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ABSTRACT 
 
 

TARA LANI CAVALLINE. Recycled brick masonry aggregate concrete:  use of 
recycled aggregates from demolished brick masonry construction in structural and 
pavement grade portland cement concrete.  (Under the direction of DR. DAVID C. 

WEGGEL) 
 
 

Reuse of construction waste as aggregates is becoming increasingly popular for a 

number of environmental and economic reasons.  In this study, structural- and pavement-

grade portland cement concrete (PCC) mixtures were developed using crushed recycled 

brick masonry from a demolition site as a replacement for conventional coarse aggregate.  

Prior to developing concrete mixtures, testing was performed to determine properties of 

whole clay brick and tile, as well as the crushed recycled brick masonry aggregate 

(RBMA).  Concrete mixtures exhibiting acceptable workability and other fresh concrete 

properties were obtained, and tests were performed to assess mechanical properties and 

durability performance of the hardened concrete.  Results indicated that recycled brick 

masonry aggregate concrete (RBMAC) mixtures can exhibit mechanical properties and 

durability performance characteristics comparable to that of structural- and pavement-

grade PCC containing conventional coarse aggregates.  Based on current North Carolina 

Department of Transportation (NCDOT) requirements, the suitability of RBMAC for use 

in pavement applications was evaluated, and the Mechanistic-Empirical Pavement Design 

Guide procedure was used to compare the potential performance of RBMAC pavement to 

conventional PCC pavement.  Results indicated that RBMAC provides acceptable 

performance in pavement applications, where its thermal properties produce thinner 

pavement sections than PCC.  This research gives designers a first look at some of the 

salient material properties that will influence future use of RBMA and RBMAC.  



iv 
 

ACKNOWLEDGMENTS 

 
 I would like to acknowledge a number of individuals and entities for their 

contributions to this research work.  I greatly appreciate the guidance and support offered 

by my advisor, Dr. David C. Weggel, P.E, and by the other members of my Committee, 

Dr. John Diemer, Dr. Helene Hilger, P.E., Dr. Vincent Ogunro, Dr. Brett Tempest, and 

Dr. Howie Fang.  This material is based upon work supported by the Department of 

Energy under Award Number DE-FG26-08NT01982, and this support is greatly 

appreciated.  D.H. Griffin Companies obtained, transported, and processed the material 

used in this research, and have been instrumental in making this work possible.  I would 

particularly like to thank Mark Greene of D.H. Griffin Crushing and Grading for his 

assistance throughout the duration of this project. 

 I extend thanks to Research Assistants Jeff Berryman, Jeremy Calamusa, Colby 

Heitbrink, and Devin Secore for their help with batching and testing concrete.  I would 

also like to thank Mike Moss and Dr. Katherine Weaver for their assistance in the 

laboratories. 

 I’d like to thank my Mom (Dorothy Krize), Bob and Pam Cavalline, and David 

and Gail Lewyn for both their encouragement and help with the kids.  Thank you to my 

Dad, Dan Krize, who was with me every step of the way.  Most importantly, I would 

like to thank Matt, Avery, and Evan Cavalline for their support. Matt and Avery, thank 

you so much for making it possible for me to do this work.  And thanks, Evan, for being 

along for some of the ride.   



v 
 

TABLE OF CONTENTS 
 
 

LIST OF FIGURES    xiii 

LIST OF TABLES    xix 

LIST OF ABBREVIATIONS xxiv 

CHAPTER 1: INTRODUCTION 1 

 1.1 Background   1 

 1.2 Objectives and Scope 3 

 1.3 Organization of Contents 5  

CHAPTER 2: LITERATURE REVIEW 7 

 2.1 Reuse of Construction Waste as Aggregates in Portland Cement  8   
  Concrete and Mortars 
 
  2.1.1 Advantages  9 

  2.1.2 Challenges and Current Applications 10 

  2.1.3 Forecast for Use on a Local, Regional, and National Scale 11 

 2.2 General Overview - Use of Brick and Recycled Brick Masonry as 13 
  Aggregate in Portland Cement Concrete 
 
  2.2.1 Early History 14 

  2.2.2 Current Use of Brick Aggregate in Portland Cement Concrete 16 

  2.2.3 Current Use of Recycled Brick Masonry as Aggregate in 17 
     Portland Cement Concrete 
 
 2.3 Previous Research on Brick Aggregate Concretes and Mortars 18 

  2.3.1 Mixture Design and Fresh and Hardened Performance 18 
      Characteristics 
 
  2.3.2 Durability of Brick Aggregate Concretes and Mortars 34 

   



vi 
 
  2.3.3 Pozzolanic Reactions and Microstructural Characteristics of 39 
       Brick Aggregate Concretes and Mortars 
 
 2.4 Potential for Widespread Acceptance and Use of Brick Aggregate 41 
  Concretes and Mortars 
 
  2.4.1 Practical Challenges 44 

  2.4.2 Economic Considerations 46 

 2.5 Research Needs  47 

CHAPTER 3:  TESTING PROGRAM FOR CHARACTERIZATION OF 51 
     RECYCLED MATERIALS 
 
 3.1 Overview of Recycled Materials  51 

  3.1.1 Demolition Site 51 

  3.1.2 Demolition Sequence and Material Handling 52 

  3.1.3 Obtaining Whole Clay Brick and Tile Specimens 53 

  3.1.4 Obtaining Recycled Brick Masonry Aggregate 53 

 3.2 Whole Clay Brick and Tile 57 

  3.2.1 Experimental Procedures 57 

   3.2.1.1 Unit Weight 58 

   3.2.1.2 Absorption 59 

   3.2.1.3 Suction 59 

   3.2.1.4 Compressive Strength 59 

   3.2.1.5 Modulus of Rupture 60 

   3.2.1.6 Thermal Characteristics 60 

    3.2.1.6.1 Coefficient of Thermal Expansion 61 

    3.2.1.6.2 Thermal Conductivity 63 

    3.2.1.6.3 Heat Capacity 64 



vii 
 
  3.2.2 Experimental Results 65 

   3.2.2.1 Unit Weight 65  

   3.2.2.2 Absorption 66 

   3.2.2.3 Suction 66 

   3.2.2.4 Compressive Strength 66 

   3.2.2.5 Modulus of Rupture 67 

   3.2.2.6 Thermal Characteristics 67 

    3.2.2.6.1 Coefficient of Thermal Expansion 68 

    3.2.2.6.2 Thermal Conductivity 69 

    3.2.2.6.3 Heat Capacity 70 

 3.3 Recycled Brick Masonry Aggregate 71 

  3.3.1 Experimental Procedures 71 

   3.3.1.1 Composition by Weight and by Volume 71 

   3.3.1.2 Gradation 72 

   3.3.1.2 Particle Shape – Flat and Elongated Particles 72 

   3.3.1.4 Density, Specific Gravity, and Absorption 74 

   3.3.1.5 Bulk Density (Unit Weight) 74 

   3.3.1.6 Abrasion Resistance 74 

  3.3.2 Experimental Results 75 

   3.3.2.1 Composition by Weight and by Volume 75 

   3.3.2.2 Gradation 76 

   3.3.2.3 Particle Shape – Flat and Elongated Particles 77 

   3.3.2.4 Density, Specific Gravity, and Absorption 79 



viii 
 
   3.3.2.5 Bulk Density (Unit Weight) 79 

   3.3.2.6 Abrasion Resistance 79 

 3.4 Summary and Conclusions 80 

CHAPTER 4: CONCRETE MATERIAL COMPONENTS AND 83 
    PROPERTIES 
 
 4.1 Introduction   83 

 4.2 Material Components 83 

  4.2.1 Recycled Brick Masonry Aggregate (Coarse Aggregate) 83 

  4.2.2 Natural Aggregate (Fine Aggregate) 84 

  4.2.3 Portland Cement 84 

  4.2.4 Water   84 

  4.2.5 Admixtures  85 

   4.2.5.1 Air-entraining Admixture 85 

   4.2.5.2 High-Range Water-Reducing Admixture 85 

   4.2.5.3 Mid-Range Water-Reducing Admixture 86 

CHAPTER 5: DEVELOPMENT OF CONCRETE MIXTURE 87 
    PROPORTIONS 
 
 5.1 Overview of Strategy 87 

  5.1.1 Anticipated Challenges 88 

  5.1.2 Design Variables and Constraints 90 

  5.1.3 Design Approach 90 

   5.1.3.1 Replacement of Natural Aggregate with Recycled Brick  91 
     Masonry Aggregate 
 
   5.1.3.2 Aggregate Gradation 92 

   5.1.3.3 Cement Content  92 



ix 
 
   5.1.3.4 Water/Cement Ratio 93 

   5.1.3.5 Air Content 93 

   5.1.3.6 Target Slump and Water-Reducing Admixture Usage 93 

 5.2 Mixture Proportions 94 

  5.2.1 Preliminary Mixture Proportions 95 

  5.2.2 Final Mixture Proportions 97 

 5.3 Summary and Concluding Remarks 99 

CHAPTER 6: TESTING PROGRAM FOR RECYCLED BRICK 101 
    MASONRY AGGREGATE CONCRETE 
 
 6.1 Introduction   101 

 6.2 Batching Procedure and Mixing Method 101 

 6.3 Testing of Fresh Concrete Properties 102 

  6.3.1 Experimental Procedures 102 

   6.3.1.1 Slump  102 

   6.3.1.2 Entrained Air Content 102 

  6.3.2 Experimental Results 103 

   6.3.2.1 Slump  103 

   6.3.2.2 Entrained Air Content 104 

 6.4 Testing of Hardened Concrete Properties 104 

  6.4.1 Specimen Preparation Procedures 104 

  6.4.2 Curing and Conditioning of Test Specimens 105 

  6.4.3 Experimental Procedures 105 

   6.4.3.1 Equilibrium Density 105 

   6.4.3.2 Mechanical Properties 106 



x 
 
    6.4.3.2.1 Compressive Strength 106  

    6.4.3.2.2 Splitting Tensile Strength 106 

    6.4.3.2.3 Flexural Strength (Modulus of Rupture) 107 

    6.4.3.2.4 Modulus of Elasticity and Poisson’s Ratio 107 

    6.4.3.2.5 Drying Shrinkage 107 

    6.4.3.2.6 Thermal Characteristics  108 

     6.4.3.2.6.1 Coefficient of Thermal Expansion 108 

     6.4.3.2.6.2 Thermal Conductivity 112 

     6.4.3.2.6.3 Heat Capacity 113 

   6.4.3.3 Durability Performance Testing 114 

    6.4.3.3.1 Air and Water Permeability  115 

    6.4.3.3.2 Abrasion Resistance 118 

    6.4.3.3.3 Chloride Ion Permeability  120 

    6.4.3.3.4 Surface Resistivity 123 

  6.4.4 Experimental Results 125 

   6.4.4.1 Equilibrium Density 126 

   6.4.4.2 Mechanical Properties 128 

    6.4.4.2.1 Compressive Strength 129 

    6.4.4.2.2 Splitting Tensile Strength 134 

    6.4.4.2.3 Flexural Strength (Modulus of Rupture) 135 

    6.4.4.2.4 Modulus of Elasticity and Poisson’s Ratio 136 

    6.4.4.2.5 Drying Shrinkage 139 

    6.4.4.2.6 Thermal Characteristics  140 



xi 
 
     6.4.4.2.6.1 Coefficient of Thermal Expansion 140 

     6.4.4.2.6.2 Thermal Conductivity 143 

     6.4.4.2.6.3 Heat Capacity 144 

   6.4.4.3 Durability Performance Testing 145 

    6.4.4.3.1 Air and Water Permeability  146 

    6.4.4.3.2 Abrasion Resistance 149 

    6.4.4.3.3 Chloride Ion Permeability  153 

    6.4.4.3.4 Surface Resistivity 155 

 6.5 Summary and Concluding Remarks 156 

CHAPTER 7: USE OF RECYCLED BRICK MASONRY AGGREGATE 161 
    CONCRETE IN PAVEMENT APPLICATIONS 
 
 7.1 Introduction   161 

 7.2 Potential Use of Recycled Brick Masonry Aggregate Concrete in  162 
  Current North Carolina Department of Transportation (NCDOT) 

Pavement Applications 
 
  7.2.1 Current NCDOT Requirements and Standards for Use 163 
    Recycled Aggregates 
 
  7.2.2 Qualification of Recycled Brick Masonry Aggregate for Use 165 
    in NCDOT Portland Cement Concrete Applications 
 
  7.2.3 Challenges and Barriers to Use of Recycled Brick Masonry 169 
    Aggregate Concrete in NCDOT Pavement Applications 
 
 7.3 Potential Use of Recycled Brick Masonry Aggregate Concrete in 172 
  Mechanistic-Empirical Pavement Design 
  
  7.3.1 Mechanistic-Empirical Pavement Design Guide (M-EPDG) 173 
    Overview 
 
  7.3.2 Implications of Incorporating Recycled Brick Masonry 183 
    Aggregate into M-EPDG 
 
   



xii 
 
7.3.3 Comparison of M-EPDG Pavement Designs Using Recycled 185 
    Brick Masonry Aggregate Concrete and Natural Aggregate 

Concrete  
 
  7.3.4 Sensitivity of Slab Thickness to Thermal Property Inputs in 196 
    M-EPDG for Recycled Brick Masonry Aggregate Concrete 

and Natural Aggregate Concrete 
 
 7.4 Proposed Test Pavement Utilizing Recycled Brick Masonry 204 
  Aggregate Concrete in Charlotte, North Carolina 
 
  7.4.1 Overview of Proposed Project 204 

  7.4.2 Design of Recycled Brick Masonry Aggregate Concrete Test 206 
    Pavement and Control Pavement  
 
  7.4.3 M-EPDG Predicted Performance of Proposed Pavement and 211 
    Control Pavement 
 
  7.4.4 Instrumentation Plan 212 

  7.4.5 Materials Sampling and Testing Plan 214 

 7.5 Summary and Concluding Remarks 219 

CHAPTER 8: SUMMARY AND CONCLUSIONS 220 

 8.1 Findings and Conclusions 222 

 8.2 Recommendations for Future Work 227 

REFERENCES    231 

APPENDIX A: SUPPLEMENTAL INFORMATION FOR CHAPTER 3 246 

APPENDIX B: SUPPLEMENTAL INFORMATION FOR CHAPTER 5 259 

APPENDIX C: SUPPLEMENTAL INFORMATION FOR CHAPTER 6  264 

APPENDIX D: SUPPLEMENTAL INFORMATION FOR CHAPTER 7  295 

 



xiii 
 

LIST OF FIGURES 
 
 
FIGURE 3-1:  Cafeteria at Idlewild Elementary School prior to  52 
 demolition.   
 
FIGURE 3-2:  Demolition of the brick masonry walls at Idlewild  53 
 Elementary School.   
 
FIGURE 3-3:  Demolished brick masonry from Idlewild Elementary  54 
 School, loaded into a separate dumptruck for transport to  
 D.H. Griffin Crushing and Grading.  
 
FIGURE 3-4:  Demolished brick masonry from Idlewild Elementary 55 
 School, stockpiled at D.H. Griffin Crushing and Grading,  
 prior to being crushed into aggregate. 
 
FIGURE 3-5:  Rotary crusher apparatus at D.H. Griffin Crushing and 56 
 Grading.   
 
FIGURE 3-6:  After falling from the conveyor belt, recycled brick 56 
 masonry aggregate was shoveled into barrels and returned  
 to UNC Charlotte laboratories. 
 
FIGURE 3-7:  Whole brick and clay tile subjected to testing. 58 
 
FIGURE 3-8:  Coefficient of thermal expansion testing of brick. 61  
 
FIGURE 3-9:  C-Therm Technologies TCi thermal conductivity testing 64 
 apparatus. 
 
FIGURE 3-10:  RBMA from Idlewild Elementary School. 76 
 
FIGURE 6-1:  Reference studs mounted in cylinder used for coefficient of 109 
 thermal expansion testing. 
 
FIGURE 6-2:  Mechanical strain gage used to measure length change of  110 
 cylinder during testing to determine coefficient of thermal 

expansion. 
 
FIGURE 6-3  TCi apparatus used for determining thermal conductivity. 113 
 
FIGURE 6-4:  Thermogravimetric analyzer apparatus used for  114 
 determining heat capacity. 
 
  



xiv 
 
FIGURE 6-5:  Air permeability testing using the Poroscope Plus 116 
 equipment.  
 
FIGURE 6-6:  Water permeability testing using the Poroscope Plus 117 
 equipment. 
 
FIGURE 6-7:  Abrasion testing using the rotary cutter method. 119 
 
FIGURE 6-8:  Apparatus used to determine the depth of abrasion. 120 
 
FIGURE 6-9:  Vacuum saturation of rapid chloride permeability test 121 
 specimens. 
 
FIGURE 6-10:  Rapid chloride permeability testing (RCPT). 123 
 
FIGURE 6-11:  Surface resistivity testing. 124 
 
FIGURE 6-12:  Conditioning of test specimens for surface resistivity 125 
 testing at low temperatures. 
 
FIGURE 6-13:  Average compressive strength results for BAC 5.0.   130 
 
FIGURE 6-14:  Average compressive strength results for BAC 6.0. 131 
 
FIGURE 6-15:  Average compressive strength results for BAC 6.1. 131 
 
FIGURE 6-16:  Average compressive strength results for BAC 6.2. 132 
 
FIGURE 6-17:  Contaminant particles are visible in the fractured surface  133 
 of a compressive strength test cylinder. 
 
FIGURE 6-18:  Surface Resistivity versus temperature for RBMAC. 156 
 
FIGURE 7-1:  Sensitivity of slab thickness to CTE input in M-EPDG for 199 
 RBMAC and conventional PCC pavements. 
 
FIGURE 7-2:  Sensitivity of slab thickness to thermal conductivity input 201 
    in M-EPDG for RBMAC and conventional PCC   
 pavements. 
 
FIGURE 7-3:  Sensitivity of slab thickness to heat capacity input in  203 
 M-EPDG for RBMAC and conventional PCC pavements. 
 
FIGURE 7-4:  Overview of the proposed test pavement site. 205 
 
FIGURE A-1:  Whole brick specimens. 246 



xv 
 
FIGURE A-2:  Whole clay tile specimens. 246 
 
FIGURE A-3:  Test specimens used for thermal conductivity testing. 247 
 
FIGURE A-4:  Thermal conductivity test results for brick. 251 
 
FIGURE A-5:  Thermal conductivity test results for clay tile. 251 
 
FIGURE A-6:  Thermal conductivity test results for mortar. 252 
 
FIGURE A-7:  Samples of crushed brick, mortar, and clay tile, for heat  252 
 capacity testing. 
 
FIGURE A-8:  Typical output spreadsheet of TGA, with associated heat 253 
 capacity calculations. 
 
FIGURE C-1:  Test specimen used for compressive strength, modulus of 266 
 elasticity, and Poisson’s ratio testing, RBMAC mixture 

BAC 5.0, 3 day tests. 
 
FIGURE C-2:  Test specimen used for compressive strength, modulus of 266 
 elasticity, and Poisson’s ratio testing, RBMAC mixture 

BAC 5.0, 7 day tests. 
 
FIGURE C-3:  Test specimen used for compressive strength, modulus of 267 
 elasticity, and Poisson’s ratio testing, RBMAC mixture 

BAC 5.0, 28 day tests. 
 
FIGURE C-4:  Test specimen used for compressive strength, modulus of 267 
 elasticity, and Poisson’s ratio testing, RBMAC mixture 

BAC 5.0, 90 day tests. 
 
FIGURE C-5:  Test specimen used for compressive strength, modulus of 268 
 elasticity, and Poisson’s ratio testing, RBMAC mixture 

BAC 6.0, 3 day tests. 
 
FIGURE C-6:  Test specimen used for compressive strength, modulus of 268 
 elasticity, and Poisson’s ratio testing, RBMAC mixture 

BAC 5.0, 3 day tests. 
 
FIGURE C-7:  Test specimen used for compressive strength, modulus of  269 
 elasticity, and Poisson’s ratio testing, RBMAC mixture 

BAC 5.0, 3 day tests. 
 
  



xvi 
 
FIGURE C-8:  Test specimen used for compressive strength, modulus of 269 
 elasticity, and Poisson’s ratio testing, RBMAC mixture 

BAC 5.0, 3 day tests. 
 
FIGURE C-9:  Test specimen used for compressive strength, modulus of 270 
 elasticity, and Poisson’s ratio testing, RBMAC mixture 

BAC 6.1, 3 day tests. 
 
FIGURE C-10:  Test specimen used for compressive strength, modulus of  270 
 elasticity, and Poisson’s ratio testing, RBMAC mixture 

BAC 6.1, 7 day tests. 
 
FIGURE C-11:  Test specimen used for compressive strength, modulus of 271 

 elasticity, and Poisson’s ratio testing, RBMAC mixture 
BAC 6.1, 28 day tests. 

 
FIGURE C-12:  Test specimen used for compressive strength, modulus of 271 
 elasticity, and Poisson’s ratio testing, RBMAC mixture 

BAC 6.1, 90 day tests. 
 
FIGURE C-13:  Test specimen used for compressive strength, modulus of 272 
 elasticity, and Poisson’s ratio testing, RBMAC mixture 

BAC 6.2, 3 day tests. 
 
FIGURE C-14:  Test specimen used for compressive strength, modulus of 272 
 elasticity, and Poisson’s ratio testing, RBMAC mixture 

BAC 6.2, 7 day tests. 
 
FIGURE C-15:  Test specimen used for compressive strength, modulus of 273 
 elasticity, and Poisson’s ratio testing, RBMAC mixture 

BAC 6.2, 28 day tests. 
 
FIGURE C-16:  Test specimen used for compressive strength, modulus of 273 
 elasticity, and Poisson’s ratio testing, RBMAC mixture 

BAC 6.2, 90 day tests. 
 
FIGURE C-17:  Typical splitting tensile strength test specimens. 274 
 
FIGURE C-18:  Several splitting tensile strength test specimens. 275 
 
FIGURE C-19:  Typical test specimens used for modulus of rupture  276 
 testing, and subsequently, abrasion resistance testing. 
  



xvii 
 
FIGURE C-20:  Typical test specimens used for modulus of rupture  276 
 testing, and subsequently, abrasion resistance testing and  
 air and water permeability testing. 
 
FIGURE C-21:  Typical stress versus longitudinal strain plot from  278 
 modulus of elasticity test. 
 
FIGURE C-22:  Typical transverse strain versus longitudinal strain plot  278 
 for Poisson’s ratio test. 
 
FIGURE C-23:  Drying shrinkage test specimens (beams). 281 
 
FIGURE C-24:  Length measurement of drying shrinkage test specimen. 281 
 
FIGURE C-25:  Test specimen prepared from BAC 6.2 used for thermal 282 
 conductivity testing. 
 
FIGURE C-26:  Typical thermal conductivity test results for RBMAC 283 
 mixture BAC 6.2. 
 
FIGURE C-27:  Sample of crushed RBMAC (mixture BAC 6.2) used for 283 
 heat capacity testing. 
 
FIGURE C-28:  Samples of crushed brick, mortar, clay tile, and RBMAC 284 
 used for heat capacity testing. 
 
FIGURE C-29:  Typical output spreadsheet of TGA for RBMAC, with 284 
 associated heat capacity calculations. 
 
FIGURE C-30:  Typical air and water permeability test specimens after 289 
 testing. 
 
FIGURE C-31: Typical test specimens used for abrasion resistance testing 289 
 (three specimens in front of photo) and air and water 

permeability testing (two specimens in rear of photo). 
 
FIGURE C-32:  Typical test specimens after rapid chloride ion  293 
 permeability testing. 
 
FIGURE D-1:  Typical M-EPDG input summary for RBMAC pavement. 295 
 
FIGURE D-2:  Typical M-EPDG reliability summary for RBMAC 302 
 pavement. 
 
FIGURE D-3:  Typical M-EPDG input summary for conventional PCC 303 
 pavement. 



xviii 
 
FIGURE D-4:  Typical M-EPDG reliability summary for conventional  310 
 PCC pavement. 
 
FIGURE D-5:  M-EPDG input summary for proposed RBMAC test 311 
 pavement. 
 
FIGURE D-6:  M-EPDG reliability summary for proposed RBMAC test 318 
 pavement. 
 
FIGURE D-7:  M-EPDG input summary for proposed conventional PCC 319 
 (control) test pavement. 
 
FIGURE D-8:  M-EPDG reliability summary for proposed conventional 326 
 PCC (control) test pavement. 

  



xix 
 

LIST OF TABLES 
 
 
TABLE 3-1:  Composition of the RBMA produced from Idlewild 75 
 Elementary School. 
 
TABLE 3-2:  Results of ASTM C136 sieve analysis testing of RBMA and 77 
 RCA produced from Idlewild Elementary School. 
 
TABLE 3-3:  Results of ASTM D4791 flat and elongated particle testing. 78 
 
TABLE 3-4:  Properties of whole brick and clay tile from Idlewild  80 
 Elementary School. 
 
TABLE 3-5:  Properties of recycled aggregates from Idlewild Elementary  81 
 School demolition waste, compared to properties of a locally 

manufactured lightweight aggregate and a local 
normalweight natural aggregate.   

 
TABLE 5-1:  Trial RBMAC mixture proportions and test results. 96 
 
TABLE 5-2:  Baseline RBMAC mixture proportions and test results. 98 
 
TABLE 6-1:  Equilibrium densities of the baseline RBMAC mixtures. 126 
 
TABLE 6-2:  Mechanical properties of the baseline RBMAC mixtures. 129 
 
TABLE 6-3:  Actual versus predicted splitting tensile strengths. 135 
  
TABLE 6-4:  Actual versus predicted moduli of elasticity. 138 
 
TABLE 6-5:  Coefficient of thermal expansion of 1:6 concretes made with 141   
 different aggregates (adapted from Neville 1995).  
 
TABLE 6-6:  Typical ranges for coefficients of thermal expansion for  142 
 common components of concrete and of concrete made 

using these materials (from ARA 2004). 
 
TABLE 6-7:  Results of thermal conductivity testing of BAC 6.2. 143 
 
TABLE 6-8:  Heat capacity at 77ºF for BAC 6.2. 144 
 
TABLE 6-9:  Values for air and water permeability times and calculated 147 
 AER ratings for concrete of varying protective quality for 

embedded reinforcement (from NDT James Instruments 
2007 and Figg 1989). 



xx 
 
TABLE 6-10:  Average Air Exclusion Rates (AER) and average Water 148 
  Absorption Rates (WAR). 
 
TABLE 6-11:  Abrasion resistance of HPC concrete mixtures (from  150 
  Goodspeed et al. 2012).  
 
TABLE 6-12:  Average abrasion resistance of baseline RBMAC mixtures 151 
  using the rotary cutting device method (ASTM C944). 
   
TABLE 6-13:  Results of Rapid Chloride Ion Permeability Test. 153 
 
TABLE 6-14:  Chloride Ion Penetrability Based on Charge Passed  154 
  (according to ASTM C1202). 
 
TABLE 7-1:  Testing of aggregates for use in portland cement concrete  164 
 required by 2012 NCDOT Standard Specifications. 
 
TABLE 7-2:  Required characteristics of coarse aggregates used in  166 
 portland cement concrete (from NCDOT 2012). 
 
TABLE 7-3:  M-EPDG Level 1 input parameters and test protocols for  180 
 new and existing PCC pavements (from AASHTO 2008). 
 
TABLE 7-4:  M-EPDG Level 2 and 3 input parameters and test protocols  181 
 for new and existing PCC pavements (from AASHTO 

2008). 
 
TABLE 7-5:  Summary of M-EPDG default values for PCC pavement  182 
 design used by NCDOT as part of FHWA local calibration 

study (FHWA 2010). 
 
TABLE 7-6:  M-EPDG inputs for conventional PCC (using local granite  184 
 aggregate) and for RBMAC. 
 
TABLE 7-7:  JPCP inputs varied in M-EPDG analysis of conventional  187 

 PCC and RBMAC pavements. 
 
TABLE 7-8:  JPCP inputs kept constant in M-EPDG analysis of  190 
 conventional PCC and RBMAC pavement. 
 
TABLE 7-9:  Comparison of RBMAC and conventional PCC sections 192 
 designed using M-EPDG for pavement with traffic typical 

of interstate roadways. 
 
  



xxi 
 
TABLE 7-10:  Comparison of RBMAC and conventional PCC sections 192 
 designed using M-EPDG for pavement with traffic typical 

of arterial roadways. 
 
TABLE 7-11:  Sensitivity of slab thickness to CTE input in M-EPDG for 198 
 RBMAC and conventional PCC pavements. 
 
TABLE 7-12:  Sensitivity of slab thickness to thermal conductivity input  200 
 in M-EPDG for RBMAC and conventional PCC 

pavements. 
 
TABLE 7-13:  Sensitivity of slab thickness to heat capacity input in  203 
 M-EPDG for RBMAC and conventional PCC pavements. 
 
TABLE 7-14:  Performance criteria used in M-EPDG design of test 206 
 pavement and selected limits and reliability levels. 
 
TABLE 7-15:  M-EPDG Inputs for the RBMAC test pavement and  209 
 conventional concrete control pavement.  
 
TABLE 7-16:  Layer thicknesses for proposed RBMAC test pavement and 212 
  control pavement. 
 
TABLE 7-17:  Predicted reliabilities of the proposed test section and  212 
 control section. 
 
TABLE 7-18:  Subgrade soil testing to be performed prior to construction  215 
 of the proposed test pavement. 
 
TABLE 7-19:  Fresh property tests to be performed during placement of  217 
 RBMAC and conventional concrete. 
 
TABLE 7-20:  Hardened property tests to be performed on specimens cast 217 
 from RBMAC and conventional concrete. 
 
TABLE 7-21:  Durability tests to be performed on specimens cast from 218 
 RBMAC and conventional concrete. 
 
TABLE A-1:  Absorption test results for bricks. 247 
 
TABLE A-2:  Absorption test results for clay tiles. 248 
 
TABLE A-3:  Suction test results for bricks. 248 
 
TABLE A-4:  Suction test results for clay tiles. 248 
 



xxii 
 
TABLE A-5:  Compressive strength test results for bricks. 249 
 
TABLE A-6:  Compressive strength test results for clay tiles. 249 
 
TABLE A-7:  Modulus of rupture test results for bricks. 249 
 
TABLE A-8:  Modulus of rupture test results for tiles. 250 
 
TABLE A-9:  Coefficient of thermal expansion test results for brick. 250 
 
TABLE A-10:  Sieve analyses of RBMA. 254 
 
TABLE A-11:  Particle shape test results for RBMA. 255 
 
TABLE A-12:  Density, specific gravity, and absorption test results for  257 
 RBMA. 
 
TABLE A-13:  Bulk density (unit weight) test results for RBMA,  258 
 shoveling procedure and rodding procedure. 
 
TABLE A-14:  Los Angeles abrasion resistance test results for RBMA. 258 
 
TABLE B-1:  Compressive strength test results for trial RBMAC  259 
 mixtures. 
 
TABLE C-1:  Equilibrium density test results for RBMAC. 264 
 
TABLE C-2:  Compressive strength test results for baseline RBMAC 265 
 mixtures. 
 
TABLE C-3:  Splitting tensile strength test data for RBMAC. 274 
 
TABLE C-4:  Modulus of rupture test data for RBMAC. 275 
 
TABLE C-5:  Typical data collected from modulus of elasticity and 277 
 Poisson’s ratio test. 
 
TABLE C-6:  Summary of modulus of elasticity test results. 279 
 
TABLE C-7:  Summary of Poisson’s ratio test results. 280 
 
TABLE C-8:  Coefficient of thermal expansion test results for RBMAC. 282  
 
TABLE C-9:  Air and water permeability test results for RBMAC mixture 285 
 BAC 5.0. 
 



xxiii 
 
TABLE C-10:  Air and water permeability test results for RBMAC  286 
 mixture BAC 6.0. 
 
TABLE C-11:  Air and water permeability test results for RBMAC  287 
 mixture BAC 6.1. 
 
TABLE C-12:  Air and water permeability test results for RBMAC  288 
 mixture BAC 6.2. 
 
TABLE C-13:  Abrasion resistance test results for RBMAC. 290 
 
TABLE C-14:  Rapid chloride ion permeability test results for RBMAC. 291 
 
TABLE C-15:  Summary of rapid chloride ion permeability test results for 293 
 RBMAC. 
 
TABLE C-16:  Surface resistivity test results for RBMAC. 294 
  



xxiv 
 

LIST OF ABBREVIATIONS 
 
 

AASHTO American Association of State Highway and Transportation 
Officials 

 
AER   air exclusion rating 

ACI   American Concrete Institute 

ASTM   American Society for Testing and Materials 

BIA    Brick Industry Association 

BTU   British Thermal Unit 

C   Coulomb 

ºC   degrees Celcius 

cf   cubic feet 

con’t   continued 

CTE   coefficient of thermal expansion 

DOE   Department of Energy 

DOT   Department of Transportation 

ºF   degrees Fahrenheit 

FHWA   Federal Highway Administration 

ft   foot 

Hg    mercury 

hr   hour 

ICM   Integrated Climatic Model 

in   inch  

K   Kelvin 



xxv 
 
kg   kilogram 

l   length  

La   actual length change 

L0   measured length of specimen at room temperature 

lb   pound  

lb-f   pound-force 

LEED   Leadership in Energy and Environmental Design 

LTPP   Long Term Pavement Performance Program 

m   meter 

M-EPDG  Mechanistic-Empirical Pavement Design Guide 

mi   mile 

min   minute 

mm   millimeter 

MOR   modulus of rupture 

MPa   megapascal 

N   newton 

NCDOT  North Carolina Department of Transportation 

oz   ounce 

P   probability 

Pa    Pascal 

PCC   portland cement concrete 

pcy   pounds per cubic yard 

psf   pounds per square foot 



xxvi 
 
psi   pounds per square inch 

RBMA   recycled brick masonry aggregate 

RBMAC  recycled brick masonry aggregate concrete 

RAC   recycled aggregate concrete 

RCA   recycled concrete aggregate 

sec   second  

sf   square feet 

SSD   saturated surface dry 

T   temperature 

TGA   thermogravimetric analyzer 

V   volume 

WAR   water absorption rate 

w/c   water to cementitious material ratio 

wt   weight 

Δ   change in  

µL   microliter 

 



 
 

 

 
CHAPTER 1: INTRODUCTION 

 
 

1.1 Background 
 
 Use of recycled material as aggregates in civil engineering applications is 

beneficial because it reduces the environmental impact and economic cost of quarrying 

operations, processing, and transport.  Reuse of construction and demolition waste is 

becoming increasingly desirable due to rising hauling costs and tipping fees for putting 

this material into landfills (Robinson et al. 2004).  In recent years, sustainable 

construction initiatives have also made reuse of construction and demolition debris (as 

aggregates and otherwise) an appealing option when considering design alternatives for 

many types of structures (Desai 2004). 

 Incorporating recycled aggregates into cementitious materials is practical, as 

cementitious materials are non-homogeneous composites that allow material of different 

sizes and compositions to be bound in a cementitious matrix.  Much research has been 

performed on the use of recycled concrete aggregates (RCA) and “mixed rubble” 

(concrete, concrete block, brick, and other materials) in portland cement concrete (PCC), 

but in the United States, very little research has been done on the use of recycled brick 

masonry as aggregates for concrete.   

 The use of brick as aggregate in concrete is far from a novel concept.  After 

World War II, in England and Germany, rubble from brick buildings damaged or 

destroyed by bombs was crushed at rubble recycling plants producing crushed brick 
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aggregate that was used in new concrete construction.  Since this time, brick aggregate 

has not commonly been used in concrete in most Western countries.  Brick aggregate 

concrete has, however, become common in locations where sources of natural aggregate 

are not available and the cost of importing natural aggregate is prohibitive.  In these areas 

brick aggregate concrete is most often used in non-structural or non-critical applications.  

Existing studies on brick aggregate concrete often include only new or discarded brick 

that does not include the mortar fraction.  In recent studies abroad on concrete that 

includes reclaimed brick masonry demolition waste, the bricks and mortar have 

properties that differ from those of the materials typically used in the United States.   

 With the large amount of brick masonry rubble produced in the United States 

each year, this material may provide a significant source of aggregates that can be used to 

produce more sustainable concrete.  In addition to reducing the amount of waste that is 

landfilled (or used in low-grade applications such as roadbed gravel), other benefits can 

be realized.  Brick aggregates are lighter than normalweight aggregates, and would 

provide haul cost savings.  Concrete that incorporates brick aggregates is also lighter than 

normalweight concrete, would also be cheaper to transport, and can significantly reduce 

the self-weight of a structure.  Brick aggregates have the potential to enhance the fire 

performance of concrete due to their thermal expansion and conductivity properties.  

Unfortunately, however, recycled brick masonry aggregates, or RBMA, also have 

undesirable characteristics such as high absorption and angular particle shapes, which 

must be addressed in the development of concrete mixture designs.  As an additional 

concern, the characteristics of the brick masonry obtained from demolition sites vary, 
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making a thorough understanding of this material, as well as the performance of concrete 

incorporating this material, critical.   

 If RBMA can show mechanical properties and durability performance similar to 

conventional PCC, it is envisioned that concrete incorporating RBMA, (or recycled brick 

masonry aggregate concrete, RBMAC) could provide advantages, both economic and 

otherwise, in several structural and pavement applications.  To maximize the potential 

cost-savings, RBMA produced from a demolished structure could be re-used either in 

new concrete needed on-site, or in nearby construction (minimizing haul costs).  Mobile 

crushers can be brought to a demolition site to produce the RBMA, and the RBMAC 

could be produced either in an on-site batch plant or hauled to a local ready-mixed plant.  

New RBMAC construction could include pavements, either as the wearing surface or as 

the lower lift in a two-lift pavement.  Use in structural applications, particularly in precast 

concrete construction, could also be possible.  Initiatives that promote sustainable design 

and construction practices, such as the Leadership in Energy and Environmental Design 

(LEED) and Greenroads programs, may provide other incentives for use of RBMAC in 

new construction.  Sustainable design challenges designers to find site-specific solutions, 

and therefore optimum material use may take different forms at different sites.   

1.2 Objectives and Scope 

 The key objective of this work was to develop concrete mixtures, using crushed 

brick masonry as a replacement for normal weight coarse aggregate, that exhibit 

acceptable mechanical properties and durability performance characteristics comparable 

to that of structural- and pavement-grade PCC containing conventional coarse aggregates.  

This research gives designers a first look at some of the material properties that will 
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influence how RBMA and RBMAC can be managed and used in sustainable 

construction.  In order to obtain the ‘cleanest’ demolished brick masonry for this study 

that can be achieved via readily employable source separation techniques, the crushed 

brick aggregate was made from brick masonry obtained from a single demolition site, 

Idlewild Elementary School in Charlotte, North Carolina.   

 Prior to developing the concrete mixtures, tests were performed to characterize 

whole brick and clay tile as well as the crushed RBMA.  Mixture designs were developed 

in accordance with ACI 211.2, “Standard Practice for Selecting Proportions for Structural 

Lightweight Concrete.”  Issues anticipated and addressed in development of the mixture 

designs included the high absorption and angularity of the brick aggregate.  After 

concrete mixtures exhibiting acceptable workability and fresh properties were developed, 

tests were performed on hardened concrete specimens to assess mechanical properties 

and durability performance.    

 A second objective of this work was to assess recycled brick masonry aggregate 

concrete (RBMAC) for suitability in pavement applications for North Carolina 

Department of Transportation (NCDOT) use as well as in the new Mechanistic-Empirical 

Pavement Design Guide (M-EPDG) procedure.   Results of characterization and testing 

of the RBMA and RBMAC were compared to current and proposed NCDOT standard 

specifications, and potential limitations were identified.   A proposed full-scale field test 

was developed as part of this work to assist in evaluating the performance of an in-situ 

pavement comprised of RBMAC.  The proposed full-scale field test pavement section 

was designed using M-EPDG, which allows designers to incorporate specific aggregate 
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properties into the design and analysis procedure.  Characteristics of the RBMA and 

performance data for the RBMAC were used as inputs to the M-EPDG software. 

1.3 Organization of Contents 

 This work is presented in eight chapters.  A review of available relevant literature 

is presented in Chapter 2.  Literature surveyed included publications on reuse of 

construction waste as aggregates in PCC and mortars, use of brick and recycled brick 

masonry in PCC, previous research on brick aggregate concretes and mixtures, and the 

potential for widespread acceptance and use of brick aggregate concretes and mortars.  

Research needs are also identified and stated in this chapter. 

 The testing program for characterization of recycled materials is presented in 

Chapter 3.  This chapter begins with an overview of the demolition site used to obtain the 

RBMA used for this study.  Experimental procedures for characterization of whole clay 

brick and tile, as well as the RBMA are also presented. 

 In Chapter 4, the components of the PCC mixtures developed as part of this study 

are described, as well as some of their properties that may influence the performance of 

the mixtures.  

 The development of concrete mixture proportions is presented in Chapter 5.  This 

chapter begins with an overview of the strategy utilized for developing these mixtures, 

and anticipated challenges, design variables and constraints, and information pertaining 

to the design approach are subsequently presented.  Preliminary and final mixture 

proportions are also included in this chapter. 

 The testing program for the baseline (final) RBMAC mixtures is described in 

Chapter 6, which also includes the batching procedure and mixing method.  Methodology 
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for tests on fresh and hardened concrete is outlined, and the experimental results from the 

testing program are subsequently presented. 

 In Chapter 7, use of RBMAC in pavement applications is studied.  Potential use 

of RBMAC in NCDOT pavement applications is explored, and compliance with current 

and proposed NCDOT requirements and standards is discussed.  Some effects of using 

measured RBMAC properties in M-EPDG pavement designs are identified, and a 

proposed test pavement project utilizing RBMAC is presented. 

 Chapter 8 provides a summary of the work performed, identifies findings and 

conclusions, and recommendations for future work. 

  



 
 
 
 
 
 

CHAPTER 2: LITERATURE REVIEW 
 
 
 Use of crushed construction and demolition waste as aggregates in new concrete 

has gained increased interest in recent years for reasons related to both economics and 

environmental sustainability.  Demolition waste materials used for production of recycled 

aggregates can include crushed concrete, crushed brick masonry rubble, and crushed 

mixed rubble from various sources including demolished buildings and roadways.  

Recycled aggregates have been used in new concrete in both vertical and horizontal 

construction applications.  Concrete that contains recycled aggregates is called recycled 

aggregate concrete (RAC). 

 Concrete that has been taken out of service, or returned unused from a jobsite and 

allowed to harden, can be crushed and made into recycled aggregate called recycled 

concrete aggregate (RCA).  The suitability of RCA for use in new concrete has been 

extensively studied by a number of researchers (Topçu and Sengel 2004, Obla et al. 2007, 

Etxeberria et al. 2007 and others), and new concrete produced using RCA has been used 

in a number of field applications and products.  Guidelines for use of RCA in new 

concrete have been published by a number of agencies, including the Federal Highway 

Administration (FHWA 2008).  Several state Departments of Transportation (DOTs), 

including Michigan (Michigan Department of Transportation 2003) and Texas (Texas 

Department of Transportation 2004), allow use of RCA in some applications, with 

requirements outlined in their specifications.   
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 Although a significant amount of research and a number of field studies have 

been performed on concrete produced with RCA, use of recycled aggregates produced 

from demolished brick masonry construction has not been extensively studied, 

particularly in the United States.  A significant amount of brick masonry rubble is 

produced in the United States, and this material may provide a viable source of RBMA 

that can be used to produce sustainable concrete. 

 In subsequent sections, a review of literature relevant to this research study is 

presented.  Information on the current reuse of construction waste as aggregates in 

portland cement concrete applications is provided, along with a discussion on the 

advantages and challenges related to the use of this material.  The potential for future use 

of this material on a local, regional, and national scale is also discussed.  A general 

overview of the current use of crushed brick material (including both virgin brick 

material and recycled brick masonry) as aggregates in portland cement concrete is 

provided, as well as a summary of results of the limited number of research studies 

performed on this material.  This is followed by a discussion on the potential for 

widespread acceptance and use of brick aggregate and RBMA in concrete applications, 

including practical challenges and economic considerations.  Finally, a summary of 

research needs related to use of RBMA in concrete is presented. 

2.1 Reuse of Construction Waste as Aggregates in Portland Cement Concrete and 

Mortars 

 In the construction industry, a significant amount of waste material is generated 

during demolition of unwanted facilities including roads and buildings.  Much of this 

waste material is being placed into landfills, but some hardscape rubble is being 
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transported to public and private facilities, where it is crushed into graded or ungraded 

aggregate material.  Advantages of use of aggregates made from crushed construction 

waste material in new concrete are related to economy as well as sustainability.   

 Although a number of challenges associated with use of this material have been 

identified, many of these challenges are being addressed through tactics including process 

controls (implemented during demolition, transport, and manufacturing of aggregates) 

and through requirements outlined in specifications.  Successful performance of RAC 

(particularly concrete made with RCA) has been demonstrated in a number of research 

studies and field installations.  However, despite an increased understanding of the 

performance of RAC, acceptance and use of RAC has been relatively slow.   

2.1.1 Advantages 

 Use of recycled materials as aggregates in concrete can provide a number of 

advantages to stakeholders, which include owners, contractors, and the ready-mixed 

concrete and precast concrete industries.  From an economic standpoint, recycled 

aggregates can be cheaper than conventional (natural and manufactured lightweight) 

aggregates.  Use of aggregates made from crushed construction and demolition debris 

may become an increasingly attractive alternative due to rising landfill tipping fees, 

diminishing landfill space, and rising cost of virgin natural aggregate material (Tam and 

Tam 2006).   

 From the standpoint of sustainability, use of recycled materials as aggregates 

provides several advantages.  Landfill space used for disposal is decreased, and existing 

natural aggregate sources are not as quickly depleted (Kutegeza and Alexander 2004).  

Use of recycled aggregates in lieu of virgin quarried aggregates can potentially result in a 
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lower embodied energy of the concrete, although this is often dependent on hauling costs 

(Chong and Hermreck 2010).  This particularly holds true if the methodology used to 

compute the embodied energy of a structure accounts for the “recovery” of energy at the 

end of its service life (Thormark 2002). 

2.1.2 Challenges and Current Applications 

 Challenges inhibiting the use of recycled aggregates in concrete applications are 

generally related to “lack of awareness, lack of government support, (and) non-existence 

of specifications/codes for reusing these aggregates in new concrete,” according to Rao et 

al. (2007).  Although published studies provide guidance regarding use of recycled 

aggregates in concrete, specifying agencies often do not allow for use of this material due 

to risks perceived by the designer (Desai 2004) or contractor.  Of these risks, one of the 

most prominent is related to the consistency of the recycled aggregate source material 

(Hansen 1986) and its impact on the performance of the new concrete in-situ.  

Certification systems for recycled aggregates, such as that discussed by Hendriks (1994), 

may help to address this barrier.  Ultimately, an increased number of successful field 

implementations will help to increase the understanding of the performance of RAC, 

particularly from a durability standpoint, which will help to increase its acceptance and 

use (Olorunsogo and Padayachee 2001).   

 Research and development, and consequently field implementation, for concrete 

containing recycled aggregates has progressed more swiftly in Europe than in the United 

States, particularly during the 1980’s and 1990’s (Transport and Road Research 

Laboratory 1981, Williams 1996). This is partly due to the fact that many European 

nations do not have readily available land for landfills and quarries (Oikonomou 2005).  
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However, in the United States, research on RCA has taken significant strides over the 

past decade, which has in turn increased the use of RAC in field applications such as 

pavements and other structures.   

 Recognizing the need to gain a comfort level with use of recycled materials in 

concrete applications in an expedient manner, the Federal Highway Administration 

(FHWA) has promoted a number of research initiatives, including a study on using 

accelerated aging techniques to assess the long-term performance of recycled materials in 

concrete (Eighmy et al. 2001). Recently, FHWA and many state DOTs have gained an 

increasing level of comfort with RCA concrete, permitting it to be used in a number of 

transportation applications (Texas Department of Transportation 2004, Michigan 

Department of Transportation 2003).  Initiatives to promote a sustainability rating system 

for roadways, such as the proposed Greenroads program (Anderson et al. 2011), have 

also brought increased attention to use of RAC.    

 The ready-mixed concrete industry, realizing cost savings and other benefits to 

their members, has also promoted extensive research and development to support the use 

of RCA (Obla et al. 2007).  Sustainable building design and construction initiatives, 

including the Leadership in Energy and Environmental Design (LEED) building rating 

system promoted by the United States Green Building Council, have provided incentives 

for use of recycled material, including RAC, in building construction in recent years 

(Kibert 2008).     

2.1.3 Forecast for Use on a Local, Regional, and National Scale 

 As discussed in the previous section, increased interest in use of RAC, from both 

a profitability and sustainable perspective, has resulted in increased research and 
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understanding of material performance.  Sustainability initiatives, economic 

considerations, and an increased comfort level with material performance will likely 

increase the use of RAC on a national scale.   

 From a regional and local perspective, use of recycled aggregates in concrete will 

depend on the ability of recycled aggregates to compete with conventional aggregate 

sources in the regional or local construction market.  As landfill space and virgin 

aggregate become more costly in some markets in the United States (Robinson et al. 

2004), it is likely that use of recycled aggregates such as RCA and RBMA in concrete 

applications will increase here as well.  In addition to reducing the amount of waste that 

is landfilled, potential cost savings can be realized by owners, contractors and/or material 

suppliers.   

 Locally, the Mecklenburg County Land Use and Environmental Services Agency 

(2006) reported that approximately 8% of construction and demolition waste was 

composed of concrete and other hardscape rubble.  Much of this material is currently 

utilized in low-grade uses such as gravel for landfill haul roads, and the recent economic 

downturn has resulted in a deficit of crushed recycled aggregate material to meet the low-

grade demands.  However, improved economic conditions will likely bring about a 

resurgence of construction activity, and findings of a recent study by Tempest et al. 

(2010) indicated that “if the supply and consistency of demolition rubble increases, there 

should be improved market interest in RA (recycled aggregates).”   
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2.2 General Overview - Use of Brick and Recycled Brick Masonry as Aggregate in 

Portland Cement Concrete 

 Use of construction and demolition waste, including brick, in cementitious 

materials is far from a novel concept.  In Roman times, structures such as buildings and 

water supply channels were constructed using natural pozzolans and crushed brick 

(Hansen 1992).  A large amount of brick masonry rubble is produced in the United States 

each year. This material may provide a significant source of RBMA that can be used to 

produce more sustainable concrete.  In the following sections, a general overview of past 

and present use of recycled brick and recycled brick masonry as aggregate in PCC is 

presented.  First however, it is necessary to provide definitions of certain terminology 

that will be used.   

 Review of related papers revealed that, with a few exceptions, most previous 

work published between the 1940’s and present day was done using aggregate comprised 

solely of crushed brick.  In this literature review, this material will subsequently be 

referred to as “brick aggregate” or “brick aggregate concrete” when brick aggregate 

comprises a substantial amount of the concrete filler.  In the relatively few instances 

where researchers used recycled brick masonry material which included the mortar 

fraction (and potentially other debris from the demolition process) of the construction, the 

terminology “recycled brick masonry aggregate” (abbreviated RBMA) or “recycled brick 

masonry aggregate concrete” (abbreviated RBMAC) is used. 

 A number of studies use “masonry rubble” which can be loosely defined as 

including “conventional concrete and concrete block, clay brick, sand-lime brick, 

lightweight concrete and block of various types, and natural stone (ECCO 1999).”  In 
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addition to the materials listed above, Hansen (1992) includes aerated concrete blocks, 

blastfurnace slag brick and blocks, burnt clay materials (roofing tiles and shingles) as 

materials collectively included in “masonry rubble.”  Materials collectively called 

“contaminants” can include “metals, asphalt, timber, plastics, glass and plaster (Hansen 

1992).” 

2.2.1 Early History 

 The earliest use of crushed brick in cementitious materials using portland cement 

occurred in Germany in 1860 (Devenny and Khalaf 1999, Hansen 1992).  In Europe, 

many of the buildings damaged or destroyed by bombs during World War II included 

brick masonry.  As part of rebuilding the damaged cities in Germany, rubble recycling 

plants were created, producing crushed RBMA that was used in new concrete 

construction.  The RBMAC produced by these plants was used to construct 175,000 new 

housing units (Hansen 1992).  After debris from the bombing was cleared, bricks were no 

longer widely used as concrete aggregates (Khalaf and DeVenny 2004).   

 Crushed brick masonry was also used as aggregates in concrete in Great Britain 

after World War II.  Newman (1946) performed testing on concrete and mortars made 

from brick rubble obtained from demolished bomb shelters.  Newman’s RBMAC 

mixtures were made (1) using brick as both fine and coarse aggregate, and (2) using brick 

as coarse aggregate with river sand as the fine aggregate.  Mixtures were created using 

brick from demolished shelters from eight cities (in England, Scotland and Wales), with 

w/c ratios varied from approximately 0.70 to 1.05 in order to maintain consistent 

workability (as measured by slump).  Compressive strengths resulting from these 

mixtures varied based upon water cement ratio and the source of RBMA, and ranged 
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from 875 to 5,770 psi (6.0 to 39.8 MPa) for mixtures using RBMA as both fine and 

coarse aggregate, and from 945 to 5,690 psi (6.5 to 39.2 MPa) for mixtures using RBMA 

only as coarse aggregate.  Other research performed in the 1940s produced RBMAC with 

compressive strengths between 15 and 25 MPa (approximately 2,175 to 3,625 psi) 

(Hansen 1992).  Khalaf (2006) attributes the low strengths obtained in these studies to 

use of weaker cement produced during this era or impurities present in the brick 

aggregates used. 

 A relatively large gap in time exists between the testing performed on RBMAC 

created using post-World War II rubble and the “next generation” of testing on brick 

aggregates used in cementitious materials.  It seems that in Europe, once rubble from 

structures destroyed during World War II was utilized, interest in this area diminished.  

The next available publications regarding brick aggregate and RBMA use in cementitious 

materials were published in the late 1970’s and early 1980’s.   

 Economic conditions and lack of suitable natural aggregates seems to have 

resulted in brick being used as aggregate in developing nations before being used in 

developed ones.  Khan and Choudrhy (1978) discuss how in Bangladesh, brick chips 

have been used as aggregate for a number of years prior to publication of their paper.  

They describe the three manufacturing processes used for making brick in Bangladesh 

and discuss the large variation in quality and mechanical properties of bricks made from 

these methods.  General batching processes are described, and data for several brick 

aggregate concrete mixtures (compressive strengths ranging from 3,950 to 6,260 psi, or 

27.2 to 43.2 MPa) is presented.  
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2.2.2 Current Use of Brick Aggregate in Portland Cement Concrete 

 Currently, in many locales (both domestic and abroad), crushed brick aggregate 

and RBMA is often used in non-cementitious, low-grade applications (Tempest et al. 

2010).  This material is often in demand for use in roadbeds and as fill material, and after 

being used for these low-grade applications, is not available for use in portland cement 

concrete applications.  Khalaf (2006) indicates that in recent years, brick aggregate 

concrete has been limited to “low level uses such as pipe bedding or site fill,” and states 

that “this is mainly due to impurities in the material, lack of knowledge of its 

performance in concrete, lack of available standards on the use of recycled aggregates in 

concrete and high water absorption characteristics of recycled brick aggregates.”  He 

further states that “only a small amount of work has been carried out using the types of 

brick that are commonly used in construction today and there is little knowledge on the 

subject in the United Kingdom and other countries.”   

 Publications regarding the current use of RBMA from demolition sites in portland 

cement concrete are far less prevalent than publications on RCA in portland cement 

concrete.  However, a number of publications regarding the current use of brick (either 

standard brick or discarded brick) as aggregate in portland cement concrete exist.   Use of 

brick aggregate in concrete has become common in locations where sources of natural 

aggregate are not available and the cost of importing natural aggregate is prohibitive or 

politically unfeasible.  An example is Bangladesh, where the land primarily consists of a 

deltaic plain (Mazumder et al. 2006).  

  



17 
 
2.2.3 Current Use of Recycled Brick Masonry as Aggregate in Portland Cement Concrete 

 In the United States, RBMA is not being used in portland cement concrete.  

Worldwide, lack of knowledge of performance of brick aggregate concrete is an obstacle 

for reuse of brick waste (Debieb and Kenai 2006).  However, with increased 

environmental awareness during the past decades, and economic incentives to re-use 

waste, use of RCA and masonry rubble is once again receiving attention from the 

technical community.  Studies abroad conducted recently indicate that use of RBMA in 

non-structural applications such as paving blocks is of interest in Yugoslavia (Jankovic et 

al. 2012), Spain (Lopez et al. 2011), Iran (Rafsnajani et al. 2012) and China (Li et al. 

2012).  Demand for low cost non-quarried aggregates continues to promote research into 

brick aggregate concrete in Bangladesh (Ahmad and Roy 2011).  The construction boom 

in China has driven increased interest in alternative sources of building material.  Studies 

on RBMAC have recently been performed by Yang et al. (2011) and Ho and Tsai (2011).  

Although RBMAC is currently not used in the United States, an understanding of the 

performance of RBMAC could lead to its use in non-structural applications, and 

subsequently in structural and pavement applications.  Test data on RBMAC produced in 

the United States is needed to spur an interest in use of this material in sustainable design. 

2.3 Previous Research on Brick Aggregate Concretes and Mortars 

 Some research that was performed abroad exists regarding the mechanical 

properties, and to some extent, the durability characteristics of brick aggregate concrete 

and RBMAC.  The mechanical properties and durability characteristics of brick aggregate 

concrete and RBMAC are often compared to the properties of similar concrete mixtures 

that contain virgin natural aggregate.  Most of the studies included in this literature 
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review investigated the effect of varying percentages of brick aggregate or RBMA 

replacement (for both fine and coarse aggregates) on mechanical properties such as 

compressive strength, tensile strength, flexural strength, and modulus of elasticity of 

brick aggregate concrete and mortar.  Durability studies on brick aggregate concrete and 

RBMAC are far less common, and often a few durability tests were performed as part of 

a study that largely focused on mechanical properties.  A few studies were performed on 

the pozzolanic reactions that can occur when brick is in contact with cementitious 

materials, and microstructural characteristics of brick aggregate concretes and mortars.  

Findings of these studies are summarized in subsequent sections of this literature review. 

2.3.1 Mixture Design and Fresh and Hardened Performance Characteristics 

 Studies related to mixture design, mixing procedure, and hardened performance 

characteristics for brick aggregate and RBMA concrete and mortar typically focus on 

several areas.  These areas include water demand, mechanical properties (compressive 

strength, tensile strength, flexural strength), modulus of elasticity, and shrinkage.  Most 

of these studies have been performed on concrete and mortars incorporating brick 

aggregate, not RBMA.  Typically, only part of a fine or coarse aggregate component has 

been replaced with brick aggregate or RBMA, and in only a very few studies was brick 

aggregate or RBMA used at 100% replacement rates for a natural aggregate.  In almost 

all studies, water reducing admixtures were not used to assist with achieving adequate 

workability and strength at relatively low w/c ratios.  Subsequently, cement contents were 

relatively high and it is likely that the permeability of the paste matrix was high due to 

the relatively high water content in the mixture. 
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 A key part of designing brick aggregate and RBMA concrete and mortar mixtures 

is addressing the high water demand of the very porous brick aggregates.  Additional 

water needs to be added to mixtures in order to provide the required workability, but this 

often comes at the expense of strength of the hardened concrete or mortar.  Researchers 

have tried to address this issue by either pre-soaking the aggregate prior to mixing or by 

modifying the mixing procedure to ensure that the water used in the mixture has adequate 

contact time with the cement (Khaloo 1994).  Hansen (1992) performed a study in which 

mixtures were prepared using finely crushed brick as a replacement for some of the sand.   

Hansen (1992) indicated that if pre-soaking the brick aggregate is done to help overcome 

workability problems, the brick aggregates will be almost completely saturated after 30 

minutes of soaking. 

 Relatively few comprehensive studies on brick aggregate and RBMA concrete 

mixtures exist.  Most studies focus on testing of compressive strength and modulus of 

elasticity, and possibly several other mechanical properties.  Two relatively extensive 

studies on brick aggregate concrete were performed by Akhtaruzzaman and Hasnat (1983 

and 1986) and Khalaf (2006).  The results of these studies are often cited in other works, 

and the findings are used as a comparison to the results of many other researchers.  

Therefore, these two studies are subsequently discussed in this literature review with a 

significant amount of detail.  It is noted that, like most other studies, testing performed by 

Akhtaruzzaman and Hasnat (1983) and Khalaf (2006) was on concrete that contained 

crushed brick aggregate, not RBMA, and therefore none of the concrete in either of these 

studies contains the mortar fraction typically included with crushed brick masonry as well 

as other contaminant material that may be inadvertently mixed with the RBMA. 
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 Akhtaruzzaman and Hasnat (1983) tested several concrete mixture designs that 

used brick aggregate as coarse aggregate.  The bricks used by Akhtaruzzaman and Hasnat 

(1983) were manually crushed to sizes ranging from 3/16 to ¾ in (4.8 to 19.1 mm), with 

most of the brick aggregate falling within the range of 3/8 to ¾ in (9.5 to 19.1 mm).  The 

compressive strength of the bricks used to make the aggregate was approximately 5,300 

psi (36.5 MPa).  A table included in this paper is useful in presenting some of the 

fundamental differences between the brick aggregate and the sand, with key differences 

including the absorption (11.20 percent for brick aggregate vs. 3.10 for sand) and the 

bulk specific gravity (1.93 for brick aggregate vs. 2.57 for sand).  Water-cement ratios 

ranged from 0.54 to 0.88, and the compressive strengths of the mixtures ranged from 

2,300 to 5,500 psi (15.9 to 37.9 MPa).  Unit weights of the concrete mixtures ranged 

from 125 to 130 pounds per cubic foot (pcf), (or 2002 to 2082 kilograms per cubic meter, 

kg/m3), which is lower than the unit weight of normal weight concrete (typically 140 to 

150 pcf, or 2,242 to 2,402 kg/m3) and higher than the unit weight of lightweight concrete 

with traditional lightweight aggregates such as expanded shale (typically 110 to 120 pcf, 

or 1,762 to 1,922 kg/m3).   

 Akhtaruzzaman and Hasnat (1983) found that “in general, for the same grade of 

concrete the modulus of elasticity is about 30% lower and the tensile strength is about 

11% higher than normal weight concrete.” Additionally, test results indicated that the 

brick aggregate concrete produced during this study had a modulus of elasticity that was 

about 30% lower and a modulus of rupture that was about 10% greater than that 

compared to normal weight concrete of similar strength.  The authors also provide 

general equations for the compressive strength, modulus of elasticity, modulus of rupture, 
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and splitting tensile strength.  These equations are presented in a format similar to the 

equations used in the American Concrete Institute (ACI) Building Code, with the 

constants adjusted to reflect the results of the test data obtained using their brick 

aggregate concrete.   

 Further studies on beams cast using brick aggregate concrete were performed by 

Akhtaruzzaman and Hasnat (1986).  The beams did not contain web reinforcement, and 

were tested in shear and flexure using two-point loading tests. Test results indicated that 

“the shear strength of brick-aggregate concrete beams without web reinforcement is 

higher than that of normal weight concrete beams computed on the basis of the 1983 

building code equation.”  The authors further stated that this “indicated that brick-

aggregate concrete beams will require less web reinforcement.”  For beams failing in 

flexure, the experimental moment capacities are in close agreement with the computed 

values.  Akhtaruzzaman and Hasnat (1986) conclude that “although further research is 

needed, it can be concluded from this investigation that brick-aggregate concrete is a 

suitable structural material.  Economy in construction would also be achieved because of 

its higher shear and tensile strengths and lower unit weight.” 

 Perhaps the most extensive recent study on brick aggregate concrete was 

published by Khalaf (2006).  This study was also done on brick aggregate concrete made 

using coarse aggregates made from crushed new bricks that did not include a mortar 

fraction or impurities that would be found in demolished brick rubble.  The new bricks 

used for this study have several compressive strengths, and companion mixtures were 

made using a granite natural aggregate.  Gradations of both types of aggregates were kept 

constant in the mixture designs in order to assist with the direct comparison of test 
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results.  Additionally, admixtures were incorporated into some of the mixtures.  An air 

entraining admixture was used to entrain 5% air.  A superplasticizing admixture was used 

to assist in achieving suitable workability and to assist in maintaining the desired water to 

cement ratios for the mixtures (which varied from 0.55 to 0.7, relatively high for modern-

day concrete).   

 Khalaf (2006) attempted to understand and refine the mixing procedure for brick 

aggregate concrete during his study.  For mixtures that did not use a superplasticizing 

admixture, the author indicated that the brick aggregate was pre-wet prior to mixing in 

order to minimize initial absorption of the mix water.  For the concrete mixtures in which 

a superplasticizer was used, “the aggregate was not presoaked before mixing as it was 

hoped that the superplasticizer would improve the workability and allow the presoaking 

procedure to be omitted.”   

 Khalaf’s targeted compressive strengths of the mixtures at 28-days were 43 MPa 

(approximately 6,235 psi) and 50 MPa (approximately 7,250 psi).   It was hoped by the 

author that the mixtures could reach 50 MPa (approximately 7,250 psi) and 63 MPa 

(approximately 9,135 psi) during the course of the study.  These compressive strengths 

are significantly higher than the compressive strengths targeted in many earlier studies, 

and are consistent with the design strengths of many structural concrete mixtures used 

today.   

 Khalaf (2006) presents results for workability, compressive strength, and flexural 

strength.  Densities of the brick aggregate concrete mixtures were approximately 8 to 

15% lower than the natural aggregate concrete mixtures.  Brick aggregate concretes 

produced in this study gained strength at rates similar to natural aggregate concrete, and 
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the targeted compressive strengths were achieved.  It is noted that the compressive 

strengths of the mixtures were influenced by the compressive strength of the bricks used 

as the coarse aggregates.  Like many of the studies conducted outside of the United 

States, compressive strength tests were performed using cubes, rather than the cylindrical 

test specimens more commonly used in the United States for testing structural concrete. 

 Khalaf (2006) states that paste-aggregate bonds were good for the brick 

aggregate, citing that in many compression testing specimens, fractures propagated 

through brick aggregate particles rather than around aggregate-paste interfaces.  Khalaf 

states that the targeted 5% air contents were typically met, indicating that “air-entrained 

concrete containing crushed brick aggregate can be successfully produced using the 

Building Research Establishment mix design method.”  For mixtures that did not contain 

a superplasticizer, workability was judged to be best at w/c ratios of approximately 0.55, 

which is in agreement with the results of Akhtaruzzaman and Hasnat (1983).  Slumps for 

these mixtures were typically around ½ in, which is extremely low for modern concrete 

mixtures.  By using a superplasticizer, slumps of up to 2¾ in (69.9 mm) were achieved, 

although the authors noted that “the effect of the superplasticizer only lasted for about 15 

minutes, after that the concrete became difficult to work with.”   

 Flexural strength testing results from Khalaf’s (2006) study indicated “that there 

was about an 8% reduction in flexural strength when crushed brick aggregate was used in 

place of granite as the coarse aggregate.”  This differs from the results reported by 

Hansen (1992) and Khaloo (1994) who indicated that brick aggregates provide a 10% and 

15% increase in flexural strength, respectively.   
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 Other studies on brick aggregate and RBMA tend to focus only on strength 

(compressive, splitting tensile, and/or flexural), with a limited number of other tests for 

mechanical properties and durability performance performed.  Work done by Schulz and 

Hendricks (1992) indicated that, although use of brick aggregates often requires 

significant changes in the w/c ratio of concrete, compressive strength values higher than 

that of conventional aggregate concrete can be achieved.  Data compiled by Hansen 

(1992) (consisting mainly of post-WWII brick aggregate concrete) shows a weak 

correlation between the density of brick aggregate and compressive strength.  He presents 

similar relationships for other mechanical properties such as creep, shrinkage, and 

modulus of elasticity.   

 Khaloo (1994) used clinker brick, a waste product from the brick making industry 

in Iran, as coarse aggregate in the brick aggregate concrete produced for his study.  Brick 

aggregate concrete was produced using clinker brick at varying levels of replacement for 

natural aggregate.  A table showing the chemical analysis of the soil used to create the 

bricks used in this study is provided, information which is typically left out of 

publications pertaining to other studies.  Testing was performed to determine the 

compressive, tensile, and flexural strengths.  Khaloo (1994) found that “All the 100 

percent crushed brick concretes present compressive, tensile, and flexural strengths 

higher than those for 50 percent…  This may be explained by the higher uniformity in a 

concrete mix of 100 percent crushed clinker brick compared with 50 percent clinker brick 

plus 50 percent crushed stone aggregates.”  Khaloo also notes an “increase in tensile and 

flexural strengths of 100 percent crushed clinker brick concrete compared to crushed 

stone concrete is due to the rough surface of the crushed bricks, which provides better 
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bond between the concrete matrix and the crushed bricks.”  This study is one of a very 

few studies which looked at the abrasion resistance of the brick aggregate concrete, with 

Khaloo (1994) commenting that the “abrasion resistance of the… crushed brick is less 

than that of the crushed stone aggregates.”   

 Kesegic et al. (2008) performed tests on three different mixture designs to 

compare the performance of brick aggregate concrete, RCA concrete, and concrete 

containing natural aggregates.  The w/c ratio was kept constant.  Compressive and 

flexural strength tests were performed, and the results indicated that at 28 days, the 

compressive strengths of the brick aggregate concrete and tile aggregate concrete were 

about 23.8% and 32.7% lower (respectively) than the compressive strength of the 

concrete containing natural aggregate.   

 In a number of studies, brick aggregate is used as a partial or complete 

replacement for natural coarse aggregate.  Typically in these publications, a discussion on 

challenges related to mixture design and batching is presented, and then the results of 

various mechanical property tests at different ages are presented.  Studies that focused on 

comparing the performance (particularly strength) of brick aggregate concrete to concrete 

containing natural aggregates include those performed by Ramamurthy and Gumaste 

(1998) and DeVenny and Khalaf (1999).  Ramamurthy and Gumaste (1998) compared 

the compressive strength of brick aggregate concrete mixtures to similar natural 

aggregate and RCA concrete mixtures.  They noted that acceptable compressive strengths 

were obtained even when the brick aggregates did not pass the current British standards 

for impact and crushing.  DeVenny and Khalaf (1999) used crushed brick (new bricks 

broken up by hand) in concrete mixtures, comparing the compressive strength results 
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with similar mixtures using natural aggregate.  Interestingly, in certain cases, the brick 

aggregate mixtures had strengths that exceeded some of the natural aggregate mixtures.  

Examples of other studies on coarse aggregate replacement include those done by Kibriya 

and Speare (1996), Mansur et al. (1996 and 1999), Zakaria (1999), Padmini (2001 and 

2002), and Jankovic (2002), the key findings of which are presented in the following 

paragraphs. 

 Kibriya and Speare (1996) tested brick aggregate concrete produced using three 

different types of brick aggregate.  In this study, the brick aggregate concrete that was 

produced had compressive, tensile, and flexural strengths that were comparable to those 

of the concrete that contained natural coarse aggregate.  However, the modulus of 

elasticity was drastically reduced.  At 90 days, the brick aggregate concrete had 

significantly higher shrinkage than the conventional concrete, and the creep at one year 

was slightly higher.   

 Crushed brick (new bricks rejected from a factory) were used as a coarse 

aggregate replacement by Mansur et al. (1996 and 1999) in brick aggregate concrete, and 

compressive strength results were compared with similar mixtures using natural 

aggregate.  A superplasticizer was used to assist in obtaining the desired workability of 

each mixture.  Similar to the findings of Kibriya and Speare (1996), Mansur et al. (1999) 

state that “results indicate that brick-concrete can attain the same compressive strength, 

gives a higher tensile strength, a lower drying shrinkage and almost identical creep strains 

when compared to conventional concrete.  However, it exhibits a substantially smaller 

elastic modulus.”  Equations expressing the relationships between mechanical properties 

are presented.   



27 
 
 In a study by Zakaria (1999), the tensile strength of brick aggregate concrete was 

found to be higher than that of the natural aggregate concrete and “the modulus of rupture 

of brick aggregate concrete is, on the average, 10 percent higher than for gravel aggregate 

concrete.”  He also found that both the static modulus of elasticity and dynamic modulus 

of elasticity of brick aggregate concrete were lower than that of the natural aggregate 

concrete. 

 Padmini et al. (2001) tested brick aggregate concrete mixtures generated using a 

five-factor factorial design in order to isolate the characteristics most influential in 

governing the compressive strength of the concrete.  It was found that cement content, 

moisture content of the brick aggregate (pre-soaked vs. not pre-soaked), and strength of 

the brick aggregate had the most influence on compressive strength, while sand content 

and aggregate size had minimal influence.  It is noted that cement content had a 

significantly greater influence on compressive strength than any of the other four factors.   

Subsequently, additional testing was done to further explore the effects of variation of the 

three parameters deemed most influential (listed above) on compressive, flexural, and 

splitting tensile strengths.  The data obtained were used to create relationship curves that 

could be used as guidelines for developing new mixture designs for brick aggregate 

concrete based on the ACI 211.2 procedure for structural lightweight aggregate concrete. 

 Jankovic (2002) performed tests on brick aggregate concrete that included varying 

dosages of polymer admixture.  Some mixtures included brick aggregate as both fine and 

coarse aggregates, while other mixtures used brick aggregate as only the coarse 

aggregate, with a river sand as the fine aggregate.  Results from her study indicated that 

increasing levels of polymer admixture generally result in increases in compressive and 
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flexural strength, while reducing the modulus of elasticity.  The polymer-modified brick 

aggregate concrete mixtures also had lower absorptions, displayed greater creep, and 

reduced shrinkage.  This work was based on earlier studies by Muravljov, Pakvor, and 

Jankovic (1998) that studied the curing requirements of polymer modified brick 

aggregate concrete.  A study by Drpic and Jankovic (1999) on polymer modified brick 

aggregate concrete focused on the thermal conductivity of the mixtures, finding that it 

decreased with an increase in polymer or with a decrease in cement content.  

 Brick aggregate is used as a partial or complete replacement for fine aggregate in 

a number of studies.  Examples of these studies on fine aggregate replacement include 

those done by Corinaldesi et al. (2002), Corinaldesi and Moriconi (2002), and Poon and 

Chan (2007), the key findings of which are presented in the following paragraphs. 

 The use of crushed brick as fine aggregate, as well as the use of brick fines 

obtained from the crushing process, in mortar was explored by Corinaldesi et al. (2002).  

In these mixtures, polypropylene and stainless steel fibers were added to study the effects 

on compressive strength, flexural strength, bond strength and shrinkage.  Stainless steel 

fibers provided improved mechanical properties, while the polypropylene fibers did not 

have beneficial effects.  It was concluded that, in many circumstances, the cost of the 

addition of fibers would be offset by the lower cost of the brick aggregates.  Corinaldesi 

and Moriconi (2002) performed additional studies on the use of brick aggregates in 

normal concrete mixtures as well as the addition of brick fines to self-consolidating 

concrete.  Both types of mixtures developed as part of this study were deemed to have 

acceptable performance according to the authors. 
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 Poon and Chan (2007) evaluated concrete mixtures in which up to 20% of the fine 

aggregate content was replaced by crushed brick waste and crushed tile waste (in separate 

mixtures).  In this study, the two-stage mixing process was used and resulted in lower 

initial slumps and reduced slump loss.  Poon and Chan (2007) indicate that mixtures in 

which the two-stage mixing process was used had higher compressive strengths than 

those that were prepared using the traditional mixing process.  Reductions in density, 

compressive strength, and modulus of elasticity correlated with increases in the 

percentage of recycled aggregate used.  Poon and Chan (2007) state that, based on their 

studies, “coarse and fine recycled aggregate should not be used together to entirely 

replace both the coarse and fine natural aggregate in concrete mixes because the strength 

and durability of concrete would be adversely affected.  Nevertheless, the coarse and fine 

recycled aggregate could be used separately to replace the coarse and fine natural 

aggregate, respectively, in different concreting projects under a variety of 

circumstances.” 

 Debieb and Kenai (2008) performed testing on brick aggregate concrete that used 

crushed brick as partial or complete replacement for both coarse and fine aggregates.  

Hardened concrete testing was performed to assess the performance of brick aggregate 

concrete compressive and flexural strengths, as well as porosity, water absorption, and 

shrinkage.  It was found that “the percentage of entrained air increases as the percentage 

of substitution of recycled aggregates increases.”   Due to the high absorption of the brick 

material, workability was an issue, and some segregation of the 100% coarse and 100% 

fine aggregate replacement mixture occurred.  Compressive strengths of the brick 

aggregate concrete mixtures were lower than the normal aggregate concrete, with greater 
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strength reductions occurring with higher levels of brick aggregate replacement.  Similar 

reductions in the modulus of elasticity were also observed to correlate with an increasing 

percentage of brick aggregate.  Use of a plasticizing admixture helped increase strengths 

by improving workability while reducing water content of the mixtures.  The results 

obtained by Debeib and Kenai (2008) in this study contradicted the results of 

Akhtaruzzaman and Hasnat (1983) in that flexural strengths of the brick aggregate 

concrete were lower than normal aggregate concrete. 

 In further studies, Debeib and Kenai (2008) determined that, for brick aggregate 

concrete containing crushed brick as a fine aggregate replacement, “shrinkage at early 

age is almost six times higher than for the natural aggregates concrete and continues with 

the same rate of increase up to 90 days.  On the other hand, when both coarse and fine 

crushed brick are used together as aggregates, the shrinkage of the recycled concrete is 

stabilized at early age (up to 7 days) and becomes comparable with that of the natural 

concrete.  At later age, shrinkage of recycled aggregates concrete is again higher than that 

of the natural concrete.”  Additional study to clarify these findings is recommended by 

the authors.  Debeib and Kenai (2008) concluded that, overall, the brick aggregate 

concrete produced as part of this testing program had performance characteristics similar 

to natural aggregate concrete when the replacement of crushed brick was limited to 25% 

or less for coarse aggregate and less than 50% for fine aggregate.   

 In a few studies, such as those by Pakvor et al. (2004), Chen et al. (2003), Jones et 

al. (2004), Levy and Helene (2004), de Brito et al. (2005), Poon and Chan (2006) and 

Cachim (2009), RBMA was used as a partial or complete replacement for fine and/or 

coarse aggregate in concrete and mortar.  The findings of these studies are particularly 
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relevant to the work performed as part of the research work reported here, as RBMA 

includes the mortar fraction of the recycled brick masonry, as well as the potential for 

contaminant material to be present.  The extent of testing performed in these studies 

varies, and the key details related to the testing protocol and findings are presented in the 

following paragraphs. 

 The performance of RBMAC mixtures that had varying gradations of fine and 

coarse brick aggregate were compared by Pakvor et al. (1994).  The brick aggregates 

used were obtained from a demolished structure, and therefore likely included some 

mortar fraction, although the percentage of mortar was not indicated.  Compressive 

strength, flexural strength, modulus of elasticity, and shrinkage test results were 

compared.  Pull-out tests were performed to assess the bond between the RBMAC and 

steel reinforcing bars.  Additionally, several reinforced RBMAC beams were cast and 

tested to evaluate response to load.  The authors conclude that “reinforced structures can 

be successfully made using crushed brick, all in accordance with the principles of 

reinforced concrete theory and practice.”   

 Chen et al. (2003) performed a study of RAC and mortar mixtures in which the 

recycled aggregate consisted of both recycled concrete and recycled brick and tile.  The 

percentage of recycled brick and tile included in the overall recycled aggregate content 

was varied.  This study found that at the replacement levels used (0 to 67% of RCA 

replaced by RBMA), effects on compressive strength, flexural strength, and modulus of 

elasticity were limited.  Chen et al. (2003) also studied the effects of using both 

unwashed and washed recycled aggregate in concrete mixtures.  Using unwashed 
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recycled aggregates resulted in lower strengths, particularly flexural strength, with a more 

readily observable effect at lower water/cement ratios.   

 Jones et al. (2004) used RBMA as fine and coarse aggregates in precast concrete 

masonry blocks.  The recycled masonry aggregate was obtained from a demolition 

operation, and although primarily composed of brick and mortar, contained a significant 

amount of plaster, tile, glass, metal, paper and wood.  This study included testing for the 

total sulfate content of the recycled aggregate via acid extraction.  It was shown that 

precast concrete blocks of acceptable compressive strength could be created using this 

recycled masonry aggregate. 

 RBMA was used as a fine and coarse aggregate replacement in concrete produced 

by Levy and Helene (2004).  The authors state that “concrete made with recycled 

aggregates (20%, 50%, and 100% replacement) from old masonry or from old concrete 

can have the same fresh workability and can achieve the same compressive strength of 

concrete made by natural aggregates in the range of 20 to 40 MPa (2,900 to 5,800 psi) at 

28-days.”  Research by de Brito et al. (2005) on RBMA made from crushed ceramic 

brick from building partition walls showed (in some cases) adequate compressive 

strength, flexural strength, and abrasion resistance for use in pavement applications.   

 Poon and Chan (2006) studied the use of RCA and RBMA as replacement for 70 

to 100% of normal aggregate in concrete used to form paving blocks.  Paving block 

specimens produced using brick aggregate concrete were tested for density, compressive 

strength, splitting tensile strength, transverse breaking load, skid and abrasion resistances, 

and absorption.  Crushed brick used as aggregate for this study contained “a high amount 

of adhered brick mortar and other impurities such as tile, wood, and dust,” which led to a 
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high absorption value and subsequent water demand of the concrete mixtures.  The 

inclusion of such contaminants may be responsible for the significant reduction in the 

strengths of the recycled aggregates (alone) after soaking.  Fly ash was used as a 

supplementary cementitious material in some of the mixtures, and a lower water demand 

for these mixtures was “attributed to the effect of the replacement of the coarse and fine 

aggregates by the fine fly ash particles which filled the voids within the mixture.”   

 The mixtures prepared by Poon and Chan (2006) had brick aggregate 

replacements varying from 25% to 75%, with the rest of the aggregate being RCA.  The 

mixtures that did not contain fly ash had 28-day compressive strengths ranging from 24.6 

to 39.6 MPa (approximately 3,570 to 5,740 psi).  Splitting tensile strength results were 

not provided for these mixtures.  The mixtures containing fly ash resulted in 28-day 

compressive strengths ranging from 39.2 to 55.4 MPa (approximately 5,685 to 8,033 psi) 

and splitting tensile strengths of 2.4 to 2.8 MPa (approximately 350 to 400 psi), 

respectively.  They concluded that “it was feasible to produce paving blocks prepared 

with 25% crushed clay brick that satisfied the compressive strength requirement for 

paving blocks (for trafficked areas in Hong Kong).”   

 Cachim (2009) performed a study on the mechanical properties of RBMAC, with 

RBMA replacement of natural coarse aggregates at levels of 15% and 30%.  The RBMA 

was tested to determine the initial absorption capacity, measuring absorption percentages 

for the first 2 minutes and 5 minutes, in order to determine “a curve of the evolution of 

the water absorption with time.”  He found that at least 75% of total water absorption by 

the RBMA occurred within the first 2 minutes, while at least 91% of the total water 

absorption occurred within the first 5 minutes.  Cachim used this information to establish 



34 
 
a mixing protocol that eliminated pre-saturation of the aggregates.  The w/c ratio was 

computed without including water absorbed by the aggregates.  Then, during mixing, 

additional water equal to a certain percentage of the total absorption of the brick 

aggregates was added in order to ensure that “aggregates absorbed part of the water and 

that the pores were at least partly saturated” prior to adding cement.  This was done in 

lieu of pre-soaking the aggregates, as has been done in many previous studies.  Cachim’s 

(2009) results showed reductions in compressive strengths for the brick aggregate 

concrete that were similar to the findings of de Brito et al. (2005) and Akhtaruzzaman 

and Hasnat (1983), although Cachim (2009) states that “the attained strength showed that 

crushed bricks can be used to substitute natural aggregate in concrete (24.5 to 38.5 MPa 

(approximately 3,550 to 5,580 psi) at 28 days) for percentages about 15% to 20%.”   

2.3.2 Durability of Brick Aggregate Concretes and Mortars 

 Although durability concerns related to brick aggregates and RBMA in concrete 

and mortar are cited by a number of researchers, relatively little work has been done in 

this area.  Many stakeholders are reluctant to use any RAC (including RBMAC) due to 

concerns about its durability performance, and in order for this material to become a 

viable alternative to natural aggregate concrete, further understanding in this area will be 

critical.  Studies that were identified as part of this literature review that included 

durability performance testing of brick aggregate concrete and RBMAC have typically 

focused on permeability, freeze-thaw resistance, and susceptibility to chemical attack.   

 Permeability is a key parameter influencing the durability performance of 

concrete and cementitious materials.  High air and water permeability facilitate ingress of 

deleterious substances, such as chlorides, into the concrete.  Increased porosity and 
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permeability of brick aggregates and mortar included with RBMA can cause brick 

aggregate concrete and RBMAC to exhibit higher permeability, and hence reduced 

durability performance.  Some research (Padmini et al. 2002, Zakaria and Cabrera 1996, 

Olorunsogo and Padayachee 2002) has supported this, with test results indicating that 

brick aggregate concrete exhibits higher permeability than concrete made with natural 

aggregates, sometimes up to 50% higher.   After assessing the permeability of brick 

aggregate concrete, Khalaf and DeVenny (2002) established new tests to assist in 

calculating the porosity and water absorption of brick aggregates.  The authors 

recommended a vacuum saturation test for porosity and a modified 5 hr boiling test for 

absorption.   

 Although the high porosity of brick particles contributes to higher permeability, 

the porosity of the particles has also been shown to provide enhanced durability 

performance in freeze-thaw testing.  Most studies in this area have been performed on 

very small brick particles used as a partial replacement for fine aggregate.  Litvan and 

Sereda (1977) added brick particles approximately 0.5 mm in size to mortar and concrete 

mixtures in order to assess whether the porosity of the brick would enhance freeze-thaw 

durability.  Testing was performed in accordance with ASTM C666, and ASTM C456 

procedures to characterize the air void parameters including spacing factor.  It was found 

that incorporation of small particles (0.4 mm to 0.8 mm) with high porosity improved the 

freeze-thaw resistance of the mixtures.  Bektas et al. (2009) performed tests on crushed 

brick used as a partial replacement for fine aggregate, and observed that freeze-thaw 

durability of brick aggregate mortars was increased, and it was indicated that “the highly 
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porous nature of crushed brick might provide a similar air entraining action and reduce 

the freeze-thaw expansion.”   

 Mulheron and O’Mahony (1988 and 1990) performed freeze-thaw durability tests 

on concrete made from recycled aggregate that included some fraction of clay brick 

material.  Additional information characterizing their recycled aggregate, including the 

brick fraction, is presented in a subsequent study (Mulheron and O’Mahony 1990).   They 

concluded that, although the concrete mixtures with the recycled aggregates had lower 

strengths and densities than concrete made with natural aggregates, “the durability of 

concretes manufactured with these recycled aggregates is similar to that of conventional 

concretes.”   

 The susceptibility of RBMAC to chemical attack, as well as problems with 

secondary chemical reactions in the hardened state, is attributed by several researchers to 

components such as chlorides and sulfates incorporated in the RBMA and in contaminant 

materials introduced during demolition and processing (Sherwood 1995 and Hansen 

1992).  Sulfate attack is caused by secondary ettringite crystals forming in the hardened 

concrete or mortar matrix, causing cracking.  In his post-World War II studies, Newman 

(1946) cautioned about use of brick aggregate concrete in moist or wet environments due 

to the inherent sulfate content of the bricks and indicates that care should be taken to 

minimize the mortar fraction included with brick aggregates in the concrete mixtures.  

Sulfates are of particular concern due to the common intermingling of brick and gypsum 

plaster (sheetrock) in demolition waste.   

 Reactions between certain soluble silica materials and alkalis in the hardened 

cementitious matrix can cause formation of an expansive gel, which causes cracking.  
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This reaction, known as alkali-silica reactivity or ASR, may also be a potential problem 

depending on the form of silica in the bricks.  ASR testing performed by Litvan and 

Serada (1977) indicated that some brick particles may be susceptible to reaction with 

sodium and potassium alkalis from the cementitious matrix.  Based on expansions 

observed in the ASR testing, Bektas et al. (2009) propose that a pessimum content of 

brick aggregate (corresponding to the highest measured expansions) in the mortar occurs 

at around 30%.  Lower expansions occurred at replacement percentages of brick both 

higher and lower than 30%.  The authors recommend further study to clarify the findings 

of this portion of the study.  In a similar study on concrete made using crushed tile coarse 

aggregate, Khaloo (1995) noted that the high alkali content of the tile could make it 

susceptible to ASR.  

 Other studies that include durability testing have been performed on brick 

aggregate concrete.  Kibriya and Speare (1996) performed testing on brick aggregate and 

natural aggregate concrete mixtures to compare mechanical properties (compressive 

strength, tensile strength, flexural strength, modulus of elasticity), time-dependent 

properties (creep and shrinkage) as well as durability performance in chloride ion 

diffusion, freeze-thaw, and sulfate attack tests.  Water reducing admixtures were not 

used, resulting in relatively high-permeability paste matrices.  Chloride diffusivity of the 

brick aggregate concrete mixtures were greater than the control natural aggregate 

mixture.  However, the brick aggregate concrete mixtures performed better than the 

control mixture in both the freeze-thaw testing and the sulfate attack testing.  It is noted 

that the freeze-thaw tests and the sulfate attack tests performed by Kibriya and Speare 

(1996) monitored the reduction in the dynamic modulus of elasticity of the specimens 
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rather than the performance characteristics typically monitored for these tests in the 

United States (mass loss for freeze-thaw resistance and percent expansion for sulfate 

attack). 

 Another study was performed by Levy and Helene (2004).  This study focused on 

the durability performance of concrete made using recycled concrete, masonry, and brick 

aggregates obtained from demolished structural components.  These aggregates included 

some mortar fraction.  Testing was focused on three characteristics specifically linked to 

the durability performance of concrete:  water absorption (permeability), porosity, and 

carbonation.  Results indicated that the lowest water absorption and porosity for the 

recycled aggregate concrete mixtures was observed at 20% replacement for both the 

concrete containing RCA and the RBMAC.  Testing also indicated that the carbonation 

depth decreases with increasing percentages of coarse and fine recycled concrete and 

masonry aggregates.   The authors link this performance to the increased cement contents 

of these mixtures (compared to the reference mixtures prepared with natural aggregate), 

with the higher cement concrete responsible for the formation of a denser paste 

microstructure, as well as providing an “alkaline reserve” capable of resisting 

carbonation.  Overall, Levy and Helene (2004) conclude that “when the natural aggregate 

is replaced by 20% of the recycled aggregates from old concrete or old masonry, the 

resulting recycled concrete will likely present the same, and sometimes better, behavior 

than the reference concrete made with natural aggregates in terms of the properties 

studied in this investigation.” 

 Recently, the behavior of concrete members in fire is of increasing concern.  The 

coefficient of thermal expansion (CTE) and coefficient of thermal conductivity of 
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concrete is greatly influenced by the same properties of its constituents, including the 

aggregates (Riley 1991).  Brick aggregates have the potential to enhance the fire 

performance of concrete because its thermal expansion and conductivity may lead to 

lower internal stresses at high temperatures, as well as a reduced transfer of heat through 

its mass.  Khoury (1992) cites data from previous research performed by others that 

indicates that “concrete containing brick aggregate (coarse and fine) exhibited no loss in 

the residual (i.e. after cooling) compressive strength for test temperatures up to 600°C.” 

2.3.3 Pozzolanic Reactions and Microstructural Characteristics of Brick Aggregate 

Concretes and Mortars 

 The pozzolanic nature of natural clays has been used to create hydraulic mortars 

for centuries.  According to Baronio and Binda (1997), “the two fundamental 

characteristics of pozzolans are usually defined as:  (a) ability to react with lime, (b) 

ability to form insoluble products with binding properties.”  Incorporation of brick 

aggregate into concrete and cementitious materials can provide supplemental and 

enhanced hydration reactions to strengthen and enhance the performance of the resulting 

product.  This could be particularly beneficial in brick aggregate concretes and mortars 

that contain crushed brick as fine aggregate.   

 Böke et al (2004 and 2006) performed a study on brick used as aggregate in 

plaster and brick-lime mortar in historic brick bath houses built during the Ottoman 

Empire.  The materials were studied at a microscale level, and their results indicated that 

the mortars contained “crushed brick powders that have good pozzolanicity,” chiefly 

attributed to the amorphous clay mineral dissolution products.  The pozzolanic nature of 
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the finely ground brick resulted in beneficial hydration products formed between the lime 

binder and the brick aggregates “at the brick-lime interface and the pores of the bricks.”   

 The potential pozzolanicity of modern brick, has been questioned due to the 

relatively higher firing temperatures used in recent decades.  Baronio and Binda (1997) 

studied the pozzolanicity of both ancient and modern bricks, finding that the finely-

ground clay minerals, mainly silicates and aluminates, are pozzolanic “when burnt at 

temperatures in the range of 600-900°C.”  However, when bricks are fired at 

temperatures greater than 900°C (1652°F), they do not display pozzolanicity.  Most 

modern bricks are fired at temperatures greater than 900°C (1652°F), and therefore 

Baronio and Binda (1997) conclude that “modern bricks are seldom pozzolanic, not only 

because they are fired at high temperature, but also because they can be made of 

materials which do not contain or have a low content of clays.” 

 Conflicting results, however, have been found by a number of researchers using 

brick fines, or fine brick material that is incorporated into the cementitious material with 

larger brick particles.  Hamassaki et al. (1996) used crushed recycled brick as fine 

aggregate in rendering of masonry mortar.  When compared to mortars prepared with 

natural aggregates, the brick aggregate mortars had higher compressive strengths.  

Klimesch and Ray (2001) and Klimesch et al. (2003 and 2004) used brick fines along 

with portland cement and quartz sand to manufacture block products using an autoclave 

for curing.  In their study, they determined that brick fines can be used as a partial 

replacement for sand, with blocks having compressive strengths that were comparable or 

better than mixtures without the brick fines.  Other studies on brick aggregate concrete 

(Khatib 2005, Zakaria and Cabrera 1996) and on concrete block (Schuur 2000) that 
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incorporated brick fines also found higher compressive strengths at later ages for the 

cementitious materials that incorporated brick fines.  Zakaria and Cabrera (1996) indicate 

that this finding is in agreement with researchers in Germany (Shulz and Hendricks 

1992), who “attributed this to the pozzolanic effect of the finely ground portion of the 

burnt brick.”   

 Other studies have been performed on the microscale to assess pozzolanicity 

(Marrocchino et al. 2004), and establish the mineralogic characteristics that promote 

hydration and a denser interfacial transition zone between the cement paste and the brick 

particles (Corinaldesi et al. 2002).  A better understanding of the brick aggregate-paste 

interface, and reactions that occur in this region, is required in order to facilitate 

confidence in our understanding of the potential performance of brick aggregate 

concretes and mortars. 

2.4 Potential for Widespread Acceptance and Use of Brick Aggregate Concretes and 

Mortars 

 Given the current economic and social climate, additional research to understand 

the performance of brick aggregate used in cementitious materials is both timely and 

imperative.  Benefits other than a reduced amount of landfilled waste can be realized if 

brick rubble from construction and demolition waste can be reused as aggregate in 

concrete and other cementitious materials.  Brick aggregate concrete mixtures are lighter 

than similar normal aggregate concrete mixtures, which can significantly reduce the self-

weight of a concrete structure.  Khalaf (2006) notes that a key advantage of brick 

aggregate concrete is its relatively low density, and “by using concrete of low density, 
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smaller sections (for structural members) can be used and consequently the size of 

foundations can be reduced, representing a financial savings.”   

 Based on the papers surveyed as part of this literature review, it is easier to predict 

increased acceptance of this brick aggregate and RBMA concretes in locales outside of 

the United States, particularly in developing areas of the world where sources of natural 

aggregates are scarce and/or landfill space is limited.  Due to the capacity of landfills in 

Hong Kong being overcome within the foreseeable future, use of recycled aggregates 

(particularly RCA) is being promoted extensively (Poon and Chan 2007).  In some 

countries, such as South Africa, illegal dumping of C&D waste is becoming a problem in 

some locales as some entities attempt to avoid landfill tipping fees (Kutegeza and 

Alexander 2004).   

  Several studies (Lopez et al. 2011, Jankovic et al. 2012) indicate that, worldwide, 

the potential for use of RBMA in low-grade concrete may be enticing.   Chitaranjan 

(1997) used demolished brick masonry as aggregate for manufacturing hollow blocks and 

bamboo-reinforced roof panels in a study on techniques that could be used for 

economical construction of mass housing.  It is also possible that other reuse applications 

may divert this waste material from concrete applications, however.   For example, 

Galbenis and Tsimas (2004) have been performing research to characterize recycled 

concrete aggregates and recycled brick aggregates to assess their suitability for use as raw 

materials in the manufacture of cement. 

  Recently, in the United States and abroad, the concept of internal curing has been 

of interest to many in the concrete industry.  Internal curing occurs when water contained 

in a high-absorption aggregate, typically fine aggregate, provides a reservoir of water that 
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promotes hydration reactions after conventional curing measures (misting, wet burlap on 

surface, etc.) have been stopped or removed.   Several researchers have suspected that the 

high absorption and porosity of RBMA provided internal curing benefits in portland 

cement concrete and mortar batched in their studies.  For example, Cachim (2009) 

suspected that in his study, the saturated brick aggregates provided a measure of internal 

curing due to the water available to facilitate hydration after the mixture has used up the 

readily available mix water.  Cachim concludes “Thus, the moderate use of saturated 

bricks in concrete act as [a] self-curing agent for concrete… The correct balance between 

the reduced strength of crushed brick aggregate sand and its effectiveness as [a] self-

curing agent is the key point to use them as aggregates in concrete.”   

 Other studies have shown the potential of brick aggregate to contribute to internal 

curing as well.  Bektas et. al. (2009) performed studies on durability characteristics of 

mortar produced using crushed clay brick aggregate.  In mortar mixtures prepared as part 

of this study, the fine aggregate was replaced at levels of 10% and 20% with crushed 

brick aggregate.  The authors stated that “mortar containing 10% crushed brick showed 

the highest shrinkage whereas the 20% crushed brick replacement resulted in the lowest 

shrinkage value,” attributing this to the brick aggregate acting as an internal curing agent.  

Kumar et al. (1988) performed testing on mixtures that contained brick aggregate, 

“muck” aggregate from demolished buildings that presumably contained a variety of 

materials, and natural aggregate concrete.  Test results indicated that shrinkage was 

delayed because of the increased moisture content of the brick aggregate.  Khatib (2005) 

also found that increased percentages of brick aggregate result in lower shrinkage.  
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Interestingly, when specimens were placed in water for an extended period, an expansion 

occurred, attributed by the author to formation of a pozzolanic gel that imbibes water. 

 As mentioned earlier, in order to feel comfortable with use of RBMA, similar 

steps of testing and field implementation are necessary.  In the following sections, 

practical challenges that inhibit widespread acceptance and use of brick aggregate and 

RBMA in concrete are discussed.  Economic considerations are also outlined. 

2.4.1 Practical Challenges 

 Robinson et al. (2004) state that factors limiting the reuse of concrete as 

aggregates (and, it can be presumed, the reuse of brick and recycled brick masonry as 

aggregates) include “processing costs, quality and performance issues, and lack of large 

quantities where needed.”  Performance factors that limit the use of recycled concrete 

aggregate include specific gravity, absorption, soundness (resistance to environmental 

conditions such as chemical and physical weathering), gradation (grain-size distribution), 

and contaminant solubility and the potential for groundwater contamination.”  The 

authors indicate that external factors that influence the limited use of recycled aggregates 

include “cost, state specifications, and environmental regulations.” 

 Use of demolished brick and concrete masonry as concrete aggregates is 

complicated due to the presence of contaminants in the demolition debris.  Bricks may be 

contaminated with plaster and sheetrock.  Fragments of concrete block and timber may be 

incorporated into the demolition debris, and the fragments of brick inherently include 

some fractions of attached and detached mortar (Tam and Tam 2006).  The increased 

prevalence of on-site separation of demolition waste is helping this situation.  In addition 

to source-separation techniques that have been shown to provide relatively “clean” 
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material (Tempest et al. 2010), several processes (wet, dry, and thermal) exist to remove 

impurities from crushed masonry demolition rubble (Hansen 1992). 

 The mortar fraction present in RBMA will vary based on the source construction, 

and influences the performance of RBMAC.  In order to assist in evaluating RBMA for 

use in RBMAC, it is likely that the quantity of mortar (as well as its quality) will need to 

be characterized.  Methods used to quantify the amount of mortar present in recycled 

aggregates vary.  Currently, removal of the mortar from crushed brick is accomplished 

for both testing and reuse using one of several means.  Using a thermal method, 

interfacial stress is created when mortar-covered brick is saturated and then heated to 

several hundred degrees Celcius, resulting in cracking and separation of the mortar from 

the brick aggregates (Tam and Tam 2006).  Recently, De Juan and Gutierrez (2009) 

performed a study that compared three methods that can be used to quantify the mortar 

content of recycled concrete aggregates:  acid treatment, encapsulation of the aggregates 

in new colored concrete (and subsequent visual analysis), and a thermal treatment similar 

to that used by Tam and Tam (2006).  De Juan and Gutierrez (1999) indicated that the 

thermal treatment provides the most reliable results.   

 Ultimately, to promote widespread use of RBMA, guidelines for characterizing 

RBMA need to be established.  Guidelines for the assessment of RBMA for suitability 

for use in concrete would provide some assurance to stakeholders.  The characteristics 

and quality of the original brick weigh heavily on the performance of recycled brick 

aggregate, and this quality is dependent on the initial source mineralogy as well as the 

firing process.  These guidelines have not been established.  However, Luco and 

Castellote (2004) provide an outline of criteria that need to be investigated in order to 
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assess the suitability of a waste material for inclusion in a cementitious matrix.  The 

authors indicate that the key considerations include:  

• geometrical and physical considerations (size, shape, texture, density, porosity, 

and absorption) 

• effects of a waste material on the properties of concrete in its fresh (unhardened) 

state (water demand, workability, segregation of mixture components, initial and 

final set times, heat of hydration) 

• effects of a waste material on the properties of concrete in its hardened state 

(strength, modulus of elasticity, CTE, drying shrinkage), and  

• effects of a waste material on durability of the hardened concrete (porosity, 

permeability, freeze/thaw resistance, resistance to chemical attack, leaching of 

contaminants contained within the waste). 

2.4.2 Economic Considerations 

 Marrocchino et al. (2004) state that “recycling strategies” need to be “ecologically 

correct and economically advantageous.”  In some areas of the United States, it is 

becoming increasingly difficult to establish new natural aggregate quarries due to zoning 

restrictions and public outcry (ECCO 1999).  As landfill fees and quarrying costs 

increase, the potential for acceptance of RBMA for use in concrete applications will also 

increase.   

 In their article “Recycling of construction debris as aggregate in the Mid-Atlantic 

Region, USA,” Robinson et al. (2004) present a compilation of information pertaining to 

reuse of reclaimed asphalt pavement and RCA in Maryland and Virginia.  The paper 

explores “the cost, availability, and performance factors of recycled aggregate relative to 
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natural aggregate,” related to use of demolished masonry rubble, particularly brick, used 

in concrete as a replacement of virgin natural coarse aggregate material.  The authors 

indicate that RCA is economically viable in areas where its unit cost is comparable to the 

unit cost of natural aggregate.  If the RCA is produced on-site using portable equipment, 

transportation costs can be minimized, and costs may be comparable to conventionally 

produced concrete.     

 The introduction of a new aggregate source such as RBMA to a ready-mixed or 

precast concrete plant results in additional costs.  Similar to the characteristics identified 

by Luco and Castellote (2004), Brown (1996) lists characteristics that need to be 

considered (and potentially tested) in order for potential recycled and secondary 

aggregates to be successfully used in concrete:  geometric properties (gradation, shape, 

fines content, particle density, absorption), physical properties (strength, freeze/thaw 

resistance, abrasion resistance, resistance to polishing, volume stability), and chemical 

properties (chloride content, sulfate content, contaminants, alkali reactivity).  Costs 

associated with this testing and characterization of RBMA and RBMAC would be 

incurred by the concrete producer and/or material supplier.  In addition, Brown (1996) 

warns that aggregates that can only be used within a narrow range of a concrete 

producer’s product line may not receive consideration due to the economic hurdles 

imparted by use of additional storage and batching system components.   

2.5 Research Needs 

 Although research has been done with regard to the use of RCA in concrete, far 

fewer studies have focused on the performance of concrete made with other recycled 

aggregates, such as brick aggregates.  Worldwide, very little research has been done on 
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concrete and mortar produced with RBMA.  No studies on RBMA or RBMAC have been 

performed in the United States.  Many studies on RBMAC (performed abroad), surveyed 

as part of this literature review, focused on producing concrete paving blocks and other 

non-structural elements.  Local (North Carolina and/or Southeastern United States) brick 

was not used in the studies reviewed.  A database of material properties of RBMA and 

RBMAC produced in the United States does not exist, and would be useful to designers 

considering use of these materials in sustainable construction. 

 Although tests of RBMAC in simple structural members (beams) have been 

performed, the potential use of RBMAC in pavement applications has not been studied.  

A key consideration for use in pavement applications, in addition to strength, is the 

abrasion resistance of RBMAC.  The abrasion resistance of RBMAC has not been 

extensively studied using methods currently used in the United States.  Abrasion testing 

using ASTM C944 (rotary cutter method) has drawn increased attention by the FHWA to 

evaluate concrete used in transportation applications, and this test method was not used in 

any of the studies in the literature. 

 Variations in the performance of RBMAC due to the use of different 

compositions of RBMA have not been extensively studied.  The percentage of mortar 

included in the RBMA was generally not reported in the literature, and the influence of 

mortar attached to the brick aggregate on the fresh and hardened properties of brick 

aggregate concrete has been studied by relatively few.  Attached mortar is a source of 

sulfate (Newman 1946, de Juan and Gutierrez 2009, among others), and significantly 

influences the absorption of the brick aggregate.  The role of the mortar fraction in 

recycled brick aggregates needs to be further defined in order to make brick aggregate 
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concrete a viable construction material.  De Juan and Gutierrez (2009) provided 

relationships between mortar content and aggregate fraction size, mortar content and 

absorption, mortar content and sulfate content, and mortar content and abrasion 

resistance.  This study did not, however, link the mortar content to the test results of other 

mechanical or durability properties.   

 Shrinkage of RBMAC has not been included in many studies, and the possibility 

of RBMA being used to provide internal curing has not been well evaluated.  

Additionally, a possible improvement in mechanical properties could be realized by 

incorporation of an optimized RBMA gradation in the concrete, which has not been 

investigated in previous studies. 

 The effects of the addition of supplementary cementitious materials (such as silica 

fume, fly ash, and ground granulated blast furnace slag) and chemical additives (such as 

silicate densifiers) on RBMAC have not been thoroughly investigated.  Additionally, 

admixtures (such as water reducers and viscosity modifiers) were not often utilized in 

previous studies.  Specifically, the effects of these materials (and admixtures) on the fresh 

properties of the mixture and on the mechanical properties and durability performance of 

the hardened RBMAC need to be identified and better understood. 

 Durability performance of RBMAC, particularly with regards to freeze-thaw 

behavior (using current ASTM test methods) and chemical attack (particularly sulfate 

attack and secondary ettringite formation), has not been extensively studied.  

Microstructural characterization of the paste and brick aggregate bond, including 

pozzolanic effects between brick particles and cement paste has not been studied to an 

extent where it is adequately understood.  Thermal characteristics of RBMA may lead to 
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advantageous performance in concrete pavement applications.  Similarly, the thermal 

characteristics of brick aggregates may potentially provide increased fire resistance of 

brick aggregate concrete and RBMAC.  However, based on the literature, fire resistance 

testing has not been performed on RBMAC.   

 
 

 



 
 
 
 
 
 

CHAPTER 3: TESTING PROGRAM FOR CHARACTERIZATION OF RECYCLED 
MATERIALS 

 
 

3.1 Overview of Recycled Materials 

 Recycled brick masonry aggregate (RBMA) used in this work was obtained from 

a single demolition site, Idlewild Elementary School in Charlotte, North Carolina.  This 

demolition site was used as a case study for research on the reuse of construction and 

demolition waste, as part of a Department of Energy grant, DOE Project #DE-FG26-

08NT01982, “Building Materials Reclamation Program.”   

3.1.1 Demolition Site 

 As stated previously, the RBMA for this study was obtained from a single 

demolition site, Idlewild Elementary School in Charlotte, North Carolina.  Effort was 

made to obtain the ‘cleanest’ demolished brick masonry that can be achieved via readily 

employable source separation techniques.  A typical brick masonry wall is shown in 

Figure 3-1.  Walls are mainly clay brick, with clay tile comprising the lower portion of 

some walls. 
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Figure 3-1:  Cafeteria at Idlewild Elementary School prior to demolition. 

 

3.1.2 Demolition Sequence and Material Handling 

 Impurities in the brick aggregate were minimized by ensuring components such as 

sheetrock, acoustical tile, roof material, and other interior building components were 

removed prior to demolition of the brick masonry walls.  The demolition contractor, D. 

H. Griffin Co., utilized the “top down” demolition sequence in which the concrete slab-

on-grade was allowed to remain in place while other building components were 

sequentially demolished from the roof down (shown in Figure 3-2).  This facilitated 

separation of building components on a “clean” surface as they were demolished, and the 

brick masonry was removed with minimal contamination from other building 

components.  The brick masonry that was used in this study was monitored by UNC 

Charlotte personnel during the demolition process, during loading and transport to a local 

crushing yard, and during transport to UNC Charlotte laboratories.   
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Figure 3-2:  Demolition of the brick masonry walls at Idlewild Elementary School. 

 

3.1.3 Obtaining Whole Clay Brick and Tile Specimens 

 Prior to transport to the crushing and grading facility, samples of whole brick and 

whole clay tile were obtained from the demolished rubble in order to determine 

properties in accordance with ASTM C67, “Standard Test Methods for Sampling and 

Testing Brick and Structural Clay Tile.”  The whole brick and whole clay tile samples 

were returned to UNC Charlotte’s laboratories, where most of the attached mortar was 

removed by mechanical means.   

3.1.4 Obtaining Recycled Brick Masonry Aggregate 

 The RBMA material used for this study was produced at D.H. Griffin Crushing 

and Grading, in Charlotte, North Carolina.  This facility specializes in creating crushed 

aggregate material from construction and demolition waste.  Materials typically produced 

at this facility are recycled concrete aggregate and recycled aggregate comprised of 

mixed rubble (concrete masonry, brick masonry, and concrete).   



54 
 
 To facilitate production of a “clean” RBMA, the demolished brick masonry 

material was transported to the facility in a separate dumptruck, without intermingling the 

material with other construction waste.  This operation is shown in Figure 3-3.  Once the 

demolished brick masonry arrived at the facility, it was stockpiled separately from other 

materials, as shown in Figure 3-4.   

 

 

Figure 3-3:  Demolished brick masonry from Idlewild Elementary School, loaded into a 
separate dumptruck for transport to D.H. Griffin Crushing and Grading. 
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Figure 3-4:  Demolished brick masonry from Idlewild Elementary School, stockpiled at 
D.H. Griffin Crushing and Grading, prior to being crushed into aggregate. 

 

 The recycled brick masonry was crushed in the rotary crusher apparatus (shown in 

Figure 3-5), and was subsequently mechanically separated into three gradations:  

AASHTO M43 #78, AASHTO M43 #67, and smaller size material that may have a 

gradation similar to ASTM C33 sand.  For this study, the crushed brick masonry 

aggregate was the material mechanically separated into the AASHTO M43 #78 gradation 

(nominal size ½” to No. 8).  As can be seen in Figure 3-6, the #78 gradation material 

came off of the conveyor belt and was subsequently shoveled into barrels and returned to 

UNC Charlotte laboratories.       
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Figure 3-5:  Rotary crusher apparatus at D.H. Griffin Crushing and Grading.   

 

 

Figure 3-6:  After falling from the conveyor belt, recycled brick masonry aggregate was 
shoveled into barrels and returned to UNC Charlotte laboratories. 

 

 The crushing operation generates fine material that clings to the aggregates.  

These fines were not washed off of the recycled brick masonry aggregate at the D. H. 
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Griffin Crushing and Grading facility.  However, this fine material was washed from the 

RBMA when it was returned to UNC Charlotte’s laboratories, prior to testing.   

3.2 Whole Clay Brick and Tile 

 Due to differences in source mineralogy and production processes, the mechanical 

properties and thermal characteristics of clay brick and tile produced in different 

locations can vary greatly.  In order to provide information regarding the demolished clay 

brick and tile used in the RBMA produced from Idlewild Elementary school, whole clay 

brick and tile were taken to UNC Charlotte for laboratory testing.   

3.2.1 Experimental Procedures 

 Tests to determine the mechanical properties and thermal characteristics of the 

whole clay brick and tile were performed as outlined in the following sections.  Prior to 

testing, adhered mortar was removed using mechanical means and plastic bristle brushes.  

Care was taken not to damage the specimens during removal of the mortar, and therefore 

trace amounts of mortar remained on some areas of some of the bricks and tiles tested.  

Typical test specimens are shown in Figure 3-7 and in Appendix A (Figures A-1 and A-

2).   



58 
 

 

Figure 3-7:  Whole brick and clay tile subjected to testing. 

 

3.2.1.1 Unit Weight 

 Unit weight of whole clay brick and tile specimens was determined in general 

accordance with ASTM C67, “Standard Test Methods for Sampling and Testing Brick 

and Structural Clay Tile.”  Specimens were dried in a ventilated oven at 230°F (110°C) 

until a constant weight was achieved.  Specimens were then cooled at approximately 

70°F (21.1°C) and relative humidity between 30% and 70% for at least four hr prior to 

weighing.  The oven-dry weights of 31 brick specimens and 6 clay tile specimens were 

determined.  The corresponding unit weights were then computed.   

 As the clay bricks and tiles obtained from Idlewild Elementary School had cores, 

it was necessary to account for the volume of cores in determining the unit weight of the 

clay bricks and tiles.  The volume of the cores was obtained by measuring representative 

bricks and tiles, and these volumes were used for all bricks and tiles when computing 

their unit weights.    
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3.2.1.2 Absorption 

 Absorption of whole clay brick and tile specimens was determined in general 

accordance with ASTM C67, “Standard Test Methods for Sampling and Testing Brick 

and Structural Clay Tile.”  Five whole brick specimens and three whole clay tile 

specimens were tested utilizing the 24-hr soak procedure outlined in ASTM C67.    

3.2.1.3 Suction 

 Initial rate of absorption, or suction, of the whole clay brick and tile specimens 

was determined in general accordance with ASTM C67, “Standard Test Methods for 

Sampling and Testing Brick and Structural Clay Tile.”  After ambient air conditioning, 

six whole brick specimens and two whole clay tile specimens were weighed and tested.  

The procedure measures the weight gain of test specimens submerged in water to a 

specified depth for a specified period of time.  Specimens were placed into water so that 

it covered the entire test surface (bottom face) and an additional 1/8 in of height, and they 

were allowed to remain in the water for one minute (±1 second) prior to reweighing.  The 

weight gain is then corrected to a basis of 30 in2 for reporting purposes. 

3.2.1.4 Compressive Strength 

 Compressive strength of the whole clay brick and tile specimens was determined 

in general accordance with ASTM C67, “Standard Test Methods for Sampling and 

Testing Brick and Structural Clay Tile.”  After conditioning, six whole bricks and three 

whole tiles were sawcut in half and a sulfur capping compound was applied.  

Compressive strength testing was performed utilizing a UTM machine.   As specified in 

ASTM C67, the speed of testing was controlled in a manner in which half of the failure 

load was applied at a convenient rate, and then the remaining load was applied at a 
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uniform rate that resulted in the specimen failing in not less than 1 min but not more than 

2 min. 

 As the clay bricks and tiles obtained from Idlewild Elementary School had cores, 

it was necessary to account for the volume of cores in determining their compressive 

strengths.  The volume of the cores was obtained by measuring representative bricks and 

tiles, and these volumes were subtracted from the gross volumes of the specimens to 

adjust resulting compressive strengths. 

3.2.1.5 Modulus of Rupture 

 The modulus of rupture of whole clay brick and tile specimens was determined in 

general accordance with ASTM C67, “Standard Test Methods for Sampling and Testing 

Brick and Structural Clay Tile.”  After conditioning, five bricks and two clay tiles were 

tested.   

3.2.1.6 Thermal Characteristics 

 Thermal characteristics of the brick and clay tile obtained from Idlewild 

Elementary School were determined using the procedures outlined in the subsequent 

sections. 

3.2.1.6.1 Coefficient of Thermal Expansion 

 There is not currently an accepted method for performing testing to determine the 

CTE for brick materials.   Currently, the accepted test method for determining the CTE 

for concrete is AASHTO T336, “Standard Method of Test for Coefficient of Thermal 

Expansion of Hydraulic Cement Concrete.”  Equipment required to perform AASHTO 

T336 is not currently available at UNC Charlotte.  Therefore, testing to determine a 

reasonable value for CTE of a portion of a brick specimen was performed utilizing a 
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methodology that used specimen conditioning and temperature ranges similar to those 

used in the AASHTO T336 method.  Clay tiles were deemed too thin to survive the 

required mounting of metal reference points, and thus were not tested.   

 To perform this testing for the brick, reference points were mounted in a piece of 

brick at an approximate distance of 4 in.  This test specimen is shown in Figure 3-8.  The 

test specimen was saturated in lime water at 68°F (20°C) until a constant mass was 

achieved.  An initial length measurement between the reference points was then obtained 

using a mechanical strain gage apparatus.  Prior to obtaining the initial measurement (and 

subsequent measurements), the mechanical strain gage was calibrated (zeroed at 4 in 

length) using the reference bar provided by the equipment manufacturer.  This was done 

in lieu of an accepted standard or calibration specimen for this test method. 

 

 

Figure 3-8:  Coefficient of thermal expansion testing of brick 

 



62 
 
 The test specimen was then placed back in the saturated lime water, the container 

sealed, and placed in an environmental chamber.  The environmental chamber was set to 

122°F (50°C).  Once a sensor in the water surrounding the test specimen registered 122°F 

(50°C), the specimen was allowed to remain in the lime water bath in the environmental 

chamber (at 122°F, or 50°C) overnight.  The following morning, the specimen was 

removed from the lime water bath, and the mechanical strain gage was used to obtain a 

length measurement between the reference points.  An infrared thermometer was used to 

obtain the temperature of the specimen at the time of measurement.  The specimen was 

returned to the lime water bath, the container was sealed, and the container was placed 

back into the environmental chamber.  The environmental chamber was then set to 50°F 

(10°C).   

 Once the sensor in the water surrounding the test specimen registered 50°F 

(10°C), the specimen was allowed to remain overnight in the lime water bath in the 

environmental chamber at 50°F (10°C).  The following morning, a mechanical strain 

gage was again used to obtain the length of the specimen between the reference points, 

and a temperature reading was taken with the infrared thermometer.  The CTE was then 

computed using the formula 

𝐶𝑇𝐸 =  
�∆𝐿𝑎𝐿𝑜

�

∆𝑇
      (3-1) 
 

where ΔLa is the actual length change of the specimen during the temperature change 

(measured on concrete surface) ΔT and L0 is the measured length of the specimen at room 

temperature.  For the three conditioning temperatures used in this test (50ºF, 68ºF, and 

122ºF) Eq. 3-1 is modified as  



63 
 

𝐶𝑇𝐸 =  
�𝐿122°𝐹−𝐿50°𝐹𝐿68°𝐹

�

𝑇122°𝐹−𝑇50°𝐹
     (3-2) 

 

where L122ºF, L68ºF, and L50ºF are the measured lengths of the specimen after conditioning 

in the 122ºF, 68ºF, and 50ºF environments, respectively, and T122ºF and T50ºF are the 

measured surface temperatures of the specimen (at time of length measurement) after 

conditioning in the 122ºF and 50ºF environments, respectively.  

3.2.1.6.2 Thermal Conductivity 

 Thermal conductivity testing was performed using the TCi apparatus 

manufactured by C-Therm Technologies, shown in Figure 3-9.  In this photograph, the 

transducer is shown on the table, to the left of the computer.  This equipment measures 

the effusivity of a specimen.  Using the measured effusivity, proprietary software 

computes the thermal conductivity of the specimen by utilizing a user-selected calibration 

curve that relates effusivity to thermal conductivity.  The calibration curves are either 

supplied by the manufacturer or developed by the user with a material similar to the 

tested material.    
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Figure 3-9:  C-Therm Technologies TCi thermal conductivity testing apparatus. 

 

 One specimen of each material (brick, tile, clay, and mortar) was prepared, and 

tests were performed at multiple locations on each specimen.  The specimens were 

sawcut or broken to a thickness of approximately ½ in (12.7 mm), and are shown in 

Figure A-3 in Appendix A.  For all test specimens, thermal grease (Wakefield thermal 

joint compound 102, as recommended by the TCi apparatus manufacturer) was used as 

the contact solution between the test specimen and the glass-plated sensor, and a 

minimum of nine readings for each specimen were averaged to compute the thermal 

conductivity.  The first reading was not used in the computations, as recommended by the 

TCi apparatus manufacturer.  

3.2.1.6.3 Heat Capacity 

 The heat capacity of the brick, clay tile, and mortar material was determined using 

a thermogravimetric analyzer (TGA) apparatus, the SenSys Evo by Setaram.  This 
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calorimeter apparatus requires that the test specimen be ground to a powder and then 

compacted in a metal crucible, which is subsequently placed into the machine.  Powder 

samples were prepared from whole clay brick, tile, and mortar specimens by crushing bits 

of each material with a modified proctor hammer, and then sieving the resulting material.  

Powder used for heat capacity testing was material passing a No. 60 sieve but retained on 

a No. 200 sieve.   

 Testing was performed at temperatures corresponding to warm service 

temperatures for concrete exposed to outdoor conditions, approximately 75°F to 130°F 

(24°C to 55°C).  The carrier gas utilized for testing was nitrogen, and 0.000061 cubic 

inch (100 μL) aluminum crucibles were used.  The samples were heated at a rate of 10 

degrees K per minute.  Two samples of each material (brick, clay tile, and mortar) were 

tested. 

3.2.2 Experimental Results 

 Experimental results for testing of whole clay brick and tile are provided in the 

following sections.  A summary of the results, particularly those useful in assessing 

concrete produced with the RBMA coarse aggregate (recycled brick masonry aggregate 

concrete, or RBMAC) is presented in Section 3.4, Summary and Conclusions.   

3.2.2.1 Unit Weight 

 The average unit weight of brick specimens from Idlewild Elementary School is 

111.6 pcf (1788 kg/m3).  The volume used to compute this unit weight includes the core 

volume of the bricks.  If the core volume is subtracted from the gross volume, and only 

the clay brick material itself is considered, the average unit weight is 131.9 pcf (2113 

kg/m3).  
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 The average unit weight of clay tile specimens from Idlewild Elementary School 

is 91.4 pcf (1464 kg/m3).  The volume used to compute this unit weight includes the core 

volume of the clay tiles.  If the core volume is subtracted from the gross volume, and 

only the clay tile material itself is considered, the average unit weight is 168.6 pcf (2701 

kg/m3), which is considerably higher than that of the whole brick. 

3.2.2.2 Absorption 

 The average absorption (24-hr soak method) of whole brick test specimens from 

Idlewild Elementary School is 8.5%.  The average absorption (24-hr soak method) of 

whole clay tile specimens from Idlewild Elementary School is 4.0%.  Supplemental data 

for absorption testing of bricks and clay tiles is provided in Appendix A, in Tables A-1 

and A-2.    

3.2.2.3 Suction 

 The average initial rate of absorption, or suction, of the whole brick test 

specimens from Idlewild Elementary School is 4 g, as corrected to a basis of 30 in2.  The 

average suction of the whole clay tile test specimens from Idlewild Elementary School is 

0.9 g, as corrected to a basis of 30 in2.  These values are below the typical limitation of 30 

g per 30 in2 used as the threshold for pre-wetting brick prior to construction (Borchelt 

2002).  Additional information on suction tests for bricks and clay tiles is provided in 

Appendix A, in Tables A-3 and A-4. 

3.2.2.4 Compressive Strength 

 The average compressive strength of the whole brick test specimens from 

Idlewild Elementary School is 9,752 psi (67.2 MPa).  The average compressive strength 

of the whole clay tile test specimens is 11,805 psi (81.4 MPa).  According to Borchelt 
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(2002), current-day bricks can have compressive strengths ranging from approximately 

3,000 to 20,000 psi (20.7 to 137.9 MPa), with an average of about 10,000 psi (68.9 MPa).  

 A study of bricks from around the country by the Brick Institute of America 

(BIA) (2002) indicated that the mean unit compressive strength for extruded solid brick is 

11,305 psi (77.9 MPa), while the mean unit compressive strength for structural clay tile 

with vertical coring is 10,057 psi (69.3 MPa).  The value for Idlewild Elementary School 

brick and clay tile are within the expected range of compressive strengths.  Supplemental 

data for compressive strength tests of bricks and clay tiles is provided in Appendix A, in 

Tables A-5 and A-6. 

3.2.2.5 Modulus of Rupture 

 The average modulus of rupture of the whole brick test specimens from Idlewild 

Elementary School is 2,010 psi (13.9 MPa).  The average modulus of rupture of the 

whole clay tile test specimens is 1,070 psi (7.4 MPa).  According to Mamlouk and 

Zaniewski (2006), the typical range for modulus of rupture of most clay bricks is 500 to 

3,800 psi (3.4 to 26.2 MPa).  Therefore, the modulus of rupture of brick and clay tile 

from Idlewild Elementary School is within the expected range of values.  Supplemental 

information for modulus of rupture tests on brick and clay tile is provided in Appendix A, 

in Tables A-7 and A-8. 

3.2.2.6 Thermal Characteristics 

 Thermal characteristics of brick and clay tile from Idlewild Elementary School 

were obtained, and the test results are provided and discussed in the following sections.  
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3.2.2.6.1 Coefficient of Thermal Expansion 

 Difficulties were encountered during tests to determine the CTE of brick from 

Idlewild Elementary School.  Since the bricks from the site had cores, a 5/8 in (15.9 mm) 

thick specimen sawcut along the length of the face of the brick was the thickest specimen 

that could be obtained.  When the metal reference studs were mounted into the brick 

specimen, a crack formed adjacent to one of the reference studs.  This crack likely 

occurred because the specimen was too thin.  Despite the presence of the crack, the test 

was performed.   

 The testing procedure described in Section 3.2.1.6.1, Coefficient of Thermal 

expansion was initiated, and the specimen was conditioned to 68°F (20ºC), 122°F (50ºC), 

and 50°F (10ºC), in that order.  Length measurements were obtained at each of these 

conditioning temperatures.  Based upon measurements from the first round of tests, it 

appears that the brick expanded during conditioning from 68°F (20ºC) to 122°F (50ºC) as 

expected.  However, due to the presence (or propagation) of the crack, when conditioned 

to 50°F (10ºC), the specimen did not shorten to a length less than the initial measured 

length at 68°F (20ºC).  Therefore, Eq. 3-2 was modified to  

 𝐶𝑇𝐸 =  
�𝐿122°𝐹−𝐿68°𝐹𝐿68°𝐹

�

𝑇122°𝐹−𝑇68°𝐹
        (3-3)  

where L122ºF and L68ºF are the measured lengths of the specimen after conditioning to 

122°F (50ºC) and 68°F (20ºC), respectively, and T122ºF and T68ºF are the measured surface 

temperatures of the concrete specimen (at time of length measurement) after conditioning 

to 122°F (50ºC) and 68°F (20ºC), respectively.  
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 Using the data obtained at the 122°F (50ºC) and 68°F (20ºC) temperatures, the 

CTE was determined to be 2.45×10-6 in/in/°F (4.41×10-6 m/m/°C).  The CTE of clay 

brick is typically between 3×10-6 and 4×10-6 in/in/°F (5.4×10-6 and 7.2×10-6 m/m/°C) 

(Klingner 2010).  The CTE obtained from measurement of the Idlewild Elementary 

School brick slightly lower than this expected range. 

 Additional tests resulted in measured values of CTE that are an order of 

magnitude greater than the first measured value (1.00×10-5 and 1.74×10-5 in/in/°F, or 

1.8×10-5  and 3.13×10-5  m/m/°C), likely due to the influence of the crack.  Further testing 

was not performed due to the fact that the geometry of the bricks from the subject site 

would not allow for thicker test specimen to be obtained.  Data for the CTE tests on brick 

are shown in Appendix A, Table A-9. 

 Tests to determine the CTE of RBMAC (as described in Section 6.4.4.2.6.1, 

Coefficient of Thermal Expansion) were successful.  The CTE for RBMAC is useful in 

further analysis of use of RBMAC properties in pavement design, as described in Chapter 

7, Use of Recycled Brick Masonry Aggregate Concrete in Pavement Applications.  

However, in future work on RBMA, it is suggested that tests to determine the CTE be 

done in order to characterize the brick. 

3.2.2.6.2 Thermal Conductivity 

 The average thermal conductivity of brick from Idlewild Elementary School was 

found to be 6.17 BTU•in/(hr•sf•°F), or 0.515 BTU/(hr•ft•°F) (0.891 W/(m•K)), and the 

average thermal conductivity of clay tile was found to be 10.13 BTU•in/(hr•sf•°F), or 

0.844 BTU/(hr•ft•°F) (1.460 W/(m•K)).  Thermal conductivity tests were also performed 

on samples of mortar from Idlewild Elementary School, and the average value was 
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determined to be 1.18 BTU•in/(hr•sf•°F), or 0.098 BTU/(hr•ft•°F) (0.17 W/(m•K)).  

Typical thermal conductivity test results for brick, clay tile, and mortar are provided in 

Appendix A, Figures A-4 through A-6, respectively. 

 Typically, the thermal conductivity of brick is less than 1/6 that of concrete 

(Klingner 2010).  ACI (2002) lists the thermal conductivity of fired clay bricks as ranging 

from 2.19 to 7.26 BTU•in/(hr•sf•°F) (0.316 to 1.05 W/(m•K)) for brick densities ranging 

from 70 to 150 pcf (1,121 to 2,403 kg/m3), respectively.  The measured value of thermal 

conductivity of brick from Idlewild Elementary School fell within this expected range. 

3.2.2.6.3 Heat Capacity 

 The average heat capacity of brick from Idlewild Elementary School was found to 

be 1.13 BTU/(lb•°F) at 77°F (4,731 J/(kg•°C) at 25°C), and the average heat capacity of 

clay tile was found to be 2.05 BTU/(lb•°F) at 77°F (8,583 J/(kg•°C) at 25°C).  Heat 

capacity tests were also performed on samples of mortar from Idlewild Elementary 

School, and the average value is 6.98 BTU/(lb•°F) at 77°F (29,223 J/(kg•°C) at 25°C 

25°C).   A photo of the samples of crushed brick, mortar, and clay tile used for heat 

capacity testing is provided in Appendix A (Figure A-7), along with a typical output 

spreadsheet from the TGA with associated heat capacity calculations (Figure  A-8). 

 ACI (2002) reports that a typical value for the heat capacity of clay brick with a 

density of 135 pcf (2162 kg/m3) is 0.20 BTU/(lb•°F) (34,164 J/(kg•°C)).  A typical heat 

capacity value for mortar with a density of 120 pcf (1922 kg/m3) reported by ACI (2002) 

is also is 0.20 BTU/(lb•°F) (34,164 J/(kg•°C)).  The heat capacities obtained for both the 

Idlewild Elementary School brick and clay tile are higher than the heat capacity values 

reported by ACI as typical values for brick.  The heat capacity of the mortar from 
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Idlewild Elementary School was found to be much higher than the typical value for the 

heat capacity of mortar reported by ACI (2002). 

3.3 Recycled Brick Masonry Aggregate 

 RBMA was produced by crushing a portion of the demolished brick masonry 

walls at Idlewild Elementary School in Charlotte, North Carolina.  The demolished brick 

masonry wall material used to create the RBMA was handled in a manner outlined in 

Section 3.1.2, and RBMA was produced as outlined in Section 3.1.4.  Approximately two 

cubic yards of the RBMA material was shoveled from the stockpile at D.H. Griffin 

Crushing and Grading, placed into clean 55-gallon drums and 5-gallon buckets, and 

returned to UNC Charlotte’s laboratories. 

3.3.1 Experimental Procedures 

 Laboratory testing was performed on the RBMA in order to determine properties 

related to development of concrete mixture designs, as well as to provide characterization 

information useful in comparing the RBMA to other conventional (natural and 

manufactured lightweight) aggregates  and recycled aggregates.  Tests were performed as 

outlined in the following sections.   

3.3.1.1 Composition by Weight and by Volume 

 Demolished brick masonry construction that is crushed to produce RBMA will 

consist of two main components:  brick and mortar.  In the case of the RBMA material 

produced from the Idlewild Elementary School case study site, the RBMA also contained 

some fraction of clay tile material.  If demolished brick masonry material from different 

sites is used to create RBMA, the RBMA produced will have different compositions.  It 
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was of interest, therefore to characterize the composition of the RBMA from Idlewild 

Elementary School by weight and by volume. 

 Two representative samples of RBMA were obtained from randomly selected 

buckets containing the material.  These RBMA samples were further reduced using a 

sample splitter until they were of sizes manageable for manual separation of the particles 

by type.  One sample was approximately 0.9 lb (0.4 kg) and the other sample was 

approximately 1.5 lb (0.7 kg).  After taking an initial weight and loose volume of each 

sample, the samples were poured onto a clean tabletop and manually separated into four 

piles:  brick, mortar, tile, and other.  After separation, the weight of each fraction of 

material was recorded, and the volume of each fraction of material was obtained by 

loosely pouring the material into a graduated cylinder and recording the volume. 

3.3.1.2 Gradation 

 Although equipment at D.H. Griffin Crushing and Grading was configured in a 

manner capable of producing material that generally met specific AASHTO gradations 

for typical material processed at the facility, testing to obtain the gradation of the RBMA 

was performed at UNC Charlotte laboratories.  Testing was performed in general 

accordance with ASTM C136, “Standard Test Method for Sieve Analysis of Fine and 

Coarse Aggregates,” and three samples were used.  Each sample exceeded the specified 

mass of 4.4 lb (2 kg), and was obtained from the mass stockpile of RBMA (stored in 5 

gallon buckets) by using a sample splitter.   

3.3.1.2 Particle Shape – Flat and Elongated Particles 

 The particle shapes of RBMA were characterized by testing in general accordance 

with ASTM D4791, “Standard Test Method for Flat Particles, Elongated Particles, or Flat 
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and Elongated Particles in Coarse Aggregate.”  This testing was performed because 

visual observation of the RBMA material revealed that the crushed brick particles tended 

to have more flat and elongated particle shapes than the mortar particles.  The crushed 

brick particles also appeared to be more flat and elongated than locally available natural 

aggregates. 

 This test requires selection of a ratio setting to be used on the proportional caliper 

device used for identifying flat, elongated, and flat and elongated particles.  In keeping 

with statewide practices, it was of interest to utilize NCDOT guidelines, if available for 

this test.   NCDOT currently performs flat and elongated particle testing to qualify coarse 

aggregates for use in asphaltic cement concrete mixtures, but not portland cement 

concrete mixtures.  For asphaltic cement concrete, aggregates are tested using a 5:1 ratio 

on the proportional caliper device.  In lieu of guidelines for use of this test method for 

concrete applications, it was decided to utilize the 5:1 ratio setting for flat and elongated 

testing as part of this work.   

 To determine the percentage of flat, elongated, and flat and elongated particles of 

the RBMA blend (i.e., including the brick, mortar, clay, and tile material in their naturally 

occurring proportions), a sample splitter was used to obtain three sets of 100 particles for 

testing using the proportional calipers.  Additional testing was performed to determine 

the percentage of flat, elongated, and flat and elongated particles of the brick alone, the 

mortar alone, and the clay tile alone.  To obtain these samples, a sample splitter was used 

to obtain three sets of 100 particles of brick and three sets of 100 particles of mortar.  As 

clay tile was present in the aggregate RBMA material in a far smaller proportion, only 

one sample of 100 particles of clay tile was obtained by hand selection for testing. 
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3.3.1.4 Density, Specific Gravity, and Absorption 

 Testing to determine the density, specific gravity, and absorption of the RBMA 

was performed in general accordance with ASTM C127, “Standard Test Method for 

Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate.”  

Testing was performed on three samples of RBMA, each obtained from the mass 

stockpile of RBMA (stored in 5-gallon buckets) by using a sample splitter. 

3.3.1.5 Bulk Density (Unit Weight) 

 The bulk density, or unit weight of the RBMA was determined in general 

accordance with ASTM C29, “Standard Test Method for Bulk Density (“Unit Weight”) 

and Voids in Aggregate.”  Testing was performed following both the “Shoveling 

Procedure” and the “Rodding Procedure.”  In the “Shoveling Procedure,” the measure is 

filled without tamping and then weighed.  In the “Rodding Procedure,” the measure is 

filled in one-third layers and rodded after each of the three fillings.  After rodding the last 

layer, the measure is weighed.  

3.3.1.6 Abrasion Resistance 

 Abrasion resistance of the RBMA was evaluated by testing the material in 

accordance with ASTM C131, “Standard Test Method for Resistance to Degradation of 

Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine.”  

Testing was performed on two samples of aggregate that met Gradation C (2,500±10 g of 

material passing the 3/8 in sieve and retained on the ¼ in sieve, and 2,500±10 g of 

material passing the ¼ in sieve and retained on the No. 4 sieve).  
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3.3.2 Experimental Results 

 Experimental results for tests performed on the RBMA are provided in the 

following sections.  A summary of the results, particularly those useful in assessing 

RBMAC mixtures is presented in Section 3.4, Summary and Conclusions.   

3.3.2.1 Composition by Weight and by Volume 

 The RBMA produced from the Idlewild Elementary School demolition waste was 

largely comprised of three components:  clay brick, clay tile, and mortar.  The results of 

sorting these components, and measuring the relative proportion of each by weight and 

by volume are shown in Table 3-1.  A photograph of the RBMA is shown in Figure 3-10. 

 
Table 3-1:  Composition of the RBMA produced from Idlewild Elementary School. 
 

Material % by weight % by volume 
clay brick 64.5 63.9 
clay tile 2.1 1.9 
mortar 30.1 31.6 
other (rock, porcelain, lightweight debris) 3.3 2.6 
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Figure 3-10:  RBMA from Idlewild Elementary School. 
 
 

 Of particular interest is the amount of mortar present in the aggregate (almost 1/3 

by weight and by volume), which while presumably influencing the performance of the 

RBMA in concrete mixtures, is largely ignored in virtually all published studies on this 

topic.   

 Although the “top-down” demolition sequence utilized at Idlewild Elementary 

School was largely successful in preventing most contaminants from being incorporated 

into the crushed brick masonry aggregate, it was evident from visual observations that 

some debris other than clay brick, clay tile, and mortar was present in the material; see 

Table 3-1.   

3.3.2.2 Gradation 

 The sieve analysis test results of the AASHTO M43 #78 recycled brick masonry 

aggregate material are shown in Table 3-2, along with the acceptable range for AASHTO 

M43 #78 gradation material.  The sieve analysis results of a recycled concrete aggregate 
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(Idlewild Elementary School source material) produced on the same day using the same 

equipment is also shown.  It is noted that although both the recycled brick masonry 

aggregate and the recycled concrete aggregate met AASHTO M43 requirements for most 

sieve sizes, the percentage of material passing the 3/8 in sieve (retained on the No. 4 

sieve) was slightly higher than the acceptable range.  Discussions with D. H. Griffin 

Crushing and Grading personnel indicated that when they periodically discover that 

material is not meeting the required gradation, the settings within the mechanical 

equipment used in the crushing and/or grading process are modified slightly to bring the 

gradation of the material produced back into specification.  More detailed information on 

the sieve analyses on the RBMA is provided in Appendix A, Table A-10.   

 
Table 3-2:  Results of ASTM C136 sieve analysis testing of RBMA and RCA produced 

from Idlewild Elementary School. 
 

 
% of Material Finer 

Sieve Opening 
(in) 

Recycled Brick 
Masonry 

Aggregate 

Recycled 
Concrete 

Aggregate 

AASHTO M43 
#78 Acceptable 

Range 
3/4 100 100 100 
1/2 99.8 100 90-100 
3/8 85.1 85 40-75 
No. 4 19.5 14 5-25 
No. 8 0.8 3 0-10 
Pan 0 0 --- 

 
  

3.3.2.3 Particle Shape – Flat and Elongated Particles 

 A summary of the results of testing performed on the RBMA to determine 

whether an excessive amount of flat, elongated, or flat and elongated particles were 
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present in the material are shown in Table 3-3.  Supplemental data from these tests is 

included in Table A-11 of Appendix A. 

 
Table 3-3:  Results of ASTM D4791 flat and elongated particle testing. 

 

 
Average % Flat and Elongated 

Material by particle count 
(%) by mass (%) 

Recycled Brick Masonry Aggregate 
(Blend) 4.0 3.6 
Brick only 9.0 6.7 
Mortar only  0.7 0.5 
Tile only 8.0 4.8 

 
 In this (ASTM D4791) test, the length to width, width to thickness, and length to 

thickness ratios are compared to a specified ratio.  For this work, NCDOT specifications 

limiting the use of flat and elongated aggregates in asphalt pavement were used, as there 

are currently no NCDOT specifications limiting use of flat and elongated particles in 

portland cement concrete applications.  According to Section 1012 of the NCDOT 

specifications, the maximum percentage of flat and elongated particles is 10% using the 

5:1 ratio, tested on particles retained on the No. 4 sieve and larger.  It is unclear whether 

the NCDOT limit is 10% by mass or by particle count.  The RBMA did not contain 

greater than 10% by mass or by particle count, and therefore does not contain an 

excessive amount of flat and elongated particles when tested as a composite material nor 

when individual components (brick, mortar, tile) were tested alone, as shown in Table 3-

3.  The percentage of brick and tile particles that are flat and elongated, however, is 

significantly higher than the percentage of flat and elongated mortar particles. 
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3.3.2.4 Density, Specific Gravity, and Absorption 

 ASTM C127 testing was performed to determine the oven dried density, the 

saturated surface-dry density, and the apparent density of the RBMA.  The oven dried 

density is 121.8 pcf (1951 kg/m3), the saturated surface-dry (SSD) density is 136.6 pcf 

(2188 kg/m3), and the apparent density is 159.8 pcf (2559.8 kg/m3).  ASTM C127 tests 

also indicate that the specific gravity of the RBMA is 2.19, and the absorption of the 

RBMA is 12.2%.  Data obtained during these tests is provided in Appendix A in Table A-

12. 

3.3.2.5 Bulk Density (Unit Weight) 

 The bulk density of the RBMA was obtained using the “Shoveling Procedure” 

outlined in ASTM C127.  Using the “Shoveling Procedure,” the loose bulk density of the 

recycled brick masonry aggregate is 60.9 pcf (976 kg/m3).  Using the “Rodding 

Procedure,” the dry rodded unit weight of the RBMA is 70.4 pcf (1128 kg/m3).  Data 

obtained during these tests is provided in Table A-13 of Appendix A. 

3.3.2.6 Abrasion Resistance 

 Los Angeles Abrasion testing of the recycled brick masonry aggregate was 

performed in accordance with ASTM C131, on a sample meeting “Gradation C.”  This 

testing indicated that the percent loss is 43.1%.  Supporting data for abrasion resistance 

tests on RBMA are provided in Table A-14 of Appendix A. 

 According to Section 1014-2 of NCDOT specifications, “Crushed stone or gravel 

must have a percentage wear (loss) of not more than 55 percent.  For concrete with a 28-

day design strength greater than 6,000 psi (41.4 MPa), limit this wear to 40%.”  Based on 

these limitations, the crushed brick masonry aggregate for this study could be used in 
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NCDOT pavement applications where the 28-day design strength is less than 6,000 psi 

(41.4 MPa).   

3.4 Summary and Conclusions 

 The RBMA produced from the Idlewild Elementary School walls is composed of 

mostly brick (approximately 2/3 of the material, by weight and by volume), with trace 

amounts of clay tile.  A summary of the properties of these whole materials is shown in 

Table 3-4.  Future work utilizing RBMA from other sources should include testing to 

characterize these properties, at a minimum in order to facilitate comparison to this 

material. 

 
Table 3-4:  Properties of whole brick and clay tile from Idlewild Elementary School. 

 

  Brick Clay Tile 

Compressive strength (psi) 9,752 11,805 

Modulus of rupture (psi) 2,010 1,070 

Absorption (%)                                                                   
(24-hr soak procedure) 8.5 4.0 

Suction (g)                                                                            
(gain in weight corrected to basis of 30 in2) 4.0 0.9 

Solid unit weight (pcf)  131.9 168.6 

 

 Relevant ASTM standard test methods were used to determine properties of the 

RBMA, including: absorption, specific gravity, bulk density, gradation, and abrasion 

resistance.  A summary of test results for the RBMA is shown in Table 3-5, along with 

test results for the recycled concrete aggregate (RCA) produced from a demolished slab-

on-grade at Idlewild Elementary School.  Published data for a locally quarried natural 
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normalweight aggregate and for a locally manufactured lightweight aggregate are also 

shown for comparison. 

 
Table 3-5:  Properties of recycled aggregates from Idlewild Elementary School 
demolition waste, compared to properties of a locally manufactured lightweight 
aggregate and a local normalweight natural aggregate.   
 
 

 

Recycled 
Brick 

Masonry 
Aggregate 
(RBMA) 

Locally 
Manufactured 
Lightweight 
Aggregate 

Recycled 
Concrete 

Aggregate (RCA) 

Locally Quarried 
Normalweight 

Natural 
Aggregate 

 

Idlewild 
Elementary 

School 
Stalite 

Idlewild 
Elementary 

School 

Martin Marietta 
Quarry 

Specific Gravity (at 
Saturated Surface Dry 
Condition) 

2.19 1.53 N/A 2.84 

Absorption 12.2 6.0 7.6 0.34 
Abrasion (LA Abrasion 
testing, Gradation C) 43.1 25 to 28 N/A 17.2 

Loose Bulk Density 
(Unit Weight, Dry) (pcf) 

60.9 50 80.0 95.9 

*Note:  All data is for ½ in nominal maximum size material (AASHTO M43 #78 
gradation) 
 
 

 It can be seen from Table 3-5 that the RBMA produced from the Idlewild 

Elementary School walls has a loose bulk density (ASTM C29 shoveling procedure) that 

is approximately 2/3 that of a locally quarried normalweight (natural) aggregate that is 

typically used in concrete.  The absorption of the RBMA is far greater than that of the 

local normalweight natural aggregate and is almost twice that of the RCA produced from 

the Idlewild Elementary School concrete slab.  The absorption of the RBMA is also 

roughly twice that of a locally manufactured lightweight aggregate (Stalite).   

 Properties of the RBMA were also compared to ASTM C330, “Standard 

Specification for Lightweight Aggregates for Structural Concrete” in order to select the 
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proper mixture design procedure and to better understand the potential performance of 

this material in concrete mixtures.  It is noted that the bulk density of the material is 

slightly higher than the upper limit for maximum dry loose bulk density specified by 

ASTM C330, which is 55 pcf (881 kg/m3).   

 The abrasion resistance of brick aggregates is typically cited by researchers as a 

weakness.  The measured abrasion loss of the Idlewild Elementary School RBMA is 

43%, which would make it suitable for use in concrete mixtures with 28-day design 

strengths less than 6,000 psi, but not suitable for use in concrete mixtures with 28-day 

design strengths greater than 6,000 psi.  Further testing of abrasion resistance of RBMAC 

was performed using the rotary cutter method of abrasion testing, which is discussed in 

Section 6.4.3.3.2, Abrasion Resistance (experimental procedure) and Section 6.4.4.3.2, 

Abrasion Resistance (experimental results). 



 
 

 
 
 
 

CHAPTER 4: CONCRETE MATERIAL COMPONENTS AND PROPERTIES 
 
  

4.1 Introduction 

 In this chapter, the materials utilized in this study are described.  Information 

regarding the source, physical characteristics, and chemical characteristics of the 

materials is provided.  For chemical admixtures, product information and recommended 

dosage rates are outlined. 

4.2 Material Components 

 The material components used for this work include recycled brick masonry 

aggregate (RBMA), natural aggregate, portland cement, water, and chemical admixtures.  

The sources and characteristics of each of these materials are discussed in the following 

sections.   

4.2.1 Recycled Brick Masonry Aggregate (Coarse Aggregate) 

 Concrete mixtures batched as part of this work incorporated RBMA.  The source 

of the RBMA was demolished brick masonry obtained from a demolition site at Idlewild 

Elementary School in Charlotte, North Carolina.  The recycled brick masonry used in this 

study was handled as outlined in Section 3.1.2, Demolition Sequence and Material 

Handling.  The crushing, sieving, and processing of this material is discussed in Section 

3.1.4, Obtaining Recycled Brick Masonry Aggregate.   

 Characterization of the RBMA, including composition by weight and by volume, 

gradation, particle shape, density, specific gravity, absorption, bulk density, and abrasion 
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resistance, is discussed in Section 3.3, Recycled Brick Masonry Aggregate.  Physical 

properties of the RBMA are also presented in Sections 3.3, Recycled Brick Masonry 

Aggregate and Section 3.4, Summary and Conclusions.  To summarize, the absorption of 

the RBMA is 12.2%, the saturated surface-dry bulk specific gravity of the RBMA is 2.19, 

and the loose bulk density (dry unit weight) is 60.9 pcf (976 kg/m3).  No natural 

aggregate material was used as coarse aggregate in this study.   

4.2.2 Natural Aggregate (Fine Aggregate) 

 The fine aggregate used for the concrete mixtures batched in this study is a natural 

pit silica sand from a deposit in Pageland, South Carolina.  This sand meets ASTM C33 

and AASHTO M6, and has a saturated surface-dry (SSD) bulk specific gravity of 2.60 

and an absorption of 3.0%.  The fineness modulus of this sand is 2.68.  Prior to mixing 

each batch of concrete, the moisture content of the sand was calculated and water 

corrections were applied to the mixture proportions.   

4.2.3 Portland Cement 

 The portland cement used in the concrete mixtures batched in this work is a Type 

I/II cement meeting ASTM C150 and AASHTO M85 requirements.  The manufacturer of 

the cement is Old Castle.  A standard mill analysis was not available, and testing to 

determine chemical composition was not performed as part of this work. 

4.2.4 Water 

 Potable tap water at room temperature was used for mixing all concrete mixtures.  

The quality of the tap water supplied to the laboratories at UNC Charlotte is controlled 

and monitored by Charlotte-Mecklenburg Utilities. 
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4.2.5 Admixtures 

 Several commercially available liquid admixtures were utilized in the concrete 

mixtures.  The commercial names of these admixtures, a brief description of their 

compositions, and the manufacturer’s recommended dosage are provided in the 

subsequent sections.   

4.2.5.1 Air-entraining Admixture 

 In all concrete mixtures batched as part of this study, an air entraining admixture 

was used.  The air entraining admixture, Darex II manufactured by Grace Construction 

Products, is formulated using organic acid salts in an aqueous mixture.  This admixture 

meets ASTM C260 requirements.  The manufacturer recommended dosage for this 

admixture is 0.5 to 5 fluid oz per 100 lb of cement.  The actual dosage used in each 

concrete mixture varied, but an air content range of 6 to 8% was targeted.  Doses of the 

air-entraining admixture used in each mixture are provided in Chapter 5, Development of 

Concrete Mixture Proportions.   

4.2.5.2 High-Range Water-Reducing Admixture 

 Water reducing admixtures were used to aid in obtaining the desired workability, 

as measured by slump tests.  The high-range water-reducing admixture (superplasticizer), 

EXP 950 manufactured by Grace Construction Products, was used in some of the 

concrete mixtures in order to obtain an acceptable workability.  This high-range water-

reducing admixture is polycarboxylate-based, meeting ASTM C494 Type F and ASTM 

C1017 Type I requirements.  The manufacturer recommended dosage for this admixture 

is 2 to 10 fluid oz per 100 lb of cementitious material.  The actual dosage used in each 
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concrete mixture varied (provided subsequently in Chapter 5, Development of Concrete 

Mixture Proportions), but a slump of 4 to 8 in (101.6 to 203.2 mm) was targeted. 

4.2.5.3 Mid-Range Water-Reducing Admixture 

 For a few of the concrete mixtures batched as part of this work, the mid-range 

water-reducing admixture, WRDA 35 manufactured by Grace Construction Products, 

was used to obtain an acceptable workability.  This mid-range water-reducing admixture 

is water-based, composed of organic compounds and a catalyst, and meets ASTM C494 

Type A and Type D requirements.  The manufacturer recommended dosage is 2 to 8 fluid 

oz per 100 lb of cementitious material.  The actual dosage in each concrete mixture 

varied (provided subsequently in Chapter 5, Development of Concrete Mixture 

Proportions), but a slump of 4 to 8 in (101.6 to 203.2 mm) was targeted. 



 
 
 
 
 

 
CHAPTER 5: DEVELOPMENT OF CONCRETE MIXTURE PROPORTIONS 

 
  

5.1 Overview of Strategy 

 As discussed in Chapter 2, Literature Review, RBMAC has not been produced or 

studied in the United States.  In order to establish the viability of RBMA from 

demolished brick masonry construction as material that can successfully be utilized in 

structural and pavement grade portland cement concrete, a series of concrete mixture 

designs were targeted, and trial batches were developed, batched, and tested.  Many 

structural and pavement grade concrete mixtures have 28-day compressive strengths 

ranging from 4,000 to 6,000 psi (27.6 to 41.4 MPa).  Therefore, it was desired to identify 

mixture proportions that would produce concrete that would be representative of 

commercially available 4,000 psi (27.6 MPa), 5,000 psi (34.5 MPa), and 6,000 psi (41.4 

MPa) mixtures.   

 Due to the overdesign requirements outlined by the American Concrete Institute 

(ACI) in ACI 318 “Building Code Requirements for Structural Concrete,” it was 

necessary to proportion these mixtures so that the concrete reached strengths sufficiently 

higher than the design strength.  According to ACI 318, without a history of performance 

data, 4,000 psi (27.6 MPa), 5,000 psi (34.5 MPa), and 6,000 psi (41.4 MPa) mixtures 

must reach 28-day compressive strengths of 5,200 psi (35.9 MPa), 6,200 psi (42.7 MPa), 

and 7,300 psi (50.3 MPa), respectively.  With these ultimate strength targets in mind, trial 

batches were developed and tested in an effort to identify a series of suitable mixtures 
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(referred to as “baseline” mixtures from this point forward) that would be representative 

of commercially available 4,000 psi (27.6 MPa), 5,000 psi (34.5 MPa), and 6,000 psi 

(41.4 MPa) mixtures. 

5.1.1 Anticipated Challenges 

 In developing RBMAC, several different types of challenges were anticipated.  

Some of the challenges were addressed prior to batching the trial mixtures; others needed 

to be studied and addressed as development of the trial mixtures progressed towards 

identification of the baseline mixtures.  Several of the anticipated challenges are 

presented below, along with details regarding how they were addressed prior to (or 

during) development of trial batches of RBMAC. 

 The presence of contaminants in the RBMA was identified as a challenge early in 

the project.  The “top-down demolition” sequence utilized by the demolition contractor, 

along with on-site material separation and careful handling procedures, helped to 

minimize the amount of contaminants included with the demolished brick masonry sent 

to the crusher.  Incorporation of dirt or other contaminants into the RBMA at the crushing 

and grading facility was minimized by ensuring that the loading equipment did not scrape 

the ground beneath the piles of uncrushed brick masonry and RBMA.  However, some 

fraction of contaminants present in the brick masonry wall would ultimately be present in 

the RBMA.  The possibility of low strengths and/or wide variability in test results due to 

the inclusion of contaminants inherently exists when using RBMA in concrete.   

 In order for RBMA to be an economically viable product, it is likely necessary for 

it to be produced in a manner that does not involve modifications to existing processing 

procedures at the crushing and grading facility.  Due to the lack of availability of 
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aggregate washing equipment at the crushing and grading facility, it was not possible for 

the fine material clinging to the surface of the RBMA to be removed by washing prior to 

delivery to UNC Charlotte for laboratory testing.  Therefore, measures were taken to 

develop a uniform washing protocol for the RBMA prior to use in laboratory tests or as a 

mixture component in RBMAC batches.   This washing procedure is discussed in Section 

5.1.3.1, Replacement of Natural Aggregate with Recycled Brick Masonry Aggregate. 

 In development of the RBMAC mixtures, it was anticipated that the high 

absorption and angularity of the brick aggregate could make achieving the desired 

workability (slump) problematic.  Many previous researchers attributed difficulties 

encountered while trying to utilize RBMA and brick aggregate in concrete mixtures to 

these qualities, but did not attempt to address this issue by using commercially available 

water-reducing admixtures.  During this work, it was found that by using commercially 

available mid-range and high-range water reducers, the desired workability could be 

achieved.    

 Ultimately, one of the biggest challenges encountered was due to the limited 

amount of material available for batching concrete mixtures.  During demolition, a 

portion of one truckload of brick material was crushed, graded, and returned to UNC 

Charlotte for use in this study.  A significant amount of material was utilized in the trial 

mixtures prior to identification of the baseline mixtures used in the full testing program.  

Additional RBMA would have been desirable, as tightened confidence intervals could 

have been achieved with more RBMAC test specimens.  Additional information 

regarding experimental procedures for RBMAC, and the limitations in testing resulting 
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from the exhaustible supply of RBMA, is presented in Section 6.4, Testing of Hardened 

Concrete Properties.   

5.1.2 Design Variables and Constraints 

 In addition to the RBMA created using demolished brick masonry walls from 

Idlewild Elementary School in Charlotte, North Carolina, RBMAC mixtures developed 

as part of this work utilized only commercially available materials.  These materials 

included Type I/II portland cement, a natural silica sand meeting ASTM C33, tap water, 

and commercially available liquid chemical admixtures.  Information on the materials 

utilized in the RBMAC mixtures is presented in Chapter 4, Concrete Material 

Components and Properties. 

 Since RBMA exhibits characteristics that differ from those of conventional 

aggregates, it was expected that the RBMAC would exhibit performance different from 

conventional concrete in both fresh and hardened concrete tests.  However, in 

development of the RBMAC, it was desirable that existing ASTM standards and ACI 

guidelines be followed as strictly as possible.  Commercial viability of RBMA for use in 

concrete will strongly depend on the material conforming to existing standards and 

guidelines and being readily testable using existing standards.    

5.1.3 Design Approach 

 In the United States, no published guidance for developing RBMAC mixture 

designs exists.  Due to the relatively low unit weight and the high absorption of the brick 

masonry aggregate, mixture designs were developed in accordance with ACI 211.2, 

“Standard Practice for Selecting Proportions for Structural Lightweight Concrete.”  This 

standard indicates that lightweight aggregates should conform to ASTM C330.  It is 
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noted that with a maximum dry loose bulk density of 60.9 pcf (976 kg/m3), the RBMA 

created from the Idlewild Elementary School walls did not meet the maximum dry loose 

bulk density requirement for coarse aggregate of 55 pcf (881 kg/m3) as outlined in ASTM 

C330.  It was found, however, that this mixture design approach provided mixture 

proportions that produced suitable performance characteristics for both trial mixtures and 

baseline mixtures. 

5.1.3.1 Replacement of Natural Aggregate with Recycled Brick Masonry Aggregate 

 Prior to performing tests with RBMA or using RBMA in concrete mixtures, the 

RBMA was washed in order to remove fine material (generated during the crushing 

process) that was on the surfaces of the aggregate particles.  Even thin coatings of fine 

materials can affect hydration and bond of cement paste to the aggregates (Kosmatka et 

al. 2002).  This is one reason why materials finer than the No. 200 (75 μm) sieve are 

limited in many specifications.  The RBMA was washed in small quantities, 

approximately one 5-gallon bucketful at a time.  The small quantity of RBMA was first 

poured over a mesh screen with openings significantly smaller than the smallest 

aggregate size.  Water from a hose was sprayed on the RBMA, which was agitated with a 

rake to help facilitate wash-off of the fine materials.    

 RBMA was saturated for at least 24 hr prior to batching, and damp towels were 

used to bring the moisture content of the brick masonry aggregate to saturated surface dry 

(SSD) condition prior to batching.   

 RBMA was utilized as a 100% substitute for conventional natural coarse 

aggregate in the concrete mixtures.  The fines generated during the manufacture of 

RBMA were not utilized in this study.   
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5.1.3.2 Aggregate Gradation 

 With the exception of being washed at UNC Charlotte, the RBMA was utilized in 

this study in the condition in which it was obtained from D.H. Griffin Crushing.  The 

gradation of the RBMA was not modified prior to batching.  Information regarding the 

gradation of the RBMA used as coarse aggregate in RBMAC mixtures is presented in 

Section 3.3.2.2, Gradation. 

5.1.3.3 Cement Content 

 Portland cement is typically the most expensive component in concrete mixtures, 

thus concrete mixtures with lower cement contents are typically not as costly as concrete 

mixtures with higher cement contents.  From a sustainability perspective, due to the 

energy demands and greenhouse gas emissions associated with cement production, an 

increased portland cement content is associated with a greater embodied energy of 

concrete and a larger carbon footprint (Schokker 2010).  Therefore, it is desirable to 

minimize the cement content of concrete mixtures, including RBMAC mixtures, to the 

largest extent possible.  

 In initial trial batches of RBMAC, the cement contents were relatively high.  As 

trial batches of RBMAC were batched and tested, and desirable compressive strengths 

were achieved, the cement content was reduced.  For baseline mixtures, a range of 

cement contents capable of meeting the design strengths (with overdesign) was selected.  

However, the cement contents in each of the baseline mixtures is still within the range of 

cement contents expected for concrete mixtures using conventional aggregates utilized in 

structural and pavement applications.   
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5.1.3.4 Water/Cement Ratio 

 The water/cement (w/c) ratio of concrete is an important parameter in concrete 

mixture design.  In general, higher water content in a concrete mixture is associated with 

a more permeable paste structure, weakened interfacial transition zones between paste 

and aggregate, and lower strengths.  Therefore, it is desirable to obtain the desired 

workability at as low of a w/c ratio as possible.  In developing and batching RBMAC 

mixtures, admixtures typically used by ready-mixed concrete suppliers were used to 

assist in obtaining the desired workability while simultaneously increasing strength by 

reducing water content.  A mid-range water reducing admixture and a high-range water 

reducing admixture were utilized, and are described in Section 4.2.5, Admixtures. 

5.1.3.5 Air Content 

 Concrete that includes a well-dispersed system entrained air voids exhibits 

improved durability performance in freeze-thaw exposures (Kosmatka 2002).  For most 

exposure conditions, state and federal agencies recommend entrained air contents ranging 

from 5 to 8%.  The target air content of RBMAC mixtures batched as part of this work 

was 6 to 8%.   

5.1.3.6 Target Slump and Water-Reducing Admixture Usage 

 Adequate workability is required to ensure that concrete can be placed, 

consolidated, and finished properly.  In addition to being workable, the components 

should not segregate during transport, handling, and placing of the concrete (Kosmatka 

2002).  Recommended slumps for various types of construction are presented in ACI 

211.1.  As outlined in ACI 211.1 and Kosmatka (2002), the target slump for many 

concrete mixtures is between 1 and 4 in (25.4 to 101.6 mm).  However, in recent years, 
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use of water reducers has allowed for much greater slumps at relatively low w/c ratios, 

and specifications for structural use often allow for slumps in the range of 4 to 8 in (101.6 

to 203.2 mm) with an adequately low w/c ratio or adequate proof of performance in 

specified hardened concrete tests.  Often for many structural applications, the desired 

slump depends on a number of factors including reinforcing steel spacing.   For paving 

mixtures, however, slumps are much lower, often in the range of 1 to 3 in (25.4 to 76.2 

mm).  

 For RBMAC mixtures batched as part of this work, it was desired to have 

workability suitable to accommodate proper consolidation of the concrete into the various 

forms used to cast test specimens.  For this reason, the target slump for RBMAC mixtures 

batched as part of this study was 4 to 8 in (101.6 to 203.2 mm).  In the first trial of 

mixture proportioning, developed using “Method 1: Weight Method” outlined in ACI 

211.2, a target slump of 3 to 4 in (76.2 to 101.6 mm) was used in entering the tables that 

provide the recommended water content for the mixture.  As trial mixtures were 

developed, water-reducing admixtures were utilized to increase the workability of the 

concrete while reducing the required water content.  Using mid-range and high-range 

water reducers, slumps of most mixtures tended to be higher, falling in the range of 4 to 8 

in (101.6 to 203.2 mm). 

5.2 Mixture Proportions 

 As discussed previously, a series of trial RBMAC mixtures was batched prior to 

identifying the four baseline mixtures, which would be used for more extensive testing. 

The subsequent sections provide information regarding the strategy used in developing 
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and testing trial mixtures, as well as information regarding the four baseline mixtures and 

their proportions. 

5.2.1 Preliminary Mixture Proportions 

 A number of trial RBMAC mixtures exhibiting acceptable workability and 

compressive strength were successfully developed and tested. Information on trial 

mixtures, including batch proportions, slump and air content test results, and compressive 

strength test results, is presented in Table 5-1.  Compressive strength test results for all 

specimens prepared from trial RBMAC mixtures are provided in Appendix B in Table B-

1.  These mixtures are identified as BAC 1.0, BAC 2.0, BAC 2.1, BAC 2.2, BAC 2.3, and 

BAC 3.0.  These initial mixtures were batched in order to develop a mixing protocol that 

adequately addressed the need to utilize the RBMA in SSD condition, to assess the need 

for mid-range and high-range water reducing admixtures to obtain the desired 

workability, and to obtain preliminary compressive strength test results. 
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 The compressive strengths of several of these early mixtures were higher than 

anticipated using the ACI 211.2 design procedures.  Therefore, in keeping with the 

sustainability focus of this project, these mixture designs were subsequently modified 

with the goal of achieving the target strengths at lower cement contents (BAC 4.0 

through BAC 4.6). 

 Acceptable workability was achieved with the water reducing admixtures, with 

the high-range water reducing admixture providing what was judged to be the best 

workability.  After mixture BAC 2.2, only a high-range water reducing admixture was 

considered for further use in trial and baseline mixtures. 

5.2.2 Final Mixture Proportions 

 Test data from the trial mixtures of RBMAC led to the identification of mixture 

proportions for the four baseline mixtures.  These baseline mixtures, BAC 5.0, BAC 6.0, 

BAC 6.1, and BAC 6.2, are shown in Table 5-2, along with information on batch 

proportions, slump and air content test results, and compressive strength test results. 
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Table 5-2:  Baseline RBMAC mixture proportions and test results. 

 RBMAC Mixture 

 

BAC 
5.0 

BAC 
6.0 

BAC 
6.1 

BAC 
6.2 

Coarse Aggregate  (pcy) 1,178.6 1,178.6 1,178.6 1,178.6 

Sand (pcy) 1,296.0 1,296.0 1,356.0 1,428.3 

Cement (pcy) 675.0 675.0 625.0 575.0 

Water (pcy) 292.0 216.0 200.0 183.6 
w/c ratio 0.43 0.32 0.32 0.32 
          
Air Entraining Admixture (oz) 13.7 16.4 13.7 13.7 
Mid-Range Water Reducing Admixture (oz) 0 0 0 0 
High-Range Water Reducing Admixture (oz) 0 36.5 29.2 29.2 
          
Slump (in) 6.0 5.5 6.0 3.5 
Air content (%) 5.50 7.50 8.00 6.50 
          
3-day compressive strength (psi) 2,139 4,559 3,684 4,508 
7-day compressive strength (psi) 2,858 6,182 4,074 5,283 
28-day compressive strength (psi) 3,675 6,497 5,307 6,450 
90-day compressive strength (psi) 3,872 6,903 5,362 7,343 

 

 As indicated earlier, the proportions of these mixtures were selected to produce 

28-day compressive strengths which, including the overdesign requirements outlined by 

the American Concrete Institute (ACI) in ACI 318 “Building Code Requirements for 

Structural Concrete,” would be representative of commercially available 4,000 psi (27.6 

MPa), 5,000 psi (34.5 MPa), and 6,000 psi (41.4 MPa) mixtures.  Without a history of 

performance data, 4,000 psi (27.6 MPa), 5,000 psi (34.5 MPa), and 6,000 psi (41.4 MPa) 

mixtures must reach 28-day compressive strengths of 5,200 psi (35.9 MPa), 6,200 psi 

(42.7 MPa), and 7,300 psi (50.3 MPa). 

 Based on the cement contents used in these mixture designs and the compressive 

strength results obtained from the trial batches, it was anticipated that the overdesign 
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strengths for commercially available 6,000 psi (41.4 MPa), 5,000 psi (34.5 MPa), and 

4,000 psi (27.6 MPa) mixtures would be obtained by the baseline mixtures BAC 6.0, 6.1, 

and 6.2, respectively.  However, the 28-day compressive strength tests on these mixtures 

were slightly lower than anticipated, and although exceeding the design strengths of 

4,000 psi (27.6 MPa), 5,000 psi (34.5 MPa), and 6,000 psi (41.4 MPa), the mixtures did 

not meet the overdesign strengths.  Therefore, when considering overdesign strength, 

mixture BAC 6.1 could be considered representative of a commercially available 4,000 

psi (27.6 MPa) mixture, while BAC 6.0 and BAC 6.2 would both be representative of a 

commercially available 5,000 psi (34.5 MPa) mixture.  Unfortunately, the supply of 

RBMA was exhausted after batching BAC 6.2, and no further mixtures could be prepared 

and tested. 

 Three of the four baseline mixtures included a high-range water reducing 

admixture (BAC 6.0, BAC 6.1, and BAC 6.2), while the fourth baseline mixture (BAC 

5.0) did not.  This latter mixture did, however, have the same cement content as one of 

the other three mixtures in order to identify the amount of water that would be needed to 

achieve similar workability without the aid of chemical admixtures.   

5.3 Summary and Concluding Remarks 

 RBMAC has not previously been produced or studied in the United States.  As 

part of this study, a number of RBMAC mixtures exhibiting satisfactory fresh and 

hardened properties were developed using mixture proportioning methodology outlined 

in ACI 211.2, Method 1: Weight Method.  The most significant anticipated challenge, 

obtaining satisfactory concrete workability despite using RBMA (with a high absorption 

and relatively high particle angularity), was successfully addressed by utilizing water-
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reducing admixtures.  Acceptable concrete strengths were obtained using cement contents 

that were within the range typically used in concrete mixtures used for structural and 

pavement applications.   

 Evaluation of the test results for a series of trial mixtures resulted in identification 

of four baseline mixtures that were batched and tested for fresh properties and, more 

extensively, hardened properties.  Considering strength overdesign requirements outlined 

in ACI 318, these baseline mixtures are representative of those that would be 

commercially available as 4,000 psi (27.6 MPa) and 5,000 psi (34.5 MPa) concrete 

mixtures. Based upon the compressive strengths obtained in trial mixtures, higher 

strengths were anticipated from the baseline mixtures.  The lower strengths could 

possibly be due to the variability in the RBMA.  Additional discussion on this is 

presented in Chapter 6, Testing Program for Recycled Brick Masonry Aggregate 

Concrete.   

 



 
 
 
 
 
 

CHAPTER 6: TESTING PROGRAM FOR RECYCLED BRICK MASONRY 
AGGREGATE CONCRETE 

 
 

6.1 Introduction 

 In this chapter, the testing program utilized for RBMAC mixtures is presented.  

Information regarding the batching procedure and mixing method is provided, along with 

the procedures utilized for testing of fresh and hardened concrete properties.  Specimen 

preparation procedures and information on curing and conditioning of test specimens are 

detailed.  The experimental results for testing of fresh and hardened properties of 

RBMAC mixtures are presented.  Fresh properties included in the test program were 

slump and entrained air content.  Testing of hardened concrete specimens included tests 

for mechanical properties, thermal characteristics, and durability performance. 

6.2 Batching Procedure and Mixing Method 

 Batching and mixing of RBMAC mixtures was performed in general accordance 

with ASTM C685, “Standard Specification for Concrete Made by Volumetric Batching 

and Continuous Mixing.”  Concrete mixtures were prepared in a 5 cf portable concrete 

drum mixer.  Mixing was performed under standard laboratory conditions.  In order to 

reduce variability, mixing procedures remained consistent for all mixes.  The RBMA was 

saturated prior to testing, and damp towels were used to ensure that the RBMA was at 

saturated surface dry (SSD) condition when it was placed into the mixer. All batch 

components were stored under laboratory conditions for at least 24 hrs prior to mixing, so 

the temperature of all batches when mixed was approximately 72ºF (22.2ºC).    
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6.3 Testing of Fresh Concrete Properties 

 For each batch of concrete prepared as part of this work, testing was performed to 

obtain fresh concrete properties prior to preparation of other test specimens.  The fresh 

concrete properties obtained included slump and entrained air content.  Experimental 

procedures used to obtain the fresh concrete properties, as well as information pertaining 

to the test results, are presented in the subsequent sections. 

6.3.1 Experimental Procedures 

 Testing to obtain fresh concrete properties was performed in accordance with 

applicable ASTM standards, as described in the subsequent sections.  Variations from 

ASTM standards, if any, are noted.   

6.3.1.1 Slump 

 The target slump for concrete mixtures prepared as part of this work is 4 to 8 in.  

Slump measurements were performed in general accordance with ASTM C43 “Standard 

Test Method for Slump of Hydraulic-Cement Concrete.” 

6.3.1.2 Entrained Air Content 

 The target entrained air content for concrete mixtures prepared as part of this 

work is 5 to 8%.  Entrained air contents were obtained in general accordance with ASTM 

C138 “Standard Test Method for Density (Unit Weight), Yield, and Air Content 

(Gravimetric) of Concrete.”  This test method was used due to the relatively high 

absorption of the RBMA, which indicates a relatively high porosity.  Use of ASTM 

C231, “Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure 

Method” is recommended for relatively dense aggregates.  This test procedure cannot be 
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used for highly porous aggregates (such as RBMA), as the pressure method can give 

inaccurate values due to the voids in the aggregates. 

6.3.2 Experimental Results 

 Results of tests of fresh concrete properties for each batch of RBMAC prepared as 

part of this work are discussed in the following sections.  Additional information is 

presented in Appendix C, as noted. 

6.3.2.1 Slump 

 Slumps obtained for the trial mixtures of RBMAC (mixtures BAC 1.0 through 

BAC 4.6) are presented in Table 5-1.  The slumps for these batches ranged from 3½ to 10 

in (88.9 to 254 mm), with some of the slumps outside the target range of 4 to 8 in (101.6 

to 25.4 mm).  The four trial batches had the lowest measured slump, at 3½ in (88.9 mm).  

Two of these four batches did not utilize a water reducing admixture.  The mixture that 

had the 10 in (254 mm) slump was the first trial batch to utilize the high-range water 

reducing admixture.  For subsequent mixtures utilizing the high-range water reducing 

admixture, the dosage was reduced.  Slumps within the target range of 4 to 8 in (101.6 to 

25.4 mm), were obtained.   

 Slumps obtained for the baseline mixtures of RBMAC (mixtures BAC 5.0, BAC 

6.0, BAC 6.1, and BAC 6.2) ranged from 3½ to 6 in (88.9 to 152.4 mm), and are 

presented in Table 5-2.  Although the 3½ in (88.9 mm) slump obtained for BAC 6.2 was 

outside of the target slump range, the mixture was judged to be workable, and the test 

specimens exhibited adequate compaction when demolded.  It is likely that if a small 

additional amount of high-range water reducing admixture was added to the mixture, the 
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slump would have fallen within the target range without the w/c ratio being adversely 

affected. 

6.3.2.2 Entrained Air Content 

 The entrained air contents of the trial batches of RBMAC are shown in Table 5-1. 

The measured entrained air contents of the trial batches ranged from 4.5 to 8.0%, and 

were within the target range of 4 to 8%.  The measured entrained air contents of the 

baseline RBMAC mixtures ranged from 5½ to 8%, and were also within the target range 

of 4 to 8%.  

6.4 Testing of Hardened Concrete Properties 

 Information pertaining to preparation of test specimens, curing and conditioning 

of test specimens, and testing of hardened concrete properties is presented in the 

subsequent sections.  Tests were performed on hardened RBMAC specimens to 

determine the mechanical properties of compressive strength, splitting tensile strength, 

flexural strength (modulus of rupture), modulus of elasticity, and drying shrinkage.  

Testing was also performed to determine thermal characteristics of RBMAC, including 

the coefficients of thermal expansion, thermal conductivity, and heat capacity.  

Additionally, tests to evaluate the durability performance of RBMAC, including air and 

water permeability, abrasion resistance, chloride resistance, and surface resistivity were 

performed. 

6.4.1 Specimen Preparation Procedures 

 Specimens were prepared in general accordance with ASTM C192, “Standard 

Practice for Making and Curing Concrete Test Specimens in the Laboratory.”  For each 

test performed, preparation of test specimens was performed in general accordance with 
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the ASTM standard(s) outlining the test procedure.  Where ASTM standards were not 

used, a detailed description of specimen preparation is presented in the test procedures 

detailed in Section 6.4.3, Experimental Procedures.      

6.4.2 Curing and Conditioning of Test Specimens 

 Most specimens were cured in general accordance with ASTM C192, “Standard 

Practice for Making and Curing Concrete Test Specimens in the Laboratory.”  Where 

curing conditions differed from this method, the deviations are outlined in the test 

procedures outlined in Section 6.4.3, Experimental Procedures.   For each test performed, 

conditioning of test specimens was performed in general accordance with the ASTM 

standard(s) outlining the test procedure.  Where ASTM standards were not used, a 

detailed description of conditioning is presented in the test procedures detailed in 

Sections 6.4.3, Experimental Procedures.      

6.4.3 Experimental Procedures 

 Test methods and procedures utilized for obtaining hardened concrete properties 

of RBMAC are discussed in the subsequent sections.  Variations from ASTM standards, 

if any, are noted.  Where ASTM standards were not used, a detailed description of the 

experimental procedure utilized is presented.      

6.4.3.1 Equilibrium Density 

 The equilibrium density of the baseline RBMAC mixtures was determined in 

accordance with ASTM C567, “Standard Test Method for Determining Density of 

Structural Lightweight Concrete.”  The controlled humidity enclosure utilized for 

conditioning the specimens was a room controlled at 73.5 ± 5°F (23.1 ± 2.7°C) with a 
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relative humidity of 50 ± 5%.   For each baseline mixture, two test specimens were tested 

to determine the equilibrium density. 

6.4.3.2 Mechanical Properties 

 The mechanical properties of the RBMAC mixtures were obtained in accordance 

with the procedures outlined below.  For trial (preliminary) mixtures, testing was only 

performed to obtain the compressive strength of each mixture.  For the baseline mixtures 

(BAC 5.0, BAC 6.0, BAC 6.1, and BAC 6.2), testing was performed to determine the 

splitting tensile strength, flexural strength (modulus of rupture), modulus of elasticity, 

and thermal characteristics of the RBMAC. 

6.4.3.2.1 Compressive Strength 

 Compressive strength testing of RBMAC was performed in accordance with 

ASTM C39, “Standard Test Method for Compressive Strength of Cylindrical Concrete 

Specimens.”  Strength measurements were performed at 3, 14, 28, and 90 days after 

casting in order to generate strength-time relationships.  For the preliminary mixtures, 

two or three 4 in by 8 in (101.6 mm by 203.2 mm) concrete cylinders were tested at each 

age.  For the baseline mixtures, two or three 6 in by 12 in (152.4 mm by 304.8 mm) 

concrete cylinders were tested at each age.  Compressive strength tests for the baseline 

mixtures were performed on the same cylinders used for testing to determine the modulus 

of elasticity, as outlined in Section 6.4.3.2.4, Modulus of Elasticity. 

6.4.3.2.2 Splitting Tensile Strength 

 The splitting tensile strength test is commonly used to estimate the tensile strength 

of concrete.  This is an indirect test performed on a standard cylinder that is turned on its 

side, with its axis horizontally placed between the platens of the testing machine.  



107 
 
Compression is applied along the length of the cylinder, and tensile stresses are 

distributed along the vertical diameter of the specimen (Mindess et al. 2003).   

 For the baseline mixtures, splitting tensile strength testing was determined in 

accordance with ASTM C496, “Standard Test Method for Splitting Tensile Strength of 

Cylindrical Concrete Specimens.”  Splitting tensile strength testing was performed at 28 

days after casting.  Two 6 in by 12 in (152.4 mm by 304.8 mm) concrete cylinders were 

tested for each baseline RBMAC mixture. 

6.4.3.2.3 Flexural Strength (Modulus of Rupture) 

 Flexural strength testing to determine the modulus of rupture of the baseline 

RBMAC mixtures was performed in accordance with ASTM C78, “Standard Test 

Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point 

Loading).”  Testing was performed at 7 days after casting.  For each baseline RBMAC 

mixture, two 6 in by 6 in by 20 in (152.4 mm by 152.4 mm by 508 mm) beams were 

tested. 

6.4.3.2.4 Modulus of Elasticity and Poisson’s Ratio 

 Modulus of elasticity testing of the baseline RBMAC mixtures was performed in 

accordance with ASTM C469, “Standard Test Method for Static Modulus of Elasticity 

and Poisson’s Ratio of Concrete in Compression.”   Tests were performed at 3, 7, 28, and 

90 days after casting.  For each baseline RBMAC mixture, two or three 6 in by 12 in 

(152.4 mm by 304.8 mm) concrete cylinders were tested at each age. 

6.4.3.2.5 Drying Shrinkage 

 Testing was performed in accordance with ASTM C157, “Standard Test Method 

for Length Change of Hardened Hydraulic-Cement Mortar and Concrete” on the baseline 
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RBMAC mixtures to evaluate drying shrinkage.  Two test specimens, each 3 in by 3 in in 

(76.2 mm by 76.2 mm) cross section with a length of 11¼ in (285.8 mm), were cast from 

each of the baseline mixtures.  Each test specimen included a gage stud in each end.  The 

demolding, curing, and initial measurement procedures outlined in ASTM C157 were 

also performed.  The test specimens were then stored in water saturated with lime (at 73 

± 3ºF, or 22.9 ± 1.5ºC) for 28 days, and length measurements were again taken.  

Specimens were then placed into an environmental chamber where they were maintained 

at a temperature of 73 ± 3ºF (22.9 ± 1.5ºC) and a relative humidity of 50 ± 4% for the 

duration of the test.   

6.4.3.2.6 Thermal Characteristics 

 Thermal characteristics, including CTE, thermal conductivity, and heat capacity, 

of the test specimens prepared from one baseline RBMAC mixture, BAC 6.2, were 

obtained.  The test methods used to obtain these thermal characteristics are similar to 

those used to determine the thermal characteristics of representative brick, clay tile, and 

mortar specimens (described previously in Section 3.2.1.6, Thermal Characteristics of 

Chapter 3, Testing Program for Characterization of Recycled Materials).  Differences are 

noted in the descriptions presented in the following sections. 

6.4.3.2.6.1 Coefficient of Thermal Expansion 

 The currently accepted method for testing to determine the CTE for concrete is 

AASHTO T336, “Standard Method of Test for Coefficient of Thermal Expansion of 

Hydraulic Cement Concrete.”  Equipment required to perform AASHTO T336 is not 

currently available at UNC Charlotte.  Therefore, testing to determine a reasonable value 
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for the CTE of RBMAC was performed utilizing a methodology that used specimen 

conditioning and temperature ranges similar to those used in the AASHTO T336 method.   

 A portion of a four in diameter cylinder of BAC 6.2 was utilized for the test.  

Prior to being used for this testing, this cylinder was used for equilibrium density testing, 

and then subsequently stored in controlled laboratory conditions for approximately 21 

months.  Metal gage studs (to serve as reference points) were mounted in the cylinder at 

an approximate distance of 4 in (101.6 mm) from each other.  A photograph of the 

cylinder with the metal gage studs is shown in Figure 6-1. 

 

 

Figure 6-1:  Reference studs mounted in cylinder used for coefficient of thermal 
expansion testing. 

 

 The test specimen was saturated in lime water at 68ºF (20°C) until a constant 

mass was achieved.  An initial length measurement between the reference points was then 

obtained using a mechanical strain gage apparatus, shown in Figure 6-2.  Prior to 

obtaining the initial measurement (and subsequent measurements), the mechanical strain 
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gage was calibrated (zeroed at 4 in length) using the reference bar provided by the 

equipment manufacturer.  This was done in lieu of an accepted standard or calibration 

specimen for this test method. 

 

 

Figure 6-2:  Mechanical strain gage used to measure length change of cylinder during 
testing to determine coefficient of thermal expansion. 

 

 The test specimen was then placed back in the saturated lime water, the container 

sealed, and placed in an environmental chamber.  The environmental chamber was set to 

50°F (10°C).  Once a sensor in the water surrounding the test specimen registered 50°F 

(10°C), the specimen was allowed to remain in the lime water bath in the environmental 

chamber (at 50°F, or 10°C) overnight.  The following morning, the specimen was 

removed from the lime water bath, and the mechanical strain gage was used to obtain a 

length measurement between the reference points.  An infrared thermometer was used to 

obtain the temperature of the specimen at the time of measurement.  The specimen was 

returned to the lime water bath, the container was sealed, and the container was placed 
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back into the environmental chamber.  The environmental chamber was then set to 122°F 

(50°C).   

 Once the sensor in the water surrounding the test specimen registered 122°F 

(50°C), the specimen was allowed to remain overnight in the lime water bath in the 

environmental chamber (at 122°F, or 50°C).  The following morning, a mechanical strain 

gage was again used to obtain the length of the specimen between the reference points, 

and a temperature reading was taken with the infrared thermometer.  The CTE was then 

computed using the formula 

𝐶𝑇𝐸 =  
�∆𝐿𝑎𝐿𝑜

�

∆𝑇
     (6-1) 

 

where ΔLa is the actual length change of the specimen during the temperature change 

(measured on concrete surface) ΔT and L0 is the measured length of the specimen at room 

temperature.  For the three conditioning temperatures used in this test (50ºF, 68ºF, and 

122ºF) Eq. 6-1 is modified compute the CTE  

 

𝐶𝑇𝐸 =  
�𝐿122°𝐹−𝐿50°𝐹𝐿68°𝐹

�

𝑇122°𝐹−𝑇50°𝐹
    (6-2) 

 

where L122ºF, L68ºF, and L50ºF are the measured lengths of the specimen after conditioning 

in the 122ºF, 68ºF, and 50ºF environments, respectively, and T122ºF and T50ºF are the 

measured surface temperatures of the concrete specimen (at time of length measurement) 

after conditioning in the 122ºF and 50ºF environments, respectively.  
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 Due to the lack of specimens remaining at the time of testing, only one specimen 

(cast from BAC 6.2) was tested.  The test was performed three times on the test 

specimen, with the results subsequently averaged. 

6.4.3.2.6.2 Thermal Conductivity 

 As outlined in Section 3.2.1.6.2, Thermal Conductivity, in Chapter 3, Testing 

Program for Characterization of Recycled Materials, thermal conductivity testing was 

performed using the TCi apparatus manufactured by C-Therm Technologies.  This 

equipment measures the effusivity of a specimen.  Using the measured effusivity, 

proprietary software computes the thermal conductivity of the specimen by utilizing a 

user-selected calibration curve that relates effusivity to thermal conductivity.  The 

calibration curves are either supplied by the manufacturer or developed by the user with a 

material similar to the tested material.  For RBMAC, the calibration curves were either in 

the range of “polymer” or “ceramic” as supplied by the manufacturer, depending on the 

location tested.      

 Tests were performed on a specimen of RBMAC mixture BAC 6.2.  The test 

specimen was a ½ in (12.7 mm) thick slice that was part of an equilibrium density test 

specimen of BAC 6.2 that had been stored in laboratory conditions for approximately 21 

months.  Readings were taken at 9 randomly selected locations on the sawcut slice, and 

then averaged in order to obtain a thermal conductivity value representative of this 

composite material.  This test setup is shown in Figure 6-3. 
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Figure 6-3  TCi apparatus used for determining thermal conductivity. 

 

 For all test locations, thermal grease (Wakefield thermal joint compound 102, 

recommended by the TCi apparatus manufacturer) was used as the contact agent between 

the test specimen and the glass-plated sensor, and a minimum of 9 readings were 

averaged to compute the thermal conductivity for the location.  As recommended by the 

TCi apparatus manufacturer, the first reading was not used in computations. 

6.4.3.2.6.3 Heat Capacity 

 The heat capacity of the RBMAC was determined using a thermogravimetric 

analyzer (TGA) apparatus, the SenSys Evo by Setaram, shown in Figure 6-4.  This 

calorimeter apparatus requires that the test specimen be ground to a powder and then 

compacted into a metal crucible, which is subsequently placed into the machine.  For this 

testing, powder samples were prepared from a piece of RBMAC concrete removed from 

a BAC 6.2 test cylinder.  This test cylinder was originally used for equilibrium density 

testing, and prior to crushing, was stored in laboratory conditions for approximately 21 
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months.  The powder sample was prepared by crushing pieces of the RBMAC with a 

modified proctor hammer, and then sieving the resulting material.  Powder used for heat 

capacity testing was the material passing a No. 60 sieve but retained on a No. 200 sieve.   

 

 

Figure 6-4:  Thermogravimetric analyzer apparatus used for determining heat capacity. 
 

 Testing was performed at temperatures corresponding to warm service 

temperatures for concrete exposed to outdoor conditions, approximately 75°F to 130°F 

(24°C to 55°C).  The carrier gas utilized for testing was nitrogen, and aluminum 

0.000061 cubic in (100 μL) crucibles were used.  The samples were heated at a rate of 10 

degrees K per min.  Four samples of crushed RBMAC (BAC 6.2) were tested. 

6.4.3.3 Durability Performance Testing 

 Testing was performed on the baseline RBMAC mixtures to evaluate the potential 

durability performance of concrete made with RBMA as coarse aggregate.  Tests related 

to durability performance that were included in this program include tests to determine 
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air and water permeability, abrasion resistance, chloride ion permeability, and surface 

resistivity. 

6.4.3.3.1 Air and Water Permeability 

 Tests to evaluate the air and water permeability of the baseline RBMAC mixtures 

were performed in general accordance with the Figg method as outlined in ACI 228.2R-

98, “Nondestructive Test Methods for Evaluation of Concrete in Structures,” using the 

Poroscope Plus test equipment manufactured by NDT James Instruments.  Due to the 

exhaustible supply of RBMA, only a limited number of test specimens could be batched 

from each of the baseline mixtures.  Therefore, tests to determine the air and water 

permeability of the baseline RBMAC mixtures was performed on the sides of beam 

specimens used for modulus of rupture testing.   

 For each of the baseline mixtures, one beam specimen was tested.  Four locations 

were tested per beam, and the results were averaged.  Both air permeability and water 

permeability tests were performed at each test location, as outlined by the Poroscope Plus 

equipment manufacturer. 

 At each test location, a 0.394 in (10 mm) in diameter and 1.57 in (40 mm) deep 

hole was drilled, as specified by the manufacturer of the Poroscope Plus equipment.  The 

four test holes drilled at the corners of a 3 in (76.2 mm) square.  The configuration of the 

test holes in a beam specimen, as well as the Poroscope Plus equipment, is shown in 

Figure 6-5. 
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Figure 6-5:  Air permeability testing using the Poroscope Plus equipment. 

 

 The holes were blown out with compressed air and the manufacturer-provided test 

plugs were inserted into each hole.  A 0.394 in (10 mm) by 0.787 in (20 mm) void was 

left at the bottom of each hole.  The test plugs were expanded into the side walls of the 

hole using plastic screws provided by the test equipment manufacturer.  A lubricant was 

applied to the top of each test plug, and a hypodermic needle was inserted into each of the 

test plugs.  A thin section of wire was subsequently inserted into each needle to ensure 

that it was clear.  These hypodermic needles remained in each test plug for both air and 

water permeability testing. 

 At each test location, air permeability testing was performed first.  The air tubing 

from the Poroscope Plus equipment was connected to a hypodermic needle in one of the 

test plugs, and a hand vacuum pump was used to evacuate the air from the void to a 

vacuum pressure less than 7.98 psi (55 kPa). The Poroscope Plus equipment was then 

used to measure the time for the pressure in the hole to increase from -7.98 psi (-55 kPa) 
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to -7.25 psi (-50 kPa).  At each test location, this procedure was repeated until the 

subsequent time readings stabilized to within approximately 2%.   

 After air permeability readings were taken on each of the four holes, water 

permeability testing was performed.  The air tubing was removed from the Poroscope 

Plus equipment, and the water line was attached to the equipment.  The water line was 

connected from the Poroscope Plus equipment to one of the hypodermic needles in the 

test plugs.  This test setup is shown in Figure 6-6.   

 

 

Figure 6-6:  Water permeability testing using the Poroscope Plus equipment. 
 

 A large syringe was used to force distilled water through the Poroscope Plus 

equipment and the water line until the void in the concrete at the bottom of the test hole 

was full of water, and all air had been removed from both the test hole and the water line.  

For each test, the Poroscope Plus equipment measures the time it takes for a meniscus in 

the water tubing to move 1.97 in (50 mm), and this reading was recorded as the water 
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permeability reading.  At each test location, the procedure was repeated until readings 

stabilized within 2%.  

6.4.3.3.2 Abrasion Resistance 

 Abrasion resistance of the baseline RBMAC mixtures was determined in 

accordance with ASTM C944, “Standard Test Method for Abrasion Resistance of 

Concrete or Mortar Surfaces by the Rotating-Cutter Method.”  Due to the exhaustible 

supply of the RBMA, only a limited number of test specimens could be batched from 

each baseline mixture.  Therefore, tests to determine the abrasion resistance of baseline 

RBMAC mixtures was performed on the sides of beam specimens used for modulus of 

rupture testing.   

 For each test specimen, three locations were tested.  As specified by FHWA 

(2006), abrasion testing using the rotary cutter method was performed at each location 

with an applied force of 44 lb-f (196 N), for three 2 min abrasion periods (a total of 6 min 

of abrasion time per location).  A calibrated load cell with a digital output was attached to 

the rotary drill press to assist in verifying the force applied to the rotary cutter device.  A 

photograph of abrasion resistance testing by the rotary cutter method, including the 

calibrated load cell attached to the drill press, is shown in Figure 6-7.   
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Figure 6-7:  Abrasion testing using the rotary cutter method. 

 

 The depth of abrasion was determined per ASTM C779, “Standard Test Method 

for Abrasion Resistance of Horizontal Concrete Surfaces,” Procedure B.   The apparatus 

used to determine the depth of abrasion is a needle mounted onto a frame and stand.  The 

needle is attached to a dial gage capable of measuring vertical movement of the needle 

with an accuracy of ±0.0039 in (±0.1 mm).   This apparatus is shown in Figure 6-8. 
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Figure 6-8:  Apparatus used to determine the depth of abrasion. 

 

6.4.3.3.3 Chloride Ion Permeability 

 Resistance of the baseline RBMAC mixtures to chloride ion penetration was 

evaluated based on test measurements obtained using ASTM C1202, “Standard Test 

Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion 

Penetration.”  In this test, an electrical potential is applied to a saturated concrete 

specimen that is in contact with sodium chloride and sodium hydroxide solutions (at 

negative and positive terminals, respectively).  During the 6 hr test, chloride ions migrate 

through the concrete specimen from the negative terminal towards the positive terminal, 

and current readings are taken every 30 min.  The total charge passed (in Coulombs) after 

6 hr has been related to the susceptibility of concrete to chloride permeability.   

 Specimens used in this test were 2 in (50.8 mm) thick slices cut from concrete 

cylinders.  The concrete cylinders used for these test specimens were 4 in (101.6 mm) in 

diameter and were cast from the baseline RBMAC mixtures, BAC 5.0, BAC 6.0, BAC 
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6.1, and BAC 6.2.  These cylinders were originally used for equilibrium density testing, 

and had been stored at laboratory conditions for approximately 14 months prior to testing.   

 The circumferential sides of each test specimen were coated with a fast setting 

epoxy, which was allowed to cure overnight.  Prior to testing for chloride ion 

permeability, test specimens were conditioned using the vacuum saturation procedure 

specified in ASTM C1202.  The vacuum saturation apparatus is shown in Figure 6-9.   

 

 

Figure 6-9:  Vacuum saturation of chloride ion permeability test specimens. 

 

 Specimens were placed in a vacuum desiccator, and an attached vacuum pump 

was used to decrease the pressure in the desiccator to less than 50 mm Hg (6650 Pa).  The 

specimens were allowed to remain under a vacuum for 3 hr.  After 3 hr, de-aerated water 

was allowed to flow into the desiccator.  While the de-aerated water was put into the 

desiccator, the vacuum pump remained on, and care was taken to not allow air to flow 

into the desiccator through the water tubing.  The de-aired water was added to a depth 
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that fully submerged the specimens, and the stopcock on the water feed line was closed 

(preventing air from flowing into the desiccator).  The vacuum was allowed to run for 

one hour after the specimens were submerged.  At the end of this hour, the vacuum pump 

was turned off, and air was allowed to flow into the desiccator.  The specimens were then 

allowed to soak in the water for 18 ± 2 hr.   

 After vacuum saturation, each test specimen was placed between two test cells, 

and was sealed in place with silicone caulk.  Test cells for this test were manufactured 

from a polymethylmethacrylate (e.g., Plexiglas) material.  Each test cell had metal mesh 

mounted in front of a reservoir capable of holding a chemical reagent in contact with the 

concrete test specimens.  The metal mesh in each test of the test cells facilitated 

application of a voltage potential across the concrete test specimen, via wires connected 

from banana plugs on the test cells to the RCPT equipment. 

 After the caulk had adequately cured, the test specimens, mounted in the test cells, 

were connected to the Rapid Chloride Permeability Test (RCPT) machine (manufactured 

by RLC Instrument Co.), with each cell on its own circuit.  The test setup is shown in 

Figure 6-10.   
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Figure 6-10:  Rapid chloride permeability testing. 
 

 For each specimen, the reservoir of the test cell attached to the positive terminal 

was filled with a 0.3 normal sodium hydroxide solution, and the reservoir of the test cell 

attached to the negative terminal was filled with a 3% (by mass) sodium chloride 

solution.  Using the RCPT equipment, a 60.0 volt potential was applied to each test cell.  

Instantaneous current readings and total charge passed readings are obtained at 30 min 

intervals for the duration of the six-hour test.     

6.4.3.3.4 Surface Resistivity 

 Surface resistivity testing of the RBMAC was performed in general accordance 

with AASHTO Test Method T XXX-08, “Standard Method of Test for Surface 

Resistivity Indication of Concrete’s Ability to Resist Chloride Ion Penetration.”  This test 

method was in draft form at the time this work was performed, and was recently adopted 

as AASHTO TP 95-2011.  In this test method, the resistivity of 4 in by 8 in (101.6 mm by 

203.2 mm) concrete cylinders is measured using test equipment that uses a 4-pin Wenner 
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probe array.  A voltage potential is applied to the concrete surface through the two outer 

pins of the probe, and the resultant potential difference between the inner pins is 

measured and subsequently converted to resistivity in kΩ•cm.   

 For each cylinder tested, the quarter points of the circumference (0°, 90°, 180°, 

and 270°) were marked on the ends of the specimen.  The marks were extended onto the 

longitudinal side of the cylinder so that measurements could be made at four locations on 

each specimen.  Surface resistivity readings were taken at each mark relative to mid 

depth of the cylinder.  For each test, the cylinder was rotated twice, with readings taken at 

each quarter point, so that a total of eight readings were taken.  The eight readings were 

then averaged to obtain the surface resistivity measurement.  A photograph of surface 

resistivity testing is shown in Figure 6-11. 

 

 

Figure 6-11:  Surface resistivity testing. 
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 Due to the sensitivity of surface resistivity to temperature, testing was performed 

at several temperatures ranging from approximately 35°F to 110°F (1.7°C to 43.3°C) to 

evaluate the resistivity of the RBMAC at temperatures typical of service temperatures of 

pavements and other structures.  To condition the specimen for testing at each 

temperature, the specimen were placed in a water bath and allowed to remain at the test 

temperature for a minimum of one hr prior to testing.  Heating and cooling was obtained 

via hot water and ice, as shown in Figure 6-12.   

 

 

Figure 6-12:  Conditioning of test specimens for surface resistivity testing at low 
temperatures. 

 

 

6.4.4 Experimental Results 

 The results of tests on RBMAC, to determine hardened concrete properties and 

thermal characteristics, are outlined in the subsequent sections.  The results are also 

discussed. 
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6.4.4.1 Equilibrium Density 

 The equilibrium density of the baseline RBMAC mixtures ranged from 111.8 to 

128.2 pcf (1791 to 2054 kg/m3), as shown in Table 6-1.  Supporting data for this test are 

provided in Table C-1 in Appendix C. 

 

Table 6-1:  Equilbrium densities of the baseline RBMAC mixtures. 

 

 
 RBMAC Mixture 

 

BAC 
5.0 

BAC 
6.0 

BAC 
6.1 

BAC 
6.2 

Equilibrium density (pcf) 111.8 128.2 127.4 125.5 
 

 Each of the baseline mixtures have a coarse aggregate (RBMA) content of 1178.6 

pcy (699 kg/m3).  The cement contents of both BAC 5.0 and BAC 6.0 are 675.0 pcy (400 

kg/m3), but the w/c ratio for BAC 5.0 is 0.43 and the w/c ratio for BAC 6.0 is 0.32.  The 

void space left by the additional water contained in BAC 5.0 is likely responsible for the 

significantly lower equilibrium density.  The w/c ratios of mixtures BAC 6.0, BAC 6.1, 

and BAC 6.2 are each 0.32, but the cement contents of each decreased.  The cement 

contents of BAC 6.0, BAC 6.1, and BAC 6.2 are 675 pcy (400 kg/m3), 625 pcy (625 

kg/m3), and 575 pcy (341 kg/m3), respectively.  Therefore, it appears that the equilibrium 

densities of these RBMAC mixtures are more sensitive to water content than cement 

content. 

 According to ACI 213, “Guide for Structural Lightweight-Aggregate Concrete,” 

structural lightweight concrete mixtures are defined as follows: 
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“Structural lightweight-aggregate concrete made with structural 

lightweight aggregate as defined in ASTM C330.  The concrete has a 

minimum 28-day compressive strength of 2500 psi (17 MPa), an 

equilibrium density between 70 and 120 lb/ft3 (1120 and 1920 kg/m3), and 

consists entirely of lightweight aggregate or a combination of lightweight 

and normal-density aggregate.” 

 

 The RBMAC mixtures developed as part of this work utilize lightweight 

aggregate and normalweight fine aggregate.  As discussed in Section 3.3.2.5, Bulk 

Density (Unit Weight), the RBMA produced from the Idlewild Elementary School 

demolition waste has a bulk density (60.9 pcf) that is slightly greater than the maximum 

bulk density for lightweight coarse aggregates specified in ASTM C330, which is 55 pcf, 

and therefore does not meet the requirements of a structural lightweight concrete as 

outlined in ACI 213.   

 As outlined in Table 6-1 above, the equilibrium densities of the baseline RBMAC 

mixtures ranged from 111.8 to 128.2 pcf (1791 to 2054 kg/m3).  Equilibrium densities for 

the RBMAC mixtures that utilized a high-range water reducing admixture (BAC 6.0, 

BAC 6.1, and BAC 6.2) were higher than the equilibrium density range presented in ACI 

213’s definition of structural lightweight concrete. Average 28-day compressive strengths 

for these three mixtures were higher than 2,500 psi (17.2 MPa), the minimum 28-day 

compressive strength included in ACI 213’s definition of structural lightweight concrete, 

thus these RBMAC mixtures met this part of the definition. 
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 The equilibrium density of BAC 5.0 does, however, meet the range of equilibrium 

densities for structural lightweight concrete as defined in ACI 213, and the average 28-

day compressive strength of 3,675 psi also meets this definition.  Therefore, if water 

reducers are not used, the RBMAC mixtures may fall within the ranges of equilibrium 

density and compressive strength outlined for structural lightweight concrete mixtures. 

6.4.4.2 Mechanical Properties 

 In order to conserve the RBMA available for this work, only compressive strength 

tests were performed on the trial batches of RBMAC.  The results of this compressive 

strength testing are shown in Table 5-1 and in Table B-1.  For the baseline RBMAC 

mixtures, testing to determine other mechanical properties was performed.  In order to 

facilitate comparison between the four baseline mixtures, a summary of the mechanical 

property test results is presented in Table 6-2.  A discussion of the results for each of the 

mechanical property tests performed is presented in the subsequent sections. 
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Table 6-2:  Mechanical properties of the baseline RBMAC mixtures. 

 RBMAC Mixture 

 BAC 5.0 BAC 6.0 BAC 6.1 BAC 6.2 
3-day compressive strength (psi) 2,139 4,559 3,684 4,508 
7-day compressive strength (psi) 2,858 6,182 4,074 5,283 
28-day compressive strength (psi) 3,675 6,497 5,307 6,450 
90-day compressive strength (psi) 3,872 6,903 5,362 7,343 

     
28-day splitting tensile strength 
(psi) 320 439 484 387 

     
7-day flexural strength (modulus 
of rupture) (psi) 519 797 730 716 

     
3-day modulus of elasticity (psi) 2,200,000 3,340,000 3,120,000 3,600,000 
7-day modulus of elasticity (psi) 2,753,000 3,977,000 3,467,000 3,430,000 
28-day modulus of elasticity (psi) 2,783,000 3,840,000 3,563,000 3,903,000 
90-day modulus of elasticity (psi) 2,905,000 3,960,000 3,645,000 3,875,000 

     
3-day Poisson's ratio 0.18 0.16 0.18 0.19 
7-day Poisson's ratio 0.21 0.17 0.21 0.14 
28-day Poisson's ratio 0.18 0.16 0.17 0.16 
90-day Poisson's ratio 0.17 0.18 0.18 0.17 

 

6.4.4.2.1 Compressive Strength 

 Average twenty-eight day compressive strengths for the baseline RBMAC 

mixtures ranged from 3,675 psi (25.3 MPa) (BAC 5.0) to 6,497 psi (44.8 MPa) (BAC 

6.0).  The average 90-day compressive strength of BAC 6.2 reached almost 7,350 psi 

(50.6 MPa) with a cement content of only 575 pcy (341 kg/m3), which is within the range 

of typical cement contents used in commercially available concrete mixtures.  As 

discussed in Section 5.2.2, Final Mixture Proportions, compressive strengths obtained 

from the baseline RBMAC mixtures were reasonable for commercially available 4,000 
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psi (27.6 MPa) and 5,000 psi (34.5 MPa) concrete.  Mixtures of these strengths would be 

suitable for use in pavement and structural applications.   

 The 3-day, 7-day, 28-day, and 90-day compressive strengths in Tables 5-1, 5-2, 

and 6-2 are typically the average of three test cylinders.  As would be expected, some 

variability was observed in the compressive strengths of the mixtures.  Figures 6-13 to 6-

16 are plots of the average compressive strength results and the range of the test results 

used to compute the averages for the baseline RBMAC mixtures (BAC 5.0, BAC 6.0, 

BAC 6.1, and BAC 6.2).  Supporting data for Figures 6-13 to 6-16 are provided in 

Appendix C in Table C-2.  Photographs of test specimens are shown in Figures C-1 to C-

16. 

 

 

Figure 6-13:  Average compressive strength results for BAC 5.0. 
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Figure 6-14:  Average compressive strength results for BAC 6.0. 

 

Figure 6-15:  Average compressive strength results for BAC 6.1. 
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Figure 6-16:  Average compressive strength results for BAC 6.2. 

 

    It can be observed from these plots that for a single average compressive strength 

result at a specific age, the range of test results could vary over several hundred psi to 

more than 1,000 psi.  Commercial ready-mixed concrete suppliers are likely to have more 

confidence in mixtures that provide consistent compressive strength test results.  The 

plots shown in Figures 6-13 through 6-16 indicate that, although multiple RBMAC 

cylinders tested at the same age can provide relatively consistent compressive strengths, 

there exists the potential for significant variability in the same-day compressive strengths.   

 One of the potential causes of this variability could be the inclusion of a small 

amount of contaminant waste, present in the initial demolition debris, in the RBMA.  

Contaminant particles could cause weak points within the concrete matrix, and provide 

locations for cracks to initiate (and propagate more easily) during compressive strength 
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tests.  This ultimately lowers the compressive strength of the test cylinder and could 

increase the variability for a set of cylinders tested at a certain age.  Occasionally, 

contaminant particles were observed in one of the fractured surfaces of a compressive 

strength test cylinder, as shown in Figure 6-17.  In this photograph, yellow arrows point 

towards the black particulate material that is not brick, mortar, or clay tile.  It is not 

known exactly what this material is, but it is suspected that it is some component of the 

roof or an interior finish material. 

 

 

 
Figure 6-17:  Contaminant particles are visible in the fractured surface of a compressive 

strength test cylinder. 
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6.4.4.2.2 Splitting Tensile Strength 

 Splitting tensile strength test results for the baseline RBMAC mixtures are 

presented in Table 6-2.  Splitting tensile strength tests were performed at 28-days.  Two 

cylinders were tested for each mixture, and the average splitting tensile strength is shown 

in Table 6-2.  Supporting data are provided in Appendix C in Table C-3, and photographs 

of the tested specimens are provided in Figures C-17 and C-18.  As outlined in Neville 

(1995), Oluokun (1991) suggested the relationship between the splitting tensile strength 

and the compressive strength of concrete 

𝑓𝑡 = 1.4(𝑓𝑐)0.7     (6-3) 
 

where ft is the splitting tensile strength and fc is the compressive strength of a cylinder, 

both in psi. This relationship was generated by fitting a curve to data on splitting tensile 

strength and compressive strength test results for normalweight concrete submitted by 

various investigators.   

 Using this Eq. 6-3, based on the 28-day average compressive strengths of the 

baseline RBMAC mixtures, the predicted 28-day splitting tensile strengths are given in 

Table 6-3 next to the actual splitting tensile strengths.  The percent difference between 

actual and predicted splitting tensile strength was computed using     

% 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  100% ×  𝑓𝑡,𝑎𝑐𝑡𝑢𝑎𝑙−𝑓𝑡,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑓𝑡,𝑎𝑐𝑡𝑢𝑎𝑙
    (6-4) 

where ft,actual is the actual measured splitting tensile strength and ft,predicted is the splitting 

tensile strength predicted by Eq. 6-4.  
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Table 6-3:  Actual versus predicted splitting tensile strengths. 

 RBMAC Mixture 
 BAC 5.0 BAC 6.0 BAC 6.1 BAC 6.2 
28-day compressive strength (psi) 3,675 6,497 5,307 6,450 
28-day splitting tensile strength, 
actual (psi) 320 439 484 387 

28-day splitting tensile strength, 
predicted (psi) 438 653 567 650 

% difference between actual and 
predicted splitting tensile strength -37.0% -48.8% -17.1% -67.9% 

 

 As shown in Table 6-3, the 28-day splitting tensile strengths of the baseline 

RBMAC mixtures were much lower than those predicted by Eq. 6-3.  Although 

Oluokun’s relationship (Eq. 6-3) was developed using normalweight concretes, Neville 

(1995) states that “lightweight concrete conforms broadly to the pattern of the relation 

between ft and fc for ordinary concrete.”  It is apparent, however, that the predicted 

splitting tensile strength of RBMAC is not accurately modeled by Oluokun’s relationship 

(developed using test results for normalweight concrete). 

6.4.4.2.3 Flexural Strength (Modulus of Rupture) 

 The results of flexural strength testing to determine the modulus of rupture for the 

baseline RBMAC mixtures are shown in Table 6-2.  For each baseline RBMAC mixture, 

flexural strength tests were performed on two beams at 7 days of age.  The average 7-day 

modulus of rupture for BAC 5.0 was 519 psi (3.58 MPa), while the average modulus of 

rupture values for BAC 6.0, BAC 6.1, and BAC 6.2 were all over 700 psi (over 4.83 

MPa).  The average modulus of rupture of BAC 6.0 was almost 800 psi (almost 5.52 

MPa), the highest value obtained from the mixtures.  Additional data from this testing is 
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provided in Table C-4 in Appendix C.  Typical test specimens are shown in Figures C-19 

and C-20. 

 Typically, modulus of rupture testing is performed for concrete used in pavement 

applications.  For many agencies, in order for the pavement to be open to traffic, a 

specified minimum modulus of rupture (or flexural strength) must be obtained.  This 

specified minimum varies by agency and by type of pavement.  Indiana DOT specifies 

that a flexural strength of at least 550 psi (3.79 MPa) must be obtained prior to opening 

the pavement (Olek et al. 2003).  2012 NCDOT Standard Specifications indicate that 

portland cement concrete for pavement applications must have a minimum flexural 

strength of 650 psi (4.48 MPa) at 28 days and a minimum compressive strength of 4,500 

psi (31.0 MPa) at 28 days.  Based on these criteria, mixtures BAC 6.0, BAC 6.1, BAC 

6.2 would provide suitable flexural strengths for use in pavement applications, with the 

pavements able to be opened to traffic in fewer than 7 days. 

6.4.4.2.4 Modulus of Elasticity and Poisson’s Ratio 

 Testing to determine the modulus of elasticity of RBMAC was performed on the 

baseline mixtures at 3, 7, 28, and 90 days of age.  For each age, the average modulus of 

elasticity, reported in Table 6-2, is the average of either two or three test cylinders.  

Supporting data for these tests are provided in Appendix C.   A sample of data collected 

during a modulus of elasticity and Poisson’s ratio test (and associated calculations) is 

shown in Table C-5.  Typical plots of stress versus longitudinal strain and transverse 

strain versus longitudinal strain are shown in Figures C-21 and C-22, respectively.  A 

summary of modulus of elasticity test results and Poisson’s ratio test results are provided 

in Tables C-6 and C-7, respectively. 
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 The moduli of elasticity for RBMAC at an early age (3 days) range from 2.2 

million psi to 3.6 million psi (15.2 GPa to 24.8 GPa) for the four baseline mixtures. The 

mixtures that utilized a high-range water reducer (BAC 6.0, BAC 6.1, and BAC 6.2), and 

therefore had a lower w/c ratio (w/c = 0.32), had moduli of elasticity that were 

approximately 1 million psi (6.9 GPa) higher than the RBMAC mixture that did not 

utilize the admixture (BAC 5.0, w/c = 0.43). As expected, the moduli of elasticity 

generally increased, and at 90-days, ranged from 2.9 million psi (20.0 GPa) (BAC 5.0) to 

4.0 million (27.6 GPa) (BAC 6.0).   

 Mindess et al. (2003) report typical values for moduli of elasticity of 

normalweight concrete and lightweight concrete as 2 to 6 million psi and 1.5 to 2.5 

million psi, respectively.  At later ages (28 and 90 days), the moduli of elasticity for 

RBMAC mixtures were typically higher than the published values for lightweight 

concrete, but within the range of published values for normalweight concrete.  Since the 

modulus of elasticity of the coarse aggregate has a large influence on the modulus of 

elasticity of the concrete (Mindess et al. 2003), some observed variation in the measured 

values of moduli of elasticity could possibly be attributed to the relative proportion of 

brick, mortar, tile, and contaminants included in the RBMA.  Other sources of variability 

are not readily apparent at this time. 

 The stress-strain behavior of concrete, and hence its modulus of elasticity, is 

highly dependent on the modulus of elasticity of the coarse aggregate used.  As 

lightweight aggregate has a modulus of elasticity similar to that of the hardened cement 

paste, the modulus of elasticity of lightweight concrete is not as sensitive to mixture 

proportions as normalweight concrete (Neville 1995).  Based upon the test results 
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obtained in this work, it appears that the change in the modulus of elasticity of the 

RBMAC mixtures is sensitive to w/c ratio and cement content, as the RBMA content was 

kept constant for all of the baseline mixtures. 

 For concrete mixtures with unit weights (wc) between 90 and 160 pcf, ACI 318-08 

allows for the modulus of elasticity (Ec) of concrete (in psi) to be estimated using the 

compressive strength (f’c) (in psi) as given by  

    𝐸𝑐 = 𝑤𝑐1.5 × 33�𝑓′𝑐      (6-5) 

 Using Eq. 6-5, based on the 28-day average compressive strengths of the baseline 

RBMAC mixtures and using the equilibrium density as the unit weight, the predicted 28-

day modulus of elasticity as shown in Table 6-4.  The percent difference between actual 

and predicted modulus of elasticity was computed using  

% 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  100% ×  𝐸𝑐,𝑎𝑐𝑡𝑢𝑎𝑙−𝐸𝑐,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝐸𝑐,𝑎𝑐𝑡𝑢𝑎𝑙
    (6-6) 

where Ec,actual is the actual computed modulus of elasticity and Ec,predicted is the modulus of 

elasticity predicted by Eq. 6-5.  

 
Table 6-4:  Actual versus predicted moduli of elasticity. 

 
 RBMAC Mixture 
 BAC 5.0 BAC 6.0 BAC 6.1 BAC 6.2 
Equilibrium density (pcf) 111.8 128.2 127.4 125.5 
28-day compressive strength (psi) 3,675 6,497 5,307 6,450 
28-day modulus of elasticity, actual (psi) 2,783,000 3,840,000 3,563,000 3,903,000 
28-day modulus of elasticity, predicted 
(psi) 2,364,859 3,861,023 3,456,946 3,726,142 

% difference between actual and predicted 15.0% -0.5% 3.0% 4.5% 
 

 Using Eq. 6-5, the actual 28-day modulus of elasticity values for RBMAC were 

accurately predicted.  The predicted values were within 5% of the actual value for the 
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three baseline mixtures that utilized a water-reducing admixture (BAC 6.0, BAC 6.1, and 

BAC 6.2), and about 15% of the actual value for the baseline mixture that did not use a 

water-reducing admixture (BAC 5.0).    

 According to Mindess et al. (2003), Poisson’s ratio for saturated concrete 

typically ranges from 0.2 to 0.3, and is typically slightly lower (about 0.18) when dried.  

For lightweight concrete, values of Poisson’s ratio are quite dependent on the Poisson’s 

ratio of the lightweight aggregate used, although Balendran (1995) reports values for 

concrete containing artificially manufactured lightweight aggregates that are similar to 

those of concrete containing with normalweight aggregates. 

 The Poisson’s ratios for RBMAC mixtures tended to be slightly lower than 0.20.  

Similar to the modulus of elasticity, the Poisson’s ratio of concrete is heavily dependent 

on the Poisson’s ratio of the coarse aggregate.  Some variation observed in this data could 

be due to the relative proportions of brick, mortar, clay tile, and contaminant material 

present in each specimen.  Other sources of variability are not readily apparent at this 

time. 

6.4.4.2.5 Drying Shrinkage 

 Tests to evaluate the drying shrinkage of RBMAC were initiated in accordance 

with ASTM C157, as outlined in Section 6.4.3.2.5, Drying Shrinkage. Photographs of 

typical test specimens are provided in Appendix C in Figures C-23 and C-24.  

Unfortunately, after the test specimens for the baseline RBMAC mixtures were placed in 

the conditioning chamber, an equipment malfunction occurred, and the relative humidity 

and temperature of the chamber was uncontrolled for several days.  Therefore, results for 

this test are not reported.    
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6.4.4.2.6 Thermal Characteristics 

 Tests to determine the thermal characteristics of RBMAC were performed on test 

specimens created from BAC 6.2.  BAC 6.2 was utilized because the relatively low 

cement content and the satisfactory compressive strength identified it as a suitable 

mixture for use in assessment of RBMAC in pavement applications (discussed in Chapter 

7, Use of Recycled Brick Masonry Aggregate Concrete in Pavement Applications).  As 

part of M-EPDG pavement design procedures, the thermal characteristics of concrete, 

particularly the CTE, are integral to the performance of concrete pavements.  The results 

of the thermal characterization tests are presented in the following sections. 

6.4.4.2.6.1 Coefficient of Thermal Expansion 

 The average CTE of BAC 6.2 was 5.51×10-6 in/in/°F (9.92×10-6 m/m/°C).  As 

outlined in Section 6.4.3.2.6.1, Coefficient of Thermal Expansion, this result was 

obtained by averaging three readings on one test specimen.  The values of the three tests 

were 4.40×10-6 in/in/°F (7.92×10-6 m/m/°C), 5.53×10-6 in/in/°F (9.95×10-6 m/m/°C), and 

6.6×10-6 in/in/°F (11.88×10-6 m/m/°C) , which are fairly consistent given the test method 

utilized.  Supporting test data are provided in Table C-8 in Appendix C. 

 The CTE of concrete is a function of the CTE of the cement paste and the CTE of 

the aggregate.  According to Neville (1995), the CTE of hydrated cement paste varies 

from about 6×10-6 in/in/°F to about 11×10-6 in/in/°F (10.8×10-6 to about 19.8×10-6 

m/m/°C).  The CTEs for water-cured concretes of 1:6 mixture proportions containing a 

variety of aggregates is presented in Neville (1995) and is summarized in Table 6-5. 
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Table 6-5:  Coefficient of thermal expansion of 1:6 concretes made with different 
aggregates (adapted from Neville 1995). 

 

Type of Aggregate 
Linear Coefficient of Thermal 
Expansion for Water-Cured 

Concrete (10-6 in/in/°F) 
Granite 4.8 
Quartzite 6.8 
Dolerite 4.7 
Sandstone 5.6 
Limestone 3.4 
Portland stone 3.4 
Blastfurnace slag 5.1 
Expanded slag 5.1 

 

 The value of the CTE obtained from testing of the RBMAC is comparable to the 

values presented in Table 6-5.  The measured CTE of RBMAC is slightly lower than that 

of 1:6 concrete containing gravel and quartzite, but higher than that of mixtures utilizing 

some other aggregate materials.  As discussed in Section 3.2.2.6.1, Coefficient of 

Thermal Expansion, the CTE of clay brick is typically between 3×10-6 and 4×10-6 

in/in/°F (5.4×10-6 and 7.2×10-6 m/m/°C) (Klingner 2010).  It is likely that higher brick 

content in the RBMA would result in a lower value of CTE for RBMAC.   

 The CTE of concrete has been found to be one of the more sensitive inputs in M-

EPDG (Crawford et al. 2010), and lower values of the CTE have been shown to predict 

less cracking in pavements (Tanesi et al. 2007).  Therefore, much research has been done 

recently to determine the CTE of concrete made with a variety of materials (mostly 

natural aggregates) located close to different agencies.   

 In “Part 2:  Design Inputs” of the “Guide for Mechanistic-Empirical Design of 

New and Rehabilitated Pavement Structures, Final Report (ARA 2004),” a table outlining 
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typical ranges of CTEs for concrete (as well as common components of concrete).  These 

data are shown in Table 6-6.   

 
Table 6-6:  Typical ranges for coefficients of thermal expansion for common components 
of concrete and of concrete made using these materials (from ARA 2004). 
   

Material Type Coefficient of Thermal 
Expansion, 10-6 in/in/ºF 

Concrete Coefficient of 
Thermal Expansion 

(made from this material), 
10-6 in/in/ºF 

Aggregates 
Marbles 2.2 – 3.9 2.3 
Limestones 2.0 – 3.6 3.4 – 5.1 
Granites & Gneisses 3.2 – 5.3 3.8 – 5.3 
Syenites, Diorites, 
Andesite, Basalt, Gabbros, 
Diabase 

3.0 – 4.5 4.4 – 5.3 

Dolomites 3.9 – 5.5 5.1 – 6.4 
Blast Furnace Slag Not reported 5.1 – 5.9 
Sandstones 5.6 – 6.7 5.6 – 6.5 
Quartz Sands & Gravels 5.5 – 7.1 6.0 – 8.7 
Quartzite, Cherts 6.1 – 7.0 6.6 – 7.1 
Cement Paste (saturated) 
w/c = 0.4 to 0.6 10-11 N/A 

Concrete Cores 
Cores from Long Term 
Pavement Performance 
Program (LTPP) 

N/A 4.0 (min), 5.5 (mean), 7.2 
(max) 

 

 Sakyi-Bekoe (2008) performed testing to determine the CTE of concrete created 

with materials locally available in the state of Alabama.  This research was performed 

utilizing the apparatus specified in AASTHTO TP-60.  Based on results obtained in this 

study, the average CTE for concretes made with river gravel is 6.95×10-6 in/in/°F 

(12.51×10-6 m/m/°C), for concretes made with granite is 5.60×10-6 in/in/°F (10.1×10-6 

m/m/°C), and for concretes made with dolomitic limestone is 5.52×10-6 in/in/°F 

(9.93×10-6 m/m/°C).   
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 Wang et al. (2008) performed a similar study to determine the thermal 

characteristics of concrete made with materials local to Iowa.  This study found that 

concrete made with Iowa materials had the following CTEs:  5.69×10-6 in/in/°F 

(10.24×10-6 m/m/°C) (limestone), 6.68×10-6 in/in/°F (12.02×10-6 m/m/°C) (dolomite), 

and 6.86×10-6 in/in/°F (12.15×10-6 m/m/°C) (quartzite).  These were noted to all be 

higher than the default CTE of 5.5×10-6 in/in/°F (9.90×10-6 m/m/°C) used in M-EPDG. 

6.4.4.2.6.2  Thermal Conductivity 

 Results of thermal conductivity testing of the test specimen prepared from BAC 

6.2 are shown in Table 6-7.  A photograph of the test specimen is shown in Appendix C 

(Figure C-25), along with typical test results from a thermal conductivity test (Figure C-

26). 

 

Table 6-7:  Results of thermal conductivity testing of BAC 6.2. 
 

 

Effusivity                             
(W•√(s) /(m2•K)) 

Thermal 
Conductivity 
(W/(m•K)) 

Thermal 
Conductivity 

(BTU/(hr•ft•ºF)) 
BAC 6.2 location 1 1673 1.480 0.856 
BAC 6.2 location 2 1118 0.770 0.445 
BAC 6.2 location 3 1265 0.940 0.543 
BAC 6.2 location 4 1342 1.040 0.601 
BAC 6.2 location 5 754 0.400 0.231 
BAC 6.2 location 6 1910 1.910 1.104 
BAC 6.2 location 7 632 0.300 0.173 
BAC 6.2 location 8 337 0.070 0.040 
BAC 6.2 location 9 1617 1.380 0.798 
BAC 6.2 Average 1183 0.921 0.533 

 

 The average thermal conductivity of the RBMAC test specimen prepared from 

BAC 6.2 is 0.533 BTU/(hr•ft•°F) (0.921 W/(m•K)). This value is somewhat lower than 
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the typical range of values of thermal conductivity suggested for use in M-EPDG (ARA 

2004) for conventional concrete, 1.0 to 1.5 BTU/(hr•ft•ºF) (1.77 to 2.60 W/(m•K)).  For 

M-EPDG design, a typical value of thermal conductivity for conventional concrete is 

1.25 BTU/hr•ft•°F (2.16 W/(m•K) is recommended (ARA 2004).   

 However, testing by Wang et al. (2008) using Iowa materials indicated that a 

thermal conductivity of 0.77 BTU/(hr•ft•°F) (1.33 W/(m•K)) may be more representative 

of Iowa concrete.  Wang et al. (2008) indicated that further studies in this area were 

needed. 

6.4.4.2.6.3 Heat Capacity 

 The results of testing to determine the heat capacity of RBMAC are shown in 

Table 6-8.  Values of the heat capacity at 77ºF range from 0.100 BTU/(lb•ºF) to 0.209 

BTU/(lb•ºF) (419 to 875 J/(kg•°C) at 25ºC).  Photographs of the sample of RBMAC used 

for heat capacity tests are provided in Appendix C (Figures C-27 and C-28) along with a 

typical output spreadsheet of the TGA apparatus for heat capacity testing of RBMAC 

(Figure C-29). 

 

Table 6-8:  Heat capacity at 77ºF for BAC 6.2. 

 

Heat Capacity at 77ºF 
(BTU/(lb•ºF)) 

BAC 6.2 sample 1 0.100 
BAC 6.2 sample 2 0.209 
BAC 6.2 sample 3 0.146 
BAC 6.2 sample 4 0.129 
BAC 6.2 Average 0.146 

 



145 
 
 The average heat capacity of RBMAC test specimens made from BAC 6.2 is 

measured to be 0.146 BTU/(lb•°F) at 77ºF (611 J/(kg•°C) at 25ºC).  The heat capacity of 

concrete ranging from 130 to 140 pcf is 0.22 BTU/lb•°F (921 J/(kg•°C)) according to 

ACI (2002).  Therefore, the heat capacity of BAC 6.2 is lower than that of concrete that 

uses conventional normalweight coarse aggregate.   

The heat capacity of concrete is used as an input for M-EPDG.  In lieu of test data for a 

particular concrete mixture, a reasonable range for heat capacity for conventional 

concrete for use in M-EPDG is 0.20 to 0.40 BTU/(lb•ºF) (837 to 1,675 J/(kg•°C)) (ARA 

2004).  For M-EPDG design, the value of 0.28 BTU/(lb•ºF) (1,172 J/(kg•°C)) is 

recommended for concrete (ARA 2004).   

 However, in their study of the thermal characteristics of Iowa materials for M-

EPDG inputs, Wang et al. (2008) state that “the heat capacity of PCC is not a sensitive 

parameter for pavement design, and therefore it was proposed that it be studied in the 

future.”  Additional discussion regarding use of heat capacity in M-EPDG is presented in 

Chapter 7, Use of Recycled Brick Masonry Aggregate Concrete in Pavement 

Applications. 

6.4.4.3 Durability Performance Testing 

 Specimens cast from the baseline RBMAC mixtures were subjected to several 

durability performance tests.  A discussion of the results for each of the durability 

performance tests performed is presented in the subsequent sections. In order to conserve 

the RBMA available for this work, durability performance tests were only performed on 

the four baseline RBMAC mixtures.  Durability performance tests were not performed on 

test specimens cast from trial batches of RBMAC.   



146 
 

6.4.4.3.1 Air and Water Permeability 

 Air and water permeability tests were performed using the Poroscope Plus test 

equipment.  This equipment utilizes the Figg technique to determine the amount of time 

required for concrete to facilitate a given pressure increase under vacuum (air 

permeability) and to allow a given amount of water to penetrate into the concrete (water 

permeability).  Additional information regarding the Figg technique is presented in 

Section 6.4.3.3.1, Air and Water Permeability.   

 Readings for air permeability and water permeability obtained from the Poroscope 

Plus Equipment are in units of seconds (sec).  This test data is provided in Appendix C in 

Tables C-8 through C-12.  Photographs of tested specimens are also provided in 

Appendix C in Figures C-30 and C-31.  In literature provided with the Poroscope Plus, 

the manufacturer (NDT James Instruments) provides an equation for converting air 

permeability readings into an Air Exclusion Rating (AER) and an equation for converting 

the water permeability reading into a water absorption rate (WAR).  The equations for 

computing AER and WAR are   

𝐴𝐸𝑅 =  𝑡

�55𝑉59 −𝑉�×
55.5
100

= 19.05 × 𝑡
𝑉
   (6-7) 

 

𝑊𝐴𝑅 = 𝑡
10

× 103    (6-8) 

In Eq. 6-7 and Eq. 6-8, t is the measured time (sec) and V is the volume of the apparatus, 

including the test hole (units of mL).  For the Poroscope equipment, V is 2.61 oz (77.1 

mL), so AER = 0.247•t.  The literature provided with the Poroscope equipment (NDT 

James Instruments 2007) “gives the tentative values for air and water permeability times 

and calculated AER ratings for concrete of varying protective quality for embedded 
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reinforcement.”  A summary of information provided in this table is shown in Table 6-9.  

Figg (1989) provides a list of representative types of material for these “tentative ranges” 

of WAR and AER.  The representative types of materials presented by Figg (1989) are 

also shown in Table 6-9.   

 

Table 6-9:  Values for air and water permeability times and calculated AER ratings for 
concrete of varying protective quality for embedded reinforcement (from NDT James 

Instruments 2007 and Figg 1989). 
 

Concrete 
Category 

Protective 
Quality 

Air Permeability Water 
Permeability Type of Material 

(from Figg 1989) Time 
(sec) 

AER 
(sec/mL) 

WAR 
(sec/ml) 

0 Poor <30 <8 <3 Porous mortar 

1 Not very 
good 30-100 8-25 3-10 2,900 psi (20 MPa) 

concrete 

2 Fair 100-300 25-75 10-30 
4,350-7,250 psi 

(30-50 MPa) 
concrete 

3 Good 300-
1000 75-250 30-100 Densified, well-

cured concrete 

4 Excellent >1000 >250 >100 Polymer-modified 
concrete 

 

 For each specimen of the baseline RBMAC mixtures tested, air permeability and 

water permeability tests were performed at four test locations.  The test results for each 

test location were averaged.  The average air permeability and the average water 

permeability for each RBMAC test specimen were then converted into average AER and 

average WAR values; see Table 6-10.   
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Table 6-10:  Average Air Exclusion Rates (AER) and average Water Absorption Rates 
(WAR). 

 

 RBMAC Mixture 

 

BAC 
5.0 

BAC 
6.0 

BAC 
6.1 

BAC 
6.2 

Average air permeability reading (sec) 9.3 69.8 42.6 46.1 

Average air exclusion rate, AER (sec/mL) 2.3 17.2 10.5 11.4 

      
Average water permeability reading (sec) 3.3 71.7 19.7 29.5 
Average water absorption rate, WAR  
(103 sec/mL) 0.3 7.2 2.0 3.0 

 

 Comparing the RBMAC test results in Table 6-10 to the information in Table 6-9, 

it can be seen that the air permeability test results for mixtures that utilized a water-

reducing admixture (BAC 6.0, BAC 6.1, and BAC 6.2) resulted in average AER values 

that were within the “not very good” range for protective quality.  According to Figg 

(1989), this protective quality rating would be typical of 20 MPa (2,900 psi) concrete.  

Two of the three RBMAC test mixtures that utilized a water reducing admixture (BAC 

6.0 and BAC 6.2) resulted in average WAR values that were also within the “not very 

good” range for protective quality, while the third mixture had an average WAR value 

that fell within the “poor” range for protective quality.  The RBMAC mixture that did not 

have a water reducer fell within the “poor” range for protective quality for both the 

average AER and average WAR values.   

 It is possible that, due to the high absorption of the RBMA, the values obtained 

for air and water permeability testing via the Figg Method gave a poor representation of 

the transport properties of the material.  Bungey et al. (2006) caution that “aggregate 

characteristics have a profound effect on results, limiting the potential usage to 
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comparative testing…”  Based on these test results, it appears that in order for RBMAC 

to provide sufficiently low air and water permeability, a water-reducing admixture should 

be used to reduce the permeability of the paste fraction of the material. 

6.4.4.3.2 Abrasion Resistance 

 Typically, for pavement applications, abrasion resistance is addressed by 

prequalification of aggregates by testing using the Los Angeles Abrasion method as 

outlined in ASTM C131.  This test on coarse aggregate has proven useful in the 

prevention of unacceptable abrasion resistance of concrete pavements.  However, in the 

ASTM C131 test method, the abrasion resistance of concrete is not tested, just one 

constituent component of the concrete (coarse aggregate).  Recently, several different 

methods of testing the abrasion resistance of hardened concrete test specimen have 

generated increased interest from researchers.  The ASTM C944 test method has recently 

been used by a number of agencies, including FHWA, in their evaluation of concrete 

abrasion resistance.   

 In their publication “High-Performance Concrete (HPC) Defined for Highway 

Structures,” FHWA outlines the ASTM C944 abrasion resistance requirements for high-

performance concrete used in highway structures such as bridges and pavements 

(Goodspeed et al. 2012).  In an effort to better tailor concrete performance to expected 

service conditions, FHWA has developed performance grades for HPC.  Relationships 

between project field conditions and the required resistance to exposure conditions can be 

established, and the proper performance grade for HPC can be identified for 

specifications.  HPC performance grades are designated as 1 through 4, with the higher 

performance grade numbers corresponding to better performance in tests.   
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 To use these performance grades in specifications, FHWA indicates that 

specifiers need to identify desired performance grades in relation to the desired field 

performance characteristics of their structures.  For example, “A mixture for a bridge 

deck subjected to a high usage of deicing salts, high frequency of freezing and thawing 

cycles, and narrow beam spacing may be specified by a high grade to resist freezing and 

thawing distress, a medium to high grade to resist scaling, abrasion and chloride attack, 

and a low grade for strength and elasticity (Goodspeed et al. 2012).” 

 Table 6-11 outlines the ASTM C944 abrasion resistance test performance that 

corresponds to specific HPC performance grades, according to FHWA (Goodspeed et al. 

2012). 

 
Table 6-11:  Abrasion resistance of HPC concrete mixtures (from Goodspeed et al. 2012). 

 
 HPC Performance Grade 
 1 2 3 4 
Abrasion  resistance, x, 
ASTM C944 (average depth 
of wear in mm) 

2.0� x ≥1.0 1.0� x≥0.5 0.5� x Not 
identified 

 

With regards to testing, FHWA offers the following guidelines for abrasion testing in 

accordance with ASTM C944: 

 

 “Test areas shall receive a light trowel finish.  Specimens shall be field 

cured for 56 days and air dried for 2 hours before testing.  The tests shall 

be done on three different cylinders or at three different areas on the 

surface of a concrete structure.  Each abrasion test shall be done using a 
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196 N force for three 2 minute periods for a total of 6 minutes of abrasion 

testing; a wear depth is then measured (Goodspeed et al. 2012).” 

 

 Testing of RBMAC was performed in a manner that would allow comparison 

with FHWA’s “High-Performance Concrete (HPC) Defined for Highway Structures” 

(Goodspeed et al. 2012).  For each baseline RBMAC mixture tested, one test specimen 

was tested at three locations.  For each test location, the depth of wear (for three 

subsequent 2-minute applications of the rotary cutting device at a load of 196 N) at 

circumference quarterpoints was averaged to get an average depth of wear.  The results 

for the three test locations on each specimen were averaged to get an average depth of 

wear for the mixture.  Average abrasion resistance test results for baseline RBMAC 

mixtures are presented in Table 6-12.  Supporting test data are presented in Appendix C 

in Table C-13, and typical specimens after testing are shown in Figure C-29. 

 
Table 6-12:  Average abrasion resistance of baseline RBMAC mixtures using the rotary 

cutting device method (ASTM C944). 
 

 RBMAC Mixture 

 
BAC 
5.0 

BAC 
6.0 

BAC 
6.1 

BAC 
6.2 

Average total depth of wear after three 2-
minute test periods, x, (mm) 0.99 0.16 0.40 0.41 

 

 As observed from Table 6-12, the RBMAC mixtures that utilized water-reducing 

admixtures (BAC 6.0, BAC 6.1, and BAC 6.2) each had average depths of wear less than 

0.5 mm, which indicates that these mixtures exhibit abrasion resistance characteristics 

meeting FHWA HPC Performance Grade 3 (as shown in Table 6-11).  The RBMAC 



152 
 
mixture that did not utilize a water-reducing admixture, and therefore had a higher 

water/cement ratio (BAC 5.0), had an average depth of wear that was just under 1 mm, 

indicating that it exhibits abrasion resistance characteristics meeting FHWA HPC 

Performance Grade 2.   

 With regards to abrasion resistance, FHWA offers the following guidelines 

regarding the specification of specific performance grades for highway structures: 

 

“Normal surface abrasion from rubber tires typically does not warrant an 

abrasion resistance consideration assuming well cured concrete of 

appropriate strength; the use of studded tires does.  Thus a Grade 1 is 

recommended for less than a 50,000 average daily traffic count, Grade 2 

for greater than 50,000 and less than 100,000, and Grade 3 for greater 

than 100,000 when steel studded tires are permitted.  Similar estimates 

can be made by local engineers if the use of car chains is prevalent.  

Recommendations for other abrasion conditions such as stream flow laden 

with abrasive materials are the responsibility of the project engineer.” 

 

 Based on these guidelines and ASTM C944 abrasion resistance test results, 

RBMAC mixtures that utilize a water-reducing admixture (BAC 6.0, BAC 6.1, and BAC 

6.2) are suitable for use in pavement applications for heavily trafficked roadways, where 

the average daily traffic is greater than 100,000.  RBMAC mixtures that did not utilize a 

water-reducing admixture (BAC 5.0) would be suitable for a lesser trafficked roadway, 

where the average daily traffic is between 50,000 and 100,000. 
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6.4.4.3.3 Chloride Ion Permeability 

 The ASTM C1202 rapid chloride ion permeability test results for the four baseline 

RBMAC mixtures are presented in Table 6-13.  As outlined in Section 6.4.3.3.3, Chloride 

Ion Permeability, for each RBMAC mixture, two specimens were tested.  The results 

shown in the table are the average of the two specimens.  Supporting test data are 

provided in Appendix C in Table C-14, and a summary of test results is provided in Table 

C-15. Photographs of typical specimens after testing are shown in Figure C-32. 

 

Table 6-13:  Results of rapid chloride ion permeability test. 
 

  
 RBMAC Mixture 
 BAC 5.0 BAC 6.0 BAC 6.1 BAC 6.2 

Average total charge passed 
(C) 8,379 982 1,599 3,127 

 

 In accordance with ASTM C1202, the susceptibility of concrete to chloride ion 

penetrability is assessed using Table 6-14.  These ratings were originally outlined by 

Whiting (1981) in FHWA/RD-81/119, “Rapid Determination of the Chloride 

Permeability of Concrete.”  Although several agencies have adjusted the performance 

classifications based on regional data, the ranges and permeability classifications shown 

in Table 6-14 are generally still accepted by many agencies. 
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Table 6-14:  Chloride ion penetrability based on charge passed (according to ASTM 
C1202). 

 
Charge passed (C) Chloride Ion Penetrability 

>4,000 High 
2,000 to 4,000 Moderate 
1,000 to 2,000 Low 
100 to 1000 Very Low 

<100 Negligible 
 

 
 Chloride ion penetrability test results indicate that the baseline RBMAC mixtures 

can exhibit reasonably good resistance to chloride ion ingress.  The three baseline 

mixtures that utilized a high-range water reducing admixture performed relatively well, 

exhibiting “Very Low” to “Moderate” chloride ion penetrability.  A water-reducing 

admixture was not used in BAC 5.0, which exhibited high chloride ion penetrability.  

This indicates that, similar to concrete made with other conventional aggregates, the 

chloride ion permeability of recycled brick masonry aggregate concrete is quite 

dependent on the quality of the paste. 

 Maximum permissible charge passed values specified by DOTs often differ by 

concrete use.  Although current NCDOT guidelines for pavement mixtures do not 

provide ASTM C1202 performance requirements, in the “North Carolina Department of 

Transportation Partial and Full Depth Repair Manual,” NCDOT indicates that partial 

depth repair material should have ASTM C1202 charge passed values of 960-990 C. 

 Due to equipment availability, these tests were performed when the concrete was 

approximately 14 months old.  Cylinders from which test specimens were removed had 

been used for equilibrium density testing.  Prior to use for chloride ion penetrability 

testing, the cylinders had been wet-cured for 7 days and subsequently stored in a 
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temperature and humidity controlled laboratory setting.  It is quite possible that at earlier 

ages, such as 28-days, the charge passed values may have been lower.  It is unclear, 

however, what the charge passed values for RBMAC would be if wet-curing conditioning 

(the typical procedure) was used for the test specimens.  Testing on additional batches of 

RBMAC is needed.  

6.4.4.3.4 Surface Resistivity 

 Surface resistivity testing is a relatively new method of assessing the corrosion 

potential of concrete, and has been correlated quite closely to chloride permeability by a 

number of researchers (Rupnow and Icenogle 2012).  As resistivity is dependent on a 

number of factors, including geometry and temperature, a number of ongoing studies are 

being performed by others to fully understand results obtained from this testing and to 

correlate these results to field performance of concrete structures.  Several agencies are 

investigating the possibility of replacing the labor-intensive ASTM C1202 rapid chloride 

ion permeability test with the much quicker surface resistivity test (Rupnow and Icenogle 

2012).  Results of this testing are provided for informational purposes only, as guidelines 

for use of surface resistivity measurements in evaluating concrete mixtures do not exist 

for many agencies, including NCDOT.   

 Surface resistivity testing was performed on the baseline RBMAC mixtures at a 

number of temperatures, and the data are provided in Table C-16 in Appendix C.  A 

summary of results are shown in Figure 6-18.  Again it is noted that, due to equipment 

availability, this testing was performed when the concrete was approximately 14 months 

old.  Cylinders had been used for equilibrium density testing, with a wet-cure for 28 days 

and subsequent storage in a temperature and humidity controlled laboratory setting.    
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Figure 6-18:  Surface Resistivity versus temperature for RBMAC. 
 

 
6.5 Summary and Concluding Remarks 

 To date, RBMAC has not been produced or studied in the United States.  In this 

study, RBMAC mixtures exhibiting acceptable performance in the fresh and hardened 

states were successfully batched and tested.  A database of material properties of 

RBMAC was developed.  In the future, this information can be used to assist designers 

interested in use of RBMA and RBMAC for sustainable design.  

 Potential issues with workability due to high absorption of the RBMA can be 

overcome with use of a commercially available high-range water reducer, and by 

batching with the RBMA at SSD conditions.  Adequate performance in fresh property 
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testing for air content and slump were obtained by using commercially available liquid 

admixtures at dosage rates within manufacturers’ recommended ranges.  

 Concrete with acceptable compressive strengths can produced using RBMA as a 

100% replacement for natural coarse aggregate.  Although the top-down demolition 

sequence provided RBMA with very little contaminant material (see Table 3-1), a few 

contaminant pieces were observed in some fracture faces.  It is possible that some 

variability evident in compressive strength test results is due to the inclusion of 

contaminants in the RBMA.  It is also noted that the splitting tensile strength of RBMAC 

was lower than would be predicted using a published relationship, and these test results 

may also have been affected by contaminant materials. 

 Equilibrium density tests indicate that a significant weight reduction can be 

realized for RBMAC.  At 111.8 pcf (1791 kg/m3), the equilibrium density of the baseline 

RBMAC mixture produced without the use of a water-reducing admixture met the 

equilibrium density requirements of ACI 213, “Guide for Structural Lightweight-

Aggregate Concrete.”  The equilibrium densities of the RBMAC mixtures produced using 

a water-reducing admixture ranged from 125.5 to 128.2 pcf (2010 to 2054 kg/m3).  

Although these equilibrium densities were higher than those required in ACI 213, they 

were significantly lower than the unit weight of concrete using conventional 

normalweight aggregates (typically 140 to 145 pcf, or 2243 to 2323 kg/m3).  Therefore, 

use of RMBAC can provide the advantages of a reduction of deadload in structural 

applications and savings in hauling costs.   

 The modulus of elasticity of the baseline RBMAC mixtures was within the range 

of values expected for normalweight and lightweight concrete using conventional 
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aggregate sources.  An equation presented in ACI 318-08 relating compressive strength 

to modulus of elasticity (using the unit weight of concrete) can be used to reasonably 

predict the modulus of elasticity of RBMAC mixtures (made with the Idlewild 

Elementary School RBMA).   

 When compared to the guidelines of several agencies, the 7-day moduli of rupture 

obtained for the RBMAC mixtures (utilizing a water-reducing admixture) were 

sufficiently high for use in pavement applications.  Values for thermal characteristics of 

RBMAC were within the expected range for concrete materials.  As brick has a lower 

CTE than most conventional coarse aggregates, an increased brick content in the RBMA 

would result in a RBMAC with a lower CTE, and hence would lead to better predicted 

pavement performance in M-EPDG.  As part of future testing, it is recommended that 

CTE testing of RBMAC be performed in accordance with AASHTO T336, with results 

compared to those using the appropriate calibration specimen.  The thermal conductivity 

measured for RBMAC (BAC 6.2) was somewhat lower than the default value for 

concrete in M-EPDG.  Future study of RBMAC could include batching of companion 

mixtures of conventional PCC to validate the thermal property test procedures and 

results.  Additional discussion on this will be presented in Chapter 7, Use of Recycled 

Brick Masonry Aggregate Concrete in Pavement Applications.  

 Unfortunately, due to malfunctioning equipment in the conditioning chamber, 

drying shrinkage tests were not completed.  It is recommended that this testing be 

performed as part of future studies with RBMAC.   

 Results for durability performance tests of RBMAC were mixed.  Using the Figg 

method of testing, the air and water permeability results for all the baseline RBMAC 
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mixtures were rather high.  The baseline RBMAC mixtures did, however, exhibit fairly 

good results in the ASTM C1202 chloride ion permeability testing.  Two of the RBMAC 

mixtures had ASTM C1202 charge passed values that indicated the potential for “very 

low” or “low” chloride penetrability.   

 The reason for these conflicting results may be explained by the means of air and 

water transport through the concrete matrix.  Chloride ion permeability test results were 

sensitive to w/c ratio and cement content.  Specimens with lower water cement ratios and 

higher cement contents exhibited much lower chloride ion permeability than those with 

higher w/c ratio and lower cement contents.  This suggests that the primary mode of 

chloride transport is through the paste, and transport was not greatly influenced by the 

highly porous aggregates.  It is possible that the voids within the RBMA are not as 

interconnected as those in the paste, although further study would be needed to confirm 

this. 

 Other researchers (Bungey et al. 2006) have suggested that due to the high 

absorption of the brick fraction of the aggregate, the Figg Method test may not be the 

most appropriate method of predicting durability performance.  If the test hole is drilled 

directly into a highly porous coarse aggregate particle, air and water would easily be 

transported into the high porosity in the immediate vicinity of the test plug, giving results 

that do not represent the permeability of the bulk concrete.  Additional testing may 

therefore be useful in assessing the air and water permeability of RBMAC.  Other test 

methods, such as sorptivity using the capillary suction method (ASTM C1585) or the 

ponding method (as per Bentz et al. 2002) may be more appropriate tests for durability 

performance of RBMAC. 
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 The possibility of replacing ASTM C1202 tests with surface resistivity 

measurements is currently being investigated by a number of agencies.  Surface 

resistivity measurements were performed on the baseline RBMAC mixtures for 

informational purposes only, no preliminary conclusions regarding surface resistivity are 

made at this time. 

  

 

 



 
 
 
 
 
 

CHAPTER 7: USE OF RECYCLED BRICK MASONRY AGGREGATE CONCRETE 
IN PAVEMENT APPLICATIONS 

 
 

7.1 Introduction 

 RBMAC is currently not used in the United States for any type of construction.  

Testing performed as part of this work has indicated that pavement applications may be a 

viable use of RBMAC.  In the following sections, the potential for RBMAC to be used in 

pavement applications is explored.  Specific attention is given to current materials 

requirements for recycled aggregates and RAC in North Carolina, as specified in the 

North Carolina Department of Transportation (NCDOT) standards.  Based on these 

specifications, challenges and barriers to using RBMAC in NCDOT pavement 

applications are discussed.   

 Many states, including North Carolina, are considering implementing the 

Mechanistic-Empirical Pavement Design Guide (M-EPDG) procedure for pavement 

design.  The potential use of RBMAC in M-EPDG pavement design is explored.  

Pavement sections comprised of both RBMAC and concrete with locally available 

natural aggregate are designed for typical arterial and interstate pavements, and the 

performance is compared.  Issues with use of RBMAC in the M-EPDG software are 

identified and discussed.  Additionally, M-EPDG was used to design a proposed test 

pavement utilizing RBMAC, along with a companion test pavement comprised of 

conventional natural aggregate.  Details regarding the proposed test pavements are 

provided, along with an instrumentation plan and a materials sampling and testing plan. 
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7.2 Potential Use of Recycled Brick Masonry Aggregate Concrete in Current North 

Carolina Department of Transportation (NCDOT) Pavement Applications 

 Projects designed and constructed for NCDOT must comply with “NCDOT 

Standard Specifications for Roads and Structures.”  At the time that most of the work for 

this project was performed, “NCDOT Standard Specifications for Roads and Structures,” 

dated July 2006, was in effect.  This version will subsequently be referred to as the 2006 

NCDOT Standard Specifications.  Currently, “NCDOT Standard Specifications for 

Roads and Structures,” dated January 2012, is in effect and will be subsequently referred 

to as 2012 NCDOT Standard Specifications.    

 In both the 2006 NCDOT Standard Specifications and the 2012 NCDOT Standard 

Specifications, requirements for materials used in roads and structures are published in 

Division 10 – Materials.  Requirements for portland cement concrete are provided in 

Section 1000, “Portland Cement Concrete Production and Delivery,” and Section 1024, 

“Materials for Portland Cement Concrete.”  Requirements for aggregates are presented in 

several sections.  The applicable sections for assessing the suitability of RBMA include 

Section 1005, “General Requirements for Aggregate,” Section 1006, “Aggregate Quality 

Control / Quality Assurance,” Section 1014, “Aggregate for Portland Cement Concrete,” 

and Section 1043, “Aggregate from Crushed Concrete.”  It is noted that Section 1043, 

“Aggregate from Crushed Concrete” is new in the 2012 NCDOT Standard Specifications 

and was not included in the 2006 NCDOT Standard Specifications.  Additionally, in 

order to evaluate the flatness and elongation parameters of RBMA, the requirements for 

aggregates used in asphalt pavement applications outlined in Section 1012, “Aggregate 

for Asphalt Pavements and Surface Treatments,” are utilized. 
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7.2.1 Current NCDOT Requirements and Standards for Use of Recycled Aggregates 

 The 2006 NCDOT Standard Specifications do not contain provisions for use of 

recycled aggregates in any applications, including in portland cement concrete 

construction.  The 2012 NCDOT Standard Specifications include a new section, Section 

1043, “Aggregate from Crushed Concrete,” which provides guidelines for use of RCA.   

As outlined in Section 1043-1, “Aggregate from crushed concrete is a recycled product 

made by crushing concrete obtained from concrete truck clean out, demolition of existing 

concrete structures or pavement, or similar sources and transported from a crushing 

facility (NCDOT 2012).”  Crushed concrete aggregate must meet all approval 

requirements presented in Section 1005, “General Requirements for Aggregate,” and 

Section 1006, “Aggregate Quality Control / Quality Assurance,” although the limit on 

deleterious materials (as determined by the sodium sulfate test) is required to be less than 

or equal to 3%. Testing for aggregates, including crushed concrete aggregates includes 

the tests outlined in the Table 7-1. 
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Table 7-1:  Testing of aggregates for use in portland cement concrete required by 2012 
NCDOT Standard Specifications 

 
Property Test Method 

Gradation AASHTO T27, “Standard Method of Test for Sieve Analysis 
of Fine and Coarse Aggregates,” and AASHTO T11, 
“Standard Method of Test for Materials Finer than No. 200 
(75μm) Sieve in Mineral Aggregates by Washing” 

Liquid limit AASHTO T89, “Standard Method of Test for Determining 
the Liquid Limit of Soils” (NCDOT modified version) 

Plasticity index AASHTO T90, “Standard Method of Test for Determining 
the Plastic Limit and Plasticity Index of Soils” 

Abrasion 
resistance 

AASHTO T96, “Standard Method of Test for Resistance to 
Degradation of Small-Size Coarse Aggregate by Abrasion 
and Impact in the Los Angeles Machine” 

Soundness AASHTO T104, “Standard Method of Test for  Soundness of 
Aggregate by Use of Sodium Sulfate or Magnesium Sulfate” 
(using sodium sulfate) 

 

 Additionally, aggregates used for portland cement concrete have limitations on 

the amount of material passing the No. 200 sieve.  At production, the material passing the 

No. 200 sieve shall be no more than 0.6%.  Aggregates tested at the jobsite must have no 

more than 1.5% passing the No. 200 sieve.  If aggregates tested at the jobsite are found to 

have more than 1.5% passing the No. 200 sieve, its use can be approved by the project 

engineer if the total percentage by weight of the combined coarse and fine aggregate does 

not exceed 2.0% and the water-cementitious ratio is not increased.   

 In Section 1043, the 2012 NCDOT Standard Specifications limits the uses of 

aggregate made from crushed concrete to Class B concrete mixes only.  Class B 

concretes are lower-strength mixtures used for low-grade applications such as drainage 

appurtenances, endwalls, paved ditches, and curb and gutter.  The minimum compressive 

strength at 28 days is 2,500 psi (17.2 MPa). The maximum allowable water-cementitious 

ratios for air-entrained concrete are limited to 0.469 for rounded aggregate and 0.545 for 
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angular aggregate.  For non-air entrained concrete, the maximum allowable water-

cementitious ratios are 0.559 and 0.630, for rounded and angular aggregate, respectively.  

The maximum allowable slump for vibrated Class B concrete is 2.5 in and for non-

vibrated Class B concrete is 4 in.  Minimum to maximum cement contents for vibrated 

and non-vibrated Class B concrete mixtures are, respectively, 508 to 610 pcy (301 to 362 

kg/m3) and 545 to 654 pcy (323 to 388 kg/m3). 

7.2.2 Qualification of Recycled Brick Masonry Aggregate for Use in NCDOT Portland 

Cement Concrete Applications 

 As outlined in Section 7.2.1, Current NCDOT Requirements and Standards for 

Use of Recycled Aggregates, RBMA does not meet the definition of “Aggregate from 

Crushed Concrete,” in Section 1043 of the 2012 NCDOT Standard Specifications.  At 

this time, NCDOT limits the material used as recycled aggregates to crushed concrete 

only.  Requirements for coarse aggregate used in portland cement concrete are outlined in 

Section 1014-2 in the 2012 NCDOT Standard Specifications.  Coarse aggregate material 

is to consist of “crushed stone, crushed or uncrushed gravel, crushed air-cooled blast 

furnace slag, or other inert materials that have similar characteristics (NCDOT 2012).”  

Although RBMA does not come from the sources listed, it may exhibit similar 

characteristics, and therefore could potentially be used in NCDOT portland cement 

concrete applications. 

 Section 1014-2 provides performance requirements for coarse aggregates used in 

portland cement concrete.  A summary of pertinent characteristics and requirements is 

summarized in Table 7-2. 
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Table 7-2:  Required characteristics of coarse aggregates used in portland cement 
concrete (from NCDOT 2012). 
 

Characteristic Requirement 
Soundness “When subjected to 5 cycles of the soundness test, the 

weighted average loss shall not exceed 15%.  For 
concrete with a 28 day design compressive strength 
greater than 6,000 psi, the loss shall not exceed 8%.” 

Deleterious substances “Determine the percentage of deleterious substances (clay 
lumps and friable particles) in accordance with AASHTO 
T112.  The amount of deleterious substances shall not 
exceed 3.2% by weight.” 

Abrasion resistance “The percentage of wear of crushed stone or gravel shall 
not exceed 55%.  For concrete with a 28 day design 
strength greater than 6,000 psi, the wear shall not exceed 
40%.” 

Gradation For portland cement concrete pavement applications, use 
standard sizes No. 57, No. 67, or No. 78M unless 
otherwise specified by the engineer. 

 

 Results of laboratory tests performed to date indicate that RBMA can meet 2012 

NCDOT Standard Specifications requirements for aggregates used in concrete, with the 

possible exception of abrasion resistance for concretes with specified 28-day design 

strengths greater than 6,000 psi (41.4 MPa).  It is noted that RBMA from only one source 

has been tested. It would be worthwhile to perform LA abrasion testing on RBMA from a 

number of different sources to determine whether the LA abrasion value of 40% is 

generally representative of this material. 

 For this work, the RBMA material was produced with a target gradation of 

AASHTO M43 #78.  Although the material did not quite meet the required percent 

composition range for the material passing the 3/8 in sieve (retained on the No. 4 sieve), 

personnel at the crushing and grading facility indicated that this could easily be achieved 

with a slight modification to the sieve apparatus used in the crushing/grading operation.  
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 Aggregates are also limited to the amount of material passing the No. 200 sieve, 

no greater than 0.6% at production and no greater than 1.5% at the jobsite.  Although a 

No. 200 sieve was not used in the sieve analyses of the RBMA produced as part of this 

work, the percent passing the No. 16 sieve was found to be 0.6%.  Therefore, it is known 

that this material would have met this requirement, as even less material would have been 

able to pass the No. 200 sieve.  

 It is noted that soundness testing was not performed as part of this work.  If 

RBMA was to be used in NCDOT construction, soundness testing would need to be 

performed and the results would need to be compared to NCDOT specifications.  Sulfate 

soundness testing is a means of assessing the resistance of an aggregate to weathering.  

The test simulates freezing and thawing cycles by repeated immersion and removal of the 

aggregate from a sulfate solution that causes growth of salt crystals in the aggregate 

pores.  Kosmatka et al. (2002) indicate that this test is “sometimes misleading” in its 

predictions of the freeze-thaw behavior of concrete produced from the aggregates, stating 

that “the test is most reliable for stratified rocks with porous layers or weak bedding 

planes.”  As brick and mortar comprising the RBMA are not stratified, this test may not 

provide a true indication of RBMAC performance, which may be better assessed through 

testing of RBMAC by ASTM C666, “Standard Test Method for Resistance of Concrete 

to Freezing and Thawing.” 

 Testing to determine the deleterious substances (clay lumps and friable particles) 

was also not performed as part of this work.  The applicability of this requirement, 

however, may be questionable due to the nature of the source material (fired clay) used to 

produce the brick in the RBMA.  As outlined in Section 3.3.1.1 Composition by Weight 
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and by Volume, the RBMA made from Idlewild Elementary School’s demolition debris 

contained 3.3% of contaminant material by weight.   

 Upon initially observing the RBMA material shortly after it was produced at the 

crushing and grading facility, it was noted that the brick aggregates tended to be flatter 

and more elongated than the crushed mortar fraction. The brick aggregates were also 

noticeably flatter and more elongated than the local virgin aggregates and the RCA 

produced from concrete from the case study site.  It was initially suspected that flat and 

elongated particles would be problematic, particularly with workability of the RBMA 

concrete in its fresh state.  However, all of the RBMAC mixtures batched as part of this 

work were judged to exhibit adequate workability by the researcher.  NCDOT 

requirements for flat and elongated particles are only applicable to aggregates used in 

asphalt cement concrete.  However, testing in accordance with ASTM D4791 “Standard 

Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in 

Coarse Aggregate” was nonetheless performed to assess the RBMA.  Results of this test 

indicated that the RBMA from the case study site meets the NCDOT requirements 

outlined in Section 1012 (NCDOT 2006).  In order to place increased scrutiny on the 

brick particles, the components of the RBMA (brick, clay tile, and mortar) were 

segregated, and the ASTM D4791 procedure was repeated for each component 

separately.  Tests run on the brick fraction of the RBMA indicated that the brick 

aggregate particles from the case study site still met NCDOT requirements, but were, 

indeed, flatter and more elongated when tested alone (as compared to the mortar and clay 

tile components of the RBMA). 
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7.2.3 Challenges and Barriers to Use of Recycled Brick Masonry Aggregate Concrete in 

NCDOT Pavement Applications 

 If RBMAC is to be used in NCDOT pavement applications, several existing 

barriers would need to be addressed.  As discussed in Section 7.2.2, Qualification of 

Recycled Brick Masonry Aggregate for Use in NCDOT Portland Cement Concrete 

Applications, requirements outlined in the current NCDOT Standards and Specifications 

would need to be modified to allow the use of material other than crushed concrete for 

recycled aggregates.  Additionally, to be used in pavements, NCDOT Standards and 

Specifications would need to allow recycled aggregates to be used in the “Pavement” 

class of concrete.   

 Requirements for pavement concrete are outlined in the 2012 NCDOT Standards 

and Specifications in Section 1000-3, “Portland Cement Concrete for Pavement.”  

Pavement concrete must be air entrained, and the maximum w/c ratio is 0.559.  The 

concrete must be vibrated, and the maximum slump requirements are 1.5 in (38.1 mm) 

for slip formed concrete and 3.0 in (76.2 mm) for hand-placed concrete.  A minimum 

cement content of 526 pcy (312.1 kg/m3) is specified.  Strength requirements for concrete 

to be used in pavements include a minimum 28-day compressive strength of 4,500 psi 

(31.0 MPa) and a minimum 28-day flexural strength of 650 psi (4.48 MPa).  The flexural 

strength requirement must be met in the design phase only (mixture proportions and test 

results submitted to NCDOT for approval), while the compressive strength requirement 

must be met in both the design phase and by test specimens prepared from the concrete 

placed in the field.   
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 Each of the baseline RBMAC mixtures that contained a water-reducing admixture 

(BAC 6.0, BAC 6.1, and BAC 6.2) meets the current requirements for cement content, 

maximum w/c ratio, and minimum 28-day compressive strength outlined above.   

Flexural strength tests performed on baseline RBMAC mixtures as part of this work were 

performed at 7 days instead of 28 days.  At 7 days of age, baseline mixtures BAC 6.0, 

BAC 6.1, and BAC 6.2 had 7-day flexural strengths of 797 psi (5.50 MPa), 730 psi (5.03 

MPa), and 716 psi (4.94 MPa), respectively, and would therefore meet the NCDOT 28-

day minimum flexural strength requirement of 650 psi (4.48 MPa).  Slumps for these 

mixtures were higher than NCDOT’s maximum slump requirements for pavement 

concrete, but it is likely that without the water-reducing admixture, the slumps would 

have been significantly lower and the requirements could have been met.    

 Although RBMAC can meet the performance requirements specified by NCDOT 

for pavement mixtures, NCDOT may be reluctant to use RBMA in pavement applications 

due to durability concerns.  Abrasion resistance is a key performance requirement for 

pavement concrete.  In addition to the abrasion test requirements for aggregates 

(performed using the Los Angeles abrasion method), NCDOT could specify that 

additional abrasion testing be performed for concrete mixtures (or just RBMAC 

mixtures) used in pavement applications.  In addition to performing LA Abrasion testing 

on the RBMA used in this study, abrasion resistance of the RBMAC was evaluated using 

ASTM C944, “Standard Test Method for Abrasion Resistance of Concrete or Mortar 

Surfaces by the Rotating-Cutter Method.” As outlined by FHWA (Goodspeed et al. 2011) 

and Naik et al. (1994), this test can serve as a useful tool for assessing concrete paving 

mixtures.  Results of testing using the rotary cutter device indicated that the baseline 
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RBMAC mixtures that used a water-reducing admixture (BAC 6.0, BAC 6.1, and BAC 

6.2) had abrasion resistance that met FHWA standards for Performance Grade 3 high-

performance concrete (HPC) for use in highway structures (Goodspeed et al. 2011).  

 Since RBMA is produced from existing brick masonry construction, variability of 

material produced from different sources is a concern.  This is, however, no different than 

the potential variability in RCA produced from different sources of waste concrete.  

Proponents of RCA implemented strategies that promoted understanding and control of 

the source material. These strategies typically include assessing potentially recyclable 

concrete for existing materials-related distress (such as ASR) as well as reuse of concrete 

in the same project being reconstructed (Taylor et al. 2006). Strategies for proper 

stockpile management also aid in ensuring consistency and minimal contamination 

(Taylor et al. 2006). Research and field implementation has shown that, with proper 

evaluation of the source concrete, RCA concrete exhibiting acceptable performance can 

be produced.  Similar strategies could also be utilized in RBMA production and transport 

to help ensure adequate performance of RBMAC.  

 RCA concrete is gaining more widespread acceptance, and it is being successfully 

utilized in a number of applications throughout the country.  Ultimately, it will be the 

burden of the recycled aggregate supplier to demonstrate that their RBMA product meets 

DOT requirements.  Additionally, successful performance of RBMAC in both laboratory 

and field installations will be needed to provide NCDOT an adequate comfort level with 

this material. 

 In the case of D.H. Griffin Crushing and Grading, the company sees this RBMA 

material (and other aggregates they produce from reclaimed material) as a commodity, 
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with enough potential value that they have invested significant resources to develop an 

on-site NCDOT certified laboratory. They believe in their process control so strongly that 

they are willing to construct a test pavement in cooperation with UNC Charlotte to 

evaluate the performance of RBMA in service applications.  This proposed test pavement 

is discussed in Section 7.4, Proposed Test Pavement Utilizing Recycled Brick Masonry 

Aggregate Concrete in Charlotte, North Carolina.  Prior to presenting the discussion on 

this test pavement, however, the use of RBMAC in M-EPDG pavement design is 

discussed in the next section. 

7.3 Potential Use of Recycled Brick Masonry Aggregate Concrete in Mechanistic-

Empirical Pavement Design 

 The Mechanistic-Empirical Pavement Design Guide (M-EPDG) is the “state-of-

the-practice tool for the design and analysis of new and rehabilitated pavement structures, 

based on mechanistic-empirical (M-E) principles (AASHTO 2008).”  At the time of this 

research, the M-EPDG software program was available for online trial, but is now only 

available commercially as the DARWin-ME software program.  M-EPDG was 

determined to be a particularly useful tool for evaluating RBMAC pavements because the 

level of detail that can be incorporated into M-EPDG design and analysis is much greater 

than the level of detail allowed in the NCDOT Interim Design Guide procedure (currently 

used by NCDOT for pavement design) or the AASHTO 1993 Design Procedure.  

  The M-EPDG design process is a major change from previously utilized 

pavement design methods.  Mechanical and statistical models incorporated into this 

software represent the work of leading researchers over the past two decades.  

Mechanistic analysis of pavement responses includes traffic and climatic data that are site 
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specific.  As part of the empirical analysis, results of the mechanistic analysis are 

compared to data on field-observed distresses of existing pavement sections in the Long-

Term Pavement Performance (LTPP) database.  Another significant characteristic of M-

EPDG is that designers have the ability to analyze both flexible and rigid pavements 

using the same methodology, and rehabilitated pavement sections combining both rigid 

and flexible pavements can also be considered.  Further discussion on M-EPDG and the 

implications of using RBMA in M-EPDG analysis is presented in the following sections, 

along with a comparison of pavement designs using both RBMAC and concrete utilizing 

locally available natural aggregates. 

7.3.1 Mechanistic-Empirical Pavement Design Guide (M-EPDG) Overview 

 The M-EPDG process is an iterative approach to pavement design.  The 

performance of trial pavement sections is compared to design performance criteria that 

are selected to “ensure that a pavement design will perform satisfactorily over its design 

life (AASHTO 2008).”  Performance criteria for JPCP include joint faulting, transverse 

slab cracking, and smoothness, while different performance criteria are used for other 

types of pavement construction (such as hot mix asphalt pavements).  Threshold values 

for performance criteria are selected by agencies based on a number of considerations, 

including pavement characteristics that trigger major rehabilitation efforts, impact safety, 

and require other maintenance. 

 Characteristics of a trial pavement section are input into the software program, 

along with site conditions including climate, traffic, and subgrade characteristics.  

Pavement responses such as stresses, strains, and deflections are then computed over the 

design life, along with incremental damage.  Cumulative damage over the design life of 
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the pavement is compared to empirical performance data collected on existing pavement 

sections.  The trial pavement section is evaluated based upon the reliability values 

specified by the pavement designer based on their desired confidence levels.  AASHTO 

(2008) defines design reliability as “the probability (P) that the predicted distress will be 

less than the critical level over the design period.”  The level of design reliability is 

selected based upon the “general consequence of reaching the terminal condition earlier 

than the design life (AASHTO 2008).”  If the proposed design does not meet the desired 

performance criteria, it can be revised by the designer and the analysis rerun until an 

optimal design is identified (AASHTO 2008). 

 The Mechanistic-Empirical Pavement Design Guide:  A Manual of Practice 

(AASHTO 2008) includes five basic steps for the design process.  These steps are 

summarized below: 

1. Select a design strategy. 

2. Select the appropriate performance indicator criteria (threshold value) and 

design reliability level for the project. 

3. Obtain all inputs for the pavement trial design and consideration. 

4. Run the M-EPDG software and examine the inputs and outputs for engineering 

reasonableness. 

5. Revise the trial design, as needed. 

 Most rigid (concrete) pavements constructed in North Carolina are jointed plain 

concrete pavement (JPCP).  The three key performance criteria for JPCP are joint 

faulting, transverse slab cracking, and smoothness.  Detailed information regarding the 

prediction models used for performance indicators is provided by AASHTO (2008), but a 
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brief summary of each JPCP performance indicator and the methodologies used for 

prediction and assessment is presented here.   

 Joint faulting occurs when accumulated damage of the concrete at the joint and at 

load transfer devices (dowels) reduces the load transfer efficiency between adjacent slabs 

and leads to an elevation difference across a joint.  Joint faulting also leads to severe 

roughness in the vicinity of joints (Huang 2004).  Distress is measured in millimeters or 

inches (of elevation difference), and faulting is deemed positive if the surface of the 

approach slab is higher than the surface of the departure slab.  Faulting is deemed 

negative if the surface of the departure slab is higher than the surface of the approach slab 

(Mallick and El-Korchi 2009).  For faulting analysis in M-EPDG, all methods of load 

transfer are assessed, including dowels, aggregate interlock, and base or subgrade 

friction.  Loss of shear capacity at the joint, damage at the dowel-concrete interface, and 

joint width changes due to temperature and moisture are considered.  The cumulative 

faulting is compared to the allowable faulting at the end of the design life.   

  Transverse slab cracking (or simply transverse cracking) can occur from bottom-

up or top-down.  Both top-down and bottom-up transverse cracks occur “when a critical 

combination of loading and temperature curling creates summative stresses (Mallick and 

El-Korchi 2009).”  Bottom-up cracks are caused when bending stresses at the bottom of a 

slab induced by traffic loads are added to stresses caused by a positive thermal gradient 

(top of the slab is warmer than the bottom of the slab) that produces downward curling 

(Mallick and El-Korchi 2009).  Top-down transverse cracks are also caused by a 

combination of stresses from both traffic loading and temperature gradients, but the axle 

load placement is closer to a joint and the thermal gradient is negative (the top of the slab 
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is cooler than the bottom of the slab), and upward curling has occurred (Mallick and El-

Korchi 2009).  Both the top-down and bottom-up modes of cracking are considered in the 

M-EPDG distress prediction equations, which are fatigue damage accumulations based 

on Miner’s hypothesis.  As described by AASHTO (2008), contact friction between the 

slab and base and load and temperature/moisture gradients are used to compute an 

equivalent section for the slab and base course.  This equivalent section is used in the 

calculation of critical responses using site-specific climate data.  The percentage of slabs 

in a given traffic lane predicted to exhibit transverse cracking at the end of the design life 

is compared to an acceptable threshold input by the designer.   

 Smoothness is assessed using the International Rideability Index (IRI), which is a 

measure of the cumulative roughness of the pavement in in per mile.  The initial IRI is 

typically an estimated value based upon the smoothness of newly constructed pavements.  

The predicted IRI is computed using estimated increases in IRI due to cracking, spalling, 

and joint faulting occurring over the design life.  Climatic effects are incorporated to 

allow the consideration of freeze-thaw cycles in a scaling factor and are also used to 

predict foundation movements contributing to increases in the IRI (AASHTO 2008). 

 In order to assess whether a pavement will provide satisfactory performance over 

its design life, threshold values for the performance criteria need to be selected.  

AASHTO (2008) provides guidance in identifying threshold values based on 

“experience, agency policies, and local needs.”  Often, agencies identify these threshold 

values based on maintenance/rehabilitation, safety, and economic considerations, as well 

as the desired reliability and consequences of premature failure.  A discussion on the 

threshold values used by NCDOT will be presented in Section 7.3.3, Comparison of M-
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EPDG Pavement Designs Using Recycled Brick Masonry Aggregate Concrete and 

Natural Aggregate Concrete.  

 To begin on M-EPDG analysis, the designer enters general project information 

into the software.  These inputs include the design life, anticipated construction and 

traffic opening dates, and other information not used in the distress modeling and analysis 

such as the roadway name and its description.  After this information is input, the 

designer begins inputting and selecting other traffic, climatic, and pavement section 

characteristics used in the distress models and analysis. 

 In order to best assess proposed pavement sections, site-specific values should be 

input into the M-EPDG software.  However, due to the lack of availability of some site-

specific data, as well as the cost associated with obtaining this data, M-EPDG allows 

inputs at several hierarchical levels.  This allows users to input the site-specific data that 

is available, while utilizing reasonable default values for information that is not readily 

available.  Level 1 inputs are site-specific data obtained by materials testing in the 

laboratory and field, and therefore theoretically allow for the highest level of accuracy in 

the predictions.  Level 2 inputs are “estimated through correlations with other material 

properties that are commonly measured in the laboratory or field (AASHTO 2008).”  

Level 3 inputs are default values suggested by the M-EPDG software. 

 Traffic information used for M-EPDG consists only of truck traffic, Annual 

Average Daily Truck Traffic (AADTT).  A significant amount of detailed traffic 

information can be entered into M-EPDG, if available. Conversely, some combination of 

available site-specific data (Level 1) and less-specific or default values (Levels 2 or 3) 

can be input.  For example, if axle load spectra from weigh-in-motion scales is available, 
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it can be input; otherwise reasonable default values suggested by the M-EPDG software 

can be used.  Roadway-specific inputs include the initial two-way AADTT, percent 

trucks in the design lane, percent trucks in the design direction, operational speed, and 

predicted growth of truck traffic (AASHTO 2008).  Inputs on axle-load spectra include 

axle load distributions (single, tandem, tridem, and/or quad axles), normalized truck 

volume distribution, axle spacing and wheelbase information, and monthly/hourly 

distributions.   

 Climate data for the project site can be downloaded from an extensive database of 

weather station data.  If the user enters the latitude and longitude of the project location, 

the software will suggest several local weather stations.  The designer can choose to use 

climatic data from one station or can create a custom “station” by combining the data 

available from multiple stations that are available in the online database.  As outlined in 

AASHTO (2008), climate data includes hourly temperatures, precipitation, windspeed, 

relative humidity, and cloud cover.   The depth of the water table is also a climate input 

and is selected by the designer. 

 Information on the subgrade soils obtained through laboratory and field testing 

can be input to M-EPDG.  The most critical parameter for the subgrade is the resilient 

modulus.  If resilient modulus testing in accordance with AASHTO T 307, “Determining 

the Resilient Modulus of Soils and Aggregate Materials” cannot be performed, this 

parameter can be estimated using information obtained through dynamic cone 

penetrometer (DCP) testing or through correlations with other physical properties of the 

soil.   
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 Physical properties of the unbound aggregate base layers of a pavement in M-

EPDG analysis include classification properties (gradation, Atterberg limits, dry density, 

moisture content, Poisson’s ratio) and the key engineering performance property, resilient 

modulus.  Other parameters, such as saturated hydraulic conductivity and information 

that can be used to predict moisture content changes, can also be input.  If a rehabilitation 

project is being designed, information on the existing pavement and subgrade is entered.   

 For new  portland cement concrete pavements and some PCC overlays, AASHTO 

recommends the Level 1 input parameters and test protocols shown in Table 7-3 

(AASHTO 2008).  If resources are not available to perform the testing necessary to 

obtain Level 1 input values, M-EPDG provides the recommended Level 2 and Level 3 

input parameters and values presented in Table 7-4 (AASHTO 2008).   
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Table 7-3:  M-EPDG Level 1 input parameters and test protocols for new and existing 
PCC pavements (from AASHTO 2008). 

 

Measured Property Source of Data Recommended Test Protocol 
and/or Data Source Test Estimate 

Elastic modulus X  ASTM C469 
Poisson’s ratio X  ASTM C469 
Flexural strength X  AASHTO T97 
Indirect tensile strength 
(CRCP only) X  AASHTO T198 

Unit weight X  AASHTO T121 

Air content X  AASHTO T152 or AASHTO 
T196 

Coefficient of thermal 
expansion X  AASHTO TP60 (currently 

AASHTO T336) 
Surface shortwave 
absorptivity (correlates 
with amount of solar 
energy absorbed by 
pavement surface, (Wang 
et al. 2008) 

 X National test protocol unavailable; 
use M-EPDG default value 

Thermal conductivity X  ASTM E1952 
Heat capacity X  ASTM D2766 

PCC zero-stress 
temperature  X 

National test protocol unavailable;  
estimate using agency historical 
data or select M-EPDG defaults. 

Cement type  X Select based on actual or expected 
cement source. 

Cementitious material 
concrete  X Select based on actual or expected 

concrete mix design. 

Water-cement ratio  X Select based on actual or expected 
concrete mix design. 

Aggregate type  X Select based on actual or expected 
aggregate source. 

Curing method  X Select based on agency 
recommendations and practices. 

Ultimate shrinkage  X 
Testing not practical.  Estimate 
using prediction equation in M-
EPDG. 

Reversible shrinkage  X Estimate using agency historical 
data or select M-EPDG defaults. 

Time to develop 50% of 
ultimate shrinkage  X Estimate using agency historical 

data or select M-EPDG defaults. 
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Table 7-4:  M-EPDG Level 2 and 3 input parameters and test protocols for new and 
existing PCC pavements (from AASHTO 2008). 

 
Measured Property Recommended Input Levels 2 and 3 

New PCC elastic modulus 
and flexural strength 

28-day flexural strength AND 28-day PCC elastic modulus, 
or 
28-day compressive strength AND 28-day PCC elastic 
modulus, or 
28-day flexural strength ONLY, or 
28-day compressive strength ONLY 

Poisson’s ratio Poisson’s ratio for new PCC typically ranges from 0.11 and 
0.21, and values between 0.15 and 0.20 are typically 
assumed for PCC design.   

Unit weight Select agency historical data or from typical range for 
normal weight concrete:  140 to 160 pcf. 

 

 As many federal and state agencies move towards adopting M-EPDG for 

pavement design, guidelines for recommended inputs are being developed by FHWA, 

state DOTs and others.  As part of FHWA’s local calibration effort, North Carolina was 

selected as the pilot state to be included in their study “Local Calibration of the MEPDG 

Using Pavement Management Systems (FHWA 2010).”  As part of this work, 

information from NCDOT’s pavement management database and other sources was used 

to establish default (Level 2 and Level 3) values for M-EPDG.  Information pertaining to 

these values is presented in the project report (FHWA 2010).  Values used by NCDOT 

for the of new JPCP that are relevant to the work performed in this study are summarized 

in Table 7-5.  
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Table 7-5:  Summary of M-EPDG default values for PCC pavement design used by 
NCDOT as part of FHWA local calibration study (FHWA 2010). 

 

Description Variable PCC Input value 
Project summary information Design life (years) 30 
Analysis parameters Initial IRI (in/mi) 75 

Terminal IRI (in/mi) 170 
Transverse cracking (% slabs 
cracked) 10 

Mean joint faulting (in) 3/4 
Traffic – Design properties Initial two-way AADTT, trucks in 

the design direction, trucks in the 
design lane, operational speed 

Pavement Management 
System data or project plans 

Traffic volume and adjustment 
factors 

Monthly adjustment factors, 
vehicle class distribution, truck 
hourly distribution factors, traffic 
growth factors 

Traffic database 

Axle load distribution factors Axle load distribution factors by 
axle type Traffic database 

Climate Surface shortwave absorptivity M-EPDG default (0.85) 

PCC design properties 

Permanent curl/warp effective 
temperature difference (°F) M-EPDG default (-10) 

Joint spacing (ft) 15 
Sealant type Silicone 
Dowel diameter (in) CD2 
Dowel bar spacing (in) 12 
Edge support – tied PCC n/a 
Edge support – widened slab n/a 
PCC-base interface Full 
Base erodibility index Resistant 
Loss of full friction (age in 
months) 360 

PCC general properties Unit weight (pcf) 150 
Poisson’s ratio 0.20 

PCC thermal properties 

Coefficient of thermal expansion 
(per °F•10-6) Project files 

Thermal conductivity 
(BTU/(lf/°F)) and Heat capacity 
(BTU/(lf/°F)) 

Materials database 
developed by NC State 

University 

PCC mixture properties 

Cement type Type II 
Cementitious material content 
(pcy) 526 

Water-cement ratio 0.559 
PCC zero-stress temperature (°F) 88 
ultimate shrinkage at 40% relative 
humidity (microstrain) 408 

reversible shrinkage (% of 
ultimate shrinkage) 50 

time to develop 50% of ultimate 
shrinkage 35 

PCC strength properties Compressive strength (psi) 4,500 
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 Once threshold values for pavement performance, basic information on design 

life, and values for traffic, climate, and the pavement structure are input to the M-EPDG 

software, trial pavement sections can be analyzed.  Suggested layer thicknesses and 

characteristics can be input and the analysis run iteratively in order to assess pavement 

performance and optimize the design pavement section.    

7.3.2 Implications of Incorporating Recycled Brick Masonry Aggregate into M-EPDG 

 In Chapter 6, “Testing Program for Recycled Brick Masonry Aggregate 

Concrete,” results of testing performed on RBMAC are compared to properties typical of 

concrete that uses natural coarse aggregate.  Testing indicates that RBMAC exhibits 

several properties that differ from those of natural aggregate concrete, including unit 

weight and Poisson’s ratio.  Additionally, the thermal properties of RBMAC differ from 

those typically exhibited by concrete using natural coarse aggregates.  Therefore, it is 

likely that the use of RBMAC in M-EPDG pavement design will result in design 

thicknesses that differ from those obtained using conventional concrete.   

 The M-EPDG inputs utilized by NCDOT for JPCP are shown in Table 7-5.  A 

summary of M-EPDG input values that would differ between conventional PCC with the 

locally-available natural coarse aggregate (granite) and for RBMAC are shown in Table 

7-6.   
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Table 7-6:  M-EPDG input values for conventional PCC (using local granite aggregate) 
and for RBMAC 

 

PCC Input 
Default inputs 

(granite 
aggregate) 

Value obtained for 
RBMAC 

Aggregate type granite N/A 

Unit weight (pcf) 

150 125.5 to 128.2 
(using water-

reducing 
admixture)  

Poisson’s ratio 0.20 0.16 to 0.18 (at 28-
days) 

Coefficient of thermal expansion (in/in/°F) 5.58 × 10-6 4.4×10-6 to 6.6×10-6 
Thermal conductivity (BTU/(hr•ft•°F)) 1.25 0.533 
Heat capacity (BTU/(ft•°F)) 0.28 0.146 

 

 As shown in Table 7-6, the unit weight of RBMAC is over 20 pcf (320 kg/m3) 

less than the NCDOT specified input for concrete containing natural aggregates available 

in North Carolina.  Poisson’s ratio of the RBMAC is slightly less than the default input 

specified by NCDOT for locally available materials (FHWA 2010).   

 Although guidelines are presented regarding NCDOT default inputs for some 

PCC properties, many other M-EPDG inputs, including those for thermal properties of 

PCC used in pavements, are not provided.  AASHTO (2008) notes that “most agencies 

are not equipped with the testing facilities required to characterize the pavement 

materials” for portland cement concrete mixtures.  NCDOT indicates that the input for 

CTE is to be obtained from project files (FHWA 2010), which is not applicable to this 

work.  In lieu of material-specific testing, inputs for heat capacity and thermal 

conductivity are to be obtained from the MATS database developed by North Carolina 

State University (FHWA 2010), which was primarily developed for materials used in 
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flexible pavement design (not readily available as part of this work).  M-EPDG inputs 

recommended for the local natural aggregate type (granite), as shown in Table 7-6, were 

used.  It can be seen in Table 7-6 that tests on RBMAC yielded values for thermal 

characteristics that differ significantly from the inputs recommended for use for concrete 

containing granite aggregate.   

7.3.3 Comparison of M-EPDG Pavement Designs Using Recycled Brick Masonry 

Aggregate Concrete and Natural Aggregate Concrete 

 To assess the viability of RBMA for use in concrete pavement applications, it was 

desirable to compare JPCP pavements designed for similar traffic and exposure 

conditions that 1) use concrete containing a locally available natural coarse aggregate and 

2) use concrete containing RBMA as coarse aggregate.  M-EPDG software provides an 

excellent means for comparing the potential performance of RBMAC relative to concrete 

containing natural aggregate because concrete properties highly dependent on aggregate 

characteristics including the unit weight, CTE, thermal conductivity, and heat capacity 

are considered in the analysis models.  For comparison purposes, traffic and climate 

information are held constant, along with some materials-related properties that can be 

controlled, such as: cement content, concrete strength, and water-cement ratio.   

 Truck traffic information typical of two different types of roadways was used in 

design of the comparison pavement sections.  An AADTT value of 6000 was used to 

represent the typical truck traffic of an interstate, and an AADTT value of 600 was used 

to represent typical truck traffic of an arterial roadway pavement.  These AADTT values 

are similar to those used for North Carolina roadways, including the FHWA local 

calibration of M-EPDG (FHWA 2010).  Design speeds of 65 mph and 45 mph (104.6 
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km/hr and 72.4 km/hr) were used for the interstate and arterial roadway pavements, 

respectively.  The lane width was set at 12 ft, with 2 lanes in the design direction for all 

analyses.  The trucks in the design direction was input as 50%, with 95% trucks in the 

design lane.  Traffic growth was input at 3% compound growth.  Other M-EPDG input 

values associated with traffic, including the monthly and hourly volume adjustment 

factors, vehicle class distribution, mean wheel location, traffic wander standard deviation 

and axle configurations and load distributions were allowed to remain at the default 

settings.  All inputs are shown in the M-EPDG analysis summaries provided in Appendix 

D.   

 Local climate data for Charlotte was downloaded from the M-EPDG online 

database.  The depth to the water table was assumed to be 10 ft below grade.  The 

Integrated Climatic Model (ICM) surface shortwave absorptivity, which correlates to the 

amount of solar energy absorbed by the pavement (Wang et al. 2008) was allowed to 

remain at the default value of 0.85 (unitless) for each analysis. 

 For the crushed stone and soil subgrade, Level 3 “best estimated” default values 

for materials typically used in the Charlotte, North Carolina area were used.  Both the 

RBMAC pavements and conventional concrete pavements were designed on top of an 8 

in thick layer of crushed stone placed on an A-6 subgrade soil material.  The M-EPDG 

default values for the crushed stone base and A-6 subgrade material were used for each 

analysis and are shown in the M-EPDG analysis summaries provided in Appendix D.    

 Several structural design features of both the RBMAC pavement designs and the 

conventional concrete pavement designs were kept constant at values specified by 

NCDOT (FHWA 2010).  These include the joint spacing (15 ft, or 4.57 m), sealant type 
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(silicone), and dowel bar spacing (12 in, or 0.305 m).  The base type was specified as 

“granular,” with an erodibility index of “Erosion Resistant (3).”  The PCC-Base Interface 

was input as “full friction contact,” with a loss of full friction at 360 months.  No edge 

support was utilized.  Dowel bar diameter was 1.75 in (44.5 mm), as the software will not 

accept the 2 in (50.8 mm) dowel diameter specified by NCDOT for M-EPDG analysis 

(FHWA 2010).    

 To compare the required pavement thicknesses for RBMAC and conventional 

concrete pavement, only input values for properties that differed significantly between 

the two materials were changed for the M-EPDG analysis.  These properties included unit 

weight, Poisson’s ratio, CTE, thermal conductivity, and heat capacity.  The values used 

for the performance comparisons are shown in Table 7-7. 

 

Table 7-7:  JPCP inputs varied in M-EPDG analysis of conventional PCC and RBMAC 
pavements. 

 

Input 

Value used for 
conventional PCC 

(with granite 
aggregate) 

Value used for 
RBMAC (with 

higher coefficient of 
thermal expansion) 

Value used for 
RBMAC (with 

lower coefficient of 
thermal expansion) 

Unit weight (pcf) 150 130 130 
Poisson’s ratio 0.20 0.18 0.18 
Coefficient of thermal 
expansion (in/in/°F) 5.6×10-6 5.6×10-6 4.4×10-6 

Thermal conductivity 
(BTU/(hr•ft•°F)) 1.25 0.533 0.533 

Heat capacity 
(BTU/(ft•°F)) 0.28 0.20 0.20 

 

 The input values selected for the unit weight and Poisson’s ratio of the 

conventional PCC with granite aggregate is the same as the default value used in M-
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EPDG by NCDOT (FHWA 2010).  The input values selected for the unit weight and 

Poisson’s ratio of the RBMAC are the values obtained when testing BAC 6.2.   

 The value used of CTE of concrete using granite aggregate is the default value 

suggested by M-EPDG for concrete with granite aggregate, and it is also similar to the 

measured CTE for concrete containing granite coarse aggregate as determined by Sakyi-

Bekoe (2008).  Two values of the CTE for the RBMAC were selected for the 

comparative designs of the pavements.  The average value of CTE obtained by testing the 

RBMAC was similar to that of the concrete containing granite aggregate, 5.6×10-6 

in/in/°F (10.1×10-6 m/m/°C).  Klingner (2010) indicates that the typical CTE of brick is 

between 3×10-6 and 4×10-6 in/in/°F (5.4×10-6 and 7.2×10-6 m/m/°C).  As discussed in 

Section 6.4.3.2.6.1, “Coefficient of Thermal Expansion,” equipment to perform the CTE 

test to an accuracy useful for M-EPDG analysis is not currently available at UNC 

Charlotte.  It is suspected by the author that testing in accordance with AASHTO T336 

will result in a value lower than 5.6×10-6 in/in/°F (10.1×10-6 m/m/°C).  The lowest value 

of CTE determined by testing the RBMAC was 4.4×10-6 in/in/°F (7.92×10-6 m/m/°C).  

Therefore, in order to facilitate a comparison and a design sensitivity to CTE, a CTE of 

4.4×10-6 in/in/°F (7.92×10-6 m/m/°C) was also used in some of the RBMAC pavement 

designs.   

 Testing of BAC 6.2 yielded an average heat capacity value of 0.146 BTU/(ft•°F) 

(611 J/(kg•°C)).  This value is outside of the range of values considered reasonable for 

conventional concrete suggested for use in M-EPDG (AASHTO 2008), which is 0.22 to 

0.40 BTU/(ft•°F) (921 to 1,675 J/(kg•°C)).  As discussed in Section 6.4.4.2.6.3, Heat 

Capacity, the value suggested for use in design for conventional concrete is 0.28 
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BTU/(ft•°F) (1,172 J/(kg•°C)).  Initial (trial) runs of M-EPDG to design RBMAC 

pavement utilizing a heat capacity of 0.146 BTU/(ft•°F) (611 J/(kg•°C)) yielded 

inconsistent results, with almost all slabs predicted to experience transverse cracking 

within the first few years of service.  Kodide and Shin (2011) and Kodide (2010) report 

that use of heat capacity values lower than the minimum value of the suggested range can 

result in problems with the distress models.  Therefore, a heat capacity that is closer to 

the lowest value of the suggested range (0.20 BTU/(ft•°F), or 837 J/(kg•°C)) was used in 

subsequent M-EPDG analysis.  Reasonable predictions resulted when this value was 

used.  The value for thermal conductivity used for the RBMAC was the measured value 

for BAC 6.2.  It is noted that this value is significantly lower than the range suggested for 

use in M-EPDG, 1.0 to 1.5 BTU/(hr•ft•°F) (1.77 to 2.60 W/(m•K)).  Use of this value did 

not appear to cause the M-EPDG software to produce unreasonable results.  However, 

additional work could be performed in the future to confirm that these values did not 

affect the validity of the distress models.   

 Other values for both the RBMAC and conventional concrete pavement were kept 

constant to facilitate the comparison of the change in coarse aggregate type.  These input 

values are listed in Table 7-8.   Many of these values were those obtained through 

laboratory testing of the RBMAC, in particular, mixture BAC 6.2.  In order to facilitate 

the comparison of RBMAC and conventional concrete made with local granite 

aggregates, it was assumed that the 28-day modulus of rupture obtained using BAC 6.2 

could also be obtained by the conventional concrete using a similar cementitious content 

(575 pcy, or 341 kg/m3) at a similar w/c ratio (0.32). 
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Table 7-8:  JPCP inputs kept constant in M-EPDG analysis of conventional PCC and 
RBMAC pavement. 

 

Input 
Value used for both 

RBMAC and conventional 
concrete designs 

Cement type Type II 
Cementitious material content (pcy) 575 
Water/cement ratio 0.32 
PCC zero-stress temperature (°F) 88 
Ultimate shrinkage at 40% relative humidity 
(microstrain) 408 

Reversible shrinkage (% of ultimate shrinkage) 50% 
Time to develop 50% of ultimate shrinkage 
(days) 35 

Curing method Curing compound 
28-day PCC modulus of rupture (psi) 716 

 

 M-EPDG requests that the user input a coarse aggregate type, which is input as a 

name only, and does not trigger values used in the distress modeling.  The software will 

not run, however, without inputting the name of the coarse aggregate.  Options include a 

number of conventional coarse aggregates including quartzite, limestone, dolomite, 

granite, rhyolite, basalt, synetite, gabbro, and chert.  Since recycled brick masonry 

aggregate is not an option included in the software, effort was made to select an available 

aggregate type that had the closest composition (silicate and aluminate materials), along 

with a very fine grain size.  As shown in Appendix D, it was decided to use “rhyolite,” as 

it is an igneous rock which has experienced temperatures similar to the firing 

temperatures of clay brick and also has a very fine grain structure.   

 For the M-EPDG analysis, distress model calibration settings for rigid pavement 

were maintained at the default values.  These included:  
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• faulting coefficients and reliability model equations 

• cracking and fatigue coefficients and reliability model equations, and  

• ICM model coefficients.   

 Performance criteria, however, were set to the values used by NCDOT, as shown 

in Table 7-5.  The initial IRI was set at 75 in/mile, while the terminal IRI was set to 170 

in/mile.  The limit on transverse cracking was set to 10% slabs cracked.  The limit on 

mean joint faulting was set to 0.75 in (19.1 mm).  For each of the performance criteria, 

the desired reliability was set at 90%. 

 For each type of pavement, M-EPDG analyses were run using a concrete 

thickness of 11 in (279.4 mm), a thickness which allowed all the types of concrete 

pavements to pass the failure criterion for transverse cracking, joint faulting, and 

roughness.  Then an analysis of each pavement was run at successively thinner PCC 

thicknesses (in ¼ in increments) until one of the three failure criteria was met.  The 

minimum required concrete thickness to pass all three failure criterion was recorded, 

along with the predicted mode of failure for the pavement if the concrete thickness is 

reduced by ¼ in from the minimum thickness passing all three failure criterion. 

  For interstate pavements, with the AADTT set to 6000 and vehicle speeds set to 

65 mph, the minimum design thicknesses shown in Table 7-9 were obtained using M-

EPDG.  Similarly, arterial pavements, with the AADTT set to 600 and vehicle speeds set 

to 45 mph, the design thicknesses shown in Table 7-10 were obtained using M-EPDG.  A 

typical M-EPDG input summary for RBMAC pavement is shown in Appendix D (Figure 

D-1), along with the corresponding output reliability summary (Figure D-2).  A typical 
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M-EPDG input summary for conventional PCC pavement is also provided in Appendix D 

(Figure D-3), along with the corresponding output reliability summary (Figure D-4). 

 

Table 7-9:  Comparison of RBMAC and conventional PCC sections designed using M-
EPDG for pavement with traffic typical of interstate roadways. 

 
Type of 

pavement 
Coefficent 
of thermal 
expansion 
(in/in/°F) 

Thermal 
conductivity 

(BTU/(hr•ft•°F)) 

Heat 
capacity 

(BTU/(ft•°F)) 
 

Minimum 
required 
concrete 
thickness 

(in) 

Mode of 
failure (below 

90% 
reliability) 

Conventional 
PCC with 
granite 
aggregate 

5.6×10-6 1.25 0.28 10 
Transverse 
cracking (at 

9.75 in) 

RBMAC 
4.4×10-6 0.533 0.20 9.5 

Transverse 
cracking (at 

9.25 in) 

5.6×10-6 0.533 0.20 10.75 Terminal IRI 
(at 10.5 in) 

 

Table 7-10:  Comparison of RBMAC and conventional PCC sections designed using M-
EPDG for pavement with traffic typical of arterial roadways. 

 

Type of 
pavement 

Coefficent 
of thermal 
expansion 
(in/in/°F) 

Thermal 
conductivity 

(BTU/(hr•ft•°F)) 

Heat capacity 
(BTU/(ft•°F)) 

 

Minimum 
required 
concrete 
thickness 

(in) 

Mode of 
failure 

(below 90% 
reliability) 

Conventional 
PCC with 
granite 
aggregate 

5.6×10-6 1.25 0.28 8.5 
Transverse 
cracking (at 

8.25 in) 

RBMAC 
4.4×10-6 0.533 0.20 8.25 

Transverse 
cracking (at 8 

in) 

5.6×10-6 0.533 0.20 8.75 Terminal IRI 
(at 8.5 in) 

 

 M-EPDG analyses of pavement sections designed using RBMAC versus 

conventional PCC indicate that RBMAC pavement could provide adequate performance 
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at a thickness similar to, or slightly less than, PCC pavement.  For both the interstate and 

arterial pavements, the thinnest concrete pavement section was obtained for the RBMAC 

with all thermal characteristic inputs lower than those of the conventional PCC.  The 

differences in minimum required concrete thicknesses are more noticeable in the 

comparison of pavement sections for interstates than in the comparison of pavement 

sections for arterial roadways.   

 The sensitivity of the concrete’s CTE on M-EPDG designs is evident as shown by 

the comparison pavement sections in Table 7-9 and Table 7-10; the variation of the CTE 

of the RBMAC results in a change in the minimum required thickness.  This is in 

agreement with the findings of many recent studies that have shown that concrete 

pavement deterioration models in M-EPDG are very sensitive to aggregate 

characteristics, especially thermal behavior (Crawford et al. 2010 and Tanesi et al. 2010).  

 The CTE of concrete plays a large role in concrete pavement performance, as “the 

magnitudes of temperature-related pavement deformations are directly proportional to 

this value during early ages (i.e., within 72 h of paving) as well as during the pavement 

design life” (Mallela et al. 2005).  These temperature-related deformations affect curling-

induced stresses and axial stresses, which contribute to both top-down and bottom-up 

transverse cracking, as well as joint deterioration.  As discussed by Mallela et al. (2005), 

higher values of concrete’s CTE have been linked to: 

• Early-age random cracking caused by excessive longitudinal slab movement on a 

highly-resistant base, 

• Higher curling stresses, resulting in increased mid-slab transverse and 

longitudinal cracking, 
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• Larger amounts of slab support loss at early ages due to curling, 

• Larger joint openings during cooler seasons, 

• Greater magnitudes of corner deflections due to curling, and 

• Excessive joint opening and closing, resulting in loss of joint sealant and 

subsequent faulting. 

 Several studies have been performed to evaluate the role of concrete’s CTE on M-

EPDG pavement distress predictions.  Mallela et al. (2005) performed a sensitivity 

analysis on the CTE in M-EPDG and found that a higher value resulted in “increased top-

down cracking damage in pavements.”  A similar sensitivity analysis by Tanesi et al. 

(2007) indicated that predictions for slab cracking were more sensitive to changes in the 

CTE at higher CTE values than at lower CTE values.   

 RBMA produced using the Idlewild Elementary School demolition waste 

contained approximately 1/3 mortar material by volume (and by mass) and also contained 

some clay tile material.  Additionally, bricks from Idlewild Elementary School had cores 

(interior voids), and a significant amount of mortar was present within the cores.  It is 

anticipated that a lower mortar fraction could be obtained from other sources of RBMA, 

particularly from bricks that do not have cores.  The CTE of the RBMAC produced from 

this material would likely be closer to the published values of the CTE of brick, 3×10-6 

and 4×10-6 in/in/°F (5.4×10-6 and 7.2×10-6 m/m/°C) (Klingner 2010).  Therefore, M-

EPDG would predict more favorable (i.e. thinner) sections using RBMAC. 

 It can be seen in Table 7-9 and Table 7-10 that, for RBMAC pavement sections, 

when the CTE is increased, the failure mode changes from transverse cracking to 

terminal IRI (increase in roughness to unacceptable levels).  As discussed in Section 
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7.3.1, “Mechanistic-Empirical Pavement Design Guide (M-EPDG) Overview,” the 

deterioration model for smoothness includes an equation that considers the increase in the 

IRI value (in in/mi) by adding the increase in IRI attributable to slabs with transverse 

cracks, joints with spalling, and joint faulting.  Therefore, the IRI failure mode includes 

the influences of the two other failure modes (transverse cracking and joint faulting) 

(Tanesi et al. 2007).  It is possible that use of the larger input value for CTE, combined 

with the lower input values for heat capacity and thermal conductivity, resulted in the 

prediction of the IRI (roughness) mode of failure reaching the threshold reliability level 

(90%) prior to the transverse cracking failure mode.  Mallela et al. (2005) found that 

although “the effect of CTE on IRI is more sensitive to concrete strength, a marginal 

increase in CTE even at lower values resulted in significantly more roughness.”  Tanesi 

et al. (2005) found that “the higher the CTE, the greater the effect of δCTE [change in 

CTE] on the predicted IRI,” which may also support this finding.  

 It is noted that the testing to determine the heat capacity and thermal conductivity 

of the RBMAC were performed using materials characterization equipment readily 

available at UNC Charlotte.  M-EPDG indicates that testing to determine the heat 

capacity of concrete be performed in accordance with ASTM D2766, “Standard Test 

Method for Heat capacity of Liquids and Solids (AASHTO 2008).”  This test method 

uses a drop-method-of-mixtures calorimeter, which was not available at UNC Charlotte.  

The calorimeter used for this work (Sensys Evo TG-DSC) is a Calvet-type calorimeter.  

Both types of calorimeters measure changes in the voltage across a thermocouple with 

respect to changes in temperature.  Further testing and evaluation would need to be 

performed to determine whether the type of calorimeter used for this work adversely 
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affected the value of heat capacity obtained (in relation to typical values used in M-

EPDG).  

 M-EPDG also indicates that thermal conductivity should be measured in 

accordance with ASTM E1952, “Standard Test Method for Thermal Conductivity and 

Thermal Diffusivity by Modulated Temperature Differential Scanning Calorimetry,” 

which utilizes the modulated temperature differential scanning method (mDSC) of 

calorimetry.  This equipment is not currently available at UNC Charlotte, and therefore 

thermal conductivity testing was performed using the TCi technique, which computes 

thermal conductivity based on effusivity measurements.  Again, further testing and 

evaluation would need to be performed to determine whether the type of instrument (and 

therefore method of computation of thermal conductivity) used for this work adversely 

affected the value of thermal conductivity obtained (in relation to typical values used in 

M-EPDG). 

Section 7.3.4  Sensitivity of Slab Thickness to Thermal Property Inputs in M-EPDG for 

Recycled Brick Masonry Aggregate Concrete and Natural Aggregate Concrete 

 Analyses were performed to evaluate the sensitivity of pavement slab thickness in 

M-EPDG to the following thermal properties:  coefficient of thermal expansion, thermal 

conductivity, and heat capacity.  M-EPDG designs were performed in a manner similar to 

those in Section 7.3.3, “Comparison of M-EPDG Pavement Designs Using Recycled 

Brick Masonry Aggregate Concrete and Natural Aggregate Concrete,” except only 

thermal properties were varied, one property at a time, while all other properties were 

held constant at measured or default values.  For these sensitivity analyses, the inputs 
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listed below were held constant for all M-EPDG designs for both RBMAC and 

conventional PCC: 

1. AADTT = 6000 trucks per day; design speed = 65 mph; lane width = 12 ft; 2 

lanes in the design direction. Traffic growth = 3% compound growth. 

2. Local climate data for Charlotte; depth to water table = 10 ft; surface shortwave 

absorptivity = 0.85. 

3. 8 in crushed stone base; Level 3 default input values for stone base properties. 

4. A-6 subgrade soil; Level 3 default inputs for soil properties with the exception of 

resilient modulus (6,000 psi). 

5. Joint spacing = 15 ft; silicone joint sealant; 12 in dowel bar spacing; 1.75 in 

dowel bar diameter. 

6. Granular-type base with erodibility index of “Erosion Resistant (3)”; PCC-Base 

interface = “full friction contact” with loss of full friction at 360 months.   No 

edge support. 

7. For the conventional PCC with granite aggregate, the unit weight = 150 pcf and 

Poisson’s ratio = 0.20;  other values for conventional PCC inputs are those listed 

in Table 7-8. 

8. For the RBMAC, the unit weight = 130 pcf and Poisson’s ratio = 0.18.  Other 

values for RBMAC concrete inputs are those listed in Table 7-8. 

9. Performance criteria values were set to those used by NCDOT, shown in Table 7-

5, with the desired reliability set to 90% for each performance criteria. 

 The results of the sensitivity analyses for CTE are shown in Table 7-11 and in 

Figure 7-1.  The RBMAC is more sensitive to changes in CTE at higher values.  
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However, these inputs would not be likely, due to the relatively low CTE of brick.  At 

lower (more realistic) CTE values, the predicted minimum design thicknesses of 

RBMAC varied over a range of only approximately ¼ in.  For RBMAC pavements, at 

lower CTE values, the predicted failure mode (for a 0.25 in thinner slab) was transverse 

slab cracking.  However, at higher CTE values, the predicted mode of failure for 

RBMAC pavements was roughness (IRI).   

 
Table 7-11:  Sensitivity of slab thickness to CTE input in M-EPDG for RBMAC and 

conventional PCC pavements. 
 

 Minimum slab thickness (in) 

Coefficient of 
Thermal Expansion 

(×10-6 in/in/°F) 

Conventional PCC with granite 
aggregate RBMAC 

thermal conductivity = 1.25 
BTU/(hr·ft·°F) 

thermal conductivity = 0.533 
BTU/(hr·ft·°F) 

heat capacity = 0.28 BTU/(ft·°F) heat capacity = 0.20 BTU/(ft·°F) 

3.5 9.50 9.25 
4.0 9.50 9.50 
4.4 9.75 9.50 
5.0 9.75 10.00 
5.6 10.00 10.75 
6.0 10.00 11.50 
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Figure 7-1:  Sensitivity of slab thickness to CTE input in M-EPDG for RBMAC and 
conventional PCC pavements. 

 

 For conventional PCC slabs, the predicted minimum thickness increased nearly 

linearly with increasing CTE.  Higher CTE values combined with low heat capacity and 

thermal conductivity values resulted in a non-linear relationship between predicted slab 

thickness and CTE for RBMAC.  Several researchers (Tanesi et al. 2007, Crawford et al. 

2010, and others) cite CTE as the key thermal property affecting concrete performance in 

M-EPDG.  This sensitivity analyses supports this previous research. 

 The results of the sensitivity analyses for thermal conductivity are shown in Table 

7-12 and in Figure 7-2.  The predicted RBMAC slab thickness was not very sensitive to 

thermal conductivity, with the same minimum slab thickness required for thermal 

conductivities between the measured value of 0.533 BTU/(hr·ft·°F) and 1.25 
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BTU/(hr·ft·°F).  If the thermal conductivity value was reduced to 0.5, a significant 

decrease in predicted minimum slab thickness occurs.  The unrealistic results may be due 

to the thermal conductivity value being too far from the suggested input for design, 1.25 

BTU/(hr·ft·°F).   

 
Table 7-12:  Sensitivity of slab thickness to thermal conductivity input in M-EPDG for 

RBMAC and conventional PCC pavements. 
 

 Minimum slab thickness (in) 

Thermal 
Conductivity 

(BTU/(hr·ft·°F)) 

Conventional PCC with 
granite aggregate RBMAC 

CTE = 5.6×10-6 in/in/°F CTE = 4.4×10-6 in/in/°F 
heat capacity = 0.28 

BTU/(ft·°F) heat capacity = 0.20 BTU/(ft·°F) 

0.5 Not computed for this value 8.75 
0.533  Not computed for this value 9.5 
0.75 11.75 9.5 

1 10.5 9.5 
1.25 10 9.5 
1.5 10 Failed ICM stability check, no result 
1.75 10  Failed ICM stability check, no result 
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Figure 7-2:  Sensitivity of slab thickness to thermal conductivity input in M-EPDG for 
RBMAC and conventional PCC pavements. 
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heat capacity and thermal conductivity resulting in ICM stability failure fall within the 

“ICM stability check failure zone” as defined by Kodide and Shin (2011) using Eq. 7-1. 

 Pavement designs using conventional PCC with granite aggregate were much 

more sensitive to thermal conductivity, particularly at low values of thermal conductivity.  

Above the suggested M-EPDG input of 1.25 BTU/(hr·ft·°F), predicted minimum slab 

thicknesses remained constant at 10 in.  However, predictions indicated that successively 

thicker slabs were required at lower values of thermal conductivity.  When thermal 

conductivity was reduced to 0.75 BTU/(hr·ft·°F), M-EPDG predicted that the pavement 

needed to be 1.75 in thicker than the minimum thickness predicted when thermal 

conductivity is input at the recommended 1.25 BTU/(hr·ft·°F).  This may indicate that M-

EPDG is providing unrealistic results, possibly because minimum slab thicknesses were 

not identified for conventional PCC pavements with thermal conductivities below 0.75 

BTU/(hr·ft·°F). 

  The results of the sensitivity analysis for heat capacity are shown in Table 7-13 

and in Figure 7-3.  As indicated in Table 7-13, unreliable results were obtained for the 

conventional PCC pavement when the heat capacity was input as 0.16 BTU/(ft·°F).  At 

this input value, contrary to expectations, increasing slab thicknesses above 10.25 in 

resulted in M-EPDG predicting failures much earlier than the 30 year design life.  These 

results were considered inconsistent at this heat capacity value and therefore no minimum 

slab thickness is reported. 
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Table 7-13:  Sensitivity of slab thickness to heat capacity input in M-EPDG for RBMAC 

and conventional PCC pavements. 
 

 Minimum slab thickness (in) 

Heat Capacity 
(BTU/(ft·°F)) 

Conventional PCC with granite 
aggregate RBMAC 

CTE = 5.6×10-6 in/in/°F CTE = 4.4×10-6 in/in/°F 
thermal conductivity = 1.25 

BTU/(hr·ft·°F) 
thermal conductivity = 0.533 

BTU/(hr·ft·°F) 
0.16 Inconsistent results*  9.75 
0.2 10.25 9.5 

0.24 10 9.25 
0.28 10 9.25 
0.32 10 9.25 
0.36 9.75 9 
0.4 9.75 9 

*At heat capacity = 0.16 BTU/(ft·°F), PCC with granite aggregate began to show successively earlier 
failure (% of slabs showing transverse cracks) for increasing thicknesses (greater than 10.25 in.), and 
results were therefore deemed inconsistent. 

 
 

 

Figure 7-3:  Sensitivity of slab thickness to heat capacity input in M-EPDG for RBMAC 
and conventional PCC pavements. 
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 As discussed previously in section 6.4.4.2.6.3, “Heat Capacity,” Wang et al. 

(2008) state that “the heat capacity of PCC is not a sensitive parameter for pavement 

design.”  As can be seen in Table 7-13 and Figure 7-3, M-EPDG predicts that thicker 

slabs are required at lower heat capacity inputs.  The slope of best-fit lines for predicted 

slab thickness for RBMAC and conventional PCC pavements is similar, indicating a 

similar sensitivity to heat capacity.  Based on the results observed in this sensitivity 

study, it can be stated that the M-EPDG predicted minimum slab thicknesses are less 

sensitive to heat capacity than to the coefficient of thermal expansion.   

7.4 Proposed Test Pavement Utilizing Recycled Brick Masonry Aggregate Concrete in 

Charlotte, North Carolina 

 No RBMAC construction, including RBMAC pavement, exists in the United 

States.  Although laboratory testing indicates that RBMAC can exhibit acceptable 

mechanical properties and durability performance for use in pavement applications, field 

studies are necessary to confirm that RBMAC exhibits suitable performance under actual 

service conditions.  As part of this work, a test pavement is proposed.  Details on the 

design of the test pavement, its predicted performance, an instrumentation plan, and a 

materials sampling and testing plan, are provided in this section.   

7.4.1 Overview of Proposed Project 

 It is planned that the test pavement will be constructed at D.H. Griffin Crushing 

and Grading in Charlotte, North Carolina.  The proposed pavement will be approximately 

60 ft (18.3 m) wide by approximately 200 ft (61.0 m) long.  Half of this test pavement 

will be constructed of RBMAC, while the other half will be constructed using a similar 

conventional concrete mixture (using locally available natural aggregate).  Both sections 
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will be constructed in the travel lanes, in line with the weigh scales that serve the 

crushing and grading facility.  A photograph of the site is shown in Figure 7-4.   

 

 

Figure 7-4:  Overview of the proposed test pavement site. 

 

 Currently, a deteriorated undoweled JPCP of varying thicknesses and composition 

is present at the site.  The existing pavement is severely distressed, exhibiting extensive 

cracking and deflection at its joints.  Moisture ingress into the subgrade has likely 

resulted in its substantial weakening.  It is proposed that the existing concrete pavement 

will be removed and the subgrade prepared as required to provide suitable support for the 

new pavement.  This may include removal and replacement of the existing subgrade 

material to a depth that will ensure that sound foundation soils can be backfilled.   
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7.4.2 Design of Recycled Brick Masonry Aggregate Concrete Test Pavement and Control 

Pavement 

 The test pavement and the control pavement were designed using M-EPDG.  

Level 1 input values (site specific) were utilized wherever possible, including the input 

values for the RBMAC.  Level 2 input values (correlated data) then Level 3 inputs 

(default values) were used when Level 1 input values were not available.  When 

appropriate, the M-EPDG input values used by NCDOT (as shown in Table 7-5) were 

used in the design.  The M-EPDG input data used for the RBMAC test pavement, along 

with the reliability summary (output), are shown in Appendix D in Figures D-5 and D-6.  

The M-EPDG input data used for the conventional PCC control pavement, along with the 

reliability summary (output), are shown in Appendix D in Figures D-7 and D-8. 

 A design life of 30 years was selected for the test pavement.  D.H. Griffin 

personnel provided information to be used in the pavement design, including truck 

weights, axle configurations, and trip counts.  For design purposes, pavement 

construction was assumed to begin in October 2011, with the pavement opening to traffic 

in January 2012.  NCDOT performance criteria for concrete pavements were used as 

limits and reliability levels for IRI, transverse cracking, and mean joint faulting.  These 

limits and reliability levels are shown in Table 7-14.   

 

Table 7-14:  Performance criteria used in M-EPDG design of test pavement and selected 
limits and reliability levels. 

 
Performance Criteria Limit Reliability 
Initial IRI (in/mi) 63  
Terminal IRI (in/mi) 170  90% 
Transverse cracking (% slabs cracked) 1 90% 
Mean joint faulting (in) 0.75 90% 
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 Trucks entering the facility carry loads of demolition rubble headed to the 

crushing and grading operations.  Trucks leaving the facility typically contain crushed, 

graded recycled aggregate material or are empty.  D.H. Griffin personnel indicated that 

the one-day maximum traffic loading experienced by the entrance drive where the 

proposed test pavement will be constructed is 293 tri-axle trucks at approximately 78,060 

lb each.    

 For this analysis, the initial one-way AADTT was rounded up to 300.  D.H. 

Griffin personnel indicated that they did not anticipate any growth at the facility over the 

design lifetime.  However, to be conservative, a compound growth factor of 2% was 

utilized.  In order to account for the directionality of the provided traffic information, M-

EPDG inputs included 100% trucks in the design direction and 100% of the trucks in the 

design lane.  Monthly and hourly adjustment factors were left as default values, as were 

vehicle-specific inputs such as axle configuration and spacing, tire spacing, wheelbase 

spacing, and tire pressure.  These default values are shown in Appendix D in Figures D-5 

and D-7.      

 Traffic information provided by D.H. Griffin did not include information on 

weight distribution between the front single axle and the rear triple axles of the trucks.  

Therefore, the websites of several truck manufacturers were reviewed in order to 

determine the typical maximum axle loads for similar tri-axle trucks, along with typical 

spacing between axles.  Based upon information posted on the manufacturers’ websites, it 

was decided that truck traffic at the subject site should be classified as Class 7 vehicles 

for the M-EPDG designs.  Since the test pavement will experience loads from almost 

exclusively tri-axle trucks, M-EPDG inputs were adjusted to allow for 100% heavy 
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vehicles, Class 7.  Default load equivalency factor (LEF) values for Class 7 vehicles are 1 

single axle, 0.26 tandem axle and 0.83 tridem axle.  Other pavement-specific inputs also 

included with the traffic information in this M-EPDG analysis included the design lane 

width (assumed to be 12 ft, or 3.66 m), traffic wander (10 in, default value) and mean 

wheel location (18 in from the lane marking, default value).   

 Joint spacing for the test pavement is proposed at 12 ft (3.66 m), with 1.75 in 

(44.5 mm) diameter dowel bars spaced at 12 in (304.8 mm) on-center.  No sealant is 

planned for the joints.  It is anticipated that the test pavement will be included in a larger 

concrete pavement comprising several acres, which will be much wider than the drive 

lanes.  Therefore, the edge support was modeled as tied shoulders with widened slabs.   It 

is assumed that the area of concrete pavement not included in the test pavement will 

contain natural aggregates. 

 For the subject site, climatic data for the Charlotte-Douglas airport was 

downloaded from the M-EPDG website and utilized in the analysis.   The depth to the 

water table was assumed to be 10 ft (3.05 m).  In order to design both the RBMAC test 

pavement and the conventional concrete control section, all inputs other than those listed 

in Table 7-15 were held constant.  Inputs used in the analysis, including the default 

values, are included in Figures D-5 and D-7. 
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Table 7-15:  M-EPDG Inputs for the RBMAC test pavement and conventional concrete 

control pavement.  
 

PCC Input Value 

Value used for 
control section 

(PCC with natural 
aggregate) 

Value used for 
RBMAC test 

section 

Aggregate type granite rhyolite 
Unit weight (pcf) 150 130  
Poisson’s ratio 0.20 0.18 
Coefficient of thermal expansion 
(in/in/°F) 5.6 × 10-6 4.4×10-6 

Thermal conductivity 
(BTU/(hr•ft•°F)) 

1.25 0.533 

Heat capacity (BTU/(ft•°F)) 0.28 0.20 
 
 

 The proposed RBMAC test pavement and the control pavement were designed 

using an unbound crushed stone base, 12 in (0.305 m) thick, with an elastic modulus of 

30,000 psi (206.8 MPa).  Poisson’s ratio was specified as 0.35, with the coefficient of 

lateral pressure allowed to remain at the default value of 0.5.  The gradation and 

plastisticity index values were left at the default values (shown in Appendix D).  The 

ICM included in the software was used to calculate or derive other parameters for the 

crushed stone base, including the maximum dry unit weight (127.2 pcf, or 2038 kg/m3), 

specific gravity of solids (2.70), and moisture-related parameters, such as: saturated 

hydraulic conductivity, optimum gravimetric water content, and calculated degree of 

saturation.    

 Information on the characteristics of the soils underlying the subject site was 

obtained from the United States Department of Agriculture (USDA) Natural Resources 

Conservation Service Web Soil Survey (WSS).  The WSS contains soils information 

obtained by the National Cooperative Soil Survey.  This website allows the user to define 
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an area of interest (in this case, by address) and provides soils information including the 

USDA classification.  Additional information on some soil properties is also available for 

some locations.  According to the WSS, the soils underlying the subject area (where the 

test pavement is to be constructed) are sandy clay loam, CeB2 or CeD2.   

 Using the grain size distribution presented in the USDA textural classification 

triangle, the soil is likely comprised of approximately 60% sand, 30% clay, and 10% silt.  

With this grain size distribution, the soil can be classified in the Unified Classification 

System as an SC (clayey sand).  Due to the likelihood of a low liquid limit, the soil could 

be considered either an A-4 or an A-6 by the AASHTO Classification System.  In order 

to better classify the soil within the AASHTO system (either A-4 or A-6), Atterburg 

limits testing would need to be performed to determine whether the plasticity index (PI) 

is greater than 10 (A-6) or less than 10 (A-4) (Das 1994).   

 For an A-6 soil, M-EPDG indicates that a resilient modulus value within the range 

of 12,000 to 24,000 psi (82.7 to 165.5 MPa) should be used, with 14,000 psi (110.3 MPa) 

recommended.  For an A-4 soil, a resilient modulus value within the range of 13,000 to 

29,000 psi (89.6 to 200.0 MPa) is suggested, with 15,000 psi (103.4 MPa) recommended.   

Based on experience with local soils, these values are quite high and could result in an 

unconservative pavement section, falsely indicating successful performance against the 

M-EPDG performance criteria.  It is also unclear whether the existing pavement is sitting 

on fill or residual soils.  Without having specific information obtained from on-site 

borings and soil tests, it was decided that a more conservative (lower) value of resilient 

modulus should be used in these designs.  A resilient modulus of 6,000 psi was thus used 

for the subgrade resilient modulus input. 
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 The Gradation and Plasticity Index values were allowed to remain the default 

values.  Using the ICM data and modeling, additional soil properties were computed 

and/or derived by the M-EPDG software.  These included maximum dry unit weight 

(118.4 pcf), specific gravity of solids (2.70), and moisture-related parameters such as: 

saturated hydraulic conductivity, optimum gravimetric water content, and calculated 

degree of saturation.  These values are shown in Appendix D in Figures D-5 and D-7. 

7.4.3 M-EPDG Predicted Performance of Proposed Test Pavement and Control Pavement 

 Based upon the input values and assumptions previously described, M-EPDG 

analyses indicated that the proposed RBMAC and the conventional PCC (control) 

pavement sections, summarized in Table 7-16, should perform satisfactorily over the 30 

year design life.  The predicted reliabilities for the proposed pavement sections are shown 

in Table 7-17.  It is noted that the required thickness of the control pavement section, 

which will be comprised of concrete with natural aggregates, needs to be slightly thicker 

than the RBMAC pavement in order to provide a similar reliability in M-EPDG distress 

modeling.  However, it is likely that both pavement sections would be constructed to the 

same thickness (9.5 in, or 241.3 mm) for constructability reasons. As indicated 

previously, output from the M-EPDG software for the proposed test pavement and the 

control pavement sections are included in Appendix D in Figures D-6 and D-8.   
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Table 7-16:  Layer thicknesses for proposed RBMAC test pavement and control 
pavement. 

 

Layer Control pavement (PCC with 
natural aggregate) RBMAC test pavement 

JPCP PCC with locally 
available natural 
aggregate (granite) 

10.5 in RBMAC 9.25 in 

Base Crushed stone base 12 in Crushed stone base 12 in 
Subgrade 

Subgrade soils, A-4, 
with 6,000 psi 
resilient modulus  

Infinite 
Subgrade soils, A-
4, with 6,000 psi 
resilient modulus  

Infinite 

 
 

Table 7-17:  Predicted reliabilities for the proposed RBMAC test pavement and control 
pavement. 

 

Performance 
criteria 

Distress 
target 

Reliability 
target 

Distress 
predicted 

for control 
pavement 

Reliability 
predicted 

for control 
pavement 

Distress 
predicted 

for 
RBMAC 

test 
section 

Reliability 
predicted 

for 
RBMAC 

test section 

Accept-
ability 

Terminal IRI 
(in/mi) 170  90% 69.9  99.999% 72.4 99.99% Pass 

Transverse 
cracking (% 
slabs cracked) 

15 90% 3.5 97.03% 4.2 95.51% Pass 

Mean joint 
faulting (in) 0.75  90% 0.002 99.999% 0.004 99.999% Pass 

 
 

7.4.4 Instrumentation Plan 

 As part of the construction of the test pavement and control section, 

instrumentation will be placed in the pavement and subgrade to allow data collection to 

assist in performance evaluation of the RBMAC test pavement.  The proposed 

instrumentation plan focuses on monitoring strains in the pavement section and stresses 

in the underlying soil.  A detailed sampling plan, including the location and number of 
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sensors to be installed, will be developed once a budget is established and funding for the 

test pavement is obtained. 

 Stresses experienced by subgrade soils underlying the test pavement can be 

obtained using soil pressure cells.  These pressure cells will be installed on the prepared 

subgrade soil prior to placement of the stone base layer.  These sensors typically consist 

of a liquid-filled cell and a pressure transducer.  Semi-conductor transducers are utilized 

in these cells in order to allow them to measure dynamic pressures, which cannot be as 

accurately measured using traditional vibrating wire strain gage technology.  Thermistors 

included in many models of these sensors can provide temperature readings at the 

subgrade/base interface.   

 In order to assess the strains experienced by the pavement, rebar strainmeters will 

be installed prior to construction of the pavement.  The test pavement is designed to be 

unreinforced (JPCP), but lengths of rebar could be placed at strategic locations and 

depths in order to utilized rebar strainmeters to obtain strain data.  These rebar 

strainmeters, or “sister bars” consist of a length of reinforcing steel (rebar) on which a 

vibrating wire strain gage has been mounted.  Good contact between the rebar/strainmeter 

and the concrete ensures that the strains measured by the strainmeter are the same as the 

strains in the surrounding concrete.  Thermistors are also included in many models of 

these transducers, which allow temperature readings of the surrounding concrete to be 

recorded. 

 Dial gauges may also be utilized to measure curling deflections (Yu et al. 1998) 

as well as joint deflections.  Additional temperature sensors can be installed at different 

depths (such as top, middle, bottom, and ¼-depth points) in order to collect data to 
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produce temperature gradients.  Temperature moisture sensors have also been 

successfully utilized in other similar projects (Weyer and Ogunro 2011).  Temperature 

and moisture data will be useful in assessing pavement responses to dimensional changes 

in the concrete pavement due to temperature and moisture gradients.   

 Data from the embedded soil pressure cells, rebar strainmeters, and other sensors 

will be collected and stored using a high-speed data acquisition unit.  High-speed data 

acquisition units, suitable for recording the response of pavement layers to dynamic 

traffic loads, need to be capable of obtaining a large number of samples over a short time 

period, typically greater than 100,000 samples per second (Weyer and Ogunro 2011). 

7.4.5 Materials Sampling and Testing Plan 

 Evaluation of the proposed RBMAC test pavement will also include tests of the 

pavement materials (soil subgrade, aggregate base, and concrete) prior to and after 

construction of the pavement.  Soils test reports for the subject site are not presently 

available.  Therefore, as part of the fieldwork prior to construction of the test pavement, 

testing of the subgrade soils will be performed to verify that the parameters used in the 

M-EPDG designs of the test pavement reasonably reflect actual site conditions.  Due to 

the importance of the resilient modulus as an input, testing following AASHTO T307, 

“Standard Method of Test for Determining the Resilient Modulus of Soils and Aggregate 

Materials” will be performed, if possible.   

 If undisturbed samples (for resilient modulus or other testing) cannot be obtained, 

alternate field tests will be performed in order to assess the in-place properties of the 

subgrade soil.  A series of test borings will be performed along the proposed roadbed to 

depths of at least five ft below the planned elevation of the roadbed.   Testing may 
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include using a dynamic cone penetrometer (DCP) in accordance with ASTM D6951, 

“Standard Test Method for Use of the Dynamic Cone Penetrometer in Shallow Pavement 

Applications” or in-place stiffness testing to determine the California Bearing Ratio 

(CBR) in accordance with AASHTO T193, “Standard Method of Test for the California 

Bearing Ratio.”  This information can be used to provide a reasonable estimate of the 

soil’s resilient modulus of the soil for use in M-EPDG analyses. 

 For the proposed M-EPDG pavement design, soils information was obtained from 

the USDA Natural Resources Conservation Service Web Soil Survey.  To verify soil 

properties used in the M-EPDG design, bulk samples of subgrade material should be 

removed for laboratory testing and analysis prior to beginning construction.  Tests that 

should be performed are outlined in Table 7-18.   

 

Table 7-18:  Subgrade soil testing to be performed prior to construction of the proposed 
test pavement. 

 
Property ASTM or AASHTO Standards 
Classification tests ASTM D2487, “Standard Practice for 

Classification of Soils for Engineering Purposes 
(Unified Soil Classification System)” or AASHTO 
M145, “Standard Specification of Soils and Soil-
Aggregate Mixtures for Highway Construction 
Purposes” 

Atterberg limits ASTM D4318, “Standard Test Methods for Liquid 
Limit, Plastic Limit, and Plasticity Index of Soils” 

Moisture content ASTM D 2216, “Standard Test Methods for 
Laboratory Determination of Water (Moisture) 
Content of Soil and Rock by Mass” or AASHTO 
T265, “Standard Method of Test for Laboratory 
Determination of Moisture Content of Soils” 

 

 As part of this work, the supply of RBMA material created from the Idlewild 

Elementary School demolition site was exhausted.  A new source of RBMA will need to 
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be identified for use in the test pavement.  Prior to construction of the test pavement, 

testing will need to be performed to confirm that the properties of the RBMA obtained 

from the new source will allow it to be used in RBMAC mixtures that are acceptably 

similar to those used in the M-EPDG design of the test pavement.  Trial mixtures of the 

concrete utilizing the new RBMA will be batched and tested in order to confirm that the 

mechanical properties of the RBMAC used in the M-EPDG design can be obtained with 

the new RBMA.  Tests that should be performed on the RBMA should include those 

outlined in Chapter 3, “Testing Program for Characterization of Recycled Materials,” and 

tests that should be performed on the RBMAC include those outlined in Chapter 6, 

“Testing Program for Recycled Brick Masonry Aggregate Concrete.”  If the properties of 

the RBMA and the RBMAC are not similar to those already used in the M-EPDG 

designs, new designs should be performed using the new properties in order to revise the 

test pavement section thicknesses, if necessary. 

 During construction of the test pavement, testing should be performed in order to 

assess the fresh and hardened properties of the RBMAC and the conventional concrete 

used in the control section.  These tests should include those listed in Tables 7-19 and 7-

20.  Additionally, testing to evaluate the hardened concrete characteristics typically 

linked to durability performance should be performed.  These tests are listed in Table 7-

21.   
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Table 7-19:  Fresh property tests to be performed during placement of RBMAC and 
conventional concrete. 

 
Property ASTM or AASHTO Standards 
Slump ASTM C43, “Standard Test Method for Slump of 

Hydraulic-Cement Concrete.” 
Air content, unit weight, and yield ASTM C138, “Standard Test Method for Density (Unit 

Weight), Yield, and Air Content (Gravimetric) of 
Concrete.” 

 

Table 7-20:  Hardened property tests to be performed on specimens cast from RBMAC 
and conventional concrete. 

 
Property ASTM or AASHTO Standards 
Compressive strength ASTM C39, “Standard Test Method for Compressive 

Strength of Cylindrical Concrete Specimens.” 
Modulus of elasticity and 
Poisson’s ratio 

ASTM C138, “Standard Test Method for Static Modulus 
of Elasticity and Poisson’s Ratio of Concrete in 
Compression.” 

Splitting tensile strength ASTM C496, “Standard Test Method for Splitting 
Tensile Strength of Cylindrical Concrete Specimens.” 

Flexural strength (modulus of 
rupture) 

ASTM C78, “Standard Test Method for Flexural Strength 
of Concrete (Using Simple Beam with Third-Point 
Loading).” 

Drying shrinkage ASTM C531, “Standard Test Method for Linear 
Shrinkage and Coefficient of Thermal Expansion of 
Chemical-Resistant Mortars, Grouts, Monolithic 
Surfacings, and Polymer Concretes.”  

Thermal expansion AASHTO TP-60, “Coefficient of Thermal Expansion of 
Hydraulic Cement Concrete.” 

Thermal conductivity ASTM E 1952, “Standard Test Method for Thermal 
Conductivity and Thermal Diffusivity by Modulated 
Temperature Differential Scanning Calorimetry.” 

Heat capacity ASTM D 2766, “Standard Test Method for Heat capacity 
of Liquids and Solids.” 
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Table 7-21: Durability tests to be performed on specimens cast from RBMAC and 
conventional concrete. 

 
Property ASTM or AASHTO Standards 
Permeability and water absorption Figg method outlined in ACI 228.2R-98, “Nondestructive 

Test Methods for Evaluation of Concrete in Structures.”   
Freeze-thaw durability ASTM C666, “Standard Test Method for Resistance of 

Concrete to Rapid Freezing and Thawing.” 
Chloride resistance ASTM C1202, “Standard Test Method for Electrical 

Indication of Concrete’s Ability to Resist Chloride Ion 
Penetration.” 

Surface resistivity AASHTO TP95-2011, “Standard Method of Test for 
Surface Resistivity Indication of Concrete’s Ability to 
Resist Chloride Ion Penetration.” 

 

 To assess the performance of the test pavement over time, core samples will be 

periodically removed from the test pavement and petrographic analysis and laboratory 

testing will be performed.  It is anticipated that sampling and testing will be performed 

when the pavement has reached the age of six months, one year, two years, three years, 

five years, and subsequently thereafter for an undetermined amount of time.  Several 

cores will be obtained immediately after construction of the pavement in order to prepare 

reference specimens for petrographic comparison.  Cores will be removed from areas of 

the test pavement that do not interfere with sensors collecting other data.  Petrographic 

analysis will be performed in general accordance with ASTM C856, “Petrographic 

Examination of Hardened Concrete.”  Microscopic observations will include: 

• Observation of the general characteristics of the concrete, including the paste, 

aggregates, and air void system. 

• Observation of microcracks present within the paste and/or aggregates. 

• Observation of secondary deposits evident within voids and/or microcracks, or 

around aggregate perimeters. 
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 Additionally, the air contents of samples will be quantitatively determined using 

the procedure outlined in ASTM C457, “Standard Test Method for Microscopical 

Determination of Parameters of the Air-Void System in Hardened Concrete.”  This 

information will be useful in assessing the freeze-thaw performance of the RBMAC. 

7.5 Summary and Concluding Remarks 

 RBMAC is currently not used in construction applications in the United States, 

and tests to characterize this material have only been performed in studies abroad.  In this 

study, data on RBMA and RBMAC produced using local RBMA was obtained.  Testing 

of RBMAC mechanical properties, as well as several durability performance 

characteristics, indicates that RBMAC can likely provide acceptable performance in 

pavement applications.  Currently, the 2012 NCDOT Standard Specifications do not 

allow RBMAC to be used in pavement concrete, as the use of recycled aggregates is 

limited to crushed concrete.  Recycled aggregates are also limited to Class B (lower 

grade) uses.  A review of currently applicable NCDOT specifications for aggregates used 

in concrete, as well as specifications for concrete used in pavement applications, indicates 

that RBMAC mixtures prepared as part of this work could qualify for use in pavement 

applications based upon performance in laboratory tests and other criteria based on 

mixture proportions. 

 Many transportation agencies, including NCDOT, are considering implementation 

of the M-EPDG method of pavement design.  M-EPDG allows the designer to input 

information for more material properties and performance characteristics than previous 

pavement design methodologies, and distress prediction models are very advanced.  A 

RBMAC pavement and a conventional PCC pavement (containing locally available 
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aggregates) were designed for both arterial and interstate traffic loading, and similar 

minimum pavement thicknesses were obtained.  Due to the brick content of RBMAC, the 

CTE, heat capacity, and thermal conductivity can be lower than that of conventional 

PCC.  Using these lower values for the thermal property inputs, M-EPDG predicts a 

design thickness of the RBMAC pavement that is thinner than the conventional concrete 

pavement.   

 Additional, possibly more accurate, testing of thermal properties is suggested in 

order to confirm the thermal input properties used in M-EPDG designs for both the 

RBMAC and the conventional concrete.  Specifically, CTE testing of RBMAC in 

accordance with AASHTO T336 should be performed, with the test results compared to 

those using the appropriate calibration specimen. 

 As discussed previously in Section 7.3.3, Comparison of M-EPDG Pavement 

Designs Using Recycled Brick Masonry Aggregate Concrete and Natural Aggregate 

Concrete, values for unit weight, heat capacity, and thermal conductivity of RBMAC are 

outside the suggested range for M-EPDG.  It is possible that these values affect the 

validity of the distress model predictions.  If RBMAC is to be used in M-EPDG design, 

additional study on the influence of these parameters on the M-EPDG models should be 

performed. 

 Testing and evaluation of the test pavement will provide valuable insight into the 

suitability of RBMAC for concrete pavement applications.  In addition to simply being a 

“new,” untried aggregate for concrete pavements, RBMA has a relatively higher LA 

Abrasion value than conventional aggregates.  In-place assessment of the performance of 

a test pavement section will allow entities such as NCDOT to determine whether this 
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waste material could be used as a cost-effective component of concrete pavements that 

provide satisfactory field performance.  Even if a slightly thicker pavement section is 

required, the savings realized may warrant the use of RBMAC for economic reasons.   

 The transportation industry has shown increasing interest in identifying uses for 

marginal aggregates (both virgin aggregates and other materials), which do not meet the 

standards and specifications for a particular application. Marginal aggregates have 

successfully been used in the lower layer of two-lift PCC pavements (Hooker 2011) 

where abrasion resistance is not critical, and in concrete used on lower traffic areas such 

as roadway shoulders (Haque and Ward 1981).  Similarly, NCDOT could also use 

RBMAC in the lower-lift of two-lift PCC pavements, in roadway shoulders, or in Class B 

concrete.  

 Although it does not currently meet NCDOT standards, RBMAC could provide 

satisfactory service in private roadways and other privately owned pavements, including 

both drive lanes and parking lots.  Due to the increase in haul costs over the past years, 

RBMA may be a more economical choice of aggregate for roadways or other paved areas 

in the vicinity of an existing brick masonry structure being demolished.   The demolished 

brick masonry could be crushed on-site and reused in concrete as aggregate if batching 

operations are reasonably close in proximity.  RBMAC pavement could also prove to be 

of interest to those involved in green building, as it could be counted in a green building 

rating system as reuse of a recycled material. 



 
 
 
 
 
 

CHAPTER 8: SUMMARY AND CONCLUSIONS 
 
 

8.1 Findings and Conclusions 

 Use of recycled aggregates in portland cement concrete can offer benefits 

associated with both economy and sustainability.  Significant research has been 

performed on use of RCA in concrete elements, but use of RBMA has not been studied in 

the United States.  In this study, RBMA was shown to be a viable material for use in 

structural and pavement grade concrete mixtures, possessing mechanical properties 

similar to those of PCC with conventional aggregates.  Data collected on RBMA and 

RBMAC as part of this work can be used by designers interested in using this material in 

sustainable construction.  Information on the properties of RBMA and RBMAC produced 

in the United States did not exist prior to this study. 

 Many concerns related to use of any recycled aggregate, including RBMA, 

include those related to the potential for contaminants to be introduced into the aggregate.  

At this case study site, it was found that top-down demolition techniques paired with on-

site source separation of demolition debris can facilitate the generation of RBMA that is 

relatively “clean” and free of debris.  The potential for variation in quality of the source 

brick and masonry mortar included in RBMA exists, and prior to use of this material, 

testing should be performed on whole brick as well as samples of crushed RBMA.   

 Testing to characterize the RBMA indicated that values for properties such as 

absorption, specific gravity, bulk density, and abrasion resistance differ from those 
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typical of RCA and locally available natural aggregate.  RBMA produced from the 

subject site exhibits an absorption value (12.2%) approximately twice that of a locally 

manufactured lightweight aggregate.  The loose bulk density of the AASHTO M43 #78 

RBMA from the subject site is 60.9 pcf (976 kg/m3).  Compared to other aggregates of 

the same gradation, this loose bulk density is approximately 10 pcf (160 kg/m3) greater 

than that of a locally manufactured lightweight aggregate, yet 20 pcf (320 kg/m3) and 30 

pcf (481 kg/m3) less than that of RCA from the subject site and locally quarried granite 

aggregate, respectively.  The RBMA produced from the case study site does not meet 

ASTM C330, “Standard Specification for Lightweight Aggregates for Structural 

Concrete,” in which the maximum dry loose bulk density of lightweight aggregate is 55 

pcf (881 kg/m3). 

 Ultimately, for RBMA to be considered as a viable aggregate source, guidelines 

for tests to confirm acceptable material properties and performance characteristics will 

need to be developed.  Test methods performed in this study, as detailed in Chapter 3, 

Testing Program for Characterization of Recycled Materials, could be included in a 

framework of selection guidelines used by agencies to assess the suitability of RBMA 

produced from different sources.  Other tests should be those required by the agency for 

acceptance of other aggregates, with performance criteria modified as appropriate. 

 RBMAC mixtures utilizing RBMA as a 100% replacement for natural coarse 

aggregate were developed.  Due to the high absorption of the RBMA and its relatively 

low bulk density, RBMAC mixture proportions were developed using ACI 211.2, 

“Standard Practice for Selecting Proportions for Structural Lightweight Concrete.”  This 
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approach provided mixture proportions that produced RBMAC exhibiting suitable 

performance in both the fresh and hardened state. 

 Workability issues arising due to the high absorption of RBMA can be addressed 

by using a commercially available water-reducing admixture.  Air contents typically 

specified for concrete with outdoor exposure were obtained using a commercially 

available air-entraining admixture.  Compressive strengths of trial batches were higher 

than anticipated using the ACI 211.2 mixture proportioning procedure, and it was found 

that RBMAC exhibiting compressive strengths that met the target strengths could be 

developed using cement contents typical of conventional pavement and structural grade 

concrete mixtures.   

 Mixtures meeting ACI 318 strength overdesign requirements for commercially 

available 4,000 psi (27.6 MPa) and 5,000 psi (34.5 MPa) mixtures were developed and 

tested for mechanical properties and durability performance.  RBMAC mixtures with a 

water-reducing admixture (w/c = 0.32) had equilibrium densities ranging from 125.5 pcf 

to 128.2 pcf (2054 kg/m3).  Although higher than the equilibrium density requirements 

for lightweight concrete in ACI 213, this is significantly lower than the unit weight of 

conventional normalweight concrete, indicating that RBMAC could offer advantages of 

reduction of deadload in structural applications, as well as cost-savings related to 

transport.  RBMAC that did not utilize a water-reducing admixture (w/c = 0.43) had an 

equilibrium density of 111.8 pcf (1791 kg/m3), which does meet ACI 213 requirements 

for lightweight concrete.  The modulus of elasticity of RBMAC is within the range of 

expected values for normalweight and lightweight concrete containing aggregate from 
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conventional sources.  Flexural strength testing at 7 days indicate that RBMAC mixtures 

can exhibit moduli of rupture suitable for use in pavement applications.   

 Several of the RBMAC mixtures produced for this study that had a relatively low 

w/c ratio (0.32) exhibited acceptable resistance to chloride ion penetration.  

Unsatisfactory resistance to chloride ion penetration was exhibited by the RBMAC 

mixture that had a relatively higher w/c ratio (0.43).  Air and water permeability test 

results indicated that the RBMAC mixtures are more permeable than similar concrete 

mixtures incorporating normalweight or conventional lightweight aggregates used in 

North Carolina. This testing was performed using the Figg Method.  Due to the 

limitations of this method for use with highly porous aggregates, other methods of testing 

such as the capillary suction method (ASTM C1585) or ponding method (Bentz et al. 

2002) may be more appropriate for routine testing. 

 Abrasion resistance is a key characteristic of concrete used in transportation 

applications.  The abrasion resistance of the RBMA used in this study met the 

requirements of 2012 NCDOT Standard Specifications for some concrete uses, but not 

for concrete with a 28-day design strength greater than 6,000 psi (41.4 MPa).  Additional 

laboratory abrasion testing of the RBMAC in accordance with ASTM C944, “Standard 

Test Method for Abrasion Resistance of Concrete or Mortar Surfaces by the Rotating-

Cutter Method” indicated that RBMAC can exhibit adequate abrasion resistance 

according to FHWA HPC standards (Goodspeed et al. 2011).   

 RBMA does not meet the 2012 NCDOT Standard Specifications for recycled 

aggregates (which limit recycled aggregates to crushed concrete only), and NCDOT 

currently only allows use of RCA in low-grade concrete applications.  However, testing 
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of RBMA and RBMAC performed as part of this work indicates that it may provide 

acceptable performance in pavement applications based on the 2012 NCDOT Standard 

Specifications for aggregates used in concrete and for concrete used in pavement 

applications.   

 M-EPDG, which is currently available commercially as DARWin-ME, is the 

state-of-the-art software program currently available for pavement design.  M-EPDG 

offers pavement designers the ability to account for the properties of RBMAC that differ 

from conventional PCC (such as unit weight, Poisson’s ratio, and thermal characteristics) 

in pavement design.  A comparison of M-EPDG pavement designs using RBMAC and 

PCC pavements incorporating locally available natural aggregate was performed as part 

of this work.  For the traffic, climate, and materials characteristics input in the 

comparison pavement designs, the design thicknesses of RBMAC pavements are similar 

to those of conventional PCC with granite aggregate.  Laboratory testing indicates that 

RBMAC can exhibit favorable thermal characteristics, including a CTE lower than that 

of conventional concrete containing some natural aggregates.  Using the most favorable 

thermal characteristics obtained during testing, M-EPDG predicted adequate performance 

of RBMAC pavements with section thicknesses less than those using conventional 

concrete.  RBMAC could possibly be used in the lower lift of two-lift pavements, if an 

agency does not have an adequate comfort level with it serving as the wearing surface of 

a pavement. 

 RBMAC is currently not used in any type of construction in the United States.  In 

addition to use in public transportation applications, it is envisioned that with the kinds of 

performance data provided here, use of RBMAC likely will increase as sustainable 
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building practices become the norm.  Rating systems such as LEED offer points for reuse 

of building materials (particularly on-site) and use of recycled materials.  If renovations 

at an existing facility call for the demolition of existing brick masonry constructions, the 

rubble could be included as RBMA in new concrete pavement, sidewalks, or curb and 

gutter. The material could be transported to a crushing and grading facility if one is 

nearby, or, if a suitable processing facility is not nearby, mobile crushers could be 

brought on-site to process the material minimizing the transportation costs of the heavier 

aggregate. The material could be transported to a local ready-mix concrete plant, or for 

smaller applications, it could be kept on site and batched there in small ready-mix 

concrete trucks capable of concrete batching from jobsite stockpiles.  As reuse 

applications of this nature become more widely used, it is likely that specialized 

equipment will be developed that will bring costs down further. 

 Other potential uses for RBMAC could include those in the precast concrete 

industry, particularly in architectural precast concrete applications. In addition to 

providing acceptable strength and economy, the color of RBMA could be an attractive 

component of architectural precast concrete panels or other façade components. 

8.2 Recommendations for Future Work 

 Work performed as part of this study provides designers a first look at the 

material properties of RBMA and RBMAC produced in the United States.  Testing 

performed to date indicates that RBMA can be used as a 100% replacement for 

conventional coarse aggregate in concrete that exhibits acceptable mechanical properties 

for use in structural and pavement elements, including satisfactory performance in some 

durability tests.   



228 
 
 For RBMA and RBMAC to be viewed as viable construction materials, additional 

studies will need to be performed.  The thermal properties of RBMAC obtained in this 

study resulted in M-EPDG predicting thinner RBMAC pavement sections than 

conventional PCC pavement for some traffic and climatic conditions.  To confirm these 

findings, it is recommended that CTE testing of RBMAC be performed in accordance 

with AASHTO T336, with the test results compared to those using the appropriate 

calibration specimen.  Future study of RBMAC could include batching of companion 

mixtures of conventional PCC to validate the thermal property test procedures and 

results.   

  Use of RBMA as a replacement for fine aggregate and as a partial replacement of 

coarse aggregate was not included in the scope of this study, and should be explored in 

future work.  Studies to evaluate the effects of optimizing RBMA gradation on RBMAC 

could also be performed.  Incorporation of supplementary cementitious materials (such as 

fly ash or slag cement) in RBMAC to replace portland cement would provide RBMAC 

with a higher recycled materials content, and hence it could be viewed as an even more 

sustainable concrete.   

 Use of RBMA produced from brick masonry with a lower mortar content would 

likely produce better-performing RBMAC.  A greater proportion of brick in the RBMA 

would enhance the favorable thermal characteristics exhibited by RBMAC and 

potentially increase its desirability for use in pavement applications.  Conversely, a 

higher proportion of mortar used in some masonry construction could cause RBMA 

produced from this material to have properties closer to RCA (i.e. higher unit weight, 

lower absorption, etc.).  Future work could include a study on the effects of mortar 
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content of RBMA on RBMAC performance, as well as a study on the influence of 

contaminant materials on the properties of RBMAC.  Recommendations regarding 

procedures that would allow an engineer to rapidly assess the suitability of in-place 

masonry construction for use as RBMA (or of an RBMA stockpile for use in PCC) do not 

currently exist, and should be developed.  

  The high absorption of RBMA indicates that internal curing benefits may be 

provided, with the saturated highly-porous RBMA particles providing additional water to 

facilitate hydration after conventional curing provisions have been removed or halted.  

Testing of the shrinkage and creep characteristics of RBMAC would help to evaluate the 

possible internal curing benefits of RBMA.  Additional durability testing should also be 

performed on RBMAC mixtures, including tests related to freeze-thaw durability, sulfate 

attack, and alkali-aggregate reactivity.   

 Batching and testing of mortar mixtures using recycled brick masonry fine 

aggregate (sand) produced from the case study site was not performed as part of this 

work.  Previous studies by others have shown that brick material may exhibit pozzolanic 

activity, and this should be further investigated.  Microstructural characterization of 

RBMAC, including an evaluation of the paste-aggregate bond (interfacial transition 

zone), would help to provide insight into possible pozzolanic benefits that could be 

provided by RBMA.  

 Although RBMAC has been untested in field applications, results of laboratory 

studies performed to date indicate that this material shows promise for use in pavement 

and structural applications.  As part of this study, a test pavement incorporating RBMAC 

has been designed, and construction is planned for the near future.  The test pavement 
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will help provide insight into the long-term performance of this material in a service 

environment.  Future testing of RBMAC in both laboratory and field settings will allow 

stakeholders to gain a comfort level with its properties, identify specific potential uses, 

and establish guidelines that will assist in ensuring acceptable service life performance.   
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APPENDIX A:  SUPPLEMENTAL INFORMATION FOR CHAPTER 3 
 
 

 
 

Figure A-1:  Whole brick specimens. 
 
 
 

 
 

Figure A-2:  Whole clay tile specimens. 
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Figure A-3:  Test specimens used for thermal conductivity testing. 
 
 

Table A-1:  Absorption test results for bricks. 
 

Specimen 
ID 

Oven 
dried 
wt (g) 

5-hr 
soak 

wet wt 
(g) 

24-hr 
soak wet 

wt (g) 

5-hr 
boil wt 

(g) 

Absorption 
(5-hr soak) 

(%) 

Absorption 
(24-hr soak) 

(%) 

Absorption 
(5-hr boil) 

(%) 

Saturation 
Coefficient 

4 2469.2 2716.4 2726 2793.6 10.0 10.4 13.1 0.79 

13 2696 2938.5 2945.3 3017.3 9.0 9.2 11.9 0.78 

21 2627.9 2826.9 2831.5 2881.2 7.6 7.7 9.6 0.80 

24 2549.4 2757.5 2764.1 2822.6 8.2 8.4 10.7 0.79 

25 2591.4 2763.4 2766.4 2816.9 6.6 6.8 8.7 0.78 

Average 8.3 8.5 10.8 0.8 
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Table A-2:  Absorption test results for clay tiles. 
 

Specimen 
ID 

Oven 
dried 
wt (g) 

5-hr 
soak 

wet wt 
(g) 

24-hr 
soak wet 

wt (g) 

5-hr 
boil wt 

(g) 

Absorption 
(5-hr soak) 

(g) 

Absorption 
(24-hr soak) 

(%) 

Absorption 
(5-hr boil) 

(%) 

Saturation 
Coefficient 

3 4931 5096.7 5115 5126.6 3.4 3.7 4.0 0.94 

4 3568.6 3708.8 3715.2 3744.8 3.9 4.1 4.9 0.83 

6 4732.9 4929.1 4934.7 4976.7 4.1 4.3 5.2 0.83 

Average 3.8 4.0 4.7 0.9 

 
 
 

Table A-3:  Suction test results for bricks. 
 

Specimen 
ID 

Initial 
wt (g) 

Final 
wt (g) 

Weight 
gain, W 

(g) 

length 
(cm) Width (cm) Area of 

cores (cm2) 
Net Area 

(cm2) 

Wt gain 
corrected to 
30 in2 (g per 

30 in2) 
3 2650 2667.6 17.6 26.67 8.57 38.4 190.2 2.8 

5 2471.5 2494.3 22.8 26.67 8.57 38.4 190.2 3.6 

6 2567.1 2596.3 29.2 26.67 8.57 38.4 190.2 4.6 

16 2462.2 2486.5 24.3 26.67 8.57 38.4 190.2 3.8 

18 2476.4 2505.4 29 26.67 8.57 38.4 190.2 4.6 

27 2551.6 2579 27.4 26.67 8.57 38.4 190.2 4.3 

Average 4.0 

 
 
 

Table A-4:  Suction test results for clay tiles. 
 

Specimen 
ID 

Initial 
wt (g) 

Final 
wt (g) 

Weight 
gain, W 

(g) 

length 
(cm) Width (cm) Area of 

cores (cm2) 
Net Area 

(cm2) 

Wt gain 
corrected to 
30 in2 (g per 

30 in2) 
1 5117.2 5122 4.8 29.845 9.2075 122.78 152.02 0.9 

3 4931.6 4935.8 4.2 29.845 9.2075 122.78 152.02 0.8 

Average 0.9 
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Table A-5:  Compressive strength test results for bricks. 
 

Specimen 
ID Length (in) Width 

(in) 
Area of 

cores (in2) 
Net Area 

(in2) Load (lb) Compressive 
Strength (psi) 

1A 5.75 3.375 2.975 16.43 110,115 6,702 

1B 5.75 3.375 2.975 16.43 156,245 9,509 

2A 5.75 3.375 2.975 16.43 120,110 7,310 

2B 5.75 3.375 2.975 16.43 167,880 10,217 

19A 5.75 3.375 2.975 16.43 169,030 10,287 

19B 5.75 3.375 2.975 16.43 219,025 13,330 

22A 5.75 3.375 2.975 16.43 181,725 11,060 

23A 5.75 3.375 2.975 16.43 131,265 7,989 

23B 5.75 3.375 2.975 16.43 208,450 12,686 

31A 5.75 3.375 2.975 16.43 148,680 9,049 

31B 5.75 3.375 2.975 16.43 150,055 9,132 

Average 9,752 

 
 
 

Table A-6:  Compressive strength test results for clay tiles. 
 

Specimen 
ID Length (in) Width 

(in) 
Area of 

cores (in2) 
Net Area 

(in2) Load (lb) Compressive 
Strength (psi) 

2 5.875 3.625 9.75 11.55 181,710 15,737 

8A 5.875 3.625 9.281 12.02 104,345 8,684 

8B 5.875 3.625 9.75 11.55 126,955 10,995 

Average 11,805 

 
 
 

Table A-7:  Modulus of rupture test results for bricks. 
 

Specimen 
ID Length (in) Load (lb) Width (in) Height 

(in) 

Avg. distance 
from midspan 

to plane of 
failure, X (in) 

Modulus of 
Rupture (psi) 

9 10.5 1545 2.1875 2.25 0 2,197 

10 10.5 1125 2.125 2.25 0.0625 1,627 

11 10.5 1265 2.1875 2.25 0.125 1,756 

15 10.5 1450 2.25 2.1875 0 2,121 

20 10.5 1740 2.25 2.25 0.125 2,349 

Average 2,010 
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Table A-8:  Modulus of rupture test results for tiles. 
 

Specimen 
ID Length (in) Load (lb)  Width (in) Height 

(in) 

Avg. distance 
from midspan 

to plane of 
failure, X (in) 

Modulus of 
Rupture (psi) 

1 10.5 2245 1.25 5 0.125 1,105 

7 10.5 2155 1.1875 5.125 0.25 1,036 

Average 1,070 

 
 
 

Table A-9:  Coefficient of thermal expansion test results for brick. 
 

 
Initial 
Temp. 

(°F) 

Length at 
Initial 

Temp. (in) 

High 
Temp. (°F) 

Length at 
High Temp. 

(in.) 

Low 
Temp. 

(°F) 

Length at 
Low Temp. 

(in) * 

CTE 
(in/in/°F) 

** 

Test 1 70.2 4.0074 111.0 4.0078 55.2 4.0078 2.45×10-6 

Test 2 70.5 4.0075 109.2 4.0102 57.4 4.0089 1.74×10-5 

Test 3 72.7 4.0094 112.5 4.0110 56.6 4.0089 1.00×10-5 

Average N/A 

* crack in brick appears to have caused these values to be questionable, Test 2 and Test 3 are deemed invalid. 

** CTE computed using only initial and high temps only. 
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Figure A-4:  Thermal conductivity test results for brick. 
 

 
 

Figure A-5:  Thermal conductivity test results for clay tile. 
 
 
 

9:40:08 

9:41:14 

9:42:20 

9:43:25 

9:44:31 

9:45:37 

9:46:42 

9:47:48 

9:48:54 

9:49:59 

0.62 2,354.08

10 1 T132 1,231 0.900 21.92 0.63 2,354.95

9 1 T132 1,229 0.900 22.00

0.64 2,356.95

8 1 T132 1,231 0.900 21.87 0.62 2,354.60

7 1 T132 1,222 0.890 20.93

0.62 2,355.29

6 1 T132 1,224 0.890 20.93 0.63 2,357.56

5 1 T132 1,232 0.900 21.76

0.63 2,356.98

4 1 T132 1,229 0.900 21.80 0.62 2,354.43

3 1 T132 1,226 0.890 20.82

0.62 2,355.90

2 1 T132 1,218 0.880 20.92 0.63 2,357.32

1 1 T132 1,243 0.910 21.60

Effusivity Conductivity (W/mK) Ambient T 
(°C)

DeltaT (°C) V0 
( V)

Project: Cavalline

Material Idlewild brick
Material Lot:

 W*√(s)
 (m^2)*К# Repea

t
Sensor ID Start Time

Instrument: TH89-05-00129 Test started on: 06-Jan-2012
Test Method: Polymers Performed by: Administrator

User ID: ADMIN

Test Report
Report Generated on: 06-Jan-2012 9:51:18 

Test TCI-114 Software Version: 2.3.3954

9:55:31 
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9:58:48 

9:59:54 
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0.55 2,354.76

10 1 T132 1,659 1.460 21.71 0.55 2,356.29

9 1 T132 1,675 1.490 22.22

0.55 2,354.54

8 1 T132 1,672 1.480 22.13 0.54 2,354.61

7 1 T132 1,657 1.460 22.13

0.55 2,356.00

6 1 T132 1,655 1.450 22.16 0.55 2,354.39

5 1 T132 1,661 1.460 21.53

0.55 2,355.02

4 1 T132 1,649 1.440 21.09 0.54 2,357.81

3 1 T132 1,647 1.440 22.17

0.54 2,357.30

2 1 T132 1,639 1.420 22.06 0.55 2,354.72

1 1 T132 1,693 1.520 21.53

Effusivity Conductivity (W/mK) Ambient T 
(°C)

DeltaT (°C) V0 
(mV)

Project: Cavalline

Material Idlewild tile
Material Lot:

 W*√(s)
 (m^2)*К# Repea

t
Sensor ID Start Time

Instrument: TH89-05-00129 Test started on: 06-Jan-2012
Test Method: Ceramics Performed by: Administrator

User ID: ADMIN

Test Report
Report Generated on: 06-Jan-2012 10:06:25 

Test TCI-115 Software Version: 2.3.3954



252 
 

 
 

Figure A-6:  Thermal conductivity test results for mortar. 
 
 
 
 

 
 

Figure A-7:  Samples of crushed brick, mortar, and clay tile, for heat capacity testing. 
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6 1 T132 479 0.170 22.27 0.91 2,355.74

5 1 T132 479 0.170 22.38

0.90 2,355.20

4 1 T132 479 0.170 22.14 0.90 2,355.48

3 1 T132 477 0.170 22.22

0.91 2,356.11

2 1 T132 479 0.170 21.15 0.91 2,358.09

1 1 T132 483 0.180 22.12
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Figure A-8:  Typical output spreadsheet of TGA, with associated heat capacity 
calculations. 

TLC Brick Test 1 - 11/30/2011
Creation Date : 11/30/2011 1:36:42 PM
User : admin

TG :
 Initial Mass : 83.34 mg
 Molar Mass : N/A

TG |-b [TLC RBMAC Blank 1 - 11/30/2011 / 2 Heating Zone / TG] :
 Initial Mass : 83.34 mg
 Molar Mass : N/A

HeatFlow :
 Initial Mass : 83.34 mg
 Molar Mass : N/A

HeatFlow |-b [TLC RBMAC Blank 1 - 11/30/2011 / 2 Heating Zone / HeatFlow] :
 Initial Mass : 83.34 mg
 Molar Mass : N/A

Index Time (s)
Furnace 
Temp. (°C)

Sample 
Temp. (°C)

TG (mg)

TG (minus 
blank 
crucible) 
(mg)

HeatFlow (mW)

HeatFlow 
(minus blank 
crucible) 
(mW)

Heat Capacity 
(J/(mg•°C))

Heat Capacity 
(J/(g•°C))

Heat Capacity 
(BTU/(lb•°F)

1 0 24.996487 24.88892 83.34187 83.32444 0.493721 0.01840 0.00022 0.22083 0.92457
2 0.1 24.996508 24.88891 83.34177 83.324356 0.493727 0.01842 0.00022 0.22101 0.92533
3 0.2 24.996529 24.88891 83.34168 83.324261 0.493732 0.01844 0.00022 0.22120 0.92613
4 0.3 24.99655 24.88891 83.34158 83.324169 0.493742 0.01846 0.00022 0.22145 0.92718
5 0.4 24.996571 24.8889 83.34148 83.32407 0.493753 0.01849 0.00022 0.22185 0.92884
6 0.5 24.996594 24.8889 83.34139 83.323978 0.49376 0.01853 0.00022 0.22231 0.93075
7 0.6 24.996615 24.88889 83.3413 83.323879 0.49376 0.01856 0.00022 0.22265 0.93221
8 0.7 24.996635 24.88888 83.34123 83.323791 0.49376 0.01858 0.00022 0.22297 0.93351
9 0.8 24.996643 24.88886 83.34114 83.323689 0.493772 0.01862 0.00022 0.22345 0.93552

10 0.9 24.996651 24.88885 83.34107 83.323589 0.493779 0.01866 0.00022 0.22384 0.93718
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Table A-10:  Sieve analyses of RBMA. 
 

 

Sample 1
Sieve No. Weight retained (g) % retained Cumulative % retained % passing
3/4 0.0 0.0 0.0 100.0
1/2 3.2 0.1 0.1 99.9
3/8 454.4 13.2 13.3 86.7
No. 4 2262.7 65.6 78.9 21.1
No. 8 681.4 19.8 98.6 1.4
No. 16 27.5 0.8 99.4 0.6
pan 19.4 0.6 100.0 0.0

Total Wt (g) 3448.6

Sample 2
Sieve No. Weight retained (g) % retained Cumulative % retained % passing
3/4 0.0 0.0 0.0 100.0
1/2 4.2 0.1 0.1 99.9
3/8 419.4 12.4 12.5 87.5
No. 4 2237.4 66.1 78.7 21.3
No. 8 669.1 19.8 98.5 1.5
No. 16 28.1 0.8 99.3 0.7
pan 24.2 0.7 100.0 0.0

Total Wt (g) 3382.4

Sample 3
Sieve No. Weight retained (g) % retained Cumulative % retained % passing
3/4 0.0 0.0 0.0 100.0
1/2 7.9 0.2 0.2 99.8
3/8 626.9 18.7 19.0 81.0
No. 4 2179.9 65.1 84.0 16.0
No. 8 474.8 14.2 98.2 1.8
No. 16 19.6 0.6 98.8 1.2
pan 40.0 1.2 100.0 0.0

Total Wt (g) 3349.1

Average
Sieve No. % passing
3/4 100.0
1/2 99.8
3/8 85.1
No. 4 19.5
No. 8 1.6
No. 16 0.8
pan 0.0
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Table A-13:  Bulk density (unit weight) test results for RBMA, shoveling procedure and 
rodding procedure. 

 
 

 
 
 
 
 

Table A-14:  Los Angeles abrasion resistance test results for RBMA. 
 

  
Sample 1 Sample 2 

Initial sample wt (g)  
retained on 1/4 in sieve 2500.0 2500.0 
retained on No. 4 in 
sieve 2500.0 2500.0 

Total initial sample  wt (g) 5000.0 5000.0 
Final sample  wt (g) (retained  on No. 12 sieve) 2775.4 2907.8 
% loss 44.4% 41.8% 

 
 
 
 
 
 
 
 
 

  

Shoveling Procedure (lightweight)
Sample Wt of aggregate (g) Wt of aggregate (lb) Bulk density (pcf)

1 3195 7.04 61.5
2 3140 6.92 60.5
3 3150 6.95 60.7

60.9

Rodding Procedure (normalweight)
Sample Wt of aggregate (g) Wt of aggregate (lb) Bulk density (pcf)

1 3680 8.11 70.9
2 3625 7.99 69.8
3 3655 8.06 70.4

70.4Average

Average
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APPENDIX C:  SUPPLEMENTAL INFORMATION FOR CHAPTER 6 
 
 

Table C-1:  Equilibrium density test results for RBMAC. 
 

Specimen 
ID 

Diam 
(in) 

Length 
(in) 

Vol. 
(cf) 

Submerged 
wt (lb) 

SSD wt 
(lb) 

Equilibrium 
density wt 

(lb) 

Equilibrium 
density (pcf) 

Average 
equilibrium 
density (pcf) 

BAC 5.0-a 6 12 0.196 11.139 23.624 22.410 111.8 
111.8 

BAC 5.0-b 6 12 0.196 11.150 23.675 22.475 111.7 
BAC 6.0-a 6 12 0.196 14.164 26.800 25.950 127.9 

128.2 
BAC 6.0-b 6 12 0.196 14.272 26.900 26.055 128.5 
BAC 6.1-a 4 8 0.058 4.214 7.919 7.635 128.4 

127.3 
BAC 6.1-b 6 12 0.196 13.743 26.310 25.480 126.3 
BAC 6.2-a 4 8 0.058 4.222 7.900 7.550 127.8 

125.5 
BAC 6.2-b 4 8 0.058 4.132 7.899 7.450 123.2 
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Table C-2:  Compressive strength test results for baseline RBMAC mixtures. 
 
 

  

Specimen Comp. Str. (psi) Average Comp. 
Str. (psi) Specimen Comp. Str. (psi) Average Comp. 

Str. (psi)

BAC5.0-3a 2179 BAC6.0-3a 4449
BAC5.0-3b 2069 BAC6.0-3b 4487
BAC5.0-3c 2168 BAC6.0-3c 4741
BAC5.0-7a 2976 BAC6.0-7a 6605
BAC5.0-7b 2692 BAC6.0-7b 6671
BAC5.0-7c 2905 BAC6.0-7c 5271

BAC5.0-28a 3560 BAC6.0-28a 6441
BAC5.0-28b 3761 BAC6.0-28b 6680
BAC5.0-28c 3704 BAC6.0-28c 6370
BAC5.0-90a 3818 BAC6.0-90a 7158
BAC5.0-90b 3925 BAC6.0-90b 6727
BAC5.0-90c BAC6.0-90c 6824

Specimen Comp. Str. (psi) Average Comp. 
Str. (psi) Specimen Comp. Str. (psi) Average Comp. 

Str. (psi)

BAC6.1-3a 3332 BAC6.2-3a 4902
BAC6.1-3b 3555 BAC6.2-3b 4550
BAC6.1-3c 4165 BAC6.2-3c 4071
BAC6.1-7a 3704 BAC6.2-7a 5359
BAC6.1-7b 4161 BAC6.2-7b 5206
BAC6.1-7c 4356 BAC6.2-7c

BAC6.1-28a 5472 BAC6.2-28a 6929
BAC6.1-28b 5170 BAC6.2-28b 6042
BAC6.1-28c 5279 BAC6.2-28c 6378
BAC6.1-90a 4918 BAC6.2-90a 7629
BAC6.1-90b 5805 BAC6.2-90b 7057
BAC6.1-90c BAC6.2-90c

RBMAC Mixture

RBMAC Mixture

28-day 5307 6450

90-day 5362 7343

BAC 6.1 BAC 6.2

3-day 3684 4508

7-day 4074 5283

28-day 3675 6497

90-day 3872 6903

BAC 5.0 BAC 6.0

3-day 2139 4559

7-day 2858 6182
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Figure C-1:  Test specimen used for compressive strength, modulus of elasticity, and 
Poisson’s ratio testing, RBMAC mixture BAC 5.0, 3 day tests. 

 

 
 

Figure C-2:  Test specimen used for compressive strength, modulus of elasticity, and 
Poisson’s ratio testing, RBMAC mixture BAC 5.0, 7 day tests. 
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Figure C-3:  Test specimen used for compressive strength, modulus of elasticity, and 
Poisson’s ratio testing, RBMAC mixture BAC 5.0, 28 day tests. 

 

 
 

Figure C-4:  Test specimen used for compressive strength, modulus of elasticity, and 
Poisson’s ratio testing, RBMAC mixture BAC 5.0, 90 day tests. 
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Figure C-5:  Test specimen used for compressive strength, modulus of elasticity, and 
Poisson’s ratio testing, RBMAC mixture BAC 6.0, 3 day tests. 

 

 
 

Figure C-6:  Test specimen used for compressive strength, modulus of elasticity, and 
Poisson’s ratio testing, RBMAC mixture BAC 5.0, 3 day tests. 
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Figure C-7:  Test specimen used for compressive strength, modulus of elasticity, and 
Poisson’s ratio testing, RBMAC mixture BAC 5.0, 3 day tests. 

 
 

 
 

Figure C-8:  Test specimen used for compressive strength, modulus of elasticity, and 
Poisson’s ratio testing, RBMAC mixture BAC 5.0, 3 day tests. 
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Figure C-9:  Test specimen used for compressive strength, modulus of elasticity, and 
Poisson’s ratio testing, RBMAC mixture BAC 6.1, 3 day tests. 

 
 

 
 

Figure C-10:  Test specimen used for compressive strength, modulus of elasticity, and 
Poisson’s ratio testing, RBMAC mixture BAC 6.1, 7 day tests. 
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Figure C-11:  Test specimen used for compressive strength, modulus of elasticity, and 
Poisson’s ratio testing, RBMAC mixture BAC 6.1, 28 day tests. 

 
 

 
 

Figure C-12:  Test specimen used for compressive strength, modulus of elasticity, and 
Poisson’s ratio testing, RBMAC mixture BAC 6.1, 90 day tests. 
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Figure C-13:  Test specimen used for compressive strength, modulus of elasticity, and 
Poisson’s ratio testing, RBMAC mixture BAC 6.2, 3 day tests. 

 

 
 

Figure C-14:  Test specimen used for compressive strength, modulus of elasticity, and 
Poisson’s ratio testing, RBMAC mixture BAC 6.2, 7 day tests. 

 
  



273 
 

 
 

Figure C-15:  Test specimen used for compressive strength, modulus of elasticity, and 
Poisson’s ratio testing, RBMAC mixture BAC 6.2, 28 day tests. 

 

 
 

Figure C-16:  Test specimen used for compressive strength, modulus of elasticity, and 
Poisson’s ratio testing, RBMAC mixture BAC 6.2, 90 day tests. 
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Table C-3:  Splitting tensile strength test data for RBMAC. 
 

RBMAC 
Mixture Specimen ID Load (lb) Splitting tensile 

strength (psi) 

Average splitting 
tensile strength 

(psi) 

BAC 5.0 
BAC 5.0-28a 33,851 299 

320 
BAC 5.0-28b 38,631 342 

BAC 6.0 
BAC 6.0-28a 53,831 476 

439 
BAC 6.0-28b 45,405 401 

BAC 6.1 
BAC 6.1-28a 61,248 542 

484 
BAC 6.1-28b 48,119 425 

BAC 6.2 
BAC 6.2-28a 52,325 463 

387 
BAC 6.2-28b 35,272 312 

 
 
 
 
 

 
 

Figure C-17:  Typical splitting tensile strength test specimens. 
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Figure C-18:  Several splitting tensile strength test specimens. 
 
 
 

Table C-4:  Modulus of rupture test data for RBMAC. 
 

RBMAC 
Mixture Specimen ID Load at 

rupture (lb) 
Modulus of rupture 

(psi) 
Average modulus 
of rupture (psi) 

BAC 5.0 
BAC 5.0-7a 5,996 500 

519 
BAC 5.0-7b 6,471 539 

BAC 6.0 
BAC 6.0-7a 11,118 927 

797 
BAC 6.0-7b 8,017 668 

BAC 6.1 
BAC 6.1-7a 7,151 596 

730 
BAC 6.1-7b 10,372 864 

BAC 6.2 
BAC 6.2-7a 9,192 766 

717 
BAC 6.2-7b 8,006 667 
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Figure C-19:  Typical test specimens used for modulus of rupture testing, and 
subsequently, abrasion resistance testing. 

 
 

 
 

Figure C-20:  Typical test specimens used for modulus of rupture testing, and 
subsequently, abrasion resistance testing and air and water permeability testing. 
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Table C-5:  Typical data collected from modulus of elasticity and Poisson’s ratio test. 
 
 

Specimen BAC6.2-3a 
     Raw Data 

    
Load (lb) 

Longitudinal 
dial gage 

reading (in)  

Transverse 
dial gage 

reading (in)  Stress (psi) Longitudinal 
strain (in/in) 

Transverse 
strain (in/in) 

0 0 0 
 

0 0.000000 0.000000 
5800 0.0008 0.0000 

 
205 0.000050 0.000000 

10000 0.0014 0.0002 
 

354 0.000088 0.000017 
15000 0.0021 0.0003 

 
531 0.000131 0.000025 

20000 0.0028 0.0004 
 

707 0.000175 0.000033 
25000 0.0037 0.0005 

 
884 0.000231 0.000042 

30000 0.0045 0.0006 
 

1061 0.000281 0.000050 

       ulttimate 
load (lb) 

  

at 40% of 
ultimate load 1961 0.000507 0.000091 

138570 
  

at ultimate load 4902 0.001266 0.000228 
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Figure C-21:  Typical stress versus longitudinal strain plot from modulus of elasticity 
test. 

 
 

 
 

Figure C-22:  Typical transverse strain versus longitudinal strain plot for Poisson’s ratio 
test. 
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Figure C-23:  Drying shrinkage test specimens (beams). 
 

 
 

Figure C-24:  Length measurement of drying shrinkage test specimen. 
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Table C-8:  Coefficient of thermal expansion test results for RBMAC. 

 

 

Initial 
Temp. 

(°F) 

Length at 
Initial 

Temp. (in) 

High 
Temp. (°F) 

Length at 
High Temp. 

(in.) 

Low 
Temp. 

(°F) 

Length at 
Low Temp. 

(in) 

CTE 
(in/in/°F) 

Test 1 71.5 4.0091 114.7 4.0098 52.4 4.0087 4.40×10-6 

Test 2 71.5 4.0049 115.3 4.0057 54.8 4.0041 6.60×10-6 

Test 3 70.5 4.0049 116.9 4.0058 53.7 4.0044 5.53×10-6 

Average 5.51×10-6 

 
 
 
 
 

 
 

Figure C-25:  Test specimen prepared from BAC 6.2 used for thermal conductivity 
testing. 
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Figure C-26:  Typical thermal conductivity test results for RBMAC mixture BAC 6.2. 
 
 
 

 
 

Figure C-27: Sample of crushed RBMAC (mixture BAC 6.2) used for heat capacity 
testing. 

11:04:33 

11:05:39 

11:06:44 

11:07:50 

11:08:56 

11:10:01 

11:11:07 

11:12:13 

11:13:18 

11:14:24 

0.63 2,360.07

10 1 T132 1,252 0.920 21.76 0.62 2,360.09

9 1 T132 1,272 0.950 21.78

0.63 2,357.81

8 1 T132 1,263 0.940 21.81 0.61 2,359.94

7 1 T132 1,277 0.950 22.61

0.62 2,359.59

6 1 T132 1,269 0.950 22.86 0.63 2,356.36

5 1 T132 1,253 0.930 21.67

0.61 2,356.64

4 1 T132 1,266 0.940 22.66 0.62 2,357.50

3 1 T132 1,261 0.940 22.76

0.62 2,357.04

2 1 T132 1,275 0.950 22.78 0.62 2,356.47

1 1 T132 1,256 0.930 22.58

Effusivity Conductivity (W/mK) Ambient T 
(°C)

DeltaT (°C) V0 
(mV)

Project: Cavalline

Material Idlewild RBMAC
Material Lot:

 W*√(s)
 (m^2)*К# Repea

t
Sensor ID Start Time

Instrument: TH89-05-00129 Test started on: 06-Jan-2012
Test Method: Polymers Performed by: Administrator

User ID: ADMIN

Test Report
Report Generated on: 06-Jan-2012 11:15:18 

Test TCI-122 Software Version: 2.3.3954
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Figure C-28: Samples of crushed brick, mortar, clay tile, and RBMAC used for heat 
capacity testing. 

 

 
 

Figure C-29:  Typical output spreadsheet of TGA for RBMAC, with associated heat 
capacity calculations. 

TLC RBMAC Test 4 - 1/6/2012
Creation Date : 1/6/2012 11:47:03 AM
User : admin

TG :
 Initial Mass : 101.52 mg
 Molar Mass : N/A

TG |-b [TLC RBMAC Blank 1 - 1/6/2012 / 2 Heating Zone / TG] :
 Initial Mass : 101.52 mg
 Molar Mass : N/A

HeatFlow :
 Initial Mass : 101.52 mg
 Molar Mass : N/A

HeatFlow |-b [TLC RBMAC Blank 1 - 1/6/2012 / 2 Heating Zone / HeatFlow] :
 Initial Mass : 101.52 mg
 Molar Mass : N/A

Index Time (s)
Furnace 
Temp. (°C)

Sample 
Temp. (°C)

TG (mg)

TG (minus 
blank 
crucible) 
(mg)

HeatFlow (mW)

HeatFlow 
(minus blank 
crucible) 
(mW)

Heat Flow (J/°C)
Heat Capacity 
(J/(mg•°C))

Heat Capacity 
(J/(g•°C))

Heat Capacity 
(BTU/(lb•°F)

1 0 24.903164 24.80681 42.23283 101.19931 0.134925 -0.610845 -0.00366507 0.0000361 0.0361020 0.1511516
2 0.1 24.903212 24.80685 42.2327 101.199184 0.134943 -0.61084 -0.00366504 0.0000361 0.0361017 0.1511504
3 0.2 24.903254 24.8069 42.23257 101.19907 0.13496 -0.610835 -0.00366501 0.0000361 0.0361014 0.1511492
4 0.3 24.903303 24.80694 42.23245 101.198948 0.134977 -0.61083 -0.00366498 0.0000361 0.0361011 0.1511479
5 0.4 24.903353 24.80698 42.23233 101.198845 0.134994 -0.610821 -0.003664926 0.0000361 0.0361005 0.1511457
6 0.5 24.903395 24.80703 42.23221 101.198734 0.135012 -0.610812 -0.003664872 0.0000361 0.0361000 0.1511435
7 0.6 24.903446 24.80707 42.2321 101.198631 0.13505 -0.610785 -0.00366471 0.0000361 0.0360984 0.1511368
8 0.7 24.903496 24.80711 42.23199 101.198528 0.135088 -0.61076 -0.00366456 0.0000361 0.0360969 0.1511306
9 0.8 24.903545 24.80715 42.2319 101.198441 0.135124 -0.610738 -0.003664428 0.0000361 0.0360956 0.1511252

10 0.9 24.903595 24.80719 42.2318 101.198349 0.135157 -0.610719 -0.003664314 0.0000361 0.0360945 0.1511205
11 1 24.903645 24.80723 42.23171 101.198273 0.13519 -0.610702 -0.003664212 0.0000361 0.0360935 0.1511163
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Table C-9:  Air and water permeability test results for RBMAC mixture BAC 5.0. 
 
 
 

 
 

1

A B
Min. Sec. Min. Sec. Min. Sec. Min. Sec.

1 0 10 0 3 1 0 6 0 3
2 0 10 0 3 2 0 7 0 3
3 0 10 0 3 3 0 8 0 3
4 4 0 8
5 5

D C
Min. Sec. Min. Sec. Min. Sec. Min. Sec.

1 0 10 0 4 1 0 8 0 3
2 0 11 0 4 2 0 9 0 3
3 0 12 0 4 3 0 10 0 4
4 4
5 5

Test Plug 1 2 3 4 5 Average
A 10 10 10 10.0
B 6 7 8 8 7.3
C 8 9 10 9.0
D 10 11 12 11.0

9.3

Test Plug 1 2 3 4 5 Average
A 3 3 3 3.0
B 3 3 3 3.0
C 3 3 4 3.3
D 4 4 4 4.0

3.3

BAC 5.0Mixture

Date 6/7/2011

Location 1 Air (sec)

Test Location

Air and Water Permeability 

Average for location

Location 1 Water (sec)

Average for location

Air WaterAir Water

Air Water Air Water
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Table C-10:  Air and water permeability test results for RBMAC mixture BAC 6.0. 
 
 
 

 
  

1

A B
Min. Sec. Min. Sec. Min. Sec. Min. Sec.

1 1 45 0 20 1 0 15 1 28
2 1 53 0 20 2 0 34 1 44
3 1 52 3 0 34 2 51
4 4 3 39
5 5

D C
Min. Sec. Min. Sec. Min. Sec. Min. Sec.

1 0 48 0 32 1 1 12 1 15
2 1 3 0 44 2 1 23 1 22
3 1 8 0 52 3 1 24
4 1 8 4
5 5

Test Plug 1 2 3 4 5 Average
A 105 113 112 110.0
B 15 34 34 27.7
C 72 83 84 79.7
D 48 63 68 68 61.8

69.8

Test Plug 1 2 3 4 5 Average
A 20 20 20.0
B 88 104 171 219 145.5
C 75 82 78.5
D 32 44 52 42.7

71.7

Water

Average for location

Location 1 Air (sec)

Location 1 Water (sec)

Average for location

AirAir Water

Air and Water Permeability 
Mixture BAC 6.0

Date 6/3/2011

Test Location

Air Water Air Water
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Table C-11:  Air and water permeability test results for RBMAC mixture BAC 6.1. 
 
 
 

 

1

A B
Min. Sec. Min. Sec. Min. Sec. Min. Sec.

1 0 35 0 20 1 0 39 0 33
2 0 40 0 21 2 0 49 0 35
3 0 44 3 0 50 0 35
4 0 47 4
5 0 48 5

D C
Min. Sec. Min. Sec. Min. Sec. Min. Sec.

1 0 26 0 14 1 0 43 0 10
2 0 34 0 13 2 0 53 0 11
3 0 35 3 0 54
4 4
5 5

Test Plug 1 2 3 4 5 Average
A 35 40 44 47 48 42.8
B 39 49 50 46.0
C 43 53 54 50.0
D 26 34 35 31.7

42.6

Test Plug 1 2 3 4 5 Average
A 20 21 20.5
B 33 35 35 34.3
C 10 11 10.5
D 14 13 13.5

19.7

Average for location

Average for location

Location 1 Water (sec)

BAC 6.1

Date 6/8/2011

Location 1 Air (sec)

Air Water Air

Air and Water Permeability 
Mixture

Water

Test Location

Air Water Air Water
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Table C-12:  Air and water permeability test results for RBMAC mixture BAC 6.2. 
 
 
 

  

1

A B
Min. Sec. Min. Sec. Min. Sec. Min. Sec.

1 0 41 0 10 1 0 41 0 20
2 0 52 0 13 2 0 53 0 12
3 0 53 0 14 3 0 58 0 23
4 0 16 4 1 0 0 24
5 5

D C
Min. Sec. Min. Sec. Min. Sec. Min. Sec.

1 0 36 0 10 1 0 38 2 6
2 0 41 0 9 2 0 43 0 57
3 0 41 0 11 3 0 45 0 56
4 0 13 4 0 47 0 58
5 5

Test Plug 1 2 3 4 5 Average
A 41 52 53 48.7
B 41 53 58 60 53.0
C 38 43 45 47 43.3
D 36 41 41 39.3

46.1

Test Plug 1 2 3 4 5 Average
A 10 13 14 16 13.3
B 20 12 23 24 19.8
C 126 57 56 58 74.3
D 10 9 11 13 10.8

29.5

Location 1 Air (sec)

Average for location

Location 1 Water (sec)

Average for location

Air Water Air Water

Test Location

Air Water Air Water

Mixture
Air and Water Permeability 

BAC 6.2

Date 6/7/2011
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Figure C-30:  Typical air and water permeability test specimens after testing. 
 
 

 
 
Figure C-31: Typical test specimens used for abrasion resistance testing (three specimens 
in front of photo) and air and water permeability testing (two specimens in rear of photo). 
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Table C-13:  Abrasion resistance test results for RBMAC. 
 
 

RBMAC 
Mixture Location Time 

(min) 

Depth of wear at each 
circumference quarter point 

(mm) 

Average 
depth of 

wear 
(mm) 

Average depth of 
wear for each 

location after three 
2-minute test 
periods (mm) 

Average 
total depth 

of wear 
after three 
2-minute 

test 
periods 
(mm) 

BAC 5.0 

1 0-2 1.10 1.70 2.00 1.50 1.58 
2.21 

0.99 

 2-4 1.60 2.00 2.60 1.80 2.00 

 4-6 1.70 2.30 2.60 2.25 2.21 
2 0-2 0.35 0.30 0.20 0.10 0.24 

0.64  2-4 0.45 0.55 0.40 0.05 0.36 

 4-6 0.75 0.80 0.40 0.60 0.64 
3 0-2 0.10 0.15 0.25 0.10 0.15 

1.04  2-4 0.85 0.95 0.10 0.50 0.60 

 4-6 0.85 1.10 1.10 1.10 1.04 

BAC 6.0 

1 0-2 0.10 0.10 0.10 0.05 0.09 
0.09 

0.16 

 2-4 0.05 0.05 0.20 0.15 0.11 

 4-6 0.00 0.05 0.10 0.20 0.09 
2 0-2 0.10 0.05 0.10 0.10 0.09 

0.03  2-4 0.00 0.05 0.00 0.00 0.01 

 4-6 0.00 0.05 0.00 0.05 0.03 
3 0-2 0.00 0.05 0.10 0.05 0.05 

0.33  2-4 0.50 0.15 0.10 0.10 0.21 

 4-6 0.10 0.10 0.50 0.60 0.33 

BAC 6.1 

1 0-2 0.30 0.00 0.00 0.00 0.08 
0.19 

0.40 

 2-4 0.15 0.20 0.10 0.05 0.13 

 4-6 0.10 0.05 0.40 0.20 0.19 
2 0-2 0.30 0.30 0.50 0.50 0.40 

0.45  2-4 0.30 0.60 0.90 0.60 0.60 

 4-6 0.50 0.40 0.40 0.50 0.45 
3 0-2 0.40 0.45 0.25 0.70 0.45 

0.91  2-4 0.75 0.85 0.80 0.65 0.76 

 4-6 1.00 0.90 0.65 1.10 0.91 

BAC 6.2 

1 0-2 0.00 0.10 0.15 0.10 0.09 
0.05 

0.41 

 2-4 0.25 0.05 0.10 0.10 0.13 

 4-6 0.10 0.10 0.00 0.00 0.05 
2 0-2 0.00 0.00 0.20 0.00 0.05 

0.53  2-4 0.70 0.70 0.30 0.40 0.53 

 4-6 0.60 0.50 0.40 0.60 0.53 
3 0-2 0.30 0.25 0.40 0.40 0.34 

0.65   2-4 0.80 0.65 0.80 0.80 0.76 
  4-6 0.70 0.90 0.11 0.90 0.65 
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Table C-15:  Summary of rapid chloride ion permeability test results for RBMAC. 

 

  

ASTM C1202 Rapid chloride ion permeability, 
total charge passed (Coulombs) 

RBMAC 
Mixture Test Specimen Specimen Average 

BAC 5.0 BAC 5.0 EQ-D1 7340 8379 
BAC 5.0 EQ-D2 9417 

BAC 6.0 BAC 6.0 EQ-D1 980 982 
BAC 6.0 EQ-D2 983 

BAC 6.1 BAC 6.1 EQ-D1 1391 1599 
BAC 6.1 EQ-D2 1806 

BAC 6.2 BAC 6.2 EQ-D1 3011 3127 
BAC 6.2 EQ-D2 3242 

 
 
 
 
 

 
 

Figure C-32:  Typical test specimens after rapid chloride ion permeability testing.  
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Table C-16:  Surface resistivity test results for RBMAC. 
 
 

  

Specimen ID Diam 
(in)

Length 
(in) 0° 90° 180° 270° 0° 90° 180° 270° Average Temp

Average surface 
resistivity (kΩ•cm)

Average 
temp (°F)

BAC 5.0 EQ-D 1 6 12 19 20 18 19 19 20 18 18 18.9 44
BAC 5.0 EQ-D 2 6 12 20 19 18 20 18 18 19 20 19.0 44
BAC 6.0 EQ-D 1 6 12 45 43 45 43 44 43 45 43 43.9 44
BAC 6.0 EQ-D 2 6 12 45 43 41 39 44 41 39 44 42.0 44
BAC 6.1 EQ-D 1 6 12 35 32 36 34 31 32 36 36 34.0 44
BAC 6.1 EQ-D 2 4 8 40 41 43 43 37 40 42 42 41.0 42
BAC 6.2 EQ-D 1 4 8 29 29 31 31 29 29 30 31 29.9 45
BAC 6.2 EQ-D 2 4 8 33 31 31 32 30 32 31 33 31.6 42

BAC 5.0 EQ-D 1 6 12 15 17 16 16 15 16 15 16 15.8 53
BAC 5.0 EQ-D 2 6 12 16 16 15 17 15 16 15 16 15.8 53
BAC 6.0 EQ-D 1 6 12 36 34 35 35 36 35 35 35 35.1 53
BAC 6.0 EQ-D 2 6 12 34 37 33 34 36 37 33 34 34.8 53
BAC 6.1 EQ-D 1 6 12 28 27 29 28 28 28 30 28 28.3 53
BAC 6.1 EQ-D 2 4 8 30 33 35 34 31 33 35 34 33.1 53
BAC 6.2 EQ-D 1 4 8 26 25 23 24 25 26 25 26 25.0 53
BAC 6.2 EQ-D 2 4 8 27 26 25 26 27 25 25 27 26.0 53

BAC 5.0 EQ-D 1 6 12 15 13 13 14 13 14 13 13 13.5 63
BAC 5.0 EQ-D 2 6 12 13 13 12 13 13 13 13 13 12.9 62
BAC 6.0 EQ-D 1 6 12 28 26 29 27 27 27 28 27 27.4 63
BAC 6.0 EQ-D 2 6 12 26 29 27 25 27 29 28 27 27.3 64
BAC 6.1 EQ-D 1 6 12 24 24 23 23 25 23 23 22 23.4 64
BAC 6.1 EQ-D 2 4 8 24 28 29 28 27 27 26 28 27.1 63
BAC 6.2 EQ-D 1 4 8 22 22 19 20 20 21 20 21 20.6 64
BAC 6.2 EQ-D 2 4 8 22 20 20 21 21 21 20 21 20.8 65

BAC 5.0 EQ-D 1 6 12 11 12 11 11 12 12 11 12 11.5 71
BAC 5.0 EQ-D 2 6 12 12 12 12 12 12 12 12 11 11.9 71
BAC 6.0 EQ-D 1 6 12 25 23 24 24 25 26 24 25 24.5 71
BAC 6.0 EQ-D 2 6 12 24 24 24 23 24 24 25 23 23.9 71
BAC 6.1 EQ-D 1 6 12 20 18 21 20 20 18 21 21 19.9 71
BAC 6.1 EQ-D 2 4 8 23 24 24 24 21 23 25 24 23.5 71
BAC 6.2 EQ-D 1 4 8 18 18 18 18 19 19 19 18 18.4 71
BAC 6.2 EQ-D 2 4 8 20 18 19 20 19 19 19 19 19.1 71

BAC 5.0 EQ-D 1 6 12 9 9 9 8 8 9 9 8 8.6 87
BAC 5.0 EQ-D 2 6 12 9 9 9 9 9 9 9 9 9.0 88
BAC 6.0 EQ-D 1 6 12 17 17 17 17 18 17 17 17 17.1 88
BAC 6.0 EQ-D 2 6 12 17 18 16 17 16 18 18 16 17.0 87
BAC 6.1 EQ-D 1 6 12 14 13 15 13 14 14 15 14 14.0 88
BAC 6.1 EQ-D 2 4 8 15 14 14 14 14 14 14 15 14.3 88
BAC 6.2 EQ-D 1 4 8 14 14 14 14 14 15 14 14 14.1 87
BAC 6.2 EQ-D 2 4 8 16 17 18 17 17 17 18 18 17.3 88

BAC 5.0 EQ-D 1 6 12 7 7 7 7 7 7 7 7 7.0 105
BAC 5.0 EQ-D 2 6 12 7 7 7 7 7 7 7 7 7.0 106
BAC 6.0 EQ-D 1 6 12 12 12 12 12 12 12 12 12 12.0 105
BAC 6.0 EQ-D 2 6 12 11 11 13 13 11 11 12 13 11.9 106
BAC 6.1 EQ-D 1 6 12 10 10 11 9 10 11 11 10 10.3 105
BAC 6.1 EQ-D 2 4 8 12 12 13 13 12 12 13 12 12.4 107
BAC 6.2 EQ-D 1 4 8 10 11 11 11 11 10 10 11 10.6 105
BAC 6.2 EQ-D 2 4 8 11 11 11 11 11 11 10 10 10.8 105

10.7 105

7.0 105.5

11.9 105.5

11.3 106

17.1 87.5

14.1 88

15.7 87.5

21.7 71

18.8 71

8.8 87.5

20.7 64.5

11.7 71

24.2 71

13.2 62.5

27.3 63.5

25.3 63.5

34.9 53

30.7 53

25.5 53

37.5 43

30.8 43.5

15.8 53

Surface Resistivity Readings (kΩ•cm)

18.9 44

42.9 44
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APPENDIX D:  SUPPLEMENTAL INFORMATION FOR CHAPTER 7 
 
 

 
Figure D-1:  Typical M-EPDG input summary for RBMAC pavement. 
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Figure D-1 (con’t):  Typical M-EPDG input summary for RBMAC pavement. 
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Figure D-1 (con’t):  Typical M-EPDG input summary for RBMAC pavement. 
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Figure D-1 (con’t):  Typical M-EPDG input summary for RBMAC pavement. 
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Figure D-1 (con’t):  Typical M-EPDG input summary for RBMAC pavement. 
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Figure D-1 (con’t):  Typical M-EPDG input summary for RBMAC pavement. 
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Figure D-1 (con’t):  Typical M-EPDG input summary for RBMAC pavement. 

 

  



302 
 

 

Figure D-2:  Typical M-EPDG reliability summary for RBMAC pavement. 
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Figure D-3:  Typical M-EPDG input summary for conventional PCC pavement. 
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Figure D-3 (con’t):  Typical M-EPDG input summary for conventional PCC pavement. 
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Figure D-3 (con’t):  Typical M-EPDG input summary for conventional PCC pavement. 
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Figure D-3 (con’t):  Typical M-EPDG input summary for conventional PCC pavement. 
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Figure D-3 (con’t):  Typical M-EPDG input summary for conventional PCC pavement. 
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Figure D-3 (con’t):  Typical M-EPDG input summary for conventional PCC pavement. 
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Figure D-3 (con’t):  Typical M-EPDG input summary for conventional PCC pavement. 
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Figure D-4:  Typical M-EPDG reliability summary for conventional PCC pavement. 
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Figure D-5:  M-EPDG input summary for proposed RBMAC test pavement. 
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Figure D-5 (con’t):  M-EPDG input summary for proposed RBMAC test pavement. 
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Figure D-5 (con’t):  M-EPDG input summary for proposed RBMAC test pavement. 
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Figure D-5 (con’t):  M-EPDG input summary for proposed RBMAC test pavement. 
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Figure D-5 (con’t):  M-EPDG input summary for proposed RBMAC test pavement. 
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Figure D-5 (con’t):  M-EPDG input summary for proposed RBMAC test pavement. 
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Figure D-5 (con’t):  M-EPDG input summary for proposed RBMAC test pavement. 
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Figure D-6:  M-EPDG reliability summary for proposed RBMAC test pavement. 
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Figure D-7:  M-EPDG input summary for proposed conventional PCC (control) test 

pavement. 
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Figure D-7 (con’t):  M-EPDG input summary for proposed conventional PCC (control) 

test pavement. 
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Figure D-7 (con’t):  M-EPDG input summary for proposed conventional PCC (control) 
test pavement. 
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Figure D-7 (con’t):  M-EPDG input summary for proposed conventional PCC (control) 
test pavement. 
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Figure D-7 (con’t):  M-EPDG input summary for proposed conventional PCC (control) 
test pavement. 
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Figure D-7 (con’t):  M-EPDG input summary for proposed conventional PCC (control) 
test pavement. 
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Figure D-7 (con’t):  M-EPDG input summary for proposed conventional PCC (control) 
test pavement. 
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Figure D-8:  M-EPDG reliability summary for proposed conventional PCC (control) test 
pavement. 

 


