nominal dielectric properties of breast tissues

Tissues Permittivity (F/m) Conductivity (S/m)
Immersion liquid 9 0

Muscle 50 4
Skin 36 4

Fatty Breast Tissue 9 0.4
Glandular Tissue 10-45 0.4-3.6

Tumor 50 4

A synthetic aperture antenna array, consisting of 32 elements (black points around

the model), is positioned around the breast model in four layers as shown in Fig. 3.5,

and each layer has 8 elements. Each element is assumed to be a dipole antenna and
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(a) (b)

Figure 3.6: Slice of the breast model. (a) coronal slice at y = 70mm; b) transverse
slice at z = 50mm.

is positionad 2mm away from the surface of the skin. The dot on the top of the

breast model shown in Fig. 3.5 represents the transmitter. To reduce the microwave

reflection on the surface of the skin, allowing more signal energy to enter the breast,

the breast model as well as the antenna array are assumed to be immersed in a

coupling medium [70] [71], which has a similar dielectric constant to the breast fatty

tissue. This design helps to reduce the impedance mismatch on the surface of the

skin, and simplify the calculation of time delay in the DAS algorithm.

To obtain good resolution, a UWB pulse signal having wider bandwidth than the

one previously described is employed in this program. Its time domain expression is

a modulated Gaussian pulse:

V (t) = sin(2πft)exp

[
−
(

t− t0
τ

)2
]

(3.4)
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Figure 3.7: Spectrum of the UWB signal for the hemispherical model detection.

where f = 6.25GHz, τ = 50ps, and t0 = 4τ . This pulse is centered around 6.25

GHz and has a full-width at half-maximum (FWHM) bandwidth of approximately

10 GHz, which is shown in Fig. 3.7.

The whole computation region, including the breast model, the antenna array,

and the coupling medium, is 140mm× 140mm× 107mm. The grid size ∆x = ∆y =

∆z = 1mm, and time step ∆t = 5
3
ps are used in this 3-D FDTD simulation. The

computaion time for one transmission and the backscattered signals to be received at

the antenna array is approximately 40 minutes (2000 steps) on our linux server.

The DAS algorithm is used here to obtain a reconstructed image. Fig. 3.8 shows

the 3-D images obtained via DAS method. The shaded hemisphere represents the

contour of the breast, and the dotted shades inside correspond to the intensity of

the backscattered energy estimates. The image is displayed on a logarithmic scale

with a 3 dB dynamic range (focal points with backscattered energy lower than -3 dB
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Figure 3.8: 3-D image of a 6 mm in diameter tumor obtained via DAS method. The
dotted shades inside the breast are the intensity of the backscattered energy estimates.

are removed). The tumor is conspicuously shown in the correct location defined in

FDTD with visible clutters around it. Fig. 3.9 shows the reconstructed image in x-y

(transverse), x-z (coronal), and y-z (sagittal) cross section images with all the focal

points on display. The tumor is clearly located at (50,70,50), in the cartesian coordi-

nate from these sliced images. The resolution in the vertical direction (z-direction) is

much better than in the retangular model due to the geometry of the array. There is

a strong clutter near the tumor, which may make it difficult to distinguish the profile

and stage of the tumor in real diagnosis.
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(a)

(b) (c)

Figure 3.9: The Cross sections of the reconstructed image. (a) in transverse plane,
(b) in coronal plane, and (c) in sagittal plane.

Note that our multistatic scheme is different from the multistatic method intro-

duced in some articles, such as in [39] [49] [50], where each antenna in the array takes

turn to transmit a probing pulse and all antennas in the array are used to receive
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the backscattered signals. That approach is equivalent to our simulation repeated N

times, where N is the number of antennas in the array. For instance, in reference [50],

64 antennas were used which implies 64×64 series of signal are summed in the beam-

forming image reconstruction. Therefore, the final reconstructed images are naturally

different than those presented here. Since the approach in [50] may take a long time

to complete the simulation, we developed a multi-polarized method, in which several

transmitters, instead of all antennas in the array, are used and each takes its turn

to transmit a probing pulse. Relatively speaking, our enhanced method is able to

improve the quality of the reconstructed image and save simulation (or microwave

scan) time.

3.4 Image reconstruction with multi-polarized signals

In this section, we develop an enhanced method to image the backscattered-energy

distribution within the hemispherical breast model. This method is able to improve

the image quality over the results obtained in the previous section.

3.4.1 Single target detection

Naturally, a specific polarized signal brings specific information, and dictates the

resolution in a certain direction. Thus, we attempt to use two kinds of linearly-

polarized electric signals as a probing signal to illuminate the breast model. In Fig.

3.10, four dipole antennas positioned around the breast model shown in red arrows,

are polarized in the +y, +x, −y, and −x direction respectively. Each transmitter is

4mm away from the surface of the skin and sends out a probing pulse, after a previous

transmission by another excitation and collection by the array. The locations of the

excitation antennas have been moved from the top to the sides of the model, to

allow better imaging of tumors growing near the skin. The array used to collect the

backscattered signals remains unchanged. The probing pulse in each transmission is

the 10 GHz bandwidth signal, shown in Fig. 3.7, which was employed in the previous

investigation. Since each excitation and collection is an independent event, multi-
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Figure 3.10: The multi-polarization scheme for the multistatic imaging.

core simultaneous computation, with each core dealing with an independent FDTD

simulation, is applied in our scheme. Therefore, the computaional time for the entire

scheme to complete, is approximately equivalent to a single-excitation simulation.

The signal calibration step and time-delay compensation are processed similar to

the previous section. Consequently, the intensity of each focal point is summed by a

group of four backscattered signals and each has 32 series, i.e.

I(−→r ) =

[
32∑

m=1

S+y(Tm(−→r ))

]2

+

[
32∑

m=1

S+x(Tm(−→r ))

]2

+

[
32∑

m=1

S−y(Tm(−→r ))

]2

+

[
32∑

m=1

S−x(Tm(−→r ))

]2

(3.5)
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(a)

(b) (c)

Figure 3.11: The reconstructed images using multi-polarized scheme shown in Fig.
3.10. a) in transverse plane, (b) in coronal plane, and (c) in sagittal plane.

The reconstructed images are shown in Fig. 3.11. Compared to Fig. 3.9, the

clutters in each counterpart of Fig. 3.11 have experienced significantly improved



48

suppression. The highlighted dot in the figure which stands for the mapped energy

of a tumor, is easily distinguished from the background [72].

This scheme provides better resolution in the horizontal plane (x-y-plane image

such as Fig. 3.11(a)) than any single-polarized detection with probing signal polarized

in the x-y plane. The polarization of the probing signal in our investigation does

not take z direction into account due to the radiation of a dipole antenna. In the

remainder of this section, we will investigate the resolution problem of the proposed

approach.

3.4.2 Dual target and resolution

Resolution is an important reference index to evaluate an imaging system. Since

microwave medical imaging is a type of near-field imaging, the equation proposed

for radar-imaging resolution may not be appropriate for near-field medical imaging.

However, the resolution of near-field imaging does follow some basic criteria.

Generally, range-resolution is determined by the equation [73]

δ =
v

2B
(3.6)

where, v is the speed of wave propagation, and B is the bandwidth of the detecting

signal. Therefore, high range-resolution is obtained when a wide-band detecting signal

is applied. This is the reason UWB signals are employed for breast cancer detection.

The cross-resolution is assummed to be proportional to the elevation angle θ,

depicted in Fig. 3.12(a), i.e., the bigger the elevation angle, the higher the cross-

resolution. Therefore, cross-resolution is limited in the rectangular breast model due

to its geometry and the structure of the antenna array, shown in Fig. 3.12(a) (or 3-D

model in Fig. 2.8). On the other hand, the array used for the hemispherical model

forms a large elevation angle, shown in Fig. 3.12(b), which is able to yield a high
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(a) (b)

Figure 3.12: The elevation angle affects the resolution. The elevation angle in (a) is
smaller than in (b), which implies a relatively poor image resoltution.

cross-resolution. Meanwhile, the resolution in z-direction can be improved since a

synthetic aperture is also formed in the z-direction.

In this subsection, a dual-tumor case [74] is used to investigate resolution of the

imaging method proposed within this chapter. In general, imaging resolution is de-

fined by the minimal distance between two targets at which two targets can still be

distinguished in the reconstructed image. Typically, it can be characterized by a -3

dB drop of the power level in the reconstructed image. Since resolution of the hemi-

spherical system is superior to the rectangular system, in this section, the horizontal

(x-y plane) resolution is investigated only through the hemispherical breast model.

Moreover, due to the symmetry of the sphere, it is difficult to distinguish the defini-

tion of range-resolution and cross-resolution in the hemispherical model, therefore a

discussion of z-direction resolution is ommited.

A pair of spherical targets with identical diameter of 6 mm, were positioned in

the center of the breast model. The hemispherical breast models with and without

tumors differ with ±10% random variation. Using the antenna scheme depicted in

Fig. 3.10, we try to distinguish both of the targets with minimal distance between

them. Fig. 3.13 shows the reconstructed image with multi-polarized DAS method

when two targets are placed 13 mm apart in the FDTD simulation. Two targets
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Figure 3.13: Reconstructed image for a pair of targets with 13 mm apart using multi-
polarized DAS method.

can be distinguished well in this case but with slight distortion of the location and

poor contrast. As the center distance moves to 11 mm, a very poor-contrast image

is obtained, shown in Fig. 3.14. Two targets cannot be distinguished clearly for this

case, and some focal points between two tumors have scattered energy that exceed

-3 dB of the peak tumor response. Additionally, many strong clutters are present in

this image and some of their scatterd energy have reached the level of the tumor. It

turns out that to distinguish the tumor from the clutters is difficult with this image.

To summarize, the resolution of the proposed imaging system, accompanied with

the DAS image reconstruction algorithm, is approximately 13 mm. Meanwhile, this

conclusion demonstrates that microwave breast cancer imaging is a type of centimeter-

resolution detection.
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Figure 3.14: Reconstructed image for a pair of targets with 11 mm apart using multi-
polarized DAS method.

To compare with the multi-polarized method, we also investigated using a single-

excitation strategy with the antenna array shown in Fig. 3.5 to detect dual targets.

However, nothing can be concluded from these figures, whether the distance between

two targets is 13 mm or 11 mm. The reconstructed images are shown in Fig. 3.15

and Fig. 3.16. The actual tumor locations merely exbihit extremely weak-bright dots,

and clutters are even stronger than the targets.

In this chapter, we have demonstrated the advantage of the multi-polarized an-

tenna strategy. The DAS algorithm is a simple, effective approach and has certain

robustness, for detecting an early-stage breast tumor. However, a real human-breast

can be highly heterogeneous, which means its dielectric properties may be more in-

homogeneous than the models we developed in this chapter. In the next chapter, we

will propose a more advanced algorithm to treat an MRI-derived breast phantom,

which exhibits the dielectric properties of the human breast tissues more realistically.
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Figure 3.15: Reconstructed image for a pair of targets with 13 mm apart using single-
excitation strategy.

Figure 3.16: Reconstructed image for a pair of targets with 11 mm apart using single-
excitation strategy.



CHAPTER 4: ADVANCED MICROWAVE IMAGING VIA MICROWAVE
POWER IMAGING (MPI)

The inhomogeneity of the dielectric constant of breast tissues cause variation in

wave velocities propagating in them. For near-field imaging such as a breast survey,

propagation of the wave is restricted to a short distance, therefore, small variations

of the time delay (typically 6 10%) will not cause significant impact on the image

reconstruction (a review of this result can be found in [75]). However, for highly

heterogeneous breasts, the complexity of wave propagation in the breast increases,

and the simple DAS method faces difficulties in distinguishing the cancerous part

within a breast over the clutters, principally induced from fibroconnective tissue or

glandular tissue. In this chapter, a new type of confocal microwave imaging method

- microwave power imaging algorithm, is proposed to image a spherical tumor within

an MRI-derived breast phantom, which is more complicated, but more realistic than

models discussed in previous chapters.

4.1 Fields generated by a linearly-polarized dipole

To clearly describe the algorithm, it is necessary to understand each component

of the field (in Cartesian coordinates) generated by a linearly-polarized dipole source.

We position an electric dipole, linearly polarized in the y-direction, in the center

of the computation region (140 mm× 140 mm× 107 mm, in the air) and use the 3-D

FDTD method to observe the generated electric field and magnetic field in three cross-

section planes, shown in Fig. 4.1. Note that what we care about is the wavefront,

i.e., the propagation of the phase, rather than field amplitude.

Figs. 4.2 −4.7 show the Ey, Ex, Ez, Hy, Hx, and Hz field in three section-plane,

respectively, after a modulated-Gaussian pulse is fully generated. From these figures,
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Figure 4.1: Observe the field generated by a electric dipole in three cross-section plane:
horizontal plane (x-y plane with z=50), coronal plane (z-x plane with y=60), and
sagittal plane (z-y plane with x=60). The center position of the dipole is (70,70,55),
in the cartesian coordinate.

it can be concluded that the wavefront (i.e. phase) of the Ey field, generated by the

y-direction-linearly-polarized dipole, is spherically symmetric in space; the wavefront

of Ex and Ez is spherically anti-symmetric about a 45◦-tilted plane, respectively. The

wavefront of Hx is spherically anti-symmetric about a horizontal plane in which the

dipole is located; the wavefront of Hz is spherically anti-symmetric about a vertical

plane in which the dipole is located. And nothing can be concluded about Hy from

the figure.

Similarly, the scattered field generated by a scatter that is illuminated by a trans-

mit field should have the same response since the scatter is the source of a scattered

field. The DAS algorithm similar to the one employed in Chapter 3 is described

as follows: if the excitation antenna is linearly-polarized in the y-direction, the col-

lected Ey-backscattered signals can be summed coherently at each target location
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(a)

(b)

Figure 4.2: The Ey field gen-
erated by the dipole source,
observed in (a) horizontal
plane, (b) coronal plane, and
(c) sagittal plane, respectively
shown in Fig 4.1.

(c)
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(a)

(b)

Figure 4.3: The Ex field gener-
ated by the dipole source, ob-
served in (a) horizontal plane,
(b) coronal plane, and (c)
sagittal plane, respectively,
shown in Fig. 4.1.

(c)
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(a)

(b)

Figure 4.4: The Ez field gener-
ated by the dipole source, ob-
served in (a) horizontal plane,
(b) coronal plane, and (c)
sagittal plane, respectively,
shown in Fig .4.1.

(c)
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(a)

(b)

Figure 4.5: The Hy field gener-
ated by the dipole source, ob-
served in (a) horizontal plane,
(b) coronal plane, and (c)
sagittal plane, respectively,
shown in Fig. 4.1.

(c)
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(a)

(b)

Figure 4.6: The Hx field gener-
ated by the dipole source, ob-
served in (a) horizontal plane,
(b) coronal plane, and (c)
sagittal plane, respectively,
shown in 4.1.

(c)



60

(a)

(b)

Figure 4.7: The Hz field gener-
ated by the dipole source, ob-
served in (a) horizontal plane,
(b) coronal plane, and (c)
sagittal plane, respectively,
shown in Fig. 4.1.

(c)
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after time-delay compensation, through Eqn. 3.3, because of the spherical symmetry

of Ey. However, other electric and magnetic components are not able to reconstruct

an image merely using Eq. 3.3, due to their spatial asymmetry.

Our improved algorithm aims at applying both the electric-field signal and the

magnetic-field signal, and combining them to achieve more information from the tar-

get, in order to reconstruct a high-contrast image. Dipole antennas are employed

throughout our investigation. However, advanced UWB antenna design and fabrica-

tion will be discussed in Chapter 6. In the next section, the proposed algorithm will

be described in detail.

4.2 MPI and multi-polarized MPI

It is desired to improve the efficacy of the multistatic confocal microwave imaging

algorithm by including the magnetic field with the electric field in the formulation [76].

The combination includes more backscatter information and is assumed to provide

a better-quality image. To do so, we have chosen to combine the two fields into a

Poynting like vector that represents the magnitude and direction of power flow within

the system. At any point in Cartesian space, the Poynting vector is given by

P = E×H =

∣∣∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

Ex Ey Ez

Hx Hy Hz

∣∣∣∣∣∣∣∣∣∣
=(EyHz − EzHy)x̂ + (EzHx − ExHz)ŷ + (ExHy − EyHx)ẑ

=Px · x̂ + Py · ŷ + Pz · ẑ (4.1)

where Px = EyHz − EzHy, Py = EzHx − ExHz, and Pz = ExHy − EyHx. All the

electric and magnetic field signals are assumed have been time shifted within this

section, except where otherwise noted.
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At any instant in time, a single antenna operates in transmit mode and many

other antennas receive the response to that transmitted signal. Suppose that the

transmitted electric field is polarized along the y-direction, then Px and Pz at the re-

ceivers are likely to provide meaningful results. If the z-direction is assumed to point

away from the body, then Pz contains reflections from the tumor as well as significant

reflections from the muscle layer beneath the breast (see the breast model used in

Chapters 2 and 3). So for the proposed algorithm, Px is the only term that can be

reasonably used to detect the tumor with y-polarized excitation. Further, the first

term of Px dominates over the second term, again because of the polarization of exci-

tation. Thus the x-component of the received Poynting vector is well-approximated

with

Px ≈ EyHz (4.2)

From a similar line of reasoning, an x-polarized excitation signal gives rise to Py that

is well approximated with

Py ≈ −ExHz (4.3)

It has been shown that the phase front of Hz is spherically antisymmetric about

the vertical (Y−Z) plane, in which the tumor is located. Therefore, Eqn (4.2) at

receiver locations in the positive x direction from the tumor is positive for all time;

Eqn (4.2) at receiver locations in the negative x direction from the tumor is negative

for all time. This problem is depicted in Figure 4.8 for a receiver in the positive and

negative x-direction from a tumor. Since a negative result represents power flow in the

negative direction, the total power reflected from a given focal point can be deduced

if each receiver in the negative x-direction of the current focal point is multiplied by

-1, or

Pxij =


EyiHzj xR > xF

−EyiHzj xR < xF

(4.4)
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(a) (b)

Figure 4.8: The product of Ey field and Hz field at a given receiver may be either (a)
exclusively positive, if the receiver is located in the positive x-direction from a tumor,
or (b) exclusively negative if the receiver is located in the negative x-direction from
a tumor.

where i, j = 1 − N (N is the total number of receivers), xR is the x coordinate of

the jth receiver and xF is the x coordinate of the current focal point. At this stage,

it is worth noting that the position of each detector has been taken into accout in

the proposed algorithm and participates in the intensity computation of each focal

point (for DAS, IDAS or DMAS, only the transit time of the signal from the focal

point to the detector is considered). Hence, when the x coordinate of the detector

lies between the tumor and the current focal-point, the x-directed power obtained

from these detectors are entirely inverted. This will further suppress the background

noise of the image and improve image quality. Finally, these time-shifted products

are summed to yield the power intensity value of the focal point according to
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I (−→r ) =

∫ T

0

(Ey1H
r
z1 + Ey1H

r
z2 + · · ·+ Ey1H

r
zN

+ Ey2H
r
z1 + Ey2H

r
z2 + · · ·+ Ey2H

r
zN

+
...

+EzNHr
z1 + EyNHr

z2 + · · ·+ EyNHr
zN) dt

=

∫ T

0

[
N∑

i=1

Eyi ·
N∑

j=1

Hr
zj

]
dt

=

∫ T

0

(
N∑

i,j=1

Pxij

)
dt (4.5)

where −→r is the position of the synthetic focal point in 3D Cartesian space, Hr
zj = Hzj

when xR > xF , Hr
zj = −Hzj when xR < xF , and T is the total measurement time.

Note that Pxii is the actual Poynting vector associated with the ith pixel location;

Pxij(i 6= j) is a fictitious cross term that contributes to the focal point intensity but

has no physical meaning.

Eqn (4.5) clearly illustrates that the number of E field and H field detectors need

not be identical, nor must they be collocated. If M is the number of E field detectors

and N is the number of H field detectors, then the power intensity is given by

I (−→r ) =

∫ T

0

[
M∑
i=1

Eyi ·
N∑

j=1

Hr
zj

]
dt (4.6)

Thus Ey and Hz may be processed separately. This observation eases the burden

of collecting these field components in a physical measurement since each detecting

antenna may be optimized to detect either Ey or Hz, but not necessarily both.

To conclude the formulation, the power intensity of an x-polarized electric exci-

tation signal from Eqn (4.3) is computed as
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I(−→r ) =

∫ T

0

(
N∑

i,j=1

Pyij

)
dt

=

∫ T

0

[
−

M∑
i=1

Exi ·
N∑

j=1

Hr
zj

]
dt (4.7)

where, Hr
zj =


Hzj yR > yF

−Hzj yR < yF

.

Next, consider a multi-polarized antenna strategy that is discussed in Chapter 3.

Since an x-direction polarized transmitter yields an −ExHz term, which is essentially

the Py that represents the microwave power flow in the y-direction, the power intensity

value of the synthetic focal point should be the summation of values obtained by Eqns

(4.5) and (4.7) from 4 illuminations [77],

I (−→r ) =

∫ T

0

(
N∑

i,j=1

P ij
x1 +

N∑
i,j=1

P ij
y1

+
N∑

i,j=1

P ij
x2 +

N∑
i,j=1

P ij
y2

)
dt (4.8)

Note that the value calculated by Eqn (4.8) is likely negative. When this happens all

intensity values are normalized to lie between zero and one.

4.3 The MRI-derived breast phantom and FDTD simulation

An MRI-derived breast phantom is naturally more realistic, but more complex

than a simplified breast model. To evaluate the MPI algorithm, three dimensional

dielectric and conductivity datasets from MRI measurement are applied in this chap-

ter; these datasets were obtained from the University of Wisconsin MRI numerical

breast phantoms repository (UWCEM) [78].
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(a)

(b)

Figure 4.9: Distribution of the dielectric properties in a sagittal slice from a 3-D
MRI-derived breast phantom. (a) Dielectric constant, (b) conductivity
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(a) (b)

Figure 4.10: The number of cells corresponding to (a) dielectric constant, and (b)
conductivity, within the applied breast phantom.

The selected breast-phantom, including the coupling medium, contains 258×253×

251 grid cells and each cell is 0.5mm×0.5mm×0.5mm. Fig. 4.9 shows the distribution

of relative permittivity and the conductivity values within the breast phantom. The

dielectric properties of the coupling liquid is selected to be εr = 9.2, σ = 0.

Fig. 4.10 displays a statistic for the number of voxels (equivalent to Yee cell in

FDTD) associated with the dielectric constant and the conductivity values within

the breast shown in Fig. 4.9 (these figures exclude the muscle, skin, or the coupling

medium). A voxel that contains more fatty tissue is assummed to have lower dielectric

properties, while a voxel that contains more fibroconnective/glandular tissue is as-

sumed to have relatively higher dielectric properties. Fig. 4.10 demonstrates that vox-

els having relatively low dielectric properties dominate in the breast phantom, which

indicates that the content of fat is more than the content of fibroconnective/glandular

tissues. As stated in the instruction manual of the UWCEM Repository, this breast

phantom contains approximately 25− 50% glandular tissue. Therefore, the effective

wave velocity in the breast is evaluated, and will be used in a variety of algorithms

(DAS, MPI and so on) discussed in this chapter.
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Figure 4.11: 56 receivers lie along 7 circles - each has 8 receivers (receivers not il-
lustrated in this figure). Four transmitters (in red arrows) illuminate the breast
successively from different positions, polarized along -x, +y, +x and -y respectively.

We assume that an effective wave speed can always be defined to work for a

certain range of the density level (4 density levels are classified in UWCEM Repository

according to the breast density), due to the robustness of the DAS-family algorithm

in near-field microwave imaging [75]. However, the more dense the breast, the lower

contrast is obtained in the reconstructed image.

A synthetic aperture array shown in Fig. 4.11, which has 7 layers and each layer

has 8 elements (along the black circles, specific elements are not shown in this figure),

is applied to detect a spherical breast tumor centered at (78,75,50) with 8mm diameter

in the breast phantom. These receivers are assumed to be on the surface of the skin,

which is about 1.5mm thick and clearly demarcates the breast tissue and the coupling

medium in Fig. 4.9. Four transmitters (marked by arrows in Fig. 4.11, this figure
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only shows 3 of them) take turns sending out a UWB signal (a modulated Gaussian

pulse described in Eqn. (3.4), the spectrum of this signal is displayed in Fig. 3.7)

after a previous transmission and backscattered-signal collection.

To carry out the MPI algorithm, we need to calculate the Poynting vector at a

specific point in the 3-D space. Assuming that these points are located in the center

of each Yee cell (take Fig. 2.1 as reference), then, the electric field signal requires

four point averaging and the H field signal requires two-point averaging:

Ex =
1

4

[
Ex

(
i +

1

2
, j, k

)
+ Ex

(
i +

1

2
, j + 1, k

)
+Ex

(
i +

1

2
, j, k + 1

)
+ Ex

(
i +

1

2
, j + 1, k + 1

)]
(4.9)
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)
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)
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(
i, j +

1

2
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)
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(
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2
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)
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(
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1
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)
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(
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1

2
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(4.11)
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, k +
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Hz =
1

2

[
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(
i +

1

2
, j +

1

2
, k

)
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(
i +

1

2
, j +

1

2
, k + 1

)]
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The computational space is again terminated with a second-order Liao absorbing

boundary. Since the grid size is reduced in the MRI-derived breast phantom, to make

the FDTD simulation stable, our computation time-step is readjusted to ∆t = 4/3ps

and the total number of computation steps are adjusted to 5000 steps. Four trans-

missions, with respective polarization, as well as the backscattered signals collected
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by the antenna array, take approximately 6 hours by serial fortran code on state of

the art linux servers. Thus, a total of 4 × 56 (N=56, the number of receivers) series

of data are obtained from the 3-D FDTD simulation.

4.4 Imaging results using the MRI-derived breast phantom

4.4.1 Single tumor

The calibration step is conducted by subtracting a reference model which is ±10%

random variation in dielectric properties from the tumor-bearing model. The cali-

brated sginals are imported into our matlab-based multi-polarized-MPI beamformer

(parallel processing on multicore is involved) to yield a reconstructed image. A sliced

image for horizontal, coronal, or sagittal reconstruction takes approximately 3 min-

utes, which again shows the efficiency of the MPI algorithm.

Fig. 4.12 illustrates the reconstructed image obtained through the multi-polarized

MPI approach in (a) x-y plane, (b) z-y plane, and (c) z-x plane, in which the tumor is

located. The dark dot, which represents the tumor location, can be easily recognized

from these images. And its location is consistent with the actual location in the FDTD

simulation. The reconstructed images show a good contrast against the clutters

and the background. Fig. 4.13 and Fig. 4.14 illustrate the image obtained by

multi-polarized DMAS and multi-polarized DAS respectively, with the same antenna

strategy, to compare with the result obtained by MPI. In the DMAS algorithm, the

backscattered signals received from the numerical breast phantom are time shifted,

multiplied in pair, and the products are summed to form a synthetic focal point [39].

Fig. 4.13 has a large number of clutters, while Fig. 4.14 has very poor image contrast.

To quantify further the performance of the three approaches, quantitative assess-

ments are carried out in terms of signal-to-clutter ratio (SCR) and signal-to-mean

ratio (SMR). SCR compares the maximum tumor response with the maximum

clutter response in the same image, whereas SMR compares the maximum tumor

response with the mean response of the same image. The SCR and SMR for Fig.
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4.12 − 4.14 are shown in Table 4.1. For all views, the SMR and SCR values for MPI

is the highest among the three.

(a)

(b) (c)

Figure 4.12: The reconstructed image through multi-polarized MPI method. (a)
horizontal plane z=50; (b) coronal plane x=78; (c) sagittal plane y=75.
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(a)

(b) (c)

Figure 4.13: The reconstructed image through multi-polarized DMAS method. (a)
horizontal plane z=50; (b) coronal plane x=78; (c) sagittal plane y=75.
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(a)

(b) (c)

Figure 4.14: The reconstructed image through multi-polarized DAS method. (a)
horizontal plane z=50; (b) coronal plane x=78; (c) sagittal plane y=75.
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Table 4.1: Comparison of SMR and SCR value for Fig. 4.12, 4.13, and 4.14

Fig number Method SMR (dB) SCR (dB)
Fig 4.12(a) MPI 5.311 2.001
Fig 4.13(a) DMAS 3.936 1.098
Fig 4.14(a) DAS 1.919 0.999
Fig 4.12(b) MPI 5.343 3.280
Fig 4.13(b) DMAS 4.187 0.067
Fig 4.14(b) DAS 2.375 1.650
Fig 4.12(c) MPI 5.680 1.768
Fig 4.13(c) DMAS 4.435 1.327
Fig 4.14(c) DAS 2.099 0.285

Considering that a relatively long interval from previous tomography examination

may occur, the reference breast phantom for the data calibration step may have con-

siderable differences from the tumor-contained phantom. Fig. 4.15 shows the recon-

structed image using multi-polarized MPI when the tumor-contained breast phantom

and the tumor-free breast phantom have ±15% difference in dielectric parameters.

The image quality is significantly degraded over the ±10% case though the tumor is

still able to be recognized centered at (78,45,60). Neither DAS nor DMAS is able to

locate the target in this scenario.

4.4.2 Dual tumor

Again, the dual tumor case is investigated to study the imaging resolution in

this numerical breast phantom, via the MPI algorithm. In this section, we study

both the horizontal and vertical imaging resolution of the multi-polarized MPI as an

illustration of the detection and imaging of a spherical pair of tumors, each of 6mm

diameter, using the MRI-derived breast phantom and the antenna scheme depicted in

Fig. 4.11 . The breast phantoms with and without tumors differ with ±10% random

variation.
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(a)

(b) (c)

Figure 4.15: Reconstructed image for tumor centered at (78,45,60) with 8mm diame-
ter using MPI. Tumor-contained breast phantom and the tumor-free breast phantom
are ±15% randomly different in dielectric parameters. (a) in the x-y plane, (b) in the
z-y plane, and (c) in the z-x plane.

The horizontal plane resolution is determined by analyzing the distance between

two identical targets placed in the center of the x-y plane. Fig. 4.16(a) shows the
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(a) (b)

Figure 4.16: Two-tumor prototype for study of horizontal resolution. (a) is the re-
constructed image when two tumors are 12mm apart. Center positions are (56,70,50)
and (68,70,50). (b) shows the intensity along the line y=70 in the plane of z=50 when
two tumors are 11mm, 12mm, and 13mm apart.

reconstructed image when two targets are centered at (56,70,50) and (68,70,50), a

12mm offset. It is difficult to identify the tumors in this image since clutters are very

strong. Fig.4.16(b) illustrates the intensity of the focal points along the line y=70 in

the reconstructed plane when two tumors are 11mm, 12mm, or 13mm apart. This

figure demonstrates that the resolution of the proposed reconstruction approach is

near 12mm in the horizontal plane. This translates to approximately 0.7λ at the peak-

spectrum frequency, and approximately 0.112λ at the lower edge frequency (1GHz)

of the UWB signal in the coupling medium. Fig. 4.16 also implies that clutters in

the 11mm-apart case (black dash line) would be even stronger than the 12mm-apart

and 13mm-apart case.

Similarly, the vertical resolution is studied by varying the distance between two

identical tumors, placed in the z-y plane. Fig. 4.17(a) shows the reconstructed image

when two 6mm-diameter tumors centered at (75,75,59) and (75,75,63). Hence the

center distance is 14mm. Clutters are observed to be strong in the image, however

two tumors can be clearly identified and distinguished. Fig.4.17(b) illustrates the
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(a) (b)

Figure 4.17: Two-tumor prototype for study of vertical resolution. (a) is the recon-
structed image when two tumors are 14mm apart. Center positions are (75,75,59)
and (75,75,73). (b) shows the intensity along the line y=75 in the z-y plane of x=75
when two tumors are 13mm, and 14mm apart.

intensity of the focal points along the line y=75 in the reconstructed plane when two

tumors are 13mm or 14mm apart. This figure demonstrates that at a distance of

14mm, two tumors are able to be distinguished. This is equivalent to approximately

0.82λ at the peak-spectrum frequency of the UWB detecting signal and 0.131λ at

1GHz in the coupling medium.



CHAPTER 5: UWB ANTENNA DESIGN AND FABRICATION

A UWB system must have UWB antennas, which plays an important role in

broad band communication and imaging systems. The antenna desired for microwave

medical imaging, especially breast cancer imaging, must satisfy strict requirements of

bandwidth, pulse waveform, radiation pattern, and antenna size (small antennas are

prefered). The reasons are: for real synthetic aperture arrays, there must be several

antennas around the breast with reasonable spacings; For non-real aperture arrays,

an antenna is moved accross the breast to collect signals at several location, while

big antennas may have accuracy problem in moving, which subsequently affects the

quality of beamforming. Therefore, a large number of investigations in small UWB

antennas have been carried out to design medical-application-aimed antennas.

In 2003, Li et. al. proposed a pyramidal horn antenna for breast cancer detection,

which works in the 1-11 GHz spectrum [79]. In Li’s experiment, this antenna serves

as a transmitter and a receiver. It is moved across the breast to create a synthetic

aperture array. As compared to the antenna built by Li, microstrip antennas have

a more compact “2-D” form, but ususally with narrow bandwidth. However, the

Vivaldi antenna [80] has recently received considerable attention because of its “2-

D” structure and broad band property. The antipodal Vivaldi antenna, having an

even simpler structure than conventional Vivaldi which makes it easy to design and

fabricate, has been employed in many communication applications [81]− [91].

However, only a few studies about medical-imaging-aimed microstrip antennas

(Vivaldi or other types [92] [93]) have been reported. Among them, it is worth noting

Bourqui et. al.’s work [94], in which a balanced antipodal Vivaldi was built for breast

cancer detection, accompanied with a director ahead of the antenna. The structure
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of this antenna was coded in FDTD to simulate the whole process of transmitting

and receiving signals from a breast phantom. Good imaging results were obtained

using data collected by this antenna through FDTD simulation. The problem in this

design, is that the antenna is still quite large (80 × 44 × 9.2mm, with the director

included). It is impossible to use this antenna to build a real synthetic aperture array

for microwave breast cancer imaging because of its size. Therefore, in this chapter, we

propose two antipodal Vivaldi antennas - each quite small - and finally fabricate an

antenna array using one of which, for the application of breast cancer detection [95].

5.1 Two antipolar Vivaldi antennas

The proposed Vivaldi antennas have exponential structures. Fig. 5.1 and Fig. 5.2

present the geometry and parameter values of the proposed Vivaldi antennas. The

curvatures of the outer curve and the inner curve (inner curves form the gap) follow

the equation

xin = c1

[
ec2(y−L−C) − 1

]
−W (5.1)

xout = W
(
2e

y−L−C
6 − 1

)
(5.2)

where W, L, and C are shown in Fig. 5.1(a) and Fig. 5.2(a). The coefficients c1 and

c2 for our antennas are listed in Table 5.1.

Table 5.1: The coefficients used in Eqn 5.1.

Coeffficient Antenna #1 in Fig. 5.1 Antenna #2 in Fig. 5.2
c1 0.25 0.06
c2 0.15 0.2
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(a)

(b)

Figure 5.1: Geometry and parameters of a proposed Vivaldi antenna (Antenna #1)
copper pattern. (a) top view, (b) 3-D view. Unit : mm.
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(a)

(b)

Figure 5.2: Geometry and parameters of a second Vivaldi antenna (Antenna #2)
copper pattern. (a) top view, (b) 3-D view. Unit: mm.
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(a) (b)

Figure 5.3: The constructed Vivaldi antenna #1. (a) top view, (b) bottom view.

(a) (b)

Figure 5.4: The constructed Vivaldi antenna #2. (a) top view, (b) bottom view.

In both designs, the copper layer is terminated with a tilted half disc, to reduce the

reflection from the end. The antenna is assumed to be fed through an SMA connector

followed by a gradual transition from microstrip to parallel strips transmission line.

Along the transition, the conductor width increases linearly while the ground width

decreases exponentially to retain a constant impedance. The tri-strip-like transmis-

sion line extends for a short distance before the grounds and conductor start to flare

in opposite directions with exponential curves to create the antenna aperture.
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(a) (b)

Figure 5.5: The 2-D Electric field of Antenna #1 in the x-y plane when the frequency
is (a) 6 GHz, (b) 10 GHz.

The substrate is constructed using TMM 10 (Rogers Corporation) that has a

relative permittivity of 9.2, and thickness 1.27 mm. The second antenna (Fig. 5.2)

has a longer feeding leg and a reduced gap, compared to Antenna #1 (Fig. 5.1). The

overall sizes of Antenna #1 and Antenna #2 are 29 × 32 × 1.27mm, and 33 × 32 ×

1.27mm, respectively. The constructed antennas are shown in Fig. 5.3 and 5.4.

The antennas used for breast cancer imaging, as disscussed in the previous chapter,

are assumed to be immersed in a coupling medium when operating in both transmit

and receive mode. Fig. 5.5 shows the HFSS-simulated Electric field on the x-y

plane, generated by Antenna #1 when it is centered in the x-y plane, fed from the

origin, and immersed in an ideal coupling liquid with relative permittivity of 9.2. The

image indicates a good radiation in the near field by this antenna. In the antenna

measurement, we used a commercial automotive fuel named E85 as the coupling

liquid, which contains 85% ethonal, plus gasoline. Fig. 5.6 shows the HFSS-simulated

and measured reflection coefficient S11 over the freuqency span 1 GHz − 10 GHz.

The measurement matches the main features of the simulation especially in the low

frequency range. The main source of error comes from the real dieletric properties of

the coupling liquid do not quite match the parameters used in our simulation.
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Figure 5.6: The measured (solid line) and HFSS-simulated (dashed line) S11 for
antenna #1.

Figure 5.7: The measured (solid line) and HFSS-simulated (dashed line) S11 for
antenna #2.
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(a) (b)

Figure 5.8: The 2-D Electric field of Antenna #2 in the x-y plane when the frequency
is (a) 6 GHz, (b) 10 GHz.

The same measurement is conducted for Antenna #2. We find that the field

generated by Antenna #2 does not present significantly different fields than those

generated by Antenna # 1, from HFSS simulation. Its measured and simulated S11

are illustrated in Fig. 5.7.

5.2 The antenna array

We selected Antenna #1 as the antenna element employed in the antenna array

because it is relatively small. As shown in Fig. 5.9, eight antennas were built on one

substrate and have the same polarization. This arrangement makes the antennas easy

to feed. The hole in the middle allowing for measurement of a breast, is 100mm in

diameter. By moving the array up and down in the z-direction, the array can collect

the siganl from the breast at different heights, shown in Fig. 5.10 (7 levels are applied

in the method discussed in Chapter 4), to conform to synthetic aperture imaging.

Since the array aperture is fixed, the antennas are comparatively far from the surface

of the breast as they move up, if the breast is still assumed to be hemispherical.



86

Figure 5.9: The designed antenna array in HFSS. Unit: mm.

Figure 5.10: The designed antenna array for breast cancer imaging.
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The constructed antenna array with the SMA connector is shown in Fig. 5.11.

The multi-polarized approach, discussed in the previous chapter, can be conducted by

turning the array 90 degrees - then all the antennas would have vertical polarization

corresponding to their former polarization. The overall size of the array is 152.4 ×

152.4 × 1.27mm. The material of the substrate still is Rogers TMM 10 (relatively

permittivity 9.2).
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(a)

(b)

Figure 5.11: The constructed antenna array.(a) top view, (b) bottom view.



CHAPTER 6: CONCLUSIONS

This dissertation presents a study of an ultrawideband microwave imaging system

for the detection of ealy-stage breast cancer. Our ongoing work in this research is

motivated by the clinical need for a viable complement to, or replacement for X-ray

mammography, which suffers from a number of disadvantages. The physical basis for

breast cancer detection via microwave method is the contrast in dielectric properties

of healthy and malignant breast tissues. In our investigated multi-polarized detection

system, an ultrawideband signal is transmitted by vertically-polarized linear sources

sequentially, and an array of antennas is located near the surface of the breast to

collect backscattered signals from the breast. The received signals are processed using

artifact removal and MPI beamforming algorithms to form an image of backscatter

energy in the image due to their significant dielectric property contrast with normal

breast tissue. Applying our detection system to an MRI-derived numerical breast

phantom, we find that the proposed screening scheme and the algorithm are able to

detect cancerous growth within the breast effectively and provide accurate location

of the suspicious object.

As the first step to construct a real detection system to carry out our scheme for

breast cancer microwave detection, we fabricated two small Vivaldi antennas and a

real aperture antenna array composed of 8 Vivaldi antennas. The designed antipodal

antennas are designed to work in the frequency range of 1 GHz to 10 GHz. Our

simulation and measurement results show that this antenna is able to transmit and

receive signals in the desired frequency range under the experimental enviroment.

Our next work will be focused on the hardware construction of the system, including

signal amplification and filtering, circuit connection, etc.
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To summarize, the medical microwave imaging research continuing in our labora-

tory is encouraging. We believe that we are close to a real breast cancer detection

system. We also believe that the microwave method will finally be a reliable ap-

proach for early-stage breast cancer examination, through the efforts of hundreds of

researchers in the microwave imaging community.
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APPENDIX A: INTRODUCTION TO COLE-COLE EQUATION

The Cole−Cole equation is a relaxation model that is often used to describe

dielectric relaxation in polymers [12] [13]. It is given by the equation

ε∗(ω)− ε∞ =
εs − ε∞

1 + (ıωτ)1−α
(A.1)

where ε∗ is the complex dielectric constant, εs and ε∞ are the “static” and “infinite

frequency” dielectric constants, ω is the angular frequency and τ is a time constant.

The exponent parameter α, which takes a value between 0 and 1, allows description

of different spectral shapes. When α = 0, the Cole−Cole model reduces to the Debye

model. When α > 0, the relaxation is stretched, i.e. it extends over a wider range on

a logarithmic ω scale than Debye relaxation.
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